ARIS SUMMARY SHEET

District Geologist, Prince George

Off Confidential: 92.08.02

ASSESSMENT REPORT 21740

MINING DIVISION: Cariboo

PROPERTY:

G South

LOCATION:

LAT 53 10 00 LONG 122 20 00

UTM

10 5890801 544569

NTS

093G01W

CAMP:

036

Cariboo - Quesnel Belt

CLAIM(S):

G 30 - 31

OPERATOR(S):

Appian Res. Valerie Gold Mines

AUTHOR(S):

Gonzalez, R.A.

REPORT YEAR:

1991, 38 Pages

KEYWORDS:

Triassic, Takla Group, Andesites, Dacites, Argillites, Pyrite

Chalcopyrite

WORK DONE:

Drilling, Geochemical

DIAD 300.5 m 3 hole(s); NQ

SAMP 91 sample(s);ME

MINFILE:

093G 007

TOC NO:	OCI	23	1991	RD.	
ACTION:				****	
			·		_
FILE NO:					

ASSESSMENT REPORT

DIAMOND DRILLING ON THE G-SOUTH CLAIM BLOCK

CARIBOO MINING DIVISION, B.C.

N.T.S. 93 G/1W

BY

R.A. GONZALEZ, MSc., F.G.A.C., P.ENG.

OCTOBER, 1991

	(and	
T.	and i	
es.		
-	[mari	
	Sie	
Mark.	Line.	
	(P)	
	(b)	
-		
	U)	
	(D)	
٣	•	

CLAIM WORKED								
CLAIM NAME	UNITS	RECORD NO.	ANNIVERSARY DATE					
G 30	20	3237	16 MARCH					
G 31	20	3238	13 MARCH					

LOCATION:

53° 10' NORTH LATITUDE

122° 20' WEST LONGITUDE

OWNER/OPERATOR:

APPIAN RESOURCES LTD./

VALERIE GOLD RESOURCES LTD. PROJECT SUPERVISOR: R.A. GONZALEZ

ADDER EXPLORATION AND DEVELOPMENT LTD.

APPROVAL NUMBER: PRG - 1991- 1100036 - 4 -5152

SUMMARY:

The Ahbau Creek property is a gold-copper prospect located approximately 35 kilometres northeast of Quesnel, B.C. The property is comprised of 25 Modified Grid Mineral Claims consisting of 484 unites and 4 two-post claims.

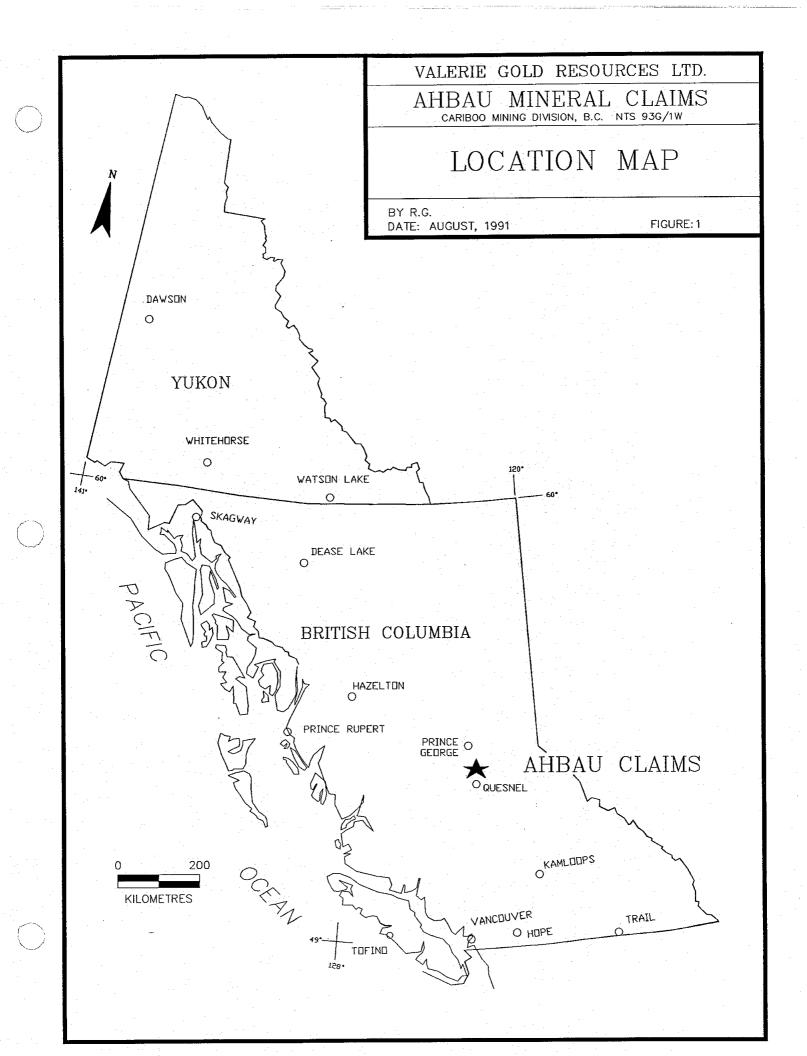
Previous exploration carried out by Gabriel Resources Inc. involving geological, geochemical and geophysical surveying, and diamond and percussion drilling. This work located several target areas on the property which required additional drill definition.

The program conducted by Valerie Resources Ltd. was designed to re-test two previously drilled targets and drill test a significant geophysical anomaly. Of the two previously drilled targets, one was a gold intersection and one was a copper/gold intersection. The geophysical target is a northwest trending EM anomaly that is traceable for several kilometres. Three diamond-drill holes totaling 300 metres (986 feet) tested these three targets.

TABLE OF CONTENTS

SUMMARY	ii.
TABLE OF CONTENTS	iii.
1.0 INTRODUCTION	1
1.1 LOCATION AND ACCESS	1
1.2 PROPERTY STATUS	3
1.3 PHYSIOGRAPHY, TOPOGRAPHY, AND GLACIATION	4
1.4 HISTORY	6
2.0 REGIONAL GEOLOGICAL SETTING AND MINERAL DEPOSITS	8
3.0 DIAMOND DRILL PROGRAM	9
4.0 REFERENCES	14
5.0 CERTIFICATE	16
6.0 STATEMENT OF QUALIFICATIONS	17
APPENDIX A: DIAMOND DRILL LOGS AND ANALYTICAL REPORT	
APPENDIX B: COST STATEMENT	
FIGURES AND TABLES	
FIGURE 1 LOCATION MAP FIGURE 2 CLAIM MAP	2
FIGURE 3 DRILL HOLE PLAN	5 10
FIGURE 4 DRILL HOLE SECTION DDH 91-1	11
FIGURE 5 DRILL HOLE SECTION DDH 91-2	12
FIGURE 6 DRILL HOLE SECTION DDK 91-3	13
TABLE I CLAIMS UNDER OPTION	3
TABLE II CLAIMS HELD BY STAKING	4

1.0 INTRODUCTION:


Valerie Resources Ltd. holds, by way of an option agreement with Appian Resources Ltd., 25 Modified Grid Claims comprised of 464 claim units. In addition, Valerie purchased one 20 unit Modified Grid Claim and 4 two-post claims.

The purpose of the 1991 field program was to follow up anomalous areas identified as possible sources of base and precious metal mineralization. The exploration program consisted of three diamond-drill holes totaling approximately 300 metres (986 feet).

1.1 LOCATION AND ACCESS:;

The Ahbau Creek property is situated east on the Fraser River, straddling Highway 97, 35 kilometres northeast of the town of Quesnel (Figure 1). The claims lie within an area 53° 10' to 53° 15' North Latitude and 122° 15' to 122° 25' West Longitude. All claims are found on NTS map sheet 93G/1W.

Access to the general area of drilling is from Highway 97 to the turn off immediately north of the Ahbau Creek Bridge. This side road (Olson Road) leads to the B.C. Rail Crossing at Ahbau. From the Rail Crossing, several summer-weather, low-maintenance logging roads cross the property.

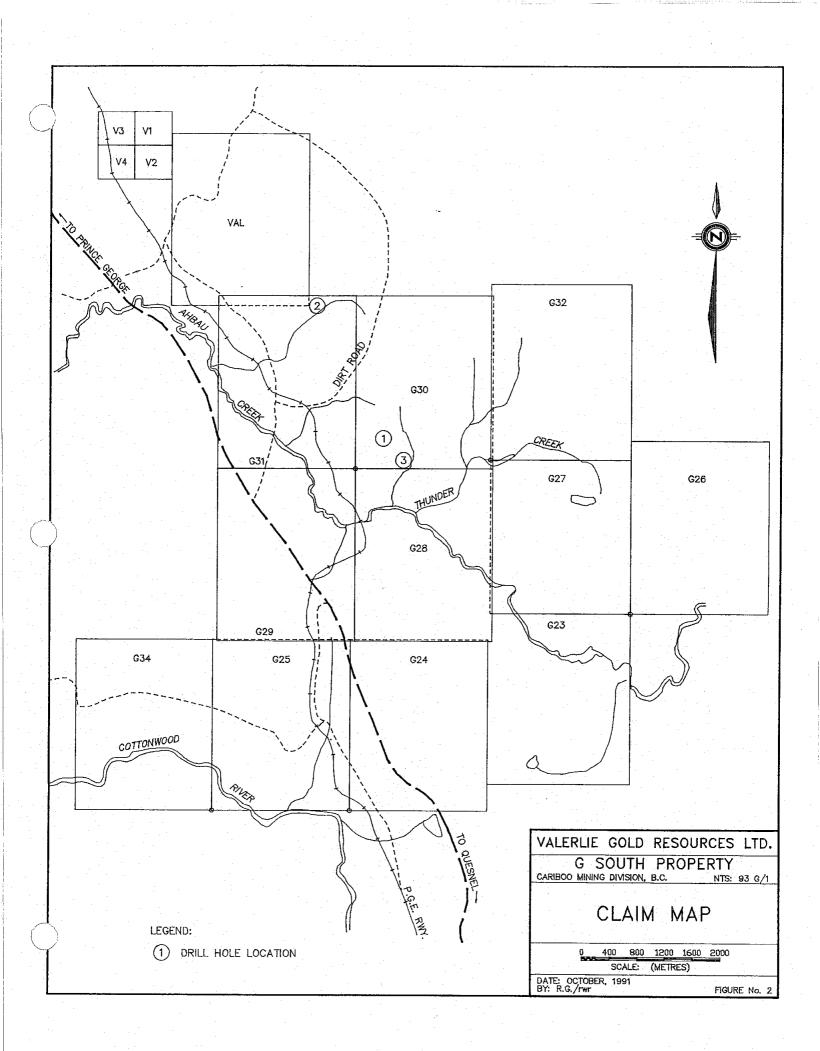
1.2 PROPERTY STATUS:

The Ahbau Creek property consists of 24 Modified Grid Claims totaling 464 claim units under option and a 20-unit Modified Grid Claim and 4 two-post claims held by staking.

Disposition of the claims is as follows:

		FABLE I	
	CLAIMS	UNDER OPTION	
CLAIM NAME	UNITS	RECORD NO.	ANNIVERSARY DATE
G 2	20	3209	MARCH 13
G 5	20	3212	MARCH 16
G 8	20	3215	MARCH 16
G 9	20	3216	MARCH 16
G 10	20	3217	MARCH 16
G 11	20	3218	MARCH 16
G 14	20	3221	MARCH 16
G 15	20	3222	MARCH 16
G 17	10	3224	MARCH 16
G 22	20	3229	MARCH 16
G 23	20	3230	MARCH 16
G 24	20	3231	MARCH 13
G 25	20	3232	MARCH 13
G 26	20	3233	MARCH 13
G 2 <u>7</u>	20	3234	MARCH 16
G 28	20	3235	MARCH 13
G 29	20	3236	MARCH 16
G 30	20	3237	MARCH 16
G 31	20	3238	MARCH 13
G 3 <u>2</u>	20	3239	MARCH 13
G 33	20	3240	MARCH 16
G 34	20	3241	MARCH 16
G 36	14	3241	JUNE 15
G 38	20	3241	MARCH 16

		TABLE II		
	CLAIMS	HELD BY STAKING		
CLAIM NAME	UNITS_	RECORD NO.	ANNIVERSARY	DATE
VAL	20	11079	MAY	3
V-1	. 1	11080	MAY	3
V-2	1	11081	MAY	3
V-3	1	11082	MAY	3
V-4	1	11083	MAY	3


The recorder holder of the 'G' claims is Appian Resources Ltd. which has agreed to assign fifty percent interest in all right, title and interest to the mineral claims to Valerie Resources In order to maintain the option, Valerie is required by December 31, 1997, to incur expenditures for exploration or development upon or in relation to the Mineral Claims of in staged, escalating annual expenditures. Expenditures of \$30,000 is required by the end of 1991, followed by \$50,000 by the end of 1992, \$70,000 by the end of 1993, \$200,000 by the end of 1995, and \$200,000 by the end of the two remaining years.

1.3 PHYSIOGRAPHY, TOPOGRAPHY, AND GLACIATION:

The property is located within the Interior Plateau. This area features gently rolling topography with elevations generally not exceeding 850 metres above sea level. The area is tree covered, except for logged areas, and all major drainages flow westward to the Fraser River.

The claims are characterized by moderately hilly topography to the east of Highway # 97 and generally flat lowlands to the west. The topography bears many distinct glacial features such as drumlins, both rock and till type, moraines, and eskers. These features, and the general drainage patterns, have a strong north-south orientation. According to Tipper (1961) the ice movement in this area was from the south to the north.

Glacial deposits of gravel, sand, and clay obscure bedrock over much of the area. The best outcrop exposures are confined to the hills east of the B.C. Rail line and in areas adjacent to deeply incised canyons. The thickness of the overburden varies greatly, from zero to 10 metres in the hilly areas to over 50 metres in the western lowlands.

1.4 HISTORY:

In the immediate area surrounding the claims, early exploration concentrated on the development of placer gold deposits. area's major creeks have been worked Hixon Creek, 5 kilometres north of the property, operations. was originally tested in the 1860's, coincident with the Cariboo Gold bearing quartz veins along the Creek have been Gold Rush. explored since the early 1900's. sporadically production in the 1930's included 2250 tons yielding 206 ounces of gold and 224 ounces of silver.

In more recent years, exploration for porphyry copper and molybdenum has been conducted within and adjacent to some of the granitic intrusions in the general claim area.

In the late 1960's, claims were located north of Ahbau Creek in an area now covered by the present Ahbau property. In 1968 and 1969, Cariboo Minelands Ltd. (later Equatorial Resources Ltd.) volcanogenitic explored for related massive Exploration included bulldozer trenching, soil mineralization. geochemistry and geophysical surveys, and 8 diamond-drill holes totalling approximately 1000 metres (3,000 feet). Texas Gulf Sulphur acquired the property and completed geological mapping, magnetic and electromagnetic surveys, and soil geochemistry In 1972, Equatorial option. prior to relinguishing the Resources drilled 5 percussion-drill holes approximately 500 metres (1530 feet).

In 1980, the A.T. Syndicate conducted heavy mineral concentrate sampling of major drainages east of the Fraser River in areas with a history of previous gold production. Results of the survey led to staking of the present property which was optioned to Gabriel Resources Inc. (later Appian Resources).

In 1984, Gabriel Resources carried out additional heavy mineral concentrate sampling, soil and rock geochemistry, VLF-EM and magnetometer surveys, geological mapping, and backhoe trenching. In addition, an airborne geophysical survey (INPUT-EM and airborne magnetics) was conducted over the claims. In 1986, twenty line kilometres of I.P., centred over the area trenched in 1984, was completed over the Ahbau property. Using the geophysics grid for control, an area outlined as a chargeability anomaly was mapped geologically at a scale of 1:500.

In 1986 and 1987, two diamond drill programs, one totalling 1895 metres and the other totalling 2810 metres were completed. These programs were designed to test massive sulphide bearing fault zones. One fault zone, previously exposed by trenching, was roughly delineated by a fence of diamond-drill holes. Two other north-south trending, mineralized shear zones were also intersected by several drill holes. A low-level helicopter supported airborne geophysical survey was conducted over the

claim group. This was followed by an I.P survey and detailed geochemical surveying, and approximately 100 backhoe trenches. Following the ground surveys, a 6210 metres percussion drill program was initiated to test targets outlined in all previous exploration programs.

2.0 REGIONAL GEOLOGICAL SETTING AND MINERAL DEPOSITS:

The claims are situated within the Quesnel Trough, a subdivision of the Intermontain Tectonic Belt. The Quesnel Trough is a northwest trending belt extending north of Kamloops to northcentral British Columbia. It is comprised principally of Late Triassic to Early Jurassic Takla Group rocks. These rocks are composed primarily of basic to intermediate flows and pyroclastic volcanics plus argillaceous sedimentary rocks.

Takla Group rocks are intruded by coeval alkalic stocks and plugs and by earlier Cretaceous quartz monzonites and diorites of the Naver Intrusive suite. These rocks also intrude older layered rocks to the east.

Early Tertiary sediments and volcanics overlie older rocks along the Fraser River and its major tributaries.

In the Quesnel area, Takla rocks are in fault contact to the east with late Precambrian metasedimentary rocks and to the west with Paleozoic sediments and volcanics. The rocks are crosscut by lineaments with regional trends to the north and northwest.

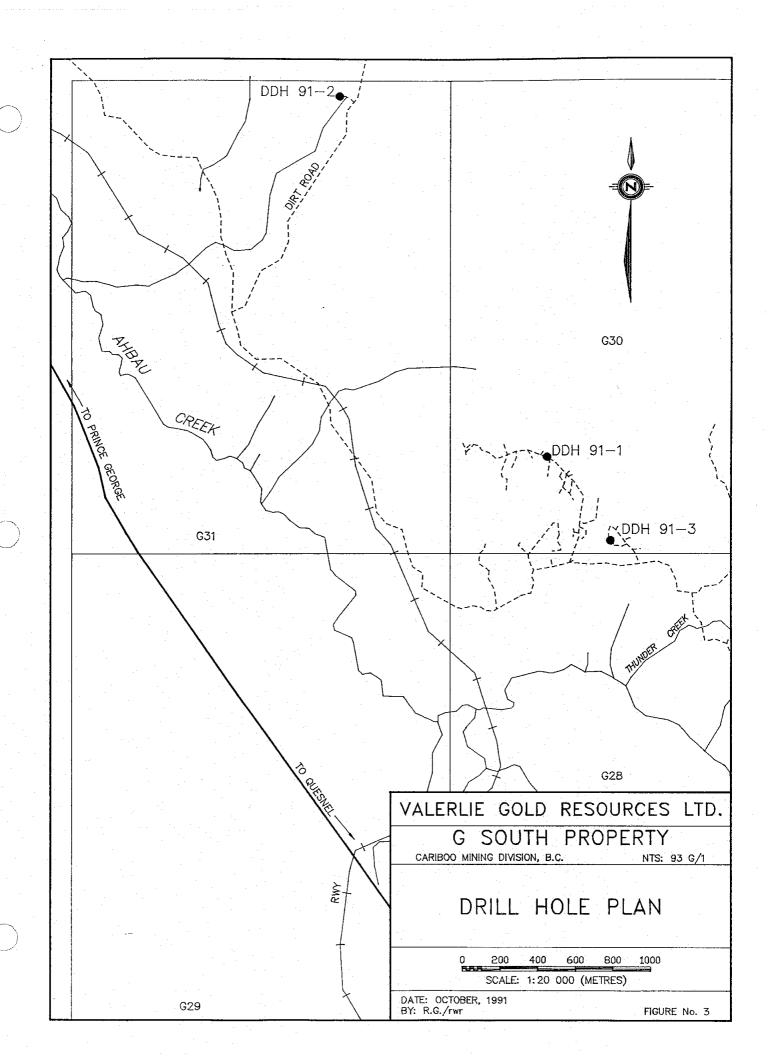
Several styles of economic mineralization are recognized in the Trough. Copper-gold porphyry deposits are found in alkalic intrusive complexes. Apparently, stratabound gold deposits are hosted by propylitically altered, sedimentary and fragmental volcanic rocks marginal to small alkalic intrusions.

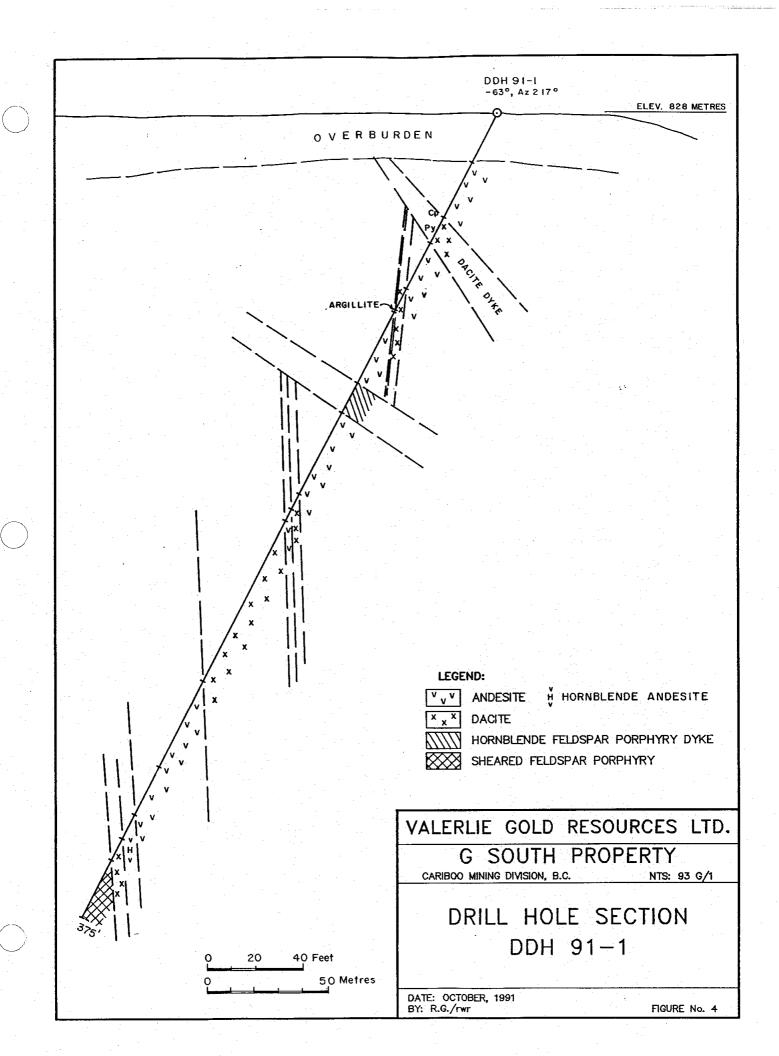
Limited production has come from gold-bearing quartz veins in schistose Takla rocks near Hixon (20 kilometres to the north). showings of molybdenum and tungsten mineralization occur near the margins of Early Cretaceous Naver Intrusions

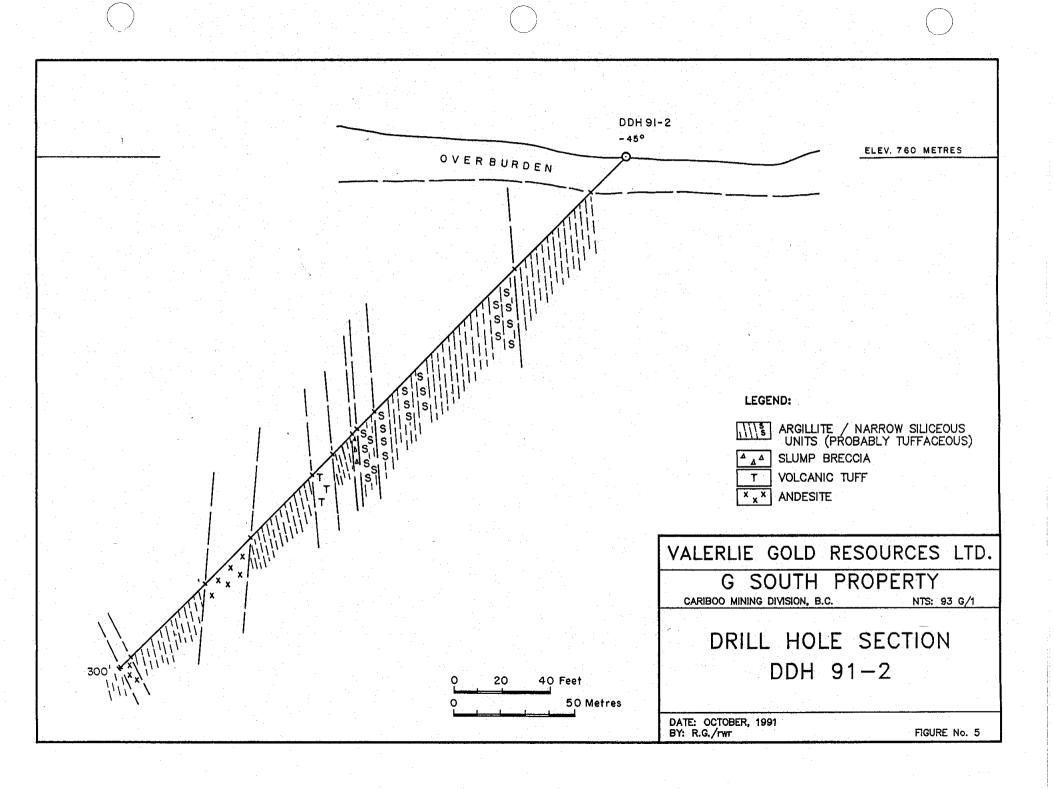
Massive sulphide mineralization, with base and precious metal values, was found in previous exploration programs adjacent to Ahbau Creek.

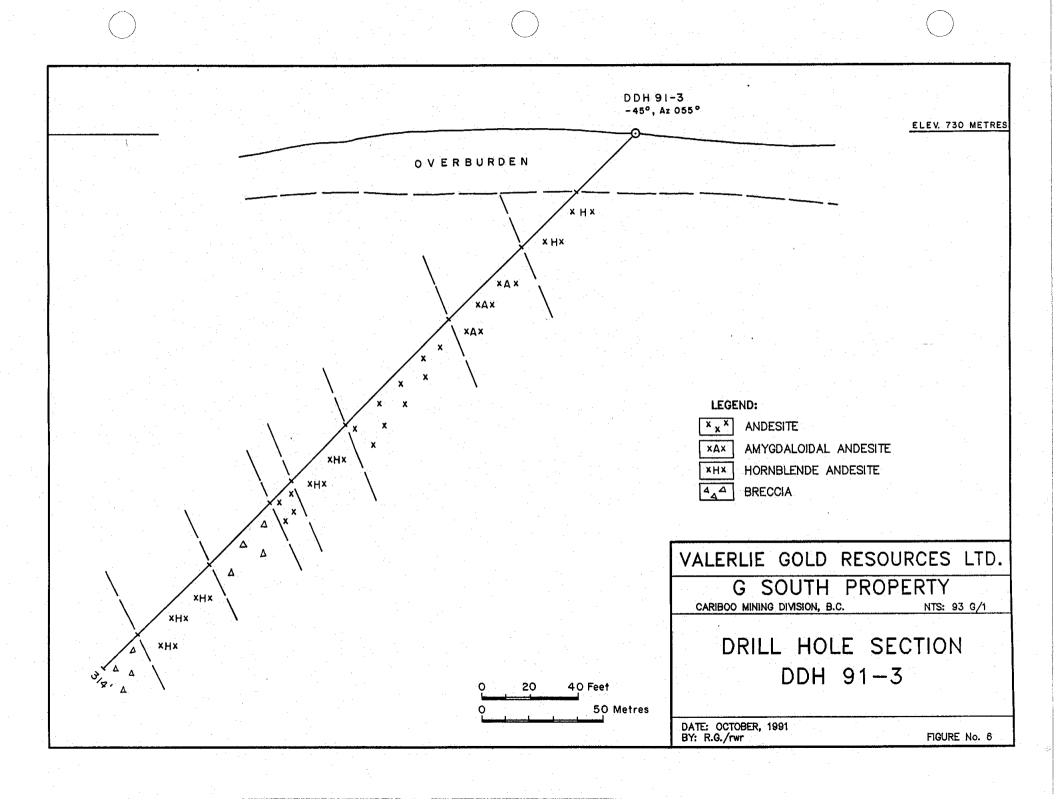
3.0 DIAMOND DRILL PROGRAM:

In late June 1991, three diamond-drill holes totalling approximately 300 metres (984 feet) were drilled on the property by Core Enterprise Ltd. of Clinton B.C. All holes were drilled using NQ sized drill rods. All of the core was logged and split in half; one half retained in core boxes at the drill sites and the remaining material sent to Chemex Labs Ltd. in North Vancouver, B.C. for 31 element ICP analysis and standard fire assaying for gold. Drill logs and geochemical results are presented in the Appendix.


The drill program was designed to determine the stratigraphy and test the mineral distribution within a thick sequence of basic to acidic volcanics and overlying sediments. Figure 3 shows the drill site locations and Figures 4 to 6 a skematic sections of the holes.


Hole 91-1 tested a gold occurrence identified in a 1987 percussion drill hole. The hole was collared approximately 500 metres northwest of a massive sulphide showing identified in previous programs. Hole 91-1 intersected a rhythmically banded sequence of andesite, dacite, and sediments. Sulphides tended to be concentrated in the dacite units. Gold mineralization was encountered in several zones within the drill core. The highest value was from a 1.5 foot silicified dacite-fragmental which returned 0.16 oz/ton Au and 1.4% Cu. However, perhaps more important was a 20 foot intersection averaging 0.02 oz/ton Au in the upper portions of another dacite sequence and a sheared porphyry dyke in the bottom 10 feet of the hole which ran 0.023 oz/ton.


Hole 91-2 was to test a sedimentary sequence that caps the volcanics. The target was a coincident EM and high soil geochemical anomaly. The target lies within a zone that is traceable for several miles and is known to contain zinc and minor copper mineralization. The core returned anomalous values over its entire length (300 feet) with the highest value being 0.6% Zn over 10 feet.


Hole 91-3 tested a copper occurrence identified in a 1987 percussion drill hole. The hole was collared approximately 500 metres northwest of Hole 91-1. Hole 91-3 intersected massive andesite which is believed to overly the volcanic sequence found in Hole 91-1. Assaying of the core indicated anomalous copper and gold over most of its length. The best continuous section assayed 0.22% Cu and 0.004 oz/ton Au over 30 feet.

Results of the preliminary drill program are considered favourable and indicate that the property has a potential for hosting volcanogenic related mineralization.

4.0 REFERENCES:

Butterworth, B.P., Ridley, J.C., Troup, A., 1984; Report on the G-South Property, Cariboo Mining Division, Geology, Geophysics and Geochemistry: Private Report for Gabriel Resources Inc.

Butterworth, B.P., Freeze, J.C., Troup, A., 1985; Geology, Geophysical and Geochemical Report on the Yardley Lake Property, Cariboo Mining Division: Private Report for Gabriel Resources Inc.

Carter, N.C., 1985; Geological Report on the Government Creek, Yardley Lake and Ahbau Properties, Cariboo Mining Division, British Columbia: Private Report for Gabriel Resources Inc.

Lechow, W.R., 1987; Report on Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey: Private Report for Gabriel Resources Inc.

Kowalchuk, J.M., Jan. 1987; An Interim Report on the Diamond Drilling Program on the Yardley Lake Property: Private Report for Gabriel Resources Inc.

Kowalchuk, J.M., April 1987; Geology, Trenching and Diamond Drilling Report on the Ahbau Creek Property: Private Report for Gabriel Resources Inc.

Ministry of Energy Mines and Petroleum Resources, B.C., Annual Report, 1933, p.A118, 1968, p.151, Geology Mining and Exploration in B.C., 1969, p.161, 1971, p.161, 1972, p.349

Newell, J.M., Podolsky, G. 1971; Geology, Geochemical and Geophysical Report - Thunder and Kim Claims: B.C. Ministry of Energy Mines and Petroleum Resources, Assessment Report 3385

Ridley, J.C., Troup, A., 1982; G South Property, Cariboo Mining Division, Geological, Geophysical and Geochemical Report: Private Report for Gabriel Resources Inc.

Tipper, H.W., 1961; Prince George, British Columbia: Geological Survey of Canada, Map 49-1960

Tipper, H.W., Campbell, R.B., Taylor, G.C., Stott, D.F., 1979; Parsnip River, B.C.: Geological Survey of Canada, Map 1424A

Tomlinson, S., 1988; Geology report on the Ahbau Creek property, Cariboo Mining Division, British Columbia: Unpublished Assessment Report dated December 1988.

Troup, A., Freeze, J.C., Butterworth, B.P., 1985; Report on Ahbau Creek Property, Cariboo Mining Division, Geology, Geophysics, Geochemistry: Private Report for Gabriel Resources Inc.

Walcott, P.E., and Associates, Jan. 1989; Report on Induced Polarization and Electromagnetic Survey, Ahbau Creek Property, Cariboo Mining Division, B.C.

5.0 CERTIFICATE:

- I, Ralph A. Gonzalez, do hereby certify that:
- 1. I am a geologist and reside at 2784 Lawson Ave., West Vancouver, British Columbia.
- 2. I am a graduate of the University of New Mexico, U.S.A. with a B.Sc. in geology (1965) and a M.Sc. in geology (1968).
- 3. I have practiced my profession, since 1965, in Canada, North and South America, and Asia as indicated on the following page.
- 4. I am a Fellow in the Geological Association of Canada, Registration Number 4523.
- 5. I am a registered member of the Association of Professional Engineers of the Province of Manitoba, Registration Number 3970.
- 6. I have based this Assessment Report on work done by myself or under my supervision. I was physically on the property for the purpose of supervising the diamond drilling from June 18 to July 8,1991. Information obtained from the Geological Survey of Canada, B.C. Dept. of Mines, and engineering reports and other support documents provided by Valerie and Appian Resources were also used as background and reference data.
- 7. I have no past or present, direct or indirect interest in any of the listed Mineral Claims or in any other property within the Cariboo Mining Division.

Dated at Vancouver, British Columbia, this 8th day of OCTOBER, 1991.

R.A. Gonzalez, M. Sc., P. Eng., F.G.A.C.

7.0 STATEMENT OF QUALIFICATIONS:

R.A. Gonzalez, M. Sc., P. Eng., F.G.A.C.

ACADEMIC:

1965 B.Sc. in Geology The University of New Mexico, USA.

1968 M.Sc. in Geology The University of New Mexico, USA.

PROFESSIONAL:

1984 Adder Exploration & Dev. Ltd. President

1983-1984 Archean Engineering Limited Overseas Manager

1980-1983 Placer Development Y Cia Ass't. Exploration Ltd. (Chile) Manager

1977-1980 Consultant attached to the Geol. Survey of Malaysia on a CIDA supported mineral exploration survey in Peninsular Malaysia

1977 Registered with the
Association of Professional
Engineers of the Province
of Manitoba

1975-1977 Province of Manitoba Resident Geologist for the Manitoba Dept. of Mines

1971-1975 Giant Mascot Mines Ltd. Senior Geologist

1970-1971 New Jersey Zinc (Canada) Exploration Geologist Ltd.

1968-1970 Anaconda American Brass Research Geologist Ltd.

1965-1966 Mex-Tex Mining Co. (USA) Geologist

APPENDIX A: DIAMOND DRILL LOGS AND ANALYTICAL REPORT:

DIAMOND DRILL RECORD

LOCATION: CENTRAL GRID (G 30 CLAIM) HOLE NO.: 91-1 AZIMUTH: 217° PROPERTY: G SOUTH CLAIM NO.: G-30 ELEVATION: 820 METRES LENGTH: STARTED: JUNE 24,1991 **375 FEET** CORE SIZE: COMPLETED: JUNE 28,1991 NQ

LOGGED BY: R. GONZALEZ DIPS-COLLAR: -63°

CONTRACTOR: CORE ENTERPRISES LTD.

PURPOSE: HIGH GOLD IN PERCUSSION HOLE P87-41

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	(ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
0	23	OVERBURDEN - No recovery			
23	49	Light green ANDESITE FLOW BRECCIA (LAHAR?)	23	49	Chlorite and minor clay; however gernerally no
		28-32 ft. Black massive andesite with minor,			alteration other than slight metamorphism.
		local, fragments. Fractures @ 45° to C.A.,			
		density 6/metre.			
		32-35 ft. Fractures @ 0° C.A.	37.5	47.5	Pre-metamorphic fracture three metres wide-now
		46-49 ft. Fractures @ 0° C.A. Core tends to			represented by discontinuous pits filled with
		break @ 0° C.A.			chlorite, plagioclase and minor blebs of
					chalcopyrite (Cp). Mineralization
					minor blebs of chalcopyrite. @ 45° C.A.
			47.5		5 cm-10% Py in black sediment.
49	61	Light green siliceous unit FRAGMENTAL DACITE:	50.5	52	3-5% chalcopyrite in 2-5 mm blebs and veins a 30° C.A.
		The section may be overturned Cp at 50 ft.			Pyrite 4-8% rims (surrounds) Cp grains. Pale
		grading into Py with depth. ANDESITE/DACITE			greenish-buff coloured alteration (SiO2) and traces of
		contact 0 70° to C.A. Massive unit with few			chlorite. Pyrite content decreasing with depth.
		fractures-density 2/metre @ 45° C.A. Lower			
		contact @ 60° C.A.			
61	82	Dark green ANDESITE. Discontinuous fractures at	61	82	Less than 1% pyrite in circular clusters or masses
		low angles to core with <1% pyrite on fracture			with chlorite within plane of fracture.
		surface.			
82	92	Light grayish-green DACITE. Contact @ 20° to C.A.	82	92	Pyrite in wispy veins and in veins a 45° to C.A. Py
UL.	,.	Massive core w/ fractures density 2-3/ metre a	J.	/ tu	<1% usually in a selvage of grey green epidote and
		50-60° to C.A.			chlorite
		20 00 to 0.M.			

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	(ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
92	93	Black, pyrite rich ARGILLITE: contact @ <10° C.A.	92	93	7 cm massive pyrite (>60%).
93	126	Dark green to black ANDESITE	93	126	Traces of pyrite (<0.5%) as elongate clusters.
		116-117 ft. Dacite; lower contact fractured but	120	120	7 cm massive pyrite (>60%).
		appears to be high angle (?).			
126	140	FELDSPAR PORPHYRY DYKE: Dark greenish dyke with			
		xls of plagioclase up to 1 cm long (c-axis).			
		Groundmass of light greenish gray chlorite. Lower			
		contact gradational			
	470	Marrian daily and systems for the marrians as	477	1/5	Fact along factoring 2 509 C A . Clay alteration
140	178	Massive, dark-green ANDESITE locally porphyritic	144 153	145 153	FeOx along fractures @ 50° C.A. Clay alteration. 1 cm vein of LCp @ 45° C.A.
		Fracture density: 1-2/metre 158-160 ft. Fractures @ 20° C.A. with CaCO3 along	156	167	Yellowish-green chlorite-sericite alteration along
		fracture plains - density 6/metre	100	,107	original joints. Alteration usually 1-3 cm wide @ 40°
		reacture plants - density dymetre			C.A. and contains 2% Py and <1% Cp in veins 1-4 mm wide.
178	185	DACITE: Light gray green silicified with local	179	185	Vein up to 1 cm true thickness of chlorite/sericite
		sections showing minor fragments. Thin layer			alteration with 2-4 mm veins of Cp and Py. Vein density
		~3 cm of black agrillite marking lower contact			5-7 per metre.
		a 30° c.A.			
185	190	ANDESITE: Dark green, massive with minor CaCO3			
		along fractures a 20° C.A.			
190	265	DACITE: Olive coloured with greenish-yellow zones	190	203	1-3% Py as disseminated clusters and veins a 30-40° C.A.
		up to 8 cm of chlorite, epidote, sericite.	209	211	Intense alteration - chlorite & sericite with 1-3% Py &
		Fragmental at depth.	045	247	<1% Cp.
		238-245 ft. Brecciated dacite.	215	216	Same as above
			217 239	229 245	Same as above Intense chlorite, epidote, sericite & clay alteration in
			239	243	a dacite fragmental.
			244	245	10-15% Py and 1-2% Cp in veins a 60° C.A.
			244	243	10-13% Fy and 1 2% op in verils w 00 G.A.
265	305	ANDESITE: Fine- to medium-grained dark-green	293	297	Calcite, Py, and yellow Sph in irregular veins ~1 cm
	203	massive andesite.			wide a 60° C.A.
		270-273 ft. Dacite with chlorite alteration and			
		<1% Py fractured @ 30° C.A.			
		· · · · · · · · · · · · · · · · · · ·			

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	(ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
305	328	ANDESITE: Medium-grained, dark green in colour. 317-320 ft. Fine-grained gray-green andesite. Lower contact gradational	305	328	Core soft showing high degree of chlorite alteration fragmentation, and jointing-density ~40 per metre. Calcite and Py along most fractures; fractures at low angle
	,		311 319	312 321	to core. 2-4 mm calcite-shpalerite veins @ 30° C.A. Density 5-6 per metre Same as above
328	339	HORNBLENDE ANDESITE: Coarse-grained andesite with horblende xls up to 1 cm long and represent ~10% of core 337-337.5 ft. dyke of fine-grained andesite contacts @ 20° C.A.	328	339	Veinlets of calcite @ 20° C.A. Density 10-12 per metre.
339	349	DACITE: Fine-grained light green dacite. Core fractured at 30-40° C.A.; density 5 per metre	340	349	0.5-1 cm veins of calcite and quartz & 40° C.A.; 8-10 per metre. Minor Py as individual grains 2-4 mm across <0.5%.
349	375	SHEAR ZONE: Light gray to light green FELDSPAR PORPHYRY. Plagioclase xls up to 3 mm long in a glass like matric. Core very hard (i.e. difficult to scratch), few sections of core longer than 10 cm.			

DIAMOND DRILL RECORD

LOCATION:

NORTH GRID (G 31 CLAIM)

HOLE NO :

91-2

AZIMUTH: 210° PROPERTY:

G SOUTH

ELEVATION:

LENGTH:

760 METRES 300 FEET

CLAIM NO.: G-31

STARTED:

JUNE 29,1991

CORE SIZE:

COMPLETED: JULY 3, 1991

LOGGED BY:

R. GONZALEZ

DIPS-COLLAR: -45°

CONTRACTOR: CORE ENTERPRISES LTD.

PURPOSE:

TEST VLF-EM ANOMALY

25	L	ŧ.	ħ	UN	,	Ļ	Ţ	L	,		

ROCK DESCRIPTION:

SECTION (ft)

ALTERATION -MINERALIZATION

FROM

TO

SECTION (44)

FROM TO

MINERALIZATION:

20 OVERBURDEN - No recovery

20 66 BLACK ARGILLITE: 40% core recovery. Minor local graphite. Irregular veinlets 1-2 mm wide of calcite; density 2-3/m; 0.5-1% Py and tr. (<0.1%) Po along seams and fractures.

149 66

BLACK ARGILLITE:

Badly broken ground to 149 ft.

66-78 ft. 100% recovery

78-81 ft. 15% recovery

81-84 ft. 70% recovery

84-87 ft. 60% recovery

87-128 ft. 90% recovery

128-140 ft. 50% recovery

128-149 ft. 90% recovery

71-73 ft. 80% siliceous tuff upper contact a 70° contains irregular discontinuous veinlets of py

77-78 ft. Siliceous tuff

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	l (ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
			85 117	86 117	Calcite vein @ 10° to C.A. 5 cm of brecciate Argillite cemented with quartz.
		123.5-127 ft. Siliceous tuff with 10% Argillite.	123		4 cm of brecciated Argillite cemented with calcite.
		131-135 ft. 60:40 Argillite:tuff 144 ft. fault with clay gouge			
		145-147 ft. volcanic tuff; lower contact 0 45° C.A.	145	147	Py/Po veinlets 1.2 mm wide a 20-30° and density of 40/metre.
149	159	Mixed zone: ARGILLITE & TUFF with irregular veinlets of Qtz-Cc+Py and (or) Cc-Py @ 10-20° to C.A.			
159	.162	Slump Feature (Lahare) of angular fragments of argillite and volcanic tuff.	160		5 cm vuggy quartz, plag and minor cc vein 6" long with 8-10 xls, 2-3 mm across, of sph and up to 0.5% py
162	1.74	Dark gray ARGILLITE	162	174	1-3 mm wide veins of Py along the outer edge of cc-chl veins a 0-10° C.A. Calcite veinlets 1mm wide a 80-90° C.A.
174	186	Gray, fine-grained massive VOLCANIC TUFF	174	186	Total sulphides 1-2%. Py as lens shaped masses and along fractures อ 0-10° C.A.

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	(ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
186	223	BLACK ARGILLITE: Broken core w/ 70% recovery. 193.5-198 ft. VOLCANIC TUFF; 204-207 ft. VOLCANIC TUFF: upper contact a 20° C.A.: 214-216 ft. VOLCANIC TUFF upper contact a 70° lower contact	186	200	1 mm wide cc veins @70° C.A. cc. also as discontinuous veins and represents 5% of ARGILLITE core.
		a 40°; 216-218 ft. VOLCANIC TUFF upper contact a 40° lower contact a 40°.	199		4 cm massive pyrite vein
223	249	f/g massive moderately magnetic GRAY ANDESITE	232		3mm greenish white qtz. vein @ 45° with Py as selvage.
		223.5-226 ft. VOLCANIC TUFF: upper contact @ 20°			
		C.A. 228 ft. 15 cm VOLCANIC TUFF - contacts @ 20°			
		C.A. 236 ft. 15 cm VOLCANIC TUFF - contacts @ 30°			
		C.A. 237.5 ft. 8 cm VOLCANIC TUFF - contacts a 40°			
		C.A., also contains irregular fractures @ 30° and			
		45° C.A. with 1-2 mm Py veins. Fracture density			
		8-10/metre.	<i>S</i> ,		
249	293	BLACK ARGILLITE:			
		269-272 ft. Chert with green chlorite on fractures	249	293	1-3 mm veins of Py a 20-30° C.A. Density 12-15 per metre
		a 0° C.A.	246		5 mm Qtz vein a 60° C.A. with Py and Sph.
		283-288 ft. Chert with wispy Qtz veins			
293	299	Gray green ANDESITE:	293	299	1-2 mm irregulat veins with Py selvage
			299		0.5 cm vuggy Qtz vein with 3% Py and 1% Sph.
299	300	Black ARGILLITE:			

END OF HOLE

CORE SIZE:

91-3 CENTRAL GRID (G 30 Claim) HOLE NO.: LOCATION: PROPERTY: G SOUTH AZIMUTH: 055° G-30 ELEVATION: 730 METRES CLAIM NO .: 314 FEET STARTED: JULY 3, 1991 LENGTH:

COMPLETED: JULY 7, 1991 DIPS-COLLAR: -45° LOGGED BY: R. GONZALEZ

CONTRACTOR: CORE ENTERPRISES LTD.

NQ

TEST ANOMALOUS COPPER IN PERCUSSION DRILL HOLE P87-63 PURPOSE:

SECTION FROM	(ft) TO	ROCK DESCRIPTION:	SECTION FROM	ON (ft) TO	ALTERATION -MINERALIZATION MINERALIZATION:
0	35	OVERBURDEN - No core recovery			
35	67	HORNBLENDE ANDESITE: Dark gray-green adn coarse- grained. Hornblende from sub- to euhedral xls; fractures a 40° C.A.; density 8-10 per metre. 53-54 ft. Dacite porphyry with 10% phenocrists of chlorite altered plagioclase up to 3 mm wide. 2% Py and Po as diss., subhedral xls 2-3 mm wide.	35 62	67 63	1-2% Py which often forms as clusters or as disseminations Two 0.5 cm calcite veins @ 20° and 30° C.A> healing brecciated andesite Py seams along veins.
57	110	Black, fine-grained AMYGDALOIDAL ANDESITE: fractured @ 45°; density 8-10 per metre. 82.5-83.5 ft. sheared rock. 88-89 ft. sheared rock. 103-105 ft. fractured @ 0° & 45° C.A. healed with calcite.	67 96	110	2-3% Py and <0.5% Cp as clusters and amydals with calcite and Qtz. Wispy, irregular, chlorite/calcite veinlets 1 mm wide; density 2-3% of core. 2-3 % Py and 1-2% Cp increase in alteration with 1 cm Qtz veins and selvage of lchlorite extending 0.5 cm on each side. Veins @ 30-50° C.A.; density 10 per metre.
110	171	fine- to medium-grained grayish-green, massive ANDESITE: fractures @ 45° C.A. with density 5-8 per metre.	97 110 150 155 151	100 164 163.2 153	Chlorite alteration: core very soft. 1% disseminated Py and discontinuous stringers 1-5 cm long. 1-2 mm wide calcite vein with Py @ 40° C.A. and 2-3 per metre. <0.5% Py 1-2% Cp Calcite and chlorite lined fractures @ 0° & 40° C.A.; density 4 per metre 20% calcite veins @ 60-70° C.A.
			164 167	169	3-5% Py 1% disseminated Cp

SECTIO	N (ft)	ROCK DESCRIPTION:	SECTIO	ON (ft)	ALTERATION -MINERALIZATION
FROM	то		FROM	TO	MINERALIZATION:
	·				
4.74	207	HODBIG FURE AND COLTE CO	171	183	1% disseminated Py; 2-3 mm calcite veins @ 35° & 70° C.A.
171	203	HORNBLENDE ANDESITE: Greenish-gray coarse- grained with the mafic being totally altered	17/1	103	density 2 per metre.
		to chlorite.	178		1.5 cn cakcute-Cp-Oy veub a 40° C.A.
		178 FT. 15 cm brecciated andesite with rounded	140		11.5 cm carcate up by veab w 40 orn.
		fragments.			
		185-189 ft. Coarse-grained hornblende dyke-trace			
		disseminated Py.			
		203 ft. Lower contact shattered			
203	216	ANDESITE: Greenish massive andesite	203	216	1% Py in <1 mm wide veins a 40° C.A.; density >40 per metre.
		Lower two feet broken			Minor disseminated grains of Py and Cp
216	252	ANDESITE BRECCIA: fragments 1-3 cm in diameter	216		2-3% Py and <1% Cp.
210	272	ANDESTIE BRECCIA: Hagmetics 1-5 cm in diameter	238	242	Intense epidote-chlorite alteration and calcite veins
			230	E-76	a 0-10° C.A.
			247	248	Same as above
			248	250	2-3% disseminated Cp
			240		
252	294	HORNBLENDE ANDESITE: Grayish-green, fine-grained	278	280	3 cm breccia zone filled with angular andesite fragments
.,		barren of sulphides			and 60% calcite-chlorite-epidote @ 0-10° C.A.
		291-294 ft. broken ground-light greenish colour			
294	314	ANDESITE BRECCIA: Light greenish colour with	294	314	Epidote-chlorite-calcite alteration; <0.1% dissmeinated Cp.
		1-3 cm diameter fragments. Fractures @ 30° C.A.			294-297 ft. patches of Cp but <0.25%
		density, 2 per metre			

END OF HOLE DUE TO LACK OF AVAILABLE WATER

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 : HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project: VALERIE - G.SOUTH Comments: ATTN: R. GONZALEZ

Page Nu :1-A
Total Pages :1
Certificate Date: 09-JUL-91
Invoice No. :19117214
P.O. Number :

CERTIFICATE	OF A	NALYSIS	A9117214
	v	17.12.10.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

			<u> </u>														
SAMPLE DESCRIPTION	PREP	Au ppb Ag ppm FA+AA Aqua R	Al As % ppm	Ba ppm			a Cd % ppm	PP Co	Cr ppm	Cu ppn	Fe %	Ga. ppm	Eg ppm	K	La ppm	Mg %	Mn Ppm
91-1 022-030 91-1 030-040 91-1 040-050 91-1 050-060 91-1 50.5-52	205 272 205 272 205 272 205 272 205 272	< 5 < 0.2 < 5 < 0.2 < 5 < 0.2 < 5 < 0.2 385 3.0 3860 72.0	2.14 10 3.96 20 3.58 40 1.93 80 1.70 135	90 4 80 4 50 4	< 0.5 < < 0.5 < < 0.5 <	2 1.8 2 1.2 2 1.2 2 2.0 20 2.6	8 < 0.5 4 < 0.5 1 1.5	16 20 23 69 180	43 103 94 29 101	46 110 76 695 >10000	3.15 6.85 5.68 5.77 13.70	10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.13 0.65 1.07 0.60 0.20	< 10 < 10 < 10 < 10 < 10	1.13 2.10 2.24 1.10 0.77	600 1055 1020 1970 3030
91-1 060-070 91-1 070-080 91-1 080-090 91-1 090-100 91-1 100-110	205 272 205 272 205 272 205 272 205 272	<pre>< 5 < 0.2 < 5 < 0.2 <</pre>	3.40 20 2.71 40 2.98 25 3.14 80 3.68 20	40 50 40	< 0.5 < < 0.5 < < 0.5 <	2 1.7 2 1.3 2 1.0 2 0.9 2 1.5	2 < 0.5 0 < 0.5 7 < 0.5	29 23 17 27 19	32 40 33 38 40	303 187 258 314 277	6.03 5.49 8.55 12.00 8.49	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	1.10 0.47 0.61 0.59 1.13	< 10 < 10 < 10 < 10 < 10	2.03 1.75 1.94 2.08 2.34	990 830 1180 1405 1260
91-1 110-120 91-1 120-130 91-1 130-140 91-1 140-150 91-1 150-160	205 272 205 272 205 272 205 272 205 272	75 1.4 30 < 0.2 < 5 < 0.2	2.92 10 3.17 135 2.74 25 2.61 15 3.04 60	60 100 60	< 0.5 < < 0.5 < < 0.5 <	2 1.4 2 1.9 2 1.5 2 1.6 2 2.4	6 < 0.5 5 < 0.5 0 < 0.5	21 108 19 25 55	31 114 82 30 175	187 620 71 122 358	7.27 7.68 4.45 5.47 7.81	< 10 < 10 10 10 < 10	< 1 < 1 < 1 1 < 1	0.36 0.88 1.20 0.70 0.81	< 10 < 10 < 10 < 10 < 10	2.02 2.19 1.85 1.60 1.84	1200 1465 865 1115 1580
91-1 160-170 91-1 170-180 91-1 180-190 91-1 190-200 91-1 200-210	205 272 205 272 205 272 205 272 205 272	< 5 < 0.2 < 5 < 0.2	3.54 50 3.94 30 3.23 30 2.33 30 2.48 25	90 · 50 · 20 ·	< 0.5 < < 0.5 < < 0.5 <	2 2.2 2 1.6 2 2.1 2 2.2 2 1.8	7 < 0.5 2 < 0.5 8 < 0.5	36 21 20 26 23	31 34 29 21 17	138 76 77 141 320	6.28 7.12 5.67 5.47 5.02	10 20 10 10 10	< 1 < 1 < 1 < 1 < 1	1.20 1.06 0.79 0.37 0.92	< 10 < 10 < 10 < 10 < 10	1.78 2.28 1.79 1.33 1.28	1170 1375 1205 1105 985
91-1 210-220 91-1 220-230 91-1 230-240 91-1 240-250 91-1 250-260	205 272 205 272 205 272 205 272 205 272	500 < 0.2 240 2.2	2.40 20 2.61 20 3.11 70 2.26 180 3.29 25	30 40 60	< 0.5 < < 0.5 < < 0.5 <	2 1.7 2 2.6 2 2.3 2 1.5 2 1.9	4 < 0.5 8 < 0.5 3 < 0.5	23 17 28 53 23	33 64 172 47 27	213 140 141 526 64	5.69 4.30 4.56 8.29 6.41	< 10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.52 0.66 1.00 0.72 0.76	< 10 < 10 < 10 < 10 < 10	1.36 1.64 2.08 1.45 2.02	1175 1230 1095 1520 1415
91-1 260-270 91-1 270-280 91-1 280-290 91-1 290-300 91-1 300-310	205 272 205 272 205 272 205 272 205 272	< 5 < 0.2 < 5 0.6 < 5 0.2	2.79 25 3.15 30 3.34 35 2.46 25 2.79 15	30 40 30	< 0.5 < < 0.5 < < 0.5 < < 0.5 <	2 2.1 2 1.9 2 2.4 2 2.6 2 1.8	3 < 0.5 1 0.5 8 2.5	30 20 25 22 26	41 16 13 46 78	116 40 146 70 88	5.51 5.89 5.85 4.13 4.30	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.69 0.41 0.51 0.60 0.70	< 10 < 10 < 10 < 10 < 10	1.86 2.12 2.17 1.86 2.09	950 1305 1300 960 985
91-1 310-320 91-1 320-330 91-1 330-340 91-1 340-350 91-1 350-360	205 272 205 272 205 272 205 272 205 272	< 5 < 0.2 < 5 < 0.2	2.60 15 2.95 45 2.82 30 2.78 25 1.99 35	60 60 70	0.5 <	2 2.0 2 2.2 2 2.2 2 2.1 6 1.6	2 0.5 4 < 0.5 5 < 0.5	23 30 31 25 20	76 85 83 88 102	107 102 100 85 105	3.60 4.29 4.54 4.19 3.27	10 10 10 20 10	< 1 < 1 < 1 < 1 < 1	0.44 0.72 0.70 0.73 0.42	< 10 < 10 < 10 < 10 < 10	1.90 2.04 2.20 2.05 1.55	815 795 930 795 785
91-1 360-370 91-1 370-375	205 272 205 272		0.35 5 0.33 5			(2 0.5 (2 0.4		< 1	34 30	21 21	0.54 0.59	< 10 < 10	< 1 < 1	0.15 0.13	20 20	0.07	95 85

CERTIFICATION: B. Cargo

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project: VALERIE - G.SOUTH Comments: VALERIE - G.SOUTH ATTN: R. GONZALEZ

Page Nun :1-B
Total Page :1
Certificate Date: 09-JUL-91
Invoice No. :19117214
P.O. Number :

										CE	RTIFI	CATE	OF A	NAL	/SIS	A9117	214	
SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni PPM	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti.	Tl ppm	ppm u	ppm V	ppm W	Zn Zn			
91-1 022-030 91-1 030-040 91-1 040-050 91-1 050-060 91-1 50.5-52	205 272 205 272 205 272 205 272 205 272	2 4 3	0.13 0.17 0.15 0.03 0.04	14 32 42 23 113	1180 960 1060 1130 600	12 10 6 38 240	< 5 5 5 < 5	6 8 5 6 9	92 73 69 45	0.26 0.23 0.14 0.14 0.09	10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	102 151 143 123 76	< 10 10 < 10 50 1150	58 84 76 182 1100			
91-1 060-070 91-1 070-080 91-1 080-090 91-1 090-100 91-1 100-110	205 272 205 272 205 272 205 272 205 272	3 4 8	0.21 0.11 0.05 0.05 0.10	19 20 17 20 16	1290 1320 1310 1170 1310	22 14 12 12 12	< 5 5 10 10 5	5 6 11 14 12	94 59 30 23 53	0.24 0.28 0.25 0.20 0.23	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	158 155 183 198 201	< 10 < 10 < 10 < 10 < 10	116 86 96 92 114			
91-1 110-120 91-1 120-130 91-1 130-140 91-1 140-150 91-1 150-160	205 272 205 272 205 272 205 272 205 272	2 2	0.05 0.09 0.15 0.09 0.08	16 41 25 18 49	1250 1140 1280 1350 1380	8 6 6 8 12	< 5 < 5 < 5 < 5	8 8 4 5 10	40 67 75 50 58	0.20 0.23 0.19 0.20 0.22	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	165 135 143 150 185	< 10 < 10 < 10 < 10 10	90 112 72 88 116			
91-1 160-170 91-1 170-180 91-1 180-190 91-1 190-200 91-1 200-210	205 272 205 272 205 272 205 272 205 272	2 2 2	0.20 0.13 0.10 0.06 0.15	19 19 20 21 16	1280 1330 1300 1380 1350	14 12 6 6 8	5 5 5 5 5	7 7 6 7 6	87 50 40 35 70	0.35 0.36 0.29 0.21 0.29	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	160 194 152 162 150	10 < 10 < 10 < 10 < 10	90 118 88 78 72			
91-1 210-220 91-1 220-230 91-1 230-240 91-1 240-250 91-1 250-260	205 272 205 272 205 272 205 272 205 272	2 < 1 3	0.05 0.11 0.15 0.08 0.10	17 28 76 28 17	1320 1140 1120 1140 1360	6 4 8 10 4	5 5 5 5 5	10 7 8 13 10	40 71 71 42 52	0.29 0.29 0.26 0.14 0.28	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	191 130 130 152 181	10 < 10 < 10 20 < 10	108 98 116 124 124			
91-1 260-270 91-1 270-280 91-1 280-290 91-1 290-300 91-1 300-310	205 272 205 272 205 272 205 272 205 272	2 2 2		16 14 14 21 39	1520 1280 1430 1220 1250	8 8 14 4 20	5 10 5 5 5	5 10 9 7 9	60 39 49 47 54	0.23 0.38 0.35 0.29 0.29	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	154 173 178 123 127	< 10 < 10 < 10 < 10 < 10	94 102 146 206 226			
91-1 310-320 91-1 320-330 91-1 330-340 91-1 340-350 91-1 350-360	205 272 205 272 205 272 205 272 205 272	2 1 1	0.08 0.15 0.14 0.14 0.09	38 46 42 45 68	1170 1220 1030 1180 580	22 12 10 2 22	< 5 5 5 5 5	7 5 8 6 4	51 77 72 86 55	0.35 0.31 0.24 0.39 0.21	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	137 139 148 163 95	< 10 < 10 < 10 < 10 < 10	100 90 82 68 1195			
91-1 360-370 91-1 370-375	205 272 205 272			3 1	50 70	22 18	< 5 < 5	< 1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	< 1	< 10 < 10	304 420			

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project: VALERIE CC: R. GONZALEZ

Page Nun :1-A Total Page :1 Certificate Date: 16-JUL-91 Invoice No. :19117552 P.O. Number :

CERTIFICATE OF ANALYSIS A9117552

			 -	1 1 1	- ·		· · · · · · · · · · · · · · · · · · ·		<u> </u>											
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag Ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg PPm	К %	La ppm	M g %	Mn ppm
91-2 020-040	205 294	10	2.2	2.29	20		< 0.5	< 2	1.42	17.5	13	300	180	3.91	10	3	0.54	10	1.17	760
1-2 040-060	205 294		3.4	1.84	40		< 0.5	< 2	3.58	17.5	11	175	240	2.96	10	< 1	0.36	20	0.85	680
1-2 060-070	205 294		0.6	1.45	-30		< 0.5	< 2	2.54	5.0	11	62	77	3.08	10	2	0.14	10	0.63	570
91-2 070-080	205 294		0.8	2.62	55		< 0.5	< 2	2.75	9.5	9	59	92	3.13	10	1	0.15	10	0.59	425
1-2 080-090	205 294	< 5	2.2	2.05	120	140	< 0.5	< 2	2.62	52.5	10	71	145	2.93	10	< 1	0.13	10	0.76	360
91-2 090-100	205 294	10	1.8	2.10	150	60	< 0.5	< 2	1.55	101.5	10	106	251	2.58	10	9	0.24	10	0.57	225
1-2 100-110	205 294	< 5	0.4	2.35	175	70	< 0.5	< 2	1.99	52.0	11	111	148	3.19	10	8	0.26	10	0.64	255
91-2 110-120	205 294	< 5	< 0.2	1.86	115	80	< 0.5	< 2	1.91	9.5	11	71	76	3.38	10	< 1	0.25	10	0.76	280
91-2 120-130	205 294	< 5	0.2	2.35	20	130	< 0.5	< 2	3.64	3.5	12	75	103	4.21	10	< 1	0.42	20	1.13	545
91-2 130-140	205 294	< 5	0.6	2.07	80	110	< 0.5	< 2	1.39	30.5	11	123	139	2.92	10	6	0.31	10	0.85	280
91-2 140-150	205 294	10	< 0.2	1.68	40	170	< 0.5	< 2	1.35	11.5	14	79	101	4.01	< 10	3	0.19	10	0.78	475
91-2 150-160	205 294		< 0.2	3.24	60	210	< 0.5	< 2	1.73	10.0	27	268	102	4.67	10	1	0.63	10	2.35	720
31-2 160-170	205 294		< 0.2	3.69	40	590	< 0.5	< 2	3.08	27.5	26	227	106	3.99	. 10	1	0.53	10	1.56	635
91-2 170-180	205 294		0.6	2.37	20	. 110	< 0.5	< 2	1.30	7.5	22	103	111	4.92	10	2	0.33	10	1.06	370
91-2 180-190	205 294	< 5	0.4	2.81	< 5	110	< 0.5	< 2	2.05	< 0.5	20	49	174	4.96	10	< 1	0.17	10	1.25	355
91-2 190-200	205 294	< 5	< 0.2	2.31	55	70	< 0.5	< 2	1.86	5.5	21	87	143	5.05	10	< 1	0.18	10	0.81	285
91-2 200-210	205 294		< 0.2	1.87	60	160	< 0.5	< 2	1.69	13.5	22	113	133	4.10	10	6	0.28	10	0.83	275
91-2 210-220	205 294	10	< 0.2	2.32	35	70	< 0.5	< 2	2.86	37.0	. 10	100	92	3.61	10	1	0.18	10	0.62	485
91-2 220-230	205 294	< 5	0.2	2.15	20	130	< 0.5	< 2	1.60	5.0	11	79	92	3.31	10	< 1	0.28	10	0.77	215
91-2 230-240	205 294	10	0.4	2.39	85	360	< 0.5	< 2	1.95	39.0	14	197	160	3.69	10	. 7	0.42	10	1.16	430
91-2 240-250	205 294	5	0.6	2.50	35	190	< 0.5	< 2	2.01	15.5	13	101	141	3.27	10	1	0.21	10	0.62	270
91-2 250-260	205 294		1.0	2.17	25	270	< 0.5	< 2	0.75	8.0	15	177	179	4.71	< 10	< 1	0.44	10	1.09	555
91-2 260-270	205 294		1.2	1.80	30	240	< 0.5	< 2	0.72	< 0.5	11	127	104	3.15	< 10	< 1	0.49	10	1.13	680
91-2 270-280	205 294		0.4	1.89	15	230	< 0.5	< 2	1.10	< 0.5	11	95	87	2.48	10	< 1	0.43	10	1.05	675
91-2 280-290	205 294		0.6	1.99	< 5	280	< 0.5	< 2	1.99	3.0	12	76	108	3.20	10	< 1	0.27	10	0.78	745
91-2 290-300	205 294	10	0.2	1.80	10	200	< 0.5	< 2	2.32	4.0	20	60	147	4.64	< 10	< 1	0.22	10	0.67	520
															· .		2.1			
in the second								*												

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project: VALERIE Comments: CC: R. GONZALEZ

Page Nun :1-B Total Pages :1 Certificate Date: 16-JUL-91 Invoice No. :19117552 P.O. Number :

										CE	RTIF	CATE	OF A	NAL	/SIS	A9117552
SAMPLE DESCRIPTION	PREP CODE	Mo Mo	Na %	Ni ppm	ppm P	Pb ppm	Sb PPm	Sc ppm	Sr ppm	Ti %	T1 ppm	ppm u	bbw A	bbw M	Zn ppm	
91-2 020-040 91-2 040-060 91-2 060-070 91-2 070-080 91-2 080-090	205 294 205 294 205 294 205 294 205 294	58 99 87	0.06 0.05 0.06 0.19 0.16	132 117 142 131 161	420 360 630 900 750	28 10 22 18 20	10 35 10 15 20	10 7 7 4 3	49 68 81 119 122	0.11 0.05 0.03 0.09 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	985 686 566 339 465	< 10 < 10 < 10 < 10 < 10 < 10	1035 1080 388 542 2860	
91-2 090-100 91-2 100-110 91-2 110-120 91-2 120-130 91-2 130-140	205 294 205 294 205 294 205 294 205 294	171 158 118	0.23 0.21 0.13 0.12 0.14	237 210 207 153 214	430 570 660 880 540	12 10 14 10 18	20 15 5 10 < 5	4 6 6 8 6	92 108 79 91 122	0.10 0.11 0.07 0.08 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 10	1275 1035 372 252 1000	< 10 < 10 < 10 < 10 < 10	6030 2990 632 366 1970	
91-2 140-150 91-2 150-160 91-2 160-170 91-2 170-180 91-2 180-190	205 294 205 294 205 294 205 294 205 294	65 49 62	0.11 0.15 0.26 0.12 0.05	116 223 224 113 94	820 760 950 860 1030	16 18 2 12 30	< 5 10 10 10 4 5	6 8 5 6 9	113 175 244 105 279	0.13 0.20 0.17 0.14 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	583 473 438 308 146	< 10 < 10 < 10 < 10 < 10	822 836 1590 552 134	
91-2 190-200 91-2 200-210 91-2 210-220 91-2 220-230 91-2 230-240	205 294 205 294 205 294 205 294 205 294	99 107 87	0.11 0.09 0.12 0.10 0.14	205 205 145 110 166	760 730 750 780 840	14 10 16 12 14	10 5 5 < 5 10	7 6 5 5 6	109 125 118 121 135	0.13 0.13 0.11 0.10 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	594 905 567 291 981	< 10 < 10 < 10 < 10 < 10 < 10	450 932 2250 366 2190	
91-2 240-250 91-2 250-260 91-2 260-270 91-2 270-280 91-2 280-290	205 294 205 294 205 294 205 294 205 294	29 4 1	0.15 0.09 0.10 0.09 0.09	146 137 100 67 63	780 300 260 260 1240	18 26 20 22 20	10 10 < 5 < 5 5	5 8 8 7 6	198 302 108 135 141	0.14 0.09 0.07 0.08 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	593 547 149 85 63	< 10 < 10 < 10 < 10 < 10	978 656 152 132 502	
91-2 290-300	205 294	10	0.16	63	620	12	< 5	7	91	0.18	< 10	< 10	161	< 10	380	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project: VALERIE Comments: CC: RALPH GONZALEZ

Page Num 1-A Total Page 1 Certificate Date: 23-JUL-91 Invoice No. : 19117733 P.O. Number :

CERTIFICATE	OF ANALYSIS	A9-	117733

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	ppm Ag	Al %	As ppm	Ba ppm	Pe Ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	ppm ppm	K %	La ppm	Mg %	Mn ppm
91-3 35-45	205 294	55	< 0.2	3.96	10	240	< 0.5	4	1.07	< 0.5	20	48	130	9.37	20	< 1	2.98	10	2.72	510
1-3 45-55	205 294		< 0.2	3.11	15	190	< 0.5	< 2	2.18	< 0.5	28	67	136	6.42	20	< 1	1.70	10	2.32	765
1-3 55-65	205 294		< 0.2	2.77	10	100	< 0.5	< 2	2.59	< 0.5	27	69	234	7.16	20	1	1.22	10	2.10	990
91-3 65-75	205 294	20	< 0.2	3.17	25	140	< 0.5	< 2	1.23	< 0.5	. 20	51	255	9.47	20	< 1	1.86	< 10	2.48	870
91-3 75-85	205 294	40	3.2	2.48	20	130	< 0.5	4	2.25	< 0.5	32	50	1280	8.44	20	< 1	0.92	10	1.90	1325
1-3 85-95	205 294	10	< 0.2	2.97	< 5	180	< 0.5	< 2	1.55	< 0.5	20	55	542	9.56	20	< 1	1.65	< 10	2.41	860
1-3 95-105	205 294	25	< 0.2	3.04	220	180	< 0.5	< 2	0.58	< 0.5	33	57	291	10.45	20	< 1	1.92	< 10	2.51	590
1-3 105-115	205 294	15	< 0.2	3.17	15	160	< 0.5	< 2	1.20	< 0.5	17	56	224	9.72	20	< 1	2.07	< 10	2.57	650
91-3 115-125	205 294	100	< 0.2	2.95	30	150	< 0.5	< 2	1.33	< 0.5	24	91	248	9.16	20	< 1	1.73	< 10	2.27	605
91-3 125-135	205 294	10	< 0.2	2.47	< 5	110	< 0.5	< 2	0.84	< 0.5	26	43	340	8.44	20	< 1	1.59	< 10	1.79	515
01-3 135-145	205 294	10	< 0.2	2.90	25	110	< 0.5	< 2	1.28	< 0.5	19	53	228	7.86	20	< 1	1.53	10	1.94	550
1-3 145-155	205 294		< 0.2	2.89	170	90	< 0.5	< 2	1.81	< 0.5	19	40	368	7.94	. 20	1	1.47	10	1.94	800
1-3 155-165	205 294	145	6.2	1.52	2600	50	< 0.5	< 2	5.40	< 0.5	62	33	3940	7.53	20	2	0.58	10	1.12	1310
91-3 165-175	205 294		< 0.2	1.48	115	50	< 0.5	< 2	2.98	< 0.5	17	46	480	7.64	20	< 1	0.53	10	1.22	1050
91-3 175-185	205 294		4.2	1.59	1545	40	< 0.5	- 8	6.05	< 0.5	32	45	2200	6.41	30	< 1	0.39	10	1.22	1645
91-3 185-195	205 294	75	< 0.2	1.67	1135	70	< 0.5	8	1.85	< 0.5	92	54	501	13.20	20	< 1	0.51	< 10	1.51	1060
91-3 195-205	205 294	65	< 0.2	1.61	675	60	< 0.5	< 2	1.73	< 0.5	69	57	308	8.90	20	< 1	0.51	< 10	1.48	745
91-3 205-215	205 294	15	< 0.2	2.93	105	90	< 0.5	< 2	1.44	< 0.5	34	90	175	7.81	20	< 1	1.47	< 10	2.10	605
21-3 215-225	205 294	< .5	< 0.2	1.53	105	60	< 0.5	< 2	1.95	< 0.5	38	153	326	7.34	20	< 1	0.65	10	1.51	655
91-3 225-235	205 294	< 5	< 0.2	1.53	< 5	50	< 0.5	< 2	1.85	< 0.5	25	173	285	7.50	20	< 1	0.64	10	1.57	770
91-3 235-245	205 294	10	< 0.2	1.91	10		< 0.5	< 2		< 0.5	19	137	327	6.53	20	< 1	0.50	10	1.96	1340
91-3 245-255 A	205 294		4.6	2.09	20		< 0.5	6	4.22	< 0.5	17	82	1595	6.28	20	2	0.54	10	1.54	1280
91-3 245-255 B	205 294		0.2	3.21	< 5	100	< 0.5	< 2	3.72	< 0.5	8	92	350	6.14	30	< 1	1.56	10	2.28	1165
91-3 255-265	205 294		< 0.2	3.00	15	40	< 0.5	4	3.95	< 0.5	19	173	208	4.57	20	1	1.36	10	2.15	1070
91-3 275-285	205 294	< 5	< 0.2	3.10	15	50	< 0.5	< 2	2.77	< 0.5	17	125	47	5.42	20	< 1	1.46	< 10	2.23	1400
91-3 285-295	205 294		0.8	3.32	25		< 0.5	< 2		< 0.5	18	78	500	6.33	30	< 1	1.33	10	2.23	2050
91-3 295-305	205 294		1.0	2.19	5	30	< 0.5	< 2	4.49	< 0.5	10	152	515	4.99	20	< 1	0.54	10	2.06	1730
91-3 305-314	205 294	< 5	< 0.2	2.65	20	40	< 0.5	< 2	4.24	< 0.5	13	130	149	5.12	30	< 1	1.10	. 10	2.23	1815
											4									

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Project : VALERIE Comments: VALERIE CC: RALPH GONZALEZ

Page Num 1-B Total Pages 1 Certificate Date: 23-JUL-91 Invoice No. : 19117733 P.O. Number :

Δ0117733

										CE	RTIFI	CATE	OF A	NALY	/SIS	AS	1177	33	
SAMPLE DESCRIPTION	PREP CODE	Mo Ppm	Na %	Ni ppm	ppm p	Pp.	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	ppm	V ppm	ppm W	Zn ppm				
91-3 35-45 91-3 45-55 91-3 55-65 91-3 65-75 91-3 75-85	205 294 205 294 205 294 205 294 205 294	17 < 1	0.07 0.06 0.03 0.01 < 0.01	18 18 19 22 28	1540 1440 1390 980 950	< 2 < 2 8 24 14	5 < 5 < 5 < 5 < 5	15 8 13 17 13	49 73 63 29 50	0.35 0.27 0.24 0.27 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	260 215 230 259 215	< 10 < 10 < 10 < 10 < 10 < 10	26 58 62 84 128				
91-3 85-95 91-3 95-105 91-3 105-115 91-3 115-125 91-3 125-135	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1	< 0.01 < 0.01 0.01 0.03 0.03	22 26 22 25 28	920 950 940 1220 1180	26 14 12 14 12	< 5 < 5 < 5 < 5 < 5	18 18 17 13 13	36 16 20 29 25	0.25 0.20 0.23 0.17 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	250 252 246 198 193	< 10 < 10 < 10 < 10 < 10	82 28 24 28 32				-
91-3 135-145 91-3 145-155 91-3 155-165 91-3 165-175 91-3 175-185	205 294 205 294 205 294 205 294 205 294	2 2	0.10 0.10 0.02 < 0.01 < 0.01	21 20 34 22 26	1210 1300 1050 1170 1220	12 14 16 18 16	5 < 5 < 5 5 10	13 14 14 13 15	50 51 44 28 58	0.18 0.13 0.06 0.10 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	198 211 151 157 155	< 10 < 10 < 10 < 10 < 10	18 22 42 24 68				
91-3 185-195 91-3 195-205 91-3 205-215 91-3 215-225 91-3 225-235	205 294 205 294 205 294 205 294 205 294	2 1 < 1		64 32 42 64 86	1270 1510 1110 820 760	20 16 2 8 22	5 < 5 < 5 < 5 < 5	15 13 15 14 16	28 32 43 31 29	0.17 0.14 0.23 0.17 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	175 182 211 147 154	< 10 < 10 < 10 < 10 < 10	32 28 42 38 42				
91-3 235-245 91-3 245-255 A 91-3 245-255 B 91-3 255-265 91-3 275-285	205 294 205 294 205 294 205 294 205 294	< 1 < 1	0.02 0.04 0.08 0.16 0.11	59 53 28 62 45	1030 1160 1310 950 1030	8 2 4 14 12	5 5 < 5 < 5 < 5	21 10 11 7 8	91 74 83 87 66	0.08 0.22 0.26 0.23 0.26	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	178 164 214 153 168	< 10 < 10 < 10 < 10 < 10	74 136 94 76 98				
91-3 285-295 91-3 295-305 91-3 305-314	205 294 205 294 205 294	< 1	0.08 0.02 0.05	27 35 42	1150 1600 1200	18 < 2 6	< 5 5 < 5	11 8 10	76 107 63	0.26 0.14 0.27	< 10 < 10 < 10	< 10 < 10 < 10	212 134 173	< 10 < 10 < 10	128 104 92				

APPENDIX B: COST STATEMENT

COST STATEMENT

Valarie Gold Resources Ltd. AHBAU Property

Diamond Drilling Project 18 June - 8 July 1991

FOOD & ACCOMMODATION 1 pers., 21 mdays @ \$83.38	\$ 1,751.11
SUPPLIES	729.57
FUEL	370.99
SHIPMENTS	405.20
TELEPHONE	45.00
RENTALS: HLE Field Equipment 21 days @ \$10.70 \$ 224.70 Adder 4wd Jimmy 21 days @ \$79.62 1,672.05 Arbor VLF/EM-16 1 day	1,925.64
SALARIES & WAGES 1 pers., 21 days @ \$294.25	6,179.25
DIAMOND DRILLING - Core Enterprises Ltd. 989 Feet @ \$18.33	18,127.41
ASSAYS & ANALYSES - Chemex Labs 91 Core for AU & 32-element ICP @ \$17.83 1 Pulp for CU	1,622.50 7.49
CONSULTANT FEES: Adder Exploration & Development Ltd. Archean Engineering Ltd.	1,691.94 347.75
REPORT PREPARATION	1,388.50
TOTAL COST	\$ <u>34,592.35</u>