	the second s	and the second se
	LOG NO: OCT 1 6 1991	RÐ.
	ACTION:	
GEOCHEMICAL ASSESSMENT REP	ORT	
on the	FILE NO:	
W WEST, HAW EAST, HAW SOUTH, a	nd DEN	い。 今天読書記 日 ・ 日 ・ 日

HAW WEST, HAW EAST, HAW SOUTH, and DEN

Claim Groups

Omineca Mining Division

NTS 93N/13 & 94C/4

SULANCESCH RECEIVED 1991 CCT 1.民 拼 an an ann

56 OO'N, 125 42'W

for

MAJOR GENERAL RESOURCES LTD.

and

VARITECH RESOURCES LTD.

Ed McCrossan

October 14, 1991

HE U M ZC **A b 20 2 4** La fra **K** Z \bigcirc \bowtie S S 0 0 **_** 0 0 5 ථ ◄

SUMMARY

The assessment program was successful in identifying several anomalous locations, drainages and outcrops within the Haw West, Haw East, Haw South & Den claim groups. These geochemical anomalies are coincident with airborne magnetometer anomalies that are centred above the Haw 5, 6, 12, &13 and Den 3 claims.

The properties are well located 200 km north of Fort St. James close to the Omineca Mining road and established logging camps and airstrips, as well as, lakes that can be utilized for float plane access.

The properties lie within the Hogem Batholith of the Omineca Belt which was initially explored for porphyry copper-gold deposits in the 1960's and 1970's, when the Major General - Varitech Tam deposit and the nearby Lorraine deposit of Kennecott Canada were discovered. In the last two years, the belt has seen a renewed level of exploration activity due to the success of Continental Gold in outlining a large, low grade, copper-gold porphyry deposit at Mt. Milligan, which dramatically improved the reward/risk ratio for porphyry exploration in the Omineca camp.

The Lorraine and Tam deposits occur within mafic rich, foliated syenitic migmatites of the Duckling Creek Syenite Complex in the Hogem Batholith. The syenite complex trends northwesterly from the deposits and continues to the Haw and Den claims.

Hence, the properties have significant precious metal and/or porphyry copper-goldsilver potential and a detailed program of geological, geochemical, and geophysical surveys is recommended for the claim groups.

TABLE of CONTENTS

Summary	2
Introduction	5
Location and Access	5
Physiography	6
Claim Data	6
History	7
Regional Geology & Mineralization	7
Property Geology & Mineralization	8
Property Geochemistry	9
Conclusions and Recommendations	11
Certificate of Qualifications	12
Bibliography	13
Cost Statement	14

3

LIST of FIGURES

Figure 1	Location Map	after page 5
Figure 2	Claim Map	after page 6
Figure 3	Regional Geology	after page 7
Figure 4	Sample Number Map	in back pocket
Figure 5	Geochemistry	in back pocket
Figure 6	Haw West & East Grid: Soil Geochemistry	after page 10
Figure 7	Anomaly Compilation Map	in back pocket

LIST of TABLES

Table 1Claim Information

-

•

٣

....

.

page 6

LIST of APPENDICES

Appendix I	Rock Sample Descriptions	page 15
Appendix II	Analytical Results	page 20

INTRODUCTION

The Haw West, Haw East, Haw South, & Den claims are located 30 km. northwest of the Kennecott Canada Inc. Lorraine deposit and 12 km west-northwest of the Major General Resources Ltd. and Varitech Resources Ltd. Tam deposit.

The Lorraine deposit contains published reserves of 10 million tons with 0.67% Cu and 0.006 oz/t Au.

The Tam deposit consists of 7.2 million tons grading 0.55% Cu and 0.12 oz/t Ag.

This assessment report is based upon samples obtained from the claim groups during July, 1991 by Varitech Resources Ltd.

A total of 217 samples were collected and included 87 soils, 4 heavy mineral concentrates, 20 silts, and 106 rocks.

LOCATION AND ACCESS

The Haw and Den claims are situated within the Omineca Mountains approximately 200 km northwest of Prince George, B.C. (Figure 1).

The properties can be accessed by the Omineca Mining Road which continues north from Ft. St. James to the Cheni, Shasta, and Kemess deposits in the Toodogone Mining Camp.

The road passes through the Osilinka River Valley and along the western shoreline of Uslika Lake. From there, a helicopter lift is necessary to reach the claims which are located approximately 25 km west of the lake.

PHYSIOGRAPHY

Physiographically, the claims extend from relatively mature valley bottoms, with an approximate elevation of 1050 m, to sparsely vegetated alpine ridges exceeding 2,000 m in height.

Above the treeline (1500 m) coarse, blocky talus and ridgecrests are encountered.

CLAIM DATA

Claim outlines are included in Figure 2 and claim details are listed below.

Group Name	Claim Name	Record No.	No. of Units	Staking Date	*Expiry Date
HAW E	HAW 1	12335	20	July 26/90	July 26/92
	HAW 2	12336	18	July 27/90	July 27/92
	HAW 3	12337	18	July 27/90	July 27/92
	HAW 4	12338	18	July 27/90	July 27/92
	HAW 10	12344	12	July 28/90	July 28/92
HAW W	HAW 5	12339	18	July 27/90	July 27/92
	HAW 6	12340	20	July 27/90	July 27/92
	HAW 7	12341	20	July 27/90	July 27/92
	HAW 8	12342	20	July 28/90	July 28/92
	HAW 9	12343	20	July 28/90	July 28/92
DEN	DEN 1	12245	20	Aug 10/00	Aug 10/02
DEN	DEN 1 DEN 2	12345	20	Aug. $10/90$	Aug. 10/92
	DEN Z	12340	20	Aug. 10/90	Aug. 10/92
	DEN 3	12347	20	Aug.10/90	Aug.10/92
	DEN 4	12348	20	Aug.10/90	Aug.10/92
HAW S	HAW 11	12955	20	Feb.06/91	Feb.06/93
	HAW 12	12956	20	Feb.06/91	Feb.06/93
	HAW 13	12957	20	Feb.06/91	Feb.06/93

Table 1

* expiry dates include this assessment application.

HISTORY

During the late 1960's and 1970's the Hogem Batholith was explored for copper and molybdenum mineralization by Union Miniere Explorations and Mining Corp. Ltd. (UMEX) and their joint venture parnter Wenner Gren.

The work consisted of reconnaissance soil and silt sampling and geological mapping. Some detailed soil grids, silt surveys, and geological maps were compiled in anomalous areas.

In 1972, airborne magnetometer data was collected over the Hogem Batholith by the G.S.C.

During 1990, Major General Resources Ltd. and Varitech Resources Ltd. formed the Hogem Joint Venture to acquire properties encompassing the most prospective areas indicated by the UMEX data.

REGIONAL GEOLOGY & MINERALIZATION

The claim groups are located in the Quesnel Trough which consists of Mesozoic volcanics and related intrusions and hosts several producing copper-gold alkaline porphyry deposits (Figure 3).

In the study area, the Quesnel Trough is bordered by highly deformed Proterozoic and Paleozoic strata east of the Manson fault zone and by deformed upper Paleozoic strata west of the Pinchi fault.

More specifically, the claims lie within the Hogem Batholith which is a composite plutonic complex of Upper Triassic to Lower Cretaceous age. Intrusive compositions range from the oldest diorites (which include minor gabbro, pyroxenite and hornblendite phases) to the youngest leucocratic syenites and quartz syenites. The more acidic members occur axially and the basic lithologies are located peripherally within the batholithic complex. For a more detailed discussion of the Hogem Batholith see Garnett (1978).

The Takla Group, consisting of andesitic to basaltic volcanics of late Triassic age, was intruded by the batholith and occurs as slivers within the Pinchi fault zone and in contact with the intrusion along its eastern margin.

Copper mineralization within the Hogem Batholith consisting of chalcopyrite, bornite, chalcocite, covellite and malachite is associated with the syenitic phases and their related potash feldspar alteration zones. Gold and silver are commonly present with the sulphides which occur as disseminations and fracture fillings in hybrid rocks, that are also described as migmatites and/or foliates, within the Duckling Creek and Chuchi syenites.

The Duckling Creek Syenite Complex contains the Kennecott Lorraine and Major General - Varitech Tam deposits.

The Lorraine deposit consists of 10 million tons grading 0.67% Cu and 0.006 oz/t Au that occurs predominantly as disseminated chalcopyrite and bornite within the mafic rich portions of foliated syenitic migmatites that are spatially associated with lenses of biotite pyroxenite and faults. Potash feldspathization and sericitization is pervasive and secondary biotite, chlorite, and epidote is widespread. Magnetite is a common accessory.

The Tam deposit contains reserves of 7.2 million tons with 0.55% Cu and 0.12 oz/t Ag that occurs as disseminations and fracture fillings of chalcopyrite, pyrite, and magnetite within foliated syenites. Potash feldspathization, sericitization, and secondary biotite are all associated with the mineralization.

PROPERTY GEOLOGY & MINERALIZATION

Detailed geological mapping of the Haw and Den claim groups has not been done to date, however, government maps indicate that most of the area is underlain by syenites, granites and monzonites of the Hogem Batholith.

Umex reconnaissance geology maps also show widespread outcrops of syenites, granites, and monzonites within the map area, as well as, a northwesterly trending horseshoe shaped belt within the Duckling Creek Syenite Complex containing foliated syenites, syenite migmatites, and gneissic hybrid rocks, which passes through the Haw West, East and South claims (Figure 7). The same belt hosts the nearby Lorraine and Tam deposits.

During the 1991 assessment program all of the above lithologies were noted, as well as, significant quantities of pyroxenite and biotite pyroxenite which occurred as

cumulate lenses (cm's to m's thick) and as larger remnants or roof pendants within the monzonitic and syenitic phases of the Hogem Batholith.

The syenites ranged in composition from leucocratic to mesocratic and varied texturally from a fine to medium grained, homogeneous, hypidiomorphic rock to a potassium feldspar megacrystic porphyry containing cumulate oriented crystals several centimetres in length.

Monzonites and quartz monzonites were medium to course grained, hypidiomorphic and granitic in some areas.

The foliated syenitic migmatites contained alternating gneissic bands of fine grained leucosyenite and coarser grained mafic crystals which included magnetite. The mafic bands or lineations were generally thin (mm's) while the leucosyenite bands were usually several centimetres thick.

Sulphide mineralization consisting of chalcopyrite and pyrite occurred as disseminations and fracture fillings within the foliates and leucocratic syenites. Malachite stains were frequently observed and chalcocite was occassionally seen as coatings on fracture surfaces.

Chlorite and epidote alteration was widespread and lesser biotitization was observed in mesocratic syenites and pyroxenites.

Veins of quartz, quarz-carbonate, and potassium feldspar were also noted on the Haw West, Haw East, Haw South and Den claim groups.

PROPERTY GEOCHEMISTRY

A total of 87 soil, 4 heavy mineral concentrate, 20 silt, and 107 rock samples were collected from the Haw and Den claims by Varitech Resources Ltd. during July, 1991 (Figure 4). They were analysed by Min-En Laboratories for Au and 10 element ICP using standard rapid geochemical methods. Pb was included in the ICP requisition list but was not reported by the laboratory. The assay results are listed in Appendix I and displayed in Figure 5.

Rock samples were taken from the most prospective lithologies within the claims and an attempt was made, within budgetary restrictions, to inspect most of the area covered by the properties. Samples were usually "grab" from either talus or outcrop.

A contour soil line was ran through the common boundaries of the Haw East, Haw South and Haw West claim groups with sample intervals ranging between 30 and 200m. Soil samples were taken from the 'B' horizon wherever possible but some snow and talus cover impeded sampling. The HL series of assay results represent these samples.

A soil grid, designed as an extension of a UMEX geochemical grid from which highly anomalous Cu results were obtained, was placed on the southwestern edge of the Haw East claim group using a sylva compass and hip chain. The grid consists of four lines spaced 200 m apart and trending 030. The lines average 600 m in length. The baseline also extends for 600 m and trends 120. Samples were taken every 50 m from the 'B' horizon. Copper and gold values for these samples are plotted in Figure 6 and the Cu results were contoured.

Heavy mineral and silt samples were taken from selected drainages on the properties. The heavy mineral concentrates were collected with a 20 mesh screen.

Assay results for the assessment program are excellent and all sampling methods revealed anomalous locations. The anomalies are widespread but spatially associated with the airborne magnetometer highs centered over the Haw 5, 6, 12 & 13 and Den 3 claims (Figure 7).

Rock geochemical anomalies in Cu are numerous and usually associated with the foliated syenitic migmatites of the Duckling Creek Syenite Complex. Anomalous rock samples generally contained 1-2% disseminated and fine grained pyrite and chalcopyrite. Malachite was a common oxidation product on exposed fracture surfaces within the mineralized areas. Twenty eight rock sample locations gave excellent copper assays ranging between 312 and 21316 ppm. The best location with 2.13% Cu also assayed 16.4 ppm Ag and 110 ppb Au (sample #55003).

There are 12 sample locations anomalous in gold which assayed between 60 and 16,000 ppb (sample #55908). Sample #55908 contained 0.422 opt Au and was a selective grab sample of mineralization from a 20 cm wide quartz vein in talus. The predominant sulphide was galena and the sample also contained 11.0 ppm Ag. Sample number 55015 assayed 0.032 opt Au and was a talus sample of a quartz-carbonate vein containing pyrite and chalcopyrite mineralization.

The contour soil line revealed several anomalous locations for Cu and two locations (HL 9+70 & HL 10+00), which were only 30 m apart, assayed over 600 ppm.

The soil grid also gave excellent results with 17 stations assaying more than 100 ppm Cu. An isolated sample on line 2+00W assayed 1023 ppm Cu and contouring of the data indicates an anomalous northwesterly trend from B.L., 1+67W to 2+50N, 6+00W which substantially increases the area of the soil anomaly previously defined by UMEX during their 1970 sampling program.

a interesting and

Heavy mineral concentrate and silt sampling also indicate a highly prospective drainage in the north central portion of the Haw 5 claim which intersects foliates & syenites and is enclosed within an aeromagnetic anomaly. Detailed silt sampling, at 300m elevation intervals, within this drainage produced 7 locations assaying greater than 200 ppm Cu (ET 4100 - ET5600 sample series). Two samples were greater than 1000 ppm. A rock sample taken near the headwaters of this creek contained 0.87% Cu, 154 ppb Au, and 9.9 ppm Ag (55514). An anomalous heavy mineral concentrate containing 204 ppb Au (EML02) was taken 100m downstream from the mouth of this highly anomalous drainage.

CONCLUSIONS AND RECOMMENDATIONS

The assessment program was successful in identifying several anomalous locations, drainages and outcrops within the Haw West, Haw East, Haw South, & Den claim groups. These geochemical anomalies are coincident with airborne magnetometer anomalies of up to 2,700 gammas that are centred above the Haw 5, 6, 12 & 13 and Den 3 claims.

The properties are well located 200 km north of Fort St. James close to the Omineca Mining road and established logging camps and airstrips, as well as, lakes that can be utilized for float plane access.

The properties lie within the Hogem Batholith of the Omenica Belt which was initially explored for porphyry copper-gold deposits in the 1960's and 1970's, when the Major General - Varitech Tam deposit and the nearby Lorraine deposit of Kennecott Canada were discovered. In the last two years, the belt has seen a renewed level of exploration activity due to the success of Continental Gold in outlining a large, low grade, copper-gold porphyry deposit at Mt. Milligan, which dramatically improved the reward/risk ratio for porphyry exploration in the Omineca camp.

The Lorraine and Tam deposits occur within mafic rich, foliated syenitic migmatites of the Duckling Creek Syenite Complex in the Hogem Batholith. The syenite complex trends northwesterly from the deposits and continues to the Haw and Den claims.

Hence, the properties have significant precious metal and/or porphyry copper-goldsilver potential and a detailed program of geological, geochemical, and geophysical surveys is recommended for the claim groups. 1.00

· 化乙酰基乙酰基乙酰基乙酰基乙酰

STATEMENT OF QUALIFICATIONS

I, Ed McCrossan, of 3328 W. 2nd Avenue, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.
- 2. I am presently employed as a consulting geologist with the ARC Resource Group of 401, 325 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation and have worked on projects in Canada, Hungary, Thailand, China, Australia, and Chile.
- 4. I am a member of the Canadian Institute of Mining and Metallurgy, and the Geological Association of Canada.
- 5. The recent data described in this report was collected by Varitech Resources Ltd. during July, 1991.
- 6. I do not own or expect to receive any interest (direct, indirect, or contingent) in the properties described herein nor in the securities of Varitech Resources Ltd. or Major General Resources Ltd., in respect of services rendered in the preparation of this report.
- 7. I consent to and authorize the use of the attached report and my name in Company's Prospectus, Statement of Material Facts or other public documents.

Ed McCrossan Geologist, F.G.A.C.

DATED at Vancouver, British Columbia, this // day of October , 1991.

12

BIBLIOGRAPHY

- Barr, D., Fox, P., Northcote, K., and Preto, V. (1976): The Alkaline Suite Porphyry Deposits, CIM Special Vol. 15, pp 359-367.
- Burgoyne, A. and Pauwels, A. (1974): Summary Report 1974 Exploration Program, UMEX Ltd.
- Chapman, J. (1990): Summary Report on the TAM Project, Orequest Consultants Ltd.
- Chow, F., Kahlert, B., H. (1990): Haw West Property; Compilation of Geological, Geochemical, Geophysical and other data on the Haw West Group of Mineral Claims.

(1990): Haw East Property; Compilation of Geological, Geochemical, Geophysical and other data on the Haw East Group of Mineral Claims.

(1990): Den Property; Compilation of Geological, Geochemical, Geophysical and other data on the Den Group of Mineral Claims.

- Dyson, C. (1974): Report on a Prelimanary Feasibility and Financial Analyses of the Boundary Deposit, TAM Property, B.C., UMEX.
- Garnett, J. (1972): Preliminary Geological Map of Part of the Hogem Batholith, Duckling Creek Area, B.C. Department of Mines and Petroleum Resources, Map #9.

(1978): Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C. Department of Mines and Petroleum Resources, Bull 70.

McCrossan, E. (1991): Geochemical Assessment Report on the Osi, Tam-Osi, and Osi 3 Claim Groups.

Pauwels, A. and Burgoyne, A. (1975): Assessment Report on Drilling and Mapping, UMEX.

Peto, P. (1991): Geological, Geochemical, and Geophysical Assessment Report on the TAM Claim Group.

COST STATEMENT

Professional Fees:	
Ed McCrossan 4.5 days @ \$350/day	\$ 1,575.00
Field Personnel Fees:	
Ed McCrossan 9 days @ \$350/day	3,150.00
Peter Peto 10 days @ \$300/day	3,000.00
Todd Armstrong 10 days @ \$250/day	2,500.00
Mike Lachance 9 days @ \$250/day	1,800.00
Camp Equipment Rental:	2,000.00
Field Equipment & Rental	870.00
Truck Rental 10 days @ \$80/day	800.00
Camp Costs 38 days @ \$50/day	1,900.00
Scheduled Flights	900.00
Chartered Flights	950.00
Helicopter 12.8 hrs @ \$650/hr	8,320.00
Travel Expenses & Fuel	510.00
Expediting	60.00
Freight	150.00
Analyses:	
107 rock @ \$16.75	1,790.00
87 soil @ \$14.25/sample	1,240.00
20 silt @ \$14.25/sample	285.00
4 heavy mineral conc's @ \$48.00	190.00
Report & Drafting	1,200.00
GST	2,320.00
Management, Office Costs, & Miscellaneous @ 5%	1,650.00
TOTAL	\$37,160.00
10 E. MCCROSSA A	

'du

<u>HAW - DEN</u>

<u>APPENDIX I</u>

Rock Sample Descriptions

Peter Peto	55001 - 42
Todd Armstrong	55501 - 17
	55801 - 06
Ed McCrossan	55902 - 42

55001	random chip of leucosyenite; limonite stain with diss. py.
55002	chip sample of quartz vein; 1 1/2 ft. wide
55003	quartz vein (as above) with malachite stain
55004	pink alaskite (grab)
55005	drusy, banded milky quartz vein (grab).
55008	1-5cm wide rusty quartz vein in syenite (grab)
55009	gneissic syenite with quartz-chlorite-magnetite fracture fillings.
55010	quartz vein within magnetic mesoyenite (grab)
55011	limonitic mesocratic syenite
55012	drusy quartz veinlets in altered leucosyenite (grab)
55013	qtz. vein in mesosyenite (talus grab)
55014	limonitic monzonite containing pyrite and chalcopyrite? (talus
	grab)
55015	quartz carbonate vein (with pyrite and chalcopyrite) in monzonite
	(talus grab)
55016	quartz vein in altered monzonite (talus grab)
55017	milky quartz vein containing chalcopyrite and pyrite (grab)
55018	strongly magnetic orthosyenite (grab)
55019	cumulate pyroxenite with magnetite (grab)
55020	silt
55021	quartz veins in monzonite (grab)
55022	biotite honfels sliver with a trace of pyrite
55023	hornblende monzonite hornfels
55024	8 cm quartz vein cutting monzonite (grab)
55025	quartz vein with epidote selvage (talus grab)
55026	colluvial fines sample from an avalanche chute
55027	colluvial fines sample from a hornblende monzonite talus slope
55028	sheared hornblende monzonite; shear (35m wide) contains,
	chlorite and limonite (grab).
55029	pink, fine to med.grained, quartz eye granite (grab)
55030	rock chute colluvium sample within quartz eye granites

-

55031	pyroxenite sliver in leucosyenite (grab)
55032	hornblendite-syenite breccia with a trace of diss. pyrite
55033	milky quartz vein in hornblende monzonite (talus grab)
55034	silt
55035	biotite-syenite hornfels cut by epidote fracture filliings
55036	silt (quartz eye granite country rocks)
55037	silt (base of hornblende monzonite talus slope)
55038	silt (hornblende monzonite country rocks)
55039	10cm, drusy quartz vein within hornblende monzonite
55040	colluvial sample from a limonitic shear in granite
55041	silt (hornblende monzonite country rocks)
55042	quartz vein in hornblende monzonite (talus grab)
55501	leuco syenite; Med.grained, equigranular; weakly foliated; small section of boulder (10 x 20cm) rusty with 5-10% coarse grained py; found in talus
55502	Migmatitic leuco-syenite; fine grained, sucrosic, eqigranular; moderately foliated with fractures parallel to foliation; no visible sulphides; migmatite horizon occurs as 25 cm wide undulating seam within coarse grained Lueco-syenite; found in outcrop (15 x 10m).
55503	Qtz vein; massive, white, no visible sulphides; no rust; found in talus.
55504	Qtz veins; massive, white to grey; half dozen in total over 5 x 10m area trending @ 270 47/80 N; 1-2cm wide; within leuco-syenite outcrop; traces of very fine grained galena.
55505	Migmatitic meso-syenite; fine grained, sucrosic; weakly foliated; trace py with minor rust; found in talus.
55506	K-spar vein; coarse grained; 12 cm wide; mo mineralizaton; found in coarse grained porphyritic leuco-syenite in talus.
55507	Migmatitic meso-syenite; fine grained, sucrosic; 1-2cm wide quartz veinlets; trace py in migmatite; rusty weathering; found in talus.
55508	Leuco-syenite; coarse grained porphyritic K-spar crystals with med. grained hornblende; no sulphides; pale blue alteration and rusty weathering locally; found in talus.
55509	Migmatitic leuco-syenite; pale blue-grey; fine to medium grained, sucrosic; hornblende with trace biotite; not evident in above cliffs but comprises 35% of the talus where it was found; 1% py, disseminated & in blebs.
55510	Meso-syenite; fine grained, equigranular; predominately hornblende with magnetite and trace biotite; found @ 4800' in float.
55511	Melanocratic to Ultramafic syenite; medium grained equigranular; hornblende & magnetite in blebs; found @ 5000' float.

55512	Migmatitic meso syenite; fine grained, gneissic; biotite +
55510	nornblende; magnetic; found @ 5260' in float
22213	Gneissic meso-syenite; fine grained K-spar with med.grained
	hornblende phenocrysts; very fine grained orange-red mineral in
	bands parallel to gneissosity (garnets?), epidote alteration; found @ 5500' in float.
55514	Quartz vein in syenite; massive, white; $1.5 + 2.0$ cm blebs of py;
	found @ 5600' in float.
55515	Gneissic / Migmatitic meso-syenite; fine to med. grained
	hornblende; rusty weathering with 1% disseminated py; found @
	5600' in float.
55516	Meso-syenite; fine grained matrix with coarse grained hornblende
	phenocryts; 1-2% disseminated py crystals; found @ 5550' in
	float.
55517	Quartz vein; in leuco-syenite; minor rust; no sulphides; found @
	5400' in float
55801	Leuco to meso-syenite; coarse grained k-spar phenocyrsts with
	med. grained hornblende crystals and fine grained magnetite;
	clay and chlorite alteration; found in outcrop at 3700'
55802	Quartz vein in leuco-mesosyenite; massive white to grey; up to
	25 cm wide of unknown extent or orientation; no sulphide and
	non-magnetic; found @ 3700' within unit in outcrop of above
	samples
55803	Quartz vein in leuco-mesosyenite; massive, white to grey; up to
	15cm wide of limited extent, tr. py, galena; found @ 3800' in
	outcrop
55804	Leuco-syenite; med. to carse grained; hornblende with minor
	(<2%) sub to euhedral magnetite crystals fine grained; weakly
	fractured and foliated; minor malachite alteration and white
	crusty alteration (carb.?); found @ 3850' in float
55805	Leuco-syenite; fine grained, moderately foliated (migmatitic);
	magnetite (7%) + hornblende + biotite, + muscocite; minor qtz
55506	veinlets; limonite and chloritic alteration; found @ 4000' in float
22200	Meso-syenite; medium grained; moderately foliated; magnetite
	and hornblende; minor clay and chlorite alteration; found @
55000	4100° in float
55002	1-2cm quartz vein within leucosyenite; trace galena
22902	metanocratic syenite with minor malachite stain associated with
55004	mane crystal inications supplies migmetite with 1% f.g. diss. by $k > 2\%$ molechite stein
33904	sychilic migmatice with 1% i.g. diss. py & 2-5% malachile stam
55005	fine to coorse grained purovenite with malachite stain (5%)
55005	10cm quartz vein with traces of purite only gal and malachite
JJ700	(talus sample)
55907	$\frac{1}{1}$
55701	pyrovenne unus (us in 55705)

.

55908	20cm wide quartz vein as talus; approx. 8% vuggy porosity containing free quartz and galena crystals; 1-2% euhedral galena
	concentrations (mm's) within the medial band of the multi-stage
	vein (selective grab)
55909	magnetic mesosyenite or diorite with dark brown stain on
	exposed surfaces
55910	composite sample of pyroxenite talus
55911	leucosyenite; minor boxwork texture with black and dark brown
	stains; trace diss. cpy and 2% malachite assoc. wth cpy and
	coating fracture surfaces
55912	megacrystic mesosyenite
55913	pyroxenite with minor epidote alteration and a trace of malachite
55914	moderately foliated leucosyenite wth a trace of diss. pyrite, chalcopyrite, & bornite
55915	foliated leucosyenite
55916	30cm multi-stage quartz vein (in talus); euhedral galena
	concentrations (1cm, less than 1%); trace of malachite
55917	finely foliated & recrystallized gneissic syenite; silicified with
	epidote; diss. chalcopyrite, bornite & pyrite (less than 1% with
	malachite, chalcocite and covelite coating fracture surfaces
55918	1-2% malachite and chalcocite coating fracture surfaces within a
	kspar megacrystic granite
55919	kspar megacrystic granite; tr-1% cpy assoc. with quartz stringers;
	malachite and chlorite on frac. surfaces
55920	leuco-mesocratic megacrystic syenite with minor chlorite and
	epidote alteraton; trace of pyrite, cpy, and malachite as
	disseminations and fracture fillings
55921	pyroxenite grab with a trace of chlorite and epidote alteration
55922	altered diorite or mesosyenite with some quartz stringers and assoc. hematization
55923	pyroxenite with chlorite and epidote and traces of malachite and
	chalcocite
55924	f.g., gneissic mesosyenite or syenodiorite containing v.f.g. diss.
	pyrite & chalcopyrite (tr - 1%) with malachite and chalcocite
	(1%) as secondary copper products
55925	altered (chlorite, epidote) mesosyenite adjacent to a 30cm wide
	kspar vein; v.f.g. diss. pyrite & chalcopyrite (tr-1%)
55926	f.g. pyroxenite (talus)
55927	fine to medium grained mesosyenite with minor chlorite
	alteration & a trace-1% disseminated pyrite, chalcopyrite,
	malachite (composite talus sample)
55928	as in 55927
55929	3cm wide quartz vein in talus; trace of pyrite and sericite along
	the medial line
55930	altered (chlorite, epidote, biotite) mesosyenite

55931	25cm wide quartz vein (talus float) with a trace of v.f.g. pyrite and siderite alteration
55932	mesosvenite (as in 55930)
55933	mesosyenite (as in 55930)
55934	as in 55930
55935	fine grained monzonite - diorite; trace of very fine grained
	disseminated pyrite; minor kspar alteration and hematitic staining associated with hairline fractures
55936	monzo-diorite (as in 55935)
55937	fine to medium grained pyroxenite with chlorite and biotite
	alteration. Traces of chalcopyrite, bornite & malachite associated with disseminations and along fractures. Highly magnetic.
55938	as in 55937
55939	chloritized pryoxenite breccia, intruded by leucosyenite dykelets and kspar veins. Traces of chalcopyrite and bornite, magnetite to 3%
55940	as in 55939
55941	2cm wide quartz - kspar vein intruding syeno-diorite. Trace of magnetite
55942	Fractured and mineralized syeno-diorite. Trace of disseminated pyrite and chalcopyrite with malachite and limonite coating fractures

APPENDIX II

ANALYTICAL

RESULTS

denies i kaditer ar delse en

HINE KAL ENVIRONMENT ENVIRONMENT LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

14442

- 6

لكوريك مسائر فيتا

0

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0248-RA1

Company:	VARITECH RES, /MAJOR GENERAL	Date: AUG-02-91	-
Project:	HAW-DEN ASSESS.	Copy 1. VARITECH RESOURCES, VANCOUVER, B.C.	
Attn:	ED MCCROSSAN/B.KAHLERT	2. MAJOR GENERAL, VANCOUVER, B.C.	
		3. VARITECH RESOURCES, C/O MIN-EN LABS.	
11		F O DOGW 1	

He hereby certify the following Assay of 2 ROCK samples submitted JUL-27-91 by ED MCCROSSAN.

Sample	AU	AU	
Number	g/tonne	oz/ton	
55015	1.10	.032	
55908	14.47	.422	

Certified by_

MIA-EN LABORATORIES

COMP: VARITECH RES./MAJOR GENERAL PROJ: HAW-DEN ASSESS. ATTN: ED MCCROSSAN/B.KAHLERT

٠.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0248-RJ1 DATE: 91/08/02

* ROCK * (ACT:F31)

SAMPLE	AG	AS	BI	CO	CU	MO	TI	ZN	SN	W	AU-FIRE
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPB
55001	2.7	25	8	20	693	1	2219	33	1	4	1
55002	.7	31	1	2	46	15	75	10	1	15	4
55003	16.4	9	1	7	21316	1	66	188	1	9	110
55004	.5	13	1	2	421	9	42	13	1	10	2
55005	.6	22	1	3	222	1	41	11	1	11	5
55006	.3	10	1	5	47	4	138	22	1	7	2
55007	.3	11	2	2	25	1	203	19	1	5	1
55008	.1	13	1	3	16	7	15	21	1	8	3
55009	.8	9	2	8	24	9	259	41	1	5	2
55010	.5	19	1	3	23	11	112	13	1	12	4
55011	.6	11	2	13	39	1	165	76	1	5	1
55012	.7	4	4	8	20	5	1008	33	1	7	5
55013	.4	13	1	3	39	1	127	15	1	8	2
55014	2.1	1	8	26	1939	2	2784	74	1	8	10
55015	1.3	10	3	18	189	1	81	28	1	5	1080
55016	1.4	12	7	10	124	10	521	53	1	7	65
55017	9.3	15	1	3	7340	4	20	36	1	7	20
55018	1.1	1	8	15	141	1	2148	46	1	7	2
55019	.8	1	12	36	132	1	4163	85	1	8	1
55020	.2	1	3	19	103	1	939	57	1	3	18
55021	1.0	8	7	9	40	9	1406	26	1	12	1
55022	2.4	1	19	30	79	1	4778	59	1	6	2
55023	1.9	1	14	27	109	1	3679	52	1	8	3
55024	.2	21	2	4	11	1	146	11	1	13	4
55025	.8	24	2	3	48	12	349	10	1	25	1
55026 55027 55028 55029 55030	1.3 1.0 .7 .4 .6	1 1 3 12 1	13 11 2 3 6	26 23 9 4 13	269 189 16 20 106	1 1 9 1	3544 2790 73 360 1245	132 102 40 22 42	1 1 1 1 1	7 3 3 11 6	1 3 2 10 2
55031	1.9	1	15	25	169	1	3798	66	1	7	1
55032	.5	1	3	26	312	1	766	89	1	5	1
55033	.4	24	1	2	17	13	68	5	1	14	1
55034	.6	13	1	13	98	1	420	113	1	2	64

COMP: VARITECH RES./MAJOR GENERAL PROJ: HAW-DEN ASSESS. ATTN: ED MCCROSSAN/B.KAHLERT

.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0248-RJ2 DATE: 91/08/02 * ROCK * (ACT:F31)

			(0047)	00 5014 (JK (00477	00 4724	·			NUCK	(ACT.FS
SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CO PPM	CU PPM	MO PPM	TI PPM	ZN PPM	SN PPM	W PPM	AU-FIRE PPB
55035 55036 55037 55038	1.3 .1 .1	3 3 1 8	6 2 1 3	11 13 10 17	6 78 30 123	1 1 1	950 506 482 758	83 85 51	1 1 1	4 3 2 2	3 8 5 2
55039	.3	23	1	2	13	12	34	5	1	12	1
55040 55041 55042 55501 55502	.1 .2 .3 4.9 2.1	1 8 17 1 1	1 4 1 17 15	15 15 1 47 14	45 145 4 3208 268	1 1 7 1 1	60 486 15 5976 3915	70 105 3 58 24	1 1 4 3	3 2 8 8 6	2 6 1 5 1
55503 55504 55505 55506 55506 55507	.3 .3 1.1 .7 .8	18 27 1 1 7	1 4 6 5 4	1 7 25 7 17	26 36 147 13 43	6 19 1 2 1	94 1019 1363 1318 513	4 23 114 25 82	1 1 1 1 1	9 21 10 5 9	4 1 6 1 7
55508 55509 55510 55511 55512	.7 3.8 1.4 .9 .7	1 1 1 1 1	4 1 11 12 9	24 30 19 56 18	833 5249 219 689 604	1 1 1 1	1162 1232 2927 4173 2710	72 87 95 108 91	1 1 1 1	4 4 5 9 5	1 50 2 3 1
55513 55514 55515 55516 55517	1.6 9.9 1.8 1.6 .7	1 11 1 1 13	11 1 10 6 1	14 7 16 29 3	330 8063 880 623 33	1 7 1 1 4	2543 192 2455 1759 88	61 25 72 36 6	1 1 1 1 1	5 8 4 4 6	1 154 2 1 2
55801 55802 55803 55804 55805	.9 .5 2.6 .4 .1	1 15 23 6 7	5 2 1 2 1	7 2 2 5 11	42 15 13 13 52	1 3 5 1 1	1317 296 121 350 70	35 6 8 29 57	1 1 1 1 1	4 7 9 4 6	4 1 3 1 60
55806 55902 55903 55904	.7 .5 2.2 2.0	1 13 1 1	5 2 12 6	16 4 27 17	105 16 1046 2403	1 42 1 1	1242 89 3626 1783	51 14 106 53	1 1 1 1	4 6 7 4	2 4 5 1
					· · · · · · · · · · · · · · · · · · ·						

COMP: VARITECH RES./MAJOR GENERAL PROJ: HAW-DEN ASSESS.

ATTN: ED MCCROSSAN/B.KAHLERT

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0248-RJ3+4 DATE: 91/08/02 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CO PPM	CU PPM	MO PPM	TI PPM	ZN PPM	SN PPM	W PPM	AU-FIRE PPB
55905 55906 55907 55908 55908 55909	4.0 1.6 2.2 11.0 .4	1 21 1 34 1	9 1 13 3 4	29 3 38 2 19	2113 2085 1554 114 49	1 7 1 50 4	2928 146 4478 151 370	104 21 128 20 185	2 1 1 2 1	8 10 9 9 8	60 35 32 16000 359
55910 55911 55912 55913 55914	.5 19.9 1.4 1.9 .4	1 1 1 1 1	10 3 7 14 1	38 7 11 41 8	66 7655 233 727 227	1 3 1 1 25	2773 1752 1843 4218 261	107 11 32 94 46	1 1 1 1 1	8 5 5 8 3	45 632 29 3 2
55915 55916 55917 55918 55919	.1 4.3 2.8 1.3 1.7	1 25 1 7 11	2 1 2 1 1	8 1 8 7 5	25 386 2069 3636 6579	2 116 35 5 13	267 25 832 666 90	74 79 35 31 38	1 1 1 1	2 10 5 5 7	4 20 1 2 1
55920 55921 55922 55923 55923 55924	2.6 1.3 1.1 2.1 6.0	4 1 14 1 3	10 16 3 15 4	22 46 10 35 20	2656 392 66 1291 4783		3941 5070 331 4723 1786	50 130 61 131 723	2 1 1 2 1	8 10 7 8 5	21 1 62 14 2
55925 55926 55927 55928 55929	1.7 1.5 1.5 1.5 .4	1 1 1 5 23	6 16 7 8 1	18 36 35 22 4	387 183 565 199 17	18 1 6 7 22	1583 4144 1813 2002 57	44 98 18 17 9	1 1 1 1 1	3 9 4 4 13	1 3 1 2 84
55930 55931 55932 55933 55934	1.0 .5 .4 .2 1.0	1 20 13 25 4	8 1 1 1 2	15 3 9 22 16	40 9 154 109 22	1 18 2 2 1	1758 45 245 90 42	62 9 12 81 65	1 1 1 1 1	5 11 8 5 3	2 1 3 2 1
55935 55936 55937 55938 55939	1.2 .6 1.3 1.7 .6	1 3 1 1 1	8 4 10 10 6	10 6 54 52 17	26 15 808 1457 177	1 6 1 1	1696 821 3938 4300 1591	33 43 119 113 36	2 1 2 2 1	4 7 5 8 4	1 1 2 1 3
55940 55941 55942 HL 8+50 ROCK HL 10+00 ROCK	1.3 .4 6.3 1.3 1.0	1 8 1 1 1	8 1 3 10 5	18 6 19 29 12	78 10 4924 136 158	3 4 3 1 1	1986 86 1639 2867 1545	35 26 93 90 35	2 1 2 2 1	7 7 7 5 4	2 1 180 2 1
HL 12+50 ROCK HL 14+80 ROCK	.9 1.2	1 1	6 10	11 14	152 38	1 1	1506 2479	30 32	1 2	3 6	1 1
						·					
										~	

COMP: VARITECH RES./MAJOR GENERAL PROJ: HAW-DEN ASSESS. ATTN: ED MCCROSSAN/B.KAHLERT MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 ERT (604)980-5814 OR (604)988-4524 FILE NO: 1S-0248-SJ5+6 DATE: 91/08/02 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CO PPM	CU PPM	MO PPM	T I PPM	ZN PPM	SN PPM	W PPM	AU-FIRE PPB
HL 15+00	.7	1	7	16	179	1	1420	107	1	. 3	1
HL 14+80	-4	1	7	19 10	51 115	1	1933 2102	61 66	1	4	2
HL 14+00	.1	1	7	20	203	1	1647	119	1	4	22
HL 13+50	.1	1	5	27	251	1	975	178	1	5	50
HL 13+00	.1	1	6	31	181	1	1457	188	1	6	1
HL 12+50	.1	1	5	27	142	1	1325	119	1	5	1
HL 10+00	.1	1	3	27	636	6	569	174	1	3	2
HL 9+70	.9	1	7	15	645	7	2244	53	1	5	36
HL 9+00	.2	1	8	27	189	1	2175	136	1	5	2
HL 8+50 HL 7+50	-4	1	10	21	49 73	1	2551	/1 131	1	5	1
HL 7+00	.6	1	ý 9	19	78	1	2020	98	1	5	4
HL 6+50	.2	1	5	18	162	1	1197	84	1	3	64
HL 5+75	.2	1	6	16	83	1	1161	89	1	3	2
HL 4+75	-1	1	5 13	20	79 07	1	754 3005	178	1	4 5	1
HL 3+50	.6	1	8	15	114	1	1758	91	1	3	ż
HL 3+00	.5	1	7	14	118	1	1644	73	1	3	1
HL 2+75	.3	1	3	10	102	1	589	60	1	2	1
HL 1+/5	.4	1	5	11 26	153	11	969 2010	105	1	5	2
HL 0+75	.1	1	6	16	52	i	1442	84	1	4	1
HL 0+00	.1	1	6	17	65	1	1340	76	1	4	1
HG 6W 5+00N	1.0	1	9	15	289	1	1935	75	1	3	3
HG 6W 4+5UN	.1	1	6	22	210	1	1696 1408	81 74	1	ל ז	1 76
HG 5+75W 3+50N	.5	1	5	9	20	1	1323	28	1	3	14
HG 5+75W 3+00N	.3	. 1	4	14	399	1	683	160	1	3	5
HG 5+75W 2+50N	.3	1	4	12	116	2	1251	86	1	4	36
HG 5+75W 2+00N	-1	1	3 4	17	447 497	5 31	551 836	161	1	4 15	45 612
HG 5+75W 0+50N	.4	1	6	14	38	1	1623	41	i	4	2
HG 5+75W 0+50S	1.3	1	13	20	25	1	3417	57	2	6	1
HG 5+75W 1+00S	.7	1	12	22	26	1	3544	72	1	6	4
HG 5+50W BL	.1	1	4	19 17	97. 301	1 17	1534	101 436	1	د ۲	2
HG 4+50W BL	1.0	1	14	18	31	1	3592	64	2	7	3
HG 4+00W 5+00N	.5	1	7	16	95	1	1955	97	1	3	2
HG 4+00W 4+50N	1.2	1	9	7	16	1	2376	33	2	2	2
HG 4+00W 4+00N	.5 .7	1	6	12	29 59	1 1	1904	44 47	1	4	10
HG 4+00W 3+00N	.8	1	6	11	31	1	1702	42	1	4	8
HG 4+00W 2+50N	.1	1	4	17	29	4	1177	109	1	3	1
HG 4+00W 2+00N	.1	1	5	16	173	3	1164	170	1	4	2
HG 4+00W 1+00N	.1	1 1	1 7	10	207 61	60 1	1756	00 123	1	2	135
HG 4+00W 0+50N	.1	1	6	22	146	1	1615	106	1	5	2
HG 4+00W BL	.5	1	11	22	54	1	2577	97	1	5	1
HG 4+00W 0+50S	.3	1	7	16	41	1	1889	61	1	5	1
HG 4+00W 1+505	.2	ו 1	0 8	14	75 72	1	2114	66	1	4	
HG 3+50W BL	.5	1	9	23	403	1	2547	179	1	5	1
HG 3+00W BL	1.5	1	12	12	16	1	2977	41	2	5	1
HG 2+50W BL	1.4	1	5	9	35	2	1339	47	1	3	2
HG 2+00W 5+00N HG 2+00W 4+50N	.6	1	6 6	1U 9	57	1 18	1422	49 61	1	5	4
HG 2+00W 4+00N	.5	1	5	ý	40	1	1155	51	1	3	2
HG 2+00W 3+50N	.7	1	6	11	27	1	1986	40	1	4	44

COMP: VARITECH RES./MAJOR GENERALMIN-EN LABS --- ICP REPORTPROJ: HAW-DEN ASSESS.705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2ATTN: ED MCCROSSAN/B.KAHLERT(604)980-5814 OR (604)988-4524 PROJ: HAW-DEN ASSESS.

FILE NO: 1S-0248-SJ7+8 DATE: 91/08/02 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI	CO PPM	CU	MO	TI PPM	ZN	SN	W PPM	AU-FIRE PPR
HC 2+00U 7+00N	2 7				75		40//	/0			
HG 2+004 2+50N	2.3	1	· 4	0 71	1037		1004	48	1	2	10
HG 2+004 2+00N	.+	4	8	31	1023	4	2178	50	1	5	19
HG 2+00W 1+50N	.5	1	10	25	77	1	2805	. 110	1	7	1
HG 2+00W 1+00N	.1	1	9	44	89	1	3212	217	1	8	2
HC 2+00U 0+50N	4		7		21/		2102	477	1		
HG 2+00W BL	1.3	1	7	24	34		1750	53	2	ר ד	16
HG 2+00W 1+00S	.4	1	6	14	355	1	1746	84	1	4	. 23
HG 1+50W BL	5	i	10	31	364	2	3012	159	1	5	54
HG 1+00W BL	.5	1	11	33	253	ĩ	3223	164	1	6	5
HG 0+50W BL	.8	1	7	11	26	1	2081	50	1	4	17
HG 0+00W 5+00N	.1	1	5	28	104	1	1897	121	1	7	19
HG 0+00W 4+50N	.3	1	7	14	49	1	2280	64	1	4	3
HG 0+00W 3+50N	.5	1	5	6	11	1	1565	33	1	2	18
HG 0+00W 3+00N	-4	1	4	10	24	1	1312	48	1	2	2
HG 0+00W 2+50N	.1	1	9	34	60	1	2283	115	1	5	3
HG 0+00W 2+00N	.4	1	7	25	14	1	1872	184	1	4	2
HG 0+00W 1+50N	.3	1	10	30	161	1	2794	147	1	6	5
HG 0+00W 1+00N	.8	1	6	17	213	1	1864	104	1	4	26
HG 0+00W 0+50N	.7	1	6	20	53	1	2137	88	1	5	18
HG 0+00W BL	.6	1	6	14	82	1	1834	63	1	4	4
ET 031	.1	1	5	28	228	1	1757	103	1	6	36
EI US2		1	4	27	124	1	1/8/	82	1	6	1
ET (100	.1	1	87	38	160	1	2800	1/6	1	8	1
= 4100	./	· · · ·		29	431		2060	156	1	>	24
ET 4400	1.0	1	10	38	280	2	2727	173	1	6	12
EI 4700		1	0	55	1023	1	1804	209	1	4	14
ET 5300	.4	1	07	21	019	1	2008	161	1	2	28
ET 5600	.3	1	5	33	1109	1	1597	154	1	5	18
DT 3100	1	5		17	52	<u>_</u>	1018	6/	1		2
DT 3400	.i	1	5	19	63	1	1325	89	1	4	4
DT 3760	.1	1	4	16	55	1	1244	64	1	4	2
DT 4000	.5	1	6	14	50	1	1536	63	1	3	1
DT 4300	.3	1	5	15	55	1	1440	68	1	3	3
HT 001	.4	1	8	30	408	1	2044	142	1	4	26
	ł										
· ·											
·····							· ····	· • ••••••			
			<u></u>								

COMP: VARITECH RES./MAJOR GENERAL PROJ: HAW-DEN ASSESS. ATTN: ED MCCROSSAN/B.KAHLERT MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0248-HJ1 DATE: 91/08/06 * NON MAG H.M. * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CO PPM	CU PPM	MO PPM	PB PPM	TI PPM	ZN PPM	SN PPM	W A	AU-FIRE PPB	HM %
DML01 -60MESH EML01 -60MESH EML02 -60MESH EML03 -60MESH	.6 .9 .9 1.0	3 6 10 9	5 3 2 3	16 8 6 6	48 34 16 21	1 1 1 1	11 10 10 8	1266 628 524 635	44 28 23 22	1 1 1 1	4 9 4 4	5 4 204 6	16.59 14.68 34.81 33.57
				N - 19-11-11-11-11-11-11-11-11-11-11-11-11-1									-

CHONG

.....

CHONG

cont. Th

	LEGEND Granitic rocks Duckling Creek syenite Syenite migmatite / foliates Belts containing foliated syst Aeromagnetic anomaly (gam Copper showing / mineralizat Mineralized talus Anomalous silt Anomalous heavy mineral con Assay values (Cu ppm, Au ppb,	/ hybrid rocks anites imas) tion (mal, cpy, bn) centrate Ag ppm) BRANCH REPORT
	After Major General Resou	rces Ltd. , 1990
	HOGEM JOI	NT VENTURE
X · · · · · · · · · · · · · · · · · · ·	HAW W, E & S	S & DEN CLAIMS
	ANON COMPILA N.T.S. 93N-13,94C-4 0 1 2 SCALE 1:50,000 DRAWN BY : E.M.	MALY TION MAP OMINECA M.D., B.C 4 KM. DATE: SEPT. 1991 FIGURE Nº 7

a. ³⁰