			A CONTRACTOR OF A CONTRACTOR O
LOG NO: OCT	Uδ	1991	RD.
ACTION:			
FILE NO:			

REPORT ON THE

JOHN'S GIFT 1-2 MINERAL CLAIMS

1990 PROSPECTING PROGRAM

SUB-R	ECOF		
SEP	27	19 91	
M.R. # VANCO	UVEF	\$	

ISKUT RIVER AREA LIARD MINING DIVISION BRITISH COLUMBIA

56°59' NORTH LATITUDE 130°49' WEST LONGITUDE N.T.S. 104B/15

Work Period:

August 1990 to September 1990

Owner and Operator:

KESTREL RESOURCES LTD. 507 - 675 West Hastings Street Vancouver, B.C. V6B 1N2 (604) 683-9177

By:

S. J. Tennant

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

INTRODUCTION	1
LOCATION, ACCESS AND TOPOGRAPHY	1
PROPERTY AND LIST OF CLAIMS	2
AREA HISTORY	2
REGIONAL GEOLOGY	3
PROPERTY GEOLOGY	5
1990 EXPLORATION PROGRAM	5
DISCUSSION OF RESULTS	6
RECOMMENDATIONS	7
BIBLIOGRAPHY	8
STATEMENT OF QUALIFICATIONS	9
PROGRAM COSTS	10

List of Figures

Figure 1	Index Map	
Figure 2	Claim Map; Scale 1:50,000	
Figure 3	Regional Geology; Scale 1:250,000	
Figure 4	Sample Location Map; Scale 1:10,000	In pocket

List of Appendices

Appendix I	Sample Assay Results
Appendix II	Sample Descriptions

INTRODUCTION

The JOHN'S GIFT mineral claims are located approximately 15 kilometres northnortheast of Newmont Lake within the Liard Mining Division of northwestern British Columbia.

The claims are accessible by helicopter from a base camp at the Forrest Kerr airstrip, located 8 kilometres to the south.

A preliminary program of prospecting and sampling was carried out on the JOHN'S GIFT mineral claims during the summer of 1990, to evaluate the mineral potential of the property.

A total of 43 soil samples, 6 silt samples, and 15 rock chip samples were collected and the results are discussed in the text of this report. The data are plotted on the accompanying map.

LOCATION, ACCESS AND TOPOGRAPHY

The claims are located approximately 15 kilometres north-northeast of Newmont Lake within the Liard Mining Division of Northwestern British Columbia. Access to the property is via fixed wing aircraft from Smithers or Terrace to Bronson, which is located 110 kilometres northwest of Stewart, or the Forrest Kerr airstrip located at the headwaters of the Forrest Kerr River. Access from Bronson or Forrest Kerr is via helicopter and via foot traverse within the claims.

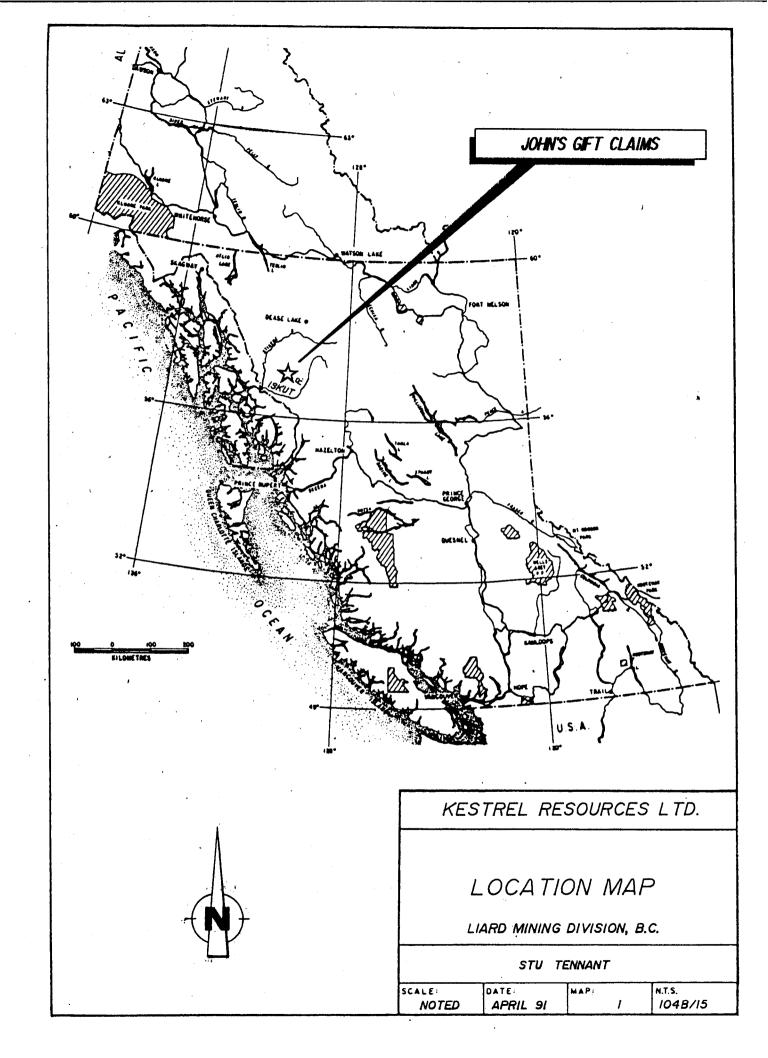
Most of the property is accessible by foot or helicopter. Elevations range from 550 metres to 1820 metres A.S.L. Above 1,200 metres the claims are devoid of vegetation except grasses and shrubs, and exhibit abundant outcrop. Below 1,200 metres, the usual coast mountain evergreens, alder and devil's club predominate. Precipitation exceeds 4,000 millimetres annually; temperatures range from -40°C to $+25^{\circ}$ C.

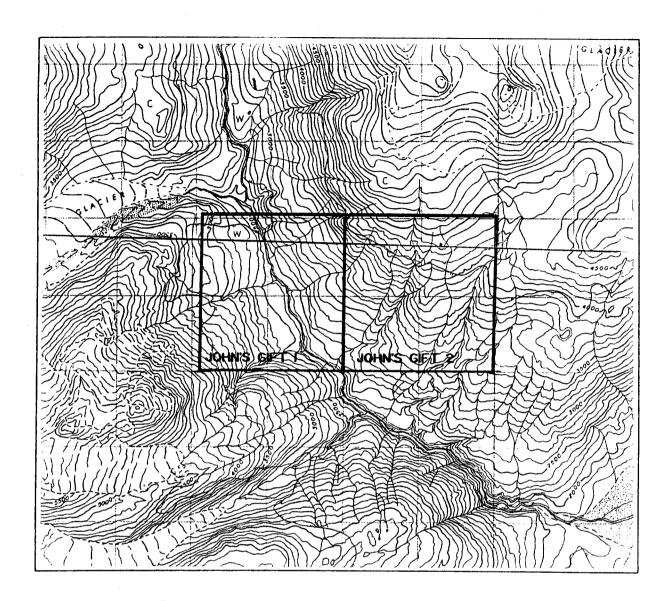
PROPERTY AND LIST OF CLAIMS

The JOHN'S GIFT prospect consists of the following modified grid claims wholly owned by Kestrel Resources Ltd.:

<u>Claim Name</u>	<u>Record No.</u>	<u>No. of Units</u>	Record Date	Expiry Date
John's Gift-1	7549	20	June 28, 1990	June 28, 1992
John's Gift-2	7550	20	June 28, 1990	June 28, 1992

So far as the writer is aware, the claims were properly staked and recorded and are in good standing by the expiry dates.


AREA HISTORY


The first recorded work from the Iskut River region was in 1907 when a staking party from Wrangell, Alaska recorded nine mineral claims north of Johnny Mountain. The Iskut Mining Company worked the claims and in 1917 shipped a ton of high grade ore which reportedly assayed \$1.20 gold, 44.2 ounces silver and 12.45% copper (B.C.M.M.A.R., 1917).

In 1954 Hudson Bay Mining and Smelting Limited discovered high grade goldsilver-lead-zinc mineralization, known as the "Pickaxe" showing, on the slopes of Johnny Mountain.

Throughout the 1960's several major mining companies undertook reconnaissance prospecting and exploration programs in search for porphyry copper-molybdenum deposits resulting in the location of several claims on Johnny Mountain and on Sulphurets Creek.

Skyline Exploration Limited staked the Inel property in 1969 following the discovery of massive sulphide in float on the Bronson Creek glacier. In 1980 the company staked the Reg property. During the 1980's, Skyline has developed both these

KESTREL RESOURCES LTD.

JOHN'S GIFT I-2 CLAIMS LIARD MINING DIVISION, B.C.

CLAIM MAP

STU TENNANT

DATE	SEPTEMBER 1991	SCALE	1:50000
NTS	104 B/15	FIGURE	2

properties discovering high grade veins and polymetallic massive sulphide mineralization on the Inel and Reg properties.

The joint venture partners of Cominco Ltd. and Prime Resources Corporation have developed their Snip property which is located immediately north of the Reg property on the northern slopes of Johnny Mountain. The combined geological reserve for the Snip property is 1,000,000 tons grading 0.80 opt gold.

Other advanced prospects currently undergoing intense exploration efforts in the area include Gulf International Mineral Ltd.'s Inel and McIymont properties, Placer Dome Ltd.'s Kerr porphyry copper-gold deposit and Calpine's Eskay Creek gold deposit, as well as the redevelopment of the Silback Premier/Big Missouri mines by Westmin.

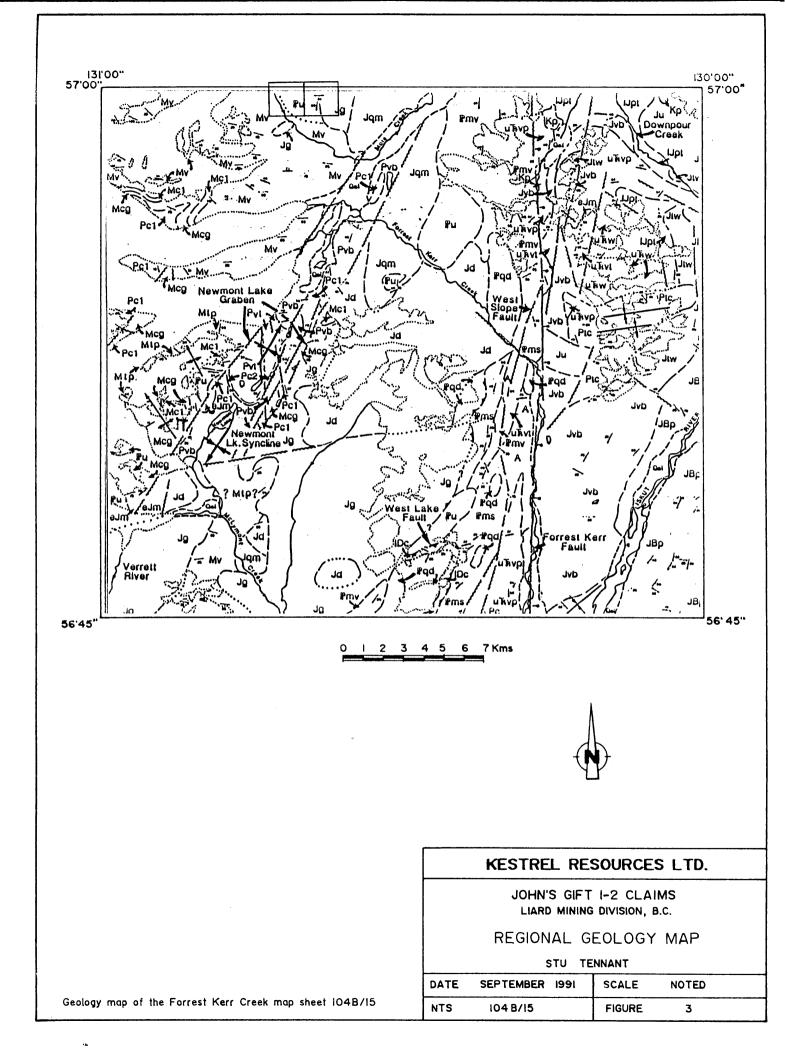
The discovery of the Eskay Creek gold prospect in November 1988 has done much to stimulate exploration activity in the Iskut region. Drill hole intersections varying from 5 to 10 metres (16 to 33 feet) and grading to 100 grams gold per tonne (2.92 opt) with an average 1,000 grams or more of silver per tonne (29.2 opt), are not uncommon. The Eskay Creek deposit is probably the most significant precious metal deposit discovered in British Columbia.

Recently completed road access studies has resulted in a proposed shared cost road which would commence at the Stewart-Cassiar highway near Bob Quinn Lake and extend into the Iskut Valley.

REGIONAL GEOLOGY

Generally the area consists of a northerly trending succession of Upper Triassic and Jurassic volcanic and sedimentary rocks underlain in part by Paleozoic volcanic and sedimentary units. All of these units have been intruded by Mesozoic and Tertiary intrusive rocks and cut by extensive fault zones. These country rocks form the Stewart Complex bounded on the west by the main Coast Plutonic Complex, and on the east by the Bowser Basin sedimentary assemblage. Since 1948, Government workers have attempted to clarify relationships and assign ages to various lithological units of the area. Work completed by Kerr, 1948, <u>G.S.C.</u> <u>Memoir 246</u>; G.S.C. maps <u>9-1957</u>, <u>1481-1979-Iskut River</u>, and Grove, E.W., 1986, <u>Bulletin No. 58</u> B.C. Department of Mines, form the basis of earlier government mapping. Recently work completed by the G.S.C. - <u>Open File o. 2094 (1989)</u> and the B.C. Department of Mines <u>Open File 1990-2</u> has greatly enhanced the geological data base.

The oldest known rock of the area are limestone, dolomite and low grade metamorphosed sediments (quartzite, slate, phyllite) of Lower Cambrian age that have been correlated with the Cache Creek Group prevalent in the southern half of the province. The limestone unit contains fossil crinoids and is unconformably overlain by Upper Triassic Hazelton volcanics and sediments.


Overlying the Triassic Hazelton volcanic-sedimentary assemblage is a similar group of volcanic-sedimentary rocks of Middle Jurassic age tentatively named the Betty Creek Formation.

Cretaceous to Tertiary Coast Plutonic intrusions of granite, granodiorite and diorite occupy large portions of the map area. In addition, smaller bodies of monzonite or syenite, as well as subvolcanic acidic porphyries, are sparsely distributed.

Tufa, hot spring deposits and pyroclastic material of Pleistocene and Recent age occur at several localities within the area, notably at Hoodoo Mountain.

The foliated rocks, present in the area, are not of great lateral extent and owe their origin to low grade metamorphism, rather than high temperature regional metamorphism.

Structurally, the map area is bisected by a prominent thrust fault along the Iskut River from Forrest Kerr Creek to the Stikine River Junction. The thrust separates unconformably, Mississippian-Pennsylvanian rocks from middle Jurassic strata and is thought to override rock formations to the south. Regionally, a dominant northeast trending and a subdominant northwest trending faulting system complicate the local geology, especially where folding of the strata, which is common, has occurred.

LEGEND

QUATERNARY

Qal 74	L ALLIMU
--------	----------

STRATIFIED ROCKS

MIDDLE TO UPPER JURASSIC BOWSER LAKE GROUP

JBp

JURASSIC	
uL	UNDMOED VOLCANICS AND SEDIMENTS
WIL	SLICEOUS WACKE, TUFF, CONOLOMERAL
dvL	PHLOW BASALT, BRECCH FLOWS, SAUCE

CEOUS WACKE, THEE, CONOLOMERATE

- PILLOW BASALT, BREOCIA FLOWS, SILCEOUS SEDMENTS
- Πρι SHALE, SANOSTONE, LESSER LIMESTONE, TUFF

UPPER TRIASSIC STUHINI GROUP

NAU	MARCON AND GREEN EPICLASTICS, AUGITE AND PLAGOCLASE-PHIRIC VOLCANIC BRECCIAS
uTrp	DARK DAEEN PLADIOCLASE-PHYRIC FLOWS
u'Avs	ORET-GREEN APHONITIC TURE
WAW	TUFFACTOUS WACKE, ARGALITE, LIMESTONE, CONOLOMERATE WITH LIMESTONE CLASTS, PLACICLASE FORPHTRIC MODESTE

MIDDLE TRIASSIC

m'he | CARBONACEOUS CALCAREOUS SA ISTONE

PALEOZOIC STIKINE ASSEMBLAGE

fu UNOMIDED METAVOLCANICS AND METASEDIMENTS

.

WESTERN ASSEMBLAGE

PERMIAN

- PM FELSIC WELDED TUFF, VOLCANIC SANDSTONE AND SETSTONE, ANNOLITE FLOWS
- Pc2 THIN LAMINATED, OREY ALGAL LIMESTONE
- Pvb INTERMEDIATE TUFF AND EPICLASTICS, MAROON LANAR, BRECCH FLOWS
- Pci MEDIUM BEDDED BIOCLASTIC LIMESTONE WITH CHERTY INTERBEDS

MISSISSIPPIAN

Mtp SATSTONE, SANOSTONE, TURBOTES, LESSER LAPELI TUFF

POLYMICTIC VOLCANIC CONOLOMERATE

- INTERBEDOED SALCEOUS SALTSTONE AND LIMESTONE, THICK-BEDDED CANNOLAL
- Mv PILLOW BASALT, HYALOCLASTITE, ASH FLOW FELSIC TUFF

EASTERN ASSEMBLAGE

PERMIAN

Pic INTERMEDIATE TO MARIC META-TUFF, THIN BEDDED LIMESTONE AND METASEDIMENTS

PC MEDIAN BEDDED BIOCLASTIC UMESTONE

PERMIAN AND OLDER

- 1 ms SAUCEOUS TURBOTES, PHYLLITES, LESSER CHEATY TUFFS
- I MY MUTC TO FELSIC MERAVOLCANICS, METASEDMENTS, LIMESTONE LENSES

LOWER DEVONIAN

NOC LINESTONE, BUCEOUS TUNE

INTRUSIVE ROCKS

CRETACEOUS AND YOUNGER (7)

PLAGOCIASE QUARTE PORPHYRE

PINK HORMBLENDE BOINE GRAMTE

JURASSIC

OUNRTZ MONZONITE

HORNBLENDE DIONTE, HORNBLENDE DUNRTZ DIORTE

DEFORMED HORMBLEHOE DUNNTE DIORITE

EARLY JURASSIC

HORMALEHOE-PLAGHOCLASE-PORPHYRITIC MONZONITE, STENITE

PALEOZOIC

.

Rad UNKNOWN

AL TERED DIORITE

PROPERTY GEOLOGY

Open File Report No. 1990-2 - <u>Geology, Geochemistry and Mineral Occurrences of</u> the Forrest Kerr-Iskut River Area, Northwestern British Columbia, prepared by the British Columbia Department of Mines and released in the winter of 1990 describes the geology of the JOHN'S GIFT claims at a scale of 1:50,000. The claims lie on the northern edge of the Forrest Kerr-Iskut River map sheet.

Figure 4 shows that the majority of the claims are underlain by undivided metavolcanics and metasediments of Paleozoic age. A pink, coarse- to medium-grained biotite granite outcrops in the eastern half of JOHN'S GIFT 2.

1990 EXPLORATION PROGRAM

The 1990 exploration program was undertaken to assess the exploration potential of the property. The field program was conducted during August-September.

Access was via helicopter (provided by Northern Mountain Helicopters), from a base camp at the Forrest Kerr airstrip, some 8 kilometres to the south. Field work was conducted by employees of Kestrel Resources Ltd. under the supervision of the author. A total of 43 soil samples, 6 silt samples, and 15 rock chip samples were collected.

All samples were properly bagged, described and labelled in the field. Later they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP), methods.

Prospecting traverses and all sample locations are shown on Figure 4 of this report. The analytical results and sample descriptions accompany this report as Appendices I and II respectively.

DISCUSSION OF RESULTS

A total of 7 man days were spent prospecting the JOHN'S GIFT claims. Majority of the claims are underlain by undivided Paleozoic metavolcanics and metasediments. The eastern part of the claim block consists of a pink biotite granite.

Assay results of the samples did not return significant values in base or precious metals. The highest gold value obtained was 1040 ppb in sample 92562. The sample was taken from an angular piece of quartz float which contained some minor pyrite.

Values obtained in the soil samples are typical of the area generally. Due to the high elevations (1200 to 1800 metres) within a glacial environment, soil profiles are poorly developed consisting of loosely consolidated and partly transported rock fragments (2 to 6 cm) rather than the typical A-B-C soil horizons developed in more favourable climates. In the geochem samples, background values for Au vary from 5 ppb to about 10 ppb and similarly, for Ag, background values vary from 0.1 ppm to 1.0 ppm.

Although the 1990 sampling did not delineate any anomalous zones, the claims do have some potential in that they are situated adjacent to the southern boundary of the Gla 2-3 mineral claims. Exploration on the Gla 2-3 claims have located several areas of geologically and mineralogically anomalous zones. One zone on the boundary between the Gla 2 and John's Gift 1 is an extensive area of hornfels alteration containing notable blebs of pyrite and pyrrhotite. Samples taken in the general area assayed up to 910 ppb Au and 46 ppm Ag. This part of the John's Gift 1 claim warrants further investigation.

RECOMMENDATIONS

Although the 1990 sampling did not delineate any anomalous zones, the potential of the JOHN'S GIFT claims lie in the fact that they are located adjacent to the southern boundary of the Gla 2-3 claims.

The northern boundary of the JOHN'S GIFT claims should be further investigated, in particular, the extensive area of hornfels alteration which contains anomalous values in gold and silver. A program consisting of geological mapping and sampling should be carried out to correlate with both geology and mineralization found on the adjacent Gla claims.

BIBLIOGRAPHY

Logan, J.M.; Koyanagi, Victor M.; Drobe, John R. <u>Geology, Geochemistry and</u> <u>Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern</u> <u>British Columbia</u>, Open File 1990-2, Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch.

GSC Open File No. 2094 (1989).

Kerr, 1984: GSC Memoir 246; GSC Maps 9 - 1957; GSC Maps 1481-1979 "Iskut River".

STATEMENT OF QUALIFICATIONS

I, STUART J. TENNANT, of Kestrel Resources Ltd., do hereby certify that:

- 1. I am a Geologist employed by Kestrel Resources Ltd. during the period October 1989 to present.
- 2. I am a graduate of the University of British Columbia with a B.Sc. in Geology in 1959.
- 3. From 1959 until present, I have been engaged in exploration primarily in Western Canada.
- 4. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

Stuart J. Sennant

Stuart J. Tennant

DATED at Vancouver, British Columbia, this $\frac{16}{18}$ day of September, 1991.

PROGRAM COSTS

S. Tenna C	ant Geologist	1 day @ \$325/day	\$ 325
C. Bilqu F	ist Prospector	1 day @ \$200/day	200
J. Elmo F	re Prospector	1 day @ \$165/day	165
D. Lege F	re Prospector	2 day @ \$165/day	330
M. Calla F	aghan Prospector	2 days @ \$200/day	_400
			<u>1,420</u>
Field Ex	<u>xpense</u>		
H	Room and Board	7 days @ \$125/day	875
ł	Helicopter	1 hour @ \$800/hour	800
Assaying (Vangeochem Labs) 67 samples @ \$16/samples			1,072
1	Report		<u> 183 </u>
r	FOTAL COST		\$ <u>4,350</u>

APPENDIX I

Sample Assay Results

VGC VANGEOCHEM LAB LIMITED

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900411 GA	JOB NU	JNBBR: 900411	SULLIVAN NANAGENENT/KESTREL RES.	PAGE	1	OP	1
SAMPLE #	٨g	Au					
	ppm	ppb					
92562	nd	1040					
92563	nd	10					
92564	nd	nd					
92565	nd	nd					
92566	nd	nd					
92567	nd	nd					
92568	.2	nd					
92569	nd	nd					
92570	nd	30					
92571	nd	20					
92572	nd	30					
92573	nd	30					
92574	nd	20					
92575	.1	20					
92576	nd	20					

DETECTION LIMIT 0.1 5 nd = none detected -- = not analysed is = ins

is = insufficient sample

VANGEOCHEM LAP LIMITED

1630 Pandora Street, Vancouver, V5 Ph:(604)251-5656 Fax:(604)259-5717 V5L 1L6

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to Hs0 at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

																						v —			
REPORT #: 900411 PA	SULLIVAN N	IANAGEMENT	/ KEST	REL RES.		PROJE	CT: JOHN	S GIFT		DAT	E IN: SE	PT 07 19	90 DA	TE OUT: (DCT 03 1	990	ATTENTIO	N: MR. T	ENNANT &	MR. BUCH	HOLZ	PAG	E 1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	ĸ	Ħg	Mn	Ко	Na	Ni	P	Pb	Sb	Sn	Sr	U		Zn
	ppa	1	ppe	ppe	ppa	1	ppa	ppe	ppa	ppa	1	1	I	ppa	pps	7	pp e	ĩ	ppa	ppm	ppe	ppa	pps	pps	ppe
92562	(0.1	0.33	(3	49	(3	0.16	0.3	6	131	28	2.58	0.06	0.02	100	4	0.01	6	0.01	15	5	2	5	(5	(3	11
92563	<0.1	2.26	<3	79	<3	2.52	0.6	17	47	3	4,49	0.24	1.51	1566	9	0.03	15	0.09	<2	<2	8	20	<5	(3	92
92564	<0.1	1.17	<3	38	<3	0.85	<0.1	12	135	38	2.23	0.10	0.43	207	6	0.03	15	0.03	<2	<2	6	37	· <5	(3	19
92565	(0.1	2.50	<3	44	<3	1.20	0.8	21	49	141	4.08	0.16	1.08	464	16	0.05	14	0.03	24	(2	13	32	- {5	(3	52
92566	<0.1	2.23	(3	77	(3 -	1.62	1.7	23	103	77	3.17	0.16	0.67	503	11	0.04	32	0.03	<2	<2	11	17	<5	۲3	171
92567	<0.1	1.71	∢ 3	48	(3	0.97	1.0	21	39	46	3.24	0.12	0.88	315	10	0.04	14	0.04	^ {2	<2	11	14	(5	(3	54
92568	0.2	0.59	{3	120	<3	4.07	2.1	12	29	32	3.97	0.25	1.28	791	7	0.02	8	0.02	19	3	5	79	<5	{3	65
92569	(0.1	0.95	(3	64	<3	0.67	0.4	17	23	88	2.61	0.09	0.51	267	6	0.04	8	0.04	<2	<2	10	16	{5	(3	24
92570	<0.1	1.37	(3	73	<3	0.27	0.3	25	71	194	3.81	0.09	0.68	467	7	0.03	3	0.04	<2	<2	8	8	<5	(3	50
92571	<0.1	1.89	_ ⟨3	73	(3	0.61	0.7	34	37	333	4.69	0.15	1.05	734	11	0.03	8	0.04	<2	<2	11	12	<5	<3	67
92572	<0.1	2.02	∢ 3	106	∢ 3	0.13	0.5	13	77	114	4.23	0.09	1.07	1067	10	0.03	6	0.04	<2	<2	8	3	<5	(3	118
92573	<0.1	2.22	<3	104	<3	0.38	0.3	38	40	129	4.54	0.12	1.18	979	9	0.02	7	0.03	<2	<2	10	28	(5	<3	76
92574	<0.1	1.80	<3	84	<3	0.41	0.5	43	58	234	5.25	0.13	0.92	824	7	0.03	4	0.04	<2	<2	11	32	<5	<3	75
92575	0.1	0.58	(3	31	* (3	2.43	12.9	27	33	47	>10.00	1.35	0.07	1511	33	0.10	18	0.04	152	108	31	3	17	(3	137
92576	<0.1	0.14	<3	38	<3	0.03	<0.1	3	200	41	1.17	<0.01	0.05	171	1	<0.01	5	<0.01	9	7	<2	1	<5	<3	16
Minigua Detection	······································	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	- 5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Miniaua) - Greater T				ufficient			- No Samp						rses By A					20004	2000	****		•••		
/ - F222 titen urntmen	/ UICASES S	NUM NEALE		12 1424		. nemhic	112	un namh			o ALGULI	2 TU(\$1	(C) M(141)	laca ni u		- 464400	s ougges	*20*							

INFRIME AU CANADA

PHINIEU IN CARACA

4

1

ANALYST: /ym/h

C VANGEOCHEM LAB LIMITED

1.2

15

.

REST-5 L1 8+50S

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

1

REPORT NUMBER: 900389 GA	JOB NU	JMBER: 900389	SULLIVAN NAWAGENENT/KESTREL RES.	PAGE	1	OP
SAMPLE I	Åg	λu				
	ppm	ppb				
RBST-5 L1 0+00S	.3	15				
IBST-5 L1 0+50S	.2	10				
REST-5 L1 1+00S	.2	nd				
RBST-5 L1 1+50S	.1	15				
REST-5 L1 2+00S	.1	15				
RBST-5 L1 2+508	.2	5				
REST-5 L1 3+008	.5	nd				
REST-5 L1 3+50S	.6	15				
EST-5 L1 4+00S	.5	20				
REST-5 L1 4+505	.5	nd				
REST-5 L1 5+00S	.5	nd				
RBST-5 L1 5+50S	.2	15				
REST-5 L1 6+00S	.2	nd				
REST-5 L1 6+50S	.5	30				
RBST-5 L1 7+005	.2	5				
REST-5 L1 7+505	.4	15				
REST-5 L1 8+00S	1.0	25				

DETECTION LINIT 0.1 5 nd = none detected -- = not analysed is = insufficient sample VANGEOCHEM LAT LIMITED

1630 Pandora Street, Vancouv C. V5L 1LE Phi(604)251-5656 Faxi(604,204-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO2 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

Zn

			it grae	Jumpic		s leach	is part	ial for A	il, Ba,	Ca, Cr, I	'e, K, M	g, Mn, N	la, P, Sn	, Sr and	W.				ANAL	YST:	L	m	h	
REPORT #: 900389 PA	SULLIVAN N	ANAGENENT	r / Kesti	REL RES.		PROJE	CT: REST	-5		DATE	E IN: SEI	PT 05 19	90 DA	TE OVT: (DCT 04 1	990	ATTENTIO	N: MR. J	OHN BUCHI	IOLZ		PAG	E 1 OF	1
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	fe	K	ňg	fin	fio	Na	Ni	P	Pb	Sb	Sn	Sr	U	W
	ppa	1	pps	ppa	pps	ĩ	pps	ppe	ppa	ppæ	X	ĩ	7	ppe	ppa	ĩ	ppa	ĩ	ppe	ppa	pps	ppe	ppe	ppe.
REST-5 LI 0+005	0.3	2.56	(3	175	(3	0.79	2.7	25	39	913	4.78	0.16	1.33	1932	20	0.04	30	0.08	19	<2	13	48	<5	<3
REST-5 L1 0+505	0.2	3.67	(3	92	(3	0.64	2.0	26	42	345	4.86	0.14	1.33	1293	22	0.04	28	0.05	<2	<2	15	44	<5	<3
REST-5 LI 1+00S	0.2	2.72	<3	76	<3	0.66	1.8	23	34	248	4.41	0.14	1.41	1085	21	0.04	23	0.08	4	<2	12	40	<5	<3
REST-5 LI 1+505	0.1	2.06	<3	86	(3	0.72	1.4	21	27	180	4.15	0.14	1.19	1128	14	0.04	14	0.08	10	<2	11	43	< 5	<3
REST-5 L1 2+005	0.1	2.54	, <3	87	(3)	0.90	2.2	31	- 28	310	4.68	0.17	1.28	1086	21	0.04	17	0.07	28	<2	12	43	₹5	<3
REST-5 LI 2+505	0.2	3.06	<3	9 9	∢ 3	0.68	2.2	26	-32	288	4.36	0.15	1.39	1344	17	0.04	25	0.08	4	<2	13	44	۲5	<3
REST-5 L1 3+005	0.5	1.89	<3	63	<3	0.38	2.2	15	29	56	5.34	0.11	0.42	835	21	0.04	7	0.09	27	<2	13	28	<5	<3
REST-5 LI 3+505	0.6	2.60	<3	49	(3	0.34	1.4	12	24	43	4.61	0.10	0.35	291	18	0.03	2	0.07	15	<2	14	31	₹5	<3
REST-5 LI 4+005	0.5	5.89	<3	56	(3	0.32	2.4	32	50	195	6.77	0.15	0.34	5056	73	0.05	6	0.27	<2	<2	22	15	<5	<3
REST-5 LI 4+505	0.5	2.76	<3	104	(3	0.35	3.2	19	26	49	7.47	0.14	0.60	979	23	0.05	6	0.07	25	<2	16	31	<5	(3
REST-5 L1 5+005	0.5	3.46	∢ 3	131	<3	0.32	3.2	20	41	79	7.01	0,15	1.14	785	28	0.05	22	0.05	15	<2	17	29	<5	<3
REST-5 LI 5+505	0.2	3.19	(3	42	(3	0.33	3.1	19	32	56	7.61	0.14	0.71	1394	34	0.05	3	0.10	74	<2	17	27	< 5	(3
REST-5 LI 6+005	0.2	1.88	(3	46	(3	0.27	2.0	10	14	31	4.60	0.09	0.38	475	17	0.03	(1	0.05	11	(2	11	29	(5	<3
REST-5 LI 6+505	0.5	3.71	(3	51	· (3	0.45	2.0	25	24	69	4.47	0.11	0.90	964	21	0.03	6	0.05	53	<2	15	37	< 5	(3
REST-5 LI 7+005	0.2	2.36	<3	53	(3	0.41	2.2	15	25	47	7.12	0.14	0.60	484	44	0.05	6	0.05	20	<2	14	34	<5	<3
REST-5 LI 7+505	0.4	3.17	<3	105	(3	0.50	3.1	28	33	77	6.32	0,16	1.28	2191	23	0.05	14	0.09	33	<2	15	33	<5	(3
REST-5 LI 8+00S	1.0	3.46	(3	80	(3	1.98	2.0	15	22	40	5.78	0.24	0.63	1204	27	0.05	5	0.03	74	(2	17	28	<5	(3
REST-5 LI 8+505	1.2	2.48	<3	66	(3	0.32	2.4	14	20	51	6.67	0.13	0.41	558	30	0.05	<1	0.05	27	(2	15	29	<5	<3
Minigua Detection	0.1	0.01	3	t	3	0.01	0.1	1	1	1	0.01	0.01	0.01	t	1	0.01	1	0.01	2	2	2	1	5	3
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000
< - Less Than Minimum	> - Greater Th			is - Insu				- No Samp		ANDHALDUS														

•

THE CANADA

)

)

)

)

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

.

I

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900388 GA	JOB NUMBER: 90	0388 SULLIVAN MANAGEMENT/KESTREL RES.	PAGE 1 OF 2
SAMPLE #	Ag Au		
	pp n ppb		
REST L2 1+505 A1	.2 10		
REST L2 3+005 A2	nd 10		
REST L2 3+755 A3	.1 5		
RBST L2 11+205 A4	nd 15		
REST L2 12+005 A5	nd 25		
	A 1		
REST L2 13+505 A6	.2 nd		
REST L2 0+00S	.1 20		
REST L2 0+50S	.2 nd		
REST L2 1+005	nd 10		
REST L2 2+00S	nd nd		
REST L2 2+50S	nd nd		
RBST L2 3+00S	nd nd		
REST L2 3+50S	nd 10		
RBST L2 4+00S	nd 20		
REST L2 4+50S	nd 5		
5568 55 E 668			
REST L2 5+00S	.4 5		
REST L2 5+50S	.2 nd		
REST L2 5+50S	.1 5		
REST L2 7+00S	nd 15		
RBST L2 7+50S	nd 5		·
REST L2 8+00S	.1 15		
REST L2 8+505	.8 nd		
REST L2 9+00S	.3 5		
REST L2 9+505	.3 10		
REST L2 10+00S	.6 10		
REST L2 10+505	.2 15		
REST L2 11+00S	.3 10		
REST L2 11+50S	.1 5		
REST L2 12+50S	nd 10		
REST L2 13+005	.3 nd		
V201 D7 19:449			
REST L2 13+50S	.4 5		
RBST L2 14+00S	.4 10		
REST L2 14+50S	.8 10		
RBST L2 15+00S	.3 5		
REST L2 15+50S	1.4 15		
REST L2 16+005	.3 10		
REST L2 16+50S	1.0 5		
REST L2 17+005	.3 10		
REST L2 17+505	.9 25		
UDAI NY TIIAAO	., 61		
DETECTION LIMIT	0.1 5		
nd = none detected	- = not analysed	is = insufficient sample	

VGC VANGEOCHEM LAB LIMITED

.

2

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900388 GA	JOB NU	INBER: 900388	SULLIVAN MANAGEMENT/KESTREL RES.	PAGE	2	OP	2
SAMPLE 1	hg	λu					
	ppn	ppb					
REST L2 18+00S	.5	10					
RBST L2 18+50S	.6	nð					
REST L2 19+00S	.6	nd					
REST L2 19+505	.3	nd					
REST L2 20+00S	.1	5					
REST L2 20+505	.2	5					
REST L2 21+00S	.2	10					
REST L2 21+50S	.1	nd					
REST L2 22+00S	.1	nd					
REST L2 22+50S	.1	10					

VANGEOCHEM LAB LIMITED

1630 Pandora Street, Vancouve . VSL 1L6

÷

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: lynth

	REPORT #: 900388 PA	SULLIV	N MANAGEI	IENT / KES	TREL RES.		PROJE	CT: REST			DATE	IN: SE	PT 05 19	90 DA	TE OUT: (OCT 04 19	990	ATTENTIO	I: MR. JI	JHN BUCHH	IOL 7		PAG	E 1 OF	2	
	Sample Name		-	Al As Z ppa	Ba ppe	Bi pps	Ca I	Cd pps	Co ppe	Cr pps	Cu ppe	Fe X	K Z	Mg X	Mn pps	tio pp=	Na Z	Ni Dom	P X	Pb pps	Sb ppa	Sn ppm	Sr ope	U Dpmi	. W	Zn ppe
1	REST L2 1+50S A1	Ċ	.2 3.0)6 (3	330	<3	1.26	3.0	27	66	140	4.75	0.21	1.74	3428	22	0.03	85	0.05	(2		15	45	<5	(3	295
	REST L2 3+005 A2	<(.1 2.4		138	<3	0.58	3.0	21	38	37	4.03	0.14	1.31	3033	13	0.03	33	0.05	<2	<2	12	28	<5	<3	153
'	REST L2 3+755 A3	(.1 3.3		128	<3	0.63	2.4	19	32	59	3.75	0.14	1.08	1896	16	0.03	26	0.06	<2	<2	12	36	₹5	<3	192
	REST L2 11+205 A4	<(143	<3	0.64	1.6	20	29	52	4.08	0.14	1.48	1051	13	0.03	25	0.05	<2	<2	11	32	<5	(3	124
*	REST L2 12+005 A5	~(.1 3.1	3 (3	70	(3	1.93	1.8	33	48	95	4.66	0.22	1.86	1100	13	0.03	38	0.05	<2	<2	15	70	<5	K 3	124
	REST L2 13+505 A6		.2 3.0		196	(3	0.71	3.2	25	29	149	4.60	0.16	1.23	1438	14	0.03	30	0.04	<2	<2	13	33	< 5	(3	155
	REST L2 0+005		.1 2.9		220	(3	1.13	1.4	25	46	91	4.21	0.18	1.64	1203	14	0.03	36	0.05	<2	(2	14	4B 49	<5 <5	<3 <3	212
	REST L2 0+505 REST L2 1+005	<0	.2 2.6 .1 2.6		149 202	(3 (3	1.20	1.5 1.5	26 25	47 44	103 88	3.95 4.08	0.17 0.18	1.51	1093 1109	12 14	0.03	37 34	0.05 0.05	<2 <2	<2 <2	13 12	47	<5	(3	200 178
	REST L2 2+005	() ()			141	(3	1.05	2.2	23	46	49			1.38	728	14	0.03	34	0.03	<2	<2 <2	12	44	<5	(3	151
	KC3) L2 24003		.1 3.1	2 3	141	13	1.03	212	23	40	۲	4.17	0.17	1.36	120	14	0.03	24	0.03	12	12	10	77	13	12	131
	REST L2 2+505	<(71	<3	0.48	1.8	21	25	66	3.93	0.12	1.08	1181	11	0.02	26	0.08	<2	<2	10	27	<5	(3	105
•	REST 12 3+005	(0			84	(3	0.25	1.3	35	33	43	4.18	0.12	1.03	5881	14	0.03	21	0.04	<2	<2	12	19	<5	(3	117
	REST 12 3+505	<0			37	<3	0.22	2.1	15	29	46	5.24	0.13	0.72	398	16	0.03	17	0.02	<2	<2	15	18	<5 (5	(3	87
V Q V	REST L2 4+005 REST L2 4+505	<0			29 39	(3 (3	0.26 0.19	2.0 3.1	15	23 27	21	4.28	0.10	0.53	369	14	0.02	16	0.03	<2 5	<2 <2	11 20	23 14	<5 <5	(3 (3	66 86
) CANA	RE31 12 47303	<0	,1 2	10 (3	. 33	13	0.15	3.1	15	11	23	8.59	0.18	0.27	305	20	0.04	18	0.03	J	12	20	14	13	(3	00
	REST L2 5+005	0	.4 4.6	1 (3	31	<3	0.25	1.7	16	28	43	5.95	0.16	0.32	383	21	0.04	12	0.05	<2	<2	20	12	۲5	(3	77
8	REST L2 5+505	0	.2 4.6		167	<3	0.65	3.1	22	27	58	7.70	0.23	0.43	318	26	0.05	12	0.02	_<2	<2	26	51	<5	(3	103
	REST L2 6+505	C	.1 3.7		363	<3	0.49	2.9	20	32	20	5.62	0.18	1.42	801	30	0.03	22	0.03	<2	<2	14	30	<5	<3	311
	REST L2 7+005	<0			179	(3	0.18	1.9	18	38	88	5.14	0.17	0.93	1044	21	0.03	25	0.03	<2	<2	17	17	<5	(3	126
)	REST L2 7+505	(0	.1 3.3	4 (3	533	(3	0.61	2.2	20	34	65	3.87	0.15	1.68	717	16	0.03	29	0.05	<2	<2	11	29	<5	(3	160
	REST 12 8+005		1 3.6		53	(3	0.21	1.6	17	36	42	5.75	0.14	0.96	709	20	0.03	23	0.03	<2	<2	16	19	<5	(3	108
2	REST L2 8+505	-	.8 4.6		45	(3	0.23	1.6	14	35	41	4.30	0.12	0.75	463	21	0.03	20	0.07	<2	<2	17	18	(5	(3	166
	REST L2 9+005	-	.3 2.4		31	(3	0.29	2.2	29	23	25	4.94	0.12	0.32	318	27	0.03	20	0.05	30	<2	24	8 18	<5 <5	(3 (3	71 * 96
	REST L2 9+505 REST L2 10+005		.3 3.9 .6 2.7		27 48	{3 {3	0.19 0.46	2.7 2.3	12 14	37 29	58 44	5.99 4.55	0.10 0.11	0.53 0.62	322 379	22 15	0.06 0.04	25 20	0.04 0.05	20 20	<2 <2	16 13	30	<5	(3	80
	KL31 L2 10,003	v		0 13	70	13	V. 40	2.5	14	23	77	7.00	V.11	V.02	3/3	17	v. v1	20	V. VS	20	~~	13	30	13	()	20
	REST L2 10+505		.2 2.7		43	<3	0.22	1.6	12	27	22	6.22	0.10	0.57	324	16	0.04	18	0.06	10	<2	13	21	<5	<3	66
	REST L2 11+005		.3 2.0		194	(3	0.55	2.1	17	24	55	3.79	0.11	1.14	1262	12	0.04	23	0.08	9	<2	10	31	<5	(3	109
	REST L2 11+505	-	1 3.1		93	(3	0.91	1.9	26	38	92	4.68	0.15	1.56	1188	16	0.04	26	0.05	<2	<2	[4	58	(5	(3	105
	REST L2 12+505	<0			89	{3	1.07	1.9	27	35	112	4.72	0.17	1.55	1052	15	0.05	29	0.05	4	<2	14	62 00	(5	3	106
	REST L2 13+005	U	.3 2.8	9 (3	147	<3	0.73	2.1	27	29	115	5.17	0.15	1.52	1164	16	0.05	33	0.05	5	<2	14	38	<5	<3	112
	REST L2 13+505		4 3.7		163	(3	0.62	2.3	18	29	72	5.77	0.15	1.11	775	20	0.05	28	0.04	13	<2	14	28	<5	(3	120
	REST L2 14+005	-	4 3.0		40	(3	0.17	1.5	11	26	31	4.24	0.08	0.58	305	17	0.04	15	0.05	16	<2	13	16	(5	(3	67
	REST L2 14+505		.8 3.3		336	(3	0.50	1.8	14	29	73	3.67	0.12	1.21	696	17	0.07	26	0.05	12	<2	13	24	<5	(3	576
	REST L2 15+005		3 1.4		59	<3	0.22	1.1	13	17	57	3.01	0.07	0.19	1285	13	0.04	14	0.11	24	<2	9	18	(5	(3	89
ر	REST L2 15+505	1	.4 2.7	0 (3	48	<3	0.24	1.6	8	20	80	3.59	0.09	0.41	437	16	0.05	15	0.17	88	<2	11	26	<5	<3	9 9
	REST L2 16+005		3 3.4		273	<3	0.51	5.1	17	28	260	4.56	0.15	0.99	1355	17	0.10	31	0.05	23	<2	14	24	<5	<3	789
)	REST L2 16+505	1			50	(3	0.28	1.0	9	26	99	3.27	0.0B	0.30	384	23	0.03	17	0.12	56	<2	16	29	(5	(3	B9
	REST L2 17+005		3 3.2		111	(3	0.43	0.6	16	24	80	3.13	0.10	0.81	887	16	0.04	18	0.06	61	<2	13	42	<5	(3	109
•	REST L2 17+505	0	9 3.5	4 (3	85	(3	0.35	1.9	33	25	201	3.97	0.11	0.83	1430	17	0.04	20	0.08	143	<2	13	36	<5	(3	127
)	Minimum Detection	0	1 0.0	1 3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
	Maximum Detection	50		-	1000	1000	10.00		20000			10,00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
)	<- Less Than Minimum	> - Greate	• Than Ha	Xisus	is - Insu	ufficient	Sample	ns -	No Sampl	le A	NOMALOUS	RESULTS	i - Furth	er Analy	rses By A	lternate	Nethod	s Suggest	ed.							

VANGEDCHEM LAP LIMITED

3

)

ે

5

Э

Э

Э

3

1630 Pandora Street, Vancouve . V5L 1L6 Ph:(604)251-5656 Fax:(604,204-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 al of 3:1:2 HCI to HNOs to Hs0 at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Kyrth

ï	REPORT 1: 900388 PA	SULLIVAN M	ANAGEMENT	/ KESTR	REL RES.		PROJE	CT: REST			DAT	E IN: SE	PT 05 199	30 DA	TE OUT: I	DCT 04 19	990 i	ATTENTIO	N: MR. JI	ohn Buchi	10L.Z		PAG	E 2 OF	2	
-	Sample Name	Ag pps	A1 X	As pps	Ba ppe	Bi ppm	Ca X	Cd pps	Co pps	Ст ррв	Cu ppe	Fe I	K	Mg Z	Mn pps	No ppe	Na Z	Ni pps	P X	Pb pp=	Sb pp∎	Sn ppn	Sr pps	U ppm	¥ ppa	Zn ppn
	REST 12 18+005	0.5	3.60	(3	447	(3	1.06	2.7	34	47	187	5.36	0.19	1.83	1730	20	0.05	39	0.05	59	(2	17	46		3	220
÷.	REST L2 18+505	0.6	3.96	(3	419	(3	0.43	3.6	28	43	103	5.49	0.13	1.50	1643	34	0.06	104	0.07	7	(2	18	25	(5	(3	253
	REST L2 19+005	0.6	4.09	(3	105	(3	0.23	6.0	84	39	232	>10.00	0.24	0.96	1839	43	0.07	36	0.08	52	16	25	8	(5	(3	143
	REST L2 19+505	0.3	4.96	(3	91	(3	0.25	3.1	24	41	68	6.49	0.11	1.15	1005	29	0.04	23	0.04	(2	<2	23	19	(5	(3	123
2	REST 12 20+005	0.1	4.21	(3	78	(3	0.23	1.1	12	29	42	4.33	0.09	0.59	393	19	0.03	12	0.06	<2	<2	17	22	<5	<3	88
	REST 12 20+505	0.2	5.10	(3	110	<3	0.41	1.2	26	36	84	5.01	0.12	1.28	1478	24	0.03	22	0.07	<2	<2	19	26	(5	(3	110
3	REST L2 21+00S	0.2	4.96	<3	90	<3	0.30	1.9	21	40	57	5.88	0.12	1.19	1008	25	0.03	22	0.05	<2	<2	21	24	<5	<3	96
	REST 12 21+505	0.1	2.68	<3	69	(3	0.23	(0.1	15	25	50	3.05	0.05	0.75	856	14	0.03	14	0.05	(2	<2	12	23	۲5	(3	64
	REST L2 22+005	0.1	4.31	(3	101	<3	0.32	0.9	23	34	102	5.03	0.11	1.31	1261	21	0.04	19	0.08	(2	<2	18	29	<5	(3	128
)	REST L2 22+505	0.1	4.79	(3	35	(3	0.23	0.9	14	37	41	6.27	0.11	0.65	430	25	0.03	16	0.06	<2	(2	21	28	<5	(3	48
·.	Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1 •	1	1	0.01	0.01	0.01	1	1	0.01	ſ	0.01	2	2	2	1	5	3	1
-	Naxious Detection	50.0	10.00	2000	1000	1000		1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
	K - Less Than Minigun	> - Greater II			s - Insu				- No Sampi			S RESULT								20000	2000	1000	10000	100	1000	20000
1		/ uncaver //	1911 HEATS		5 1150		osepic	113	NO DAMP.	16	NKULINEDO	J KLJULI			1262 01 1		- 11211100	s augyes								
9.1K																										
a W																										
1.1																										
<u> 1</u>																										

APPENDIX II

Sample Descriptions

Geochemical Data Sneet - ROCK SAMPLING

			NTS	104 B/15
Sampler	C. BILBUEST	Project KESTREE BMLLEVAN	Location	J-F #1
Date	25/8/90	Property JOHNS GEFT	M.D.	LEARD

	·	6441D1 F	Sample		DESCRIPTIO	N ·			ASSA	YS	
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width	Rock Type	Alteration	Mineralization	OBSERVATIONS	Afg ppm	HU		
2562	BLACTER CAN NE SELE SE	GRAK		QT2 DEOR		PyR	FLOAT VERY ANFULAR	nd	1040	 	
563	1390 7 100 1 NW 562	GRAB		GRN VOLL [ANDESTTE]		6	RUSTY WRATHERED SHRFACE I DYKAT EAST SEDE OF MADN LRA RAMIENTE	nd	10		
564	1360M	Im ² GRAB		lt green Jolc.		FENELY MEN,	EAST SEDE OF MADN CRA RAMINENS THROAGH CRATTER OF JEE (CHERTY	hd	nd		
565	1325M-25M EAST= 564	Im2 GRAS		11		decen. PyR.	IRHEOLETE CHERTYPJ	nd	nd	·	
56B	1310 M 40m DOWN STREEM 56	5		11)(BCDM SAMPLE # 27-15-17	nd	nd		_
568	13201 401 SE 566	17		u		11		nd	nd		_
568	12900 50M DUNSTRM 567			AMSSY ROW VOLC		F:NE Fy.	COVALLIE]	0.2	nd		
5B9	1270A. 2000 Sw 568	GRAB		er br volc		MASS INR	NOTAD KARREY AS 565 TO 567	nd	nd		
57D	HYOM BES RAVENE ENT 151	11		RUSTY DEOR		PyR.		nd	30		
571	493 FRM 570	vi		11		1		nd	20		
572	11801: 50M 415124 571	4.0	102	GREEN VOLL		PYR	Rusty [Vubby?]	nd	30		
57B	11500 20M	11	11 1 1	W		11	NOTAS RUSTY AS 572	Ind	30		
574	140 M 13M UPSTRM 373	મ	1	31		v ¹		nd	20		
375	12400 200M WASTRA 374	GRAB		MAGNETITE			SEVERNLAN'S. SLDS: FLDAT	0.1	20		
376	140m 30M NW 0F572.4	0		à52	<u></u>	FULNIE Pyr	Sub DIC	nd	20		
									 		
								_			-

