LOG NOOCT 1 1 1991	RD.
ACTION:	
FILE NO:	

SUB-RECORDE	R
RECEIVED	

CCT - 4 1991

M.R. # \$...... \$...... \$......

1991 GEOLOGICAL
AND GEOCHEMICAL REPORT
ON THE
SCUD RIVER PROJECT

Located in the Galore Creek Area
Liard Mining Division
NTS 104G/4E,5E,6W
57° 15' North Latitude
131° 33' West Longitude

H CX ZO **4 A 2 80 8** -prepared for-< Z CONSOLIDATED GOLDWEST RESOURCES LTD. C (3) -prepared by-OS Robert Falls, Geologist 00 September, 1991 图员

1991 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE SCUD RIVER PROJECT

TABLE OF CONTENTS

			<u>Page</u>
1.0		INTRODUCTION	.1.
2.0		LIST OF CLAIMS	.1.
3.0		LOCATION, ACCESS AND GEOGRAPHY	.2.
4.0		PROPERTY MINING HISTORY	
	4.1	Previous Work	.3.
	4.2	1991 Work Program	.4.
5.0		REGIONAL GEOLOGY	.5.
6.0		PROPERTY GEOLOGY AND MINERALIZATION	
	6.1	Geology	.8.
	6.2	Mineralization	.9.
7.0		GEOCHEMISTRY	.10.
8.0		DISCUSSION	.13.

APPENDICES

Appendix		Bibliography
Appendix		Statement of Expenditures
Appendix	C	Rock Descriptions
Appendix		Trench Maps
Appendix	E	Cumulative Frequency Distributions
		for Soil Geochemistry
Appendix		Certificates of Analysis
Appendix	G	Statement of Qualifications

LIST OF FIGUR	RES	Following
		Page
Figure 1	Location Map	.1.
Figure 2	Claim Map	.1.
Figure 3	Regional Mineral Occurrence Map	.3.
Figure 4	Regional Geology	.5.
Figure 5	Geology and Geochemistry: South Sheet	.Pocket.
Figure 6	Geology and Geochemistry:North Sheet	.Pocket.
Figure 7	Twilight grid: Geology and Geochemistry	.Pocket.
Figure 8	Alder showing: Cross-section	.Pocket.
Figure 9	Twilight grid: Gold/Silver in Soils	.Pocket.
Figure 10	Twilight grid: Copper/Arsenic in Soils	.Pocket.
Figure 11	Twilight grid: Lead/Zinc in Soils	.Pocket.
Figure 12	Twilight grid: Soil Compilation Map	.Pocket.

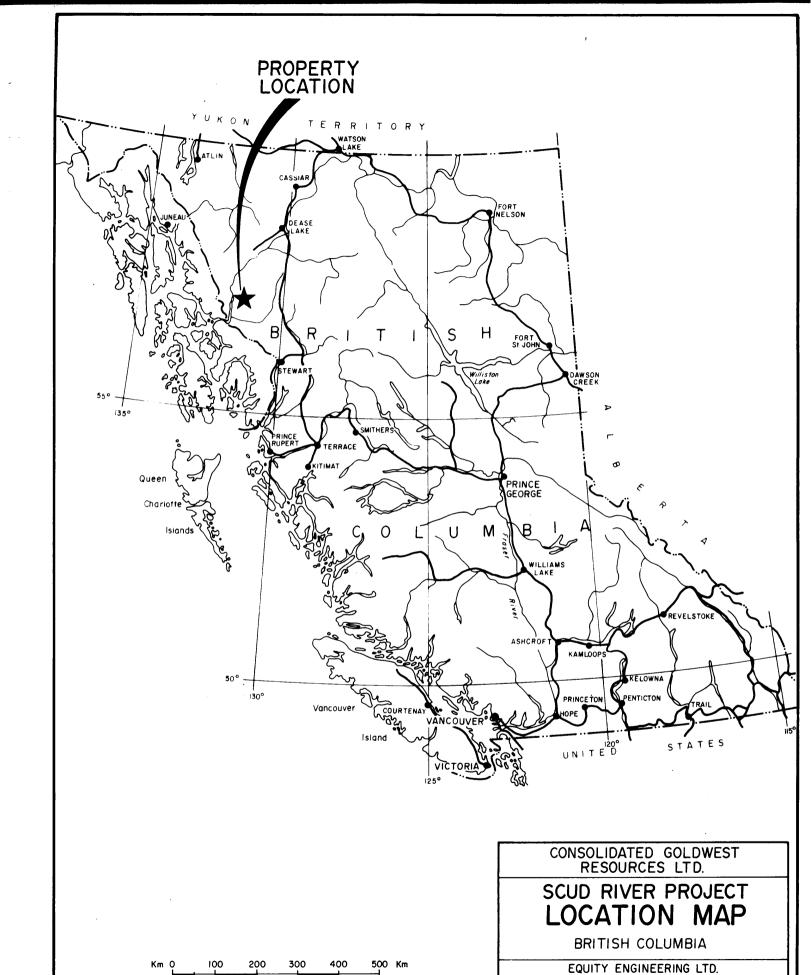
LIST OF TABLES

	_	<u>Page</u>
Table 2.0.1	Claim Data	.1.
Table 6.2.1	Alder Showing: Significant Rock	
	Sample Results	.10.
Table 7.0.1	Silt Sampling Results	.11.
Table 7.0.2	Anomalous Levels for Soil Geochemistry	.12.

_____ Equity Engineering Ltd. _____

1.0 INTRODUCTION

The Scud River property encompasses the JD I-VII, Bell 1-2, PL-1 and CB I-II claims, which were staked in 1988, 1989 and 1990 to cover favourable geology, geochemistry and sulphide-rich float in the Scud River drainage, located approximately 180 kilometres northwest of Stewart in northwestern British Columbia (Figure 1). Exploration programs on the property from 1988 to 1990 resulted in the discovery of gold-bearing skarn float at the toe of the Rugose Glacier and several gold-bearing zones of limited extent across the property. Anomalous soil geochemistry from 1990 suggested that the Twilight Zone, a polymetallic sulphide zone on the RB 11 claim, may extend onto the adjacent Bell 2 claim of the Scud River property.


An exploration program, consisting of geological mapping, prospecting and soil sampling, was carried out on the Bell 2, JD V and JD VII claims of the Scud River property during July 1991. The intent of the program was to determine whether the Twilight zone extends onto the Scud River property. Equity Engineering Ltd. conducted this program for Consolidated Goldwest Resources Ltd. and has been retained to report on the results of the fieldwork.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the claims listed in Table 2.0.1, all of which are situated in the Liard Mining Division (Figure 2), are owned 49% by Pass Lake Resources Ltd. and 51% by Consolidated Goldwest Resources Ltd.. Separate documents indicate that they are beneficially owned by Pass Lake Resources Ltd. while Consolidated Goldwest Resources Ltd. earns its interest.

TABLE 2.0.1 CLAIM DATA

Claim	Record	No. of	Record	Expiry
<u>Name</u>	Number	<u> Units</u>	Date	Year
JD I	4641	20	June 13, 1988	1993
JD II	4642	20	June 13, 1988	1994
JD III	5552	20	Dec. 9, 1988	1994
JD IV	5553	20	Dec. 9, 1988	1994
JD V	5554	20	Dec. 9, 1988	1994
JD VI	5555	20	Dec. 9, 1988	1995
JD VII	7907	5	Oct. 4, 1990	1991
Bell 1	5562	20	Dec. 9, 1988	1994
Bell 2	5563	20	Dec. 9, 1988	1995
PL-1	5370	20	Oct.11, 1988	1995
CB I	6521	20	Oct. 4, 1989	1994
CB II	6522	<u>16</u>	Oct. 5, 1989	1 9 93
		221	·	

300 MILES

MILES 0

50

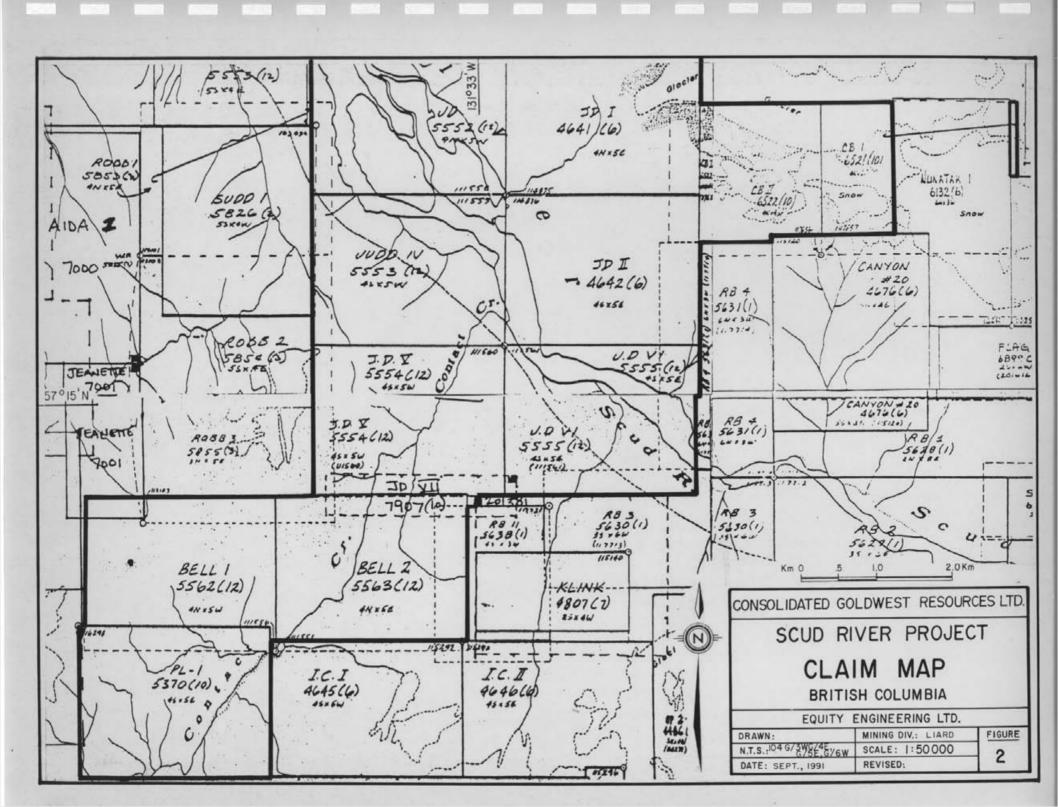
100

200

DRAWN:

J.W.

N.T.S.: 104G/4E,5E


DATE: SEPT., 1991

FIGURE

MINING DIV. LIARD

SÇALE: AS SHOWN

REVISED:

The CB I claim overlies the previously staked Nunatak 1 claim, reducing by half its effective size. The JD VII claim was staked in October 1990 to cover a fraction between the JD and Bell claim groups. The positions of all legal corner posts for the claims have been verified by Equity Engineering Ltd. personnel.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The JD I-VII, Bell 1-2, CB I-II and PL-1 claims are located within the Coast Range Mountains approximately 180 kilometres northwest of Stewart and 75 kilometres southeast of Telegraph Creek in northwestern British Columbia (Figure 1). They lie within the Liard Mining Division, cantered at 57° 15' north latitude and 131° 33' west longitude.

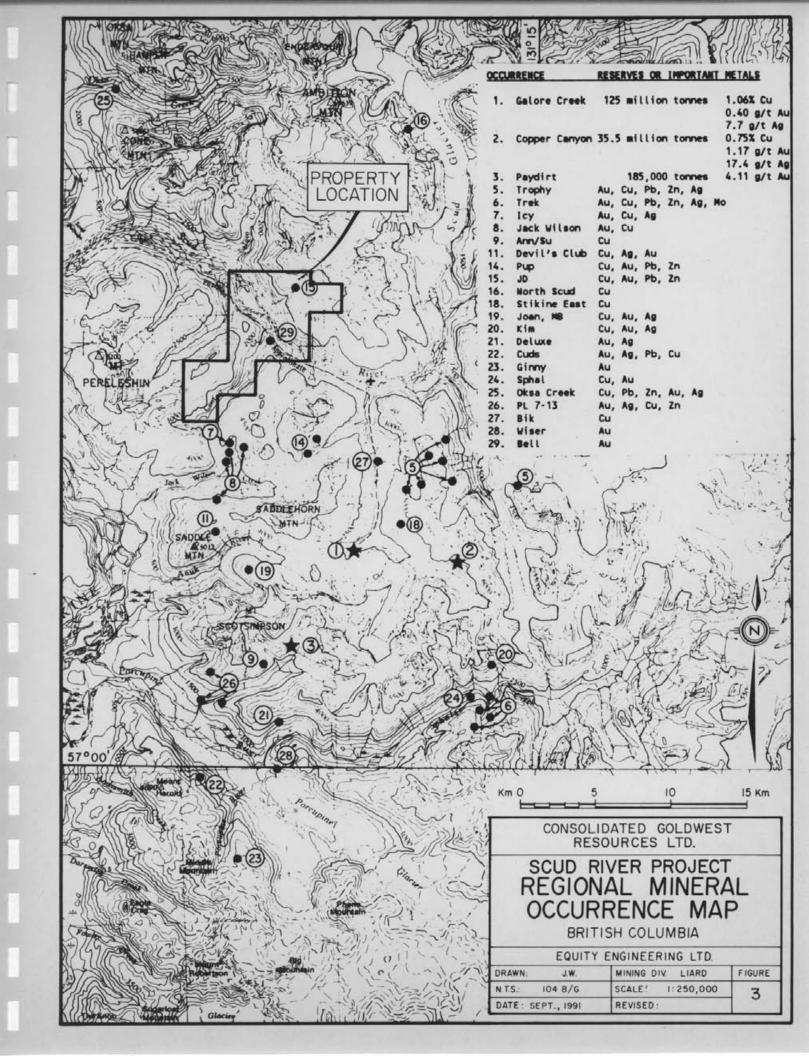
Access to the Scud River property during the 1991 exploration program was provided by helicopter from the Galore Creek camp and airstrip, which is located approximately fifteen kilometres to the southeast. During the field season, fixed-wing aircraft fly charters from Smithers to the Galore Creek airstrip direct or via the Bronson airstrip. The Galore Creek airstrip is 425 metres in length, limiting the size of the aircraft that can be safely landed there. During the 1991 season, the Galore Creek camp was serviced by a Turbo Otter, based out of Smithers. The Scud River airstrip, located sixteen kilometres west of the property, is suitable for DC-3 aircraft.

On the Alaskan side of the border, Wrangell lies approximately 100 kilometres to the southwest and provides a full range of services and supplies, including a commercial airport. The Stikine River has been navigated by 100-ton barges upriver as far as Telegraph Creek, allowing economical transportation of heavy machinery and fuel to within sixteen kilometres of the property. During the 1960's, Kennco constructed a cat road from their Galore Creek copper-gold deposit down the south side of the Scud River to the Scud River airstrip, passing through the JD II, III, IV and VI claims. This cat road has not been maintained and would require extensive reconstruction before becoming useable.

The JD I to VI claims straddle the Scud River, from fifteen to twenty-two kilometres above its confluence with the Stikine River (Figure 2). The JD I and II claims lie mainly on the north side of the Scud River, covering the lower part of the Rugose Creek drainage, including the toe of the Rugose Glacier, a valley glacier which descends to an elevation of 1100 metres. The CB I and II claims extend east from JD I, covering the upper portions of the Rugose Glacier. The other claims lie mainly on the south side of the Scud River, stretching southwest up the drainage of Contact Creek. Topography is rugged, typical of mountainous and glaciated terrain, with elevations ranging from 200 metres on the Scud River to over 1770 metres on an unnamed peak on the Bell 1 claim.

Lower slopes are covered by a mature forest of hemlock, spruce and balsam fir with a dense undergrowth of devil's club, alder and huckleberry. Above treeline, which occurs at approximately 1100 metres, the creek beds and slopes are covered by dense slide alder and willow growth. Steeper slopes are covered by short heather and other alpine vegetation. Northerly-facing slopes are covered with permanent snowfields at higher elevations.

The Scud River property lies in the wet belt of the Coast Range Mountains. Annual precipitation ranges from 190 to 380 centimetres (Kerr, 1948b). Except during July, August and September, precipitation at higher elevations falls mainly as snow, with accumulations reaching three metres or more. Both summer and winter temperatures are moderate, ranging from -5°C in the winter to 20°C in the summer months.


4.0 PROPERTY MINING HISTORY

4.1 Previous Work

The Galore Creek district was extensively explored for its copper potential throughout the 1960's (Figure 3), following the discovery in 1955 of the Galore Creek copper-gold porphyry deposit, whose Central Zone hosts reserves of 125 million tonnes grading 1.06% copper and 400 ppb gold (Allen et al, 1976). Kennecott is currently updating its feasibility study on the Galore Creek deposit, incorporating significant gold and copper results from drilling in recent years. Several major mining companies conducted regional mapping and silt sampling programs over the entire Galore Creek area, and the Copper Canyon copper-gold porphyry, estimated by Consolidated Rhodes (1991) at 35.7 million tonnes grading 0.75% copper and 1.17 g/tonne (0.034 oz/ton) gold was discovered eight kilometres east of the Central Zone.

In the early 1980's, Teck Corp. conducted regional reconnaissance for gold throughout the area, and delineated 185,000 tonnes of reserves grading 4.11 grams gold per tonne on the Paydirt deposit (Holtby, 1985), which is located approximately twenty kilometres south of the Scud River property. Significant precious metal occurrences were also discovered on each of the Trophy, Trek, Icy, PL 7-13 and Jack Wilson properties during the 1988, 1989 and 1990 field seasons (Figure 3). In each case, these properties had been explored for copper during the 1960's, but had never received due attention for their gold potential.

During September of 1988, Pass Lake Resources Ltd. carried out a limited exploration program of prospecting, stream and soil geochemistry on the JD I and II claims. Three of the four field-sieved stream sediment samples taken from Rugose Creek were highly anomalous, with 1850, 3720 and 700 ppb gold. Five of the twelve

rock samples taken from the JD claims returned values in excess of 3000 ppb gold (Awmack, 1989).

Based upon these results, Consolidated Goldwest Resources Ltd. optioned the Scud River property in 1989 and carried out a property-wide reconnaissance exploration program that fall. A total of 11 field-sieved stream sediment samples, 22 silt samples, 67 soil samples and 82 rock samples were taken. The gold-bearing sulphide float discovered in 1988 on Rugose Creek was traced to gossanous limestone cliffs east of the JD I claim, and the CB I and II claims were staked in an attempt to cover this source. Gold-bearing mineralization of limited extent was found in place on the JD I, JD III, JD V and PL-1 claims in a variety of structural and lithological settings (Ross, 1989).

In 1990, a further 8 silt samples, 372 soil samples and 195 rock samples were taken from the Scud River property by Consolidated Goldwest. A soil geochemical grid was established near the confluence of Contact Creek and the Scud River to provide mapping control and geochemical information in a poorly exposed area where a 1989 rock sample returned a value of 3550 ppb gold. Chip sampling failed to reproduce this value. Two contour soil lines were run on the Bell 2 claim in an attempt to trace the Twilight Zone, a sulphide-bearing horizon which outcrops on the adjacent RB 11 claim, onto the Scud River property (Falls, 1990).

4.2 1991 Work Program

During July 1991, Consolidated Goldwest carried out additional exploration on the Scud River property. The main focus of this program was to trace the Twilight Zone west onto the Bell 2 claim. During the course of this program 10 silt samples, 330 soil samples and 67 rock samples were taken. All samples were analyzed geochemically for gold and 31 elements by ICP. Samples with greater than 1000 ppb gold, 100 ppm silver or 10,000 ppm copper, lead or zinc were assayed. Analytical certificates are attached in Appendix F.

The Twilight geochemical grid was established on the Bell 2 and JD VII claims (Figures 5 and 7). A flagged baseline extends from the Bell 2/RB 11 claim boundary due west for 800 metres. Crosslines, flagged at 100 metre intervals along the baseline, extend 400 metres towards the north and 500 metres towards the south where topography allowed. Soil samples were taken at 25 metre intervals along the baseline and crosslines. To the south of Cut Creek a contour soil line was established at an elevation of 650 metres. This line was intended to test for sulphide mineralization on that side of the creek. Wherever possible, soil samples were taken from the red-brown B horizon. Where soil development was poor, talus fines were taken.

Prospecting and detailed geological mapping were carried out

over the grid (Figure 7). Reconnaissance geological mapping and prospecting were carried out along Cut Creek and on part of the JD V claim (Figures 5 and 6). Rock samples, described in Appendix C, were taken from zones of alteration and mineralization.

5.0 REGIONAL GEOLOGY

The basis for regional geological mapping in the Stikine River area was set out by Kerr (1948b), the crew of Operation Stikine (GSC, 1957) and Souther (1972). Their work has been refined in the Galore Creek area by Brown and Gunning (1989a,b) and Logan et al (1989a,b) at a scale of 1:50,000.

The Galore Creek Camp lies within the Intermontane Belt, a geological and physiographic province of the Canadian Cordillera, and flanks the Coast Plutonic Complex to the west (Figure 4). At Galore Creek, the generally northwest-trending structure of the Intermontane Belt is discordantly cut across by the northeast-trending Stikine Arch which became an important, relatively positive tectonic element in Mesozoic time when it began to influence sedimentation into the Bowser Successor Basin to the southeast and into the Whitehorse Trough to the northwest (Souther et al., 1974).

Stikinian stratigraphy ranges from possibly Devonian to Jurassic, and was subsequently intruded by granitoid plutons of Upper Triassic to Eocene age. The oldest strata exposed in the Galore Creek camp are Mississippian or older mafic to intermediate volcanic flows and pyroclastic rocks (Units 4A and 4B) with associated clastic sediments (Units 4C, 4D, 4G and 4J) carbonate lenses (Unit 4E). These are capped by up to 700 metres of Mississippian limestone with a diverse fossil fauna (Unit 4E). It appears from fossil evidence that all of the Pennsylvanian system is missing and may be represented by an angular unconformity and lacuna of 30 million years, though field relationships are complicated by faulting (Monger, 1977; Logan and Koyanagi, 1989a). Permian limestones (Units 6A, 6B and 6C), also about 700 metres thick, lie upon the Mississippian limestone but are succeeded by a second lacuna amounting to about 20 million years from the Upper Permian to the upper Lower Triassic.

Middle and Upper Triassic siliciclastic and volcanic rocks (Unit 7) are overlain by Upper Triassic Stuhini Group siliciclastic (Units 8A and 8B) and volcanic (Units 8D, 8E, 8G, 8H and 8I) rocks, consisting of mafic to intermediate pyroclastic rocks and lesser flows. The Galore Creek porphyry copper deposit appears from field evidence to mark the edifice of an eroded volcanic centre with numerous sub-volcanic plutons of syenitic composition. Jurassic Bowser Basin strata onlap the Stuhini Group strata to the southeast of Iskut River but, because of erosion and non-deposition, are virtually absent from the Galore Creek area.

The plutonic rocks follow a three-fold division (Logan and Koyanagi, 1989a,b). Middle Triassic to Late Jurassic syenitic and broadly granodioritic intrusions are partly coeval and cogenetic with the Stuhini Group volcanics and include the composite Hickman Batholith (Unit 9) and the syenites of the Galore Creek Complex (Unit 11). Jura-Cretaceous Coast Plutonic Complex intrusions (Unit 12) occur on the west side of the Galore Creek Camp, along the Stikine River, with the youngest of these intrusions occupying more axial positions along the trend of the Coast Plutonic Complex flanked by older intrusions. The youngest intrusives in the Galore Creek Camp are Eocene (quartz-) monzonitic plugs (Unit 13), felsic and mafic sills and dykes (Unit 14), and biotite lamprophyre (minette) dykes (Unit 14C).

The dominant style of deformation in the Galore Creek area consists of upright north-trending, open to tight folds and northwest-trending, southwest-verging, folding and reverse faulting in the greenschist facies of regional metamorphism. Localized contact metamorphism ranges as high as pyroxene hornfels grade; metasomatism is also noted near intrusions. Upright folding may be an early manifestation of a progressive deformation which later resulted in southwest-verging structures. Southwest-verging deformation involves the marginal phases of the Hickman Batholith and so is, at least in part, no older than Late Triassic.

Steeply dipping faults which strike north, northwest, northeast, and east have broken the area into a fault-block mosaic. North-striking faults are vertical to steeply east-dipping and parallel to the Mess Creek Fault (Souther, 1972), which was active from Early Jurassic to Recent times (Souther and Symons, 1974); northwest-striking faults are probably coeval with the north-striking faults, but locally pre-date them. East-west trending faults are vertical or steeply dipping to the north and have normal-type motion on them (i.e., north-side down), whereas northeast-striking faults are the loci of (sinistral) strike-slip motion (Brown and Gunning, 1989a).

A number of metallic deposit types have been recognized in the Galore Creek camp: porphyry copper_molybdenum_gold deposits, structurally-controlled precious metal vein/shear deposits, skarns and breccia deposits (Figure 3). Porphyry copper deposits of this area include both the alkalic Galore Creek copper-gold and calcalkalic Schaft Creek copper-molybdenum deposits. Galore Creek, which is associated with syenitic stocks and dikes rather than a quartz-feldspar porphyry, is further contrasted from the calcalkaline Schaft Creek in that molybdenite is rare, magnetite is common and gold and silver are important by-products. The mineralization is clearly coeval and cogenetic with the spatially associated intrusive bodies. Other porphyry copper occurrences in the Galore Creek area include the Copper Canyon, Sue/Ann, Bik and Jack Wilson Creek deposits (Figure 3).

Structurally-controlled gold-silver deposits have been the focus of exploration in recent years. The vein/shear occurrences are similar throughout the Galore Creek camp in that they are mesothermal in nature, containing base metal sulphides with strong silica veining and alteration. However, it appears that the intrusive bodies associated with this mineralization fall into two classes on the basis of age and composition. These two classes are reflected in differences in the style of structures, sulphide mineralogy and associated alteration products. The intrusive types are: 1) Lower Jurassic alkaline "Galore Creek" stocks; and 2) Eocene quartz monzonite to porphyritic granodiorite intrusions. Lead isotope data from the Stewart mining camp (Alldrick et al., 1987) further supports the proposition that separate Jurassic and Tertiary mineralizing events were "brief regional-scale phenomena".

Structures associated with the Lower Jurassic syenites are typically narrow quartz-chlorite veins mineralized predominately with pyrite, chalcopyrite and magnetite. Examples of these structures in the Galore Creek camp include many of the discrete zones peripheral to the Galore Creek deposit and the gold-rich veins at Jack Wilson Creek. The Tertiary mineralization comprises discrete quartz veins and larger shear zones characterized by pervasive silicification, sericitization and pyritization whose total sulphide content is commonly quite low. The quartz veins contain a larger spectrum of sulphide minerals including pyrite, chalcopyrite, pyrrhotite, arsenopyrite, galena and sphalerite. Unlike the Jurassic mineralization, silver grades may be very high. A number of mineral showings discovered in the Porcupine River area, including the Paydirt deposit, are of this type.

Skarns represent a minor percentage of the precious metal-bearing occurrences in the Galore Creek camp. The mineralogy of these deposits could be influenced by the composition of the intrusion driving the hydrothermal fluids, in much the same way as described above for the structurally-controlled deposits. If the intrusives are alkalic, the skarn assemblage will be dominated by magnetite and chalcopyrite, as at the Galore Creek deposit and the Hummingbird skarn on the east side of the South Scud River.

The breccia hosted mineralization discovered in the Galore Creek camp precious metal deposits appear to be unique in style and mineralization. Three occurrences have been located in the camp: (1) the zinc-silver-gold Ptarmigan zone in the South Scud River area, (2) the copper-molybdenum-gold-silver breccia at the Trek property on Sphaler Creek and (3) the copper-bearing and magnetite breccias of the complex Galore Creek deposit. The single common denominator of each is that the zones are located along fault structures which may represent the main conduit for mineralizing fluids.

6.0 PROPERTY GEOLOGY AND MINERALIZATION

6.1 Geology

The Scud River property is underlain by Permian and older sedimentary and volcanic rocks of the Stikine Assemblage except in the southern part of the property where some Upper Triassic Stuhini Group sediments outcrop. Triassic to Jurassic intrusives of the Galore Creek Suite have intruded the Permian and older rocks on the Bell 1 and Pl-1 claims. Eocene dykes and sills intrude Permian limestone on the Nunatak property to the east of the Scud River property and Tertiary dykes and sills intrude all rocks on the Scud The stratified rocks generally strike northerly River property. and dip toward the east but are quite variable in orientation. Geological mapping during the 1991 program was confined to the eastern parts of the Bell 2 and JD VII claims and the southern part of the JD V claim and the results of this work are described below. Figures 5 to 7 illustrate the geology of the 1991 project area. Figures 5 and 6 have been adapted from Falls (1990) and modified as a result of the 1991 mapping program.

The oldest rocks within the 1991 map area consist of a sequence of interbedded Mississippian and older sediments (Unit 4). These rocks occupy much of the eastern part of the JD V claim and are exposed along Contact Creek and on a treed ridge to the south of the Contact Creek grid (Figure 6). They generally strike easterly and dip gently towards the south. The lateral extent of subunits within this sequence is difficult to determine due to complex interbedding and generally poor exposure. Unit 4C consists of dark grey to black, locally calcareous or graphitic, laminated argillite with lesser siltstone. It is generally interbedded with black, thickly bedded chert (Unit 4G) and massive, grey limestone (Unit 4E). Several other units are known to occur within this sequence but none of these were observed within the 1991 project area.

Unit 4 is overlain to the south by a thick sequence of Permian limestone (Unit 6). The limestones have been mapped in detail within the Twilight grid (Figure 7). Much of the grid is occupied by the upper member limestone (Unit 6A). This unit consists of light coloured, thickly bedded to massive, crinoidal limestone. Chert interbeds up to 5 centimetres thick are present locally. In the southern part of the grid the rocks strike northerly and dip moderately to steeply towards the west. In the north, strikes become easterly to northeasterly, suggesting that some folding has taken place. Several shear zones of variable orientations have been mapped and sulphide mineralization is associated with two such zones (Section 6.2).

Underlying Unit 6A is argillaceous limestone (Unit 6C). This dark coloured, thinly bedded unit is exposed in the western part

of the grid. The contact appears to be conformable but the full lateral extent of Unit 6C has yet to be determined.

In the southeast corner of the Bell 2 claim rusty-weathering argillite (Unit 5) is in fault contact with the Permian limestone (Unit 6A) (Figure 5). The argillite is highly deformed, often graphitic and contains up to 10% stratiform pyrite and pyrrhotite. These rocks strike northeasterly and dip moderately towards the west. A wedge of Unit 5, apparently displaced by faulting, has been mapped within Cut Creek. The argillite unit was previously thought to be part of the Upper Triassic Stuhini Group (Unit 8A) but its deformed nature and high sulphide content is more typical of Unit 5 of the Paleozoic Stikine Assemblage.

Minor Tertiary dykes of dioritic (Unit 14D) and rhyolitic (Unit 14E) compositions have been mapped within the Twilight grid.

6.2 Mineralization

Numerous gold-bearing occurrences have been described previously from the Scud River property by Falls (1990), Ross (1989) and Awmack (1989). None of these were examined during the 1991 field program and they will not be described below.

The Twilight Zone, a sulphide-bearing shear zone hosted within limestone, is exposed in a series of trenches on the RB 11 claim, just east of the Scud River property (Figure 5). The Alder Showing is an occurrence of similar mineralization which outcrops on the Scud River property approximately 100 metres southwest of the westernmost Twilight Zone trench. The showing, located at approximately 1+00 W, 0+75 S on the Twilight grid (Figure 7), may be a continuation of the Twilight Zone as it is similar in both appearance and orientation. The Alder Showing is exposed in a vertical rock face which is illustrated in Figure 8. mineralization occurs mainly as discontinuous, 1 to 2 centimetre wide pyrite-sphalerite-chalcopyrite-galena stringers hosted within a 1 metre thick unit of calcareous talc schist. The schist is overlain by massive, blocky, unmineralized Permian limestone (Unit Three parallel trenches (see Appendix D) expose weathered calc-silicate schist which underlies the talc schist. This lower unit is at least 1 metre thick and is less mineralized, although disseminated pyrite and traces of chalcopyrite and malachite are The schistose units probably resulted from shearing and hydrothermal alteration of original limestone and the whole package is believed to represent a fault zone, striking 122° and dipping 30 to 40° towards the south. Numerous rock samples were taken from the Alder Showing and the most significant results are shown in Table 6.2.1.

TABLE 6.2.1
ALDER SHOWING: SIGNIFICANT ROCK SAMPLE RESULTS

Sample Number	Sample Type	Gold (ppb)	Silver (ppm)	Copper (ppm)	Lead (ppm)	Zinc (percent)	Arsenic (ppm)
52505	Select	64	17.2	1993	4007	15.08%	131
52506	Chip(1.4m)	53	8.4	1557	1231	3.03%	66
52552	Grab	97	15.4	4375	2419	1.41%	35
52556	Grab	152	19.5	1.357%	76	7040ppm	11
52559	Grab	83	8.9	2256	813	2.80%	94

As can be seen from Table 6.2.1 most of the significant results are from grab or select samples of sulphide pods or stringers. Chip sample 52506 was taken across the talc schist horizon in an area containing several pyrite-sphalerite stringers but mineralization within the showing is generally spotty and the results of other chip and grab samples are not as high (Figure 8).

Select sample 52554 yielded the highest copper value of all samples taken within the Twilight grid. The sample, taken from a 10 centimetre wide quartz-chalcopyrite-pyrite-chalcocite vein at 0+00 W, 1+00 S on the grid, assayed 1.964% copper with low values for other base and precious metals.

Select sample 52602, which assayed 1.327% copper, was taken from a one metre wide, chalcopyrite-bearing shear zone at 3+98 W, 0+49 N on the Twilight grid. The sample returned low values for other base and precious metals. The shear zone strikes northeasterly and dips moderately towards the southeast. Several grab and chip samples were taken from the same shear zone in an area known as the Drop Showing. All of these samples yielded values of less than one percent copper with low values for other base and precious metals.

Sample 52619 was taken from a creek gully in the vicinity of the Drop Showing. The sample, from limestone float containing chalcopyrite-pyrite-calcite veinlets, yielded values of 635 ppb gold, 19.9 ppm silver, 5411 ppm copper, 1923 ppm lead, and 2794 ppm zinc. The sample was angular in shape and probably derived from a nearby source.

Prospecting in other areas of the Scud River property during 1991 did not yield any significant results.

7.0 GEOCHEMISTRY

Ten silt samples were taken on the Scud River property during the 1991 field program. The sampling results have been compared to the results of a 1987 government regional geochemical survey (GSC Open File 1646, 1988) and the percentiles referred to below are those of the government survey. A sample is considered to be anomalous if it exceeds the 90th percentile in one or more of the base or precious metals. The 1991 silt sampling results are listed in Table 7.0.1. All of the 1991 silt samples were found to be anomalous in a least one of the major base or precious metals.

	TABLE	7.0	<u>. 1</u>
STI.T	SAMPT.	TNG	RESILTE

Sample Number	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
91BK-01	1	1.2***	43	5	94	1
91BK-02	2	0.2	32	21*	66	15
91MD-01	3	2.5***	133**	18*	381**	30**
91MD-02	2	2.1***	173**	21*	478***	12
91MD-03	4	1.7***	136**	15	416**	14
91RF-01	1	1.6***	1658***	171***	1090***	48**
91RF-02	2	2.6***	140**	29**	489***	22*
91RF-03	3	2.4***	185**	29**	665***	35**
91RF-04	1	2.8***	162**	14	431**	30**
91RF-05	4	0.7**	621***	30**	635***	27*
90th %ile	30	0.3	103	16	133	17
95th %ile	65	0.4	132	22	181	29
99th %ile	237	1.0	272	55	478	81
	_					

Percentile values are from GSC Open File 1646, 1988. N=1291.

- exceeds 90th percentile (anomalous).
- ** exceeds 95th percentile (highly anomalous).
- *** exceeds 99th percentile (extremely anomalous).

Silt sample 91BK-01 was taken from a creek in the central part of the Bell 2 claim (Figure 5). The sample returned a high silver value. The rock in this area consists of thickly bedded Permian limestone (Unit 6A). No mineralization was observed in this area and the anomaly is as yet unexplained.

Silt sample 91BK-02 was taken from a tributary of Contact Creek (Figure 6). The sample, from an area of laminated limestone (Unit 6C), is anomalous in lead. No mineralization was observed in this area and the anomaly is as yet unexplained.

Silt sample 91RF-01 was taken from a stream in the eastern part of the Twilight grid (Figure 7). The sample yielded extremely anomalous values for silver, copper, lead and zinc and a highly anomalous arsenic value. No mineralization was observed in the immediate area of this sample, however the Twilight Zone sulphide mineralization is exposed in a trench approximately 200 metres upslope to the east of the sample. It is probable that the stream anomaly has resulted from the downslope movement of metals from this area.

Silt samples 91MD-01 to 91MD-03 and 91RF-02 to 91RF-04 were

all taken from Cut Creek or its tributaries (Figure 5). These samples show fairly uniform results, with most being anomalous to extremely anomalous in silver, copper, lead, zinc and arsenic. Prospecting and rock sampling in the area did not yield any significant results, however, it should be noted that most of the anomalous silt samples were taken from creeks which drain areas where rusty-weathering argillite (Unit 5) is the predominant rock type. Rock samples from this unit have been observed to contain up to 10 percent stratiform pyrite and pyrrhotite and it has been suggested by Awmack (1991) that it is a potential host for stratiform massive sulphide deposits. Several rock samples have been taken from the argillite unit but they have not yielded significant results.

Silt sample 91RF-05 was taken from a creek near the eastern border of the JD V claim (Figure 6). The sample yielded anomalous to extremely anomalous results for silver, copper, lead, zinc and arsenic. The stream drains an area of Mississippian and older sediments (Unit 4). Previous silt samples taken in this area have also yielded anomalous results. Rock samples were taken from nearby quartz veins and from chert float but the results were not significant and the source of the anomaly remains unknown.

Soil sampling on the Scud River property during 1991 has revealed some geochemical anomalies. Anomalous levels for the major base and precious metals have been determined by statistical analysis of the results of all soil sampling done on the property Anomalous levels have been taken as background during 1991. (median value), anomalous (median value plus one deviation) and highly anomalous (median value plus two standard deviations). Anomalous levels for the major base and precious metals are listed in Table 7.0.2 and the log-probability plots from which these values were derived are shown in Appendix E.

TABLE 7.0.2
ANOMALOUS LEVELS FOR SOIL GEOCHEMISTRY

<u>Element</u>	Backgi	cound	Anoma	lous	Highly 1	Anomalous
Gold	3	ppb	11.5	ppb		ppb
Silver	0.7	ppm	2.2	ppm	6.2	ppm
Copper	48	ppm	225	ppm	2450	mqq
Lead	25	ppm	75	ppm	350	ppm
Zinc	150	ppm	350	mqq	1450	ppm
Arsenic	15	ppm	40	mag	110	ppm

Figures 9 to 12 illustrate the soil geochemistry of the Twilight grid. As can be seen from the soil compilation map (Figure 12) there are several multi-element soil anomalies within the grid area. When interpreting the soil sampling results the possibility of downslope dispersion of metals must be taken into account because of the steep terrain.

A strong soil anomaly centred at approximately 1+00 W, 0+50 S contains values as high as 64 ppb gold, 7.6 ppm silver, 5188 ppm copper, 683 ppm lead, 7962 ppm zinc and 75 ppm arsenic. The Alder Showing and the westernmost trench of the Twilight Zone lie within this anomaly. The soil values are probably a reflection of the presence of sulphide mineralization within these zones. A multi-element anomaly centred at 4+00 W, 1+25 S and a gold anomaly at 5+00 W, 2+00 S appear to lie on the same trend as the Alder Showing and the Twilight Zone and may indicate a continuation of these zones. Both of the soil anomalies lie within talus at the base of a major cliff so they probably indicate the presence of mineralization further upslope rather than in-place material.

A major east-west trending, multi-element soil anomaly is centred at approximately 4+00 W, 0+75 N. It contains values as high as 214 ppb gold, 7.6 ppm silver, 5516 ppm copper, 627 ppm lead, 3856 ppm zinc and 180 ppm arsenic. This anomaly is centred around the Drop Showing and most of the high soil values coincide with or lie downslope from areas of known sulphide mineralization. The eastern tail of the anomaly may reflect a downslope dispersion of metals from the Alder Showing.

Several other anomalies within the grid area are as yet unexplained. The most significant of these is a large multi-element anomaly centred at approximately 3+00 W, 3+00 N. With values as high as 181 ppb gold, 20.9 ppm silver, 2119 ppm copper, 1059 ppm lead, 2521 ppm zinc and 109 ppm arsenic this anomaly suggests that undiscovered sulphide mineralization may be present in this part of the grid.

A 650 metre elevation contour soil line extends southeast from Cut Creek for 700 metres (Figure 5). Several soil samples from this line returned slightly anomalous values for gold, silver and zinc and some were anomalous to highly anomalous in arsenic. This area is underlain by Permian limestone (Unit 6A) and no sulphide mineralization has been observed in this area to date.

8.0 DISCUSSION

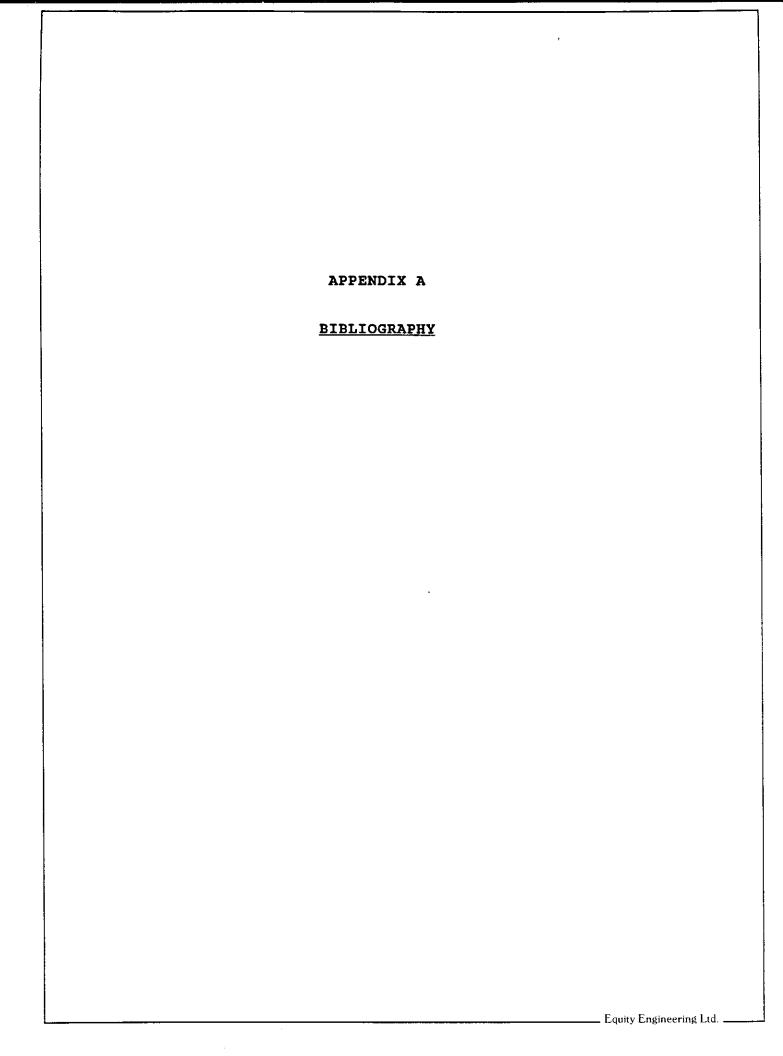
Two areas of shear-hosted sulphide mineralization were discovered on the Scud River property during 1991. Both showings lie within the Twilight grid. Separate grab or select rock samples from the Alder Showing, a possible extension of the Twilight Zone, returned values as high as 15.08% zinc and 1.357% copper. Generally low base and precious metal values from chip samples suggest that the mineralization is limited to narrow, discontinuous pods and stringers.

Select sample 52602, from the Drop Showing, located in the central part of the grid, returned 1.327% copper with low values for other base and precious metals. Nearby float sample 52619 yielded values of 635 ppb gold, 19.9 ppm silver, 5411 ppm copper,

1923 ppm lead and 2794 ppm zinc.

Two strong multi-element soil anomalies coincide with the known sulphide showings but a third significant anomaly in the northern part of the grid remains unexplained.

To the south of the grid, silt samples from streams draining an area underlain by a rusty argillite unit yielded anomalous results for silver, copper, lead zinc and arsenic. It has been suggested that this unit is a potential host for massive sulphide mineralization.

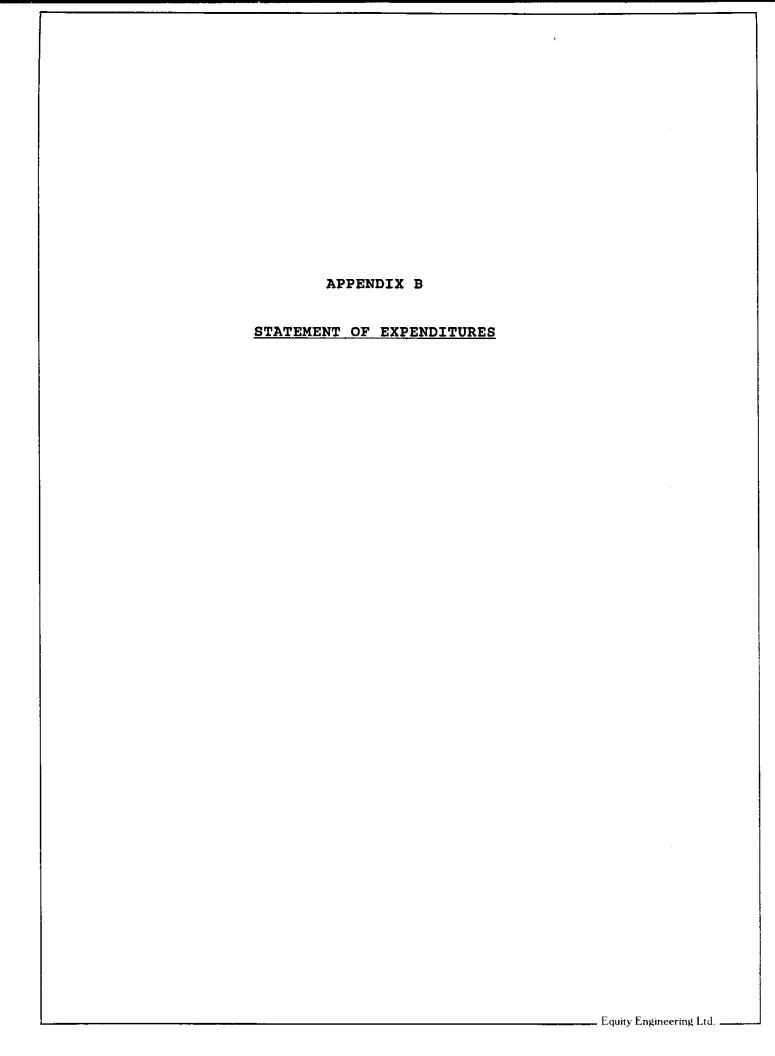

Several minor base and precious metal occurrences have been found on the Scud River property since 1988. Although none of these occurrences has proved to be of great significance their presence and the presence of unexplained soil and silt anomalies should provide some incentive for further work on the property.

Respectfully submitted, EQUITY ENGINEERING LTD.

Robert Falls, Geologist.

Robert Falls

Vancouver, British Columbia September 1991



BIBLIOGRAPHY

- Alldrick, D.J., Gabites, J.E. and Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp, in Geological Fieldwork 1986; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1987-1, pp. 93-102.
- Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek, in CIM Special Volume 15; pp. 402-414.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River map area, Northwestern British Columbia, in Current Research, Part E; Geol. Surv. Can. Paper 89-1E, pp. 145-154.
- Awmack, H.J. (1989): 1988 Summary Report on the JD I & II Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Awmack, H.J. (1991): Qualifying report on the Pass Lake Option Properties; Private report for Consolidated Goldwest Resources Ltd.
- Brown, D.A., and Gunning, M.H. (1989a): Geology of the Scud River area, North Western British Columbia, (104G/5,6), in Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 251-267.
- Brown, D.A., and Gunning, M.H. (1989b): Geology of the Scud River area, North Western B.C. (map); British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Open File 1989-7.
- Consolidated Rhodes Resources Ltd. (1991): News Release dated May 29, 1991.
- Falls, R.B. (1990): 1990 Geological and Geochemical Report on the Scud River Project; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Geological Survey of Canada (1957): Stikine River area, Cassiar District, British Columbia; Geological Survey of Canada Map 9-1957.
- Geological Survey of Canada (1988): National Geochemical Reconnaissance, Sumdum Telegraph Creek, British Columbia (NTS 104F 104G); GSC Open File 1646.

- Grant, G.W. (1964): Final Geological Report CW Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #621.
- Holtby, M.H. (1985): Geological, Soil Geochemical, Trenching and Diamond Drilling Programme on the Paydirt Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #14,980.
- Kerr, F.A. (1948a): Taku River map-area, British Columbia; Geological Survey of Canada, Memoir 248, 84 pp.
- Kerr, F.A. (1948b): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pp.
- Logan, J.M., and Koyanagi, V.M. (1989a): Geology and Mineral Deposits of the Galore Creek area, Northwestern B.C., 104G/3,4, in Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 269-284.
- Logan, J.M., Koyanagi, V.M., and Rhys, D. (1989b): Geology and Mineral Occurrences of the Galore Creek Area; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch Open File 1989-8.
- Monger, J.W.H. (1977): Upper Palaeozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution; Can. Jour. Earth Sci., V.14, pp. 1832-1859.
- Panteleyev, A. (1976): Galore Creek map area, British Columbia, in Geological Fieldwork 1975; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch, Paper 1976-1, pp. 79-81.
- Ross, K.V. (1989): Geological and Geochemical Report on the Scud River Project; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Souther, J.G. (1971): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada, Paper 71-44.
- Souther, J.G. (1972): Geology and Mineral Deposits of the Tulsequah map-area, British Columbia; Geological Survey of Canada, Memoir 362, 84 pp.
- Souther, J.G., and Symons, D.T.A. (1974): Stratigraphy and Palaeomagnetism of the Mount Edziza volcanic complex, northwestern British Columbia; Geological Survey of Canada Paper 73-32, 48 pp.

hios	Resou	rces	Inc.	(1990):	News	release	dated	Decembe	r 4,	1990.

SCUD RIVER PROJECT

(July 10 - August 3, 1991)

PROFESSIONAL FEES AND WAGES: Henry Awmack, P. Eng. 0.625 days @ \$400/day Mike Blusson, Sampler 13 days @ \$225/day David Caulfield, F.G.A.C. 0.5 days @ \$400/day	\$ 250.00 2,925.00 200.00	
Ann Doyle, Geologist 0.25 days @ \$350/day Rob Falls, Project Geologist 23.75 days @ \$400/day Bruno Kasper, Geologist	87.50 9,500.00	
14.375 days @ \$350/day Donald McInnes, Project Manad 1.875 days @ \$300/day Mark O'Dea, Prospector 13 days @ \$300/day	5,031.25 ger 562.50	
MOBILIZATION AND SUPPORT COSTS:		\$ 22,456.25
Pro rata according to mandays of several properties operate the Galore Creek/Porcupine R	ed out of	3,976.85
CHEMICAL ANALYSES:		
Rock Geochemical Analyses 67 @ \$16.00 each Soil Geochemical Analyses 330 @ \$13.25 each Silt Geochemical Analyses	\$ 1,072.00 4,372.50	
10 @ \$13.50 each Assays	135.00 48.92	5,628.50
DOLLDWING DEVENT.		3,020100
EQUIPMENT RENTAL: Fly Camp		
56 mandays @ \$25/day 4x4 Truck	\$ 1,400.00	
1 day @ \$80/day	80.00	
4x4 Truck Standby 5.375 days @ \$10/day	53.75	
Handheld Radios 26 mandays @ \$5/day	130.00	
Porcupine Camp 1.25 mandays @ \$125/day	<u> 156.25</u>	1 000 00
		1,820.00

Equity Engineering Ltd. ____

EXPENSES:		
Aircraft Charters	\$ 348.02	
Courier and Telefax	21.00	
Drafting	2,113.75	
Expediting	315.00	
Food	209.96	
Freight	22.35	
Helicopter Charters	2,393.67	
Materials and Supplies	165.91	
Printing and Reproductions	268.50	
Telephone Distance Charges	44.28	
		\$ 5,902.44
OVERHEAD CHARGE @ 5%		576.55
		40,360.59

REPORT (estimated)

3,000.00 \$ 43,360.59

APPENDIX C

ROCK DESCRIPTIONS

Mineral Abbreviations:

wineral Abbreviations.										
AS	Arsenopyrite	JA	Jarosite							
ΑZ	Azurite	KF	Potassium Feldspar							
BI	Biotite	LI	Limonite							
во	Bornite	MC	Malachite							
CA	Calcite	MG	Magnetite							
CC	Chalcocite	MO	Molybdenite							
CB	Fe-Carbonate	MN	Manganese-oxides							
CL	Chlorite	MR	Mariposite							
CP	Chalcopyrite	MS	Sericite							
CV	Covellite	MU	Muscovite							
CY	Clay	PO	Pyrrhotite							
DI	Diopside	PΥ	Pyrite							
DO	Dolomite	QΖ	Quartz							
EP	Epidote	SI	Silica							
GA	Garnet	SM	Smithsonite							
GE	Goethite	SP	Sphalerite							
${ t GL}$	Galena	TA	Talc							
HE	Hematite	TT	Tetrahedrite							
Alte	ration Intensities:	tr w m s	trace weak moderate strong							

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-1-

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E Date: 09/11/91

to foliation. ALDER SHOWING.

Alteration : **UNALTERED** РЬ 2n Location: 6346 368 N Type: Float Αu Ag Cu As Sample No. 345 956 F Strike Length Exp.: --- m Sulphides : NONE OBSERVED (dag) (maga) (ppm) (ppm) (ppm) (ppm) 980 m Oxides NONE OBSERVED 1.9 30 14 27 1 52501 Elevation: Samole Width: Orientation: -- / --True Width : Host : Limestone Comments: From soil pit at soil sample station CL960. 3+25. Soil sample was anomalous in Pb and Zn. -----Location: 6346 180 N Type: Select Alteration: NONE OBSERVED Αu Ag Cu PЬ Zn As Sample No. 345 850 F Strike Length Exp. : $0.5 \, \text{m}$ Sulphides : <1%CP. 80%PY (ppb) (ppm) (maga) (magg) (mgg) (mag) 313 7.9 1 52502 Elevation: 975 m Sample Width: 10 cm Oxides MC. LI 56 4501 True Width: Host Limestone Orientation: 140 / 44 SW 40 cm Comments: Massive pyrite pod measuring 0.4m*0.5m, contains traces of chalcopyrite. Rock sample taken one metre west along strike from rock sample 52556 at appproximately 0+75s, 1+00W on the Twilight grid. ALDER SHOWING. _____ Alteration: Au Αq Cu РЬ Zn As Location: 6346 226 N Type: Grab ⊌SI Sample No. 345 758 E Sulphides : NONE OBSERVED (magg) (ppm) (ppm) Strike Length Exp. : 10 m (ppb) (ppm) (ppm) 35 50 Oxides 3.1 132 28 905 m Sample Width: 10 cm ΗE 52503 Elevation: Host : Brecciated limestone Orientation: ? / ? True Width: 2.0 m Comments: Highly fractured and slightly silicified massive limestone with hematite staining along the fractures. Probable fault breecia? Sample taken at approximately 2+00W, 0+35S on the Twilight grid. Alteration: TA, CY Aυ Ag Cu ΡЬ Zn As Sample No. Location: 6346 180 N Type: Chip 345 850 E Strike Length Exp. : 2.7 m Sulphides : <1%PY, <1%SP, trCP, trGL (dag) (ppm) (mag) (ppm) (ppm) (ppm) Oxides : GE, MC, MN 955 732 2196 27 52504 Elevation: 975 m Sample Width: 1.6 m Orientation: 184 / 30 W True Width: 1.8 m Host : Talc schist and calc-silicate schist. Comments: Chip sample across a mineralized shear zone exposed in trench TR-91-01. Trench located at approximately 1+00W, 0+75S on the Twilight grid. ALDER SHOWING. Alteration: TA Ag Cu Pb Zn As Location: 6346 180 N Type: Select Αu Sample No. 30%PY, 20-25%SP, trGL 345 850 E Strike Length Exp. : 0.5 m Sulphides : (dag) (mag) (mag) (maga) (mqq) (ppm) GE 64 17.2 1993 4007 124500 131 52505 Elevation: 975 m Sample Width: 10 cm Oxides Orientation: 184 / 30 W True Width : 5 cm Host : Calcareous talc schist. Comments: Select sample of a 3 to 5 cm. wide sulphide band in the talc schist. Sulphide band exposed in the upper part of trench TR-91-01. ALDER SHOWING. _____ Alteration: TA Au Ag Cu Pb Zn As Sample No. Location: 6346 180 N Type: Chip 345 850 E Strike Length Exp.: >20 m Sulphides : <1%PY, 5%SP, trGL (ppb) (ppm) (ppm) (ppm) (maga) (ppm) 23035 66 1.4 m Oxides GE. MN 53 8.4 1557 1231 52506 Elevation: 975 m Sample Width: Orientation: 117 / 24 S True Width: 1.4 m Host Calcareous talc schist. Comments: Chip sample across a tale schist unit containing several 1 to 3 cm. wide sulphide bands which are oriented parallel

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-2-

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E Date: 09/11/91

6345 800 N Alteration: Sample No. Location : Type: Grab Au Αq Сш Pb Zn Αc 345 185 F Strike Length Exp. : 1.0 m Sulphides : NONE OBSERVED (dag) (maga) (ppm) (maga) (maga) (ppm) 52507 Elevation: 680 m 10 cm : 1.1 34 ደበ Sample Width: Oxides NONE OBSERVED 16 89 Orientation: 040 / 65 S True Width : 30 cm Host Mottled, grey limestone. Comments: Iron carbonate alteration zone containing some yuggy calcite veinlets, exposed along Cut creek. Location: 6345 775 N Grab Alteration: **UNALTERED** Aμ Ασ Cu Рb 2n Sample No. Type: As 345 205 E Strike Length Exp. : Sulphides : trPY (ppb) 3.0 m (pom) (mag) (mag) (ppm) (magg) 110 52508 Elevation: 690 Sample Width: 10 cm Oxides GE 5 1.0 69 10 48 Orientation: 030 / 90 True Width . 20 cm Host Black argillite. Comments: Rusty horizon within a black argillite exposed along Cut creek. 6345 770 N Alteration: MS. QZ Zn Sample No. Location: Type: Grab Au Αq Cu Pb As 345 235 F Strike Length Exp. : 5.0 m Sulphides : <1%PY (dad) (maga) (mon) (maga) (pom) (mag) 52509 700 10 cm Oxides GE 2 0.1 32 44 104 12 Elevation: Sample Width: Orientation: 009 / 79 W : Sericite (?) schist. True Width: >2.0 m Host Comments: Rusty weathering schist outcropping along Cut creek. Alteration: UNALTERED Sample No. Location: 6345 700 N Type: Select Αu Ag Cu Pb Zn As 345 290 F Strike Length Exp. : 10.0 m Sulphides : 1-2%PY (dgg) (ppm) (ppm) (ppm) (ppm) (ppm) HE 21 52510 Elevation: 765 m Sample Width: 5 cm Oxides : 29 0.1 51 8 125 Orientation: 190 / 40 W True Width : 5 cm Rost limestone. Comments: Hematite staining where pyrite vein is exposed on the east side of Cut creek. Vein located bellow a large Z-fold within the limestone which may indicate normal movement along the fault. ______ Location: 6346 292 N Type: Float Alteration: TA Au Cu Pb Zn As Sample No. Αq 345 748 F Strike Length Exp. : Sulphides : NONE OBSERVED (dag) (ppm) (ppm) (ppm) (ppm) (ppm) 52511 Elevation: 885 m Sample Width: Oxides : GΕ 14 0.6 195 11 85 19 Orientation: -- / --True Width: Limestone and talc schist. Host Comments: Rock fragments from soil pit from which anomalous soil sample CL860, 1+25 was taken. Rusty fragments located near the top of the hole but no bedrock is exposed within the hole. 6346 272 N Alteration: **UNALTERED** Au Αg РЬ Zn As Sample No. Location: Type: Grab Cu 345 742 F Sulphides : NONE OBSERVED (ppb) Strike Length Exp. : 4.0 m (mpqq) (maga) (ppm) (ppm) (ppm) 52512 885 Sample Width: 10 cm **Oxides** NONE OBSERVED 2 2.6 17 19 11 48 Elevation:

Host

Grey marble.

Comments: Rock face above anomalous soil pit at CL860, 1+00.

True Width:

2.0 m

......

Orientation: ? / ?

Property : Scud River Project (Twilight Grid Area)NTS : 104G/4E Date : 09/11/91

		4744 482 11				_		_		_	
Sample No.	Location :	6346 402 N	Type: Float	Alteration:	UNALTERED	Au	Ag	Çu	Pb	Zn .	As
		345 796 E	Strike Length Exp. : m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(bbu)
5251 3	Elevation:	885 m	Sample Width: m	Oxides :	NONE OBSERVED	9	1.8	31	5	62	1
	Orientation:	•	True Width: m	Host :	Granite		_				
Comments :	•	•	which anomalous soil sample CL860,	2+75 was taken.	. Pebbles are well rounded	and the	refore				
	are thought to h	ave been transpor	ted from a distant source.								
Sample No.	Location :	6346 420 N	Type: Float	Alteration :	UNALTERED	Au	Ag	Cu	Pb	Zn	As
		345 814 E	Strike Length Exp. : m	Sulphides :	NONE OBSERVED	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52514	Elevation:	890 m	Sample Width: m	Oxides :	NONE OBSERVED	6	2.5	5	15	10	45
	Orientation:	/	True Width : m	Host :	Mottled greyish white lim	estone.					
Comments :	Rock fragments f	rom soil pit wher	e anomatous soil sample CL860, 3+00	was taken. Mar	rble outcrop located nearby						
Sample No.	Location:	6346 480 N	Type : Grab	Alteration :	UNALTERED	Au	Ag	Cu	Pb	Zn	As
		345 864 E	Strike Length Exp. : 10.0 m	Sulphides :	NONE OBSERVED	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52515	Elevation:	860 m	Sample Width: 10 cm	Oxides :	NONE OBSERVED	2	2.6	4	15	9	47
	Orientation:	? / ?	True Width: 2.0 m	Host :	Grey marble.						
		outcrop above anom	walous soil sample pit at location C	L860, 3+75.							
Sample No.	Location :	6346 492 N	Type: Float	Alteration:	UNALTERED	Au	Ag	Cu	Pb	Zn	As
		345 882 E	Strike Length Exp. : m	Sulphides :	NONE OBSERVED	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52516	Elevation:	895 m	Sample Width: m	Oxides :	GE	4	2.6	7	33	22	42
	Orientation:	/	True Width: m	Host :	Greyish white, mottled man	rble.					
Comments :	Rock fragments f	rom soil pit wher	e anomalous soil sample CL860, 4+00	was taken. Fou	und along a gulley trending	024 deg	rees				
	which may be a p		•								
Sample No.	Location:	6346 506 N	Type: Grab	Alteration :	UNALTERED	Au	Ag	Cu	₽b	Zn	As
		345 905 E	Strike Length Exp. : 1.0 m	Sulphides :	NONE OBSERVED	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52517	Elevation:	890 m	Sample Width: 10 cm	Oxides :	NONE OBSERVED	1	2.3	6	15	17	44
32311		180 / 84 E	True Width: 50 cm	Host :	Marble.	•		Ü		• •	77
Commonte +			two metres downslope from the local			Possib	l o				
connectes .	fault zone?		·	CTOT OT ANOMATOG	is soft sample accoupt 4,25.	7 03310					
	Location:	6346 518 N	Type: Float	Alteration:	MS?	Au	Ag	Cu	Pb	Zn	As
Sample No			.,								
Sample No.	tocation:		Strike Length Exp	Sulphides .	NONE ORSERVED	(pph)	(mmm)	(non)	(npm)	(ppm)	(DOM)
·		345 920 E	Strike Length Exp. : m	Sulphides :	NONE OBSERVED	(ppb) 40	(ррп) 0.1	(ppm)	(ppm)	(ppm) 56	(ppm)
Sample No. 52518	Elevation: Orientation:	345 920 E 895 m	Strike Length Exp. : m Sample Width : m True Width : m	Sulphides : Oxides : Host :	NONE OBSERVED GE Schist?	(ppb) 49	(ppm) 0.1	(ppm) 88	(ppm) 20	(ppm) 56	(ppm) 36

degrees which may be a fault zone.

Property : Scud River Project (Twilight Grid Area)NTS : 104G/4E Date : 09/11/91

Sample No.	Location:	6346 550 N	Type: Float	Alteration :	wCB	Au	Ag	Cu	Pb	Zn	As
• 1		345 970 E	Strike Length Exp. : m	Sulphides :	NONE OBSERVED	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
52519	Elevation:	905 m	Sample Width: m	Oxides :	Lī	7	2.5	9	14	146	10
	Orientation:	/	True Width: m	Host :	Limestone.						
Comments :	Weakly carbonate	altered white I	limestone float with minor limonitio	staining found	on a talus slope locate	d above anor	nalous				
	soil sample CL86	•									
Sample No.	Location:		Type: Float	Alteration :	Unaltered	Au	Ag	Cu	Рb	Zn	As
		345 964 E	Strike Length Exp. : m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(рр
52520	Elevation:	980 m	Sample Width: m	Oxides :	GE	2	0.3	5	8	21	26
	Orientation:	/	True Width: m	Host :	Limestone						
lomments :	Rock chips from	soil pit a CL960), 3+75. Sample lies in a dry gully	, trending 11 de	grees.						
annia Na			· · · · · · · · · · · · · · · · · · ·	414mm-42mm-	13mm (.		0	DI.	7	
Sample No.	Location :		Type: Float	Alteration:	Unaltered	Au	Ag	Cu	Pb	Zn (mm=)	As
F2F24	E(346 008 E	Strike Length Exp.: m	Sulphides :	None observed	(ppb)	(ppm)	(ppm)	(bbm)	(ppm)	(pp
52521	Elevation:	980 m	Sample Width: m	Oxides :	None visible	5	0.2	3	5	14	14
	Orientation:	•	True Width: m	Host :							
omments:	From Soil pil a	CL900, 4+75. Sa	ample lies in a drainage gully trend	ing 40 degrees (possible fault zone).						
ample No.	Location:		Type: Float	Alteration:	Unaltered	Au	Ag	Cu	Pb	Zn	As
		346 018 E	Strike Length Exp. : m	Sulphides :	None observed	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
52522	Elevation:	965 m	Sample Width: m	Oxides :	None visible	8	2.4	6	1	12	18
	Orientation:	/	True Width: m	Host :	Breccia						
omments :	Limestone and ch	ert fragments in	n a fault breccia with carbonate сет	ent. Sample tak	en at CL960, 5+00.						
			Turn a Flack	Alemania -	Unalarrad	•		0	D)	4	•-
ample No.	Location :		Type: Float	Alteration:	Unaltered	Au	Ag	Cu	Pb	Zn .	As
53537	F1 43	346 028 E	Strike Length Exp.: m	Sulphides :	None observed	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
52523	Elevation:	955 m	Sample Width: m	Oxides :	None visible	6	1.5	3	1	17	1
_	Orientation:	•	True Width: m	Host :	Chert						
omments :	From soil pit a	CL960, 5+25. In	a dry gully trending 46 degrees.								
ample No.	Location:	6346 528 N	Type: Float	Alteration :	Unaltered	Au	Ag	Cu	Pb	Zn	As
		346 032 E	Strike Length Exp. : m	Sulphides :	None observed	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppn
52524	Elevation:	950 m	Sample Width: m	Oxides :	None visible	10	2.1	4	15	11	36

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-5-

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E Date: 09/11/91 Location: 6345 455 N Sample No. Alteration: Unknown Type: Select Αu Αg Cu Рb Zn As 345 655 E 1-3%PY Strike Length Exp.: 10 m Sulphides : (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52525 Elevation: 990 m Sample Width: 10 cm **Oxides** 17 0.1 46 11 69 14 LI Orientation: 060 / 52 SE True Width: 3 m Host : Black argillite Comments: Rusty shear zone with pyrite along fractures and cleavage planes. Taken near the headwaters of Cut Creek Location: 6345 570 N Alteration: Sample No. Type: Float CA, AK Αu Αq Cu Рb Zn As 345 475 E Strike Length Exp.: --- m Sulphides : None observed (dag) (ppm) (ppm) (ppm) (magg) (ppm) 52526 27 12 Elevation: 920 m Samole Width: 10 cm Oxides None visible 1.7 89 39 Orientation: -- / --True Width: 10 cm Calcite-ankerite vein Host Comments: Vuggy vein material exposed on the bank of Cut Creek. Source is probably nearby. Sample No. Location: 6347 785 N Type: Grab Alteration: SI, QZ, AK Au Ag Cu Pb Zn As 346 380 E Strike Length Exp.: 1 m Sulphides : None observed (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52527 Elevation: 520 m Sample Width: 10 cm Oxides None visible 1.7 8 1 20 1 Orientation: 124 / 15 SW True Width: 3-10 cm Host : Siliceous siltstone and limestone Comments : Quartz-ankerite vein. Crosscuts bedding in highly deformed sediments. Taken on the bank of a small stream approximately 100 metres south of 10+00 S on the Contact Creek grid. Location: 6347 800 N Alteration: SI, QZ, CA Cu Рb Zn As Sample No. Type: Grab Αg 346 335 E Strike Length Exp.: 0.5 m Sulphides : None observed (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52528 Elevation: 520 m Sample Width: Oxides LI 2 2.3 8 1 31 1 30 cm : Orientation: 127 / 10 SW True Width: 1 cm Host : Siliceous siltstone+limestone Comments : Composite of several parallel quartz-calcite veinlets, crosscutting sediments. Taken approximately 10 metres NE of sample 52527. Veins follow the axial planar cleavage of a small fold. ______ Location: 6347 725 N Alteration: Unaltered Sample No. Type: Float Au Αg Cu Pb Zn As 346 350 E Strike Length Exp. : Sulphides : trPY (ppb) (magg) (ppm) (ppm) (magg) (mqq) 7 52529 535 m LI 0.4 7 20 Elevation: Sample Width : Oxides : 1 16 Orientation: -- / --True Width: Host Blue-grey chert Comments: Rusty weathering chert float. The source is probably nearby. Sample No. Location: 6346 194 N Type: Float Alteration: UNALTERED Ag Cu PЫ Zn As 345 848 E Strike Length Exp. : Sulphides: trPY (ppm) (mag) (ppb) (mag) (ppm) (mqq) 52551 Elevation: 965 m Sample Width : Oxides 12 2.9 130 36 797 1 JA Orientation: -- / --True Width: Host : Dark grey, sheared limestone

Comments: Sample taken from soil pit at soil sample station CL960, 0+50.

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E Date: 09/11/91

Sample No.	Location :	6346 180 N	Type : Grab	Alteration:	TA	Au	Ag	Cu	Рb	Žn	As
		345 850 E	Strike Length Exp. : 1.0 m	Sulphides :	1%CP, 1%PY, 2%SP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
52552	Elevation:	975 m	Sample Width: 10 cm	Oxides :	GE, MC	97	15.4	4375	2419	10202	35
	Orientation	085 / 41 S	True Width: 60 cm	Host :	Sheared limestone						
Comments :	Mineralized zone	0.5 to 1 m thic	k. Overlain by limestone and under	lain by weathered	d shale. ALDER SHOWING.						
Sample No.	Location :		Type: Chip	Alteration:	TA, QZ veining	Au	Ag	Cu	Pb	Zn	As
sumpte no.	Local ton :	345 850 E	Strike Length Exp. : 1.2 m	Sulphides :	<1%CP,1-2%PY,<1%GL,<1%SP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
52553	Elevation:	975 m	Sample Width: 1.0 m	Oxides :	JA. MC	43	10.1	2239	3700	5511	40
76773		085 / 41 s	True Width: ? m	Host :	Limey talc schist	73	10.1	LLJ/	3700	2211	40
'ommonte *		•	limonitic gouge and intensely frac	· · · · · · · · · · · · · · · · · · ·	•	-nlanar					
	talc schist. Th	e whole package	is speculated to be a shear zone.	*	Zone is overtain by curvi	Pranai					
Sample No.	Location:		Type: Select	Alteration :	EP	Au	Ag	Cu	Pb	Zn	As
		345 944 E	Strike Length Exp. : 3 m	Sulphides :	trCC, 5%CP, trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ррп
52554	Elevation:	1020 m	Sample Width: 10 cm	Oxídes :	AZ, MC	104	13.0	15568	74	398	39
	Orientation:	163 / 82 SW	True Width: 10 cm	Host :	Limestone						
Comments :	Limestone outcro	p cut by a 2 met	re wide zone of parallel 10-15 cm w	ide quartz veins.	. Only one vein is mineral	ized.					
	Limestone outcro Taken at 0+00 k	p cut by a 2 met , 1+00 S on the	re wide zone of parallel 10-15 cm w Fwilight grid.	·	·	ized. Au	Aq	Cu	Pb	Zn	As
 -	Limestone outcro Taken at 0+00 k	p cut by a 2 metr , 1+00 S on the 6346 076 N	re wide zone of parallel 10-15 cm w [wilight grid. Type : Grab	ide quartz veins. Alteration: Sulphides:	MS		Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
	Limestone outcro Taken at 0+00 k	p cut by a 2 metro, 1+00 S on the 6346 076 N 345 860 E	re wide zone of parallel 10-15 cm w Fwilight grid.	Alteration:	MS	Au.	Ag (ppm) 2.2	Cu (ppm) 182		Zn (ppm) 108	
Sample No.	Limestone outcro Taken at 0+00 k Location ;	p cut by a 2 metro, 1+00 S on the 6346 076 N 345 860 E	re wide zone of parallel 10-15 cm w [wilight grid. Type : Grab Strike Length Exp. : 10-15 m	Alteration : Sulphides : Oxides :	MS <1%PY	Au (ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
Sample No. 52555	Limestone outeror Taken at 0+00 k Location ; Elevation; Orientation:	6346 076 N 345 860 E 1055 m 150 / 48 W	re wide zone of parallel 10-15 cm w Iwilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm	Alteration: Sulphides: Oxides: Host:	MS <1%PY LI Limestone	Au (ppb) 2	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
Sample No. 52555 Comments :	Limestone outero Taken at 0+00 k Location ; Elevation; Orientation: Mineralized wall	6346 076 N 345 860 E 1055 m 150 / 48 W	re wide zone of parallel 10-15 cm w [wilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm tic fault zone cutting limestone.	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W,	MS <1%PY LI Limestone 1+75 S on the Twilight grid	Au (ppb) 2	(ppm) 2.2	(ppm) 182	(ppm) 41	(ppm) 108	(ррп 26
Sample No. 52555 Comments :	Limestone outeror Taken at 0+00 k Location ; Elevation; Orientation:	6346 180 N	re wide zone of parallel 10-15 cm w [wilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm tic fault zone cutting limestone.	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W,	MS <1%PY LI Limestone 1+75 S on the Twilight grid	Au (ppb) 2 d.	(ppm) 2.2	(ppm) 182 Cu	(ppm) 41 Pb	(ppm) 108 Zn	(ppm 26
Sample No. 52555 Comments:	Limestone outeror Taken at 0+00 k Location ; Elevation; Orientation: Mineralized wall Location ;	p cut by a 2 metro, 1+00 S on the 346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm Lic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides:	MS <1%PY LI Limestone 1+75 s on the Twilight grid CY 1-5%CP, 5-15%PY	Au (ppb) 2 d. Au (ppb)	(ppm) 2.2 Ag (ppm)	(ppm) 182 Cu (ppm)	(ppm) 41 Pb (ppm)	(ppm) 108 Zn (ppm)	(ppn 26 As (ppn
Sample No. 52555 Comments:	Limestone outeror Taken at 0+00 k Location ; Elevation: Orientation: Mineralized wall Location ; Elevation:	p cut by a 2 metro, 1+00 S on the 1, 1+00 S on the 2, 6346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit 6346 180 N 345 850 E 975 m	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm Lic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides:	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC	Au (ppb) 2 d.	(ppm) 2.2	(ppm) 182 Cu	(ppm) 41 Pb (ppm)	(ppm) 108 Zn	(ppn 26
Sample No. 52555 Comments: ample No. 52556	Limestone outeror Taken at 0+00 k Location: Elevation: Orientation: Mineralized wall Location: Elevation: Orientation:	p cut by a 2 metro, 1+00 S on the 1, 1+0	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm tic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m True Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host:	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone	Au (ppb) 2 d. Au (ppb) 152	(ppm) 2.2 Ag (ppm)	(ppm) 182 Cu (ppm)	(ppm) 41 Pb (ppm)	(ppm) 108 Zn (ppm)	(ppm 26 As (ppm
Sample No. 52555 Comments: Sample No. 52556	Limestone outeror Taken at 0+00 k Location: Elevation: Orientation: Mineralized wall Location: Elevation: Orientation:	p cut by a 2 metro, 1+00 S on the 1, 1+0	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm Lic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host:	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone	Au (ppb) 2 d. Au (ppb) 152	(ppm) 2.2 Ag (ppm)	(ppm) 182 Cu (ppm)	(ppm) 41 Pb (ppm)	(ppm) 108 Zn (ppm)	(ppri 26 As (ppri
Sample No. 52555 Comments: Sample No. 52556 Comments:	Limestone outeror Taken at 0+00 k Location ; Elevation: Orientation: Mineralized wall Location : Elevation: Orientation: Orientation: Guartz-carbonate SHOWING.	6346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit 6346 180 N 345 850 E 975 m 065 / 41 S veining associat	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm True Width: 30 cm Trype: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m True Width: 0.5 m True Width: 0.5 m True Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host: , 0+75 S on the T	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone wilight grid. Part of the	Au (ppb) 2 d. Au (ppb) 152	(ppm) 2.2 Ag (ppm)	(ppm) 182 Cu (ppm)	(ppm) 41 Pb (ppm) 76	(ppm) 108 Zn (ppm)	(ppri 26 As (ppri
Sample No. 52555 Comments: ample No. 52556 Comments:	Limestone outers Taken at 0+00 k Location; Elevation; Orientation: Mineralized wall Location : Elevation: Orientation: Quartz-carbonate SHOWING.	p cut by a 2 metro, 1+00 S on the 1, 1+00 S on the 2, 6346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit 6346 180 N 345 850 E 975 m 065 / 41 S veining associate 6346 180 N	re wide zone of parallel 10-15 cm w Twilight grid. Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm True Width: 30 cm Trype: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m True Width: 0.5 m True Width: 0.5 m True Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host: Oxides: Host: O+75 S on the T	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone wilight grid. Part of the	Au (ppb) 2 d. Au (ppb) 152	(ppm) 2.2 Ag (ppm)	(ppm) 182 Cu (ppm)	(ppm) 41 Pb (ppm)	(ppm) 108 Zn (ppm)	(ppn 26 As (ppn
Sample No. 52555 Somments: ample No. 52556 omments: ample No.	Limestone outeror Taken at 0+00 k Location ; Elevation: Orientation: Mineralized wall Location : Elevation: Orientation: Orientation: Guartz-carbonate SHOWING.	6346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit 6346 180 N 345 850 E 975 m 065 / 41 S veining associat	Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm Tic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m True Width: 0.5 m True Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host: , 0+75 S on the T	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone wilight grid. Part of the	Au (ppb) 2 d. Au (ppb) 152 ALDER	(ppm) 2.2 Ag (ppm) 19.5	(ppm) 182 Cu (ppm) 11545	(ppm) 41 Pb (ppm) 76	Zn (ppm) 7040 Zn (ppm) 7040	As (ppm 52
Sample No. 52555 Comments: 52556 Comments:	Limestone outeror Taken at 0+00 ker taken at 0+00 ker taken at 0+00 ker taken at 0+00 ker taken at 0-10 ker taken at 0-1	p cut by a 2 metro, 1+00 S on the 1, 1+00 S on the 2, 6346 076 N 345 860 E 1055 m 150 / 48 W rock to a sericit 6346 180 N 345 850 E 975 m 065 / 41 S veining associate 6346 180 N	Type: Grab Strike Length Exp.: 10-15 m Sample Width: 30 cm True Width: 30 cm Tic fault zone cutting limestone. Type: Grab Strike Length Exp.: 2.5 m Sample Width: 0.5 m True Width: 0.5 m True Width: 0.5 m True Width: 0.5 m True Width: 0.5 m	Alteration: Sulphides: Oxides: Host: Taken at 1+00 W, Alteration: Sulphides: Oxides: Host: Oxides: Host: O+75 S on the T	MS <1%PY LI Limestone 1+75 S on the Twilight grid CY 1-5%CP, 5-15%PY AZ, GE, JA, MC Limestone wilight grid. Part of the	Au (ppb) 2 d. Au (ppb) 152 ALDER	(ppm) 2.2 Ag (ppm) 19.5	(ppm) 182 Cu (ppm) 11545	(ppm) 41 Pb (ppm) 76	(ppm) 108 Zn (ppm) 7040	As (ppm 52

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-7-

EMOTIL ENGI	INCERING LID.		RUCK SAMPLE DESCRIPTIONS		Pi	age- <i>(-</i>					
Property:	Scud River Projec	ct (Twilight Grid	d Area)NTS : 104G/4E	Date : 09/	11/91						
Sample No.	Location :	6346 180 N	Type : Grab	Alteration :	TA, DI	Au	Ag	Cu	Pb	Zn	As
•		345 850 E	Strike Length Exp. : 1.8 m	Sulphides :	1%PY	(ppb)	(magg)	(ppm)	(ppm)	(ppm)	(ppm)
52558	Elevation:	975 m	Sample Width: 30 cm	Oxides :	HE	13	2.6	369	69	311	11
	Orientation	: 062 / 31 S	True Width: 50 cm	Host :	Calc-silicate schist						
Comments:	Euhedral pyrite	along foliation	planes. ALDER SHOWING.								
Sample No.	Location:		Type: Grab	Alteration :	TA, Di	Au	Ag	Cu	Pb	2n	As
·		345 850 E	Strike Length Exp. : 5 m		<1%CP, trGL, 5%PY, 4%SP	(dqq)	-	(ppm)	(ppm)	(ppm)	(ppm)
52559	Elevation:	975 m	Sample Width: 15 cm		None visible	83	8.9	2256		19107	
		: 074 / 41 S	True Width: 5-10 cm		Talc schist shear zone						
Comments:		· ·	y talc schist. Sample taken 1.5 m								
Sample No.	Location:	6346 180 N	Type: Chip	Alteration:	CA. TA	Au	Ag	Cu	Pb	Zn	As
oumpte no.	Eocarion :	345 850 E	Strike Length Exp. : >3 m	Sulphides :		(ppb)	(mpqq)	(ppm)	(ppm)	(ppm)	(ppm)
52560	Elevation:	975 m	Sample Width: 1.5 m	*	None visible	18	4.5	1135	467	2472	45
J2J00		: 074 / 41 S	True Width: 1.5 m		Talc schist	,,	7.5	,,,,,,	70)	27,6	72
Comments		•	talc schist. The zone contains 3	-		e enontrio	•				
connents:	chip across mine	eratized zone in	tate senist. The zone contains 3	2 to 10 cm wide m	ineratized norizons. Albei	C SHOWING	1.				
Sample No.	Location:	6346 180 N	Type: Grab	Alteration:	QZ, CB	Au	Ag	Cu	Pb	Žn	As
•		345 850 E	Strike Length Exp. : 1 m	Sulphides :	1% PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52561	Elevation:	975 m	Sample Width: 30 cm	Oxides :	MC	3	3.6	829	54	889	43
	Orientation:	134 / 54 S	True Width : 30 cm	Host :	Quartz-carbonate vein						
Comments :	Abundant quartz	•									
Sample No.	Location :	6346 130 N	Type: Grab	Alteration :	sMS	Au	Ag	Cu	Pb	Zn	As
•		345 920 E	Strike Length Exp. : 2 m	Sulphides :	1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52562	Elevation:	1035 m	Sample Width: 40 cm	Oxides :	Unaltered	21	0.7	18	9	15	21
		164 / 45 W	True Width: 0.5-1 m	Host :	talc-sericite schist						
Comments :		•	related to shearing. Located at a	approximately 0+30	W, 1+25 S on the Twilight	grid.					
Sample No.	Location :		Type: Grab	Alteration :	sMS, sQZ	Au	Ag	Cu	Pb	Zn	As
	202011011	345 655 E	Strike Length Exp. : 2 m	Sulphides :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52563	Elevation:	1005 m	Sample Width: 1.5 m	Oxides :		1	0.1	35	19	72	14
72,00		185 / 55 W	True Width: 1.5 m		Quartz-pyrite-sericite so		0.1		• •	•-	, ,
	or remaction;	א ננ / נטו	TING WINTER TO THE	NOSE :	additz-pyrite-sericite st	-1113 L					

Comments: Altered shear zone hosted in limestone. Truncated by limestone/argillite fault contact.

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-8-

Property : Scud River Project (Twilight Grid Area)NTS : 104G/4E Date : 09/11/91

riopeity	scaa kiver riojec	se (imitigue di le	U ALEBANIS : 1046/46	pate: 0	7/ (11791						
Sample No.	Location :	6345 595 N	Type : Grab	Alteration	:	CB, MS, QZ	Au	Ag	Cu	Pb	Zn	As
		345 385 E	Strike Length Exp. : 5 m	Sulphides	:	1-2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52564	Elevation:	840 m	Sample Width: 0.5 m	Oxides	:	LI	4	0.2	35	23	113	33
	Orientation:	: 208 / 40 W	True Width : 1-2 m	Host	:	Sericite-quartz-carbonate-	pyrite	schist				
Comments :	Exposed in Cut C	Creek.										
Sample No.	Location :	6345 460 N	Type : Grab	Alteration	:	Unknown	Au	Ag	Cu	Pb	Zn	As
		345 525 E	Strike Length Exp. : 25 m	Sulphides	:	1-2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52565	Elevation:	935 m	Sample Width: 15 cm	Oxides	:	HE, JA	15	0.9	29	11	64	14
	Orientation:	000 / 82 E	True Width : 15 cm	Host	:	Rusty-weathering argillite	•					
Comments :	One of many pyri	tic horizons in	rusty argillite. Pyrite is strati	form and fractu	re	controlled.						
Sample No.	Location :		Type: Float	Alteration	:	Unaltered?	Au	Ag	Cu	Pb	Zn	As
		345 868 E	Strike Length Exp. : m	Sulphides :	:	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52566	Elevation:	970 m	Sample Width : m	Oxides	:	MC	27	2.7	115	1	21	1
	Orientation:	/	True Width: m	Host :	:	Massive, mottled limestone	•					
Comments :	Taken at CL960,	0+75.										
				*1*****			•	•			_	
Sample No.	Location :		Type: Float	Alteration :		QZ	Au	Ag	Cu	Pb	Zn	As
5057	Clauseises.	345 890 E	Strike Length Exp.: m	Sulphides :		None observed	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52567	Elevation:	975 m	Sample Width: m		:	None visible	5	1.1	37	11	67	13
	Orientation:	•	True Width: m	Host :	:	Quartz vein						
	Fractured bull q											
Sample No.	Location :		Type : Float	Alteration :	:	СВ	Au	Ag	Cu	Pb	Zn	As
		345 912 E	Strike Length Exp. : m	Sulphides :	:	trCP, trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52568	Elevation:	975 m	Sample Width: m	Oxides :	:	JA	22	2.0	688	14	103	38
	Orientation:	/	True Width : m	Host :	:	Recrystallized, foliated l	imeston	e				
Comments:	Subrounded fragm	ents. Taken at	CL960, 1+25.									
Sample No.	Location:		Type: Float	Alteration :	:	СВ	Au	Ag	Cu	Pb	Zn	As
		345 932 E	Strike Length Exp. : m	Sulphides :	;	None observed	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
52569	Elevation:	960 m	Sample Width: m	Oxides :	:	HE	4	2.5	28	20	33	45
	Orientation:	/	True Width: m	Host :	:	Sheared, mylonitic limesto	ne					

Comments: Taken at CL960, 1+50.

Property : Scud River Project (Twilight Grid Area)NTS : 104G/4E Date : 09/11/91

Sample No. Location 345 565 E Strike Length Exp. 25 m Sulphides 1.70P (ppm)													
Second Elevation: 775 m Sample Width: 0.10 m Oxides : 1 CAMC, NE 2 1.8 4074 20 255 21	Sample No.	Location :	6346 320 N	Type: Grab		Alteration:	sCA, sD1(?)	Au	Ag	Cu	Pb	Zn	As
Orientation: 130 / 35 SW True Width: 0.15 m Host : Limestone with chert interbeds Survival			3 45 565 E	Strike Length Exp.	: 25 m	Sulphides :	trCP	(ppb)	(bbm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments Malachitic stained pools scattered throughout a shear zone. Distinct foliation within the zone strikes 060 degrees and dips 42 degrees to the south but is highly convoluted in places. Actual width of the shear zone is approximately one metre.	52601	Elevation:	775 m	Sample Width :	1.00 m	Oxides :	1%MC, HE	2	1.8	4074	20	255	21
Sample No. Location : 6346-333 N Type : Select		Orientation:	: 130 / 35 :	SW True Width: 0.	15 m	Host :	Limestone with chert i	nterbeds					
Sample No. Location: 6346 330 N Type: Select Alteration: sCA, aDI(?) Au Ag Cu Pb Zn As Select Strike Length Exp.: 0.15 m Sulphides: 1XCP (ppb) (ppm) (Comments:	Malachite staine	ed pods scatte	ered throughout a shear zo	ne. Distinct	foliation with	in the zone strikes 060 d	legrees and					
Strike Length Exp. : 0.15 m Sulphides : 1XCP Cpb)		dips 42 degrees	to the south	but is highly convoluted	in places. A	ctual width of (the shear zone is approxi	mately one	metre.				
Strike Length Exp. : 0.15 m Sulphides : 1XCP Cpb)	Sample No.	Location :	6346 330 N	Type : Select		Aiteration •	efa eni(2)	Δ11	Åα	Сu	Ph	7n	Ac
Sample No. Location: 775 m Sample Width: 15 cm Oxides : GE, ME, MC 23 6.2 12636 18 167 1	oumpto no.	200427011		• •	• 0.15 m		•		-			-	
Orientation: 130 / 50 SW	52602	Flevation		- ,		•							
Comments Pod of copper-rich sulphides within the shear zone. Pods occur sporadically throughout the fault and are found along the fractures. Rock sample taken 15 metres along strike from rock sample 52601. Sample No. Location 6346 274 N Type Grab Alteration ScA, m to sDI(?) Au Ag Cu Pb Zn As	22-14			•					0.1	,2000			•
## The fractures. Rock sample taken 15 metres along strike from rock sample 52601. Sample No. Location : 6346 274 N Type : Grab Alteration : SCA, m to sDI(?) Au Ag Cu Pb Zn As As Strike Length Exp. : 40 m Sulphides : trCP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	Comments		•										
345 548 E Strike Length Exp. : 40 m Sulphides : trCP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52603 Elevation: 780 m Sample Width : 1.00 m Oxides : HE, MC, MM 3 3.0 1870 1 719 1 1 719	Commente 1	• •	•		•	•	ground the route and are r	ound diving					
345 548 E Strike Length Exp. : 40 m Sulphides : trCP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52603 Elevation: 780 m Sample Width : 1.00 m Oxides : HE, MC, MM 3 3.0 1870 1 719 1 1 719	•••••												
Sample No. Location 6346 330 N Type Grab Sample Width 1.0 m Oxides HE, MC, MN 3 3.0 1870 1 719 1 1 1 1 1 1 1 1 1	Sample No.	Location:		• • • • • • • • • • • • • • • • • • • •			sCA, m to sDI(?)	Au	Ag	Cu	РЬ	Zn	As
Orientation: 040 / 85 SE				- ·		•	trCP						
Comments : Foliated shear zone	52603	Elevation:	780 m	Sample Width :	1.00 m	Oxides :	HE, MC, MN	3	3.0	1870	1	719	1
Sample No. Location : 6346 274 N Type : Grab Alteration : sCA, mTA(?), wEP, DI(?) Au Ag Cu Pb Zn As			-										
Sample No. Location : 6346 274 N Type : Grab Alteration : sCA, mTA(?), wEP, D1(?) Au Ag Cu Pb Zn As	Comments :	Foliated shear z	one. Malachi	te staining occurs with he	ematite along	fracture surfac	ces. Foliation is convol	uted in pla	ces.				
Sample No. Location : 6346 274 N Type : Grab Alteration : SCA, mTA(?), wEP, D1(?) Au Ag Cu Pb Zn As 345 502 E Strike Length Exp. : 10 m Sulphides : 1%CP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52604 Elevation: 740 m Sample Width : 1.2 m Oxides : HE, 1%MC 18 3.1 4708 13 76 17 76 76 77 76 77 77			• •										
Elevation: 740 m Sample Width: 1.2 m Oxides : HE, 12MC 18 3.1 4708 13 76 17						Alteration:	sCA, mTA(?), wEP, DI(?) Au	Ag	Cu	Pb	Zn	As
Orientation: 050 / 85 SE True Width: 0.8 m Host : Limestone Comments: Shear zone approximately 4 metres wide. Well foliated but foliation has been folded in places. Chalcopyrite occurs finely disseminated along foliation planes or as small blebs in calcite veins. Same shear as samples 52601,2. DROP SHOWING. Sample No. Location: 6346 330 N Type: Grab Alteration: wCA, QZ veining, DI(?) Au Ag Cu Pb Zn As 345 446 E Strike Length Exp.: 1.5 m Sulphides: <1%CP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52605 Elevation: 680 m Sample Width: 0.4 m Oxides: MC 8 2.2 1074 11 49 17 Orientation: 005 / 45 E True Width: 0.3 m Host : Limestone Comments: Centimetre scale quartz veinlets containing chalcopyrite, found within an one metre wide shear zone. The shear zone is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1	·		345 502 E	Strike Length Exp. :	: 10 m	Sulphides :	1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments: Shear zone approximately 4 metres wide. Well foliated but foliation has been folded in places. Chalcopyrite occurs finely disseminated along foliation planes or as small blebs in calcite veins. Same shear as samples 52601,2. DROP SHOWING. Sample No. Location: 6346 330 N Type: Grab Alteration: wCA, QZ veining, DI(?) Au Ag Cu Pb Zn As 345 446 E Strike Length Exp.: 1.5 m Sulphides: <1%CP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52605 Elevation: 680 m Sample Width: 0.4 m Oxides: MC 8 2.2 1074 11 49 17 Orientation: 005 / 45 E True Width: 0.3 m Host : Limestone Comments: Centimetre scale quartz veinlets containing chalcopyrite, found within an one metre wide shear zone. The shear zone is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm	52604	Elevation:	740 m	Sample Width :	1.2 m	Oxides :	HE, 1%MC	18	3.1	4708	13	76	17
finely disseminated along foliation planes or as small blebs in calcite veins. Same shear as samples 52601,2. DROP SHOWING. Sample No. Location: 6346 330 N Type: Grab Alteration: wCA, QZ veining, DI(?) Au Ag Cu Pb Zn As 345 446 E Strike Length Exp.: 1.5 m Sulphides: <1%CP (ppb) (ppm) (p		Orientation:	050 / 85 s	E True Width: 0.	.8 m	Host :	Limestone						
Sample No. Location: 6346 330 N Type: Grab	Comments:	Shear zone appro	ximately 4 me	tres wide. Well foliated	but foliatio	n has been folde	ed in places. Chalcopyri	te occurs					
Sample No. Location: 6346 330 N Type: Grab Alteration: wCA, QZ veining, DI(?) Au Ag Cu Pb Zn As 345 446 E Strike Length Exp.: 1.5 m Sulphides: <1%CP (ppb) (ppm) (finely dissemina	ted along fol	iation planes or as small	blebs in cal	cite veins. Sam	ne shear as samples 52601	,2. DROP S	HOWING.				
345 446 E Strike Length Exp.: 1.5 m Sulphides : <1%CP (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)			/7// 770 ··	**************************************		.1		•		.	nt.		•-
52605 Elevation: 680 m Sample Width: 0.4 m Oxides : MC 8 2.2 1074 11 49 17 Orientation: 005 / 45 E True Width: 0.3 m Host : Limestone Comments: Centimetre scale quartz veinlets containing chalcopyrite, found within an one metre wide shear zone. The shear zone is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1	Sample No.	Location :		• •	4.5				-				
Orientation: 005 / 45 E True Width: 0.3 m Host : Limestone Comments: Centimetre scale quartz veinlets containing chalcopyrite, found within an one metre wide shear zone. The shear zone is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1				•		•		• •					
Comments: Centimetre scale quartz veinlets containing chalcopyrite, found within an one metre wide shear zone. The shear zone is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1	52605			•				8	2.2	1074	11	49	17
is exposed within a small stream. Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1													
Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1	Comments :		•	- · · · ·	te, found wit	hin an one metre	wide shear zone. The s	hear zone					
Sample No. Location: 6346 506 N Type: Float Alteration: sSI Au Ag Cu Pb Zn As 345 450 E Strike Length Exp.: m Sulphides: trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides: GE, JA 3 1.0 175 6 28 1		•											
345 450 E Strike Length Exp.: m Sulphides : trPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52606 Elevation: 650 m Sample Width: m Oxides : GE, JA 3 1.0 175 6 28 1			_			Alteration:	sSI	Au	Ag	Cu	Pb	Zn	As
52606 Elevation: 650 m Sample Width: m Oxides : GE, JA 3 1.0 175 6 28 1	•			* •	m				_		(ppm)		(ppm)
	52606	Elevation:	650 m	•		•	GE, JA						
				_ `				-					

Comments: Angular float measuring 15cm*10cm*5cm, found at approximately 5+00W, 2+30N on the Twilight grid. Vein has a porous texture where the sulfides have been leached out.

............

EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Page-10-

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E Date: 09/11/91

Sample No. Location : 6346 180 N												
Second Elevation: 975	Sample No.	Location:	6346 180 N	Type: Chip	Alteration:	sCA, sTA, wSI	Au	Ag	Cu	₽b	Zn	As
Orientation: 054 / 34 SE			345 850 E	Strike Length Exp. : 1.30 m	Sulphides :	<1%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments : Chip sample from the bottom of trench 1801-03. Pyrite occurs as finely disseminated cubes throughout the schist while chalcopyrite is found within calcite filled fractures. ALDER SHOWING. Sample No.	52607	Elevation:	975 m	Sample Width: 1.10 m	Oxides :	GE, HE, MN	7	3.5	1075	54	591	17
Comments		Orientation:	: 054 / 34 SE	True Width: 1.03 m	Host :	Calcareous talc schist						
Sample No. Location: 6346 180 N Type: Grab	Comments:	Chip sample from	n the bottom of tr	ench TR91-03. Pyrite occurs as fir	nely disseminated	d cubes throughout the schi	st while	e				
Sample No. Location 6346 180 N Type Grab Alteration Sall Sall Alteration Sall Altera		chalcopyrite is	found within cald	ite filled fractures. ALDER SHOWIN	IG.							
Strike Length Exp. : 0.15 m												
Sample No. Location: 975 m Sample Width: 15 cm Dxides : GE, HE, NN 65 3.3 398 179 909 97	Sample No.	Location:	6346 180 N	Type: Grab	Alteration:	s\$I	Au	Ag	Cu	Pb	Zn	As
Orientation: 164 / 47 E True Width: 15 cm			345 850 E	Strike Length Exp. : 0.15 m	Sulphides :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments Limonitic layer Found in trench TR91-03 ALDER SHOWING	52608	Elevation:	975 m	Sample Width: 15 cm	Oxides :	GE, HE, MN	65	3.3	398	179	909	97
20% of the layer. Found in trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip		Orientation:	: 164 / 47 E	True Width: 15 cm	Host :	Calcareous talc schist						
Sample No. Location: 6346 180 N Type: Chip	Comments:	Limonitic layer	within schist. P	inches out to the west. Has a stro	ong boxwork texti	ure and oxides make up more	than					
345 850 E Strike Length Exp. : 0.4 m Sulphides : 3%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52609 Elevation: 975 m Sample Width: 30 cm Oxides : MN 17 2.1 384 93 1786 44		20% of the layer	r. Found in trend	h TR91-03. ALDER SHOWING.								
345 850 E Strike Length Exp. : 0.4 m Sulphides : 3%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52609 Elevation: 975 m Sample Width: 30 cm Oxides : MN 17 2.1 384 93 1786 44	Sample No.	Location:	6346 180 N	Type: Chip	Alteration :	sCA. WSI	Au	Ag	Cu	Рb	Zn	As
Sample No. Location: 975 m Sample Width: 30 cm Oxides : MN 17 2.1 384 93 1786 44	·		345 850 E	Strike Length Exp. : 0.4 m	Sulphides :	3%PY	(ppb)	(mqq)	(mpq)	(ppm)	(ppm)	(ppm)
Comments: Siliceous and pyritic zone surrounding limonitic pod in trench TR91-03. Pyrite is either disseminated throughout or occurs as stringers. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip Alteration: sCA, sTA, wSI Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.40 m Sulphides: ZXPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52610 Elevation: 975 m Sample Width: 1.15 m Oxides: GE, HE, MN 2 2 2.1 296 296 598 11 Orientation: 065 / 57 SE True Width: 1.00 m Host: Calcareous talc(?) schist Comments: Upper part of the calcareous schist in trench TR91-03. Pyrite is disseminated throughout. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip Alteration: sCY, mSI, wCA Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: ZXPY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9	52609	Elevation:	975 m	Sample Width: 30 cm	Oxides :	MN			• • •	93	1786	44
Sample No. Location : 6346 180 N Type : Chip Alteration : sCA, sTA, wSI Au Ag Cu Pb Zn As As As As As As As A		Orientation:	: 054 / 34 SE	True Width: 25 cm	Host :	Calcareous talc schist.						
Sample No. Location : 6346 180 N Type : Chip Alteration : sCA, sTA, wSI Au Ag Cu Pb Zn As As As As As As As A	Comments:	Siliceous and py	ritic zone surrou	nding limonitic pod in trench TR91-	03. Pyrite is	either disseminated through	out or					
Sample No. Location: 6346 180 N Type: Chip Alteration: sCA, sTA, wSI Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.40 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52610 Elevation: 975 m Sample Width: 1.15 m Oxides: GE, HE, MN 2 2.1 296 296 598 11 Orientation: 065 / 57 SE True Width: 1.00 m Host: Calcareous talc(?) schist Comments: Upper part of the calcareous schist in trench TR91-03. Pyrite is disseminated throughout. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip Alteration: sCY, mSI, wCA Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm)		• •		·	•							
345 850 E Strike Length Exp.: 1.40 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52610 Elevation: 975 m Sample Width: 1.15 m Oxides: GE, HE, MN 2 2.1 296 296 598 11 Orientation: 065 / 57 SE True Width: 1.00 m Host: Calcareous talc(?) schist Comments: Upper part of the calcareous schist in trench TR91-03. Pyrite is disseminated throughout. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip Alteration: sCY, mSI, wCA Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9					Alteration :	sca. sta. wsi	Au	Aq	Cu	Pb	Žn	As
Sample No. Location				• • • • • • • • • • • • • • • • • • • •		•		_				
Orientation: 065 / 57 SE True Width: 1.00 m	52610	Elevation:	- · · · - · · -	- '	•		.,,		• •	• •	• •	• •
Comments: Upper part of the calcareous schist in trench TR91-03. Pyrite is disseminated throughout. ALDER SHOWING. Sample No. Location: 6346 180 N Type: Chip Alteration: sCY, mSI, wCA Au Ag Cu Pb Zn As 345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9				•		, ,						
345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9	Comments:		•	st in trench TR91-03. Pyrite is di		• •						
345 850 E Strike Length Exp.: 1.6 m Sulphides: trPY, trSP, trGL (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52611 Elevation: 975 m Sample Width: 30 cm Oxides: NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host: Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9				**********								
52611 Elevation: 975 m Sample Width: 30 cm Oxides : NONE OBSERVED 3 3.7 646 1505 1328 15 Orientation: 090 / 30 S True Width: 20 cm Host : Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location:	Sample No.	Location:	6346 180 N	Type: Chip	Alteration:	sCY, mSI, wCA	Au	Ag	Cu	Pb	Zn	As
Orientation: 090 / 30 S True Width: 20 cm Host : Calcareous talc(?) schist and limestone. Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9			345 850 E	Strike Length Exp. : 1.6 m	Sulphides :	trPY, trSP, trGL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments: Fault gouge zone between the limestone and the calcareous schist at the top of trench TR91-03. ALDER SHOWING. Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9	52611	Elevation:	975 m	Sample Width: 30 cm	Oxides :	NONE OBSERVED	3	3.7	646	1505	1328	15
Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9		Orientation:	090 / 30 S	True Width: 20 cm	Host :	Calcareous talc(?) schist	and lim	estone.				
Sample No. Location: 6346 532 N Type: Grab Alteration: CA veining Au Ag Cu Pb Zn As 345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (pp	Comments :	Fault gouge zone	between the lime	stone and the calcareous schist at	the top of trend	h TR91-03. ALDER SHOWING.						
345 352 E Strike Length Exp.: 5.0 m Sulphides: 2%PY (ppb) (ppm) (ppm) (ppm) (ppm) 52612 Elevation: 565 m Sample Width: 30 cm Oxides: GE, HE 2 1.0 395 8 48 9				•••••								
52612 Elevation: 565 m Sample Width: 30 cm Oxides : GE, HE 2 1.0 395 8 48 9	Sample No.	Location :	6346 532 N	Type: Grab	Alteration:	CA veining	Au	Ag	Cu	Pb	Zn	As
•			345 352 E	Strike Length Exp. : 5.0 m	Sulphides :	2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Orientation: 094 / 90	52612	Elevation:	565 m	Sample Width: 30 cm	Oxides :	GE, HE	2	1.0	39 5	8	48	9
		Orientation:	094 / 90	True Width: 20 cm	Host :	Rusty and calcareous argil	lite.					

Comments: Stockwork of CA veining within an argilleous host. Argillaceous unit contains boulders of argillic limestone. Pyrite occurs as blebs in the veins or as stringers within the argillite. Calcite veinlets range in size from <1 cm to 5 cm.

Property : Scud River Project (Twilight Grid Area)NTS : 104G/4E Date : 09/11/91

within the foliation.

Location:	6346 274 N	Type : Chip	Alteration:	scA, sDI(?), mEP, wSI	Au	Ag	Cu	Pb	Zn	As
	345 502 E	Strike Length Exp. : 10 m	Sulphides :	1%CP, trCC	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Elevation:	740 m	Sample Width: 1.30 m	Oxides :	HE, MC, MN	26	2.7	5051	1	99	1
Orientation	: 039 / 85 NW	True Width: 0.85 m	Host :	Limestone						
Bottom chip samp	ole of the 'Drop'	showing. Orientation given is that	of the foliation	on. Sulphides are either d	issemina	ited				
=		,								
		Type: Chip	Alteration :	SCA, SDI(?), mEP, wCL+SI	Au	Ag	Cu	Pb	Zn	As
	345 502 E	Strike Length Exp. : 10 m	Sulphides :	1%CP, trCC	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Elevation:	740 m	Sample Width: 2.15 m	Oxides :		18	2.8	3242	1	140	1
Orientation:	: 026 / 74 SE	True Width: 1.80 m	Host :	Limestone						
Middle chip samp	ole of the 'Drop'	showing. Sulphides are disseminate	d throughout alo	ong the foliation. DROP SH	OWING.					
	· 									
Location:	6346 274 N	Type: Chip	Alteration :	scA, scB, mEP, wSI, mDI?	Au	Ag	Cu	Pb	Zn	As
	3 45 502 E	Strike Length Exp. : 10.0 m	Sulphides :	trcc, <1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Elevation:	740 m	Sample Width: 1.9 m	Oxides :	HE, MC, MN	23	2.5	2413	1	866	1
Orientation:	045 / 57 SE	True Width: 1.5 m	Host :	Limestone						
Upper chip sampl	e of the 'Drop' s	howing. Sulphides disseminated along	g the foliation.	. DROP SHOWING.						
· · · · · · · · · · · · · · · · · · ·										
Location:	6346 270 N	Type: Grab	Alteration:	sCA, CA veining, wSI	Au	Ag	Cu	Pb	Zn	As
	345 486 E	Strike Length Exp. : 1.0 m	Sulphides :	<1%PY, 1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Elevation:	730 m	Sample Width: 70 cm	Oxides :	HE, MC	8	4.2	3152	11	73	18
Orientation:	? / ?	True Width: m	Host :	Limestone						
•	•	, ,								
the siliceous ho	st rock and withi	n the millimetre to centimetre scal	e veinlets. Veir	nlets are oriented 120/82NE	and 020	/70SE.				
Location :	6346 268 N	Type : Chip	Alteration:	SCA, SCB, WCL, WEP, WSI	Au	Ag	Cu	Pb	Zn	As
	345 492 E	Strike Length Exp. : 2.00 m	Sulphides :	<1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Elevation:	735 m	Sample Width: 1.35 m	Oxides :	HE, MC	14	2.3	2225	13	37	10
Orientation:	049 / 40 SE	True Width: 1.25 m	Host :	Limestone						
Strongly foliate	d shear zone cont	aining disseminated chalcopyrite alo	ong foliation pl	lanes. Possíble continuatio	on of					
•	-									
Location :		Type : Grab	Alteration:	HS1	Au	Ag	Cu	Pb	Zn	As
		sanita tomak suma 20 m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	344 330 E	Strike Length Exp. : 20 m	sarpines .	SILL	/PPD/	(hban)	(PPm)	(t-1-11/2)	(popular	
Elevation:	344 330 E 385 m	Sample Width: 20 cm	Oxides :	GE	19	0.9	70	21	106	49
_	Elevation: Orientation: Bottom chip samp throughout or or Location: Elevation: Orientation: Middle chip samp Location: Upper chip sampl Location: Upper chip sampl Location: Elevation: Orientation: Weakly siliceous the siliceous ho Location: Elevation: Orientation: Strongly foliate the 'Drop' showi	Elevation: 740 m Orientation: 039 / 85 NW Bottom chip sample of the 'Drop' throughout or occur as small bleb Location: 6346 274 N 345 502 E Elevation: 740 m Orientation: 026 / 74 SE Middle chip sample of the 'Drop' Location: 6346 274 N 345 502 E Elevation: 740 m Orientation: 045 / 57 SE Upper chip sample of the 'Drop' s Location: 6346 270 N 345 486 E Elevation: 730 m Orientation: ? / ? Weakly siliceous outcrop with num the siliceous host rock and withi Location: 6346 268 N 345 492 E Elevation: 735 m Orientation: 049 / 40 SE Strongly foliated shear zone contithe 'Drop' showing.	345 502 E Strike Length Exp.: 10 m Elevation: 740 m Sample Width: 1.30 m Orientation: 039 / 85 NW True Width: 0.85 m Bottom chip sample of the 'Drop' showing. Orientation given is that throughout or occur as small blebs or pods. DROP SHOWING. Location: 6346 274 N Type: Chip	345 502 E Strike Length Exp.: 10 m Sulphides: Elevation: 740 m Sample Width: 1.30 m Oxides: Orientation: 039 / 85 NW True Width: 0.85 m Host: Bottom chip sample of the 'Drop' showing. Orientation given is that of the foliatithroughout or occur as small blebs or pods. DROP SHOWING. Location: 6346 274 N Type: Chip Alteration: 345 502 E Strike Length Exp.: 10 m Sulphides: Elevation: 740 m Sample Width: 2.15 m Oxides: Orientation: 026 / 74 SE True Width: 1.80 m Host: Middle chip sample of the 'Drop' showing. Sulphides are disseminated throughout al Location: 6346 274 N Type: Chip Alteration: 345 502 E Strike Length Exp.: 10.0 m Sulphides: Elevation: 740 m Sample Width: 1.9 m Oxides: Orientation: 045 / 57 SE True Width: 1.5 m Host: Upper chip sample of the 'Drop' showing. Sulphides disseminated along the foliation Location: 6346 270 N Type: Grab Alteration: 345 486 E Strike Length Exp.: 1.0 m Sulphides: Elevation: 730 m Sample Width: 70 cm Oxides: Orientation: 047 / 7 True Width: m Host: Elevation: 730 m Sample Width: 70 cm Oxides: Orientation: 7 / 7 True Width: m Host: Elevation: 735 m Sample Width: True Width: m Host: Location: 6346 268 N Type: Chip Alteration: 345 492 E Strike Length Exp.: 2.00 m Sulphides: Elevation: 735 m Sample Width: 1.35 m Oxides: Orientation: 049 / 40 SE True Width: 1.25 m Host: Orientation: 049 / 40 SE True Width: 1.25 m Host: Orientation: 049 / 40 SE True Width: 1.25 m Host:	345 502 E Strike Length Exp.: 10 m Sulphides: 1%CP, trCC Elevation: 740 m Sample Width: 1.30 m Oxides: HE, MC, MN Orientation: 039 / 85 NW True Width: 0.85 m Host: Limestone Bottom chip sample of the 'Drop' showing. Orientation given is that of the foliation. Sulphides are either dithroughout or occur as small blebs or pods. DROP SHOWING. Location: 6346 274 N Type: Chip Alteration: SCA, sDI(?), mEP, wCL+SI 345 502 E Strike Length Exp.: 10 m Sulphides: 1%CP, trCC Elevation: 740 m Sample Width: 2.15 m Oxides: HE, MC, MN Orientation: 026 / 74 SE True Width: 1.80 m Host: Limestone Middle chip sample of the 'Drop' showing. Sulphides are disseminated throughout along the foliation. DROP SM Location: 6346 274 N Type: Chip Alteration: SCA, SCB, mEP, wSI, mDI? 345 502 E Strike Length Exp.: 10.0 m Sulphides: trCC, <1%CP Elevation: 740 m Sample Width: 1.9 m Oxides: HE, MC, MN Orientation: 045 / 57 SE True Width: 1.5 m Host: Limestone Upper chip sample of the 'Drop' showing. Sulphides disseminated along the foliation. DROP SHOWING. Location: 6346 270 N Type: Grab Alteration: SCA, CA veining, wSI 345 486 E Strike Length Exp.: 1.0 m Sulphides: <1%PY, 1%CP Elevation: 730 m Sample Width: 70 cm Oxides: HE, MC Orientation: 7 / 7 True Width: m Host: Limestone Weakly siliceous outcrop with numerous calcite veinlets. Chalcopyrite found either disseminated or as small bithe siliceous host rock and within the millimetre to centimetre scale veinlets. Veinlets are oriented 120/82NE Location: 6346 268 N Type: Chip Alteration: SCA, SCB, wCL, wEP, wSI 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1%CP Elevation: 735 m Sample Width: 1.35 m Oxides: HE, MC Orientation: 049 / 40 SE True Width: 1.25 m Host: Limestone Strongly foliated shear zone containing disseminated chalcopyrite along foliation planes. Possible continuation the 'Drop' showing.	345 502 E Strike Length Exp.: 10 m Sulphides: 1XCP, trCC (ppb) Elevation: 740 m Sample Width: 1.30 m Oxides: HE, MC, MN 26 Orientation: 039 / 85 NW True Width: 0.85 m Host: Limestone Bottom chip sample of the 'Drop' showing. Orientation given is that of the foliation. Sulphides are either dissemina throughout or occur as small blebs or pods. DROP SHOWING. Location: 6346 274 M Type: Chip Alteration: SCA, sD1(?), mEP, wCL+SI Au 345 502 E Strike Length Exp.: 10 m Sulphides: 1XCP, trCC (ppb) Elevation: 740 m Sample Width: 2.15 m Oxides: HE, MC, MN 18 Orientation: 026 / 74 SE True Width: 1.80 m Host: Limestone Middle chip sample of the 'Drop' showing. Sulphides are disseminated throughout along the foliation. DROP SHOWING. Location: 6346 274 N Type: Chip Alteration: SCA, sCB, mEP, wSI, mD1? Au 345 502 E Strike Length Exp.: 10.0 m Sulphides: trCC, <1XCP (ppb) Elevation: 740 m Sample Width: 1.9 m Oxides: HE, MC, MN 23 Orientation: 045 / 57 SE True Width: 1.5 m Host: Limestone Upper chip sample of the 'Drop' showing. Sulphides disseminated along the foliation. DROP SHOWING. Location: 6346 270 N Type: Grab Alteration: SCA, CA veining, wSI Au 345 486 E Strike Length Exp.: 1.0 m Sulphides: <1XCP, 1XCP (ppb) Elevation: 730 m Sample Width: 70 cm Oxides: HE, MC 8 Orientation: 7 / ? True Width: m Host: Limestone Weakly siliceous outcrop with numerous calcite veinlets. Chalcopyrite found either disseminated or as small blebs with the siliceous host rock and within the millimetre to centimetre scale veinlets. Veinlets are oriented 120/82NE and 020 Location: 6346 268 N Type: Chip Alteration: SCA, SCB, wCL, wEP, wSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1XCP, MCC, WEP, wSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1XCP, WCL, WEP, wSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1XCP, MCC, WCL, WEP, WSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1XCP, WCL, WEP, WSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides: <1XCP, WCL, WEP, WSI Au 345 492 E Strike Length Exp.: 2.00 m Sulphides:	345 502 E Strike Length Exp.: 10 m Sulphides: 1%CP, trCC (ppb) (ppm) Elevation: 740 m Sample Width: 1.30 m Oxides: HE, MC, MM 26 2.7 Orientation: 039 / 85 MW True Width: 0.85 m Not: Limestone Botton chip sample of the 'Drop' showing. Orientation given is that of the foliation. Sulphides are either disseminated throughout or occur as small blebs or pods. DROP SMOWING. Location: 6346 274 N Type: Chip Alteration: SCA, SDI(7), mEP, MCL+SI Au Ag 345 502 E Strike Length Exp.: 10 m Sulphides: 1%CP, trCC (ppb) (ppm) Elevation: 740 m Sample Width: 2.15 m Oxides: HE, MC, MN 18 2.8 Orientation: 026 / 74 SE True Width: 1.80 m Host: Limestone Middle chip sample of the 'Drop' showing. Sulphides are disseminated throughout along the foliation. DROP SHOWING. Location: 6346 274 N Type: Chip Alteration: SCA, SCB, mEP, wSI, mDI? Au Ag 35 502 E Strike Length Exp.: 10.0 m Sulphides: TrCC, *TRCP (ppb) (ppm) Elevation: 740 m Sample Width: 1.9 m Oxides: HE, MC, MN 23 2.5 Orientation: 045 / 57 SE True Width: 1.5 m Host: Limestone Upper chip sample of the 'Drop' showing. Sulphides disseminated along the foliation. DROP SHOWING. Location: 6346 270 N Type: Grab Alteration: SCA, CA veining, MSI Au Ag 345 886 E Strike Length Exp.: 1.0 m Sulphides: *TXPY, TXCP (ppb) (ppm) Elevation: 730 m Sample Width: 70 cm Oxides: HE, MC 8 4.2 Orientation: 7 / 7 True Width: m Nost: Limestone Weakly siliceous outcrop with numerous calcite veinlets. Chalcopyrite found either disseminated or as small blebs within the millimetre to centimetre scale veinlets. Veinlets are oriented 120/02ME and 020/70SE. Location: 6346 268 N Type: Chip Alteration: SCA, SCB, MCL, MCP, WSI Au Ag 345 492 E Strike Length Exp.: 2.00 m Sulphides: *TXCP (ppb) (ppm) Elevation: 735 m Sample Width: 1.35 m Oxides: HE, MC 14 2.3 Orientation: 049 / 40 SE True Width: 1.25 m Host: Limestone Strongly foliated shear zone containing disseminated chalcopyrite along foliation planes. Possible continuation of the 'Drop' showing.	345 502 E Strike Length Exp. : 10 m Sulphides : 1XCP, trCC (ppb) (ppm) (ppm)	Strike Length Exp. : 10 m	Section Sect

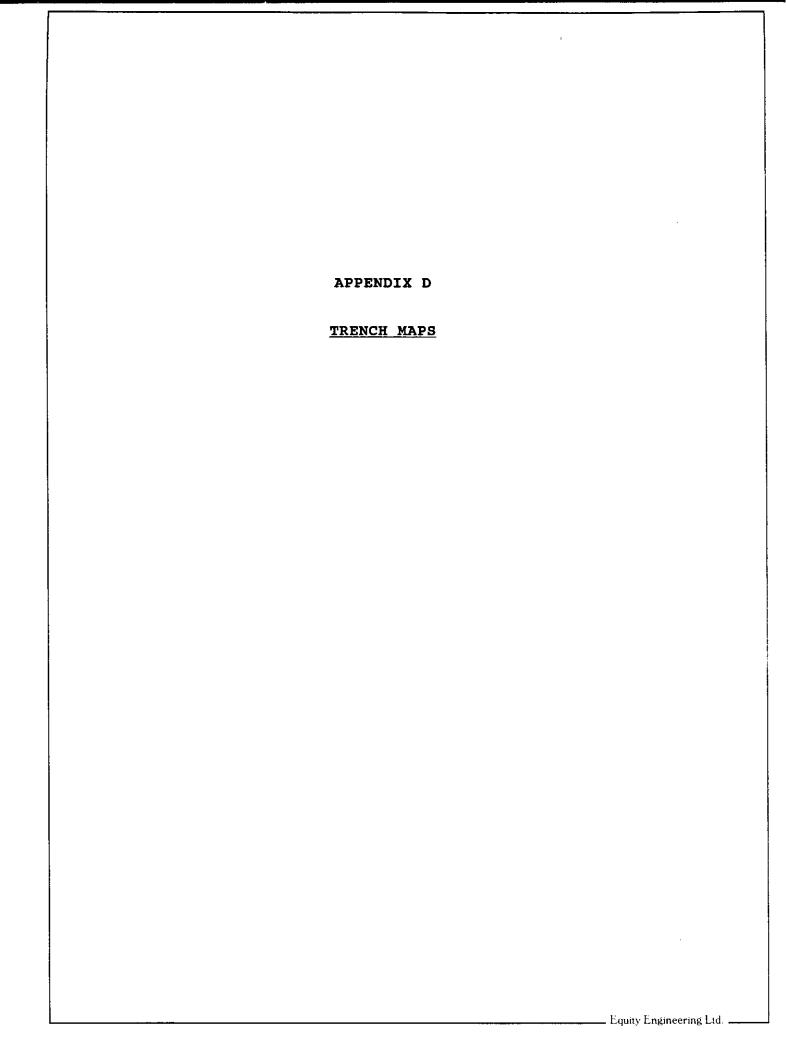
FOULTY ENGINEERING LTD.

ROCK SAMPLE DESCRIPTIONS

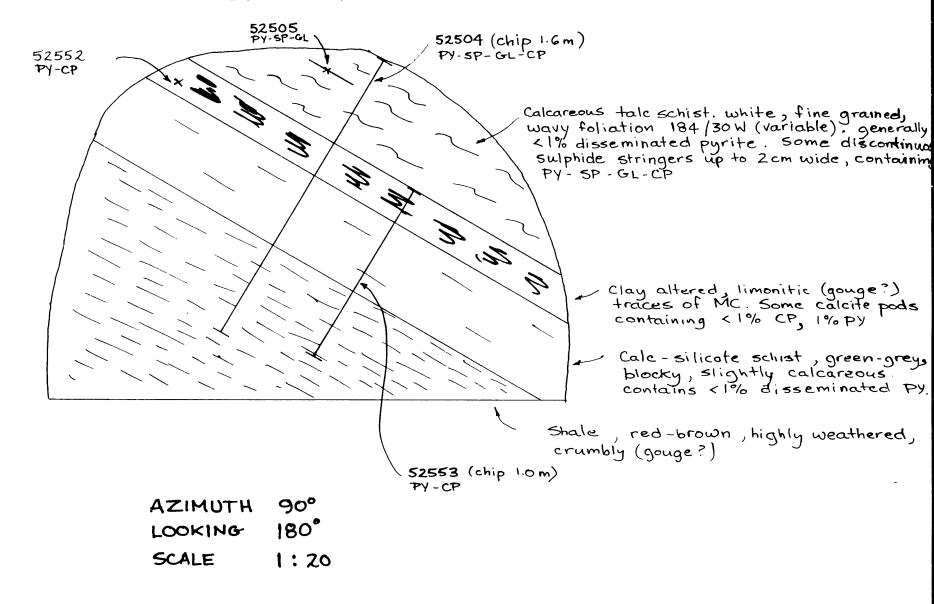
Page-12-

Property: Scud River Project (Twilight Grid Area)NTS: 104G/4E

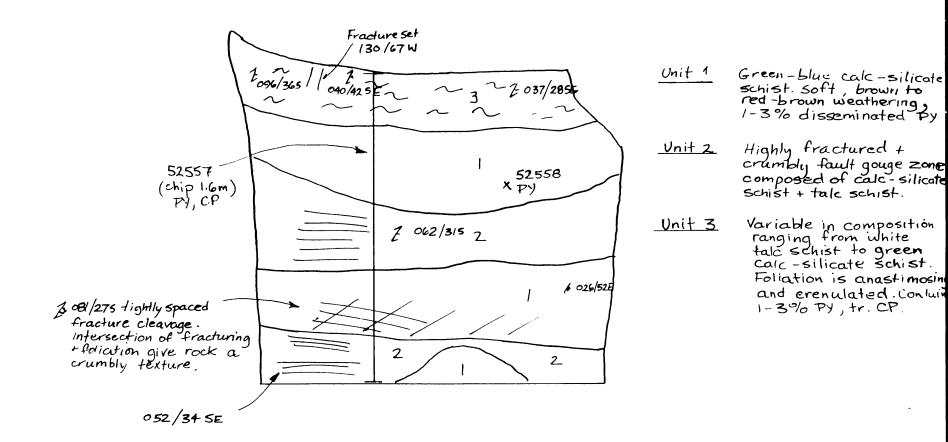
Date: 09/11/91


Sample No. Location: 6346 336 N Type: Float Alteration: CA veinlets, wCB & \$1 Au Ag Cu Pb Zn As 345 446 F

5%PY, 1%CP Strike Length Exp. : --- m Sulphides : (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) 52619 Elevation: 680 m Sample Width : Oxides : trHE & MC 635 19.9 5411 1923 2794 184


Orientation: -- / --True Width : Host : Limestone.

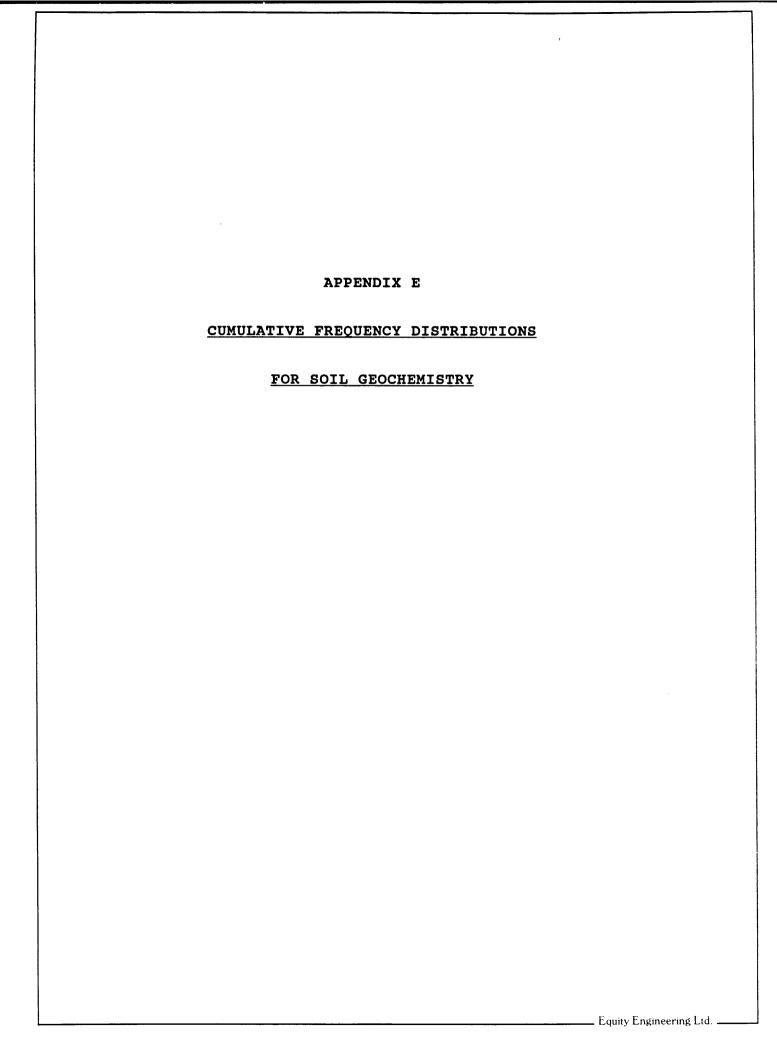
Comments: Gossanous float within a creek gulley at approxiamtely 5+00W, 0+58N.

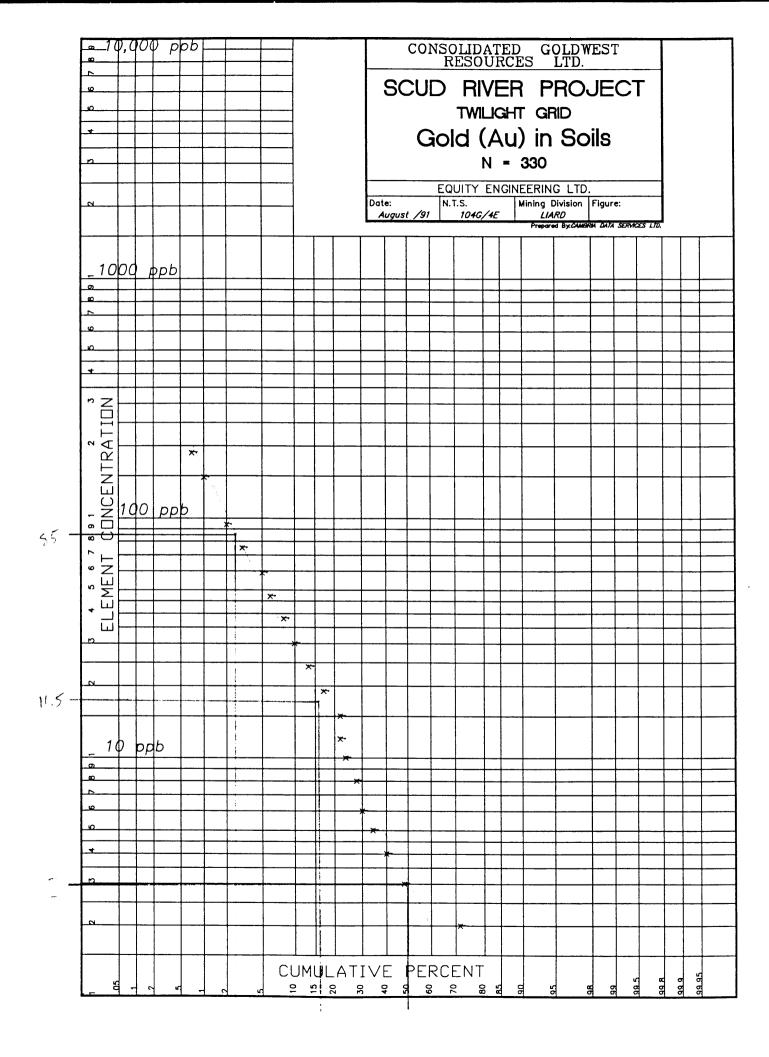


ALDER SHOWING - TWILIGHT GRID TRENCH TR-91-01 X - SECTION

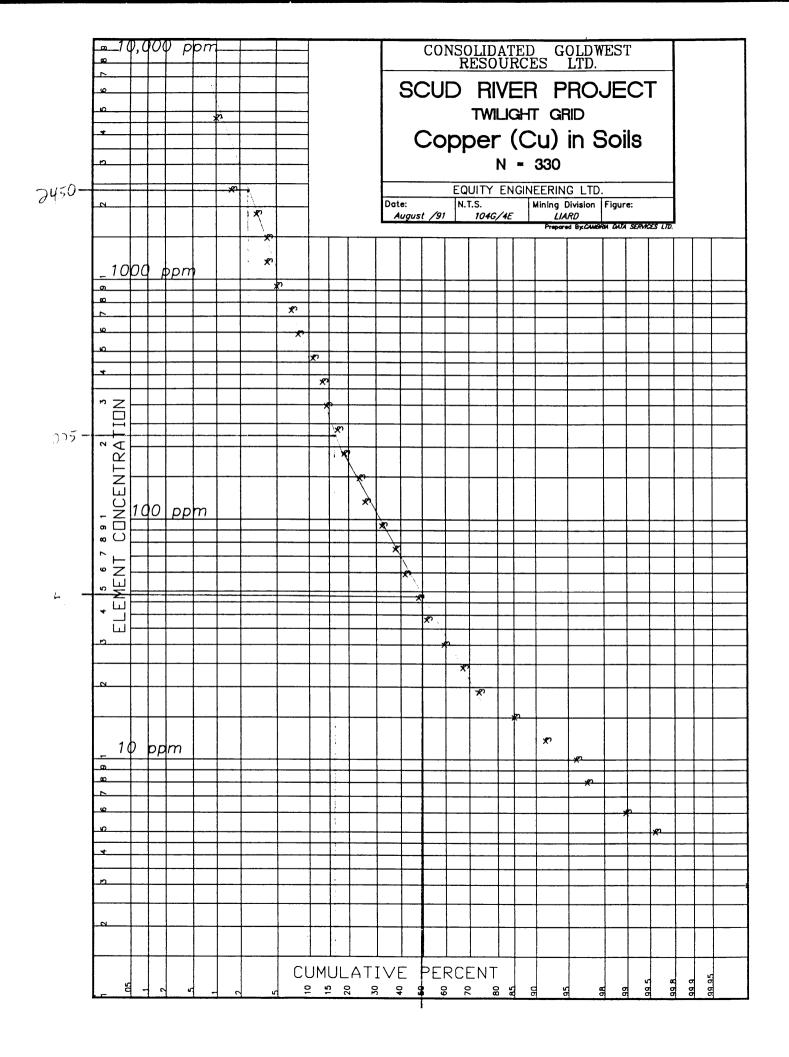
ALDER SHOWING - TWILIGHT GRID TRENCH TR-91-02 X-SECTION

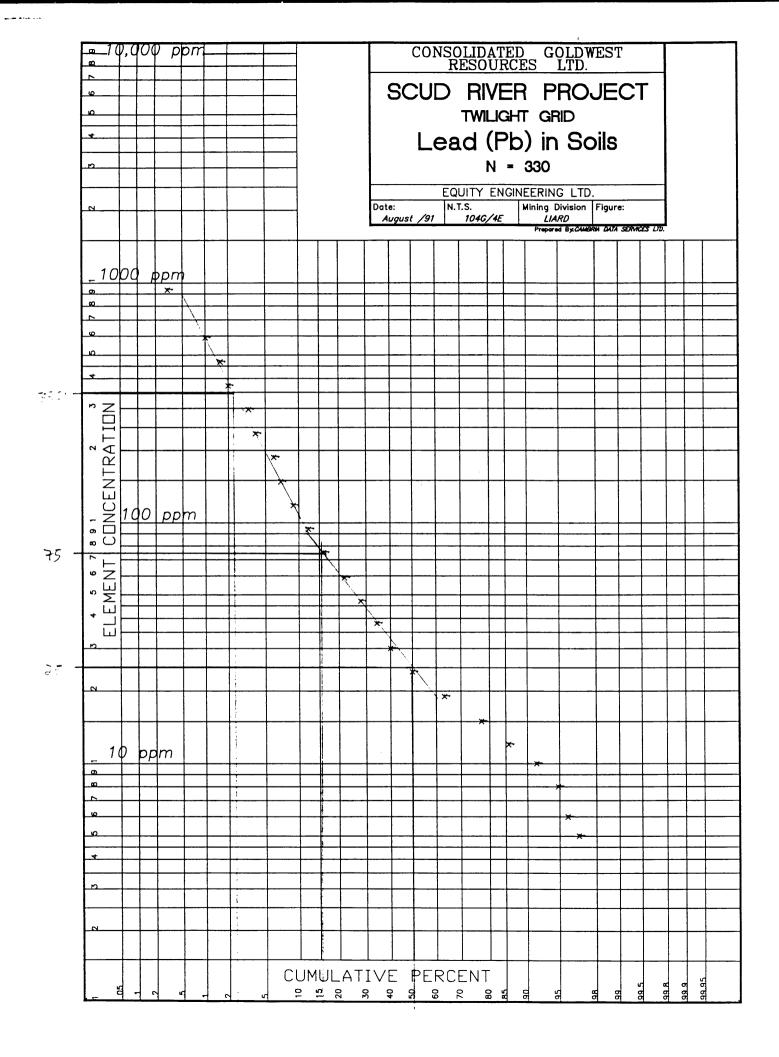


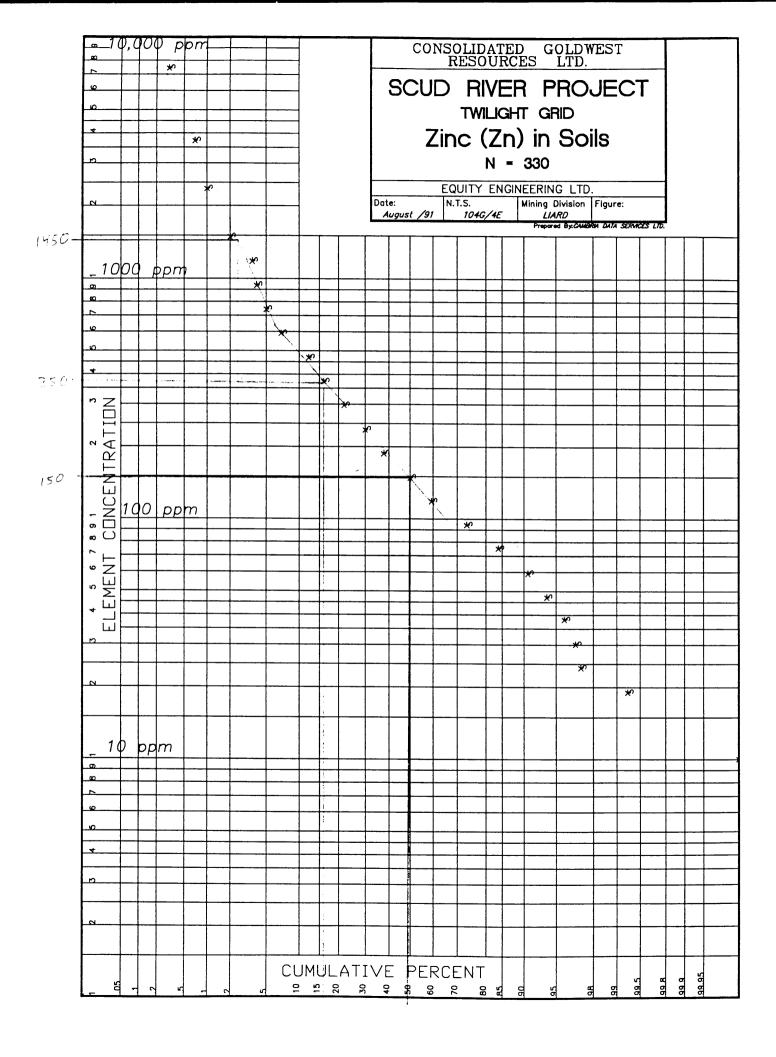

AZIMUTH 040° LOOKING 140° SCALE 1:20

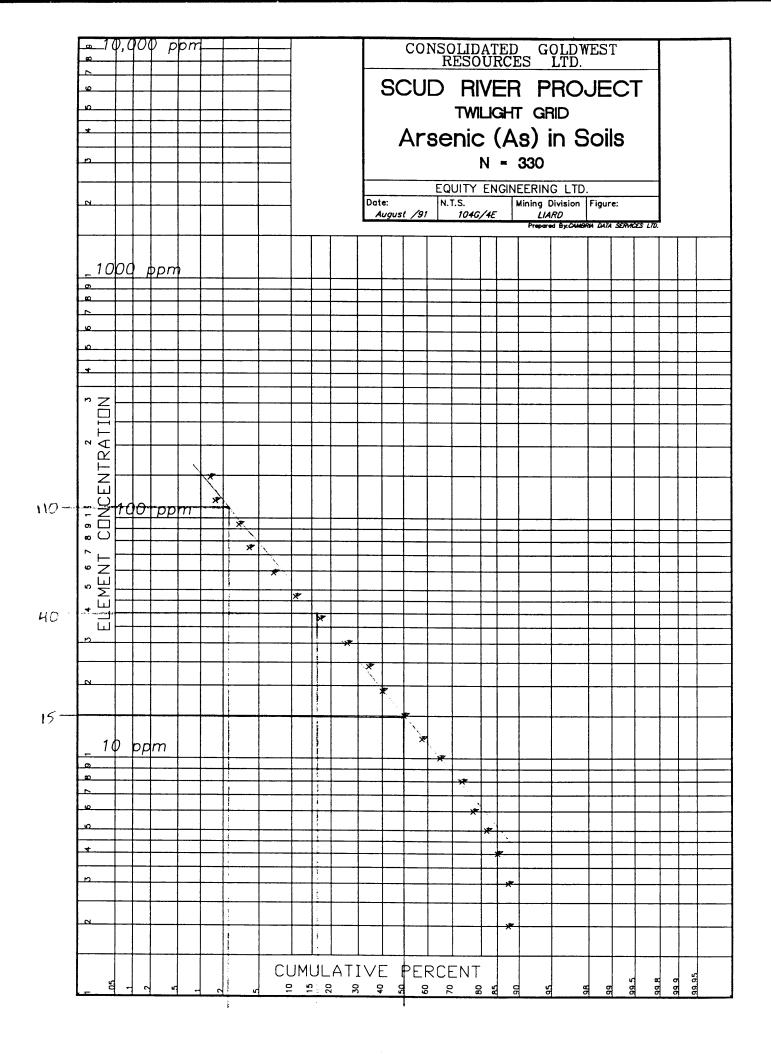

Note: Sample 52559 taken
1.5 m above trench

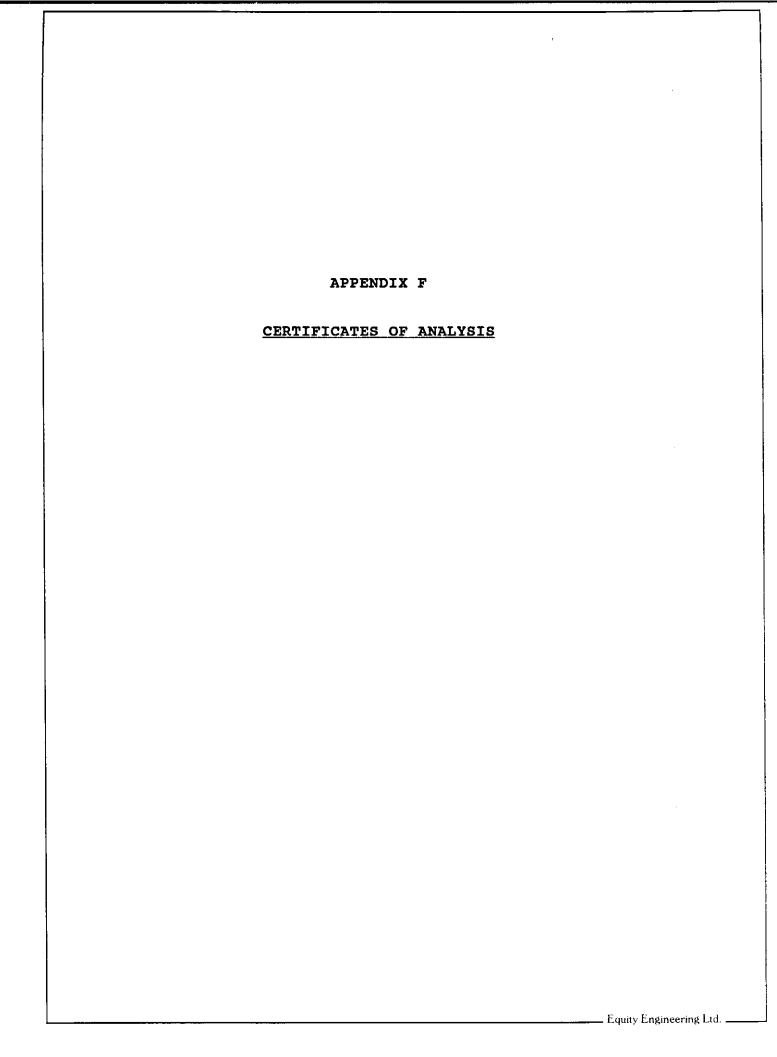
M. OD.


ALDER SHOWING - TWILIGHT GRID TRENCH TR-91-03 X-SECTION









COMP: EQUITY ENGINEERING LTD.

PROJ: SCUD RIVER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

DATE: 91/08/01 * ROCK * (ACT:F31)

FILE NO: 15-0238-RJ1

ATTN: HENRY AWMACK / JIM FOSTER

IN. DENKT AW	nack /	. 11W	10316	Κ																												
SAMPLE NUMBER	AG PPM		AS PPM	B PPM		BE PPM F		CA PPM		CO PPM	ÇU PPM				MG PPM	MN PPM	MO PPM	NA PPM I	NI PPM	P PPM	PB PPM		SR PPM I	TH PPM	T I PPM	V PPM	Z! PPI		A SM M PPM			U-FIRE PP8
52501 52502 52503 52504 52505	1.9 7.9 3.1	520 1180 380 5490	1 50 27 131	11 12 6	7 8 7 246 5	.6 .1 .1 .3	3	61920 91240 156960 61560	.1 .3 18.0 1004.2	2 13 3 10	132 955	46120	180 570 170 2730	7 7 3 7 1	43230 79960 9470 6630	1463 407	1 1 2 46 388	30 30 20 70 10	1 4 1 1		14 1 28 732 4007	11 2 21	24 156 64 105 113	1 1 1 1	28 410	9.0 16.9 16.2 24.5 9.2	21 313 31 2190 124500	3 5 1; 6 ;	1 3	3 1 37	81 24 19 18 4	5(2) 6(
52506 52551 52552 52553 52554		3090 430 2030 6180	66 1 35 40 39	11 4 6 6 35	86 16 7 64 4	.1	9	74600 114070 74520 63550 78060	239.3 .9 105.2 53.1	9 3 13 12 21	1557 130 4375 2239 15568	40780 6210 35230 37050 69940	1740 280 1310 3000 140	5 2 7 8 1		1028 3691	4 34 41 70	740 30 70 10	1 1 1 1	110 150	1231 36 2419 3700 74	3 10 6 15		1 1 1 1	10 12 428 159	16.5 11.2 44.0 25.5 12.7	551° 390	7 2 1 8	3 2 1 2 3 2 2 1 3 1	3 2 7	. 8	5 1 9 4 10
52555 52556 52557 52558 52559	2.2 19.5 2.7 2.6 8.9	2210 3720 8020 6640 1580	26 52 6 11 94	3 5 5 5 8	10 7 113 66 6	.1 .1 .1 .1	3 1 9 9	91010 107100 36200 52440 92290	.1 56.5 .1 .1 199.7	8 8	461 369	12240 37730 18100 19740 50300	4750 4420	5 5 4 2	2090	2630 1246 1234	3 7 31 55 61	410 30 140 160 650		270 210 1330 1130 230	69 813	15 1 1 9	178 275 84 122 141	1	49 1782 1862 46	9.0 18.9 35.7 34.0 15.0	198 7040 341 31 1910	0 5 1 7	7 1 5 1 2 2 2 1 4 2	3	5 3	15 1 1 8
52560 52561 52601 52602 52603	4.5 3.6 1.8 6.2	1060 4920 420 150 330	45 43 21 1	3 5 2 9 19	6 63 5 8 49	.2 .1 .3 .1	5 6 1 1	79500 114500 32580 16200 68550	27.7 13.8 2.1 .1	7 6 2 5 4	829 4074 12636 1870		2920 200 210 110	1	11680 5510 80650	1425 256 120 990	177	40 40 20 20	5 4 1 1	250 1320 200 260 10	467 54 20 18 1	6 5 11 1	26	1 2 1 1	100 13 4 8	24.5	2477 889 259 160 719	9	4 1 9 1 4 1 1 2		2 0	2
52604 52605 52606 52607 52608	1.0 3.5 3.3	5290 4170 4820 4300	17 17 1 17 97		5 97 51 65 259	.3 .1 .2 .1	1 3 2 7 2	68480 39690 4510 57570 5600	.1 .1 2.4 .1	3 3 8 8	1074 175 1075 398	24710 18330 58940	3610 2590 3460 3900	1 4 3 3	1230 3730 920	1058 86 1310 470	13 57	20 80 260 100 80	1	120 830 970 1320 1440		1 1 1			654 367 1327 67	33.9 17.4 21.3 21.1 12.0	76 49 20 59 909	8 1 9	1 1 2 1 2 1 3 1 1 1	2 2 1 2 1	9	
52609 52610 52611	2.1	4170 6850 5910	44 11 15	3 3	213 84 85	.1 .1 .1	3 5 3	52130 52010 52120	17.5 2.5 10.4	6 6 10	296	25420 15980 19980	4490	7	1770			60 140 140	1	1180 1260 1150	93 296 1505	1	102 134 126	1 1	809	11.9 24.3 16.9	1786 598 1328	8 :	2 1 3 1 3 1	2	25 28 27	
			·····																													
																*																
																												•				<u>-</u>
									-																		<u>-</u> -					
									<u></u>			<u></u>																				
																														•		

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMIST

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

1S-0238-RA1

EQUITY ENGINEERING LTD.

Date: AUG-01-91

Project:

SCUD RIVER

Copy 1. PRIME EQUITIES INC., VANCOUVER, B.C.

Attn:

HENRY AWMACK / JIM FOSTER

He hereby certify the following Assay of 7 ROCK samples submitted JUL-26-91 by ROBERT FALLS.

Sample Number	CU %	ZN %	
52505		15.08	
52506		3.03	
52552		1.4:	
52554	1.904		
52556	1.357		
			27 10 10 10 10 10 10 10 10 10 10 10 10 10
52559		2.80	
52602	1.327		

Certified by

MIN-EN LABS - ICP REPORT

COMP: EQUITY ENGINEERING LID.

PROJ: SCUD RIVER

1+00W 4+25S

(604)980-5814 OR (604)988-4524

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 15-0239-5J1+2

* SOIL * (ACT: F31)

DATE: 91/08/01

ATTN: HENRY AWMACK /PETER LOUGHEED W CR AU-FIRE ZN GA SN P PB SB SR TH NA NI MN MO K LI MG CD CO PPM PPM PPM PPM PPM CU FE AL AS B BA BE BI CA PPM PPM PPM PPM PPM PPM PPM SAMPLE. PPM NUMBER PPM 59.4 16 1480 6010 5910 48 35040 1.4 21720 49 1.7 75.6 5+00W 1+75N 1250 462 122 51 32620 2135 105.0 3.5 7410 . 1 5+00W 1+50N 13500 1235 894 72080 .5 R 2 1964 127.7 2.0 33200 1 2930 5+00W 1+00N 2740 338 14 43 44430 . 1 9 11830 1 1028 86.2 2 470 1.6 13590 8 1670 4+00W 4+00N 4830 3774 353 48710 7 23540 .6 .6 19110 81.1 4+00W 3+75N 1 1470 5030 2509 290 58840 . 1 . 9 42.2 1 1424 1.3 18010 1 1270 4+00M 3+00N 4980 349 243 23040 . 1 35.7 1.0 1.5 14620 460 10 880 4+00W 0+75N 1070 884 12 16520 44.7 .3 7720 .5 690 41 1350 4+00W 2+75S 162 39600 1.8 1 1474 87.6 1.0 44850 17 500 4+00W 3+00S 162 50530 .1 .3 4+00W 3+25S .5 19980 96.4 15 930 7290 1354 57 51930 .1 27.2 43 2.1 2 475 .8 29150 1 1170 11 1570 4+00W 3+50S 3850 580 30 19850 1.0 12010 . 1 1 1153 65.1 .8 1 690 2380 4+00W 4+25S 4380 3630 27 40010 2.6 16 65 1.7 7 12610 18.6 .3 22390 12 690 4+00W 4+50S 110450 3413 6 7980 1 92090 1 1202 77.4 .6 2.1 2330 2 620 46 7500 4+00W 4+75S 43400 6228 20 34970 8 64730 2.6 1.1 2040 169.3 .9 18440 4+00W 5+00S 1 470 37 60690 9 6380 . 1 44.5 1.1 15660 8 1220 3 1180 3+00W 1+75N 25270 1679 72 25440 70 1.6 7 12860 91.8 2.9 21860 54 281 2 550 14 2220 114 3+00W 1+50N 34830 3102 103 29110 62.8 1576 7 35820 1.1 18020 61 1.6 3+00W 1+25N 39 2790 6910 9502 - 11 91 40520 19 18830 4.3 79.3 1787 11 245 1.4 5 520 56 1510 3+00W 1+00N 23600 7368 860 29680 5 34050 19.7 1.1 11260 6 214 1.1 83.7 3+00W 0+75N 17 2130 155 14 1210 4290 2945 385 51040 5 7020 .1 76.7 .1 38610 33 1.0 3+00W 0+50N 1 490 95 47830 .7 12.3 .5 32500 3+00W 0+25N 11 12990 .1 .1 5.7 3+00W 0+25S .7 9 11280 . 1 4.7 -4 .9 3+00W 0+50S 6 5260 .1 1 10660 . 1 Q 7.0 3+00W 0+75S .5 18.2 . 1 3+00W 1+00S 10 22960 .1 . 1 15.0 3+00W 1+25S .3 19 29370 17.9 .2 . 1 3+00W 1+50S 20 26990 63.6 .4 .2 3+00W 1+75S 13 22860 .1 . 1 50.9 3+00W Z+00S .4 52 102 53320 1 1689 78.1 .8 13370 .1 3+00W 2+25S 121 83770 2332 137.3 .1 22810 3+00W 2+50S 104 66710 .1 22 172.7 .6 23490 .1 3+00W 2+75S 35 59540 .1 91.7 .1 11570 .6 3+00W 3+00S 26 53230 .7 .1 3+00W 3+25S .1 19600 33.5 . 1 . 1 49.7 3+00W 3+50S .5 31 32710 .1 79.1 3+00W 3+75S 95 51580 .2 28380 .6 .1 67.1 3+00W 4+00S 11 14120 . 1 1 2104 119.3 . 1 3+00W 4+25S .1 38 33130 - 1 45.9 .8 13640 3+00W 4+50S 32 1710 30 31740 1.6 16.0 4 17390 1.1 3+00W 4+75S 96800 1122 1 1170 13 7840 .8 66.1 2.5 3240 3+00W 5+00S 5450 908 75 26410 .5 4 14260 74.4 1.5 13370 600 311 2+00W 3+50N -8 5080 1641 30 30210 .9 9 10870 .1 54.1 43 1010 54 2+00W 3+25N 1.8 15300 29150 1194 44 24950 3 34170 .1 2.0 13040 .8 14.9 2+00W 3+00N 1000 197 82860 1692 .1 68.0 4,4 3220 .6 57 1700 65 2+00W 2+75N 7870 5631 22 39620 .1 .1 53810 85 2.4 59.8 2+00W 2+50N 2300 662 12 31970 1.2 7 11010 _ 1 35.1 54 1900 111 2+00W 2+25N 1.2 18240 45940 7529 Ž 40 21180 5 64270 4.9 1.4 9260 .9 16 1080 32 83.1 2+00W 2+00N 4140 1528 15 33720 6 14350 .9 .5 17290 70.0 2+00W 1+75N 61 44880 . 1 .2 16.7 .7 31380 32 1040 2+00W 1+50N 32 42120 1060 3 51 . 1 73.2 .2 6800 .3 14 480 2+00W 1+00S 6320 696 52 45680 . 1 .2 18340 . 1 4.5 2+00W 2+00S 5 13040 16.9 .1 3570 . 1 29 1110 2+00W 2+25S 900 1316 14 29270 .1 1.1 .1 11640 19.2 2+00W 2+50S 90 46180 .1 52.6 1246 .1 7090 2 1050 128 1+00W 1+50N 7470 2957 11 1422 46220 1.1 77.6 7962 2.9 13570 .6 6 1170 1 1410 683 1+00W 0+50S 55190 2146 53510 60.9 21 5188 74760 6770 85.5 202 7.6 16970 .3 1+00W 0+75s 8 117 47680 78.8 182 5 2560 .1 .3 1 2201 .3 26500 2 620 1+00W 3+00S 1 130 76 21680 10 5380 1.2 11380

COMP: EQUITY ENGINEERING LTD.

PROJ: SCUD RIVER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: HENRY AWMACK /PETER LOUGHEED

(604)980-5814 OR (604)988-4524

FILE NO: 15-0239-5J3 DATE: 91/08/01

• SOIL • (ACT: F31)

IN: HENRY AWMACK	/PE [EN	K LO	UGHE	Łυ										(004)	7UU-)	014 0	ж (ооч	7700	4764															
SAMPLE NUMBER	AG PPM		AL PM P					B1 PPM			CD PPM F		CU PPM	FE PPM	K PPM	LI PPM	MG PPM		M MO		NI PPM		PB PPM	SB PPM				V PPM			A SN M PPM			AU-FIR PF
1+00W 4+50S 0+00W 3+00N 0+00W 2+00N 0+00W 1+75N 0+00W 1+50N	1.5 .8 .1	1862 420 1132 1252 1669	20 00 20 70	16 1 17 3 9	14 9 8 3 3	37 45 57	1.3 .8 1.6 1.6	3 2 3 3	1756 7381 2855 364	0 0 0	.1 .8 .6	11 5 7 8 12	20 46 25	32000 10800 24870 27490 45050	240 410 90	7 6		269	2 1 4 1 5 1	460 460 560 370 30	8 18 21	1270 1330 2180 660 440	15 73 62	1 10 6	24 6 5	1 1	542 139 306 365 831	27.5 32.9 33.8 49.1	317 332 302 268	7 2 2 8	2 1 1 2 1 2 1 1 1 1	1 1 2 1 2	32 22 29 17 26	
0+00W 1+25N 0+00W 1+00N 0+00W 0+75N 0+00W 0+50N 0+00W 0+25N	2.1 .1 .4 .7		30 20 10 50	1 4 28 5	1 3 1 1 2	18 45	.7 1.1 1.0 .1	9 5 11	537 272	0 0 0	.1 .1 .1 .1	3 19 13 12 20	24 35	64010	320 320 350	10	106690 4640 6990 4900 6210	194 75 22	5 1 4 1 1 1		31 1		101 282 20	1	36 10 9 10 12	1	951 2690	111.5 81.9 157.4 61.6	367 382 69 138	7 2 5 8	1 2 1 1 1 1 5 2 1 1	3	19 64 49 57 74	
+00W 0+00S +00W 0+25S +00W 0+50S +00W 0+75S +00W 1+00S	1.6 1.3 .2	1616 1566 1806 1586 150	90 60 20	9 61 27 27 5	1 2 1 1 1	34 85 59 87 43	.9 .3 .4 .1	4 4 5	482 69	0 1 0 0	.1 1.7 .1 .1	15	1707 946 106	26100 49440 41510 52010 36450	880 650 500	10 8 5	5430		7 2 3 7 6 8 10	340 80 450 40 50	10 31 1	460	211 70 73	5 1 1		1 1	259 443 721 991 406	73.5 63.8 60.2	1387 707 224	7 7 4 9	1 1 1 1 1 1 1 1 3 1	2 3 1	24 15 42 18 13	
+00W 1+25S +00W 1+50S +00W 1+75S +00W 2+00S +00W 4+00S	.1 .1 .3	1116 996 1723 15 15 127	00 20 10	14 25 21 11 4	1 1 1 1	34 40 30 8 39	.6 .7 .5 .1	2		0 0 0	.1 .1 .1 .1	12 8 18 3 5	10 26 7	33310 28270 36000 6240 17080	580 410 170	7	1140 900 1000 160 1970	41 115 2	1 1 6 1 3 1	60 290 1490	8 6 6	80	16 32 5	1 1	4 7 6 1 14	1 1	844	18.2 45.4 28.3 14.1	127 152 29	7 2 5 4	1 1 1 1 1 1 2 1 2 2	1 1 1 1	9 11 21 6 11	
+00W 4+25S +00W 4+50S +75W BL +50W BL +25W BL	.6 .8 .5	1086 1845 2326 1356 2176	50 00 80	8 4 9 8 13	1 1 1 1		2.0	5 3	2453 819	0 0 0	.1 .1 .1 .1	7 7 8 7 17	13 122 48	19090 26040 27360 26710 38790	690 260 380	8 5	2870 1020	132 115	8 1 1 1 9 1	1290 470 750 440	12 10 1	2700 1060 700	22 16 14 18	1 1	11 10 22 10 20	1 1 1	245	28.3 43.3 15.8 50.9	205 579 142 106	5 9 2 6	2 1 2 2 1 1 2 1 1 1	1 1 1	22 21 33 11 11	
3+00W BL 2+75W BL 2+25W BL 1+50W BL 1+25W BL	1.0 1.3	377: 1014 85: 146: 145:	40 80 30	13 24 10 73 62	1 1 1 1	131 39 27 59 115	.5	1 8 3	723 562 418	0 0 0	.1	13 1	45 115 1062	53730 32810 35620 49370 59560	630 400 1470	11 3 13	3340 900 9400	642 160 70 306 740	8 1 1 42 9 23	600 550 600	3 2 1	1390 1660 520 1040 2820	29 66 162	17 17	8	1	451	24.0 136.3 85.1	191	1 2 2	1 1 1 1 2 2 1 1 1 1	2 1 3 2 2	33 14 28 14 20	
															_																			
																													<u>. </u>					-
							•						•	-			-	•																
									<u>-</u> -									-		-							··· · -				• ••			

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

COMP: EQUITY ENGRG./PRIME EQUITIES

J: SCUD RIVER P.O.	KGGPL	703 WES	7407.1080-58	314 OR (604)98	ER, B.C. V/M 112 38-4524				ACT:
N: H.AWMACK/J.FOST	ER D. D. DA DE RI	CA CD CO	CU FE	K LI MG	MA MO NA NI	P PB SB SR TH		ZN GA SN W CRAU PPM PPM PPM PPM PPM	U-FI
AMPLE UMBER	PPM PPM PPM PPM PPM PPM	PPM PPM PPM			524 5 170 58 42	230 28 1 27 1	1037 96.9	108 3 1 4 73 124 2 1 4 75	
+00W 4+00N	.2 17050 20 13 72 .1 5	6480 .1 15 3900 .1 15		80 13 10860 40 15 9410	404 1 110 39	00 10	1341 107.2 1 221 22.7	34 2 1 2 36	
+00W 3+75N	.2 25430 13 9 78 .1 6 .2 18020 1 7 11 .5 1	840 .1 7	16 60980	40 7 4940 50 11 4830		110 12 1 5 1	120 21.9	71 1 1 1 24	
+00W 3+50N +00W 3+25N	2 12340 17 5 31 -3 1	300 .1 8 2960 .1 9		50 11 4830 70 6 6000		620 20 1 11 1	1436 182.9	3 11	
+00W 3+00N	2 15550 9 5 73 .1 6	2,00		60 8 1870	10 0 2/0	940 10 1 17 1	290 34.4 274 45.1	45 1 1 2 34	
+00W 2+75N	.3 18460 45 3 17 .8 2 2 7760 42 2 12 .1 2	4890 .1 / 1530 .1 4	12 21300 1	40 3 1020		480 11 1 / 1 220 18 1 6 1	1306 58.2	35 3 2 2 16 95 5 1 3 41	
+00W 2+50N +00W 2+25N	4 3770 1 2 29 1 6	1190 .1 5		30 1 460 80 13 8 050	84 6 330 53	490 24 2 6 1	407F 47F /	95 5 1 3 41 92 3 1 3 39	
+00W 2+00N	.2 12610 62 3 17 -1 6	1300 .1 11 1070 .1 14		20 7 4750	379 7 460 4 1	- 4 (0 1		169 4 1 2 31	
+00W 1+75N	.2 14020 3 3 22 .1 2	13310 .1 7		30 15 9810	1356 2 430 14 3 2541 2 300 19 2	V, C	537 74.6	351 3 1 3 42	
+00W 1+50N	6 22610 10 6 66 1.1 3	10180 .1 12		20 13 13140 60 6 11570	437 6 210 40 2	510 15 1 36 1	17	277 1 1 2 24 287 2 1 2 29	
3+00W 1+25N 3+00W 1+00N	1.4 8450 20 4 175 .2 3	19090 .2 10 22240 1.3 15	99 38200 9	40 9 13220	504 14 520 61 2	070 17 1 23 2		669 2 1 3 43	
1+00W 0+75N	1.9 11330 12 7 303 3 2	17530 10.6 17	171 39080 13		449 42 500 155 2	74		139 3 1 1 14	
3+00W 0+50N	3.0 .3/0 TE /2 2 2	63130 .1 10		730 3 9010	220 2 420 37 1 117 1 470 10 1	070 13 1 22	60 10.2	110 2 1 1 10	
3+00w 0+25N 3+00w 1+25S	8 1890 12 4 32 2 1	38450 .1 3		270 1 5600 320 1 215 <u>1</u> 0	260 2 560 6 1	260 21 2 21		149 1 1 1 15	
3+00W 1+50S	1.3 1380 15 6 21 .3 4	59550 2.0 2 69760 .1 5	18 9770 4	.4n 1 49870	387 1 620 4			206 1 1 1 20	
3+00W 1+75S		59300 2.3		1 30920	1723			252 1 1 1 22 226 1 1 1 21	
+00W 2+00S 3+00W 2+25S	6 11490 25 2 34 1.0 3	,,000	, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	340 4 1830 320 6 4230	673 4 270 22	540 18 1 12	0, 0, -	226 1 1 1 21 135 1 2 1 15	
3+00W 2+50S	2 5310 35 3 68 .3	11774		300 3 910	500 3 630 9	1080 22 2 21 950 20 1 18	1 361 26.2 1 207 32.9	160 1 1 1 13	
3+00W 2+75S	1 .9 0010 11 3 73 17	13660 1 6	6 46 16110 2	250 2 1090 570 3 1830	700 70	77	1 91 28.8	115 1 1 1 18	
1+00w 3+00s 3+00w 3+25s	8 7470 22 5 61 .5		7 3 10 3 11 11			2080 24 4 45		149 2 1 2 26	
8+00W 3+50S	1 1.3 13130 23 4 121 112			690 4 2760	434 62 430 211	2410 18 11 <u>30</u>	1 177 152.8 1 1 22 40.7	101 3 1 2 37	
7+00H 4+00N	1 3.7 7200	30760 1 1	7 59 48810 4	430 17 10220	283 12 470 33 592 69 340 302	770 19 1 74	1 305 126.7	1010 1 1 4 73	
7+00H 3+75N	2 5 7680 60 4 105 .3	10460 72.8 1	7 200 35280	600 6 5800 210 6 4350	27 /40 01	3310 10 10	1 74 50.0	292 1 1 2 21	
7+00W 3+50N 7+00W 3+25N	3.4 11770 46 3 39 .5			220 4 2690	122 42 790 22	2300 30 4 9	1 523 92.2 1 106 145.2	261 1 1 2 40 426 1 1 3 4 <u>1</u>	
7+00W 3+00N	.2 8300 32 58 42 .1 2 16000 41 9 52 .3		6 123 86160	220 13 10990	1288 35 430 42	8840 25 2 26 740 11 1 14	1 223 6.9	78 1 2 1 3	
7+00W 2+75N	2 16000 41 9 52 .3 5.1 2630 1 4 22 .1	6070 .1	2 32 5570	170 1 530 280 3 2350	4 730 E	850 13 1 10	1 1281 99.5	69 2 1 3 35 213 1 1 23	
7+00W 2+50N 7+00W 2+25N	2.3 9480 12 5 20 .1	3140 -		280 3 2350 320 4 2070	960 20 560 14	2280 16 1 31	1 450 41.2	362 1 1 1 8	_
7+00W 2+00N	_4 30370 18 6 37 .1			190 1 180		1320 16 17 7 2420 39 18 16	1 21 79.6 1 41 74.5	777 1 1 2 37	,
7+00W 1+75N	1.3 2690 158 6 27 .2 6.4 9610 56 5 66 .7	6950 1 2	21 532 51660	280 2 880		1530 16 2 38	1 108 12.5	238 1 1 1 9	
7+00W 1+50N 7+00W 1+25N	7 4870 11 5 79 6	28090 1.3	6 176 18790 4 22 11570	240 1 1500 260 1 1970	227 1 360 9	870 13 1 30	1 41 9.1 1 20 6.8	163 1 1 1 7 86 1 1 1 6	
7+00W 1+00N	4 1570 12 4 25 -1	1 27010 47		210 1 407	118 1 510 8	780 10 1 28 880 11 1 40	1 28 7.6	155 1 1 1 7	,
7+00W_0+75N	.4 1490 9 3 19 .3 5 1590 9 4 25 .2		3 18 10680	230 1 290		000	1 35 5.8	87 1 1 1 7	, L
7+00W 0+50N	.5 1590 9 4 25 .2 .6 1550 11 5 37 ·1	1 53300 .4	3 13 6110	170 1 84° 230 1 169°	0 253 1 480 13	1450 9 1 43	1 18 5.6 1 40 9.5	76 1 1 1 6	
7+00W 0+25N 7+00W 1+00S	4 720 6 4 20 .1	1 50350 .8 1 31440 .8	3 19 8480 4 15 10580	200 1 265	0 453 1 360 12	1390 12 1 29 1470 10 1 29	1 40 9.5	102 1 1 1 10	
7+00W 1+25S	6 1850 12 3 39 .2 7 3210 5 6 26 .3	1 46720 .8	2 17 6810	230 1 119		2150 37 2 24	1 74 14.1	282 2 1 1 15	
7+00W 1+50S	1.2 3250 18 9 50 .4	3 54500 4.2	4 28 9680		7 LJES 7 700 E	880 5 1 50	1 50 16.2		
7+00W 1+75S 7+00W 2+00S	1.7 1680 1 4 31 -5	2 80470 -1	4 52 7580 3 18 6070	170 1 4145	0 767 1 620 7	1080 27 2 28 930 15 2 23	1 45 11.1 1 136 10.6	106 4 1 1 13	3
7+00W 2+25\$	1.5 1530 4 3 14 .0	2 65690 .1 2 64490 .8	3 16 6410	160 1 1918	0 397 2 360 5 0 1303 3 450 29	930 15 2 23 1670 28 2 20	1 251 25.3	252 3 1 1 19	
7+00W 2+50S 7+00W 2+75S	1.3 4980 15 4 16 -6 .9 10360 16 5 63 1.0	3 49700 4.8	7 48 19850		0 534 4 530 26	1680 11 2 33	1 197 25.1	239 1 1 1 23 486 1 1 4 42 704 2 1 2 27	2
CL 6+50 0+00S	2.4 9090 19 5 59 1.5	2 9750 6 6	7 39 19950 13 110 33670	420 9 589	0 566 28 460 87		59 162.2 1 42 85.3		7
CL 6+50 0+25S	3.8 13960 36 3 171 .7 3.4 5970 37 4 79 .4	2 29360 23.3	12 159 29470	390 6 2049	0 607 42 370 14/	1030 21 1 21	1 562 21.0	169 4 2 2 19	9
CL 6+50 0+50\$ CL 6+50 0+75\$	1.4 16370 15 3 107 2.0	4 47960 .1	7 16 19300 9 17 21920	420 3 1820 530 2 3298	20 909 1 430 4	1100 11 2 24	1 115 42.0	104	_
CL 6+50 1+00S	8 7700 33 4 126 .7	2 56450 .1	11 25 22330			1010 6 2 32	1 60 51.1 1 319 47.1	127 3 1 2 14	4
CL 6+50 1+25S	.9 5380 112 4 132 .5 4 14910 167 5 303 1.3	2 61590 .1 3 25660 .1	12 22 30670	660 5 660		1010 6 2 32 1370 25 2 20 1490 6 1 30	1 313 14.4	85 1 2 1 29	
	4 14910 167 5 303 1-3	= = = = = = = = = = = = = = = = = = = =	/ 12 12530	310 4 5010			4 103 16 2	108 1 2 1 21	
CL 6+50 1+50S CL 6+50 1+75S	1.6 13840 1 3 102 1.9 1.7 6510 1 4 51 1.1	3 64900 .1 2 69970 .1	4 13 12530 4 15 9450	280 2 608	no 1001 1 550 1	1260 1 1 36 1170 17 1 22	1 193 14.2	104 2 1 .1 16	6

FILE NO: 15-0284-SJ1+2

DATE: 91/08/12

PROJ: SCUD RIVER P.O. KGGPL

ATTN: H.AWMACK/J.FOSTER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 15-0284-\$J3+4 DATE: 91/08/12

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG AL	AS PPM S		BA BE				CO PPM P		FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM			PB PPM I		SR TH	T I PPM	PPM PPM	GA S		PPM	AU-FI
CL 6+50 2+50s CL 6+50 2+75s CL 6+50 3+00s CL 6+50 3+25s CL 6+50 3+50s	1.8 4350 1.6 12280 .9 11130 1.2 20700 1.6 5770	1 1 34 15	11 6 6 5 1	34 .9 30 1.8 94 .7	1 3 2 4 2	90510 64470	3.1	4 4 11 20 1	15 14 1: 45 2: 106 4: 14	5370 4620 8260	190 160 390 560 320	6 1 16 2 4		529 968 740 787 345	1 2 11 1	450 510 300 260 360	18 81 4	1270 900 1290 790 1730	1 11 19 20 5	1 1 1 1	45 1 33 1 24 1 17 1 42 1	118	17.0 110 10.9 162 43.3 109 132.3 414 13.9 132	1 3 1 1	2 1 1	1 28 1 18 2 29 4 51 1 26	
CL 6+50 3+758 CL 6+50 4+008 CL 6+50 4+258 CL 6+50 4+508 CL 6+50 4+758	1.8 2960 1.0 11320 1.3 11010 1.2 8180 1.2 15630	1 23 21 13 12	2 2 1	25 .8 55 .7 49 1.2 38 1.1 22 1.9	1 3 3 4 5	79700 26540 49070 58910 23300	.1 .1 .1 .1	3 8 5 3 4	24 2 8 1 10 1 14 1	1790 7640 0880 4210	110 260 220 190 570	7 1 5 2 2 2 3	18990 17520 15960 6460	524 527	1 1 1 1	260 440 470 550 1200	18 12 3 3	870 720	1 18 19 21 21	1 2 1 2	37 1 21 1 27 1 25 1 12 2		13.6 93 40.5 158 36.3 148 14.8 149 11.2 79	3 2 3 3	1 1 2	2 28 2 22 1 15 1 11	· · · · · · · · · · · · · · · · · · ·
CL 6+50 5+00S CL 6+50 5+25S CL 6+50 5+50S CL 6+50 5+75S CL 6+50 6+00S	1.6 1680 .4 19530 .7 2240 1.1 19270 1.2 17080	1 11 6 14 11	2 1 1 1	13 .6 37 .1 12 .1 44 2.4 31 2.5	1 5 1 6 5	69210 5440 14060 24280 39710	.1 .1 .1	12 1 1 6 6	111 4 9 10 1 11 1	3470 8440 5270	130 370 190 630 360	10 1 5 1 3 2	1270 6210 2170 10800 22090	419 27 1871 1946	1 2 1	390 290 700 1200 840	25 1 9 12	1080 970	20 7 22 20	1 2 1	32 1 11 1 9 1 16 1 20 1	43 854 165 740 439	10.3 178 55.0 164 4.0 43 17.0 93 12.8 234	1 5 4	1 2 2 2 2	2 25 1 4 2 13 1 17 1 50	
CL 6+50 6+25S CL 6+50 6+50S CL 6+50 6+75S CL 6+50 7+00S 6+00N 4+00N	1.9 15760 1.7 11130 .8 18420 .8 17840 .2 9900	1 1 45 14 50	2 1	56 .5 72 1.8 25 1.5 65 2.1 36 .1	6 4 4 4	67260 63690 20840 15780 1850	.1 4.2 .1 .1	7 9 5 8	28 1 50 2 19 1 77 6	5860 7060 7620 2370	520 370	3 4 11 1 4 4	73530 55680 12260 2950 3350	3439 1424 1357 112		730 470 660 890 370	11 26 10 88	480 3590 2750 2950 5200	1 18 35 20 15	1 1 3 7	39 1 34 1 24 1 24 1 12 1		68.1 113 17.1 350 47.6 330 15.4 283 126.1 132 107.9 212	1 4 3 1	2	1 18 2 41 1 14 2 15 2 19	1
+00H 3+75N +00H 3+50N +00H 3+25N +00H 3+00N +00H 2+75N	.5 14290 1.0 6280 2.0 15060 1.6 13510 1.3 15520	54 55 4 21 17	1	40 .2 18 .1 8 .1 20 .1 17 .1	1 2 6 8 9	1340 630 3910 65000 47670	.1 .1 .1 .1	5 6 15 16 1	46 3 91 3 245 4 145 4	3140 33910 32080 33900 6830	240 310 260 310 370	4 4 10	3840 4780 3030 8030 13230	321 51 138 642 537	98 66 4 4 6	390 550 460 520	76 5 33 38	1080 4540 1290 1060 880	16 15 14 17 16	1_	120 1	197	281.9 133 21.9 48 34.9 117 38.9 123 30.4 105	2 3 4	1 2 2 1	4 18 1 21 3 31 3 44 2 26	
+00W 2+50N +00W 2+25N +00W 2+00N +00W 1+75N +00W 1+50N	2.4 13060 .5 5490 .3 22300 .2 6230 2.6 25880	33 13 23 82 43		20 .1 14 .4 44 .4 38 .1 77 1.1	5 2 4 1 5	69990 39250 12680 10010 19750	.1	8 16 2 11 1 13 4	91 2 296 4 168 5 422 3	1380 9350 9150	90 190 200 470 550	3 18	3780 3560 14810	832 1774	5 1 1 3	360 330 510 520	24 27 1 78	2230	11 11 21 31 50		239 1 114 1 35 1 22 1 39 1	249 535 118	10.9 81 31.1 97 44.9 172 105.5 192	1 1 4 4	i 1 1	1 12 2 25 1 9 4 66 1 18	
+00W 1+25N +00W 1+00N +00W 0+75N +00W 0+50N +00W 0+25N	.6 12400 4.7 28570 2.6 9470 .8 2440 .9 1900	39 36 39 16 15	9 6 7	34 1.1 58 .7 40 .2 35 .2 36 .1	2 4 2 2 1	15610 9030 5080 29800 41990	.1 .1 .9 .1	55 7 8 4 5 1	753 5 445 4 134 1	7700	740 1040 510 460	10	12330 5950 4330 3280 1860	3191 337 429 250	27 10 1	260 300 440 560 320	41 3 10 8	4170 1830 1750 1140	19 11	3 1 1	36 1 22 1 11 1 40 1 50 1	210 133 63 42	11.4 169 7.6 114	1 2 2	1 1	2 43 2 22 1 9 1 8	
+00W 0+25S +00W 0+50S +00W 0+75S +00W 1+00S +00W 1+25S	.4 6880 .8 2780 1.5 2860 1.1 2930 .9 3970	9 30 36 42 36	3 7 3 3	43 .8 37 .1 34 .1 33 .2 39 .1		26260 74880 118290 90660 71970	.5 .1 .1 .1	9 9 11	26 2 21 2 30 2 31 3	21670 20970 22160 29040 32970	1060		1060 5910 5820 4960 3740	920 197 125 134 138	1 1 2 2 1	480 240 40 40 40	26 25 28 35	1580 1390 1080 1540 1740	14 16 12 12 13	3	37 1 94 1 131 1 122 1 94 1	90 41 23 27 19	10.5 91 12.7 124 13.3 82 15.0 92 16.9 105	7 6 4	1 1 1	1 12 1 13 1 13 1 12 2 31	
5+00W 1+50S 5+00W 1+75S 5+00W 2+00S	.9 3990 .9 11500 1.5 4490	22 9 10	5 2 4	82 .4 24 1.6 50 .9	2 3 2	59310 35290 66550	.6 .1	3	14 1	14320 10970 10850	600 350 500	1	10070 5600 49950	382 145 377	3 1 1	380 700 240	3	1580 780 1460	18 15 21	1 2	36 1 21 1 32 1	92 410 133		4	1 2	2 31 1 12 1 21	

PROJ: SCUD RIVER P.O. KGGPL

ATTN: H.AWMACK/J.FOSTER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 15-0285-SJ1 DATE: 91/08/12 SILTS * (ACT:F31)

AMPLE UMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM		FE PPM	PPM		MG PPM	PPM	PPM P		1 PPM	PB PPM		PPM I		PPM	PPM	PPM	GA PPM	PPM P	PM P		U-FI P
118K-01 118K-02 11MD-01 11MD-02	2.5 2.1	7100 11900 12460 19240 16910	1 15 30 12 14	8 6 7 6 7	60 30 341 202 159	.8 .4 .1	3 7 11	61450 10170 30080 12510 10810	2.1	7 7 19 28 22	32 133 173	18050 25100 45810 55210 53470	280 1260 1230	25 10 15	49360 11580 14610 13450 14040	1124	16 5	50 16 00 8 4 90 11!		21 18 21	1 1 3 1 1	29 15 61 50 34	2		41.0 32.0 90.1 95.4 108.2	94 66 381 478 416	1 3 1 1	2 1 1 2	3 3	30 30 35 43	
01RF-01 01RF-02 01RF-03 01RF-04 01RF-05	1.6 2.6 2.4 2.8	12780 14800 17680 12580 11880	48 22 35 30 27	10 7 7	162 369 468 216 281	1.1 .7 .3 .1	3 3 6 8	24590 14070 10740 26190 12600	5.6 6.6 8.9 3.3	11 17 25 18	1658 140 185 162	30130 39560 52750 43010 28610	2140 1750 1010	16 10	9610 10530 12680 9590 4670	855 976 628	29 3 28 4 23 3	90 10: 40 13: 20 10	5 1960 5 3020 6 2600 7 2560 6 1170	29 29 14	12 4 4 3 1	45 47 37 77 42	1 2 2 2 1	570 1626	53.0 125.6 111.9 108.6 46.2	665 431	3 3 2 2 2	1 1 1 2 1	4	63 51 55 44 24	
																•															
																															
		.,, , , , -																													
		•							<u></u>						-, - · · ·																
							,												<u></u>					· · ·							
								,		,							-			··											
										<u>-</u>					± 									·	<u>.</u>						
													•••			· · · · · · · · · · · · · · · · · · ·	···														
•																															

PROJ: SCUD RIVER P.O. KGGPL

ATTN: H.AWMACK/J.FOSTER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1S-0285-RJ1-DATE: 91/08/1

* ROCK * (ACT:F31

IN. N.AWMACI	K/ J . FU3	ILK											14 0	(004)																IAC
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	8 P PM	BA PPM	BE PPM	BI C		D CO				L I PPM	MG PPM	MN PPM	MO PPM	NA PPM					SR PPM F		TI PPM	V PPM		GA PPM	SN PPM PI	W CI	R AU-I
2507 2508 2509 2510 2511	1.1 1.0 .1 .1	6590 9840 4770 260 2810	89 48 12 125 19	16	58 1128 154 19 29	.1 .1 .1	4 11904 2 2495 1 3230 1 6228 2 681	0 . 0 . 0 .	1 16 1 6 1 10 1 21 1 4	34 69 32 51	40880 16220 37510 70020 23190	610 3210 2350 180	48 8 4 1	2960 1740 4260 560 3350	664 136 552 106 223	7 51 4 1 45	50 430 40 20 60	33 34 20 20 1	490 6170 790 120 110	16 10 44 8 11	12 4 1 1	41 81 25 26 4	1 1 1 1	25 89 42 9 205	103.6 131.5 16.9 4.6 15.3	80 110 104 21 85	6 2 1 1	1	7 12 11 25 3 8 6 17 6 15	3 9 3
512 513 514 515 516	2.6 1.8 2.5 2.6 2.6	310 25030 670 150 230	48 1 45 47 42	4 8 3 3 2	8 37 22 6 7	.1 .1 .1 .1	6 26027 20 2508 6 25079 7 26146 6 21511	0 . 0 . 0 1.	1 3 1 27 5 3 2 2 3 2	31 5	54100 4880 3760	1880 190 110	1	2460 20820 2200 1790 1630	84 872 92 104 261	2 1 2 1	490 1510 50 20 10	2 18 3 3	160 1210 170 150 270	19 5 15 15 33	8 1 8 8	69 33 73 60 53	1 1 1 1 1 1	25 4526 104 22 17	7.6 198.4 10.0 6.4 10.7	62 10 9	13 2 13 13 12	1 4 1 1	3 24 7 9 2 11 2 11 2 11	4 3 5
517 518 519 520 521	2.3 .1 2.5 .3	190 6390 690 550 280	44 36 10 26 14	2 4 3 1 1	5 181 19 9 4	.1 .1 .4 .1	6 22701 1 935 4 17964 1 1266 1 558	0 . 0 . 0 .	5 2 1 15 1 3 1 1 2 1	88 9 5	48930 4570 3790	1530 210	3 1 1	5990 440 53360 6240 1160	105 138 287 139 203	2 1 1 7 6	20 30 20 30 20	3 10 1 6 3	180 560 210 60 30	15 20 14 8 5	8 99 7 1 1	52 15 61 7 2	1 1 1 1	20 19 23 32 17	7.3 31.4 10.0 4.7 2.5	56 146 21	13 1 1 3	1 1 1 1	2 1 1 1 1 2 13 32 5 12	3 2
522 523 524 525 526	2.4 1.5 2.1 .1 1.7	140 190 140 12040 3410	18 1 36 14 39	2 1 2 4 2	7 4 4 674 139	.2 .5 .1 .2	5 18289 1 6692 5 15276 1 545 3 10191	0 . 0 . 0 .	1 3 1 2 1 2 1 7 8 6	3 4 46	2060	80 100 1440	1 1 14	53670 59490 11280 11190 1800	378 125 144 140 105	1 1 2 12 3	460 20 290 190 30	1 1 3 8 20	90 40 180 330 680	1 1 15 11 12	4 1 6 1 6	62 31 95 5 21	1 1 1 1	6 7 4 47 20	11.9 7.0 6.4 23.9 31.2	69	1 1 10 4 7	1 1 1	1 2 1 4 2 2 3 7 3 4	1
27 28 29 62 63	1.7 2.3 .4 .7 .1	410 350 1360 4010 11940	1 1 20 21 14	2 3 1 3 5	26 6 58 81 492	.5 .6 .1 .2	1 6994 1 10173 1 743 2 2454 1 902	0 . 0 . 0 .	1 2 1 4 1 2 1 5 1 8	8 7 18		150 500 2920	2 2 2	67380 111640 2560 1090 6030	341 994 55 531 136	1 1 7 1 2	510 860 30 240 80	1 1 4 1 15	140 280 90 670 650	1 7 9 19	1 1 1 1	35 69 10 91 19	1 1 1 1 1	6 7 17 37 45	9.8 16.1 6.0 8.6 10.1	31 16 15	1 1 3 2 3	1 1 1 1	1 10. 1 4 8 214 1 37 4 9	2
64 65 66 67 68	.2 .9 2.7 1.1 2.0	5770 10110 360 2680 2210	33 14 1 13 38	4 3 3 1 3	149 583 24 23 41	.2 .1 .5 .1	2 2781 5 559 1 10291 5 887 5 11820	0 . 0 . 0 .	1 10 1 9 1 3 1 3 1 5	29 115 37		1740 200 810	1	6650 8750 107400 4630 3200	417 130 1125 402 946	4 5 1 6 3	70 690 50 130 20	22 7 1 2	1210 330 10 220 320	23 11 1 11 11		33 11 108 7 57	1 1 1 1	27 883 15 797 24	16.0 22.5 17.4 19.7 18.5	64 21 67	4 4 1 3 9	1 1 2 1	6 146 6 146 1 26 5 10 2 18	5
569 512 513 514 515	2.5 1.0 2.7 2.8 2.5	450 5470 580 500 410	45 9 1 1	7 4 9 12 12	168 94 6 6	.1 .2 .6 .6	7 24943 4 3172 1 6128 1 10174 1 11535	0 .	1 4	395 5051 3242	15440 22870	2010 80 60	1 3	2090 3580 94830 87950 102740	827	2 3 1 1	350 220 20 270 270	2 1 1 1 1	210 370 10 40 100	20 8 1 1		162 196 35 60 63	1 1 1 1 1	11 655 27 15 19	7.5 44.0 122.5 64.9 82.8	99 140	12 2 1 1	1 1 2 2 2	2 15 4 87 1 27 1 20 1 19	7
616 617 618	4.2 2.3 .9	2130 1790 7540	18 10 49	1 1	127 13 160	.1 .9 .4	1 5950 2 8415 2 406	0 .	1 3	3152 2225	8750 14240 27910	1470 1060	1 8 8	4020 35490 6400	622	16 1 64	190 20 490	1 1 22	640 140 1210	11 13 21		221 254 10	1 1 1	23 29 22	13.8 130.2 63.5		3 3 3	1 1	5 59 3 34 9 232	į.
-										•																				_
			,													•					_									

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 15-0285-RJ3+4 DATE: 91/08/12 * ROCK * (ACT:F31)

PROJ: SCUD RIVER P.O. KGGPL (604)980-5814 OR (604)988-4524 ATTN: H.AWMACK/J.FOSTER

DMBER PPM PP	IN: H.AWMACK	(/J.FOS	TER									(004)90	יו מכיטנ	4 UK	(004)9	00-4.	J C 4															AC1 3 F3
116	SAMPLE NUMBER				-																						PPM	PPM F					U-FIRE PPB
122	1115 1116 1117 1118 1119	1.0 1.0	14920 21080 23770	5 4 1 1	6 6 5	1716 600 574	.5 .1 .1	13 14	9300 14310 14030	.1	39 22 22	301 96 182	37590 52120 53190	4350 7470 11840	5 6 7	10290 17210 17870	546 441 515	2	120 260 250	2 1 1	2690 2180 2330 2040	12 5 5	1 1 1 1	34 58 58 67	1 3	261 2869 3232 3654	66.0 142.0 131.8 151.6	23 21 24 22	2	1 1 2 2 3	_	33 41 37 58	26 11 10 15
152	1120 1121 1122 1123 1124	1.0 1.8 1.8	22760 23940 20960	1 11 1 1	4 4 2	1488 424 291	.1	8 19 16	12610 14250 14350	.1	33 34 22	379 236 95	36670 48440 42300	14340 9740 7990	5 10 7	14640 19180 16470	378 575 535 378	2	340 2110 2530 590	1 6 4 1	1880 1490 1310 1990	10		41 69 81 99	1 1 1 1 1 1 1 1	1515 4341 3959 3969	75.6 117.2 102.6 162.0	21 58 52 23	4 3 4	-	6	90 71 88	2
131	126 127 128	1.8 1.8 1.7	23430 21340 19700	2 1 1 2 1	2 3 2	289 236 82	.1	16 17 14	16020 16500 14060	.1 .1 .1	19 18 19	119 63 181	36410 34790 26970	11090 9760 3070	7 6 7	17850 15730 19270	357 316 394	4 1 1 1	370 310 340	1 1 1	1990 2020 2050	3	1	84 83 67	1 3	3756 3970 3171	154.0 147.7 127.0	19 16 25 21	3 3	3	_	59 41 51 45	
135	131 132 133	1.3 1.6 1.7	23920 22340 25600	1 1 1 1	3 2 2	472 364 331	- 1	16 15 17	13690 15010 13990	.1 .1 .1	25 17 22	150 89 78	49070 38900 44590	9990 12060 9320	8 6 8	19050 15670 22440	518 355 604	1 1 1	460 330 640 320	1 1 1	1850 2110 1960 1960	4 6 3	1	80 87 76 125	1	3455 3470 3813 3720	130.1 145.3 143.8 148.8	33 29 37 27	4	3 3 3	4	68 50 60 42	•
140	135 136 137 138	1.6 .7 .7	24090 30970 24330 26170	1 1 1 6	4 3 2	443 251 213	.1 .1 .2	11 9 8	10570 9000 11630	.1	32 19 18	104 100 61	56860 41200 30630	6290 5410 5650	10 8 7	28650 20630 21480	1013 790 787	1 1 2 1	210 180 430	1 1 1	2420 2180 2090	1 6 7	i 1	33 24 58 128	1 1	2630 2058 1839 3452	163.7 103.7 126.5 162.5	50 39 39 29	1 4 4 4	2 2	3 3 5 5	39 42 78 67	
145	141 142 143	1.6 1.4 1.2	22180 25040 22340 21510	1 1 1 3	2 2 2	441 333 422	.1 .1 .1	15 14 15	15530 13810 12090	.1	18 19 20	69 80 146	48210 41300 41920	15730 13210 15150	7 7 7	17870 18170 17580	376 338 341	1	470 330 410	1 1 1 1	1940 1900 1930 1940	3 1 8	1	88 75 52 46	1 1	3553 3107 3037 2479	159.9 131.0 139.5 123.5	23 24 23 26	3 3 3	3 3 3 2	5 5 5 5	71 54 64 70	
150	146 147 148	1.3 1.2 .3	19800 22410 14790 17490	-	11 8 6	361 318 605	.1 .1 .4	15 4 4	14340 20850 22930	.1 .1	20 23 24	135 223 293	46100 35070 28890	14670 7480 7100	7 7 6	16520 13030 15340	369 177 203	1 6 2	410 360 290	1 1	1890 2050 2170	7 8 10	1	84 42 37 31	1	3345 387 489 1736	152.8 69.2 78.7 96.7	22 14 15 14	3 4 3	1 1 1	5 4 3 4	68 76 52 72	
155	51 52 53	.6 1.1 1.2 1.1	16730 16670 14970 19430	1 1 1	4 4 5	202 224 308	.1	12 12 14	12130 15730 15520	:1	55 37 41	684 581 536	43290 34960 42040	6440 7030 10190	6 5 6	16160 13630 15470	149 161 170	7 49	330 270 330		2230 2040 2070	4 5	i	22 37 66	1 1	2882 2665 3021	105.3 97.0 100.5	14 12 14 13	1 2 2	3	444	57 42 70 63	
1.0 22710 1 3 336 .1 15 12270 .1 30 310 51410 10900 8 21830 300 1 200 1 2220 7 1 51 1 3501 127.6 21 1 2 3 38 161 1 1 21500 1 3 290 .1 15 12710 .1 33 393 53170 10940 7 19700 252 2 230 1 2150 5 1 62 1 3437 132.0 19 1 3 4 49 162 1.1 21540 1 3 342 .1 15 12590 .1 26 229 46060 12570 7 18040 236 1 250 1 2270 3 1 55 1 3441 125.7 19 2 3 4 47 1.1 21540 1 3 238 .1 12 13750 .1 36 514 52380 11180 6 17500 216 2 210 1 2180 6 1 54 1 2799 96.0 17 1 2 4 45 1.1 2 13750 1 3 283 .1 14 10110 .1 23 52 39550 11930 5 14240 121 3 420 1 2030 7 1 23 1 2892 98.3 12 3 3 5 80 1 13 11870 3 1 79 .1 10 11130 .1 10 116 17630 1840 4 9540 318 1 320 2 1110 8 1 61 1 2131 61.5 19 3 2 4 60 1 14 12180 3 1 53 .1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 12 12180 3 1 53 .1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 4 53 1 1 10 15560 .1 9 265 16390 1610 2 6980 283 1 240 2 1460 7 1 115 1 1879 75.4 15 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	55 56 57 58	.5 .9 1.2 1.3	18370 20790 24770 26790	1 1 1	4 4 4	374 375 420 439	.1 .1 .1	14 16 17	15680 14550 14120	.1	15 23 28	40 231 273	55590 53230 50420	12370 13090 14110	7 8 9	13240 18940 22660	159 212 254	1	260 290 260		2290 2310 2330	5 8 1	1	92 103 72	1 1	3191 3590 3871	151.7 147.3 153.2	12 16 19 17	1 2 2 1 1	2 3	4 5	52 50 58 83	~
165	160 161 162 163	1.0 1.1 1.1 1.0	22710 21500 21540 18740	1 1 1 1	3 3	336 290 342 238	.1 .1	15 15 15 12	12270 12710 12590 13750	.1	33 26 36	393 229 514	53170 46060 52380	10940 12570 11180	7 7 6	19700 18040 17500	252 236 216	1 2	230 250 210	1 1 1 1	2150 2270 2180 2030	5 3		62 55 54	1	3437 3441 2799 2892	132.0 125.7 96.0 98.3	19 19 17 12	3	2 3 2 3	3 4 4 4 5	49 47 45 80	
i	165 166 167	1.3 1.4 1.2	11870 12180 24720	3 3 1 1	1 1 2 2	79 53 168	.1	10 12	15560 21050	.1	9 20	265 97	16390 36690	1610 3040	7	6980 21900	283 701	1	240 240	2 12	1460 1140	7	1	115 115	1	1879 2647	75.4 100.0	15 37	3	2 1 2 2	4 5 5	53 86	

COMP: EQUITY ENGINEERING LTD. PROJ: SCUD RIVER, P.O. KGGPL

ATTN: J.FOSTER/ H.AWMACK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1S-0361-RJ: DATE: 91/08/11

* ROCK * (ACT:F31

AMPLE	ΔC	Al	24	B	RA	RF	RI	ĽΑ	CD	CO	Cff	FC	r	([MC	MW	MO	NA	M1	P	PR	SB	SR	TH	71	V	714	G#	SN	IJ	CP A	I- E
UMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	FE PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM P	PM	1 7 -, 1
2619	19.9	1190	184	19	6	.1	1	72740	22.6	12	5411	81300	1490	17	17040	4542	11	10	1	590	1923	14	176	1	36	41.9	2794	1	1	3	38	-
							···																									
		_				•																					_					
																		<u></u>														
											_																					
	J																															
;																																
											_	<u> </u>														··		_		-		
						 ,						· 																				
																																_
•																																
				 		_										·				···· ··	-	_				· · · — • • • • • • • • • • • • • • • •	• • •					-
		·																														

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

PROJ: SCUD RIVER P.O. KGGPL; MIN-EN (604)980-5814 OR (604)988-4524 ATTN: H.AWMACK/J.FOSTER

COMP: EQUITY ENGINEERING LTD.

FILE NO: 15-0362-SJ1+2 DATE: 91/08/17

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG AL AS B	BA BE BI CA PPM PPM PPM PPM		K LI MG PPM PPM PPM		P PB SB SR TH TI PPM PPM PPM PPM PPM PF	V ZN GA SN W CR AU-FIRE M PPM PPM PPM PPB PPB
5+00W 4+00N 5+00W 3+75N 5+00W 3+50N 5+00W 3+25N 5+00W 3+00N	.3 6010 36 3 .3 5710 6 1 .1 13520 13 1 .1 22680 1 1 .2 13340 8 1	34 .3 2 20140 36 .1 2 860 14 .1 2 1880 13 .1 1 2730 18 .1 4 7520	.1 16 117 29150 .1 2 12 8900 .1 11 30 40270 .1 14 63 71430	390 8 7470 440 1 1200 290 11 5580 380 13 6060 490 6 3770	17 9 410 8 289 5 690 33 1 136 8 1100 13 1	800 22 2 46 1 67 73. 620 8 1 4 1 295 136. 610 20 1 6 1 154 20. 200 21 1 5 1 346 34. 580 27 1 17 1 1179 76.	0 10 1 1 2 14 2 7 123 2 1 1 27 3 9 142 1 1 1 28 8 5 51 2 1 2 41 11
5+00W 2+75N 5+00W 2+50N 5+00W 2+25N 5+00W 2+00N 5+00W 1+25N	.1 6850 179 1 .2 9830 36 1 .2 13190 41 1 1.1 2450 5 1 1.0 15980 36 1	7 .1 1 1320 12 .1 5 3290 19 .1 5 440 13 .1 10 2650 126 .1 6 12850	.1 9 54 61050 .1 9 39 26010	390 3 2750 270 3 3630 480 1 150 470 1 460 440 9 7100	132 1 840 1 1 153 7 40 1 2 400 50 70 1 9107 11 920 27 3	870 34 1 7 1 2636 68. 760 174 1 20 1 318 56.	7 37 1 1 4 59 4 0 24 2 1 1 17 3 1 42 1 1 1 2 19 4 524 1 1 3 32 12
5+00W 0+75N 5+00W 0+50N 5+00W 0+25N 5+00W 0+25S 5+00W 0+50S	.1 10950 119 1 5.9 18080 180 2 .1 11280 18 1 .4 7220 28 1 .5 4000 34 1	35 .1 1 1480 104 .1 1 4870 38 .1 1 3710 49 .4 1 12860 48 .1 1 66050	.1 20 5305 79790 .1 8 416 45790 .5 8 738 25130	680 6 4000 3280 23 19680 900 4 5000 530 5 4530 980 3 3360	7695 27 860 1 1 584 5 900 1 1301 1 110 10	370 82 1 4 1 97 23. 620 308 14 10 1 978 142. 760 49 1 5 1 282 73. 940 19 1 12 1 163 34. 410 12 1 78 1 49 16.	8 552 1 1 3 6 214 4 88 2 1 2 25 54 6 250 1 1 1 10 2 2 137 1 1 1 11 1
5+00W 0+75S 5+00W 1+00S 5+00W 1+25S 5+00W 2+00S 4+00W 3+50N	.4 1530 11 1 3.2 1090 6 1 .4 3900 10 1 .8 5460 35 1 4.4 11030 35 3	21 .1 1 28600 27 .1 1 16450 48 .3 1 28500 96 .2 2 69710 46 .1 5 19670	.1 2 23 3450 .1 5 22 13890 .1 12 56 26520	310 1 1500 150 1 340 370 1 800 800 5 8650 470 5 3650	56 3 3060 4 184 1 130 11 1 325 2 800 42 2 5456 3 3390 5 3	130	1 64 1 1 1 4 2 9 70 1 1 1 7 1 1 158 4 1 1 22 13 0 499 1 1 2 11 69
4+00W 3+25N 4+00W 2+75N 4+00W 2+50N 4+00W 2+25N 4+00W 2+00N	3.2 20970 22 4 2.6 14670 42 1 2.3 13630 23 3 .4 2430 3 1 .4 1950 1 1	39 .7 5 11360 27 .1 6 5730 53 .1 4 18950 11 .1 4 4830 10 .1 3 3100	.1 15 1844 45980 .1 2 10 5400	310 6 2610 230 5 2240 230 4 5800 230 1 490 250 1 800	294 24 1100 1 3697 1 80 1 1 99 2 1340 1 72 3 1170 1	560 79 1 8 1 1664 59. 070 35 1 14 1 526 41. 200 24 1 4 1 790 20. 120 9 1 4 1 792 27.	3 219 1 1 1 13 66 0 369 1 1 2 11 100 6 10 1 1 7 5 9 22 1 1 1 17 1
4+00W 1+75N 4+00W 1+50N 4+00W 1+25N 4+00W 1+00N 4+00W 0+50N	.5 3880 34 1 7.6 11110 17 1 .4 16650 17 1 1.3 10570 39 1264 1.2 14100 22 12	13 .1 1 1450 38 .7 3 21310 42 .2 4 7330 24 1.0 4 29670 52 .4 4 19700	.1 4 178 13270 .1 8 270 36780 .1 5 507 15950	530 1 530 560 4 14560 620 6 5790 370 3 30990 440 7 8670	640 3 1640 2 1 321 4 90 4 2307 2 1370 4 2 2149 19 720 15 1	750 23 27 4 1 279 38. 070 22 1 15 1 444 46. 540 38 1 12 1 778 93. 140 22 1 27 1 346 29. 670 137 1 21 1 471 49.	2 174 5 1 2 18 2 1 61 5 1 3 31 8 5 466 1 1 1 18 1 8 783 3 1 2 28 1
4+00W 0+25N 4+00W 0+25S 4+00W 0+50S 4+00W 0+75S 4+00W 1+00S	3.9 28680 1 4 .3 540 3 1 .1 4700 8 1 2.5 6860 8 1 1.3 14310 84 1	47 .1 6 22230 11 .1 1 11230 17 .1 1 7600 37 .1 1 7970 1296 .5 1 7990	.1 1 43 2100 .1 6 20 21520 .1 6 194 25930	340 1 610 670 5 1470 910 4 710	48 1 5100 1 209 1 770 2 576 2 890 3	750 25 1 80 1 2856 102, 680 35 1 14 1 28 2, 770 14 1 10 1 55 12, 580 13 1 13 1 215 34, 540 87 2 54 1 98 153.	4 112 1 1 1 3 2 5 93 1 1 1 5 1 1 171 1 1 1 6 2 3 336 1 1 2 20 2
4+00W 1+25S 4+00W 1+50S 4+00W 2+50S 4+00W 3+75S 4+00W 4+00S	2.2 6820 16 1 .6 7500 36 1 .1 3070 3 1 .9 4870 10 1 .4 8580 1 1	78 .1 1 27890 58 .1 1 62790 8 .1 1 4070 20 .4 1 38960 26 .1 5 6360	.1 18 53 40170 .1 1 7 4670 .1 3 12 7460	2070 5 6280 220 1 210 350 1 7010 380 6 1290	190 2 90 38 1 55 1 80 1 315 1 1210 3 1 260 1 1520 6	<u>430 33 1 12 1 1420 61.</u>	7 184 3 1 1 18 34 6 43 1 1 1 6 1 9 101 4 1 1 10 1 0 209 2 1 2 37 2
3+00W 4+00N 3+00W 3+75N 3+00W 3+50N 3+00W 3+25N 3+00W 3+00N	.8 16160 8 17 .1 5450 44 1 1.8 11630 14 1 3.9 14570 67 1 20.9 21550 109 1	53 .1 6 27700 29 .1 2 4460 53 .3 3 11450 65 .1 4 11730 263 .1 7 29260	.1 9 70 51640 .6 7 495 32370 .1 11 392 47000	480 7 9240 590 1 470 230 7 5360 690 11 4720 1050 25 11960	2540 62 1040 1 5 6729 22 80 16 1 7351 21 40 8 1 22351 9 650 53 1	420 110 1 9 1 497 54. 930 78 1 17 1 667 70. 110 93 2 24 1 308 54.	7 59 1 1 1 6 19 4 472 1 1 2 27 21 8 441 1 1 2 28 32 1 830 1 1 4 34 181
3+00W 2+75N 3+00W 2+50N 3+00W 2+25N 3+00W 2+00N 2+00W 4+00N	1.3 9390 12 1 .1 13210 47 1 .4 6130 44 1 2.3 22520 15 1 .9 19660 10 1	31 .1 2 3540 20 .1 1 9190 25 .1 1 1180 55 .3 5 10120 42 1.8 2 20360	.1 11 409 84890 .1 5 178 31770 .1 13 152 34840	770 1 160 940 15 12440	1929 43 790 1 1 1 299 27 1230 1 2 1 1311 2 1110 52 1 3 505 1 910 14 1	<u>830 51 1 18 1 533 34.</u>	7 133 1 1 1 6 87 0 69 2 1 1 2 62 0 288 4 1 4 84 18 9 236 4 1 1 31 8
2+00W 3+75N 2+00W 1+25N 2+00W 1+00N 2+00W 0+75N 2+00W 0+50N	3.0 23000 52 1 .3 29200 1 1 1.5 17920 16 1 .7 20330 13 1 .2 16220 1 1	115 .6 5 13130 62 .1 12 5540 140 .8 5 22020 52 .4 4 21860 31 .1 9 4720	.1 16 58 83380 6.2 9 246 29110 .1 11 37 28490	720 8 7960 700 7 1940 540 10 1970 610 4 5650) 351 1 150 1) 5708 5 980 20 2) 1845 1 1550 13 1) 266 1 940 4	390 395 4 28 1 833 79 620 22 1 24 1 3356 172 730 77 5 22 1 672 65 550 133 1 20 1 765 72 240 34 1 19 1 2564 107	1 78 3 1 5 71 2 1 355 2 1 2 25 2 0 216 3 1 2 30 1 8 66 4 1 3 48 9
2+00W 0+25N 2+00W 0+25S 2+00W 0+50S 2+00W 0+75S 2+00W 1+25S	.2 25830 29 1 .7 15140 45 1 1.7 9890 62 1 .2 10730 13 1 .1 5080 15 1	68 .1 4 4360 44 .3 3 5740 49 .5 1 16600 31 .8 1 10520 12 .1 1 12720	.1 12 518 53920 .4 8 780 31370 .1 7 46 22940	820 8 3790 820 9 3690 660 5 2320) 2801 4 110 8 2) 2436 5 220 8 2) 1416 1 830 5 1		8 422 2 1 2 30 42 1 400 2 1 1 14 19 0 182 2 1 1 11

MIN-EN LABS - ICP REPORT

COMP: EQUITY ENGINEERING LTD.

PROJ: SCUD RIVER P.O. KGGPL; MIN-EN

705 WEST 15th St., NORTH VANCOUVER, B.C. V7M 1T2

(404)980-5814 OR (404)988-4524

FILE NO: 15-0362-SJ3+4

DATE: 91/08/17 * SOIL * (ACT:F31)

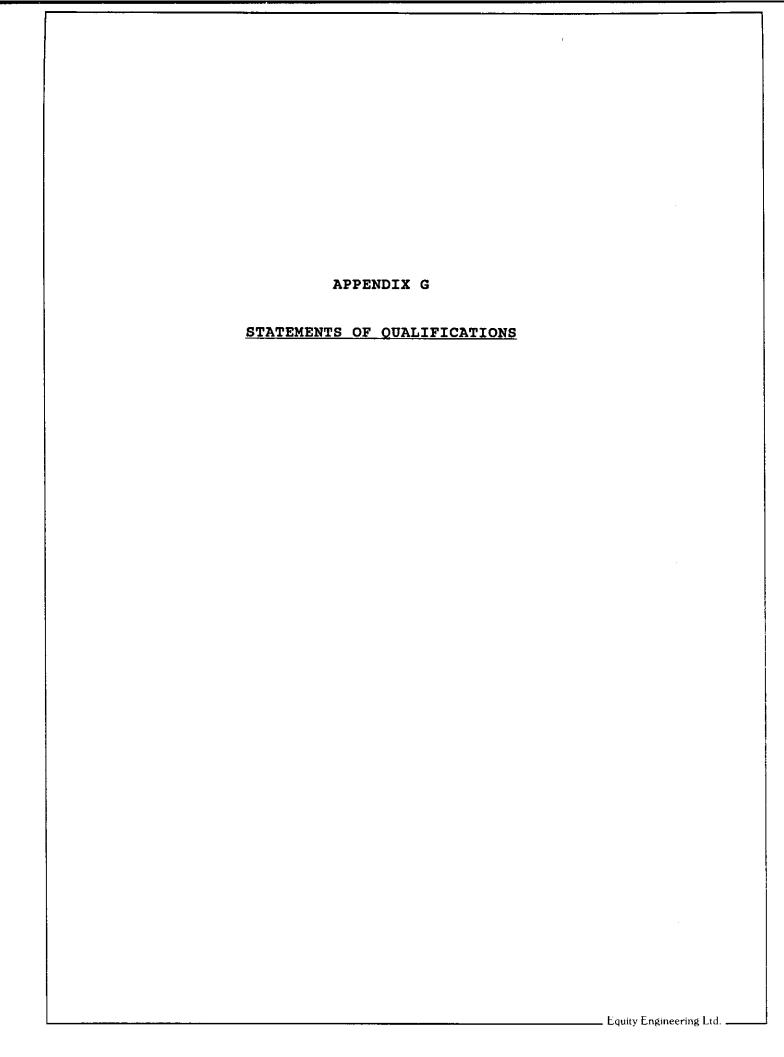
ATTN: H.AWMACK/J.FOS	STER			(604)980	-5814 OR	(604)988-4524				* SOIL * (ACT:F31)
SAMPLE NUMBER	AG AL AS	B BA BE BI PM PPM PPM PPM 1	CA CD CO	CU FE	K LI PPM PPM	MG MN MO PPM PPM PPM		SB SR TH TI	PPM PPM PPM I	
2+00W 1+50S 2+00W 1+75S 2+00W 2+75S 2+00W 3+00S 2+00W 3+25S	.1 4410 9 .1 24530 11 .3 10910 9 .1 15270 15 .2 4500 7	4 48 .1 2 56 4 41 .1 10 36 1 31 .4 3 46 1 43 .1 4 2	260 .1 5 480 .1 14	10 16040 110 67520 113 16120 17 36710 10 16060	320 3 650 7 360 2 590 8 590 3	560 472 1 4930 484 1 560 1215 1 2180 119 1 1020 380 1	160 4 710 11 90 1 470 25 50 15 1550 15 70 13 650 14 70 27 960 11	1 17 1 1970 1 21 1 292 1 23 1 795 1 15 1 200	21.2 102 1 83.4 101 3 15.7 155 1	1 1 6 2 2 4 44 3 1 1 17 1 1 3 33 4 1 1 10 2
2+00W 3+50S 2+00W 3+75S 2+00W 4+00S 2+00W 4+25S 2+00W 4+50S	.4 13680 4 .5 20930 6 .4 18400 1 .6 19500 8 .4 9970 7	1 64 .5 6 86 1 52 .3 7 8 1 46 .5 6 10	470 .1 6 650 .1 12 780 .1 8 430 .1 11 960 .1 5	15 23840 25 34900 17 27590 20 33160 17 13940	480 2 840 8 740 13 640 11 530 7	5290 1029 1	1400 4 640 25 1620 16 1700 43 180 14 1140 15 1380 27 1370 36 1220 13 1080 25	1 18 1 989 1 15 1 1259 1 19 1 1240 1 12 1 32	67.6 264 4 70.2 185 4 6 69.6 275 2 7 29.8 269 3	2 2 22 1 1 3 33 8 1 3 56 1 1 5 89 3 1 2 20 2
1+00W 3+75N 1+00W 3+50N 1+00W 3+25N 1+00W 3+00N 1+00W 2+75N	1.0 16630 3 .5 29060 16 2.5 29180 33 2.1 40340 4 1.1 19410 26	1 34 1.6 9 16 1 60 .5 9 16 1 38 .2 10 16	360 2.1 6 320 .1 22 200 .1 16 200 .1 15 160 .1 10	_ : : : :	330 5 1010 8	7390 794 1 10050 2038 1 1610 529 1 2970 816 1	1500 19 1960 56 1210 11 1520 200 980 26 2050 516 990 1 880 156 130 15 900 137	1 14 3 1656 5 1 19 1 1606 5 1 9 1 195 7 3 17 1 819	5 172.1 365 7 9 175.0 506 5 1 103.6 220 4 5 59.8 293 3	2 3 26 5 2 5 55 9 3 4 71 3 1 3 35 2
1+00W 2+50N 1+00W 2+25N 1+00W 2+00N 1+00W 1+75N 1+00W 1+25N	.3 40320 1 .1 8420 6 .1 23580 1 .2 5930 25 8.1 24710 2	1 58 .1 8 5 2 117 .1 3 11 1 72 .1 3 1 56 2.1 7 66	170 .1 7 010 .1 9 640 .1 17 920 .1 5 850 7.3 17	16 32870 15 37900 36 98480 18 20640 102 38760		50110 6909 1	3310 1 1460 38 810 1 320 35 760 1 780 92 3 1420 2 380 27 1 1010 55 3570 492	1 4 1 146 2 1 9 1 58 7 2 8 1 38 2 7 41 1 29	3 132.9 87 4 5 37.2 163 1 1 45.1 97 4 0 131.3 535 1	2 2 15 2 1 1 15 1 1 1 6 5 1 2 42 24 1 3 54 8
1+00W 1+00N 1+00W 0+75N 1+00W 0+50N 1+00W 0+25N 1+00W 0+25S	.2 33950 12 .3 27400 19 4.1 16390 23 .6 20480 24 1.3 20810 56	1 73 .1 7 4 1 86 .8 6 15 1 54 .1 8 4 1 57 .1 4 3		57 47000 56 41300 75 26250 52 44820 021 42460	520 12 850 19 780 7 960 10 990 9	4990 3289 1 1240 2350 1 7950 1620 2	1350	3 1 17 1 113 3 2 21 1 61 7 1 21 1 137 3 7 13 1 57	7 78.7 216 3 7 63.4 236 2 5 95.1 182 3 6 60.6 906 2	1 3 47 4 1 2 21 88 1 4 55 2 1 2 27 64 1 2 23 16
1+00W 1+00S 1+00W 1+25S 1+00W 1+50S 1+00W 1+75S 1+00W 2+00S	.9 14830 24 .7 8770 28 .1 6380 17 .1 10620 22 .1 22940 14	1 69 .3 2 9 1 91 .2 1 10 1 39 .1 2 6 1 30 .1 6 2	350	19 30870 55 47080 40 30350 154 57810	1090 7 800 3 1720 6 670 13 750 9	930 1959 1110 1275 5330 545	700 15 1410 20 1 1180 1 1670 22 1 980 3 630 18 1 170 24 480 26	0 6 14 1 13 2 1 25 1 4 3 1 10 1 5 5 1 10 1 141	19.3 266 1 3 14.4 100 1 1 21.8 101 3 1 82.4 88 3	1 1 12 2 1 1 2 2 1 1 9 12 2 4 72 2
1+00W 2+25S 1+00W 2+50S 1+00W 2+75S 1+00W 3+25S 1+00W 3+50S	.1 23050 9 .2 14870 7 .5 7870 8 .4 15750 4 1.3 7270 1	2 35 .1 10 1 1 20 .1 6 1 1 31 .1 5 1 1 14 .1 13 2	420 .1 12 180 .1 10 420 .1 5 610 .1 6 680 .1 9	59 63790 44 52070 24 20590 65 23100 14 27400	430 6 380 3 530 3 470 6 330 3	2230 206 800 126 2330 215 940 226	1 1160	2 1 6 1 216 1 1 6 1 98 8 1 9 1 83 7 1 6 1 285	7 160.2 59 4 9 35.6 50 3 5 40.0 68 2 9 84.1 61 4	2 4 37 3 2 1 11 1 1 2 19 2 3 2 15 2
1+00W 3+75S 1+00W 4+00S 1+00W 4+75S 1+00W 5+00S 0+00W 4+00N	.6 11470 5 .2 6640 5 .4 8170 4 .5 13930 14 2.8 4670 1	1 25 .1 3 6 1 17 .3 3 6 1 42 .3 2 5	690 .1 7 880 .1 5 760 .1 5 700 .1 6 890 .3 5	17 21980 9 18870 7 16450 44 10710 24 13390		1110 203 1810 497 96060 4286	1 1640 5 1120 26 1 790 7 1180 2 1 20 36 670 4 1 1080 23 880 80	6 1 9 1 54 1 1 9 1 31 3 2 13 1 12 0 3 59 1 6	4 29.8 98 1 4 25.5 107 1 2 16.6 142 1 4 28.5 464 1	1 1 15 1 1 1 18 4 1 1 21 2 2 1 24 1 2 1 15 1
0+00W 3+75N 0+00W 3+50N 0+00W 3+25N 0+00W 2+75N 0+00W 2+50N	1.2 20790 5 1.4 22380 21 1.1 20060 6 2.1 4120 1 2.1 4080 1	2 133 .3 7 24 1 73 1.0 6 15 1 44 .8 3 77	120	10 22630 30 40460 15 28540 13 10000 12 8860	190 2 120 5	2390 7270 1230 697 74580 3130 86680 2956	1 1510	2 5 24 1 50 6 4 16 1 114 5 1 37 1 8 7 1 33 1 6	4 45.8 369 2 8 62.2 131 5 2 21.1 488 1 9 13.7 155 1	1 2 27 3 2 2 29 2 1 1 22 1 1 1 19 2
0+00W 2+25N 0+00W 2+25S 0+00W 2+50S 0+00W 2+75S 0+00W 3+00S	2.0 4600 1 .4 26610 13 .1 27050 20 .3 25110 4 .1 31900 12	1 37 .2 8 3 1 48 .1 7 4 1 46 .1 8 2 1 57 .1 7 3	.880 .1 5 .770 .1 20 .280 .1 17 .090 .1 11 .830 .1 14	24 10290 62 46480 243 42360 133 37210 236 49480	540 15 780 11 580 7 1280 11	7880 948 4070 358 6370 645	1 1000 8 1280 6 1 1090 25 810 2 1 1100 38 560 6 1 60 7 520 2 1 100 15 690 5	9 1 11 1 133 4 1 13 1 105 3 1 11 1 141 7 1 16 1 109	0 78.1 170 4 6 60.0 141 2 0 75.6 70 3 7 64.3 94 2	2 3 46 1 1 3 52 24 2 3 39 1 2 3 43 3
0+00W 3+25S 0+00W 3+75S 0+00W 4+75S 0+00W 5+00S BL 8+00W	.5 10220 13 .3 21120 10 1.1 9420 9 .9 3110 3 1.6 1120 32	1 31 .2 6 3 1 35 1.0 4 27 1 18 .1 7 1 1 17 .1 5 90	330 .1 12 330 .1 12 350 .1 4 320 .1 5 3590 .1 7	85 25720 59 29120 11 12920 15 15840 34 17080	380 10 350 2 300 2 340 2	5250 606 12910 481 490 136 5290 121	1 90 31 1350 41 1 900 23 580 4 1 1230 9 1220 2 4 1180 4 370 3 2 920 19 950 2	2 1 11 1 77 7 1 21 2 30 7 1 6 1 138 9 5 106 1 4	0 48.9 126 3 2 19.8 128 5 6 59.9 98 3 9 10.6 59 7	1 2 34 1 1 2 19 1 2 2 12 3 1 1 12 2
BL 7+75W BL 7+50W BL 7+25W BL 6+75W	1.9 1050 36 1.5 1080 33 .9 1860 26 .9 930 19	1 39 .1 6 87 1 27 .1 4 48	1290 .1 6 7010 .1 6 3720 3.0 10 5390 .1 4	22 15730 17 15510 26 23850 17 10380	300 2 540 2	6070 157 5110 225	1 910 16 780 3 2 840 21 830 2 2 910 28 1600 2 1 990 15 1030 1	2 6 126 1 3 3 5 105 1 3 9 3 48 1 4 9 3 39 1 2	8 10.1 56 7 4 9.6 76 7 1 12.3 270 3 0 6.4 103 3	1 1 13 ?

COMP: EQUITY ENGINEERING LTD.

MIN-EN LABS -- ICP REPORT

FILE NO: 15-0362-SJ5

PROJ: SCUD RIVER P.O. KGGPL; MIN-EN

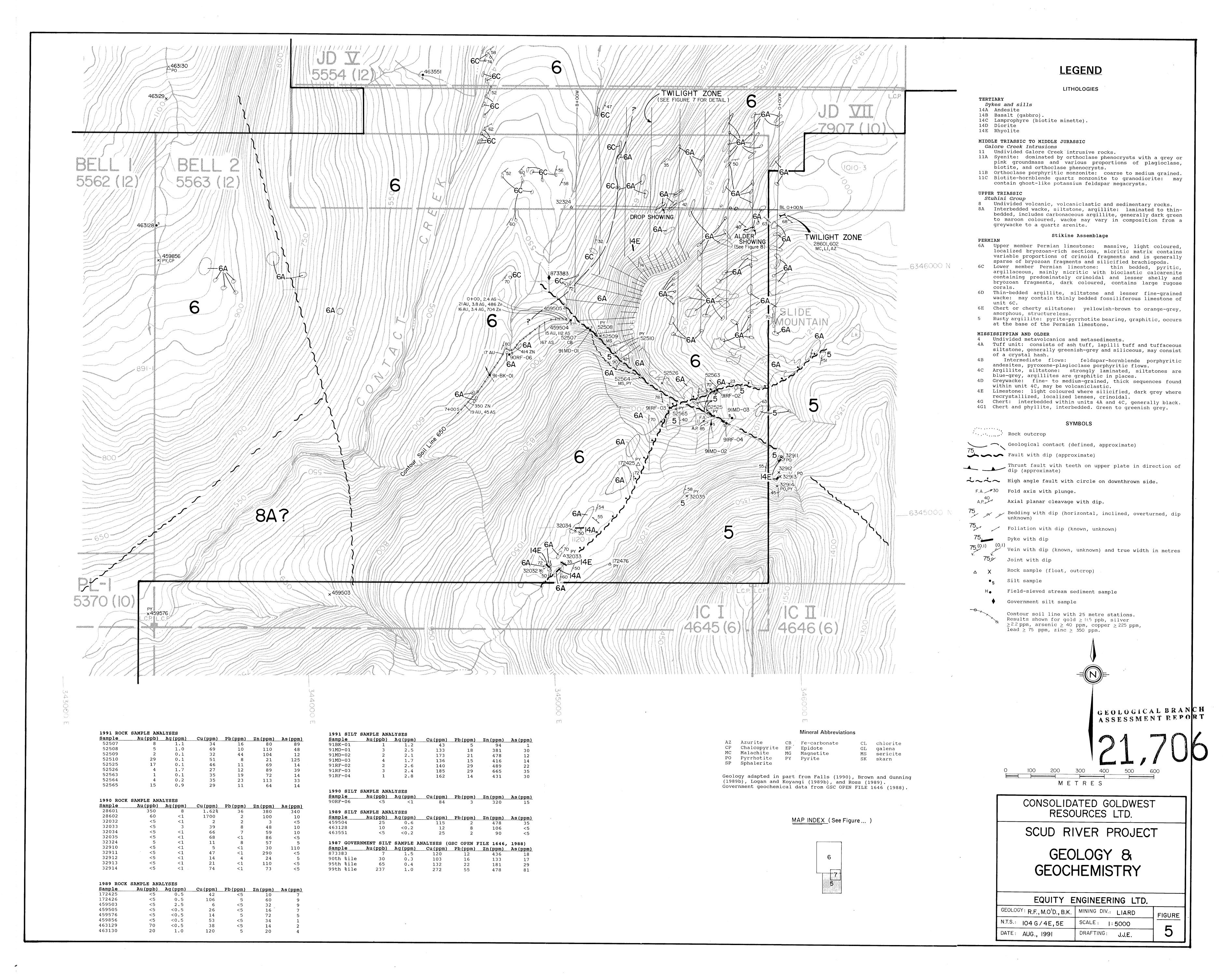

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

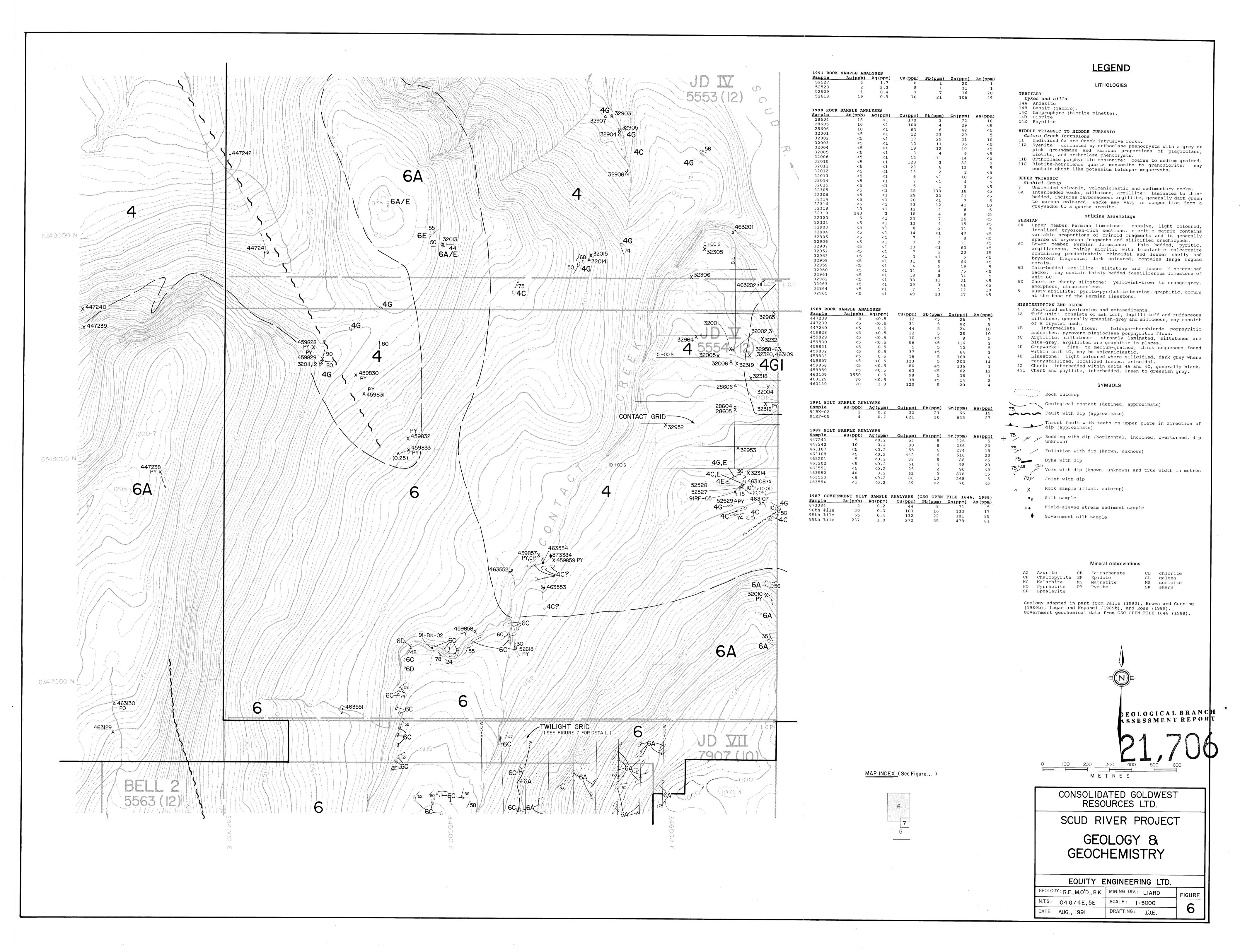
DATE: 91/08/17

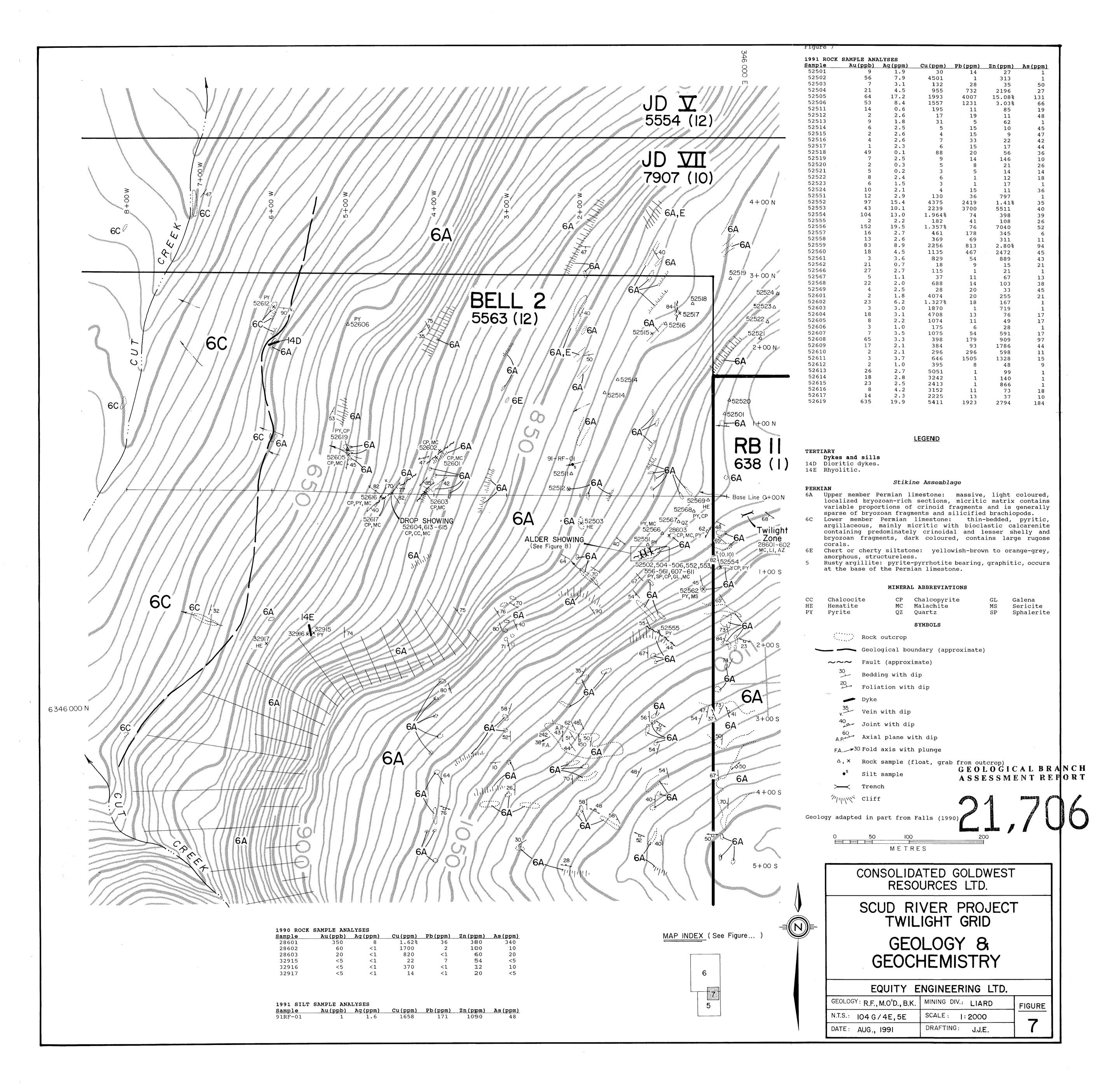
ATTN: H.AWMACK/J.FOSTER

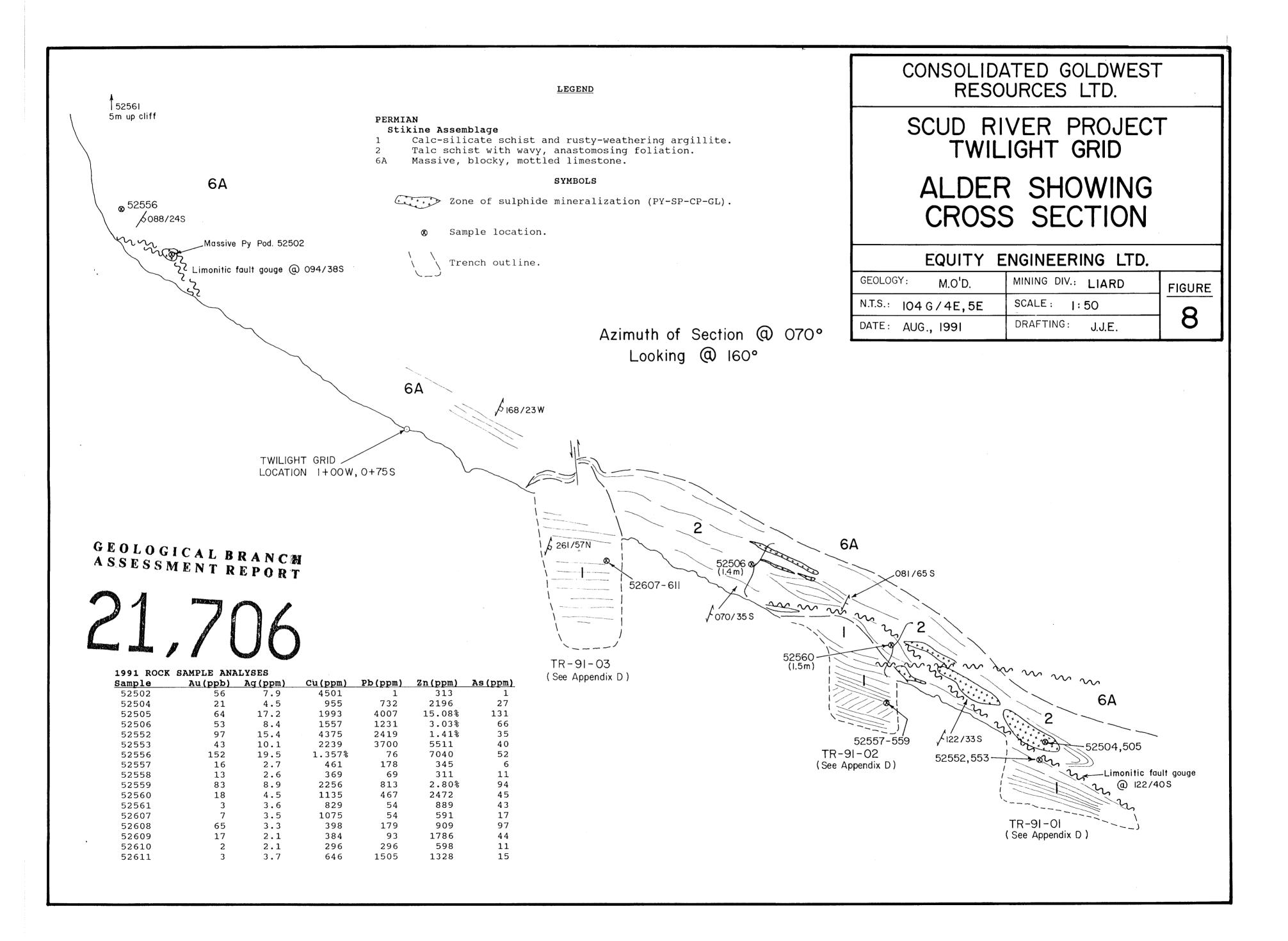
(604)980-5814 OR (604)988-4524

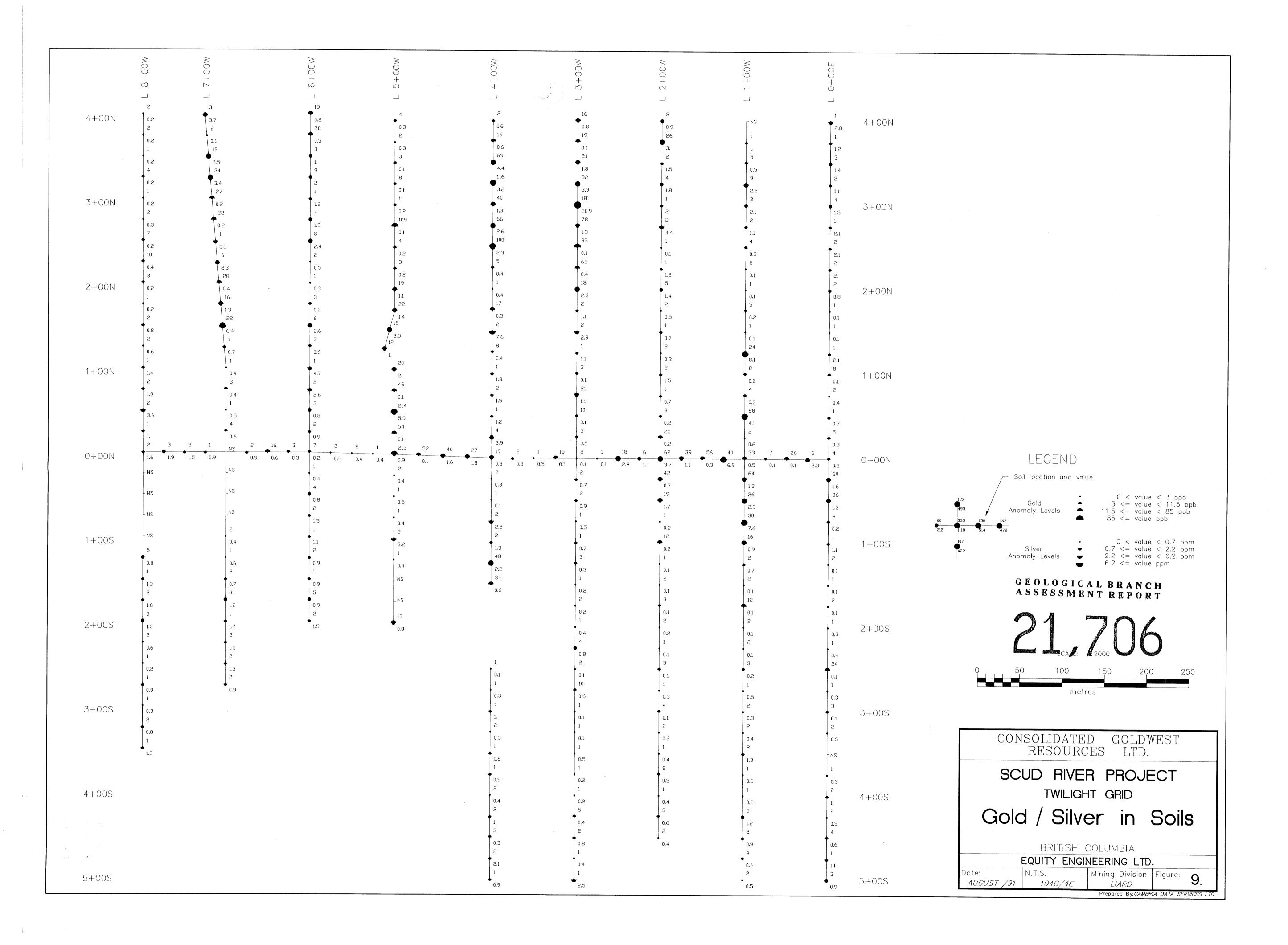
ATIN: H.AWMACK/J.	FOSTER								(604)	980-50	314 01	(604)	900-4	1324											* S(OIL 1	(/	ACT: F31)
SAMPLE NUMBER	AG AL PPM PPM	AS PPM		BA BE			CO M PPM		FE PPM	K PPM	LI PPM		MN PPM	PPM	PPM		PPM	PPM 1	PPM F	PM PP	H T M PPI	H PPM			SN PPM 1			U-FIRE PPB
BL 6+50W BL 6+25W BL 6+00W BL 5+75W BL 5+50W	.6 1470 .3 6010 .2 2630 .4 3220 .4 3350	10 13 21 27 25	3 2 1	22 .1 48 .5 36 .2 47 .2 35 .1	5 1 2729 2 1 4922 2 1 4410 1 1 5413	20 1. 20 1. 30 .	1 5 7 7 1 8 1 9	45 56 48	17400 19410 22580 24010	500 780 790 810	1 1 1 1	1620 1340 3500 3220 2600	278 274 277	1 1 2 1	1160 920 1120 1390 1340	10 18 18 19	1710 1100 1780 1650 1400	12 13 12 14 16	1 1 2	53 53 61	1 40 1 140 1 4 1 30 1 40	11.5 1 11.5 13.7 13.2	75 130 96 129	1 1 1	1 1 1	1 1 1	8 8 9 8 9	16 3 7 2 2
BL 5+25W BL 5+00W BL 4+75W BL 4+50W BL 4+25W	.4 3890 .9 13420 .1 15350 1.6 11250 1.8 11640	25 25 21 26 26	1 4 1 1 2 1	74 .1	7 5 1384 6 4 349 4 5 2389 1 6 574	0 . 0 . 0 13. 0 2.	1 14 1 14 0 11	1713 616 2772 1594	26690 50090 42090 36780 28160	970 1130 560 800	6	9070 8620 13820 16110	3531 1738 862	2 1 5 2	1170 1010 850 1020 1230	10 3 18 55	780 680 650	51 42 44	4 5 4 3		1 45 1 103	1 120.6 3 68.8 2 97.8 61.1	334 101 1585 510	2 2 3 4	1	3 2 3 3	10 17 11 22 45	1 213 52 40 27
BL 4+00W BL 2+50W BL 2+00W BL 1+75W BL 1+00W	.8 8850 2.8 45830 3.7 13660 1.1 17340 .5 27200	10 25 71 63 47	1 1 1	54 .3	5 6 576 5 5 809 3 7 560	30 . 30 . 30 .	1 15 5 13 1 13 1 16	73 2359 1194 832	32560 43630 50630 47490 46390	260 1820 1360 940	17 7	1140 2130 10300 8070 3030	1334 3288 2633 2269	6 20 51 10	1120 1140 1260 960 1200	1 1 1 10	740 1280 1770 640 1060	61 333 150 78	6 7 7	12 17 12		74.5 3 64.7 0 99.5 6 97.7	120 1118 514 479	2 3 4 2	1 2 1 1	3 2 2 3	12 11 30	19 18 62 39 33
BL 0+75W BL 0+50W BL 0+25W	.1 12710 .1 24780 2.3 5610	71 23 1	1	46 .1 75 .1 21 1.0	1 9 537	70.	1 12	92	74840 55070 12750	1020		1030 9660 105610	380	1	780 1170 1190	22	1580 460 810	53 57 63		6 24 43	1 64 1 184 1 16	6 97.6	115	2	1 1	4	19 70 23	7 26 6
				·																								·
							.								· - · · · · ·													
									·																			
												-												-				-
																					•							
												,			<u></u>							·						
1																										_		


STATEMENT OF QUALIFICATIONS


I, ROBERT B. FALLS, of 103-2181 Panorama Drive, North Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:


- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- THAT I am a graduate of the University of Toronto with a Bachelor of Science degree in Geology, 1982.
- 3. THAT my primary employment since 1987 has been in the field of mineral exploration.
- 4. THAT this report is based on fieldwork carried out under my direction, and on assessment reports filed with the province of British Columbia.
- 5. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to acquire any such interest.


DATED at Vancouver, British Columbia, this 12+ day of September, 1991.


Roll Tells, Geologist

