ſ	SUB-RECORDER RECEIVED
	SEP 26 1991
	M.R. #

LOG NO: OCT 0	3 1991	RD.
ACTION:		

FILE NO:

Prospecting Report

on the

Corrie and Corrie 3 Claims

Liard Mining Division British Columbia

North Lat. 570 25' West Long. 1310 31' NTS 104G/5

.Prepared for.

CASCADE INVESTMENTS J.V. 907 - 510 Burrard Street Vancouver, B.C. V6C 3A8

.Prepared by.

BOA SERVICES LTD. P.O. BOX 11569 1410 - 650 West Georgia Street Vancouver, B.C. V6B 4N8

71

September 26, 1991

Paul P.L. Chung, F.G.A.C. Consulting Geologist

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

	Page
Introduction	01
Summary	01
Location, Access and Physiography	03
Property and Ownership	05
History	05
Regional Geology	07
1990 Work Program	09
Stream Sediment Survey	09
Prospecting and Rock Geochemistry Survey	09
Conclusions and Recommendations	11
Statement of Costs	12
References	13
Statement of Qualifications	14

APPENDICES

Appendix	I	"Certificate of Analysis-Rocks"
Appendix	II	"Sample Descriptions"

LIST OF FIGURES

Figure		Page
1	Location Map	02
2	Claim Map - 1-50,000	06
3	Regional Geology Map 1:50,000	08
4	Sample Location Map 1:10,000	in pocket

INTRODUCTION

The Corrie and Corrie 3 claims (Corrie Property) are owned by Cascade Investments J.V. of Vancouver. The property is located in the Liard Mining Division, northwestern British Columbia. This report describes the exploration program conducted on the claims. The program, which consisted of prospecting, and a silt and rock geochemistry survey, was conducted in July and September of 1990.

SUMMARY

The Corrie property is comprised of 2 contiguous M.G.S. mineral claims that together total 40 units in the Liard Mining Division. The claims covers the western slope of Endeavour mountain at the headwaters of the Oksa Creek drainage, approximately 80 kilometres south of Telegraph Creek in northwestern British Columbia. The geographic coordinates of the property are 57⁰ 25' N Latitude by 131⁰ 31' W Longitude.

Access to the property is provide by helicopter from the Scud River airstrip, approximately 23 kilometres to the southwest.

The property is underlain by a sequence of Triassic age altered volcanic and sedimentary rocks intruded by an Eocene age granite at the southwestern portion of the property and in fault contact with a Jurassic age quartz monzonite and granodiorite in the northeastern portion of the property. The stratified rocks generally trend northwesterly and dip steeply to the east. Metamorphic grade in the area appears to have reached the chloritesericite-pyrite assemblage of the greenschist facies.

A program of prospecting and sampling was conducted on the property between July and September of 1990 to assess the potential of the claims. During this program, 26 rock samples and 1 silt samples were collected.

The 1990 work program discovered skarn type mineralization towards the southern portion of the claim close to where the Eocene intrusion is mapped. Samples taken of this mineralization have returned some very encouraging results.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Corrie property is located within the Coast Range Mountains approximately 180 kilometres northwest of Stewart and 65 kilometres southwest of Telegraph Creek, in northwestern British Columbia (Figure 1). The claims lie within the Liard Mining Division and the geographical coordinates for the centre of the property are 570 25' North Latitude and 1310 31' West Longitude.

Access to the property is provided by helicopter from the Scud River airstrip which is located approximately 23 kilometres to the southwest, or from the Galore Creek airstrip located 29 During the 1990 field season, a kilometres to the south. helicopter supported camp was established at the Scud River airstrip. Fixed-wing aircraft fly charters from Smithers, Dease Lake and Telegraph Creek to the Scud River and Galore Creek airstrips. Scheduled flights from Smithers or Vancouver to the Galore Creek airstrip and the Scud River airstrip via the Bronson Creek airstrip during the field season are available. On the Alaska side of the border, Wrangell lies approximately 100 kilometres to the southwest, and provides a full range of services and supplies, including a major commercial airport. The Stikine River has been navigated by 100-ton barges up river as far as Telegraph Creek, allowing economical transportation of heavy machinery and fuel to the Scud River airstrip.

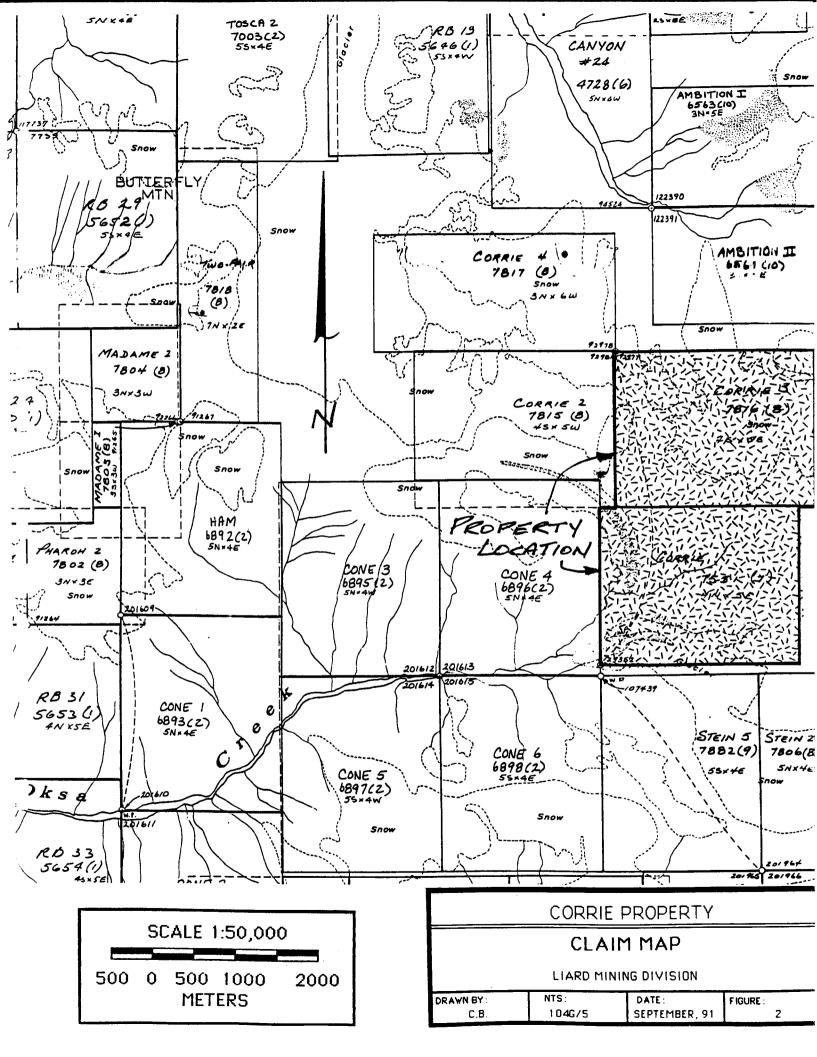
The Corrie property is situated the headwaters of the westerly draining Oksa Creek, which flows into the Stikine River, and covers the western slope of Endeavour Mountain. Topography is steep and rugged with elevations ranging from 3000 metres to over 8000 metres above sea level at the western edge of the property. Ice fields cover much of the Corrie 3 claim and is scattered on the Corrie claim. Although the property is well above the treeline, a large portion of bedrock is covered by ice, moraines and talus.

The claims are situated at the boundary between the wet belt and the gradational belt. In this area temperatures range from -30 to +30 degrees centigrade and approximately 300 centimetres of precipitation is recorded per year, mostly in the form of snow.

PROPERTY AND OWNERSHIP

The Oksa Creek property is composed of 2 M.G.S. mineral claims that together total 40 units and cover approximately 1000 hectares. The claims are situated in the Liard Mining Division, British Columbia.

The configuration of the claims is shown in Figure 2. The claims are presently owned by the Cascade Investments J.V., held in trust by Joseph Tarnowski.

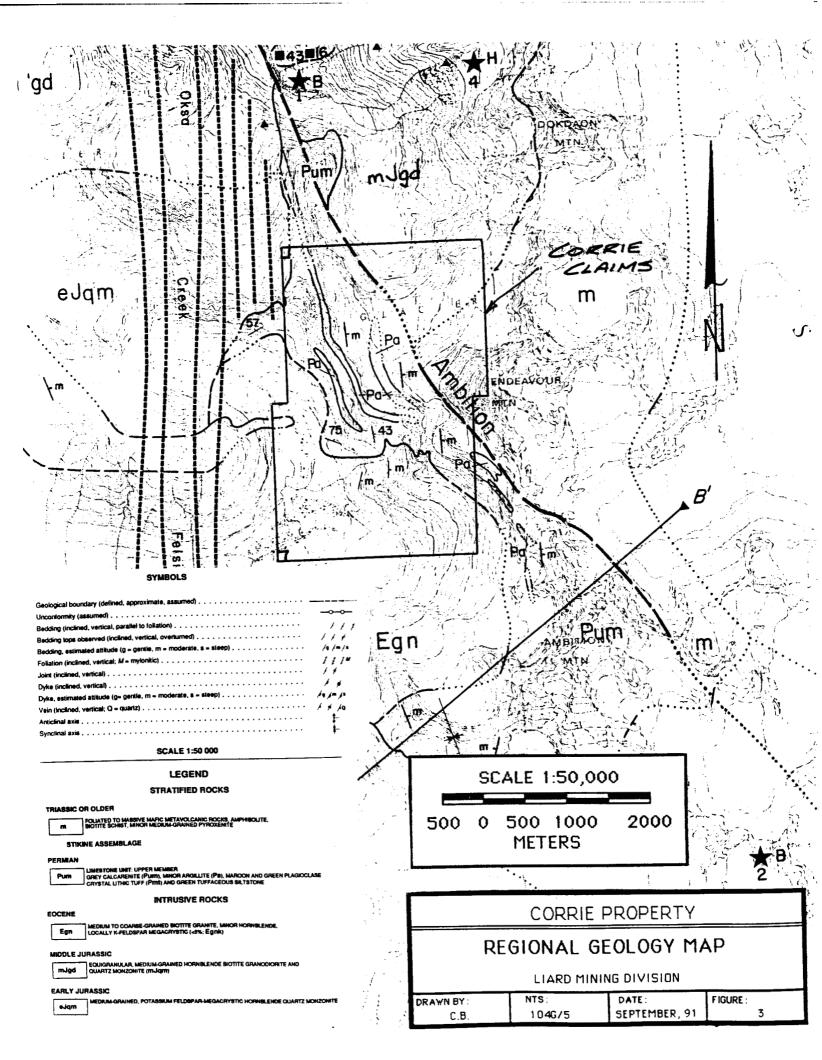

The following table summarizes the pertinent claim data.

<u>Claim</u>	Rec. No	<u>Unit</u>	<u>Rec. Date</u>
Corrie	7551	20	July 9, 1990
Corrie 3	7816	20	August 19, 1990

HISTORY

The property itself has no known exploration history before 1989 but the area first received exploration activity some time prior to 1914, when Dixon and Bodel staked claims on the Devil's Elbow properties, where the Stikine Mining Company did work for a couple of years. The first systematic mineral exploration in the area occurred in the 1950's following the discovery of the Galore Creek deposit. This early exploration was initiated by Kennco Copper and their search was directed towards finding large tonnage porphyry copper deposits similar to Galore Creek.

In 1981, Teck Explorations Limited prospected the Oksa Creek drainage area after hearing rumours from prospectors of a high grade gold bearing quartz vein. Their efforts uncovered a 0.6


metre wide quartz vein which returned assays up to 0.42 oz/ton gold and 2.12 oz/ton silver. This vein is covered by the present Oksa Gold claims which is situated 10 kilometres west of the Corrie claims.

REGIONAL GEOLOGY

The Galore Creek area lies on the western margin of the Intermontane Belt within the Stikine Arch, near its contact with the Coast Plutonic Complex (Figure 3).

The Corrie claims is underlain by part of the Stikine Assemblage (Monger 1977), composed of Permian and older strata, which trends in a northwesterly belt right through the middle of the property.

Gunning (1990) divides the sequence into two parts, a lower of Permian or older strata composed of tuff, argillite and siltstone and an upper of thick Permian limestone and minor chert. This sequence is bounded to the north by the northwest trending Ambition Fault which brings the Permian strata in contact with Triassic volcanics and a middle Jurassic granodiorite and quartz monzonite. The southern portion of the property is underlain by a Eocene aged biotite granite.

1990 WORK PROGRAM

Between July and September 1990, Coast Mountain Geological conducted a prospecting and sampling program on the property on behalf of Cascade Investments J.V.. The program was conducted by C. Basil and D. Ridley, both experience prospectors. During the program, a total of 1 stream sediment samples and 26 rock samples were taken (Figure 4).

Stream Sediment Survey

The stream sediment sample was taken from the active part of a creek draining the steep western slope of Endeavour Mountain. The sample were sent to Acme Laboratories in Vancouver where it was dried, sieved to minus 80 mesh and analyzed for 32 elements by ICP and gold by AA. The sample returned very prosaic results. The mundane result could be a result of the sample taken too high up in the drainage system, where there tends to be a lack of the fine sediments needed for analysis. The location and results of this sample is plotted in Figure 4.

Prospecting and Rock Geochemistry Survey

Prospecting was concentrated around the base of a steep slope (around 3000m to 4000m) in the Corrie claim. A total of four traverses were conducted on the property. The location and area covered by these traverses are plotted on Figure 4. In the program, two main rock types were encountered. The volcanic rocks generally are green, hornblende and chlorite-altered, pyroxenebearing volcaniclastic rocks or pyroxene-feldspar andesites. The metamorphosed and altered character of the volcanics sometimes made it difficult to distinguish the original rock type. Pyrite appears to be ubiquitous within the volcanics, though generally in amounts of about 1% or less. The second main rock type encountered was a massive white to buff limestone with minor interbeds of tuff. Frequently, the limestone has been altered, and has the appearance of marble. Skarnification has occur in places and some the best assays in the program are from the skarns.

Table 1

Sample NO.	Cu(ppm)	Pb(ppm)	Zn(ppm)	Ag(ppm)	Au(ppb)
90GCOR-X10	1575	31689	13	197.1	12960
90GCOR-X13	29779	16	992	76.7	350
90GCOR-X18	3374	19	114	15.5	280

90GCOR-X10 is a sample of a felsic dyke in limestone with skarn mineralization. 90GCOR-X13 is a grab sample of a skarn, and 90GCOR-X18 is a sample of a volcanic.

A total of 26 rock samples were collected in the survey. The samples were sent to Acme Laboratories in Vancouver where they were pulverized and screened. The minus 100 mesh portions were then analyzed for 32 elements by ICP and gold by AA. The sample locations and the analytical data are plotted on Figure 4. The Certificate of Analysis and the rock sample descriptions accompanies this report as Appendix I and II respectively.

CONCLUSIONS AND RECOMMENDATIONS

The Corrie claims are underlain by a sequence of mafic volcanics and sedimentary (limestone) rocks. This package is intruded by a Eocene intrusion to the south, and bounded by an Jurassic stock to the north. Skarnification has developed towards the southern portion of the property towards where the Eocene has been mapped (intrusives were not encountered in bedrock in the program). Samples taken from the skarns have returned some very encouraging results and further prospecting and mapping especially around the contact between the limestone and the intrusion is recommended to further evaluate the property. - 12 -

STATEMENT OF COSTS

Personnel

5.00
5.00

\$ 1000.00

272.15

\$

Analysis	
rock samples	
26 @ \$10.15/sample	\$ 263.95
silt samples	
1 @ \$8.20/sample	8.20

Expenses		
Camp Rental	\$ 500.00	
Helicopter Charters		
1.4 hr @ \$700/hr	980.00	
Project Prep	100.00	
Mobilization/Demobilization	600.00	
Communications	60.00	
Equipment & Supplies	80.00	
Freight (80 lbs @ \$1.54/lbs)	123.20	
Drafting	200.00	
Report	500.00	

\$ 3,143.20

Respectfully submitted, BOA SERVICES LTD.

Paul P.L. Chung, F.G.A.C.

REFERENCES

- Gunning, M.H. (1990): Stratigraphy of the Stikine Assemblage, Scud River Area, Northwest British Columbia (104G/5,6) Geological Fieldwork 1989. Paper 1990-1.
- Kushner, W.R. (1990): 1989 Summary Report on the RB1 Property. March 28, 1990.
- Logan, J.M., Koyanagi, V.M. and Rhys, D. (1990): Geology and Mineral Occurrences of the Galore Creek Area. Geological Survey Branch. Open file 1989-8.
- Monger, J.W.H. (1977): Upper Paleozoic rocks of the Western Canadian Cordillera and their bearing on Cordilleran Evolution. C.J.E.S. Volume 14, Number 8, page 1832.

STATEMENT OF QUALIFICATIONS

I, Paul P.L. Chung, of the City of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

- I am a Consulting Geologist with business address office at Suite 1410 - 650 West Georgia Street, Vancouver, British Columbia, V6B 4N8; and president of Boa Services Ltd.
- (2) I am a graduate in geology with a Bachelor of Science degree from the University of British Columbia, in 1981.
- (3) I have practised my profession continuously since graduation.
- (4) I am a Fellow of the Geological Association of Canada.
- (5) I have conducted various mineral exploration programmes in B.C., Yukon, Manitoba, Ontario, Quebec, Nova Scotia and Nevada.
- (6) This report is based on information supplied to me by Coast Mountain Geological and on selected publications and reports.

Paul P.L. Chung, F.G.A.C.

Dated at Vancouver, British Columbia, this 26th day of September, 1991.

APPENDIX I

CERTIFICATE OF ANALYSIS

852 E. HASTINGS ST. VAN TVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (60 53-1/16

GEOCHEMICAL ANALYSIS CERTIFICATE

Quest Canada Exploration File # 90-5158

P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba Ti	B	AL	Na	κ 🖉	W Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>×</u>	*	ppm	ppm	*	ppm 🤇 🤇	ppm	*	X	% p	but the
90C-25-F14	4	5508	126	78	3.0	29	8	682	2.64	6	5	ND	1	101	1.4	74	2	39	3.84	.027	5	41	.87	84 .01	2	1.06	.02	.04	1 290
90C-COR-S1	8	88	7	18	.3	16	9	96	2.70	20	5	ND	1	149	.4	4	2	54	.94	.043	4	36	1.10	50 .10	2	2.07	.16	.16	2 11
90F-25-K40	1	700	2710	954	,2.1	11	11	912	8.63	12	- 5	ND	1	88	6.3	13	2	165	1.65	.094	8	20	2.72	9 .01	2	3.84	.02	.01	1 4
90G-25-F15	2	2642	1326	57559	14.5	7	18	850	1.91	15	5	ND	1	221	654.8	15	2	12	8.38	.033	8	7	.47	32 .01	2	.21	.01	.07 🚿	1 33
90G-25- Q 21	1	3601	8	158	1.5	7	8	1023	2.69	4	5	ND	1	138	2.5	16	2	48	13.89	,035	5	13	.92	87 .01	2	1.20	.01	.02	1 11
90G-25-922	5	2632	757	25	4.0	15	3		1.17	10	5	ND	1	60	.2	2	2	9	<u>4.84</u>	.017	3	41	.24	42 .01	2	.39	.01	.05	1 69
90G-COR-D1	3	20	51	22	.2	4	- 3	230	1.02	8	5	ND	7	23	.2	16	2	13	.28	.034	8	8	.53	23 .03	2	.63	.06	.05	1 4
90G-COR-X19	2	178	17	290	.4	70	24	236	4.22	2	5	ND	1	547	2.5	4	2	55	2.83	.062	3	115	3.36	67 .16	2	5.95	.22	1.08	1 7
STANDARD C	18	57	37	129	7.0	72	31	1052	3.94	43	16	7	37	53	18.5	14	20	56	.46	.096	38	61	.91	179 .08	32	1.89	.06	.13	13 -

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: OCT 9 1990 DATE REPORT MAILED: Oct 12/90 SIGNED BY.....D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

✓ ASSAY RECOMMENDED

Au

guest canada Exploration FILE # 90-4746

1

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Âu	Th	Sr	Cd	Sb	Bi	٧				Cr		Ba			AL			
	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	<u> </u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	7	ppm	ppm	X	ppm	%	ppm	X	*	% ppm	ppb
90F-25-W19		61	5	175	.4	45	32	2241	7.02	2	5	ND	4	309	.2	2	2	57	23.31	014	9	22	E 05	1402		4	.26	07	01	
90F-25-W20		4	-	42	2		9	826	1.90		5	ND	-	89	3		2	28					1.14		.01			.03		11
90F-COR-X06	21	226		19	1.5		16	198	5.28	13	-5			1193		<u> </u>	2		12.68						.15		5.84	_		4
90F-COR-X09	2	103	-	47			41	173	9.55		5	ND		76	.4	ç	2		9.85	- C.C.T.T.					.17		1.62			660
90F-COR-X12	21	6128	-	420	21.2		28	541	5.53	12	ś	ND					_	202			. –		1.12		16		1.02			66
	1 -	UILO		420			20	241	5.55			no	•	LVI		-	-	202	2.72			55	1.14				.03	. 23	·•J	00
90F-COR-X14	1	67	11	58	.5	12	20	757	7.29	2	5	ND	1	52	.2	2	2	57	2.14	217	2	15	1.58	25	.10	5 2	2.61	.10	.74 1	10
90F-COR-X15	li	175	• •	119	1.3				24.71	2	ŝ	ND	ż	31	1.8	. –	-	533		.007			1.11	34	- X. C. C. C. C.		5.73		2000000	35
90F-COR-X16	56	48	_	1205	12.2						5	ND	1		25.1		83				2	8	.17		.01				.01 24	Y
90F-COR-X17	1	95		10		154			13.20	2	5	ND	1	253	2	-	4	22			2	-	.88	8			.02			9
90F-COR-X18	17	3374	-	114				•	16.15		5	ND	ż	76	.9		14	56		.133			1.45		.16		.60	-		
																									<u> </u>					
90G-24-K01	1	62	232	25	28.9	7	21	3664	7.27	68	5	ND	2	86	1.4	5	314	9	18.49	.003	2	27	.26	2	.01	4	.29	.01	.01 43	61
90G-25-K01	2	1093	4	46	1.0	13	9	1503	2.40	36	5	ND	1	107	.5	3	2	28	9.39	.022	2	10	2.63	283	.01	8	.19	.01	.07 1	21
90G-25-K02	3	4442	4	13	4.3	12	4	396	1.22	8	5	38	2	13	.7		2	9	.80	.023	2	9	.17		.01	7	.18	.01	.08 2	41200
90G-25-K03	3	2464	2	- 4	.5	14	25	176	1.13	8	5	ND	2	10	.7	2	2	5	.15	.016	2	10	.07	50	.01	5	.20	.01	.07 1	1660
90G-25-K04	2	42	7	27	.5	12	9	280	4.14	6	5	ND	1	57	.4	2	2	30	.23	.035	3	18	.48	285	.01	6	.72	.03	.06 1	54
90G-25-K05	2	1407	2	8	.4	9	6	476	1.14	4	5	ND	2	25	.3	2	2	6	2.42	-011	2	6	. 13	23	.01	4	.20	.01	.04 1	730
90G-25-K06	1	197	7	39	.8	9	10	3303	3.00	2	5	ND	1	595	.8	6	2	49	21.13	.023	4	15	1.88	1397		6 1	.11	.01	.06 1	17
90G-25-K07	1	6	2	29	.3	7	7	1745	2.33	9	5	ND	2	186	.6		2	47	22.22	.025	5	22	.75		.01	4	.73	.01	.06 1	3
90G-25-K08	1	5308	2	85	6.2	20	24	1150	6.47	2	5	ND	1	55	.6	4	2	120	4.44	.131	8	32	2.33	145	.03	42	.06	.03	.06 1	22
90G-25-K09	1	1881	4	83	1.7	19	23	1216	6.56	2	5	ND	1	72	.3	3	2	166	4.94	.124	7	36	2.81	272	.06	42	.66	.03	.05 1	13
90G-25-K10	1	4850	2	90	2.2	24	31	1174	7.02	2	5	ND	1	81	1.5	3	2	105	2.90	141	6	30	3.63	52	. 18	63	.37	02	03 1	12
90G-25-W10	1	6058	8	47	1.4	15			10.25	77	5	ND	1	46	.2	4	5	49	4.27	10000	2		1.07	16	01	-	.30			190
90G-25-W11	3	270	3	7	.2	9	3	540	.66	6	5	ND	2	55	.2	Ż	2	10	3.51		_	8	.15	137	10 CT 17 C			.01		380
90G-25-W13	1	1031	6	154	10.5	19	19	204	2.02		5	ND	2	67	8.4		2	16		.014		9	.13	134	100 M M M M M		.36			41
90G-25-W14	1	21	5	41	.4	11	6	204	1.10	9	5	ND	2	84	.9	2	2	25	1.33	.035	2	14	.40	922	.01	-	.31			1630
																,														
90G-25-W18	1	1627		141	1.6				6.57	200120	5	ND	1	58	.9	4			6.18				4.05	100		33	.38	.03	.01 1	62
90G-COR-X07	16	3829	20	153	10.1	•••		2033	4.21	16	5	ND	1	51	2.6		3	43	9.61			24	.63	212		4 1			.01 225	
	7226		103	, 30	.4	/ ·		3162	2.05	6	5	ND	2	17	1.1			18	4.72			28	.39		.02				.02 468	
			31689		197.1	•	2	84	.02	5	6	89	5				32175 -			.011		3	.02			-			.01 14	
90G-COR-X11	289	424	217	46	7.6	7	11	312	3.52	8	5	ND	2	32	1.1	5	511	48	.57	.117	3	22	1.40	90	.18	51	.33	.06	.64 4	11
90G-COR-X13		29779	• •		76.7							ND	1		17.6				2.48				.49		.06	21				350
STANDARD C/AU-R	18	61	36	129	7.0	70	32	1053	3.98	41	18	7	38	53	18.8	15	19	56	.51	.097	37	60	.91	181	.07	38 1	.89	.07	.13 11	540

✓ ASSAY RECOMMENDED

Page 5

4.04

GL__IEM__L A__YS CER 'IC'

Quest Canada Exploration File # 90-2472 Page 1 P.O. Box 11569 Vancouver Centre, 840 - 650 W. Georgia St., Vancouver BC V6B 4N8

SAMPLE#	Mo		Pb ppm		- 9990000 a	Ni ppm			Fe %	As	-	Au		Sr ppm	Cd	Sb ppm		V	Ca %		La ppm		Mg	8a ppm		_	Al X	Na %	к Х г	GGG 5566	Au* ppb
	- popul											Phil	Phon	PP**																T	
FCOR-X01	1		11			106				10878		ND	1		.6	7		30		.012		22					1.60				540
FCOR-X02	7	134	•		 SQCCT 	85			5.14	18		ND	1	135	.8	4	2	71	2.55	2010/01/01			1.98				4.11		- 1 C - 20		27
FCOR-X03	102	57							1.85	30		ND	1	495	.3							4	.39		.13		4.60				18
90C17-R28	9	115	10					1847	2.27	49	10	ND	1	246	.2	2	2					- 4	.35			3	.42	.01	.06	1	350
90C17-R30	3	757	3	26	5	10	8	169	1.89	13	5	ND	1	44	,2	2	2	39	.81	.116	5	15	.32	21	.15	5	.49	.03	.17	1	270
90C19-R36	4	11722	1 5	45	5.0	21	30	361	4.66	2	5	ND	1	69	1.5	2	2	104	.65	.177	6	22	1.50	66	. 14	3	1.43	.03	.67	1	460
90F-17-R25		13468							3.28	66	5	3	2		3.8	2	Ž		2.74		7		.18				.28				3510
90F-17-R26	6	271			2		9		3.77	12	5	ND	_	130	4	2		127	4.02				1.27		07		1.40				76
90F-17-R32	Ĭĭ	147			4	. –	14		8.23	6	5	ND	1		4	2		256		113	Š	4	.29		.12	-	.41			1	32
90F-19-C10		35246			25.7		141		19.36	15	5	ND	i	3	4.3	4	9	7		.014	ź	1	.08			11	.13		50.		3920
901-19-010	'	33240	- 11	12			141	51	17.30		2	NU	'	J		-	,	'			2		.00	0	••••	~		.01	.05		5920
90G17-R13	2	1061	- 4	25	.2	15	8	613	3.15	4	5	ND	1	41	.5	2	2	44	3.65	.041	8	16	.87	132	.01	2	.36	.03	.13 🛞	1	280
90G17-R14	4	2237	7	24	1.2	- 33	30	186	2.27	4	5	ND	2	80	.5	2	2	42	1.07	.110	7	13	.32	23	.12	8	.53	.04	.12 🛞	1	400
90G17-R15	6	2268	2	6	6	26	17	111	1.08	- 4	5	ND	1	69	.5	2	2	29		.112	6	8	.09	17	.11	4	.23	.03	.06	1	52
90G17-R16	7	29178	√ 2	105	17.2	21	11	375	3.81	5	5	ND	1	46	6.9	2	9	45	.60	.038	2	13	.68	8	.02	6	.68	.01	.04	1	32
90G17-R17	6	5715			4.8		3	216	1.27	2	5	ND	1	5	1.5	2	2	11	.09	.004	2	8	.21	3	.01	2	.20	.01	.01 🛞	1	64
00017 010		700/	70	7/	4.6	/7	FO	47/		15	F		4			2	•	24	80	402	7	24	10	17		7	73	07	<u></u>		1070
90G17-R18		3084				,	50	136			5	ND	1		1.0	2	2	26		.106	7		.12		. 14	-	.32				420
90G17-R19		16484				180	90		4.56	14	5	ND		105	7.0	6		107		.083			1.51		.09	-		.02			
90G17-R20		13070						422		5	5	ND			2.4	2	2	88	1.20		-		1.06		.07		1.02				78
90G17-R21	15							. 382		4	5	ND		101	-5	2	2	44	2.10		6	48	.59		.09		.71				109
90G17-R22	3	325	5	25		25	31	511	2.90		5	ND	1	65	.3	2	2	56	1.02	.008	(30	.75	20	.07	9	.90	.05	.00	1	33
90G17-R23	30	3582	14	68	8.7	199	199	359	11.26	69	5	ND	2	11	1.0	2	2	94	.15	.075	3	37	1.85	11	. 02	3	2.04	.02	.03	1 1	580
90G17-R24	21	382	7	48	6	12	26	455	4.67	12	5	ND	1	76	.5	2	2	74	1.12	. 193	6	8	1.27	51	. 16	2	1.49	.03	.58	1	13
90G17-R27	3	35				. 9	3		1.76	2	5	ND	1	111	.2	2	2		1.15		5		.39		.08		.51			4	6
90G17-R29	85	39334	/30	325	39.7	154	62	677	10.71	19	5	4	1	62	5.2	4	10		1.22	.116	10		1.30		.07		1.58			5 2	1050
90G17-R31	1	77	3			11	6	168	2.01	2	5	ND	2	129	.2	2	2	53	.86	.145	7	18	.34	31	.11	5	.50	.03	.10	1	42
	-	4050	-			40	40	2//	a or		-					~	•		4 77		•			7/		-		07			280
90G17-R33	3	1850	2				10	264	2.05	22	5	ND	-	141	.4	2	2	79		.200		17	.69		.14	2	.84				280
90G17-R34		479	2		2000.7004			209	2.31	<u></u>	5	ND	-	124	.3	2	2		1.01				.84		.13		.96				68
90G17-R35	1	381	2					2220	4.35	2 5	5	ND	-	110	.3	2	2		1.13		5		1.68		.07		1.61			1	26
90G19-R37	2	114	3			-		215	4.11	5	5	ND	1		.3	2	2		1.82		5	3		27			.85			I	12
90JB-G5	4	871	2	1		3	14	186	.21	2	5	ND	2	21	.2	2	2	8	.57	.208	5	3	.01	348	.01	7	.53	.05	.11		12
90JT2-G2	10	776	17					866	17.25	11	5	2	2	28	.9	2	2	44		. 146	4	6	.81		.10		1.60			2.777 E	5150
90JT2-G3	1	352	3	113					4.57	2	5	ND	1	104	.4	2		74		.254	6		1.80		. 14		2.09			9	99
90JT2-G4	2	87	9	49	.3	8	9	472	5.77	4	5	ND	1	53	.5	2	2	124	.28	. 191	6	16	.73	55	.20	4 2	2.21	.01	.10 📓	2	61
90JT5-1M	5	336	6	45	.1	10	14	671	4.21	5	5	ND	1	34	.2	2	2	108	.51	. 160	8	12	1.70	29	.10	4 1	1.79	.01	.11 🚿	2	27
90JT5-2M	4	257	7	53	.1	14	17	864	5.52	2	5	ND	1	24	.2	2	2	110	.52	.203	6	12	2.18			3 2	2.34	.01	.19	1	56
90JT5-3M	3	223	4	49	.2			613	3.50	2	5	ND	1	85	.4	2		79		. 154	5		1.74				1.77			2	11
STANDARD C/AU-R	18	57	38	132	7.2	70	31	1025	4.00	38	17	8	38	53	18.4	16	19	56	.51	.092	38	57	.93	181	.09	35 1	1.96	.06	.14 🛞	12	510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

GEOCHEMICAL ANALYSIS CERTIFICATE

Quest Canada Exploration File # 90-5450 Page 1 P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8

3

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al X	Na X	K X	W ppm	Au* ppt
				_																								~			
900-25-56	29	6	2	1	.2	10	116	35	4.55	5	5	ND	1	9	•2	2	2	1	.02		2	12		-	.01	2	.02	.01	.05		10
90F-20-W17	4	2027	12	21	.4	10	14	700	2.31	7	5	ND	2	392	1.2	2	2	20	12.73			3	.66	41	.01	2	.50	.02	.32		17
90F-COR-D4	2	46	4	7	.1	11	7	66	.80	3	5	ND	1	94	.2	2	2	19	1.07	.033	2	5	. 15	22	.15	_	1.37	.23	.10		. 6
90F-COR-D5	3	126	7	172	.8	15	21	291	2.58	63	5	ND	2	142	.3	2	2	34	4.75	.009	2	13	1.71		.25		2.89	.09	.29	1	12
90F-COR-D6	1	18	2	18	.3	9	8	123	2.30	2	5	ND	1	254	.3	2	2	29	7.66	.004	3	7	.21	33	.17	4 (5.56	.21	. 14	1	19
90F-COR-D7	1	23	4	12	.5	4	22	85	6.00	19	5	ND	1	8	.2	2	2	11	.06	.018	2	3	.31	59	.02	2	.96	.01	.25	1	610
90F-COR-X20	5	71	328	331	3.6	3	5	1265	2.91	7	5	ND	5	156	6.4	2	11	94	4.57	.068	15	<u> </u>	.51	111	.05	2	.83	.04	.13		20
90G-26-K11	44	2875	2	68	17.0	13	3	110	8.18	692	5	ND	1	7	3.7	14	2	- 1	.04	.014	2_	13	.01	9	.01	3	.06	.01	.03	2	320
90G-COR-D2	5	43	5	10-	~. 2	2	2	305	.93	9	5	ND	6	100	-2	2	2	7	4.20	.026	8	2	.41		.04	2	.68	.05	.15	1	8
90G-COR-D3	4	179	3	10	.3	5	2	206	1.35	4	5	ND	8	44	.2	2	2	12	.41	.029	8	5	.75	59	.04	2 1	.21	.10	.18	1	5
905-12-01	1	18	2	41	.3	8	7	684	2.24	10	5	ND	2	121	.3	2	2	20	16.87	.025	4	15	1.17	16	.01	2 1	.34	.04	.07	1	5
STANDARD C/AU-R	19	61	39	133	7.1	73	31	1052		40	18	7	40		18.8	15	20	61		.096	41	61	.89	192	.08	33 1	.89	.06	.13	12	530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAY RECOMMENDED

5 Page 2

7

Quest Canada Exploratión FILE # 90-5450

٦

SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe As X ppm	U ppm	Au ppm	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppa	Ca %	PX	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na %	K X t	W Au priti pp
				Ppm				PP-n					PP			FF				<u> </u>	FF								<u>rn rr</u>
90LC-62	4	109	13	124	.5	225	22	1246	5.12 75	5	ND	1	71	1.0	2	2	220	1.18	.107	11	69	.47	236	.09	7 1	1.58	.03	.06 🐰	1
90LC-65	23	98	4	78	.4	73	15	508	6.71 50	5	ND	1	57	.2	2	2	226	.86	.102	10	166	.83	235	.21	2 1	1.95	.03	.05 🛞	
90LC-66	1	177	5	94	.3	46	16	533	4.62 20	5	ND	2	56	.5	3	2	160	.89	,158	12	37	.99	113	.13	6 1	1.57	.07	.09 🛞	
90LC-68	2	70	3	54	.2	160	21	623	3.49 38	5	ND	2	44	.3	3	2	94	.84	.083	5	202	1.98	126	.09	6 1	.28	.08	.08	Î.
90LC-70	1	226	4	52	.3	171	15		3.52 4	5	ND	1	54	.2	3	2	135	.98	.115	11	144	1.54	124	.08		.09	.02	.05	ŝ.
			-														-												
90LC-73	1	85	3	48	.2	168	15	390	2.74 20	5	ND	1	40	.2	2	2	81	.77	.069	5	182	1.87	104	.08	7 1	.18	.05	.06 🕺	8 1 6
90MMC-63	3	59	ō	83	2	113	15		3.08 29	5	ND	1	43	.4	2	2	114	.68	.079	6	33	.56	125	.07	4	.91	.04	.36	8 1
90MMC-64	4	57	2	83		40	6		1.42 19	5	ND	1	83	2	2	ž	46		.170	3	25	.28	241	.01	11	.36		1.18	
90MMC-67	i i	202	ž	75	•	44	~	231	.90 8	5	ND	1	57	1.2	2	2	40		.206	6	22	.32	129	.02	11	.49		1.51	
90MMC-69		115		68		238	19	685	242444444444	5	ND	i	64	.3	2	2	124		.118	6		1.59	246	.08		.20	.03	.31	
70mmu - 07	5		-	00		230	.,					•	04		-	-	167	• • •		•	207		- 10				105		
90MMC-71	1	436	2	68	.3	241	11	544	1.59 8	5	ND	1	107	.2	3	2	53	1.87	.153	14	82	1.01	246	.03	32	.72	.04	.52	
90MMC-72	2	205		55	3	279	17	705		ź	ND	4	74	.3	2	2	116		.142	0		1.52		.07	12 1		.02	.51	
90MM-GR-X01	1	251	7	49	:2		18	397	26666622226	5	ND	1	73		2	2	72			, 8	178		338	.07	21 1		.03	.14	
	4	202	2			535	22	1891		5		4	49	• • •	5	2	75		.095	0	225		421	.09	14 1		.03	.16	
90MM-GR-X02			~ ~ ~	40	.4	11	- 22			- 2	ND									- 7	_	2.55		.01		.20	.01	.02	
90L-COR-S1		12		31	.3		<u> </u>	154	.37 8		ND		362	•4	۲			21.09	.012		12	2.33	87	•41		.20	.01	.02	<u> </u>
9055-GR-X01	1	40	3	27	2	14	7	288 2	7 RR RR C	5	ND	2	33	.2	2	2	115	1,12	.068	7	22	.59	37	.07	23	.65	.01	.05	1
STANDARD C/AU-S	18	57	38		7.1	72	1		3.97 44	20	7	39		19.7	15	18	59		.095	40	60	.90	187	.07	34 1		.06	10603	13 51

APPENDIX II

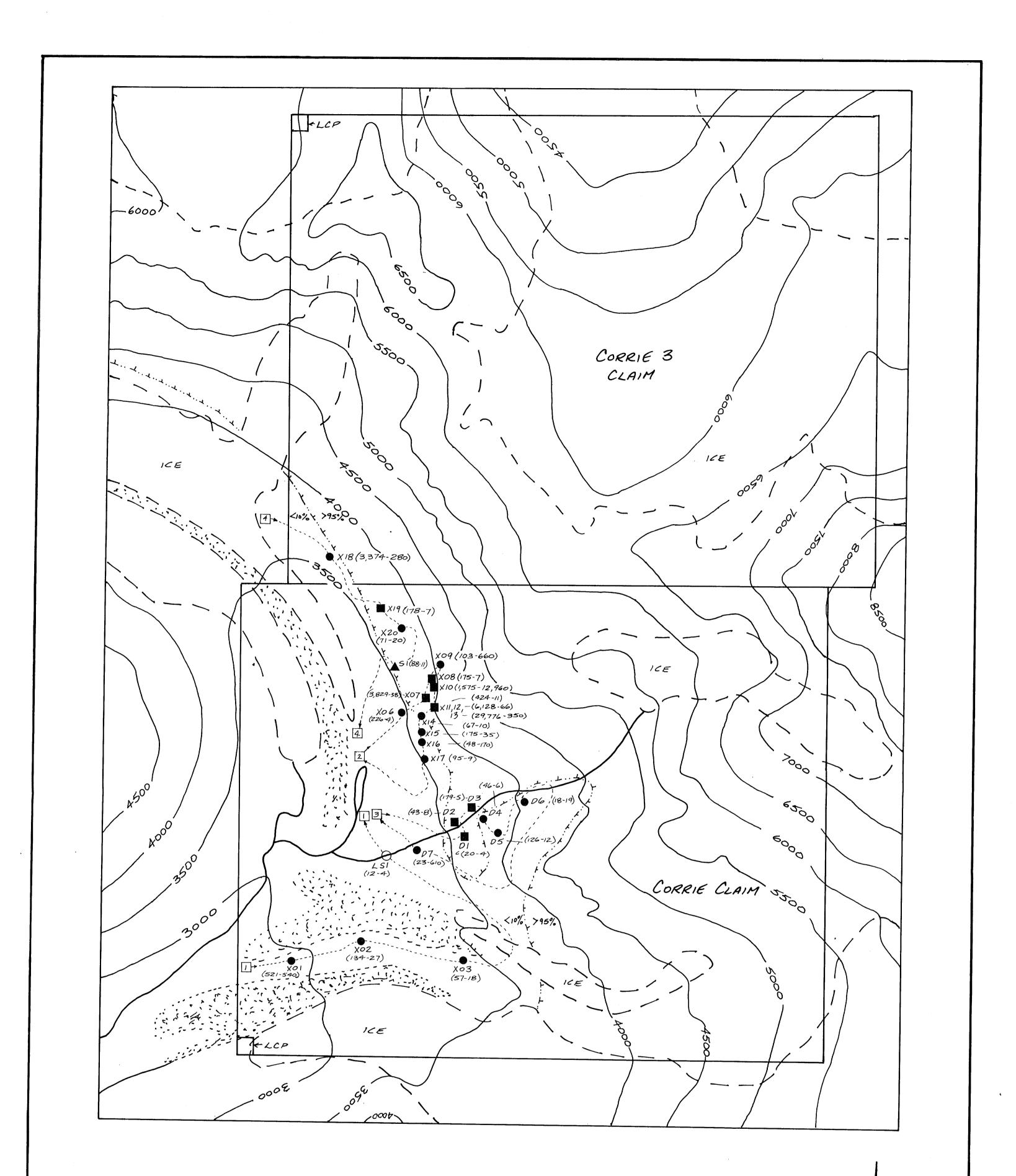
SAMPLE DESCRIPTIONS - ROCKS

CU. ST ... UNT ... N GLULOG. ... L L'. I.

ROCK SAMPLE SHEET

Sampler <u>D. Ribley</u> Date <u>Sept. 90</u>

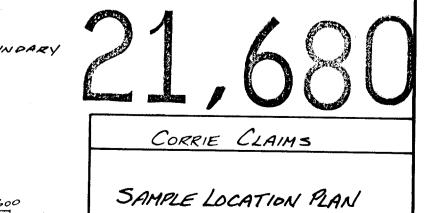
Property ______

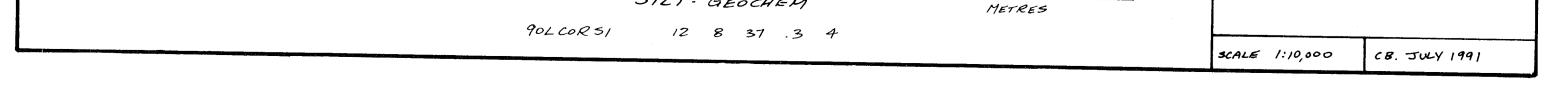

NTS 1046/5

SAMPLE	, L .		DESCRIPT	ION	1	L	A	SS	AYS	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Pb	Zn	Ag	Au
90G COR -D1	2m	limistr	marble	140 py-pyrch miner sphal?	Zune atleast 4x15m; 3620'			22	Ŭ	
90G CUZ-DZ	2m	gradat Inista	limonite	>1% py	Same zone as D/	43	5	10	.2	8
90 9	3m	Imstr	marble	1-2% dissim pyrrhotite	11	179	3	10	. 3	5
$\frac{COR - D3}{90F}$ $COR - D4$	F	Instr	skarn	AYRY , absent	angular that	46	4	7	.1	6
90F QDR-D5	F	mafic volc.		340 pt. Minor chiles	angular	126	7	172	۶,	12
90F COIE - D6	F	Insta	Skarn	minor chiles up to 5% py	large boulder	18	2	18	.3	19
90F COR D7	F	intrisive	cerbonate	up to 1% dissen py rblebs	3360'	23	4	12	,5	610
				//						
				·						

CueST ทบปไ			icae L'i <i>u</i> .	ROC	K SAMPLE SHEET						
Sampler <u>Ć</u> Date <u>Se</u>				Property	LURRIE	NT	rs _	104	-6/	15-	
			DESCRIPT	ION	1		I	A	SS	AYS	
SAMPLE NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Mo	Cu	Fb	Zn	Aq	Au
FCURXUI	F	Imsta	skarn	py, arseno,			521	u	34	1.7	ste
FORXOZ	F	00	carbinate	01			134	7	82	.3	27
FCORX03	F	intrusive		trpy			57	17	8	يا،	18
90F COR-XU6		volc.	prietz		buttom of fight gulley		226	6	19	1.5	4
9069 (02-X07		marble	skarn	opj, py	1180 meler, 37° from lake up fight gulley		3621	Zc	153	10.1	38
90G	,3.n	1,	11	moly	10° striking heavy skiern/garnet zone w/steep Widip 1210m.	7	175				1
40F COR-X09	F	vulc.	РЧ	R +	abure XOE		103	3	47	.6	<i>د</i> ر.
90G	+Ocm	felsic		moly, galena	dyte 10°/85°W- contacts starn mineralization on state w/x08-bates gossen	54.96	1515	314Eg	13	147.1	124 C
LOC NO	1m ²		ſY	py, trigal.		289			1		
90 G	lm^2			<u>- 47 - 17 Gerti</u> N	11		6, 28	9	420	21.2	66
90G	,3m	Л	j i	and an and	"		247.29	16	992	и.ј	352
40 F		volc.tuff		mal, py, cpy	py in verilets / dissem		67			,S	
COR-XIY 90F	r F				angular float		175	2	j19	1.3	35
CUR-X15 90F		vole.	skarn	<u>fy, sph</u>	angular float actinclife, garnet in angular float		48	417			1 7 0
10R-X16 40F	F	marble	11	<u> </u>	Large py + may crystals		95			1.4	
C-CHIP G-				fy, meg					I		

CuAST ทเบป	NIAIN	I GeulOG	ical Liu.	ROC	K SAMPLE SHEET					
Sampler <u>C</u> Date <u>Sa</u>	BAS ept	51 <u>C</u> 190		Property	CURRIE	NTS	104	<u>467</u>	<u> 5</u>	-
SAMPLE	Sample		DESCRIPT		J	L	4	155/	AYS	;
NO.	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Pb	Zn	Ag	Au
40F COR-X18	F	Volc	minor py	ρ-j	1100 meler 350° from Lake pj in lem veinlets + dissem				1 .7	5260
90G CUR-X19	/m ²	vole/ sed		py, pych	between Instar felsic intrusive	1.	•	290	1 1	
90F COR-X20	F	volc		py trgal.		71	328	331	36	20
90C COR-51	2m	volc	sussan	[] []	2 metre chip across gussan	ક્ષ્ક	7	18	، 3	11
									\square^{\dagger}	
									-+	
									+	
LJ	l		L]	L


lunST הטלא			une L'i <i>v</i> .	ROC	K SAMPLE SHEET					
Sampler <u>P</u> Date <u>S</u>	Rio	90 10		Property	CORRIE	NTS				
SAMPLE	L I		DESCRIPT		ł	 	A	SS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	a	Pb	Zn	Ag	Au
90G WR-DI	2m	limistr	marble	140 py-pyrch minor sphal?	Zune at least 4x15m; 3620'	20	51	22	.2	4
90G CUR-D2		gradat Inista	limonite	>1% py	Same zone as D/	43	5	10	.2	8
90 G COR - D3	3m	Imstr	marble	1-2% dissum pyrdotite	//	179	3	10	. 3	5
90F COR-D4	F	Instr	starn	AYRE, absent.	angular theat	46	4	7	.1	6
90F QR-D5	F	mafic volc.		340 pt. Minor chiles	angular	126	, 7	172	.8	12.
90F COI2 - D6	F	Instr	skarn	p to 5% py	large boulder	18	2	18	1.3	19
90F COR DT	F	intraire	cerbonate	up to 7% dissen py +blebs	3360'	23	4	12	.5	611
									ļ	
							ļ	 		ļ
										ļ
								ļ	ļ	
									ļ	



GEOCHEM - ROCKS

C7	EUCA	EM	- ~	DER	5								
SAMPLE#	Cu	Рb	Zn	Ag	Au	Mo	SAMPLE #	Си	Pb	7	Λ.	Δ.,	LEGEND
FCORXOI	ррт 521	ррт 11	PPM	ppm	<i>ррЬ</i> 540	PPM		Ppm	ррт	Ppm	Ag	ppb	SILT SAMPLE
FCOR XOZ							90F COR XIG	48	417	1205	12. Z	170	ROCK SAMPLE - FLOAT
	134				27		90F COR XIT	95	6	10	1.4	9	ROCK SAMPLE - GRAB
FCOR X03	57	17	8	.6	18		90F COR X18	3374	19	114	15.5	280	ROCK SAMPLE - CHIP
90FCORXO6	226	6	19	1.5	4		90G COR X19	178	17	290	.4	7	TRAVERSE LOCATION
90G COR XOT	3829	20	153	10.1	38		90F COR X20	71	328	33(3.6	20	- TRAVERSE LUCATION
90G COR XOB	175	103	30	.4	7	7226	90C COR 51	88		18			X01 (521-540)
90FCORX09	103	3	41	.6	660		90G COR DI	20		22			Sample #
90G COR X10	1575	31,689	13	197.1	12,960	5496	90G COR DZ	43			.2		>95% 1.1.1.1. OUTCROP BOUNDA
90G COR XII	424	217	46	7.6	11	289	906 COR D3	179	3		.3	5	<10%
90G COR XIZ	6128	9	420	21.2	66		90F COR D4	46	4	7	./		MORAINE
90G COR X13	29779	16	99Z	76.7	350		90F COR D5	126	7	172		12	
90FCORX14	67	11	58	,5	10		90FCOR D6	18	2	18	,3	19	
90F CORXIS	175	2	119	/.3	35		90F COR DT	23	4	12			0 100 200 400 600
							5	127-	GEO	OCHE	EM		METRES

GEOLOGICAL BRANCH ASSESSMENT REPORT

