LOG NODC	T 2 1 1991	RD.
ACTION:		
FILE NO:		

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT ON AKIKO LORI GOLD RESOURCES LTD.'S SCUD PROJECT

SCUD RIVER AREA, NORTHWESTERN BRITISH COLUMBIA LIARD MINING DIVISION

NTS 104G/6 57⁰21'N LATITUDE 131⁰19'W LONGITUDE

Bernard Dewonck, F.G.A.C.

October 15, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

Mante Stere

TABLE OF CONTENTS

Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	2
Previous Exploration	3
1991 Exploration	4
Regional Geology	4
Property Geology	5
Mineralization	6
Scud 1 Claim	6
Alicia Claim	9
Scud 3-8 Claims	10
Scud 10 Claim	10
Scud 11-14 Claim	11
Geochemistry	12
Conclusions	12
Statement of Cost	13
Statement of Qualifications	

B. Dewonck, F.G.A.C.

Bibliography

LIST OF FIGURES

Figure	1	Location Map	Following	Page	1
Figure	2	Claim Map	Following	Page	2
Figure	3	Otis Showing - Rock Geochemistry	Following	Page	7
Figure	4	Moped Showing Sketch Map	Following	Page	7
Figure	5	Geology and Rock Geochemistry -			
		Alicia, Robyn, Scud 1-4	In Pocket		
Figure	6	Geology, Soil and Rock Geochemistry	-		
		Scud 5, 7, 10	In Pocket		
Figure	7	Geology and Rock Geochemistry -			
		Scud 11-13	In Pocket		

LIST OF TABLES

Table 1	Claim Information	Page 3
---------	-------------------	--------

LIST OF APPENDICES

- Appendix I Rock Sample Descriptions
- Appendix II Analytical Procedures
- Appendix III Certificates of Analysis

INTRODUCTION

This report presents the results of exploration conducted on the Scud Property in 1991. The property includes the Scud 1-8, 10-13, Alicia and Robyn claims in the Scud River area of northwestern British Columbia. The claims are owned by Corona Corporation and a wholly owned subsidiary, Lacana Ex (1981) Inc. Corona conducted examinations of the property in 1988 and 1989.

The 1991 work, consisting of large scale geological mapping, rock and soil geochemical sampling, was conducted under the general management of OreQuest Consultants Ltd. on behalf of Akiko Lori Gold Resources Ltd., who have an option to earn an interest in the property from Corona. Gold Fields Canadian Mining Limited, under an "umbrella" agreement with Akiko Lori, has the right to acquire an interest in the properties in which Akiko Lori has interests. As a result, Gold Fields personnel headed the 1991 exploration crew, to facilitate Gold Field's evaluation of the Scud Property, and they provided the technical direction during the course of the field program. All field data contained in this report is derived from information and field maps provided by Gold Fields.

LOCATION AND ACCESS

The claim group straddles the Scud Glacier, some 11 km north of the point where the Scud River emanates from the toe of the glacier, then stretches southward along the east side of the glacier to the headwaters of the river. The property is situated approximately 30

km east of an airstrip at the confluence of the Scud and Stikine Rivers, and 25 km northeast of a permanent exploration camp and airstrip at the headwaters of Galore Creek (the Galore Creek porphyry copper-gold deposit). The property is situated at latitude $57^{\circ}21'N$ and longitude $131^{\circ}19'W$, on mapsheet 104G/6 (Figure 1).

The 1991 field crew established a fly camp on the Scud 1 claim, which was mobilized by helicopter from Bob Quinn Lake on the Stewart-Cassiar Highway (#37), 80 km to the southeast. Daily helicopter support was arranged with a machine based at the Galore Creek camp.

PHYSIOGRAPHY AND VEGETATION

Essentially the entire property is above treeline, encompassing rugged, glaciated terrain typical of the area. A substantial proportion of the claim area, particularly in the northern portion, is covered in permanent ice and snow fields. Elevations range from approximately 360 m in the western part of Scud 13 to in excess of 2100 m in several areas throughout the claim block.

CLAIM STATUS

The Scud Project comprises 15 modified grid claims totalling 288 units (Figure 2). Pertinent claim information is outlined in the following table:

TABLE 1: CLAIM INFORMATION

CLAIM	NAME	RECORD N	10. NO. 0	F UNITS	RECORD	DATE	EXP	IRY	DATE
SCUD	1	4845	:	20	July 21	, 1988	July	21,	1993
SCUD	2	4846		20	July 21	, 1988	July	21,	1992
SCUD	3	4847		20	July 21	, 1988	July	21,	1993
SCUD	4	4848		20	July 21	1988	*July	21,	1992
SCUD	5	4849		20	July 21	, 1988	July	21,	1992
SCUD	6	4850		20	July 21	1988	*July	21,	1992
SCUD	7	4851		20	July 21	, 1988	July	21,	1992
SCUD	8	4852		20	July 21	, 1988	*July	21,	1992
SCUD 2	10	4854	-	20	July 21	, 1988	*July	21,	1993
SCUD 2	11	4855		20	July 21	, 1988	*July	21,	1992
SCUD 2	12	4856		20	July 21	, 1988	*July	21,	1992
SCUD 2	13	4857		20	July 21	, 1988	*July	21,	1992
SCUD 2	14	4858		20	July 21	, 1988	*July	21,	1992
ROBYN		6492		8	Sept 30	, 1989	*Sept	30,	1993
ALICI	A	6493		20	Sept 30	, 1989	*Sept	30,	1993

*Expiry date upon acceptance of assessment credit based on work described in this report

The property is within the Liard Mining Division. The Scud 1-8, 10-14 claims are owned by Lacana Ex (1981) Inc. while the Robyn and Alicia claims are owned by International Corona Corporation.

PREVIOUS EXPLORATION

The property was prospected and sampled to some extent in 1988 and 1989 by Corona. Results of this work are recorded in a series of prospecting reports by Jones (1989a, b, c) and Johnson and Jones (1990a, b, c). Reference is made in one of the latter reports to a 1964 ASARCO report by R.E. Gale regarding the "North Scud" occurrence which was "rediscovered" on what is now the Alicia claim.

1991 EXPLORATION

The 1991 exploration program was directed in the field by Gold Fields Canadian Mining personnel, whose primary interest was to evaluate the economic potential of the property as a whole, allowing the company to reach an informed decision regarding continued participation in the property's exploration. To this end, geological mapping was done in a general sense and numerous rock grab and chip samples were collected to verify previous results from specific showings and to cover other areas of interest not previously sampled. The program emphasis was on the rock geochemistry.

REGIONAL GEOLOGY

A brief summary of the regional geology is presented here, reproduced verbatim from Johnson and Jones (1990):

"The claim area lies on the western margin of the Intermontane Belt at its contact with the Coast Plutonic Complex. Paleozoic sediments and Mesozoic sediments and volcanics are cut by intrusive bodies of the main Coast Belt and the satellite Hickman and Yeheniko Plutons. General tectonic fabric of the region trends northnorthwesterly.

The oldest rocks exposed in the area are Lower Paleozoic clastics including impure quartzites and limestones, overlain by crystalline schists and gneisses. A thick impure limestone unit caps the Paleozoic oceanic sequence.

The lower contact of Mesozoic units is described by F.A. Kerr, G.S.C. Memoir 246 and J.G. Souther, G.S.C. Paper 71-44, as gradational and in places unconformable. Triassic rocks consist of a thick sedimentary sequence overlain by an island arc volcanic assemblage which is in turn capped by volcanic derived sediments.

The Jurassic layered sequence consists of a thick, near shore sedimentary package and later volcanic (island arc?)

rocks. Extensive intrusive activity during this period resulted in the emplacement of the multi phased 'Coast Complex` and related satellite plutons. Alkaline and calcalkaline members of this suite are directly associated with most of the numerous mineral occurrences in the area. Cretaceous rocks consist mainly of marine sediments with thin basaltic to phyllitic components.

Cenozoic stratigraphy includes mafic and felsic aerial volcanic units. These rocks are a major component of glacial and fluvial deposits throughout the area. Several active host springs attest to ongoing geologic activity throughout the Iskut-Stikine region.

Most of the region has been subjected to Quaternary glaciation, resulting in rugged alpine terrain".

PROPERTY GEOLOGY

Property geology has been described by Jones, and Johnson and Jones, in their various reports on claim groups within the property. The northern part of the property encompasses Mesozoic Stuhini Group volcanics and sediments intruded by Jurassic granodiorite (Yeheniko Pluton). In the central portion, both Paleozoic and Mesozoic stratigraphy occurs, with the dominant intrusive body being the Triassic Hickman Pluton along the eastern margin. The geology in the southern portion of the property is a continuation of the central area.

Mapping by Gold Fields personnel is shown in Figures 5-7, and is rather generalized. No distinction between Paleozoic and Mesozoic stratigraphy has been made and correlation of unit designations with Corona's work is difficult. In general, the 1991 mapping interprets the volcanics to be more mafic rather than intermediate in composition, and gabbroic rocks appear to be more extensive than previously indicated. Sedimentary units from both the Paleozoic and Mesozoic likely have been designated as the same unit in different parts of the property. As mentioned previously the emphasis of the 1991 program was on evaluation of the entire property's economic potential rather than systematic and rigorous geological mapping of any one part. Detailed mapping of the property as a whole was well beyond the scope of this program.

MINERALIZATION

Five styles of mineralization were recognized:

- i) arsenopyrite in narrow veins and bands/pods in small quartz iron stockwork systems (Otis and Moped Showings).
- ii) massive copper mineralization bornite, chalcopyrite and malachite as lenses and in shears/fractures; proximal to large intrusives (Scud 1, Alicia claims). Structures are narrow (maximum 15 cm) and usually pinch out with 15 to 30 m.
- iii) gossan/ankerite zones associated with mafic volcanics in the eastern portion of Scud 3 claim.
- iv) weakly pyritic argillite units interbedded with limestone in the eastern portions of Scud 3 and 5 claims.
- v) finely disseminated chalcopyrite mineralization associated with carbonate/ankerite zones in mafic volcanics on the Scud 10 claim.

Scud 1 Claim

The best gold mineralization found to date on the property occurs within the Scud 1 claim, associated with arsenopyrite and/or bornite rich shear/fracture systems within a mafic to intermediate volcanic unit. The unit, approximately 800m wide, has been traced for at least 1000m uphill along its northeast trend until it

disappears under snow and ice. The volcanics are wedged between granodiorite (Yehenika Pluton) to the north and a diorite/gabbro to the south.

The Otis Showing (Figure 3) and the Moped Showing (Figure 4) are situated at or near the southern contact. The Otis Showing comprises arsenopyrite mineralization (up to 20-30%) occurring in fracture controlled veins or pods that constitute a stockwork. Within this stockwork two dominant orientations were noted, at $090-110^{\circ}$ and 140° , with flat lying to vertical dips. Vein widths are commonly less than 8 cm and reach a maximum of 25 to 30 cm widths, 6 to 9m lengths. Trace to 1% pyrite occurs in the veins, with up to 3% in the highly fractured, sheared (locally schistose) and oxidized mafic volcanic. Outcrop exposure in the immediate area is limited to the showing itself. The stockwork zone is approximately 15m by 15m; it does not appear to be traceable to the west and is covered by overburden in other directions. Grab sampling by both Corona and Gold Fields has produced gold values in the range 0.3 to 0.7 oz/ton, whereas chip samples returned generally lower values. Maximum chip sample value is 0.5 oz/ton over 45 cm (Corona sampling). The size potential for this zone is considered limited.

The Moped Showing is similar in nature to the Otis in that arsenopyrite (up to 30-40%) occurs in the fracture controlled quartz (+ minor calcite) veins at dominantly 030° and 100° . Dips vary from 20% to vertical. Maximum vein width is 5-8 cm and maximum length is

 E # TYPE
 Cu
 Ag
 Au

 ppm (%)
 ppm (oz/t)
 ppb (oz/t)

 Grab
 90
 0.3
 (0.393)

 Grab
 310
 0.5
 (0.651)

 Float grab
 130
 0.5
 (0.326)

 Grab
 207
 0.2
 (0.511)

 Grab
 370
 37.0
 510

BASE MAP AFTER JOHNSON & JONES (1990c)

6m. Trace to 10% pyrite occurs along vein margins. Host rock is described as a fine grained diorite or possibly a mafic volcanic, fractured in a stockwork pattern similar to the Otic Showing. Results of sampling are disappointing and strike potential is considered limited.

Shear hosted semi-massive bornite +/- malachite, azurite, chalcopyrite and pyrite veins occur in the northwest corner of the claim (Figure 5) mostly within the volcanic formation near the granodiorite contact (within 10's of metres). Most trend 340° to 020°, are maximum 15 to 30 cm wide, discontinuous over 30m strike length and separated by several metres. The zone of veining extends some 550 metres along the strike of the contact. Previous sampling by Corona produced a value of 1.1 oz/ton gold and 10% copper. Sampling by Gold Fields yielded some interesting values (#9041 -2.31% Cu, 0.061 oz/t Au over 15cm, #9052 - 4300 ppm Cu, 0.132 oz/t Au over 30cm; and #9054 - 2.83% Cu, 1.25 oz/t Ag and 0.082 oz/t Au over 30cm). Systematic mapping and sampling would be required to establish the viability of this area as a copper-gold deposit.

Silicified ankeritic zones within the gabbroic intrusive, trending 100° and up to 30m wide, contain pyrite +/- pyrrhotite +/chalcopyrite. Mineralization is podlike, however, with no appreciable strike length. Sampling has not produced any values of significance.

Alicia Claim

Mineralization on this claim is similar in nature to the shear hosted copper mineralization described on Scud 1. The veins occur in andesite breccia and wedges of sedimentary rocks including argillite, siltstone, limestone and lenses of polymictic conglomerate. A monzonitic to dioritic intrusive is situated to the east, along the west margin of the Scud Glacier, and the andesitic rocks are in fault contact with sedimentary rocks to the west (Figure 5).

Up to 5% bornite, 10% chalcopyrite, 2% pyrite and minor pyrrhotite and covellite occur in quartz and quartz-carbonate veins up to 30 cm wide. Limonite, malachite, azurite and minor jarosite occur on weathered surfaces. The veins strike from 020° to 050° , dipping moderately $(50-70^{\circ})$ north.

Similar mineralization occurs as blebs and in quartz-carbonate stringers within shears as well. These shears, ranging to 15 cm in width, have no preferred attitude, although $022^{o}/90^{o}$ and $140^{o}/90^{o}$ seem to be more common measurements.

Mineralized shears cannot be traced for more than 25 m. Mineralized veins range to 50 m in strike length. One particular set of veins consist of a 30 cm wide mineralized quartz vein, with a 1.8 m propylitized hangingwall (andesite) and a 25 cm wide quartzcarbonate vein above that. The whole package trends $050^{\circ}/63^{\circ}$ NW and can be followed for 50+ m along strike. This mineralized quartz vein

contains 10% chalcopyrite blebs, 2% pyrite and abundant malachite/azurite staining. The bornite-covellite mineralization appears to be more confined to the shears.

Sampling in this area produced a high of 14.1% copper and 4.67 oz/ton silver from a grab sample, while the highest chip sample values was 1.42% copper over 2.0 m (#9781). Gold does not appear to be associated with this zone.

Scud 3-8 Claims

Sampling throughout this area has produced only a few isolated copper anomalies which do not appear to be related to features with any size potential. Fractures, shears, vein, veinlets and pyritic host rocks of various types were grab sampled, including weakly pyritic argillites interbedded with limestones, and numerous gossan/ankerite zones similar to those mentioned previously (Figure 6).

Scud 10 Claim

Mineralization on Scud 10 is in the form of pyrite+chalcopyrite +mariposite+bornite bearing shear zones. Corona also reports tetrahedrite, covellite and arsenopyrite although none of these were identified by Gold Fields. The mineralization is associated with an intense ankeritic/limonitic zone that strikes north-northwest and dips 45° east to vertical. The main, intensely altered zone appears to be a fine-grained diorite/trondjemite (possibly subvolcanic) at

the margin of a coarse-grained porphyritic monzonite. The zone is characterized by strong, silicified cross fractures that locally host 30 cm wide quartz-calcite veins within wider (3-6 m) intensely altered ankeritic zone. These cross-cutting zones carry mineralization similar to the main zone and can extend up to 10's of metres into the unaltered rocks on either side of the main ankeritic The main ankeritic zone is at least 5 m wide but may be up to zone. 15 m wide near the north end of Scud 10 where there are several parallel flanking zones. The main zone is traceable for 1.6 km on Scud 10, and the presence of other gossans to the north suggests it could extend another 1.6 km to the north. It disappears under a glacier to the south. The mineralization tends to be fracturecontrolled, locally disseminated and appears to be very erratic and spotty. Corona sampling returned values up to 2% copper and 0.07 oz/ton silver but with negligible gold values. The samples collected in 1991 failed to produce significant values with the exception of #9701 (0.15% copper and 30 ppm silver, Figure 6).

Scud 11-14 Claims

Several samples were collected in the southern part of the property (Figure 7), primarily in what appears to be intrusive phases, however no significant results were received. Sampling focused on shears, veins and pyritized/altered host rocks in an effort to evaluate potentially economic occurrences.

All rock sample descriptions appear in Appendix I and certificates of analysis can be found in Appendix III.

GEOCHEMISTRY

A total of 257 rock and 41 soil samples were submitted to Vangeochem Labs in Vancouver, B.C. for analysis. All rock samples were analyzed by fire assay/atomic absorption for gold, most were analyzed by atomic absorption for copper and silver and selected samples were analyzed by inductively coupled plasma spectrophotometry for 28 elements. One sample was also analyzed for lead and zinc. Samples with significant copper, silver and/or gold values were assayed. Soil samples were analyzed by atomic absorption for copper, silver, gold and arsenic. Analytical procedures are detailed in Appendix II.

Rock samples were collected in plastic bags, tagged and the corresponding number written on flagging at the sample site. Soil samples were collected into gusseted kraft paper bags, using a mattock, from the B horizon at a depth of 15 to 20 cm.

CONCLUSIONS

Evaluation of the Scud claims in 1991, together with information gathered in previous exploration programs by Corona Corp. in 1988 and 1989, has led Gold Fields Canadian Mining Limited to suggest that the property constitutes a copper target (<u>+</u> gold and silver values) rather than a precious metals occurrence of any significance. Elevated precious metal values are generally restricted to narrow veins or structural features with limited strike potential. Any further work on the property would likely be directed at the northern part of the Scud 1 claim and across to the Alicia claim with a view to evaluating in more detail this area's potential to host a large tonnage, low grade copper deposit.

STATEMENT OF COSTS

General Costs

Mobilization (crew wages & helicopter)	\$ 8,032.24
Freight & Communication	587.08
Camp Costs (supplies, groceries, expediting	4,546.01
equipment rental)	
Engineering, Supervision & Administration	2,068.50
Total General Costs	\$15,233.83

These costs are allocated to claim group S-1, S-2 and S-3, according to mandays allocated to each group specifically, as follows:

S-1 27% S-2 39% S-3 34%

The respective amounts for each of the above categories appears in the cost summary for each group as follows:

S-1 CLAIM GROUP

Mobilization					\$	2,168.71
Wages:						
Bill Bond (geologist)	3.5	days	6	\$320/day		1,120.00
Ian Dunlop (geologist)	1	day	6	\$170/day		170.00
Marco Vanwermeskerken (geologist)	4	days	6	\$360/day		1,440.00
Ed Montgomery (prospector)	2	days	6	\$350/day		700.00
Helicopter 5.3 hrs @ \$685.80/hr.		-				3,634.74
Camp Costs						1,277.42
Freight & Communications						158.51
Analytical Costs 58 rocks @ \$14.8	39/sa	mple				863.62
Engineering, Administration & Supe	ervis	ion				558.50
Total S-1 Claim Group					\$	12,091.80
					•	•

-	required for assessment credit	=	\$10,000.00
-	balance to P.A.C.	=	2,091.80
	(Akiko Lori Gold Resources Ltd.)		-

S-2 CLAIM GROUP

Mobilization		\$ 3,132.57
Wages:		
Bill Bond (geologist)	1.25days @ \$320/day	400.00
Ian Dunlop (geologist)	4 days @ \$170/day	680.00
Marco Vanwermeskerken (geologist)	1.5 days @ \$360/day	540.00
Ed Montgomery (prospector)	3.5 days @ \$350/day	1,750.00
Reid Mackie (field assistant)	5 days @ \$270/day	945.00
Helicopter 4.0 hrs @ \$685.80/hr.		2,743.20
Camp Costs		1,772.94
Freight & Communications		228.96
Analytical Costs 59 rocks @ \$14.8	39/sample	878.51
41 soils @ \$14.0	0/sample	574.00
Engineering, Administration & Supe	ervision	806.71
Total S-2 Claim Group		\$14,451.89
-		

-	required for	assessment cre	edit =	\$ 4,000.00
-	balance to P.	A.C.	=	10,451.89
	(Akiko Lori G	old Resources	Ltd.)	

S-3 CLAIM GROUP

\$ 2,730.96
400.00
935.00
810.00
1,400.00
135.00
1,371.60
1,545.64
228.96
2,084.60
703.29
\$12,345.05

-	required	tor asse	essment cre	edit	= Ş	4,800.00
-	balance t	o P.A.C.			=	7,545.05
	(Akiko Lo	ri Gold	Resources	Ltd.)		

STATEMENT of QUALIFICATIONS

I, Bernard Dewonck, of 11931 Dunford Road, Richmond, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1974) and hold a BSc. degree in geology.
- 2. I am an independent consulting geologist retained by OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. This report is based on a review of information listed in the Bibliography, field data supplied by Gold Fields Canadian Mining Limited and knowledge of the area.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the Scud Project or in the securities of Akiko Lori Gold Resources Ltd. or any of their subsidiaries.
- 8. I consent to and authorize the use of the attached report and my name in the Companies' Prospectus, Statements of Material Facts or other public document.

Bernard Dewonck F.G.A.C. Consulting Geologist

DATED at Vancouver, British Columbia, this 15th day of October, 1991.

BIBLIOGRAPHY

JOHNSON, D. and JONES, PAUL W. 1990a: Geological, Geochemical, Prospecting Report on Scud #1, 2, 3, Alicia, Robyn Claim, Liard Mining Division (July 1, 1990)

JOHNSON, D. and JONES, PAUL W.

1990b: Geological Report on Scud #4, 5, 6, 7 and 8 Claims, Liard Mining Division (June 1, 1990).

JOHNSON, D. and JONES, PAUL W.

1990c: Geological Report on Scud #10, 11, 12 and 13 Claims, Liard Mining Division (October, 1990).

JONES, PAUL W.

1989a: Prospecting Report on Scud #1, 2, 3, 5 and 7 Claims, Liard Mining Division (October, 1989).

JONES, PAUL W.

1989b: Prospecting Report on Scud #4, 6, 8, 9 and 10 Claims, Liard Mining Division (October, 1989).

JONES, PAUL W.

1989c: Prospecting Report on Scud #11, 12, 13 and 14 Claims, Liard Mining Division (October, 1989).

APPENDIX I

ROCK SAMPLE DESCRIPTIONS

	SCUD	Pizau	ect			14	36
5	ample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
R	9026	July 12/91	SE Scud 5	arkose/wacke. Doss. vols. tuff	- weakly chlositic well banded - weakly fractured with local	± 19. pyrite	
	9027	ii.	/)	f.g. volc./sed	Fe staining - justy shear 020:/80 E - local lencocratic/feldspathic material	1-27- dissern. pyrite	
	9028	<u> </u>		volc,/sed at gabbro contact	- silicified, epidatized - possible skarn - mino hornble	de	
	9029		,,	f.g. sed./vok.	F.g lencocratic vein 010°/25°E moderate Fe stain	1-51). pysite, spy?	
F	9030	ic	"	int/felsic Jok	well pactured, laal Fe stain	<1% dissen pyrite-	· · · · · · · · · · · · · · · · · · ·
	9032	11	E Scud 5.	very t.g. int. volc/sed	- almost appanitic strong Fe staining on fractures	3-40 very fine grained	
	9031	. He	E Scud 5 BSOMN&LCP	int./telsic volc	- fine grained weak bedding (?) Strong Fe stain-ankenite?	ci 7. fine grained dissan pyrite	
	9033	July13/9	1 Scut Rolyn 3840' elev	quartz dioite	- highly attered zone_ 1.2 m wide, 110/20-30 5	<19. dissen. pyrite	
	G 7.1				- very friable ankerite	1-21) ving fig ounite	-
			3960 ' elev		- strong Fe stain 1.2 m wide agin 110°		

SCUE) Pra	Ject			2 1 36
Sample	Date	Location	Lithology	Remarks / Alteration / Structure: Mineralization:	Analysis
RC 9035	July 13/9/	4010'elex.	malic dyke x-cutting quartz disite	- dyke is f.g. 080/70°S 1%. f.g. spotty pyrite - dyke relatively unaltered + cpy (?)	
9036	1:	Sud / 4600' elev.	quartz dissite - granodissite_	- strong Fe staining - 19. 6.9. dissem Py - highly altered	
<u> 9037</u>		", "4400" eles.	quaitz dissite	- highly attered, adjacent to 1?- & q dissern. py f.q. mafic dyke 060-070/sub 90° - strong physive. Fe staining - occasional fine gtz stringers	
<u>9038</u>	u 	4120' eles.		- gossan/shear zone adjacent 1-27. Juny fine to f.g. malie dyke 090-/60-70° 5 grained pyrite t - otrong Fe carbonate in fractures and - numerous fine ineq. 9tz stringers dissem.	soft.
9039		" 3720' elev	gtz diorite/ malic volc. conta	- minor chlosite : hematite 19. 6.9 dissen. p; et alteration 050-060/90	1
9040	X1	., 3B10' elev.		- 6 m S. J. dioite /vol. contact /1- py 5 cpy(? - highly siticified pink (feldopan?) hand cutting hoizortally across volc, 15-45 cm wide, weakly fractured	
	l		1)	

.....

ample:	Date	Location:	Lithology	Remarks / Alteration / Structure:	Mineralization:	Analysis:
9041	Jul-13/91	Scud 1		-15 cm chip sample		
		3810'elev		- massive bornite-malachite-		
		1.5 m above #9040		chalcocite vein 10-15 cm wide		
				49. 180:/90, mina cpy		
				- some flooding into host rock		
				- lost in OB at top, show at botton	L	
9042		"		- 30 cm chip sample		
		3810' elev.		- medium grained mafic volc, nume	2 5 6 1	+
		30 cm W of \$904/		pyroxene grains		
		· · · · · · · · · · · · · · · · · · ·		- strong patchy epidste alt n.		
				- numerous Donite - Con-	22 209	
				malachite stringers : 0/205 -	20-301	
0.17	TI who		1/ - an analy	- 12 mild d ke provlasid	4 19 disease Dil	
1043	2014 144	1200' 1/20	K-Span poliphyny	- 1.5 m mile ayre 010/85W		
		4383 elev.	ayke curring	ming here the alteration		
			maje vole.			
9-44	· · ·	lla "		- can malachite smear on		
	1	H30' Plev		Ventical cliff face adjacent		
	+	1000 0100		to shear rone		
······				- 60 mm thick 065./90.		
9045	10	"	" Vein"	- guartz Vein 10-15 cm wide	1-2% cpy + malachite	
		4350 elev	· · · · · · · · · · · · · · · · · · ·	along S. margin of 1.2 m wid	2	
				shear zone		
				- vein is annedral masses of		
				gtz and feldopan crystals		

SCUD	Proj	ect			4	4 36
Sample: RC 9046	Date: July14/91	Location: Scud / 4350'elev.	Lithology:	Remarks / Alteration / Structure: - 30 cm chip sample - sulphide portion of above shear zone 065°/90° - nomenous quartz stringers	Mineralization - 20-302 cpy, mina malachite and bornite	Analysis:
9047		". 4350'eles.	mafic volc.	- - 90 cm chip sample, adjacent to #9046 - remainder of shear 060-070% - rare fine quarts stringers	- 1-27 fine grained stringer and dissern.	·
904B	N	" 4370' e lev.	mafic volc.	- nanson (40-80 mm) qtz cant vein 330°/90°, minsi Fe cant along mangins	dissen pyrite	
9049		4250' elev	mali volc/ pyroxenite	- FLOAT from talus slope - strong Fe staining	5-10? pyrite + pyrakatite blebs & string	ens
9050	1.	4300' elev.		- from north cliff face 15 m above talus slope - Fe stain on weathered su	1-27. J.g. pyrite, trace chalcopyrite + aface malachite	
905/		". 4300' elev.	malic volc.	- 15 m west of #9050 along cli face - Very fine grained moderately silfied, minor Fe stain	1-27. stringer cpy, trace pyrite	
9052		". 4270'elev.		- 30 cm chip sample - same shear covered by #9044-47 065'/60-70'N	- seni massive bonite, malachite, mina cpy - chalcocite	

ł

SCUD	Fra	PECT			5	\$ 36
Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis.
RC 9053	July 14/9/	Scud 1	mafic volc.	- fine grained moderately silicitie	11. Size grained Durite	
	· · ·	4150'elev.	rear dioite contac	- weak hematite + Fe staining	trace con + malachite	
			· · · · · · · · · · · · · · · · · · ·	- weakly to moderately tractured		
		4				
9054	11	3900' elev.		- 30 cm chip sample across	abundant bornite chalcocite	2
				same shear as \$ 9040-42	malachite, lessen cou	
]			poposite side & hill 340/851	V	
				pp		
9055	1.	"	malic vole.	- gossan strong Fe stain	12 Luis engined	
			0	ankenite? mino line	dissen avaita	
	<u> </u>			quarta staingers		_
					2	
9056	"	11		- gossa, on cliff have at	11. 1 a disson and	
·		3900' elev.		topend of draw	hasting cartallad an	
		same as old #309	\$4	- strong Fe staining hardeno	the first and first py	
			· ·	hastured and to well site		
				g increase, come and any is		
9057	۰.	11	4	- 9055an Ataga Fr staining	102 Augustita 5%	
		3860'eler		well fractured	ming con malachite	×+
				green green	minst opg, manante	
9058	v	4	1.9. malie volc.	- gossan strong Fo staining	3-5% 24 Perse ca	
		same as old \$20964	0.1.0	- weak - midnote slighting		7
				- week hasturing		
9059		11	1,	- adjacent to eassan	1-211 - Paster	0
		Same as old # 20964		relatively up at tored mino	and and and the	<u></u>
				Fre staining	pyrile.	
					· · · · · · · · · · · · · · · · · · ·	
					<u> </u>	

SCU D	Przau	ECT		6	8 36
Sample	Date:	Location:	Lithology:	Remarks / Alteration / Structure: Mineralization:	Analysis:
9060	July 15/91	Scud 3	mafic vole.	-1.5 m chip sample	
	1 '	4140'elev.	0	- gassen /ankente zone 6-9 m	
				wide az.040.	
				- strong Fe staining moderate 1-2% d.g. dissem	
				silicification numerous fine and parture controlled	
				questo carbonate Jeins at 040 to py.	
				280-	
				Δ	
9061	1/	4		- 30 cm chip sample within 2-39. Juy l.g. disser	1
		4140' elev.		above sample and husting controlled	
				- strong ankeritic some pyrite.	
				- host well preciated with	
				numerous augular fragments	
				- strong silicitication possible	
				mariposite, (?), abundant	
				Line at thingers	
	1			0. 1., 200 722	
9012		11	11	- I is agained los edigent 1/2 fine grained disse	n.
002		Hido' elast		to appear moderate Fe praite	
<u> </u>	+	1110 2/24		staining or pleathened sin lade	
	1			and he tures week to moderate	
				clicities the	
				25109104105	
9.17			toto long voin	- Som mide dein within 2-3% dissen. N	rte
1005		14140' 0/01		assaulter to the property of the state of th	
	+	TTO REVI		to the to along hereing	
	+			Diring ander it avery maying	
Qabil				- ense la resita para vielle 1-2-7 da avrite	
-1004	+	4120' 0/01		here tod strong silicitation	
		TILO KIKV		- rices air a vi cong si k ciqualiga	

				(of 30
Date: July 1541	Location: Scud 3 4170 elev.	Lithology: Mafic Vok.	Remarks / Alteration / Structure: N - FLOAT from talus slope 9m Below gossan in #9060-63 - striong Diecciation with Fe carb infilling numerous fine gtz	Mineralization: 3-57. dissen. and frat controlled pyrite, locally 5-107.	Analysis:
11	4120 elev		- fine grained, between major gossans. - weat to moderate silicification	< 11. fine grained dissen pyrite.	(
(r	". 4040' elev.		- 5-15 cm gtz carb. Vein Ho:/65.N - locally Vuggy, strong Fe	3-59. pyrite lesser malachite Domite	\$7
	". 4000'elev.		- 30 cm highly siliceous band 040°/40° NW, moderate Fe stain or Surface	1-27. very lig dissen pyrite locally 2-3	2
	" 3880' ele√.		- 1.2 m chip sample from large gossan/ankerite gone overall trend 040° - numerous qtz carb. Veins at 040 to 0.80° occasional sections g strong frecciation & Fe carb. infilling	1-27. J.g. pyrite over	
	Date: July1541	Date: Location: July1991 Scud 3 4170 elev. """ 4120 elev. """ 4040' elev. """ 4040' elev. """ 4000' elev. """ 3880' elev.	Date: Location: Lithology: July 15/11 Scud 3 mafic Vok. 4170 elev. 11 4120 elev. 11 4120 elev. 11 4120 elev. 11 4120 elev. 11 4040 elev. 11 4040 elev. 11 4000 elev. 11 40000 elev. 11 4000 el	Date Location: Lithology: Remarks/Attention/Structure: 1 July1511 Scud 3 majie Vok FLOAT from Talus slope 9ne 4170 elev Selam gossan in # 9060-63 - strong Dieccistism with Fe carb in filling numerous fine gtz (automate view leta- " 4120'elev " - fine grained, between major gossana. - weak to moderate silicification - mine Fe staining name gtz + tringers " " " - 5 - 15 cm gtz carb. Vein 4040'elev Locally Vingey, strong Fe stain along margins - 1.2 m drip sample from - 1.2 m drip sample from 3580'elev L2 m drip sample from - Numerous gtz carb. Vein - L2 m drip sample from - numerous gtz carb. Vein - L2 m drip sample from - Numerous gtz carb. Vein - L2 m drip sample from - Numerous gtz carb. Vein	Date: Location: Lithology: Remorks / Alterstron / Structure: Mineralization: July 15/11 Scud 3 malie Jok Ecoht from tales Sclepe 9, 3-57 disean and free 4170 elev. Selan gossan in # gebo-63 controlled pynte, - - strang Directions with Fe cab. locally 5-10%. infilling numerous five gtz - strang biecciation with fee cab. locally 5-10%. - strangens distant pynite. - wish to moderate silicification - wish to moderate silicification - wish to moderate silicification - wish to moderate silicification - wish to straining part of pynite. - wish to moderate silicification - wish to straining part of pynite. - locally viggy strang fee - locally viggy strang fee - locally viggy strang fee - locally viggy strang fee - stain alay margins - locally vigge posen / straine for - locally vigge posen / locally 2-3 - locally vigge posen / locally 2-3 - locally trand of to - locally trand of to - locall trand of to - homenous fire strained sections - homenous fire canb. - locally trand of to - homenous fire canb. - locally trand of to - homenous fire canb. - locally trand of to

₿4

5	SCUD PROJECT 8736								
Sam	ple:	Date:	Location	Lithology	Remarks / Alteration / Structure:	Mineralization:	Analysis:		
RC	1070	July 15/91	Scud 3		- 90 cm. chip sample from	2-301. 1.9. place			
			3860' e/ev.		gossan/ankente zone	locally s-st pyine			
<u> </u>					surface notched Fe stain				
					- strong silicitication local				
					mainosite (?), numerous fine				
					gutz carb vinlets		\$ 		
							- <u></u>		
	9071	<i>u</i>			- 60 cm. chip sample similar	2-3% 1.9 pyrite,			
			3850' e/ev.		to "RC 9070, 15m to north	Locally 3-5%			
	0.00				- becm chis sample from	1-2 1. very fine asain	ed		
	10/2		2950' 0/01		60-90 cm gossan/silicent	availe			
 			50.50 0120.		Land 080-090/80'N				
					light ney /red				
					• //				
	9073	4	"						
		<u></u>	3900'eles.		- 90 cm. chip sample from	1- 5% pyrile, had y			
			same as dd # 30 29	6	gossan Jankenile zone al oto	2			
		+		+	silicitication, numerous at				
					carbonate vein ets 030-7008	>			
		· ·			-well fractured				
					0	A 1: :4			
	9074	4	"		1- 90 cm. chip sample from	2-312 dissen. pyrite			
	·····		#095' elev.	+	gassa fankesite zone at 040.	4			
			1 5930		- sample a across shear / faul	4			
			+		- numerous ding to stringer	5			
		+							

SCUD	Pra	ECT			9	£ 36
Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
RC 9075	July 15/9	Scud 3		- 90 cm chip sample from	2-31. 1.9. pyrite	
	0-1-1-	4090'elev.		ankerite / shear zone	0. 11	
				- strong Fe staining NUM PRO-S		
				quantz veinlets 060./90. up		
				to 15 cm, strong silicification		
	1			7 7 0		
9076	50/116/91	Scud 13	1.9. malic volc.	- FLOAT from river bedauge	las) 1-2. 6.9. dissem.	
		2440'eler.	0 1 0	- strong Fe staining on	pynite.	L
				weathered surface mina	. ,	
				gtz Veining, moderate - strong		
				Sucification.		
					<u>, A 1</u>	
9072		11	med. 9 matic	- dark green, weak carbonate	- 1.9. dissem.p	×
		2600' elev.	vole. / diaite	massive - slightly to mod.		· · · · · · · · · · · · · · · · · · ·
				foliated 070-190, nare		
				Veining moderately magnetic		
					A-1	Z
9078	11	1/	"	- massive dark grey/green	11. f.g. dissem. pyrit	e
		2710' elev.		weat carbonate moderately		
				magnetic, sare gtz veining		
						/
9079	11	i,	medium grained	- 25 cm shear zone 070'/30'SE	1). f.g. dissem. pynit	<u> </u>
		3050' elev.	divite	- bluff above noch slide	, , ,	
	<u> </u>			-moderately magnetic weak carb		
				well polated in shear with		
L		L		minst 913 Verning.		
					I FATE	1/201
9080	11	"	mafic volc.	- TELOAT from siven Ded (angular)	3-5% fracture contra	La L
		3100 elev.		1- Atrong Fe staining silicification	y and dissen. pyri	E
				1-numerous gr filled Line hade	ika	

SCU	D Pro	JECT		
Sample	Date	Location	Lithology:	Remarks / Alteration / Strategy 10 of 36
KC 9081	July 16/9	Scud 13 3360' elev.	fine - med. q. diorite	- dark grey to green mossive 11. L.g. dissen. prite - mod. magnetic weak cart.
90B	2 "	u Yoro'elev.	mafic volc/ dionite	- strongly serpertinized > Jade 17. J.g. dissen. pyrite - numerous fractures and fine shears 170- 180-E mod.
908	3 "	" 4350' e/ev.	mafic volc./ tuff	- strong Fe staining on weathered 2-3% f.g. dissen. Surface, well particuled with and practice costrolled
908	<i>i i</i>	" 4320' elev	tuff	- 1.5 m chip sample across 1-21. Jeny by. tand of int. to felsic talf in dissen - pyrite malic volc - well bedded, strong sil, abundant participes fine gtg veins 11 backling 075/705
	5	". 4320' elev.		- sheared margin of above till 2-30. J.g. and 8-15 cm wide. - strong Fe carb., Very frieble. abundant fine gtz stringere.
9086		" 4440' elev. 15m W of LCP In Canyon 13:19	mafic volc./ tuff	- FLOAT 100m from toe & glacier 3-5% pyrihotite - strong Fe stain, mod-strong 2-3% pyrite. Silicification, moderately fractured with gtz carb infilling

•

SCUD	PROJ	ECT		11 2 36		
Sample	Date:	Location:	Lithology	Remarks / Alteration / Structure: Mineralization: Analysis:		
RC 9087	July 16/91	Scud 13	dioite	- massive, ankeritic, mod. frastined 2-3% f.g. dissem		
		4420' elev.		with the card in filling az izo-140 and practice controlled		
				pyrite.		
				A providence of the second sec		
9082	Tuly 12k	Scudit	aranodiaite	- medium grained, mussive to 1% f.g. dissen. pyrte		
		4500' elev.		weakly foliated jointed 180/75.E		
				- minor carb., local spotty epidote		
				- mind Fe stain on partines		
	1					
9089	11	1,	nhyslite.	- FLOAT from moraine helow for 2.3% very 6.7.		
		4460' elev.		Jelacier dissen pyrite		
				- nange-pink angular fragmento		
				- massive, ferry siliceous		
				conchoidal pactures		
9090	4	10		- dark green fine grained 2-3" hasture controlled		
		4450' elev.	malic volc.	- 30 cm chip sample d, highly pyrite, locally 3-5%		
			6	sheared material 180. 90.		
				- strong chlor + Fe care numerius		
				fine gtz carb hasting fillings		
9091	47	4	malic volc.	- 90 cm chip sample from 1.5- 1-21. f.g. and stringer		
		4460' elev.	0	3m shear zone 355 / 50°E ppite.		
				- strong Fre card, vay friable,		
				numerous fine at care veinlets		
909	2 4	17	makis volc.	- 15 cm chip sample of gtz Vain/ 1-21. A.g. dissen		
		4450' elev.	0	biccia zone 080.790. and parture controlled py		
				- strong Fr carb abuildant locally 5-5%		
				marilosite (?)		
SCUD	Pra	ECT				12 \$ 36
---------	------------	-------------	---------------------------------------	-------------------------------------	--------------------	-----------
Sample	Date	Location	Lithology	Remarks / Alteration / Structure:	Mineralization:	Analysis:
Rc 9093	July 17/91	Scud 13		-1.2 m chip sample from 1.5-	2-51, 1.9. ause	m.
		4510' elev.		1. Br gossan antenite zone	and pastice could	101120
				065/90	pyrile.	
			· · · · · · · · · · · · · · · · · · ·	- ottong te cano, abundant gtz. Ver	ing	
					· 279 hatting	a stalled
9094	1/	Scud 2		- FCOAT sample on Top of Mola	the 2- St. Pacalle	2-59
		4900' elev.	mafic volc.	adjacent to glacier	pysite, saary	<u>,</u>
				- strong te staining - red -purp	L	
				weathering abundant fine 917		
				Cano. Veinleit	2 ,	
		- Cond I	I. P.	dat man ilen hest Hossille	= 11 prite	
9095	11	Jeha 4	maric volc	- and preed buy fiere basine		
		5000 e eV.	disite (.)	rocat purchy epidole and him	2	
		11		- in d - do t and pay sive	- 11. avinte	·
9096	2	1100-1-1	ditad	Ho- BE'S mino cash	<i>p p</i>	
		4950 elev.	CALORITE OLYKE	10, 55 - minal cond		
			in marie voic		2	
			mali + M	- Disoly delined bedding	11. L.g. dissen	py
1	2	1/201-101	Indic 100	hutured at 100-110/2005		
		4850 elev.		- weak to mod silivitication		
				local hematite		
9,9,		Schol 3		- 1.2 m chip sample accors	A.,	
	5	1730' 101		gossan lanker te some below	2-31. A.g. di	sem.
		1715 env		tor & glacier thend 070"	and practine cont	Tulled py
				- strong Fe staining Very fig.	0	
				malin host atrong preciation		
				with Fe carb infilling		
				. /		1

SCUD	Pra	ect		13236
Sample:	Date:	Location	Lithology	Remarks / Alteration / Structure: Mineralization Analysis:
209099	July 17/	Scud 3		-30 cm chip sample from same 2-3% Jery 8-9. pyrile
		4710' elev.		Rome as # 909B, 15m downhill
				- highly siliceous, banded appearance
				1 20 la quita
9100	1,	"		- 30 cm chip sample from 1-21. 63 pysile
		4720'elev.		ankente/gorsangore cos
				- others the stain numerous 9/2
	<u></u>			Verstella, local surregearion
		11		20 1: south 2.31 by proite
9101	"	1/2 . 1.		- 10 cm chip sample aussi
		4500 elev.		- thomas Existain numerous
		+		Lie sto sach deinlett hast
				anolatel alter - no totures
0.1-0	151.10	Sand		
9182	1 Jold 181	mand Sh		- 020/15-90° W 2.5-5cm
		Thopen on		width lesser pr mainly
				along manging where strang
				Fe carb.
9107	3 10	11	disite	- 90 cm chip sample auss 1-2% pastine
				pactured + Te stained concentrated pyrite
	_			diaite
9100	[('	11		- 90 cm chip sample
910	5	<i>l</i> .		- 1.2 m chip Sample
910	41	-	-	-goen chip sample

SCUD	PROJ	ect			14	36
Sample	Date	Location:	Lithology:	Remarks / Alteration / Structure	Mineralization	Analysis:
RC 9106	July 18/4	Mored		- 90 cm. chip sample		
		Showing				
			··			
9107	17	1,		- yock. chip sample		
Ring				- 9DCH chia scanale		
103	(/			- Co Chip Scomple		
9109	1,	1.	disite	- Justy fracture zone # 120%	20° 1-21. 6.9. pyrite	
				15 cm wide, strong Fe stai		
				abundant gtz Jeining		
				1:1/	1-27 de + lastine	1
9110	"	Scud	1/	- highly siliceous gone soon	1-2 is floor	
		3630 RILU		will ogs / BS-S	convoice py,	
		Jame as old 3018	1/	conconcisco - Aprille tral		
		+		appending possion 1-71		
9111	11	. "	divite gta.	- 15 cm. chip sample unass	3-57 disen t	,
		3650' elev.	disite	namon shea 010% 60° W	posture controlled pysi	ē
				- strong Fe stain on partine	0	-
				local gtz stringer		
		11			5 7 46 . 5	
9112	Lr	1251212121	1,	- same shear as above	S-101. Spon y t	
		1360 elev	+	010/65-W BCB WINE	Sineyes pyris	
9112	11		alt dio te	- 1.8-24 m wide shear Rom	2 1-29. py + aspy	
		3910' elev		10425/1010 085-90/60-70N		-
				folicition within is 135./90. l.	AF	
				hand movement		
				- grab 30cm S. J central Ve	iu	

ScuD	Prou	ect		15	736
Sample	Date:	Location:	Lithology	Remarks / Alteration / Structure: Mineralization:	Analysis
RC 9114	JJy 13/91	Scud! 3910' elev.	alt dinite	- 15cm chip sample of uspy shear 10-20% aspy stringers in centre of widd zone, shear 3-5% py: 8-10cm. 025/65°N - strong Veining within zone, Very chlastic, strong Fe carb.	
9115		" 3910'elev.	17	- as above other side of 2-3 1. f.g. and stringer aspy vein from #9113 (60cm pyrite + aspy NI vein)	1
9//6	<i>L/</i>	4250' elev.	· · · · · · · · · · · · · · · · · · ·	- nanow sulphide shear, 5-Bcm, 5-10% pynite 020*/70*10 - abundant gtz veining, strong 19. ansempynite (? silicification of host	
9117		" 4250' elev.		- adjacent to #9116, siliceous, 3-5% f.g. 5 spotty light green colour, conchoidal assenspyrite, mina py pacture	
9µ8	July 20/	" \$\$100' eley.		- gossau/aukerite zone top 1-2% partine construlled g cliff dage above glacier pyrite 100%60° N - strong Festain mod-strong silicification of host strong practiced, locally friable	
9119	11	" Sioo' eles.	profic vole.	- sample 3m below #9118, dk. new ~ / /. distern py dine-med gr. weakly pastured lixally 1-2.	

scul	Pizou	ec.T				16 2 36
Samples	Date	Location	Lithology	Remarks / Alteration / Structure:	Mineralization	Analysis:
RC 9120	July 20/91	Sand		goran/auterite gone on top of	controlled onite	
	<u> </u>	SOSO elev.		For stain, totally attered strage		
				Rastured (all directions) mad sil in		
					K 128 la ad bat	
9121	"			- same as above strong here is	the 1-27. L.g. and practice	
		5050 eles.		- locally sitted triggy strong	Cass vie nate pp	
				Fe states Which		
					1 A la ta la	o //
9122		"	mafic vole:	- 3m Selow above samples	1 do la plane tou	
		5050 elev.	dinile	- Rine - hied grained and great i		
				local enidote		
9123	"	11				
		5190'eles.	malic Tuff	-datgreen, afundant bigulas and		
	+		Tisf Breacio	founded cause of non-enos com	toix	
				-weak carb, massive, same view		
				mina Ferstain	1	
				the the the	1-20 Le Gul Last	uno l
9124	11			1- none as parpled by 1911B, 1121	controlled punite	5
		Soon ever.		There of a for		
9125	4	17	matic volc	- 60 cm chip sample of gossa	2-34. pacture	
		4910' elev.	- 0-	within mafic volce, strong F	et controlled pygit	8
				stan en partires strong chile	nge tocally 3-2 1.	
				1 NOT W DIACK , Well preduced		

Scul	Prza	IECT			17	\$ 36
Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization	Analysis:
RC 9126	JU1-21/91	Sand 3	limestone	- interbedded each up to 30 cm t	hick 3-5% dissen 4	
	- / /*	4400' elev.	greywacke)	- humenous gossans / shears 11 to	stringen pyrite in gossa	45
			(maji Tuff?)	Sedding 120'/20-30'N		
		"			2 20 . + 1.50//	
9127	<u>''</u>	7		- gtz canb Vein/shear zone	- J-Si. pyrile locally	2
		4430' elev.		5-10 cm wide 090/80.N	3-57,	
				Dauded appearance - fine angillite		
				seams, well pactured		
4128		1	O: to ked	20 25 cm to cat li 1/4	2-39 1.0 dissen	
	+	4430 2124	Ximesione/seu.	Lo-25 cm q13 case vein p to	red prate along margins	
	+			Deolary weating - mode fraction	2-39 19 mey metallic in Vi	in - tellunide
				LOCAL LE STAIR		,
0,09		1/				
		Usin' alay	Dimestano Sed	- numerous possas Daude up to 30	cm. 3-5% dissen \$	
		14510 x 1x 11	Amesione out.	- phonosite chip + 90 cm	hasture controlled pyrin	e
······		1		-abundant Distite on hasting	8	
				slanes strong Fe stain on		
				Bedding surfaces		
9130		11		- gossan zone in stream bed.	1-27. L.g. pyrite	
		4510' elev		bBO-125-N, well bectured		
				strong silin, weak hernatite?		
				potty light gree opaque mineral	4	
9131	<i>u</i> .	11	darksed/mali Tu	1 - composite chip over 60 cm	2-34. pyrite locally	
		4530' elev	0	- well banded adjacent to gossan/	3-5% assoc. With faul	1
				faultzone, otrong Silin, carb	1 zone	
	1			along hatures & bedding planes		

ъ .

SCUD	Prz.o.Je	3CT				18 2 36
Sample RC 9132	Date. July21/4	Location: Send 3 4510' elev.	Lithology: A	Zemarks / Alteration / Structure - gossen zone in stream bed 1.5m E of #9130, close to margin of zone - highly altered and highly strang	Mineralization 2-301. Aprite 2-31 f.g. grey metallic min	Analysis: 7.
9133	1/	1/ 4530' elev.	limestore.	- I ded bed adjacent to majic tole, totally replaced by atz. - strong yeining, ander to /Fe stain	1-2° very 6.9. post controlled pyrite.	ine
9134		11 440' elev.		-nonow magnetite sich band adjacent to limestone 120-140,	2/0). dissem. py 30-NE	nite
9135	11		mafic vac. Huff	- dank green mod. chloritic, loce Te stain, numerous fine ineq. 95 shingers	1-27. La punite 2- malachite (locally 3-	30/2
9136	17	" 4100' elev.	angilites /linesta	e - 9tz Vein, 140:/30:NE. 5-30 cm. piùch & Swell	3-57. J.g. E stringer p lesser pyrihitite, the	ynite ce opy:
9626	July 10/91	Ofis Showing	malis-int3 Volc. P?	- fractured risty sulphides from best sulphide gone at 120. (3-4. to 10-201)	aspy >> py + ?	
9627	U	60cm below 962	· · · · · · · · · · · · · · · · · · ·	portuned (dubly) mod semi massive sulphide fais hest samples	15-20% 450y+99	lena?

SCUD	Prz.oj	ECT		19	<u>f</u> 36
Sample	Date	Location	Lithology:	Remarks / Alteration / Structure: Mineralization	Analysis
PC 9628	Julyioh	otis Showing		- grad from ruble light yellow- 10% aspy +	
Nº IURO		/		green alt u., he notite stain	
				fanly well weathered	
		Part Pa	1- , 0	hill but a first association 5-107 appy	
9629	July 11/91	3m Efold	mafic volc.	- nguy radyned marc one young store	
		# 30909		En stain den highle	
		Uns showing		- flat lying, N-S otnike (?)	
9630	11	Otis Showing	majic - int.	- fine grained weakly silicous? 1-2% enheated fig-	
		60cm hom margin	Volc.	- pactured dissern aspy 32 py-	
		EALE		t + une kit	
9631	"	Ofist nowing		hastine, 110, ander the	
	+	3640 2121		in the fast price of the family	
9627		1/	gabo	FLOAT sample & hastined conse & pod of py + cpy	4
1034		3670' eles	J	gabbro copper stain or porting + locally dissen 1-2%	
				Surface	
9633	11	11	11	massive, med. grained +7. auser py a the py	
	,				
	1-1/2-	12000' 000'		sheared semi massive -massive	
		3410 erev.		ASOV	
		- 11			
9635	11	E Ofis Showing		110° contact of carb. Aukonite 3-511. pyr. Te	
		3780'elev.		zone So'l autaite SD'/	
		Sside J shear	4	Sub vollanic:	
	,	tice in P the	1	Cuto to un consider control sur faces (<1-29)	

Scul	Pizas,	ect			2	0 1 36
Sample	Date.	Location	Lithology	Remarks / Alteration / Structure:	Mineralization	Analysis:
RC 9637		45-60 m 5 2 otis	gattro	- pastured, epidotized,		
		the 4no elev		dominant fractures 110-180	•	
9170		7. 45 50				
		20- 73x Jof		- Massive Med. grained	med-course gr. py DIEDI	
		same aley.				
		,				
9639		35m 5 J 9630	"	" " FLOAT	3-5 %. dissen pyn	hotite
		414 d'eles.	1		1//	
9/115		02 122 51				///
1040		#9129		- in fine grained	1-30% fracture control	ed
				ruaghe lic	Sulphides	
9641		65m SSW 8		gasser : Dod like Rozo	3-57 discon Diminat	ite
		# 9640		1.5-2.5 m long × 60-90cm	pyrta	
		4050 eler.		anos		
9,12		12:00 5:0	11			
1042		+ 220 n 2 5/	<u>998800</u>	siliceous, fine grained, from	5-10% dissen py t	
		3900' eleit		Alla Ty gossan zone	<u> </u>	
					(2190)	
		3m 50 #9642		11	17	
			- viste			
		Sand 7	int. In o sed.	- Distific, no bedding apparent		
				= = 5%. silicification, epidste		
				and se ver vestbered on songe	Q	
9645		()	interesting "	- Distitic, no Bedding		
		9m. E& # 9644				
		<u>ن</u>				

	FRO				21	0 30
- 9646	Date	Location Scud 5	Lithology int felsic Jac	Remarks / Alteration / Structure	Mineralization	Analysis:
			6	- + 3 m pom sed. contact	trace pyrite?	
9642		" 17.10.45.1				
		1. Sm h 3 -9646	"	- as above more this calite	trace - 17. pyrite	
				- taken within I.S. of bistiting	un:t-	
9648		Scud 10 Istdraw N. side	intrusive	- ankeritic fine grained + 10% gtz.	medium - c.g blass &	
9649		6m vo hom #96#0	11	- composite chip over 60 cm	- 10 2 \$/ebs 5/ cpy	
9650		" "		- 30cm gtz cart vein	ta o t	
		45 m N (1 # 9649			Diace pyrile	· · · · · · · · · · · · · · · · · · ·
	<u>Suly 13/91</u>	3n below #9650		- siliceous gone in middle of ankenitic zone	5-8%. pypite	
9652	4	17		- 60cm. chip sample		
9653	(11 2				
		otter side g- river		20cm chip sample of spean with 51, gtz + ankerite. 110-/ 80-90 N		
9654	<i>ti</i> /		andesite	- Vhy five grained	5-10	t.,

.

SCUD	PROJEC	-T			22	- of 36
29655	Date: L	ocation: Scud 10	Lithology: int. intrusive	Remarks / Alteration / Structure: - f.g med grained	Mineralization 5-86 dissem pyrite	Analysis:
	4	oso' elev. sutt_of glacies va	alley		- p.p.n.orme	
9656		(/		- 1.4m composite chip of gossay	3-5% dissen and fracture controlled py+A	\$
9657	n.	en #1607 Ned g glacier Jalley	e disite	- siliceous gone is factured diaite - Soch chip channel	5-15% pyrite trace malachite stain.	
9658	3	0m Nd#9657	······································	- intense ankerite, weakly siliceous	1-3% dissen. pyrite	
9659	a	uor from wate m Nside & gle	ifal/	- very fine grained to fine grained neakly siliceous, strong sulphs stain 110° trend	icle.	
9660	6	in ~p from ≠969	9 divite ?)	- massive, weatly siliceous	« IA. py ± cpy	
9661		3530'eler by waterfall	· · · · · · · · · · · · · · · · · · ·	- 75 cm chip channel of highly ankerstic diaste (Pencocratic)		
9667				- siliceour ?) anteritie, with diffuse greening tinge (man	iposite trace pyrite	

.

·

SCUD	PROJ	IGET .			23 6] 36
Sample: RC 9663	Date July 149	Location. Scud 10 Instalal card good	Lithology: 1	- 90cm chip, Chaphel - highly, aukenitic minor colorte	Spotty Manposite 3-5%	nalysis:
966.4		· · ·		- 90cm chip channel consecutive to #9663		
9665	July 14/91	90m N St water	¢.//	- siliceous structure 140° verifiets - 2 mm thick	peture/vein controlled	l
9666	14	3800' elev. in g	sily.	30cm footwall sein	± 5% сру.	
9667		1/		- 2.75-3.0 p composite chip of full alteration zone		· · · · · · · · · · · · · · · · · · ·
9668		1/		- hanging wall vein - very hard Siliceous	I 5% cpy 7 malachite	
9669		3100'elev	grandio:te	- fractured 190/20 w	-trace - 2 5% py	
9670		S. See gupper n	granodia.te o Naine Sandstan	fine grained	1-2% Very Bine grained pyrite.	
967	(, , , , ,	dioste	fine grained, linionitic	1-27. Very fine grainer pyrite	
						1

Sample	Date	Location:	Lithology	Remarks / Alterty / Elicit	24	5/ 36
IC 9672	- July 14	1/2 Scud 10	marsnite	- highly and it of the	Mineralization	Analysis
		·	Jan	+ Concerta locally silice	<u>су</u>	
				4 separate state (1	
	1			spor om apail		
4673	Duly 15/9	Scud 1	granodio.te -	Massile at h		
			gtz. monzonite	120° lai	Sporty pyrite	
0			0))	20/10	/ / / /	ļ
7679	(<u> </u>	1.	granodio ite	composite anot 1 a of		<u> </u>
				moterial growy	10 VIS. D/c Supplides	<u> </u>
Qlai	+					
7675	11			Massive		<u> </u>
9600	514					
1076	> July 12/4	9 Scud 7	gabho	quanta staingera.	·	<u> </u>
9120	<u> </u>					
	4	······································	Dasalt		· _	
9,0,0	+				pyrile	· · · · · · · · · · · · · · · · · · ·
618		11	gabho	altered	mil autora ?	
9120					- minor prive + apy:	
		, , , , , , , , , , , , , , , , , , , ,	<i>t</i> i		5/ 2/ 7/ 22 7	
9100				/		
		10 55 1000		white to grey granular		
		xum 35 - TY678		/ / / /		
96RI						
				questo stringer		
9682	July 15/2	Scud 2				
		4190'eler		1. Lm chip sample across 3m	1-2 La dissen	,,,,
		+++× ->+×		mide gossan/ankerite zone in		
				Stream dea, 030/20-Row	//	

mioler	Date	Location	Lithology	Remarks / Alteration / Structure: Mineralizati	an Analysis:
9622	July ich	Scurd 3		- gossan /ankerite zone in stream 1-21,	kg. dissen
1005		4420' elev.		Ded 3m width exposed,	ynite
				- practured 040-060/90 strong	
				Fe stain humenous inneg gtz	
				Veinteta	
	ļ				to the
9684		4340' elev_		-gossa / autorite zone 7-12 2-3 10 p	Unite place
				manost numerous giz carp c/9	population
				King Veinley 010/10-3	
	<u> </u>			- shong le slain	
9105		Sud (malie vole.	- FLOAT how the of glacier 3-5%	I.g. dissen and
	<u></u>	4550'elev	Conges-	- angular blocks, grey-light hactur	econtrolled py
	+			green mod. sillin weak-mod. Mino p	muhotite + cpy?
	1			Servicita+chloite, occasional king	
				gtz. carb. veinteta	
9686	1.	11		- FLOAT as above highly 2-3%	f.g. desser.
				Magnetic, weakly silicified pyrite	locally 3-5.1.
968	730/4/19/	A Scud 3			to a Wash anisahd
		\$ 3730' elev.	angillite	Σι. ργ	ATTE + GRUE MILLERA
Q1.00			+	at stander NE & NW	
-1688	' <u>(</u>			7.9 - 7.9	
		1/			
9620		B 11	lesto	- susty to sull colour dissen	pyrite + SlackA
		3920'elev			mineral

SCUB	Prou	ECT			26	\$ 36
Sample	Date	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization	Analysis:
RC 9690	July 19/9	11 2960' elev.	ang illite	- Austy, shaly	5%. pypite in layers.	
9697	July 20/9/	" 3850' elev.	diaite	- sepentinized	3. Pyrite	
9692	. 1,			maquetite Jein	trace pyrite	
9693	1.			- channel sample quaitz chlorite gtz precia	pynhatita?	
9694			gabbro	fine grained	49. cpy + pyrite	
9695	11	Scud 3 4500'elev.		quartz angillite. Shear		
9696	tr	200m EJ ===================================		Jasper, mica	pyrite	
	2	20m W & #9695		- FLOAT for linestone bed just above?		
970	(JIy 13/9	, SCUD 10 Saddle Copper Zon	e granodisite	- grab of mineralized not only - lim/hen/manganese stain on for - limonitic, ankenitic, chloritic, f	1 10% cpy, -19, bon:	te

SCUD	Pr.o.	Dec T				27 2 36
Sample RC 9702	Date July13/91	Location Scud 10 Saddle Copper Zone	Lithology	Remarks / Alteration / Structure. -60cm chip sample auss fracting zone 107/90° with gtz jeins E stz-Qin. neccia (clocm) // to hartures	Mineralization Mineralization Micpy, 2% Domite trace pyrite	Analysis
9 70 3	11		monzonite.	2.0 m chip sample across linonite-ankerite attered Megacyptic mongonite		
9704	<u> </u>	<i>יין</i> <i>יי</i>		- randonate meccia zone, linonite, ankesite, masiposite		
9 70 5		·// ·//	int. volc.	- laminated, pale green to white - Gra wide 141/42 NE Juy otrag antente / Rimonite weath. - 5% gtz stringer random orient.		
9706	July 14/4	main coppertra Saddle in 322 E	d dirite	- 12cm carbonate, ankerite man.posite vein in sheared disit	le	
9707			disite	- med grained dyke 60 cm - Lin lankerste altu along strong joint	< 11. pyrite	
9708	3 July 151	A Scud 3	qtz-fspar pegninti	e - 25 cn chip anosi pequatic 038/29'SE (part stockwark on same strand) mind calcite	c/1. dissen + blebs p.p.te	-{

JCUD	Pizos	ec.T			28	\$ 36
Sample	Date:	Location:	Lithology	Remarks / Alteration / Structure: 1	Mineralization	Analysis:
RC 9709	July15	Scuol 3	metaseds	otions auterite (sheared) zone 076/67N etz + calcite veinte	Tocal zones up to 59. dissen pyrite	
				< 3mm, 5-10% Subsunded 973 Ragments < 1 cm		
9710	17	"		- as above less attered, few chalcedony stringers < 2mm		
				hangingmall to # 9709		t-
9711	.,	100 upslope for	m #9709	- same as #9709		
9712	11	100m N J #9709		- meta angillite, fidded and gtz flooded, gtz-cand veins	29. f.g. dissen.pyrite	
				à Dundant Kinsvite, aukerite		
9713	(1	50m 12 2#9702	Distite schist	- linstic 3% to-py stringer	٢	
				Jon chip sample		
9214	"	in the stand		and the last and the second	ed 21 year La prait	e
		(Uw) for #gri	3	a avore preserver insigned		-
9715	4	Scend # 1 1795m elev	meta argillite	= 2.0 m chip sample, against givite constant, abudget	41. p.pahstite Ne	5
		gossan#1		limonite or weathined surface		

SCUD	PROJ	ect				29 8 36
ample:	Date	Location	Lithology	Remarks / Alteration / Structure	. Mineralization.	Analysis:
C 9716	July 15/9	/ Scud # /	audesite -	- moderately silicified,	2º1. pynhatite	
		1305m elev.		limonitic		
		gossan #2		- lon chip sample		
					21 211 445	
9712				- Same as above, parallel	S.C. pyphilite	
		47		To it		
		" 1 1 1 that		J.Om chip sample		
		100m W 1 =9716				
9710		Se 1 10				
1118		DED alay				
		Assa #3-	marzante	- Negched ankeritic		
		Doldly C. Z. E.	A	hung - and dive prained		
		pualite on come ins	¥			
9719	11	11		- medium - coarse grained in	Jeat	
		11		chloritic alto mino me	lachite	
				stain		
9720	11	11	11	- as above but malachit	P	
				Stain		
9721	11	Scud 4	17	+ medium grained weak		
		1950meler.		ankerite alter, no sulph	ides	
		gossan #4				
		· · · · · · · · · · · · · · · · · · ·	- A	······································		
9722		11	plag phyric	- 110° /7B·N - 11/0 Inte	whit	
		1/	anderite dyke	tial weathering		
		4		+ 1.3m wide chip sample		

A

.

scuD	Prza	VECT			30	J 36
Sample RC 9723	Date: July 16/9	Location: Scud 13	Lithology:	Remarks / Alteration / Structure: - Intermediate Aock chloitin, texture obliterated silica	Mineralization	Analysis:
		headwater of S. Geek (W. side)		flooded abundant auferite, no sulphides		
9724		Scud 13	argillite	- 20 m chip, graphitic Limonitic 035/29.5	27. f.g. dissen pyrite	
				Sands gtz stringers < Sma		
9726	July 15A	Scud 5	meta sed	- local elle ato Panticles	10. & ovnite ± 00	
				- Very weakly magnetic	- A I rack	
9728	.,	<i>u</i>	angillite	- massive siliceous	$= 5\% py \pm po \pm cpy$	
9729				- yellow oxide stain gossai facture veine	bus 3-57. py - pynholite	
9730		<u></u>	1,	- random chip grad ausss 2 m of gossan zone		
9731		NW Said 12	argillic sed.	-sheared, chip grab agoss 1.4 m, weakly magnetic	3-5% pyrite + pyrhitite	
9732	- *	Nor Sand 12	angillite	- Dedded no visible sulphie moderate gossan stain	er	
9732		+		- as adoule-		

SCUD	Pizo	IECT				31 4 36
Sample	Date	Location	Lithology	Remarks / Alteration / Structure	Mineralization	Analysis:
RC 9734	July 15/9	2 Non Sand 12	gabha	- massive meaning grained - sample collected near mongon. dyke	te o pynhotite ?) - r visible	1 of
9735	1.	Scud 4	mongonite (?)	- medium to coarse grained, ankenitic, no visible miner	lization	
9736	11	" 30m 5.g 9736	12	- as above		
9737		Scud 1	gtz "	- limonite gossan stain ou 110° fractures		
973B	July/6/9	Scud 13	gatino	moderately magnetic	1-2% pynhotite_ ± p	· · · · ·
9739	'I	Sand 13 2750'eles.		- medium grained, massive (subtly feldspan pophysitist	1-21. sulphides pot magnetite	
9740	, <u>, </u>	Sand 13 w. side	int.volc/intr.	- silicified, medium grained highly ankeritic on surface		
9741	• •			- aukesitic pressia with chert pagments		
9751	July 12/2	Sud II	lst / umafic	- auteritic and particul contact Setuce limestone & uthamafic - no supplides		
975	2 July 18/0	1 Sand 5		- silicrows, aphanitic, medium	17. dissens prite	

5

-

SCUA	Fize	DOCT.			32236
Sample	Date	Location	Lithology	Kennusks / Alteration / Structure Mineralization	Analysis
RC 9753		Scud 5 1235m eks.	siltstone	- siliceous fine grained, medium gray	
9754		" 1360 m elev.	dioite	- fine grained, medium gray - green gray to tan weathering	
9755		" 1420 m elev.	andesite	- chip form across shean no sulphides 184/43.5	
9756		Sand 5 1530 meley.	silfstone	Degmatite 061/48-SE	
9757		". 1500 m eles.	gatho	- very fractured on gabtro/ andesite contact 031/56NW - calcite verilits < 3mm, abundant aukenite - 1.2m chip	
975B		Scud 5 1425 m elev.		- silicified zone very portured abundant ankerite, calcite veins < 5mm.	
9759		1451 m elev	meta silstone	- Very hactured, ankerite and calcite stringers	
9760	>	20m N. of \$97.	59	- same zone more siliceous and gtz Veins > calcite veins	

Sand	Fiz.rz)	Ci I			33 & 36
mole	Date	Location	1 sthology	Kenurks / Alteration / introduce Mineralization	Analysis.
9761	July 20/9	Alicia	andesite	- massive bonite / cpy stringer	
	1 /.	4950' elev.		and podr up to loca within	
			11. · · · · · · · · · · · · · · · · · ·	foints, along with 93, xchoole	
				- Thong laidole halo up to	-
				IS cm with malachile / agunite	
				- may litic attention	
9/62	u	· · · · · · · · · · · · · · · · · · ·		- 2.0 m chip includes 2 Jaint	
				as above (1.0 and 1.5 cm)	
9763	·,	1.	"	- FLOAT minimum Vein	
				width 10 cm, as above	
9764			gtz. monzonile	- medium grained, - 30 / 913	
		1195m elev.		5401. plag mind Esperi and	
	+			non andesite contact	
				- new and strate - and -	
9715	+	17			
		1158 M DRV.		- 1.2 m chip of atz treccia in	
				fault 110 / 90	
				- angular to will randed clasta	
				<25 cm, Vugqy 9tz, mina	
				Kimohile, ho sulphides	
9766	4			- Jace il stano joint 040:/35. NW	
		0 m above 1926	2	- abundant malachite/azusite/kimonite	
				stais + possible scondite	
				(mostly withing to epidate veins)	l

Scul	Fizas	CL T		34	36
2 ample	Date /	Alicia	Lithology_	Kimurks/Alteration/Structure Mineralization - Same as #9765 Sutwitt 1-27. dissen pyrite abundant calcite and anterite	Analysis.
976B	July 24/2	, .,	andesite.	- FLOAT chip sample - aukenite zone 1.0m wide 000/41: W with coloite/ankerite Vein on Hangingwall	
9769		" 10m for #9764	Alyolite?	- FLOAT in talus very siliceous banded	
9770	١.	20m 5 J #9769	andesita	- strongly fractured limentic breccia, minor herratite	
ורנף		50m W. d#9769		- banded with abundant canbonate, 651. gtz- Canb-herrafite vein	
977	2	50m S.q. Saddle	git/conglom	erate 15% qtz-prite veino within a 20 x 50m leno of grit /conglomerate abundant Limonite, 1.4 m chip	
977-	3 4	25m from #92.		- as a dove less 977 more limonité abundant calcite ro visible pyrite.	
972	4	155Dm 0/01/1	andesite	- ankenite gone, abundant calcite mino hematite	

SCUD	1 17.721	()		35436
2,20012164	Date.	Location	Lithology	Remarks / Alteration / Structure Mineralization Analysis:
C 9775	5421/2	Alicia 1515 m elev.	andesite	- gtz vein 10 cm wide B-107 cpy, 11. Donite - host is chloitic malachite
9776		"		- 2.0 m chip sample in chloitic, sheared anderite (incl #0775 vein) - lithic taff - some fragmenta altered to epidite, also epidete
פרר?		" 1540 m elev.	(r	Veine, abuidant malachite stain - shear zone 022/90 many gtz epidote veins + hacture filling with 1-2% cpy/tonite
977 6) ,,			- 2.0 m chip sample in nepylitically attered andesite - local blebs of massive bonite and chelcopynite abundant malachite stain
9779	,	11		- 10cm mide gtz-epidote vein 2°/ cpy, trace bornite/covellite abundant malachite 022/90
9780	<u> </u>			- 25 cm gtz vein 050/63:NW 107. cpy blebs, minn prite - abundant malachite and limonite pitrin
9781	· · · · ·	· (· · · · · · · · · · · · · · · · · · ·	-2.0 m chip across sheen gone ind #9780, same trend mopplifically attered, strong movelitie and activities alter on footwalk

5 . IN	Frent	ECT				36836
SCUD				2. du / Allenting / Strocture.	Mineralization	Analysis.
Sample	Date:	Location	Lithology	Kernerks Arrention Strokers		
RC9782	Julyaik	Alicia	andes. TE	- 1.2m chip Jakple anoss Tr		
	1 17	50m E. J #978/	ی و اسم اور دوستانی و معدر و در است میرود در بین بوستانی بر باید با هم توسی میروند. مرابع	and vein 100/ 52 10		
		0		- a wardaw and hard		
				30 an alia sanale Harriel		
9783	· · · ·	11	11	- se in chip shape insta		
				hanging water Juany vela		
				05- 10 10 0 mprile		
	+					
		+				
			+			
			+			
	_					

APPENDIX II

.

ANALYTICAL PROCEDURES

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

October 19, 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine metallic gold by fire assay method and determined gravimetrically.
- 1. Method of Sample Preparation
 - (a) Rock samples would be received at the laboratory in poly ore bags.
 - (b) Dried rock samples would be crushed using a jaw crusher and pulverized to 140 mesh or finer by using a disc mill.
 - (c) The whole sample or portion of the sample would then be screened through a 140 mesh screen. The +140 mesh fraction (metallics) would be weighed and then put into an envelope for gold analysis with its weight recorded. The 140 mesh fraction would be weighed then rolled and transferred to a new bag with its weight recorded and a portion subsequently used for analysis.
- 2. <u>Method of Extraction</u>
 - (a) The whole +140 mesh fraction is fluxed and fused. 1/2 to 1 assay tonne of the pulp sample (140 mesh fraction) would be used.
 - (b) A flux of litharge, soda ash, silica, borax, either flour or potassium nitrite is added. The samples are thoroughly mixed, a liquid Ag inquart is added then fused at 1900 degrees Fahrenheit to form a lead button.

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The lead buttons are cupelled to dore beads. The beads are parted with dilute nitric acid and washed several times.
- (d) The gold beads are then annealled.

3. Method of Determination

The gold beads are weighed using a Sartorius electronic micro-balance. Using the weights of +140 mesh and -140 mesh fraction and the weights of gold, the assay is then calculated and reported in ounces per short tonne or grams per tonne.

4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Kand G

Raymond Chan VANGEOCHEM LAB LIMITED

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 19, 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine silver by fire assay method in geological samples.
- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were eceived at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in 8" x 12" plastic bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized into 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.
- 2. Method of Digestion
 - (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into a fusion pot.
 - (b) A flux of litharge, soda ash, silica, borax, either flour or potassium nitrite was added. The samples were thoroughly mixed and then fused at 1900 degrees Fahrenheit to form a lead button.
 - (c) The silver was extracted by cupellation, weighed and parted with diluted nitric acid.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. <u>Method of Calculation</u>

The silver was calculated by the weigh loss of the bead and then parts per million (ppm) was calculated.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and the laboratory staff.

lynth

Raymond Chan VANGEOCHEM LAB LIMITED

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October, 19 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Cu, Pb and Zn assay samples.
- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.
- 2. Method of Digestion
 - (a) 0.200 gram portions of the minus 100 mesh samples were used. Samples were weighed out by using an analytical balance.
 - (b) Samples were digested in multi acids in volumetric flasks.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER. BC V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

Cu, Pb and Zn concentrations were determined using a Techtron Atomic Absorption Spectrophotometer Model AA5 with their respective hollow cathode lamps. The digested samples were directly aspirated into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing them to a set of standards used to calibrate the atomic absorption units.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and their laboratory staff.

Amlh

Raymond Chan VANGEOCHEM LAB LIMITED

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-

October 10, 1990

- TO: Mr. Grant Malensek OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. <u>Method of Extraction</u>

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630. PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-57 17 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.
- 3. Method of Detection
 - (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
 - (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

1 L

Raymond Chan VANGEOCHEM LAB LIMITED

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-7

October 10, 1990

- TO: Mr. Grant Malensek OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.
- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.
- 2 <u>Method of Digestion</u>
 - (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
 - (b) Samples were digested with a 5 ml solution of HCl:HN03:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
 - (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

.

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace interelement corrected. All data elements are are subsequently stored onto disketts.

4 Analysts

The analyses were supervised or determined by Mr. Conway Chun and his laboratory staff.

Kyth

Conway Chun VANGEOCHEM LAB LIMITED
APPENDIX III

CERTIFICATES OF ANALYSIS

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 26 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910107

PROJECT#: GOLDFIELDS SKUD SAMPLES ARRIVED: JULY 23 1991 REPORT COMPLETED: JULY 26 1991 ANALYSED FOR: Cu Ag Au (FA/AAS) INVOICE#: 910107 NA TOTAL SAMPLES: 145 SAMPLE TYPE: 145 ROCK REJECTS: SAVED

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANDIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-0641. INVOICE SENT TO OREQUEST CONSULTANTS LTD. SHIPMENT #EP-3.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 910107 GA	JOB NUMBER: 910107	GOLD FIBLDS CANADIAN MINING LTD.	PAGE 1 OF 4
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9026	161	0.6	nd
RC 9027	1610	1.4	nd
RC 9028	72	0.6	nd
RC 9029	600	0.7	nd
RC 9030	84	0.4	nd
RC 9031	208	0.4	nd
RC 9032	280	0.5	nd
RC 9033	8	0.3	nd
RC 9034	3	0.2	nd
RC 9035	37	0.5	nd
DC 0036	1 C	0.4	nd
RC 9036	120		nd
RC 9037	120	0.2	nu n đ
RC 9038	8	0.3	na
RC 9039	1	0.2	nd
RC 9048	85	0.3	nd
RC 9049	520	0.6	nđ
RC 9050	8	0.4	nd
RC 9051	610	0.6	160
RC 9052	4300	8.8	7200
RC 9053	2050	1.1	nd
RC 9055	81	0.3	nđ
RC 9056	360	1.0	nd
RC 9057	440	1.2	nđ
RC 9058	70	0.4	360
RC 9059	53	0.2	nđ
RC 9060	121	0.4	nd
RC 9061	8	0.3	nd
RC 9062	143	0.4	nđ
RC 9063	40	0.7	nđ
RC 9064	54	0.4	nd
RC 9065	30	0.3	nđ
RC 9066	135	0.4	nd
RC 9067	2500	9 6	20
RC 9068	52	0 4	nd
RC 9069	50	0.4	nd
PC 9070	EO	0.2	n d
	して して して して	0.2	20
		U.4	U 2
RC 9072	150	V.1	na
KC 9013	48	U.4	na
DETECTION LIMIT	1	0.1	5
nd = none detected	= not analysed is =	insufficient sample	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 910107 CA	JOB NUMBER: 910107	GOLD FIELDS CANADIAN MINING LTD.	PAGE 2 OF	4
SAMPLE #	Cu	Ag	Au	
	ppm	ppm	ppb	
RC 9074	1810	0.2	nd	
RC 9075	226	0.1	nd	
RC 9076	198	0.3	nd	
RC 9077	184	0.4	nd	
RC 9078	193	0.2	nd	
RC 9079	60	0.2	nđ	
RC 9080	15	0.1	nd	
RC 9081	45	0.1	nd	
RC 9082	27	0.1	nd	
RC 9083	30	nd	nd	
RC 9084	235	0.4	nd	
RC 9085	16400	8.3	nd	
RC 9086	1860	0.6	nd	
RC 9087	4100	4.8	nd	
RC 9626	90	0.3	>10000	
RC 9627	310	0.5	>10000	
RC 9628	130	0.5	>10000	
RC 9629	207	0.2	>10000	
RC 9630	370	37.0	510	
RC 9631	82	0.5	100	
RC 9632	740	6.3	80	
RC 9633	6	0.1	70	
RC 9634	62	0.1	>10000	
RC 9635	8	nd	120	
RC 9636	167	nd	130	
RC 9637	4	nđ	30	
RC 9638	28	nd	90	
RC 9639	152	nd	30	
RC 9640	222	nd	140	
RC 9641	54	nd	nd	
RC 9642	85	nd	70	
RC 9643	14	nd	40	
RC 9644	16100	22.0	nđ	
RC 9645	3700	5.2	nd	
RC 9646	207	0.2	nd	
RC 9647	69	nd	nd	
RC 9648	13	nd	nđ	
RC 9649	480	0.3	nd	
RC 9650	20	0.2	nd	
DETECTION LIMIT	1	0.1	5	
nd = none detected	= not analysed is =	insufficient sample		

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 910107 GA	JOB NUNBER: 910107	GOLD FIBLDS CANADIAN MINING LTD.	PAGE 3 OF 4
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9651	31	0.4	nd
RC 9652	208	0.8	nd
RC 9653	103	0.3	nd
RC 9654	20	0.2	nd
RC 9656	34	0.3	nd
RC 9658	26	0.2	nd
RC 9660	167	0.8	nđ
RC 9662	53	0.2	nd
RC 9663	6	0.1	nd
RC 9664	30	0.3	nd
RC 9665	138	0.3	nd
RC 9666	104	0.4	nd
RC 9667	85	0.4	nd
RC 9668	15	0.1	nd
RC 9669	8	0.1	nd
RC 9670	57	1.6	nđ
RC 9671	6	0,6	nd
RC 9672	5	1.6	nd
RC 9673	23	0.1	nd
RC 9674	47	0.4	nd
RC 9675	1200	1 3	nd
RC 9676	280	0 4	nd
RC 9677	530	97	nd
RC 9678	21	0 4	nd
RC 9679	21	0.5	nd .
	2 1	0.0	na
RC 9680	66	0.3	nd
RC 9681	730	1.0	nd
RC 9682	90	0.4	nđ
RC 9683	. 790	1.0	nd
RC 9684	143	0.5	nd
RC 9685	1570	1.1	nd
RC 9686	740	0.7	nd
RC 9702	58	0.4	nd
RC 9703	81	0.6	nd
RC 9704	123	0.6	nd
RC 9705	122	0.5	nd
RC 9706	3000	1.9	nd
RC 9707	960	0.8	nd
RC 9708	64	0.3	20
DETECTION LIMIT	1	0.1	5
nd = none detected	= not analysed is =	insufficient sample	-

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

.

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910107 GA	JOB NUMBER: 910107	GOLD FIELDS CANADIAN MINING LTD.	PAGE 4 OP 4
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9709	56	0.2	nd
RC 9710	28	. 0.2	nd
RC 9711	60	0.1	nd
RC 9712	36	0.2	nd
RC 9713	30	0.4	nd •
RC 9714	20	0.3	nđ
RC 9715	73	0.1	nd
RC 9716	143	0.3	20
RC 9717	118	0.1	nd
RC 9718	20	0.1	nd
RC 9719	7	0.1	nd
RC 9720	18	0.2	nd
RC 9721	8	0.1	nd
RC 9722	40	0.2	nd
RC 9723	18	0.1	nd
RC 9724	13	0.2	nd
RC 9727	35	0.2	nd
RC 9728	36	0.3	nd
RC 9729	37	0.2	nd
RC 9730	26	0.1	nd
RC 9732	128	0.2	nd
RC 9733	142	0.2	nđ
RC 9734	80	0.2	nđ
RC 9735	20	0.1	nd
RC 9736	35	0.1	nd
RC 9737	11	0.1	nđ
RC 9738	25	0.2	nd
RC 9739	12	0.1	nd

DETECTION LIMIT nd = none detected -- = not analysed . 5

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 26 1991ADDRESS: Suite 909 - 123 Front Street West: Toronto Ontario: M5J 2M2. M5J 2M2. DOB#: 910107

PROJECT#: GOLDFIELDS SKUD SAMPLES ARRIVED: JULY 23 1991 REPORT COMPLETED: JULY 26 1991 ANALYSED FOR: AU 1A.T. INVOICE#: 910107 NA TOTAL SAMPLES: 6 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 6 ROCK

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANDIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-0641. INVOICE SENT TO OREQUEST CONSULTANTS LTD. SHIPMENT #EP-3.

SIGNED:

0.661

RC 9634

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

•

REPORT NUMBER: 910107 AA	JOB NUMBER: 910107	GOLD FIELDS CANADIAN MINING LTD.	PAGE	1	0F	1
SAMPLE #	Au oz/st					
RC 9052 RC 9626 RC 9627 RC 9628 RC 9629	0.132 0.393 0.651 0.326 0.511					

DETECTION LIMIT 0.002 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 t ppm = parts per million < = less than

signed: Amile

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT ______

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 30 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario REPORT#: 910125 GA : M5J 2M2 JOB#: 910125

PROJECT#: NONE GIVEN INVOICE#: 910125 NA SAMPLES ARRIVED: JULY 25 1991 TOTAL SAMPLES: 44 REPORT COMPLETED: JULY 30 1991 SAMPLE TYPE: 44 ROCK ANALYSED FOR: Cu Ag Au (FA/AAS) **REJECTS: SAVED**

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

Agril C SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-5.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

.

REPORT NUMBER: 910125 GA	JOB NUMBER: 910125	GOLD PIELD CANADIAN MINING LTD.	PAGE 1 OF 2
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9687	95	0.8	10
RC 9688	204	1.1	10
RC 9689	114	1.0	nd
RC 9690	35	0.6	nd
RC 9691	32	0.7	na
RC 9692	28	1.2	nd
RC 9693	50	1.1	nd
RC 9694	51	1.2	nd
RC 9695	57	0.5	nd
RC 9696	8	0.5	10
RC 9697	6300	4.7	20
RC 9751	135	1.0	10
RC 9752	· 63	0.4	10
RC 9753	37	0.2	nd
RC 9754	146	0.4	20
PC 9755	78	0.4	nđ
RC 9756	110	0.2	nd
RC 9757	90	1.1	nd
RC 9758	156	0.7	nd
RC 9759	42	0.3	nd
PC 9760	49	0.4	nđ
RC 9761	> 20000	> 50.0	170
RC 9762	5900	9.7	10
RC 9763	> 20000	> 50.0	600
RC 9764	420	0.6	nd
RC 9765	252	0 5	nd
RC 9766	4010	2.2	20
RC 9767	32	1.1	10
RC 9768	35	0.2	10
RC 9769	25	0.3	nd
ድር 977ሰ	42	Û 1	nd
RC 9771	. 8	0.1	nd
RC 9772	40	0 1	nd
RC 9773	65	0.4	nd
RC 9774	10	0.8	nd
PC 0775	> 20000		650
	20000	/ 50.0	10
	> 2130	1.2 > 50 0	10
RC 9778	1200	2 0	10
	1200	2.0	T ()
DETECTION LIMIT	1	0.1	5
nd = none detected	= not analysed is =	insufficient sample	

.

• ;

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910125 GA	JOB NUMBER: 910125	GOLD FIELD CANADIAN MINING LTD.	PAGE 2 OF 2
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9779	7200	14.2	40
RC 9780	> 20000	11.0	10
RC 9781	14500	6.3	20
RC 9782	103	0.7	nd
RC 9783	112	0.2	nd

DETECTION LIMIT nd = none detected

-- = not analysed

1 0.1 is = insufficient sample 5

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 31 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 BEPORT#: 910125 AA JOB#: 910125

PROJECT#: NONE GIVEN SAMPLES ARRIVED: JULY 25 1991 REPORT COMPLETED: JULY 31 1991 ANALYSED FOR: Cu Ag INVOICE#: 910125 NA TOTAL SAMPLES: 6 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 6 ROCK PULP

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-5.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT BURBER: 910125 AA	JOB WUNBER: 910125	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 1
SAMPLE #	Cu %	Ag oz/st	
RC 9761	3.41	1.95	
RC 9763	14.10	4.67	
RC 9775	3.77	0.87	
RC 9777	6.85	1.63	
RC 9780	2.05		
RC 9781	1.42		

DETECTION LIMIT 0.01 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 V ppm = parts per million (= less than signed:

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: AUG 13 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 BEPORT#: 910166 GA JOB#: 910166

PROJECT#: NONE GIVEN SAMPLES ARRIVED: AUG 07 1991 REPORT COMPLETED: AUG 13 1991 ANALYSED FOR: Cu Ag Au (FA/AAS) INVOICE#: 910166 NA TOTAL SAMPLES: 77 SAMPLE TYPE: 77 ROCK REJECTS: SAVED

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS LTD. SHIPMENT # EP-6 .

.

· ·

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

.

REPORT NUMBER: 910166 GA	JOB NUMBER: 910166	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 2
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9137	65	0.6	nd
RC 9138	29	0.4	20
RC 9139	32	0.3	nd
RC 9140	52	0.7	nd
RC 9141	22	0.2	nd
RC 9142	98	0.5	nd
RC 9143	62	0.4	nd
RC 9144	70	0.4	nđ
RC 9145	88	0.4	nd
RC 9146	124	0.7	nd
RC 9147	66	0.3	10
RC 9148	31	0.2	nd
RC 9149	50	0.3	nd
RC 9150	56	3.3	nđ
RC 9151	35	0.6	nd
RC 9152	62	0.4	nđ
RC 9153	54	1.9	50
RC 9154	42	1.2	nd
RC 9155	26	0.7	nð
RC 9156	79	0.5	nd
RC 9157	27	0.9	nd
RC 9158	29	2.6	nd
RC 9159	10	0.3	nd
RC 9160	6.3	0.2	nđ
RC 9161	48	0.9	390
RC 9162	20	Ū. 8	20
RC 9163	20	0.8	nd
RC 9164	4 4	3 1	100
RC 9165	50	1 6	70
RC 9166	38	5.0	150
RC 9167	29	<u>()</u> . 4	1.0
RC 9168		0 3	nđ
RC 9169	G S	0 2	nđ
RC 9170	ģ	0.2	nd
RC 9171	60	0.2	20
RC 9172	<i>A A</i>	<u>́л</u> з	3.0
RC 9173	1 R	0.5	50 nđ
$\mathbf{R} = \mathbf{Q} 1 7 \mathbf{A}$	1 O A C		nd
	O P C K		nu nd
	42	0.3	na
DETECTION LIMIT nd = none detected	l = not analysed is =	0.1 insufficient sample	5

•

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

SAMPLE # Cu Ag Au PPm Ppm Ppm Ppm RC 9176 45 0.4 30 RC 9177 25 0.3 nd RC 9178 21 0.3 nd RC 9179 35 0.4 nd RC 9179 35 0.4 nd RC 9176 15 0.6 560 RC 9784 15 0.6 10 RC 9786 15 0.5 nd RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9780 40 0.5 nd RC 9780 8 0.1 nd RC 97970 8 0.1 nd RC 97972 10 0.2 nd RC 97974 14 0.2 nd RC 9795 6 0.7 nd RC 9795 10 0.4 nd RC 9795 10 </th <th>REPORT NUMBER: 910166 GA</th> <th>JOB NUMBER: 910166</th> <th>GOLD FIELDS CANADIAN NINING LTD.</th> <th>PAGE 2 OF 2</th>	REPORT NUMBER: 910166 GA	JOB NUMBER: 910166	GOLD FIELDS CANADIAN NINING LTD.	PAGE 2 OF 2
Ppm ppm ppm ppb RC 9177 25 0.3 nd RC 9178 21 0.3 nd RC 9179 35 0.4 nd RC 9179 35 0.3 nd RC 9179 35 0.4 nd RC 9179 35 0.3 nd RC 9786 15 0.6 560 RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9786 37 0.6 10 RC 9790 8 0.1 nd RC 9793 33 1.3 40 RC 9793 33 1.3 40 RC 9793 33 1.3 40 RC 9793 32 1.7 nd RC 9795 8 0.7 nd RC 9795 8 0.1 nd RC 9796 32 1.7 nd RC 9826 1360 <td>SAMPLE #</td> <td>Cu</td> <td>Ад</td> <td>Au</td>	SAMPLE #	Cu	Ад	Au
NC 9170 45 0.4 30 RC 9177 25 0.3 nd RC 9178 21 0.3 nd RC 9178 21 0.3 nd RC 9178 21 0.3 nd RC 9180 188 0.3 nd RC 9785 15 0.6 580 RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9788 37 0.6 10 RC 9789 40 0.5 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9831 600 0.6 30 RC 9833 151 0.5 60	D.G. 0186	ppm	ppm	ppb
RC 9179 23 0.3 nd RC 9179 35 0.4 nd RC 9180 188 0.3 nd RC 9784 15 0.6 580 RC 9785 15 0.3 nd RC 9786 15 0.5 nd RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9786 37 0.6 10 RC 9786 37 0.6 10 RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.1 nd RC 9795 8 0.1 nd RC 9796 32 1.7 nd RC 9826 126 22 0.2 40 RC 9828 1360 1.1 6000 6 RC 9831 600	RC 9176	45	- 0.4	30
RC 9179 35 0.4 nd RC 9180 188 0.3 nd RC 9180 188 0.3 nd RC 9784 15 0.6 10 RC 9786 15 0.5 nd RC 9786 15 0.5 nd RC 9788 37 0.6 10 RC 9789 40 0.5 nd RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.1 nd RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 30	RC 9178	25	0.3	nd
RC 9180 188 0.3 nd RC 9784 15 0.6 580 RC 9785 15 0.3 10 RC 9786 15 0.3 10 RC 9786 15 0.3 nd RC 9786 15 0.2 nd RC 9786 37 0.6 10 RC 9789 40 0.5 nd RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9831 600 1.4 40 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 1.0 60	RC 9179	35	0.4	nđ
RC 9784 15 0.6 580 RC 9785 15 0.3 10 RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9786 37 0.6 10 RC 9786 37 0.6 10 RC 9788 37 0.6 10 RC 9789 40 0.5 nd RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9834 60 1.0 40 RC 9835 57 0.1 40 <	RC 9180	188	0.3	nd
RC 9785 15 0.3 10 RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9788 37 0.6 10 RC 9788 37 0.6 10 RC 9789 40 0.5 nd RC 9790 8 0.1 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9795 8 0.1 nd RC 9795 8 0.1 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 <	RC 9784	15	0.6	580
RC 9786 15 0.5 nd RC 9786 37 0.6 10 RC 9788 37 0.6 10 RC 9788 37 0.6 10 RC 9788 37 0.6 10 RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9796 32 1.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9831 600 0.3 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9835 57 0.1 40 RC 9836 60 1.6 360 <td>RC 9785</td> <td>15</td> <td>0.3</td> <td>10</td>	RC 9785	15	0.3	10
RC 9786 37 0.6 10 RC 9787 0.6 10 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9793 33 1.3 40 RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9796 32 1.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9826 1360 1.1 6000 RC 9829 111 0.3 40 RC 9831 60 0.1 40 RC 9833 151 0.5 80	RC 9786	15	0.5	nđ
RC 9780 37 0.6 10 RC 9780 40 0.5 nd RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9826 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 <td>RC 9787</td> <td>23</td> <td>0.2</td> <td>nd to</td>	RC 9787	23	0.2	nd to
RC 9789 40 0.5 nd RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9829 111 0.3 40 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 1.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9836 45 0.4 40 RC 9838 45 0.4 nd RC 9839 10 0.4 nd	RC 9700	57	0.6	10
RC 9790 8 0.1 nd RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9839 10 0.4 nd RC 9838 45 0.4 nd	RC 9789	40	0.5	nđ
RC 9791 20 0.4 nd RC 9792 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9838 45 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd	RC 9790	. 8	0.1	nđ
RC 9793 10 0.2 nd RC 9793 33 1.3 40 RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9833 151 0.5 80 RC 9833 151 0.5 80 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9839 10 0.4 nd RC 9841 15 0.3 nd <td>RC 9791</td> <td>20</td> <td>0.4</td> <td>nd</td>	RC 9791	20	0.4	nd
RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 45 0.4 40 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd	RC 9792	3.3 T.O	0.2	na
RC 9794 14 0.2 nd RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9833 151 0.5 80 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd	KC 9793	55	1.3	40
RC 9795 8 0.7 nd RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9827 8 0.1 nd RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9838 10 0.4 nd RC 9840 36 0.2 nd	RC 9794	14	0.2	nd
RC 9796 32 1.7 nd RC 9826 22 0.2 40 RC 9827 8 0.1 nd RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9836 45 0.4 40 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 <td>RC 9795</td> <td>8</td> <td>0.7</td> <td>nd</td>	RC 9795	8	0.7	nd
RC 9827 8 0.1 nd RC 9827 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9844 37 1.7 20	RC 9796	32	1.7	nd
RC 9828 1360 1.1 6000 RC 9828 1360 1.1 6000 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 1.6 360 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9838 20 0.4 40 RC 9838 45 0.4 40 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9844 37 0.1 nd RC 9845 75 1.7	RC 9827	22	0.2	40
RC 9828 1360 1.1 6000 RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9839 10 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20	NC 9027	о	0.1	na
RC 9829 111 0.3 40 RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9836 60 0.3 30 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9838 45 0.4 40 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 <td>RC 9828</td> <td>1360</td> <td>1.1</td> <td>6000</td>	RC 9828	1360	1.1	6000
RC 9830 84 0.1 40 RC 9831 600 0.6 30 RC 9832 1770 0.9 120 RC 9833 151 0.5 80 RC 9833 60 0.3 30 RC 9833 151 0.5 80 RC 9833 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample	RC 9829	111	0.3	40
RC 9631 600 0.6 30 RC 9632 1770 0.9 120 RC 9633 151 0.5 80 RC 9833 60 0.3 30 RC 9833 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed 1s = insufficient sample	RC 9830	84	0.1	40
RC 9632 1770 0.9 120 RC 9633 151 0.5 80 RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9838 20 0.4 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample	RC 9832	600	0.6	30
RC 9633 151 0.5 80 RC 9634 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20	RC 9032	1770	0.9	120
RC 9834 60 0.3 30 RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20	RC 9833	151	0.5	80
RC 9835 57 0.1 40 RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9845 75 1.7 20	RC 9834	60	0.3	30
RC 9836 60 1.6 360 RC 9837 33 0.6 10 RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9843 10 0.2 nd RC 9845 75 1.7 20	RC 9835	57	0.1	40
RC 9838 45 0.6 10 RC 9839 10 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20	RC 9837	5 U 3 3		360
RC 9838 45 0.4 40 RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20	KG 9007	J.J.	0.6	ΤU
RC 9839 10 0.4 nd RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample 5	RC 9838	4.5	0.4	4 Ŭ
RC 9840 36 0.2 nd RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample 5	RC 9839	10	0.4	nd
RC 9841 15 0.3 nd RC 9842 20 0.4 nd RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample 5	RC 9840	36	0.2	nd
RC 984220 0.4 ndRC 984310 0.2 ndRC 984437 0.1 ndRC 984575 1.7 20DETECTION LIMIT1 0.1 5nd = none detected = not analysedis = insufficient sample		15	0.3	nd
RC 9843 10 0.2 nd RC 9844 37 0.1 nd RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample 5	NC JU12	20	U.4	nd
RC 9844 37 0.1 ndRC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected $$ = not analysedis = insufficient sample	RC 9843	10	0.2	nd
RC 9845 75 1.7 20 DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample	RC 9844	37	0.1	nd
DETECTION LIMIT 1 0.1 5 nd = none detected = not analysed is = insufficient sample	RC 9845	75	1.7	20
nd = none detected = not analysed is = insufficient sample		,		
	nd = none detected	= not analysed is =	U.1 insufficient sample	5

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: AUG 13 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910166

PROJECT#: NONE GIVEN SAMPLES ARRIVED: AUG 07 1991 REPORT COMPLETED: AUG 13 1991 ANALYSED FOR: AU 1A.T. INVOICE#: 910166 NA TOTAL SAMPLES: 1 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 1 ROCK PULP

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS LTD. SHIPMENT # EP-6

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910166 AA	JOB NUMBER: 910166	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 1
SAMPLE #	Au oz/st		,
RC 9828	0.167		

.

DETECTION LIMIT 0.002 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 t ppm = parts per million < = less than

signed: 12

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

PROJECT#: NONE GIVEN SAMPLES ARRIVED: JULY 25 1991 TOTAL REPORT COMPLETED: JULY 30 1991 SAM ANALYSED FOR: Cu Ag Au (FA/AAS)

INVOICE#: 910124 NA TOTAL SAMPLES: 49 SAMPLE TYPE: 49 ROCK REJECTS: SAVED

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-4.

Ļ

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 910124 GA	JOB NUMBER: 910124	GOLD FIELD CANADIAN MINING LTD.	PAGE 1 OF 2
SAMPLE #	Cu	Ag	Au
	ppm	ppm	daa
RC 9088	- 65	0.2	nd
RC 9089	19	0.1	nd
RC 9090	186	0.8	nd
RC 9091	69	0.9	nd
RC 9092	107	0.6	nd
RC,9093	208	0.6	nd
RC 9094	160	0.5	nd
RC 9095	117	0.4	nd
RC 9096	31	0.6	nd
RC 9097	77	0.6	nd
RC 9098	115	0.7	nđ
RC 9099	145	0.5	nđ
RC 9100	38	0.3	nd
RC 9101	234	0.7	nd
RC 9102	12	0.9	1400
RC 9103	134	0.4	10
RC 9104	87	0.6	30
RC 9105	65	0.4	20
RC 9106	100	0.4	nd
RC 9107	55	0.3	nd
RC 9108	177	0.8	nd
RC 9109	333	0.8	nd
RC 9110	27	0.4	nd
RC 9111	144	0.6	nd
RC 9112	76	0.4	10
RC 9113	30	0.3	20
RC 9114	7	1.3	4300
RC 9115	3 3	0.4	20
RC 9116	20000	> 50.0	80
RC 9117	145	0.6	20
RC 9118	59	1.3	nd
RC 9119	107	0.7	nd
RC 9120	50	0.8	nd
RC 9121	3 5	0.9	nd
RC 9122	150	0.4	nd
RC 9123	<u>9</u> .8	0.2	nd
RC 9124	15	0.6	nđ
RC 9125	1300	1.2	nd
RC 9126	37	0.5	nd
DETECTION LIMIT nd = none detected	= not analysed is =	0.1 insufficient sample	5

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT RUNBER: 910124 CA	JOB NUNBER: 910124	GOLD FIELD CANADIAN MINING LTD.	PAGE 2 OF 2
SAMPLE #	Cu	Ag	Au
	ppm	ppm	ppb
RC 9127	14	1.1	nd
RC 9128	18	0.1	nd
RC 9129	41	0.7	nd
RC 9130	36	0.3	nd
RC 9131	83	0.8	nd
RC 9132	40	0.6	nd
RC 9133	6	0.1	nd
RC 9134	30	0.7	nd
RC 9135	5500	5.5	nd
RC 9136	50	0.5	nd

٠

Ş

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 31 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 BEPORT#: 910124 AA JOB#: 910124

PROJECT#: NONE GIVEN SAMPLES ARRIVED: JULY 25 1991 REPORT COMPLETED: JULY 31 1991 ANALYSED FOR: Cu Ag INVOICE#: 910124 NA TOTAL SAMPLES: 1 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 1 ROCK PULP

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-4.

۰,

· • ;

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

REPORT BUMBER: 910124 AA	JOB NUMBER: 910124	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OP 1
SAMPLE #	Cu %	Ag oz/st	
RC 9116	1.92	0.90	

DETECTION LIMIT	0.01	ppm = parts per million	0.01
1 Troy oz/short ton = 34.28 pp	1 ppm = 0.0001 %		< = less than
signed:	le 1	16	

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: AUG 13 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910126

PROJECT#: NONE GIVENINVOICE#: 910126 NASAMPLES ARRIVED: JULY 25 1991TOTAL SAMPLES: 41REPORT COMPLETED: AUG 13 1991SAMPLE TYPE: 41 SOILANALYSED FOR: Cu Ag Au AsREJECTS: DISCARDED

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

Mulh SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS LTD. SHIPMENT # EP-5

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 910126 GA		JOB NUMBER: 910126	GOLD FIELDS CANADIA	AN MINING LTD.	PAGE 1 OF 2	
SAMPLE #		Cu	Ag	Au	Аз	
		ppm	ppm	ppb	ppm	
BLS	0+005	20	0.2	15	2	
BLS	0+255	20	0.3	nd	2	
BLS	0+505	43	0.3	nd	4	
BLS	0+755	57	1.0	nd	4	
BLS	1+005	27	0.5	5	2	
BLS	1+255	120	0.4	nd	6	
BLS	1+505	14	0.5	10	nd	
BLS	1+755	. 54	0.3	10	10	
BLS	2+005	18	0.3	15	10	
BLS	2+255	16	0.1	5	10	
BLS	2+505	145	0.9	5	20	
BLS	2+755	159	0.3	5	15	
BLS	3+005	54	0.1	nđ	2	
BLS	3+255	15	0.3		nd	
BLS	3+505	30	1.0	nð	nd	
	0.000	•••	1.0	ind	na	
BLS	3+755	75	0.6	nd	35	
BLS	4+00S	22	0.2	nd	8	
BLS	4+255	15	0.1	5	4	
BLS	5+00s	5	0.2	10	2	
BLS	5+255	12	0.1	nd	2	
BLS	5+50S	21	0.3	15	20	
BLS	5+75S	25	0.2	nd	10	
BLS	6+005	17	0.2	5	2	
BLS	6+25S	19	0.4	10	22	
BLS	6+50S	21	0.2	15	6	
BLS	7+005	2	0.2	nd	2	
BLS	7+255	12	0.2	10	2	
BLS	7+50s	13	0.3	15	2	
BLS	7+758	5	0.3	nd	2	
BLS	8+005	21	0.3	5	6	
BLS	8+755	35	0.4	10	8	
BLS	9+005	20	0.3	5	4	
BLS	9+255	9	0.2	5	2	
BLS	9+505	43	0.1	nd	15	
BLS	9+755	28	0.1	15	2	
BLS	10+005	. 11	nd	10	6	
BLS	10+255	14	0.1	15	4	
BLS	10+505	16	0.1	10	nd	
BLS	10+755	52	0.2	10	52	
DET	ECTION LIMIT nd = none detected	l = not analysed is	0.1 = lasufficient sample	5	2	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910126 GA	JOB NUMBER: 910126	GOLD FIELDS CANADIAN	NINING LTD.	PAGE 2 OF 2
SAMPLE #	Cu	Ag	Au	As
	ppm	ppm	ppb	ppm
BLS 11+00S	23	0.1	. 10	nd
BLS 11+25S	8	0.1	15	· 2 ·

DETECTION LIMIT nd = none detected

-- = not analysed

1 0.1 is = insufficient sample

5

2

.

e s te

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 26 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910108

.

PROJECT#:GOLDFIELDS SKUDINVOICE#:910108 NASAMPLES ARRIVED:JULY 23 1991TOTAL SAMPLES:1REPORT COMPLETED:JULY 26 1991SAMPLE TYPE:1 ROCKANALYSED FOR:Cu Pb Zn Ag Au (FA/AAS)REJECTS:SAVED

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

Kndh SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-3.

۰.

,

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 9101	O8 GA JOB	NUNBER: 910108	GOLD FIELDS CANADIA	N MINING LTD.	PAGE 1 OF 1	
SIMPLE I	Cu	8p	In	Ag	Aa	
	ppm	ppn	pp n	ppn	ppb	
RC 9726	35	24	81	0.5	ba	

DETECTION LINIT

1

2

1

0.1

5

nd = none detected -- = not analysed is = insufficient sample

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

.

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 29 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910109

PROJECT#: GOLDFIELDS SKUD SAMPLES ARRIVED: JULY 23 1991 REPORT COMPLETED: JULY 29 1991 ANALYSED FOR: AU (FA/AAS) ICP

,

INVOICE#: 910109 NA TOTAL SAMPLES: 17 SAMPLE TYPE: 17 ROCK REJECTS: SAVED

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

Bm/h SIGNED:

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-3.

۰.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910109	GA JOB	NUMBER: 910109	GOLD	FIELDS	CANADIAN	NINING	LTD.
SAMPLE #		Au					
		ppb					
RC 9040		nd					
RC 9041		3600					
RC 9042		60					
RC 9043		20					
RC 9044		50					
RC-9045		20					
RC 9046		20					
RC 9047		10					
RC 9054		3500					
RC 9655		20					
RC 9657		30					
RC 9659		20					
RC 9661		20				<u>.</u>	
RC 9701		110					
RC 9731		10					
RC 9740		nd					
RC 9741		nd					

.

PAGE 1 OF 1

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: GOLD FIELDS CANADIAN MINING LTD. DATE: JULY 29 1991 ADDRESS: Suite 909 - 123 Front Street West : Toronto Ontario : M5J 2M2 JOB#: 910109

PROJECT#: GOLDFIELDS SKUD SAMPLES ARRIVED: JULY 23 1991 REPORT COMPLETED: JULY 29 1991 ANALYSED FOR: AU 1A.T. INVOICE#: 910109 NA TOTAL SAMPLES: 2 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 2 ROCK

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-3.

VG

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910109 AA	JOB NUNBER: 910109	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 1
SAMPLE #	Au oz/st		
RC 9041 RC 9054	0.061 0.082		

DETECTION LIMIT 0.002 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 \ ppm = parts per million (= less than

signed:

a

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENTI GOLD FIELDE CANADIAN MINING LTD. DATE: JULY 31 1991ADDRESS: Suite 909 - 123 Front Street West: Toronto Ontario: M5J 2M2. DOB#: 910109

PROJECT#: GOLDFIELDS SKUD SAMPLES ARRIVED: JÙLY 23 1991 REPORT COMPLETED: JULY 31 1991 ANALYSED FOR: Cu Ag INVOICE#: 910109 NB TOTAL SAMPLES: 2 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 2 ROCK PULP

SAMPLES FROM: OREQUEST CONSULTANTS COPY SENT TO: GOLD FIELDS CANADIAN MINING LTD.

PREPARED FOR: GOLD FIELDS CANADIAN MINING LTD.

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO TORONTO @ 1-416-865-0641. INVOICE SENT TO OREQUEST CONSULTANTS. SHIPMENT # EP-3.

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910109 AB	JOB WUKBER: 919189	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 1
SAMPLE #	Cu %	Ag oz/st	
RC 9041 RC 9054	2.37		

DETECTION LIMIT 0.01 0.01 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 t ppm = parts per million < = less than signed:

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (504)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₅ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

PROJECT: GOLDFIELDS SKUD

REPORT 1: 910109 PA

GOLD FIELDS CANADIAN MINING LTD.

, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W. ANALYST:

Sample Name	Ag	(A	As	Ba	8i	Ûa	Cđ	Co	Ûr	Çu	fe	ĸ	Ng	ħn	ňo	Na	Ni	P	Pb	Sb	Sn	Sr	U	N	Zn
	ppe	X.	pp∎	p p ●	pp n	ĩ	pp n	pp€	pp e	pg⊛	ĩ	z	ĩ	pp n	ppe	X	ppe	ĩ	ppa	ppe	ppa	ppe	ppe	ppe	ppe
RC 9040	(0.1	0.30	< 3	9	4	0.11	0.4	4	113	10	0.96	0.05	0.04	141	<1	0.10	33	<0.01	7	<2	<2	4	<5	(3	11
RC 9041	30.0	0.44	<3	43	13	1.19	<0.1	3	87	>20000	1.50	<0.01	0.18	347	<1	0.02	32	0.01	<2	<2	<2	23	<5	(3	30
RC 9042	0.7	3.05	<3	14	<3	2.25	(0.1	40	515	1165	4.78	<0.01	0.43	637	<1	0.11	132	0.04	<2	<2	<2	100	<5	<3	89
RC 9043	0.1	1.19	(3	38	(3	0.73	(0.1	22	177	120	2.15	(0.01	0.18	366	(1	0.13	40	0.02	<2	<2	<2	30	<5	<3	45
RC 9044	0.7	1.68	<3	28	<3	1.96	<0.1	33	179	837	3.56	<0.01	0.32	634	<1	0.18	38	0.03	<2	<2	<2	36	<5	<3	61
RC 9045	0.4	1.51	<3	1	14	>10	<0.1	20	71	68	3.26	(0.01	0.41	3879	<1	<0.01	(1	0.01	<2	<2	<2	444	<5	<3	106
RC 9046	0.8	3,98	<3	1	<3	9.27	(0.1	44	349	682	6.88	<0.01	0.83	1857	(1	<0.01	64	0.03	<2	<2	<2	110	<5	<3	205
RC 9047	0.3	4.41	<3	9	<3	6.51	(0.1	62	430	224	8.13	(0.01	1.00	1967	()	(0.0)	80	0.03	(2	(2	(2	141	<5	(3	164
RC 9054	50.0	1.13	(3	108	40	1.04	<0.1	18	81	>20000	3.03	(0.01	0.37	1160	(i	(0.01	35	0.01	37	<2	<2	17	<5	<3	105
RC 9655	0.3	2.35	(3	37	<3	2.60	<0.1	31	48	78 0	4.47	<0.01	0.13	428	<1	0.08	52	0.05	<2	<2	<2	23	<5	<3	29
RC 9657	0.B	2.59	409	29	<3	3.59	(0.1	34	157	683	>10	(0.01	0.35	1415	12	0.02	90	0.04	14	<2	<2	37	<5	<3	289
FC 9659	2.5	1.35	141	42	(3	1.52	<0.1	44	193	2209	8.82	<0.01	0.22	661	9	0.05	96	0.03	9	<2	<2	25	<5	<3	105
RC 9661	0.2	0.89	(3	36	12	9.17	<0.1	63	>1000	94	5.72	<0.01	1.55	1331	(1	<0.01	836	(0.01	< 2	< 2	<2	171	<5	< 3	55
RC 9701	30.0	0.58	>2000	148	< 3	8.85	<0.1	2764	112	15379	5.82	<0.01	0.37	1825	141	<0.01	2453	0.03	42	<2	<2	118	<5	(3	49
RC 973;	0.5	2.22	<3	175	<3	1.74	<0.1	86	653	354	3.87	<0.01	0,45	379	<1	0.14	293	0.02	<2	<2	<2	23	<5	<3	32
RC 9740	0.4	1.63	< 3	994	(3	>10	(0.1	5ú	711	30	4.57	(0.01	1.92	1684	(1	<0.01	607	0.01	<2	<2	<2	468	<5	<3	40
RC 9741	0.3	0.12	<3	58	22	>10	(0.1	10	53	11	5.50	<0.01	1.37	1513	<1	<0.01	72	<0.01	<2	<2	<2	342	<5	<3	45
Minisus Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	ť	0.01	2	2	2	t	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minieum	> - Greater	Than Max	ieu#	is - In	sufficie	nt Sampl	e ns	- No Sai	mple	ANOMALO	US RESUL	TS - Fur	ther Ana	lyses By	Alterna	te Metho	ds Sugge	sted.							

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,731

FOLIATION FRACTURES, JUINTING VEIN DYKE ~~ FAULT / SHEAR ROCK CHIP SAMPLE FROM DUTCROP ROCK CHIP SAMPLE FROM FLOAT GDSSAN / ANKERITE ZONE TOPOGRAPHIC BASE MAP FROM CORONA CORP. GEOLOGY MODIFIED AFTER JONES (1989 a,b,c) and JOHNSON & JONES (1990 a,b,c) Au Cu Ag SAMPLE # TYPE ppm (%) 198 184 193 ppm (oz/t) ppb (oz/t) nd Float grab 0.3 9076 nd nd nd nd nd 9077 Grab 0.4 0.2 9078 Grab 60 15 45 27 9079 Grab 0.2 Float grab 0.1 9080 9080 9081 9082 9083 9084 9085 9086 9086 9087 9086 0.1 Grab 0.1 Grab Grab 30 nd nd nd 235 0.4 1.5 m chip 16,400 8.3 Grab 1,860 4,100 0.6 ndd ndd ndd ndd ndd nd Float grab Grab 18 0.1 9723 Grab 13 25 12 0.2 9724 2.0 m chip 0.2 9738 Grab 9739 Grab 9740 Grab 30 11 9741 Grab 1.0 9751 Grab 135 1000 500 METRES REQUEST AKIKO-LORI GOLD RESOURCES LTD. Figure 7 SCUD PROJECT Liard Mining Division SCUD II & 13 CLAIMS GEOLOGY & ROCK GEOCHEMISTRY British Columbia NTS: 104 G/6

