ARIS SUMMARY SHEET

istrict	Geologist, Smithers		an a	Off Confi	dential: 92	.08.20
ASSESSMEN	r report 21750	MINING DIVI	SION: Lia	ard		
ROPERTY: LOCATION: CLAIM(S): OPERATOR(.UTHOR(S) EPORT YE KEYWORDS:	: Kasper, B.	350906	31 28 00 sites,Tuff	fs,Chalcop	yrite,Chalc	ocite
DONE:	Geochemical, Geologica GEOL 150.0 ha ROCK 19 sample(s) SILT 3 sample(s)	· · · · ·				
RELATED	SOIL 35 sample(s) 18054,20486	•				

,] 7

in the second	Statement of the second	NUMBER OF STREET	A CONTRACTOR OF THE OWNER.	
LOG NO: OCT	25	1991	RD.	
ACTION:				
				-
1				
FILE NO:				

1991 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE GRACE 1-2 AND RIM 1 CLAIMS

Located in the Galore Creek Area Liard Mining Division NTS 104G/3W 57° 11' North Latitude 131° 28' West Longitude

> -prepared for-PIONEER METALS CORPORATION

1

-prepared by-Bruno J. Kasper, Geologist

October, 1991

1991 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE GRACE 1-2 AND RIM 1 CLAIMS

TABLE OF CONTENTS

			Page_
L.O		INTRODUCTION	.1.
2.0		LIST OF CLAIMS	.1.
3.0		LOCATION, ACCESS AND GEOGRAPHY	.1.
4.0		PROPERTY MINING HISTORY	
1.0	4.1	Previous Work	.2.
	4.2	1991 Exploration Program	.4.
5.0		REGIONAL GEOLOGY	.4.
6.0		PROPERTY GEOLOGY AND MINERALIZATION	
	6.1	Geology	.7.
	6.2	Mineralization	.9.
7.0		GEOCHEMISTRY	.11.
8.0		DISCUSSION	.13.

APPENDICES

24

أهتد

المنا

Appendix	A	Bibliography
Appendix	В	Statement of Expenditures
Appendix		Rock Sample Descriptions
Appendix		Certificates of Analysis
Appendix		Statement of Qualifications

LIST OF FIGURES

LIST OF FIGU	RES	Following <u>Page</u>
Figure 1	Location Map	.1.
Figure 2	Claim Map	.1.
Figure 3	Regional Mineral Occurrence Map	.3.
Figure 4	Regional Geology	.4.
Figure 5	Geology and Geochemistry	.8.
Figure 6	Significant Soil Geochemistry	.12.

LIST OF TABLES

		<u>Page</u>
Table 2.0.1	Claim Data	.1.
Table 6.2.1	Syenite Dykes Significant Results	.10.
Table 7.0.1	Silt Sampling Results	.12.

1.0 INTRODUCTION

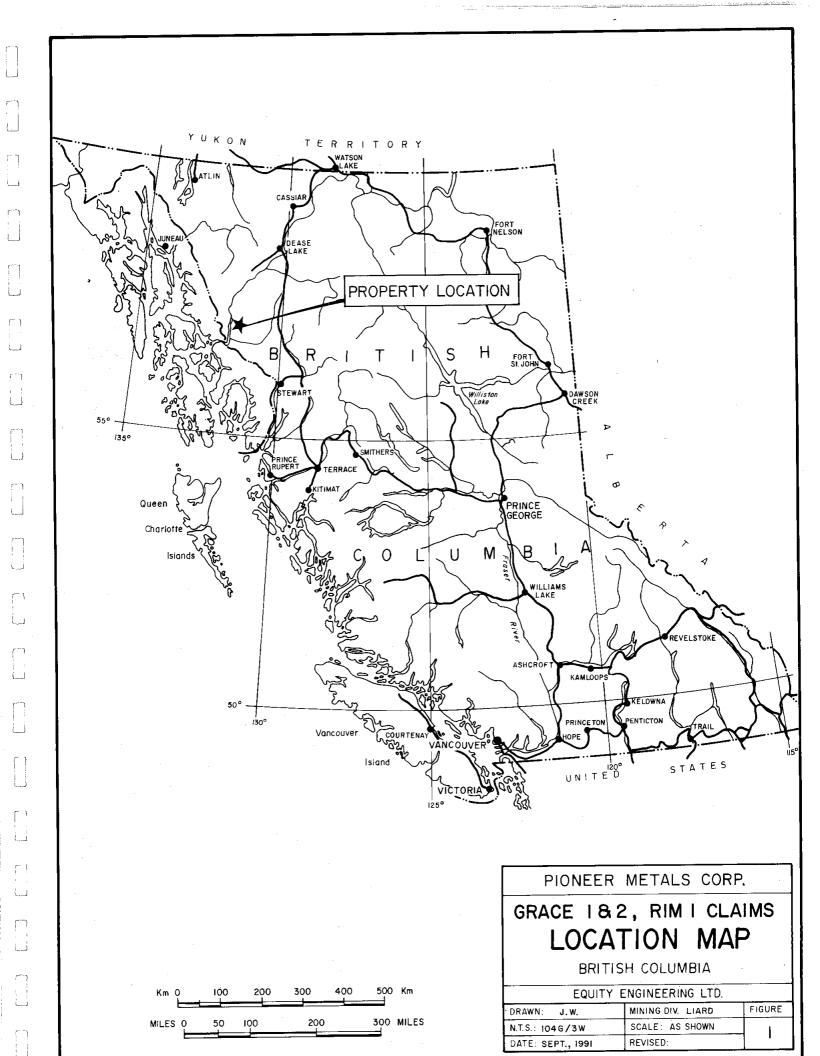
The Grace 1-2 and Rim 1 claims were staked in 1989 over the projected northward extension of the Central Zone of the Galore Creek copper-gold porphyry deposit, approximately 170 kilometres northwest of Stewart in northwestern British Columbia. The Grace claim area has been explored at various times since the discovery of the Galore Creek copper-gold porphyry deposit in 1955.

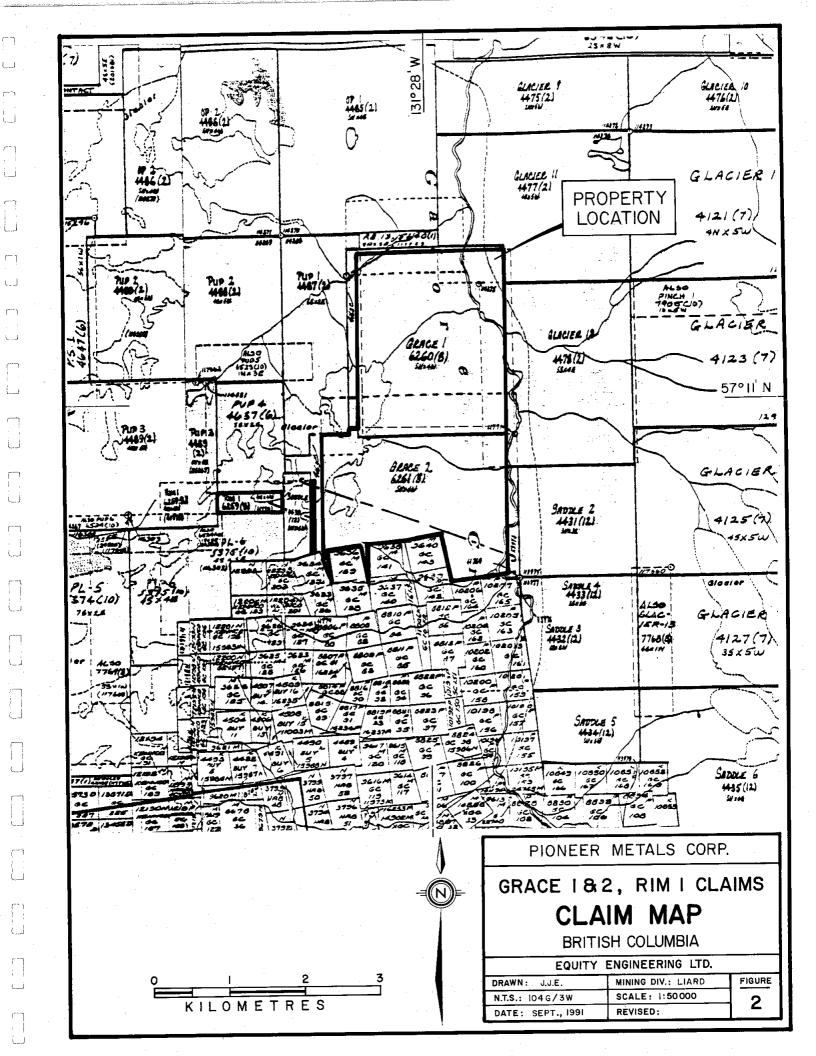
Limited soil sampling and prospecting was carried out over the Grace 2 claim in August 1991 to fulfil assessment work requirements. Equity Engineering Ltd. conducted this program for Pioneer Metals Corporation and has been retained to report on the results of the fieldwork.

2.0 LIST OF CLAIMS

The Grace property comprises three claims totalling 56 units in the Liard Mining Division. Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that these claims, summarized in Table 2.0.1, are owned by Pioneer Metals Corporation (Figure 2).

TABLE 2.0.1 CLAIM DATA


Claim Name	Record Number	Tenure Number	No. of Units	Record Date	Expiry Date
Rim 1	6259	224191	16	Aug. 25, 1989	Aug. 25, 1992*
Grace 1	6260	224192	20	Aug. 24, 1989	Aug. 24, 1992*
Grace 2	6261	224193	20	Aug. 25, 1989	Aug. 25, 1992*
			56		


* Subject to approval of assessment work filed in August, 1991.

The claims overlap previously staked ground of Stikine Copper Ltd. to the south, the Glacier 11 and 12 claims to the northeast, and the Saddle 1, Pup 3 and 4 and PL-6 claims to the west. Although the boundary with Stikine Copper Ltd. holdings to the south is unknown, the actual ground is estimated to cover 35 units. The location of the legal corner post for the Grace 2 claim, as well as posts for the claims overlapped to the northeast and west, have been verified by Equity Engineering Ltd. personnel.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Grace claim group is located within the Coast Range Mountains approximately 170 kilometres northwest of Stewart and 90

kilometres south of Telegraph Creek in northwestern British Columbia (Figure 1). It lies within the Liard Mining Division, centered at 57° 11' north latitude and 131° 28' west longitude.

Access to the Grace property during the 1991 exploration program was provided by a helicopter set out from a fly camp on a nearby property. In previous years, helicopter access was provided from the Galore Creek airstrip which is located approximately four kilometres to the south. A bulldozer road to the Grace claims from the Galore Creek airstrip was constructed by Pioneer Metals Corporation in 1989.

On the Alaskan side of the border, Wrangell lies approximately 100 kilometres to the southwest, and provides a full range of services and supplies, including a commercial airport. The Stikine River has been navigated by 100-ton barges upriver as far as Telegraph Creek, allowing economical transportation of heavy machinery and fuel to the Scud River airstrip located 24 kilometres to the northwest of the claim group.

The Grace claims cover the western flank of the Galore Creek drainage, extending south from Galore Pup Creek. The Rim #1 claim lies immediately west of the Grace 2 claim, covering part of the cirque at the headwaters of Jack Wilson Creek. Topography is rugged, typical of mountainous and glaciated terrain, with elevations ranging from 550 metres in the Galore Creek valley to over 2000 metres on the western edge of the Grace 2 claim.

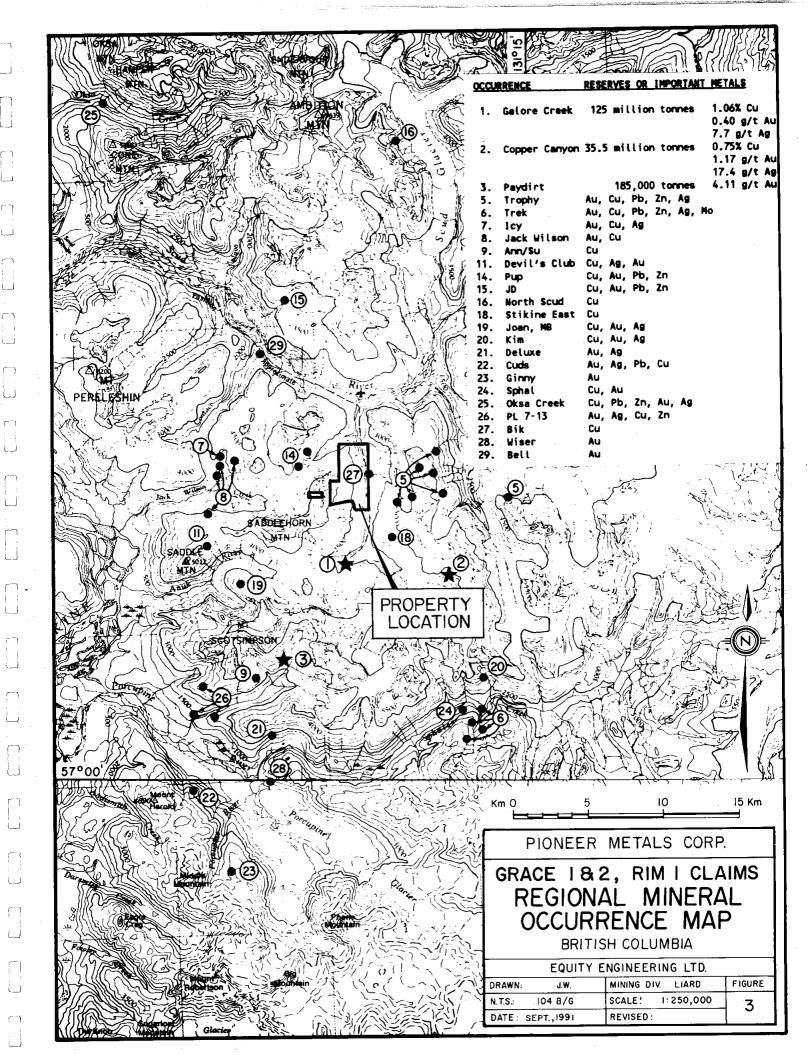
Lower slopes are covered by a mature forest of hemlock, spruce and balsam fir with a dense undergrowth of devil's club, alder and huckleberry. Above treeline, which occurs at approximately 1200 metres, the creek beds and slopes are covered by dense slide alder and willow growth. The steeper slopes are covered in short heather and other alpine vegetation.

The property lies in the wet belt of the Coast Range Mountains, with annual precipitation between 190 and 380 centimetres (Kerr, 1948). Except during July, August and September, precipitation at higher elevations falls mainly as snow, with accumulations reaching three metres or more. Both summer and winter temperatures are moderate, ranging from -5°C in the winter to 20°C in the summer months.

4.0 PROPERTY MINING HISTORY

4.1 Previous Work

The Galore Creek district was extensively explored for its copper potential throughout the 1960's, following the discovery in 1955 of the Galore Creek copper-gold porphyry deposit (Figure 3). This deposit, whose Central Zone hosts reserves of 125 million


tonnes grading 1.06% copper and 400 ppb gold (Allen et al, 1976), adjoins the Grace claims to the south. Stikine Copper Ltd. is currently updating its feasibility study on the Galore Creek deposit, incorporating significant gold and copper results from drilling in recent years. Several major mining companies conducted regional mapping and silt sampling programs in the 1950's and 1960's over the entire Galore Creek area and in 1957 the Copper Canyon copper-gold porphyry deposit was discovered eight kilometres east of the Central Zone. The Copper Canyon deposit, with 35.7 million tonnes at a grade of 0.75% copper and 1.17 g/tonne (0.034 oz/ton) gold (Cons. Rhodes, 1991), was actively explored in 1990 after a hiatus of 33 years.

In 1964, the BIK Syndicate staked the Stikine North claim group immediately north and northeast of Stikine Copper's holdings, including ground currently covered by the Grace 1 and 2 claims. They carried out ground magnetometer (Falconer, 1965a) and induced polarization (Falconer, 1965b) surveys. Three induced polarization anomalies were identified, two of which lie on the Grace claims. Falconer (1965b) noted outcrop of syenite and andesite with minor chalcopyrite and pyrite within one of these, the Northwest anomaly. The other, the Southwest anomaly, covers "syenite porphyry breccia with very minor sulphides" and trends southwards onto Stikine Copper's ground.

Conwest Exploration staked the CW claim group in 1964 over a large area north and west of the Stikine North claim group, including the northern part of the Grace 1 claim. They conducted regional mapping and sampling over their claims, taking fifteen rock samples and 91 silt samples in 1964, of which two rock samples and four silt samples were taken from the area now covered by the Grace 1 claim (Grant, 1964). An induced polarization survey carried out by Conwest in 1966 showed a northward extension of the BIK Syndicate's Northwest Anomaly onto their claim group, on what is now the Grace 1 claim (Dodds, 1966). Dodds (1966) recommended that two diamond drill holes be completed on this anomaly, but there is no record of drilling by Conwest.

In 1987, Pioneer Metals Corporation staked the Grace 1 and 2 claims and carried out limited geological mapping and stream sediment sampling (Blusson, 1988). Those claims lapsed in 1989 and were immediately re-staked by Pioneer Metals as the Grace 1-2 and Rim 1 claims. Around this time, Pioneer Metals constructed a tractor road for drill access to the claims. An airborne geophysical survey was carried out in the winter of 1989/90 over the Grace claims and the adjoining Trophy Gold property, which adjoins it to the east (Blusson, 1990).

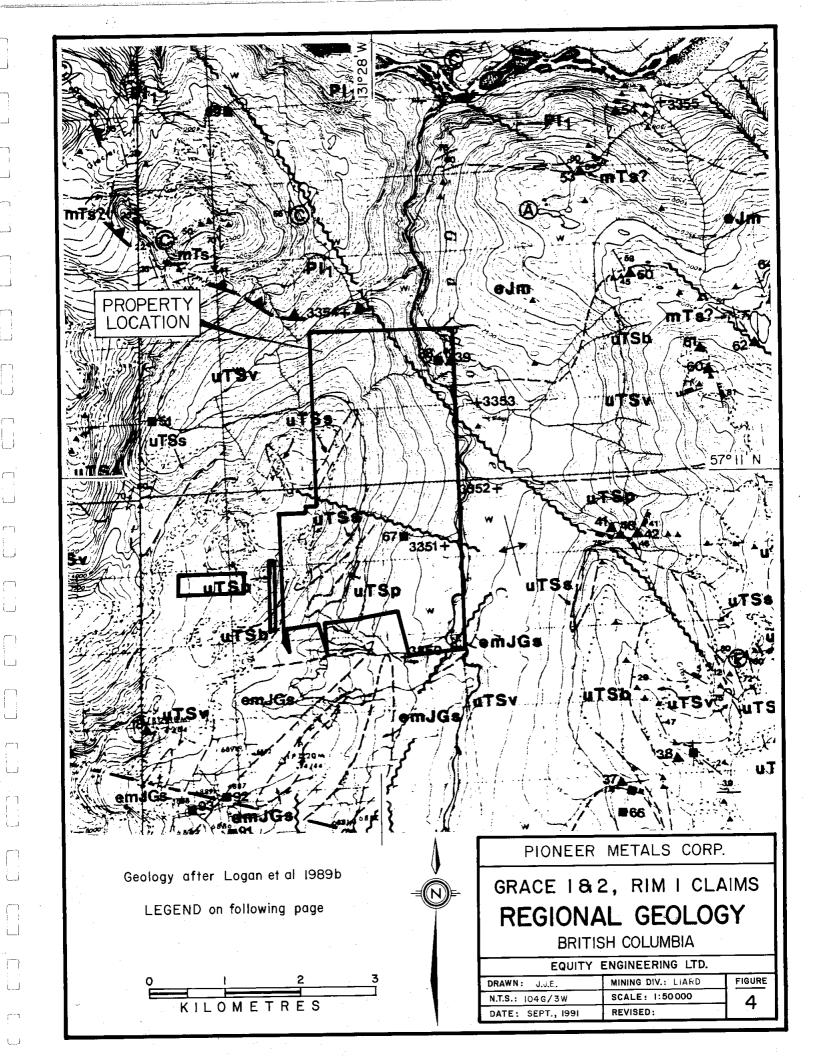
During 1987, the federal and provincial geological surveys conducted a joint regional geochemical survey throughout the Telegraph Creek and Sumdum map sheets. Two silt samples, taken from streams draining the Grace property, were anomalous in gold

and copper, and one was also anomalous in silver, lead, cobalt, molybdenum, antimony and tungsten (GSC, 1988).

4.2 1991 Exploration Program

During July of 1991, Pioneer Metals Corporation carried out a limited exploration program on the Grace 1-2 and Rim 1 claims in order to satisfy assessment requirements. This program was directed at discovering copper-gold porphyry mineralization similar to the Galore Creek deposit to the south.

Geological mapping, prospecting silt sampling and soil sampling, were carried out over the Grace 2 claims. During the course of this program, 3 silt samples, 35 soil samples and 19 rock samples were taken. Silt samples were taken from the backwaters of drainages, sieved to minus 80 mesh in the laboratory and analyzed geochemically for gold and 32 elements by ICP (Figure 5).


Soil samples were taken at 25-metre intervals along two contour soil lines above two of the existing bulldozer roads (Figure 6) and analyzed geochemically for gold and ten base metals. Wherever possible, soil samples were taken from the red-brown B horizon.

Geological mapping and prospecting were carried out on the Grace 2 claim using a 1:50,000 government topographic map for control. Rock samples, described in Appendix C, were taken from zones of alteration and mineralization and analyzed geochemically for gold and 32 elements by ICP. Samples exceeding 1,000 ppb gold, 100 ppm silver or 10,000 ppm for base metals, were assayed for the appropriate elements. Analytical certificates are attached in Appendix D.

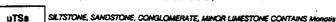
5.0 REGIONAL GEOLOGY

The basis for regional geological mapping in the Stikine River area was set out by Kerr (1948), the crew of Operation Stikine (GSC, 1957) and Souther (1972). Their work has been refined in the Galore Creek area by Brown and Gunning (1989a,b), Logan and Koyanagi (1989) and Logan et al (1989) at a scale of 1:50,000.

The Galore Creek Camp lies within the Intermontane Belt, a geological and physiographic province of the Canadian Cordillera, and flanks the Coast Plutonic Complex to the west (Figure 4). At Galore Creek, the generally northwest-trending structure of the Intermontane Belt is discordantly cut across by the northeasttrending Stikine Arch which became an important, relatively positive tectonic element in Mesozoic time when it began to influence sedimentation into the Bowser Successor Basin to the southeast and into the Whitehorse Trough to the northwest (Souther et al., 1979).


i.....

l...


LEGEND

To accompany Figure 4

QUATERNARY

UPPER TRIASSIC STUHINI GROUP (MHERE UNDWIDED DENOTED AS UTSV)

PYROXENE-PORPHYRY FLOWS AND FRAGMENTALS

uTSp

INTERMEDIATE TO MARIC FRAGMENTALS, BRECCIA, TUFF, LAHAR

MIDDLE TRIASSIC

uTSb

CARBONACEOUS SILTY SHALE WITH ELLIPTICAL CONCRETIONS, SILICEOUS AND LIMY SILTSTONES CONTAINING Habbia

STIKINE ASSEMBLAGE

PERMIAN

Pl2

LIGHT GREY MASSIVE TO THICKLY-BEDDED BUFF, BIOCLASTIC CALCARENITE

DARK GREY TO BUFF THIN BEDDED, BIOCLASTIC UMESTONE, CHERT INTERBEDS, ARGILLACEOUS NEAR BASE

INTRUSIVE ROCKS

EARLY TO MIDDLE JURASSIC GALORE CREEK INTRUSIONS

emjGa SYENITE, ORTHOCLASE PORPHYRITIC MONZONITE

EARLY JURASSIC

•Jm MEDIUM-GRAINED, HORNBLENDE, BIOTITE GRANODIORITE TO MONZONITE

Geological boundary (defined, approximate, assumed)	
Unconformity (assumed)	-0-0-
Bedding (inclined, vertical, parallel to foliation)	111
Bedding tops observed (inclined, vertical, overturned)	114
Bedding, estimated attitude (g + gentle, m = moderate, s = steep)	10 /m/s
Foliation (inclined, vertical; M = mylonitic)	1114
Joint (inclined, vertical)	11
Dyke (inclined, vertical)	1 \$
Dyke, estimated attitude (g= gentle, m = moderate, s = steep)	ta ja ja
Vein (inclined, vertical, Q = quartz)	A # AO
Amichnal axis	1
Synclinal axis	t .
Overturned synclinal axis , ,	
Axial plane of minor fold (inclined, vertical)	11
Fold axis of minor fold with M, S and Z symmetry; crenulation (arrow indicates plunge)	8422
I ligh angle fault; surface trace (defined, approximate, assumed; Solid circle indicates downthrown side, arrows indicate relative movement)	• <u>•</u>
Thrust fault (defined, approximate, assumed; teeth in direction of dip)	·
Strear zone, invionite	********

Stikinian stratigraphy ranges from possibly Devonian to Jurassic, and was subsequently intruded by granitoid plutons of Upper Triassic to Eocene age. The oldest strata exposed in the Galore Creek camp are Mississippian or older mafic to intermediate volcanic flows and pyroclastic rocks (Units 4A and 4B) with associated clastic sediments (Units 4C, 4D, 4G and 4J) and carbonate lenses (Unit 4E). These are capped by up to 700 metres of Mississippian limestone with a diverse fossil fauna (Unit 4E). It appears from fossil evidence that all of the Pennsylvanian system is missing and may be represented by an angular unconformity and lacuna of 30 million years, though field relationships are complicated by faulting (Monger, 1977; Logan and Koyanagi, 1989). Permian limestones (Units 6A, 6B and 6C), also about 700 metres thick, lie upon the Mississippian limestone but are succeeded by a second lacuna amounting to about 20 million years from the Upper Permian to the upper Lower Triassic.

Middle and Upper Triassic siliciclastic and volcanic rocks (Unit 7) are overlain by Upper Triassic Stuhini Group siliciclastic (Units 8A and 8B) and volcanic (Units 8D, 8E, 8G, 8H and 8I) rocks, consisting of mafic to intermediate pyroclastic rocks and lesser flows. The Galore Creek porphyry copper deposit appears from field evidence to mark the edifice of an eroded volcanic centre with numerous sub-volcanic plutons of syenitic composition. Jurassic Bowser Basin strata onlap the Stuhini Group strata to the southeast of the Iskut River but, because of erosion and non-deposition, are virtually absent from the Galore Creek area.

The plutonic rocks follow a three-fold division (Logan and Koyanagi (1989) and Logan et al (1989)). Middle Triassic to Late Jurassic syenitic and broadly granodioritic intrusions are partly coeval and cogenetic with the Stuhini Group volcanics and include the composite Hickman Batholith (Unit 9) and the syenites of the Galore Creek Complex (Unit 11). Jura-Cretaceous Coast Plutonic Complex intrusions (Unit 12) occur on the west side of the Galore Creek Camp, along the Stikine River, with the youngest of these intrusions occupying more axial positions along the trend of the Coast Plutonic Complex flanked by older intrusions. The youngest intrusives in the Galore Creek Camp are Eocene quartz monzonitic plugs (Unit 13), felsic and mafic sills and dykes (Unit 14), and biotite lamprophyre (minette) dykes (Unit 14C).

The dominant style of deformation in the Galore Creek area consists of upright north-trending, open to tight folds and northwest-trending, southwest-verging, folding and reverse faulting in the greenschist facies of regional metamorphism. Localized contact metamorphism ranges as high as pyroxene hornfels grade; metasomatism is also noted near intrusions. Upright folding may be an early manifestation of a progressive deformation which later resulted in southwest-verging structures. Southwest-verging deformation involves the marginal phases of the Hickman Batholith and so is, at least in part, no older than Late Triassic.

_ Equity Engineering Ltd. ____

Steeply dipping faults which strike north, northwest, northeast, and east have broken the area into a fault-block mosaic. North-striking faults are vertical to steeply east-dipping and parallel to the Mess Creek Fault (Souther, 1972), which was active from Early Jurassic to Recent times (Souther and Symons, 1974); northwest-striking faults are probably coeval with the northstriking faults, but locally pre-date them. East-west trending faults are vertical or steeply dipping to the north and display north-side down dip slip kinematics, whereas northeast-striking faults are the loci of sinistral, strike-slip motion (Brown and Gunning, 1989a).

A number of metallic deposit types have been recognized in the Galore Creek camp: porphyry copper <u>+</u> molybdenum <u>+</u> gold deposits, structurally-controlled precious metal vein/shear deposits, skarns and breccia deposits (Figure 3). Porphyry copper deposits of this area include both the alkalic Galore Creek coppergold and calc-alkalic Schaft Creek copper-molybdenum deposits. Galore Creek, which is associated with syenitic stocks and dykes rather than a quartz-feldspar porphyry, is further contrasted from the calc-alkaline Schaft Creek in that molybdenite is rare, magnetite is common and gold and silver are important by-products. The mineralization is clearly coeval and cogenetic with the spatially associated intrusive bodies. Other porphyry copper occurrences in the Galore Creek area include the Ann/Su, Copper Canyon, Sphal and Jack Wilson Creek deposits.

Structurally-controlled gold-silver deposits have been the focus of exploration in recent years. The vein/shear occurrences are similar throughout the Galore Creek camp in that they are mesothermal in nature, containing base metal sulphides with strong silica veining and alteration. However, it appears that the intrusive bodies associated with this mineralization fall into two classes on the basis of age and composition. These two classes are reflected in differences in the style of structures, sulphide mineralogy and associated alteration products. The intrusive types are: 1) Lower Jurassic alkaline "Galore Creek" stocks; and 2) Eocene quartz monzonite to porphyritic granodiorite intrusions. Lead isotope data from the Stewart mining camp (Alldrick et al., 1987) further supports the proposition that separate Jurassic and Tertiary mineralizing events were "brief regional-scale phenomena".

Structures associated with the Lower Jurassic syenites are typically narrow quartz-chlorite veins mineralized predominately with pyrite, chalcopyrite and magnetite. Examples of these structures in the Galore Creek camp include many of the discrete zones peripheral to the Galore Creek deposit and the gold-rich veins at Jack Wilson Creek.

The Tertiary mineralization comprises discrete quartz veins and larger shear zones characterized by pervasive silicification, sericitization and pyritization whose total sulphide content is

Equity Engineering Ltd. ____

commonly quite low. The quartz veins contain a larger spectrum of sulphide minerals including pyrite, chalcopyrite, pyrrhotite, arsenopyrite, galena and sphalerite. Unlike the Jurassic mineralization, silver grades may be very high. The Paydirt deposit appears to fall into this category.

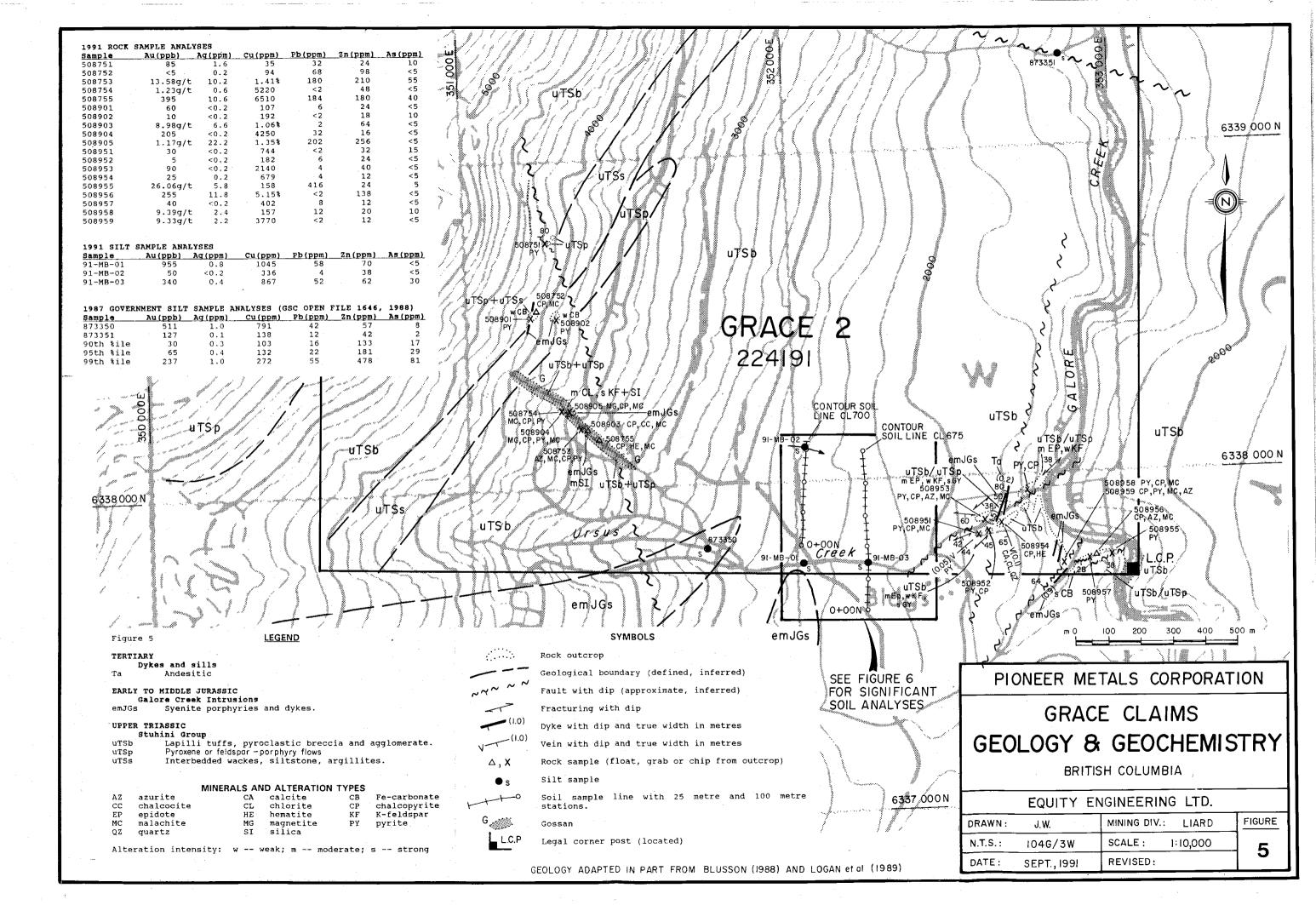
Skarns represent a minor percentage of the precious metalbearing occurrences in the Galore Creek camp. The mineralogy of these deposits is influenced by the composition of the intrusion driving the hydrothermal fluids. In deposits associated with alkalic intrusions, the skarn assemblage is commonly dominated by magnetite and chalcopyrite, as at the Galore Creek deposit and the Hummingbird skarn on the east side of the South Scud River.

The breccia-hosted mineralization discovered in the Galore Creek camp precious metal deposits appear to be unique in style and mineralization. Three occurrences have been located in the camp: (1) the zinc-silver-gold Ptarmigan zone in the South Scud River area, (2) the copper-molybdenum-gold-silver breccia at the Trek property on Sphaler Creek and (3) the copper-bearing and magnetite breccias of the complex Galore Creek deposit. The single common denominator of each is that the zones are located along fault structures which may represent the main conduit for mineralizing fluids.

Kuroko-type volcanogenic massive sulphide mineralization has not yet been reported from the Galore Creek area, but significant deposits occur in similar stratigraphy to the northwest and Volcanogenic massive sulphide deposits have long been southeast. known in the Tulsequah area, hosted by felsic and sedimentary units of a Paleozoic island arc complex (Nelson and Payne, 1984), which appears to correlate with the pre-Permian metamorphic rocks of the Galore Creek district. The Tulsequah Chief deposit, located 215 kilometres northwest of the Grace property, has reported reserves of 4.7 million tonnes at a grade of 1.6% copper, 1.3% lead, 7% zinc, 2.7 g/tonne gold and 101 g/tonne silver (Northern Miner, Dec. 10/90). On the Rock and Roll property, located 54 kilometres south of the Grace claims in the Iskut River area, Thios Resources reports a new VMS discovery in Stuhini sediments with drill intersections up to 881 g/tonne silver, 5.35% zinc, 2.07% lead, 2.74 g/tonne gold and 0.58% copper over 9.7 metres (Thios, 1990).

6.0 PROPERTY GEOLOGY AND MINERALIZATION

6.1 Geology


Although no property-scale geological mapping has been previously reported over the Grace property, limited mapping has been done by Blusson (1988) and Logan et al (1989) and updated by mapping from the 1991 field program (Figure 5). The Grace 2 claim is underlain by Upper Triassic Stuhini Group volcanic,

volcaniclastic and sedimentary rocks. Early to Middle Jurassic syenite porphyries and dykes of the Galore Creek Intrusions intrude the Upper Triassic stratigraphy. North to northeasterly trending faults and an andesitic dyke of probable Tertiary age, crosscut the earlier rock units.

Upper Triassic Stuhini Group crystal lapilli tuffs and agglomerates (Unit uTSb) are interbedded or grade into andesitic or pyroxene-phyric flows (Unit uTSp) along the west side of Galore Creek in the southeastern corner of the property. The volcaniclastics consist mainly of volcanic clasts within a mediumgrained, magnetic crystal hash. Further up Ursus Creek, but below the bulldozer roads, the lapilli tuffs grade into a non-magnetic crystal hash tuff (Unit uTSb) and are interbedded with feldspar porphyry flows (Unit uTSp).

The upper levels of Ursus Creek are generally underlain by tuffs and breccias of Unit uTSb with minor interbeds of volcanic flows and sedimentary rocks. A 150 metre band of sedimentary rocks (Unit uTSs) mapped by Blusson (1988), trends northeast across the volcaniclastics from the southwestern corner of the Grace 2 claim. Blusson described these rocks as "... a generally west dipping sedimentary sequence of argillite to conglomerate with some calcareous members.". Volcanic flows (Unit uTSp) have been mapped by Logan et al (1989) beneath the band of sedimentary rocks and in the upper elevations of the Rim claim to the west. Blusson (1988) indicated the presence of an "augite basalt" beneath the band of sedimentary rocks, which would be equivalent to the "pyroxeneporphyry flows" mapped by Logan.

Syenite dykes (Unit emJGs) belonging to the Early to Middle Jurassic Galore Creek Intrusions are exposed along both Galore Creek and Ursus Creek in the southern part of the Grace 2 claim. At least two varieties of syenite have been recognized: a pinkishred, equigranular, medium-grained syenite and a grey, orthoclase porphyry syenite. Two exposures of the pinkish-red syenite dykes were found north of Ursus Creek in the banded sedimentary belt. These northerly trending dykes contain small blebs of magnetite associated with pyrite. The grey, orthoclase porphyry dykes were located in both the upper and lower parts of Ursus Creek and consist of orthoclase phenocrysts up to 5 millimetres in size, in a light to medium grey, aphanitic matrix. Copper-mineralized magnetite veins are associated with the grey syenites in the upper part of Ursus Creek. The grey syenite resembles the "fine-grained porphyritic syenite" described by Allen et al (1976) for the Galore Creek property to the south, while the pinkish-red syenite is texturally equivalent to Allen's "green syenite". Logan et al (1989) mapped two tongues of syenite porphyries extending into the southern part of the Grace 2 claim. These porphyries are part of the Galore Creek Syenite Complex which has not been subdivided this far north.

A twenty centimetre wide andesitic dyke (Unit Ta) crosscuts the crystal ash tuffs in the lower part of Ursus Creek. This greenish-grey dyke is fine-grained, weakly magnetic and unaltered when compared to the surrounding rocks. The dyke has been assigned a Tertiary age due to its relatively unaltered state and similarities to other Tertiary age dykes noted by Logan and Koyanagi (1989) for the Galore Creek area.

Three types of alterations were noted during the 1991 program: potassic, propylitic and iron-carbonate alteration. Weak to strong potassic alteration is associated with the grey syenite dykes throughout Ursus Creek making it difficult to identify the syenitevolcanic contact in places. Propylitic alteration consisting of epidote-calcite-chlorite-pyrite, varies with the intensity of fracturing. The volcanic rocks along the west side of Galore Creek are generally weakly propylitized and less fractured. In the lower part of Ursus Creek, the volcanic rocks are strongly fractured by an northeast-southwest striking "sheet" fracturing and exhibit Epidote is the main alteration strong propylitic alteration. mineral present and along with the sheet fracturing, makes identification of the original rock type difficult. Iron-carbonate alteration is associated with the pinkish-red syenites in the western part of the Grace 2 claim and a northeast trending shear zone in the southeast corner of the claim. This alteration type is recognized by its distinct brownish-orange weathering and generally consists of an ankerite altered host rock with abundant calcite and minor quartz veining. Hematite is usually the main oxide mineral present with this alteration. The degree of carbonate alteration varied from moderate along the margin of the pinkish-red syenite dykes to intense within the shear zone.

6.2 Mineralization

Several significant occurrences of gold and copper were discovered on the Grace 2 claim during the 1991 field program. These occurrences can be divided into two main categories: porphyry style mineralization and that hosted in shear zones. The following is a breakdown of the two mineralizing types and their associated mineralization:

Porphyry Style Mineralization

Porphyry style mineralization consists of disseminated chalcopyrite and/or pyrite within the syenite dykes and/or the volcanic rocks. The host rock is usually highly fractured and exhibits some degree of potassic alteration. Magnetite veinlets, with or without chalcopyrite, may be present within or along the contact of the syenite dykes. Later stage quartz or chlorite veinlets may infill highly fractured areas and if mineralized, contain small blebs of chalcopyrite.

_ Equity Engineering Ltd. ___

The most significant copper-gold occurrences found on the property to date are associated with syenite dykes. The best mineralized occurrences are found with dykes of the grey, porphyritic variety, whereas samples taken from dykes of the pinkish-red, equigranular variety contained low levels of copper Mineralization related to the grey syenite dykes were and gold. found in two areas: the upper part of Ursus Creek and along Galore Creek near the Grace 2 legal corner post (Figure 5). Along Galore Creek, the intense potassic alteration and subsequent shearing makes identification of the original rock types difficult. Grab and float samples taken from the upper part of Ursus Creek returned gold and copper values up to 13.58 g/tonne (0.396 oz/ton) gold and 1.41% copper (sample 508753). Grab samples taken from the Galore Creek occurrence contained gold and copper values of 9.39 g/tonne (0.274 oz/ton) gold (sample 508958) and 3770 ppm copper (sample 508959). Table 6.2.1 lists the significant results for these two areas.

TABLE 6.2.1 SYENITE DYKES SIGNIFICANT RESULTS

SAMPLE	WIDTH metres	GOLD (dqq)	SILVER (ppm)	COPPER (ppm)	LEAD (mgg)	SINC (mqq)
508753*	0.10	13.58g/t	10.2	1.41%	180	210
508754*	float	1.23g/t	0.6	5220	<2	48
508755*	float	395	10.6	6510	184	180
508903*	float	8.98g/t	6.6	1.06%	2	64
508904*	0.05	205	<0.2	4250	32	16
508905*	0.35	1.17g/t	22.2	1.35%	202	256
508958#	0.85	9.39g/t	2.4	157	12	20
508959#	0.90	9.33g/t	2.2	3770	<2	12

* sample taken from upper part of Ursus Creek.

sample taken along Galore Creek.

g/t denotes grams per tonne

A different phase of porphyry mineralization was recognized in the lower part of Ursus Creek. This phase differs from the one described above by the lack of exposed intrusives and extensive copper mineralization, the presence of strong epidote alteration and where copper mineralization is present, the lack of appreciable gold enrichment. The strong epidote alteration and extensive sheet fracturing in the area, also hinders identification of the rock the main sulphide present, is disseminated Pyrite, type. throughout the exposures and comprises up to 5% of the rock. Copper mineralization is present in areas of patchy potassic alteration and where the sheet fracturing has been crosscut by later fractures of various orientations. A 3.5 metre chip sample taken across this copper mineralization returned 2139 ppm copper, but low gold (90 ppb) (sample 508953). Chip samples from the areas of abundant pyrite mineralization revealed low copper and gold values (samples 508951 and 508952).

Shear Zone Mineralization

The shear zone mineralization is distinguished by ankerite alteration and sulphide mineralization related to calcite and quartz veining. An iron-carbonate altered shear zone exposed for approximately seventy metres along Galore Creek, was the only occurrence of this type of mineralization found on the property (Figure 5). The shear zone, which strikes 060° and dips 38° to the southwest, has an average width of at least 50 centimetres, but may vary from 25 to 100 centimetres where exposed. Mineralization within the shear consists of either pyrite-rich calcite veining or quartz stockwork containing blebs of chalcopyrite. A select grab (sample 508955) taken from the ten centimetre wide, pyrite-rich calcite vein contained 26.06 g/tonne (0.760 oz/ton) gold and 5.8 ppm silver with low copper (158 ppm). The vein is located in the footwall of the shear zone, but is only exposed for three metres after which it appears to pinch out. Erratic areas of copper mineralized guartz stockwork are located throughout the shear zone. A select grab of chalcopyrite-rich float (sample 508956) from talus beneath one of these areas, assayed 5.15% copper with significant gold (255 ppb) and silver (11.8 ppm).

7.0 GEOCHEMISTRY

Two silt samples were taken from streams which drain the Grace and Rim property during the course of the regional geochemical sampling conducted by the federal government surveys (GSC, 1988) Both samples can be considered highly anomalous in (Figure 5). gold, exceeding the governments 95th percentile value (65 ppb) for The gold and copper values in silt sample 873350, the region. taken at the 765 metre elevation in Ursus Creek, returned 511 ppb gold and 791 ppm copper, which exceeds the governments 99th percentile for both elements. This sample also contained 1.0 ppm silver (=99th percentile), 42 ppm lead (>95th percentile), 18 ppm molybdenum (>99th percentile), 23 ppm cobalt (>90th percentile), 6.5 ppm antimony (>99th percentile) and 8 ppm tungsten (>95th percentile). Although no work was conducted up this tributary of Ursus Creek in 1991, copper-gold mineralization similar found in the tributary to the north is the most probable source for the copper, gold and silver anomalies. Silt sample 873551, taken in an unnamed drainage located 1300 metres to the north of Ursus Creek, returned 127 ppb gold and 138 ppm copper. No work has been recorded for this area and the source of the anomaly is unknown.

During the course of the 1991 exploration program, 35 soil samples were taken at 25 metre intervals along two contour soil lines located in the south part of the Grace 2 claim (Figures 5 and 6). Three silt samples were taken from drainages located along this line. Geochemical data from the silt samples are directly comparable to the government results listed in Figure 5, and anomalous results can be defined in the same way. There were not enough soil samples taken to conduct a meaningful statistical analysis but it is felt that the following levels are anomalous: gold (60 ppb), silver (1.0 ppm), copper (125 ppm), lead (31 ppm), zinc (150 ppm) and arsenic (20 ppm).

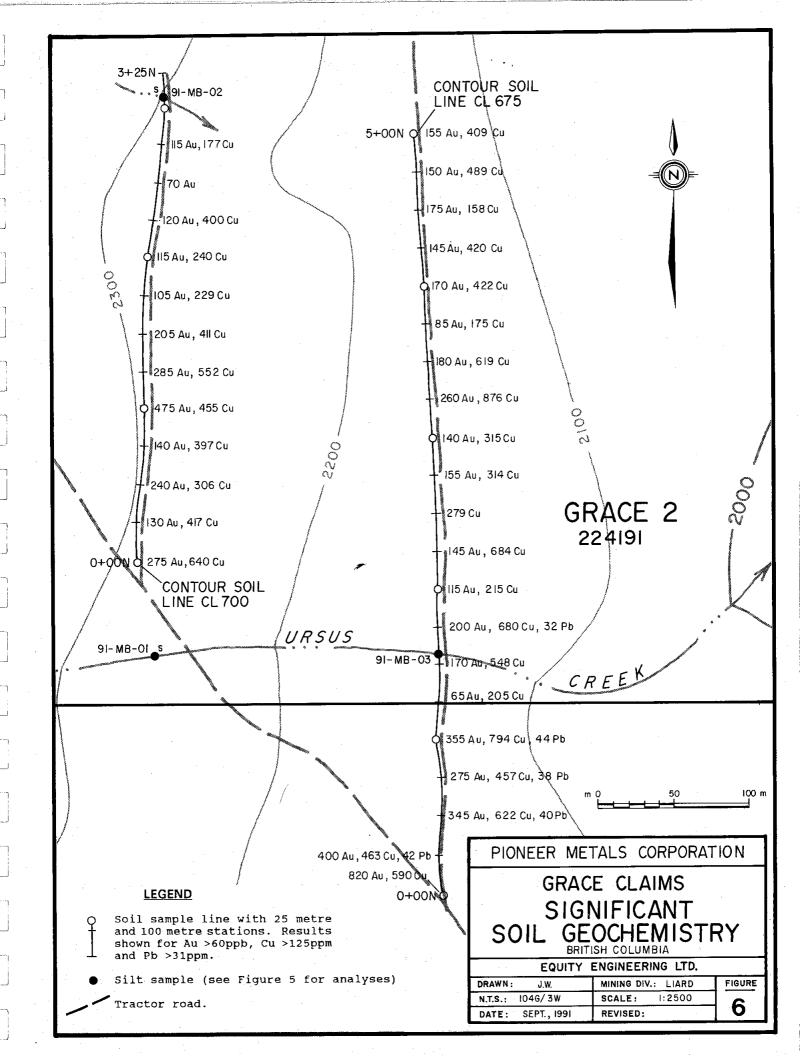

All silt samples exceeded the governments 90th percentile for gold and 99th percentile for copper and two samples exceeded or were equivalent to the governments 95th percentile for silver and lead. The silt sample results for 1991 are summarized in Table 7.0.1. The copper-gold mineralization associated with the syenite dykes in the upper part of Ursus Creek is the probable source for two samples containing extremely anomalous gold and copper (91-MB-01 and 91-MB-03). A similar source may be found for silt sample 91-MB-02 whose stream drains an area just north of where the dykes are exposed.

TABLE 7.0.1 SILT SAMPLING RESULTS

Sample	Au(ppb)	(mqq)pA	Cu(ppm)	Pb(ppm)	Zn(ppm)	<u>As(ppm)</u>
91-MB-01	955***	* 0.8**	1045***	58***	70	<5
91-MB-02	50*	<0.2	336***	• 4	38	<5
91-MB-03	340***	* 0.4*	867***	· 52**	62	30**

* Sample exceeded the 90th percentile (anomalous)
** Sample exceeded the 95th percentile (highly anomalous)
*** Sample exceeded the 99th percentile (extremely anomalous)

Both contour soil lines can be considered anomalous in gold and copper with individual values up 820 ppb gold and 876 ppm copper (Figure 6). With the exception of five soil samples between 1+25N and 1+75N on contour soil line CL675 which contained anomalous levels of lead, all soils contained low levels of lead, zinc and arsenic and no detectable levels of silver. Although some of the gold and copper results could conceivably be the result of downslope dispersion from the syenite porphyries located in the upper part of Ursus Creek, the consistently high values are probably derived from a closer source. Logan et al (1989) indicates the northern extensions of two syenite porphyries near the south end of contour soil line CL700. These two porphyries are part of the intrusive complex which hosts Stikine Copper's Central Zone located to the south of the Grace 2 claim. The copper-gold values along the contour soil lines may reflect gold-copper porphyry mineralization in a northern extension of one or both of the syenite porphyries.

8.0 DISCUSSION

Alkalic copper-gold porphyry deposits, such as Mt. Milligan, Mt. Polley, Galore Creek and Copper Canyon have been the focus of intensive exploration in recent years in British Columbia. The Galore Creek deposit located to the south of the Grace claims, hosts several significant copper-gold deposits which are currently been reevaluated. Similar geology and mineralization as the Galore Creek deposit has been found on the Grace property which shows an excellent potential to host a copper-gold deposit of alkalic affinity.

The most favourable alteration and mineralization found to date is exposed in the southern part of the Grace 2 claim. mineralization consisting style of disseminated Porphyry chalcopyrite and/or pyrite, is associated with syenite intrusives which have intruded coeval Stuhini Group volcanics and sedimentary Significant copper-gold mineralization is related to the rocks. grey, porphyritic variety of the syenite dykes. Weak to intense potassic alteration associated with this type of dyke is similar to the style of alteration found with the copper-gold zones at the Galore Creek deposit. Grab and float samples of the syenite dykes or adjoining host rocks from this area assayed up to 13.58 g/tonne gold and 1.41% copper. The copper-gold mineralization found in the upper part of Ursus Creek is reflected in the silt samples taken further downstream. Two other geochemically anomalous silt samples taken to the north of Ursus Creek may indicate a northern extension to a similar style of mineralization, but little work has been done in this area to date.

In the lower reaches of Ursus Creek, a peripheral phase of the porphyry style mineralization was found. This is characterized by abundant pyrite with strong epidote alteration and erratic copper mineralization found with patchy potassic alteration. Copper-gold values were low for this type of mineralization, which is believed to be similar to the pyrite halo that occurs on the east side of Galore Creek's Cental Zone.

Gold and copper mineralization related to an ankeritic shear zone, is located in the southeast corner of the Grace 2 claim. Significant gold mineralization is restricted to a discontinuous, ten centimetre wide, pyrite-rich calcite vein in the footwall of the 0.5 metre shear zone, whereas copper mineralization occurs in erratic quartz stockworks within the zone.

Soil sampling was conducted along two north-south trending contour soil lines parallel to existing bulldozer roads. Both contour soil lines were anomalous in gold and copper. Although both soil lines are located downslope of the copper-gold mineralization in Ursus Creek, it is expected that further mineralization may be closer at hand. The Grace property is at an early stage of exploration. The significance of the induced polarization anomalies outlined in the earlier years to the anomalous copper-gold results of this program should be further investigated. To date, similar geology and copper-gold mineralization to that of the Galore Creek deposit to the south, has been found on the Grace 2 claim. Stream and soil geochemistry indicate that similar mineralization may extend to the north, but exploration in this area will be hindered by lack of outcrop exposure and glacial till cover in the Galore Creek valley. However, the favourable results obtained to date warrant further work on the property.

Respectfully submitted, EQUITY ENGINEERING LTD.

Brune J. Kasper, Geologist

Vancouver, British Columbia October, 1991

APPENDIX A

l

BIBLIOGRAPHY

BIBLIOGRAPHY

- Alldrick, D.J., Gabites, J.E. and Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp, <u>in</u> Geological Fieldwork 1986; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1987-1, pp. 93-102.
- Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek, in CIM Special Volume 15; pp. 402-414.
- Blusson (1988): Assessment Report, Grace 1 and 2 Claims; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #18,054.
- Blusson (1990): Geophysical Survey Report on the Grace 1-2 and Rim 1 Claims; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #20,486.
- Brown, D.A., and Gunning, M.H. (1989a): Geology of the Scud River area, North Western British Columbia, (104G/5,6), <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 251-267.
- Brown, D.A., and Gunning, M.H. (1989b): Geology of the Scud River area, North Western B.C. (map); British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Open File 1989-7.
- Consolidated Rhodes Resources Ltd. (1991): News Release dated May 29, 1991.
- Dodds, A.R. (1966): Report on an Induced Polarization Survey, CW Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #937.
- Falconer, R.D. (1965a): Geophysical Report (Magnetometer Survey)
 on Mineral Claims BIK 227-269 (inclusive) and BIK 1-3 (FR)
 (inclusive); British Columbia Ministry of Energy, Mines and
 Petroleum Resources Assessment Report #692.
- Falconer, R.D. (1965b): Geophysical Report (Induced Polarization Survey) on Mineral Claims BIK 227-269 (inclusive) and BIK 1-3 (FR) (inclusive); British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #688.
- Geological Survey of Canada (1957): Stikine River area, Cassiar District, British Columbia; Geological Survey of Canada Map 9-1957.
- Geological Survey of Canada (1988): National Geochemical Reconnaissance, Sumdum - Telegraph Creek, British Columbia (NTS 104F - 104G); GSC Open File 1646.

- Grant, G.W. (1964): Final Geological Report CW Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #621.
- Kerr, F.A. (1948): Taku River map-area, British Columbia; Geological Survey of Canada, Memoir 248, 84 pp.
- Logan, J.M., and Koyanagi, V.M. (1989): Geology and Mineral Deposits of the Galore Creek area, Northwestern B.C., 104G/3,4, in Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 269-284.
- Logan, J.M., Koyanagi, V.M., and Rhys, D. (1989): Geology and Mineral Occurrences of the Galore Creek Area; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch Open File 1989-8.
- Monger, J.W.H. (1977): Upper Palaeozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution; Can. Jour. Earth Sci., V.14, pp. 1832-1859.
- Nelson, J. and Payne, J.G. (1984): Paleozoic Volcanic Assemblages and Volcanogenic Massive Sulphide Deposits near Tulsequah, British Columbia; Canadian Journal of Earth Sciences, V. 21, pp 379-381.
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.
- Souther, J.G., and Symons, D.T.A. (1974): Stratigraphy and Palaeomagnetism of the Mount Edziza volcanic complex, northwestern British Columbia; Geological Survey of Canada Paper 73-32, 48 pp.
- Souther, J.G., Brew, D.A., and Okulitch, A.V. (1979): Iskut River 1:1,000,000; Geological Atlas Geological Survey of Canada, Map 1418A.

Thios Resources Inc. (1990): News release dated December 4, 1990.

APPENDIX B

Lasi

ĺ

577.4 1 (5.8)

STATEMENT OF EXPENDITURES

GRACE 1 AND 2, AND RIM 1 CLAIMS (July 28 - August 3, 1991)

-

<u>مت</u>

.

PROFESSIONAL FEES AND WAGES: Henry Awmack, P. Eng. 0.5 days @ \$375/day Mike Blusson, Sampler 1 day @ \$200/day Rob Falls, Project Geologist 1.25 days @ \$375/day Bruno Kasper, Prospecting Ge 1.875 days @ \$250/day Donald McInnes, Project Mana 0.25 days @ \$300/day Mark O'Dea, Prospecting Geol 1 day @ \$250/day	ologi: ger	187.50 200.00 468.75 st 468.75 75.00 250.00	\$ 1,650.00
MOBILIZATION AND SUPPORT COSTS: Pro rata according to manday of several properties operat the Galore Creek/Porcupine F	ed ou	t of	513.15
CHEMICAL ANALYSES: Rock Geochemical Analyses 19 @ \$20.20 each Soil Geochemical Analyses 35 @ \$15.95 each Silt Geochemical Analyses 3 @ \$13.31 each Assays	\$	383.80 558.19 39.93 28.16	1,010.08
EQUIPMENT RENTAL: Fly Camp 4 mandays @ \$20/day Handheld Radios 4 mandays @ \$5/day 4x4 Truck Standby 0.5 days @ \$10/day	\$	80.00 20.00 <u>5.00</u>	105.00

EXPENSES:			
Aircraft Charters	\$ 147.67		
Camp Food	118.74		
Courier and Telefax	15.00		
Drafting	37.50		
Expediting	53.20		
Helicopter	461.25		
Maps and Publications	7.37		
Printing and Reproductions	56.18		
Telephone Distance Charges	 3.34		
		\$	900.25
MANAGEMENT FEE @ 15% on expenses		<u>\$</u>	<u>286.55</u> 4,464.95
			1 200 00
REPORT (estimated)			1,200.00
		<u>\$</u>	5,664.95

APPENDIX C

ROCK DESCRIPTIONS

Mineral Abbreviations:

	aaaa	T 3
AK	Ankerite	JA
AS	Arsenopyrite	KF
AZ	Azurite	\mathtt{LI}
BI	Biotite	MC
BO	Bornite	MG
CA	Calcite	MO
CC	Chalcocite	MN
СВ	Fe-Carbonate	MR
CL	Chlorite	MS
CP	Chalcopyrite	MU
CV	Covellite	PO
CY	Clay	PY
DO	Dolomite	QZ
\mathbf{EP}	Epidote	SI
GA	Garnet	SM
GE	Goethite	SP
GL	Galena	TA
GY	Gypsum	\mathbf{TT}
HE	Hematite	

ĺ

Alteration Intensities:

Jarosite Potassium Feldspar Limonite Malachite Magnetite Molybdenite Manganese-oxides Mariposite Sericite Muscovite Pyrrhotite Pyrite Quartz Silica Smithsonite Sphalerite Talc Tetrahedrite

tr trace

w weak

m moderate

s strong

	SINEERING LTD. : Grace 1-2 and Rin	m 1 Claims	ROCK SAMPLE DESCRIPTIONS NTS : 104G/3W	Date : 10/0		Page-1-					
Sample No.	. Location :	6338 750 N	Type : Grab	Alteration :	sSI	Au	Ag	Cu	Pb	Zn	As
		351 260 E	Strike Length Exp. : 3.0 m	Sulphides :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508751		1275 m	Sample Width : 20 cm	Oxides :		85	1.6	35	32	24	10
		: 140 / 80 NE	True Width : 10 cm	Host :							
omments :			of a vuggy and sheared silicified r		k contains pyrite veinle	ts up to					
		me vugs appear τ	o be the result of leaching of pyrit	e.							
ample No.			Type: Float	Alteration :	sCA	Au	Ag	Cu	Pb	Zn	As
ampte noi		351 230 E	Strike Length Exp. : m	Sulphides :	trCP	(ppb)	(ppm)	(ppm)	(pipm)	(ppm)	(ppm)
508752	2 Elevation:	1240 m	Sample Width : m	Oxides :	trMC	<5	0.2	94	68	98	<5
	Orientation		True Width : m	Host :	Unknown						
omments :	2.5 cm. wide ca	lcite vein float	taken in next drainage gulley south	from rock sample	508751. The source of	the float					
	was not located										
Sample No.	Location :	6338 170 N	Type : Grab	Alteration :	mSI? or KF	Au	Ag	Cu	Pb	Zn	As
		351 350 E	Strike Length Exp. : 10.0 m	Sulphides :	1-2%CP, <1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508753		1030 m	Sample Width : 10 cm	Oxides :	AZ, MC, LI	>1000	0 10.2	>1000	0 180	210	55
	Orientation		True Width : ? m	Host :	Syenite.	_					
comments :) syenite containing disseminated ch	alcopyrite and py	ite. Syenite exposure i	s approxim	ately				
	o metres wide an		n a steep, gossanous gulley.								
ample No.		6338 230 N		Alteration :	mCl	Au	Aa	Cu	Pb	Zn	As
ample No.		6338 230 N 351 290 E	Type : Grab	Alteration : Sulphides :	mCL 1%CP. 1%PY	Au (dag)	Ag (mom)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
ample No. 508754	Location :	6338 230 N	Type : Grab Strike Length Exp. : >50.0 m	Alteration : Sulphides : Oxides :	mCL 1%CP, 1%PY MC	Au (ppb) 1610	Ag (ppm) 0.6	Cu (ppm) 5220	Pb (ppm) <2	Zn (ppm) 48	As (ppm) <5
•	Location :	6338 230 N 351 290 E 1075 m	Type : Grab Strike Length Exp. : >50.0 m	Sulphides :	1%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508754	Location : Elevation: Orientation:	6338 230 N 351 290 E 1075 m : ? / ?	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm	Sulphides : Oxides : Host :	1%CP, 1%PY MC Andesite.	(ppb) 1610	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508754	Location : Elevation: Orientation: Sample of massiv chalcopyrite and	6338 230 N 351 290 E 1075 m ? / ? re andesite which pyrite while th	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit	Sulphides : Oxides : Host : ide syenite dyke.	1%CP, 1%PY MC Andesite.	(ppb) 1610	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508754 omments :	Location : Elevation: Orientation: Sample of massiv chalcopyrite and	6338 230 N 351 290 E 1075 m ? / ? /e andesite which pyrite while th	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit	Sulphides : Oxides : Host : ide syenite dyke. e veinlets.	1%CP, 1%PY MC Andesite. Wallrock contains diss	(ppb) 1610 eminated	(ppm) 0.6	(ppm) 5220	(ppm) <2	(ppm) 48	(ppm) <5
508754 omments :	Location : Elevation: Orientation: Sample of massiv chalcopyrite and	6338 230 N 351 290 E 1075 m ? / ? Ye andesite which pyrite while th 6338 140 N	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit 	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration :	1%CP, 1%PY MC Andesite. Wallrock contains disso QZ veining	(ppb) 1610 eminated Au	(ppm) 0.6 Ag	(ppm) 5220 Cu	(ppm) <2 Pb	(ppm) 48 2n	(ppm) <5 As
508754 omments : ample No.	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location :	6338 230 N 351 290 E 1075 m ? / ? re andesite which byrite while th 6338 140 N 351 405 E	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m In has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit Type : Float Strike Length Exp. : m	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides :	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP	(ppb) 1610 eminated Au (ppb)	(ppm) 0.6 Ag (ppm)	(ppm) 5220 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 48 Zn (ppm)	(ppm) <5 As (ppm)
508754 omments :	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation:	6338 230 N 351 290 E 1075 m ? / ? Ye andesite which pyrite while th 6338 140 N 351 405 E 995 m	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit 	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides :	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP HE, MC	(ppb) 1610 eminated Au	(ppm) 0.6 Ag	(ppm) 5220 Cu	(ppm) <2 Pb	(ppm) 48 2n	(ppm) <5 As
508754 omments : ample No. 508755	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation:	6338 230 N 351 290 E 1075 m ? / ? Ye andesite which pyrite while th 6338 140 N 351 405 E 995 m /	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit 	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host :	1%CP, 1%PY MC Andesite. Wallrock contains diss QZ veining 2%CP HE, MC Syenite.	(ppb) 1610 eminated Au (ppb)	(ppm) 0.6 Ag (ppm)	(ppm) 5220 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 48 Zn (ppm)	(ppm) <5 As (ppm)
508754 omments : ample No. 508755	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation:	6338 230 N 351 290 E 1075 m ? / ? Ye andesite which pyrite while th 6338 140 N 351 405 E 995 m /	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit 	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host :	1%CP, 1%PY MC Andesite. Wallrock contains diss QZ veining 2%CP HE, MC Syenite.	(ppb) 1610 eminated Au (ppb)	(ppm) 0.6 Ag (ppm)	(ppm) 5220 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 48 Zn (ppm)	(ppm) <5 As (ppm)
508754 omments : ample No. 508755 omments :	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation: Syenite float co	6338 230 N 351 290 E 1075 m ? / ? Ye andesite while th 6338 140 N 351 405 E 995 m /	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m n has been intruded by a 0.5 metre w ne dyke is mineralized with magnetit Type : Float Strike Length Exp. : m Sample Width : m True Width : m veinlets mineralized with chalcopyr	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host : ite blebs. Source	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP HE, MC Syenite. e not found.	(ppb) 1610 eminated Au (ppb) 395	(ppm) 0.6 Ag (ppm) 10.6	(ppm) 5220 Cu (ppm) 6511	(ppm) <2 Pb (ppm) 184	(ppm) 48 Zn (ppm) 180	(ppm) <5 As (ppm) 40
508754 omments : ample No. 508755 omments :	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation: Syenite float co	6338 230 N 351 290 E 1075 m ? / ? Ye andesite while th 6338 140 N 351 405 E 995 m / ontaining quartz	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m has been intruded by a 0.5 metre w he dyke is mineralized with magnetit Type : Float Strike Length Exp. : m Sample Width : m True Width : m veinlets mineralized with chalcopyr	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host : ite blebs. Source Alteration :	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP HE, MC Syenite. e not found. W to mCB	(ppb) 1610 eminated Au (ppb) 395	(ppm) 0.6 Ag (ppm) 10.6	(ppm) 5220 Cu (ppm) 6511	(ppm) <2 Pb (ppm) 184 Pb	(ppm) 48 2n (ppm) 180 Zn	(ppm) <5 As (ppm) 40 As
508754 omments : ample No. 508755 omments : ample No.	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation: Syenite float co Location :	6338 230 N 351 290 E 1075 m ? / ? re andesite which d pyrite while th 6338 140 N 351 405 E 995 m /	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m has been intruded by a 0.5 metre w he dyke is mineralized with magnetit Type : Float Strike Length Exp. : m Sample Width : m True Width : m veinlets mineralized with chalcopyr Type : Grab Strike Length Exp. : 20.0 m	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host : ite blebs. Source Alteration : Sulphides ;	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP HE, MC Syenite. e not found. W to mCB trPY	(ppb) 1610 eminated Au (ppb) 395 Au (ppb)	(ppm) 0.6 Ag (ppm) 10.6 Ag (ppm)	(ppm) 5220 Cu (ppm) 6511 Cu (ppm)	(ppm) <2 Pb (ppm) 184 Pb (ppm)	(ppm) 48 2n (ppm) 180 Zn (ppm)	(ppm) <5 As (ppm) 40 As (ppm)
comments : ample No. 508755	Location : Elevation: Orientation: Sample of massiv chalcopyrite and Location : Elevation: Orientation: Syenite float co Location :	6338 230 N 351 290 E 1075 m ? / ? /e andesite which d pyrite while th 6338 140 N 351 405 E 995 m / ontaining quartz 6338 530 N 351 205 E 1240 m	Type : Grab Strike Length Exp. : >50.0 m Sample Width : 10 cm True Width : ? m has been intruded by a 0.5 metre w he dyke is mineralized with magnetit Type : Float Strike Length Exp. : m Sample Width : m True Width : m veinlets mineralized with chalcopyr	Sulphides : Oxides : Host : ide syenite dyke. e veinlets. Alteration : Sulphides : Oxides : Host : ite blebs. Source Alteration : Sulphides : Oxides :	1%CP, 1%PY MC Andesite. Wallrock contains disse QZ veining 2%CP HE, MC Syenite. e not found. W to mCB	(ppb) 1610 eminated Au (ppb) 395	(ppm) 0.6 Ag (ppm) 10.6	(ppm) 5220 Cu (ppm) 6511	(ppm) <2 Pb (ppm) 184 Pb	(ppm) 48 2n (ppm) 180 Zn	(ppm) <5 As (ppm) 40 As

EQUITY ENG	INEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-2-					
Property :	Grace 1-2 and Rim	1 Claims	NTS : 104G/3W	Date : 10/	08/91	Ū					
Sample No.	Location :	6338 520 N	Type: Grab	Alteration :	w to mCB	Au	Ag	Cu I	Pb Zn	As	
		351 290 E	Strike Length Exp. : 15.0 m	Sulphides :	2%PY	(ppb)	(ppm)	(ppm) (ppm) (ppm)	(ppm)	
508902	Elevation:	1190 m	Sample Width : 20 cm	Oxides :	HE, JA	10	<0.2	192	<2 18	10	
	Orientation:	? / ?	True Width : ? m	Host :	Red syenite porphyry.						
Comments :	Dyke, which is at	: least 10 metres	wide, contains large disseminated	blebs of pyrite	•						
		•••••									
Sample No.			Type: Float	Alteration :	•	Au	Ag	Cu	Pb Zn	As	
		351 370 E	Strike Length Exp. : m	Sulphides :	•	(ppb)	(ppm)		ppm) (ppm)	(ppm)	
508903		1030 m	Sample Width : m	Oxides :	JA, MC	8300	6.6	>10000	2 64	<5	
	Orientation:	-	True Width : m	Host :	Volcanic?						
Comments :	Angular piece of	float containing	small blebs of chalcopyrite, found	within drainag	e gulley.						
Comple No.	lasstich .	4779 370 N	Turne a Carab	Altonation .	of10	A	1.00	Cu. (Dh 7n	4.0	
Sample No.			Type: Grab	Alteration :		Au	Ag		Pb Zn	As	
508904		351 290 E 1080 m	Strike Length Exp. : 3.0 m Sample Width : 5 cm	Sulphides :	50-70%MG, 1%CP, trPY MC	(ppb) 205	(ppm) <0.2		ppm) (ppm) 32 16	(ppm) <5	
500904	Orientation:		Sample Width : 5 cm True Width : 5 cm	Oxides :	Syenite dyke and volca		NU.2	4230 .	JZ 10	v	
Comments .		·	ween the syenite dyke and volcanic	Host :							
connerts .	float sample 5089		teen the syem te uyke and votcame i		outerops in the same are	indge as					
Sample No.	Location :	6338 230 N	Type : Grab	Alteration :	m to sKF & SI?, wCB	Au	Ag	Cu I	Pb Zn	As	
		351 310 E	Strike Length Exp. : >50.0 m	Sulphides :		(ppb)	(ppm)		ppm) (ppm)	(ppm)	
508905		1070 m	Sample Width: 35 cm	Oxides :		1490	22.2	>10000		<5	
	Orientation:		True Width : ? m	Host :							
Comments :	Syenite dyke has	a well developed	fracture cleavage whose orientation	n is indicated a	- ,	either diss	eminate	d			
			e magnetite veinlets which appear a								
Sample No.	Location :	6337 830 N	Type: Chip	Alteration :	sGY or KF; w to mCL &	EP Au	Ag	Cu i	Pb Zn	As	
		352 550 E	Strike Length Exp. : 3.00 m	Sulphides :	5%PY, <1%CP	(ppb)	(ppm)	(ppm) (j	ppm) (ppm)	(ppm)	
508951	Elevation:	540 m	Sample Width : 1.85 m	Oxides :	GE, HE, MC	30	<0.2	744 •	<2 32	15	
	Orientation:	068 / 42 SE	True Width : 1.75 m	Host :	Feldspar porphyry or c	rystal ash	tuff.				
Comments :	Disseminated sulp	hides within a hi	ghly fractured host rock. Patchy e	epidote alterati	ion throughout, but in p	laces of					
	strong epidote al	teration the rock	has weathered to a clay. Massive	pyrite veinlet	striking 052 and dippin	ng 44 SE, al	so pres	ent.			
Sample No.	Location : 0	6337 840 N	Type: Chip	Alteration :	sGY or KF, sCY, mCL &		Ag	Cu F	Pb Zn	As	
		352 580 E	Strike Length Exp. : 1.50 m	Sulphides :		(ppb)	(ppm)		(mqc) (mqc	(ppm)	
508952		540 m	Sample Width : 1.52 m	Oxides :		5	<0.2	182 6	5 24	<5	
	Orientation: (True Width: 1.40 m	Host :		•					
Comments :	•	-	heavily fractured and altered outcr	•		relationsh	ip				
	to the sheet fract	turing which is t	he most prevalent fracturing preser	nt (orientation	given above).						

	INEERING LTD. Grace 1-2 and Rin	1 Claims	ROCK SAMPLE DESCRIPTIONS NTS : 104G/3W	Date : 10/		je-3-					
ample No.	Location :	6337 880 N	Type : Chip	Alteration :	mKF+EP & CY; m to sCL, GY	Au	Ag	Cu	РЬ	Zn	As
		352 570 E	Strike Length Exp. : >20.0 m	Sulphides :	1%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
50895 3	Elevation:	538 m	Sample Width : 4.0 m	Oxides :	AZ, GE, HE, MC	90	<0.2	2139	4	40	<5
	Orientation:	117 / 52 S	True Width : 3.5 m	Host :	Feldspar porphyry or micro	odiorite	-				
omments :			roughout except for the copper oxic								
	of these fractur	es is indicated a	above; this orientation was also use	ed to determine	the true width). Patchy k-	feldspar	altera	tion.			
ample No.	Location :	6337 860 N	Type : Grab	Alteration :	sCA, CL & QZ; mKF	Au	Ag	Cu	Pb	Zn	As
		352 625 E	Strike Length Exp. : 5.0 m	Sulphides :	<1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
508954	Elevation:	525 m	Sample Width : 20 cm	Oxides :	HE	25	0.2	679	4	12	<5
	Orientation:	164 / 65 W	True Width : 10 cm	Host :	Lapilli tuff.						
mments :	CA-CL-QZ veinlet	within chlorite	and k-feldspar altered host. Numer	ous other veint	ets of millimetre scale als	present	t.				
	Chlorite and k-	feldspar selvage	around the vein. Chalcopyrite occu	ırs as blebs wit	hin the quartz or is dissem	inated w	ithin t	he CL.			
ample No.	Location :	6337 750 N	Type : Grab	Alteration :	sCA & CL, mCB, wSI	Au	Ag	Cu	Pb	Zn	As
•		352 960 E	Strike Length Exp. : 3.0 m	Sulphides :	10%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
508955	Elevation:	450 m	Sample Width: 30 cm	Oxides :	GE, HE, JA	>10000	5.8	158	416	24	5
	Orientation:	060 / 38 SE	True Width : 10 cm	Host :	Crystal ash tuff interbed	ded with	feldsp	ar porp	hyry fl	ows.	
omments :	Pyrite-rich calc	ite vein located	in the footwall of a 0.5 metre wide	e shear zone. V	ein pinches and swells along	y with					
	the shear zone.										
mple No.	Location :	6337 750 N	Type : Float	Alteration :	sCB, wCA, wCL, QZ vein	Au	Ag	Cu	Pb	Zn	As
		352 915 E	Strike Length Exp. : m	Sulphides :	10%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
508956	Elevation:	445 m	Sample Width : m	Oxides :	AZ, HE, MC	255	11.8	>1000	0 <2	138	<5
	Orientation:	-	True Width : m	Host :	Crystal ash tuff interbed			ar porp	hyry fl	OWS.	
mments :			stockwork within carbonate altered								
	shear zone which	although inacces	sible, is the source of the float.	Chalcopyrite o	ccurs as large blebs within	the quar	rtz vei	nlets.			
mple No.	Location :	6337 740 N	Type : Chip	Alteration :	sCL, sCY, mSI, wEP	Au	Ag	Cu	Рb	Žn	As
		352 900 E	Strike Length Exp. : 10.00 m	Sulphides :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
508957	Elevation:	458 m	Sample Width : 1.90 m	Oxides :	GE, HE, MN	40	<0.2	402	8	12	<5
	Orientation:	095 / 28 S	True Width : 1.60 m	Host :	Crystal ash tuff interbed	led with	feldsp	a <mark>r p</mark> orp	hyry fl	ows.	
mments :			two faults and the pyritic wallroc			thick,					
	appears to taper	off 10 metres to	the west, while the lower fault is	30 cm. thick ar	nd continuous.						
	Location :	6337 735 N	Type : Grab	Alteration :	sCL, sQZ, mCA	Au	Ag	Cu	Pb	Zn	As
mple No.		352 815 E	Strike Length Exp. : 2.00 m	Sulphides :	5%PY, trCP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
mple No.				Oxides :	GE, JA, MC	8320	2.4	157	12	20	10
mple No. 508958	Elevation:	450 m	Sample Width : 0.90 m	UNTUES .							
		450 m 044 / 64 NW	Sample Width : 0.90 m True Width : 0.85 m	Host :	Feldspar porphyry?						

EQUITY ENGINEERING LTD. Property : Grace 1-2 and Rim 1 Claims		ROCK SAMPLE DESCRIPTIONS NTS : 104G/3W	Page-4- Date : 10/08/91						
		NTS . 1040/JW					_		
Sample No.	Location : 6337 735 N	Type : Grab	Alteration : sSI?, mCL, wCA	, WKF Au	Ag Cu	i Pb	Zn	As	
	352 815 E	Strike Length Exp. : 5.0 m	Sulphides : 1%CP, trPY	(ppb)	(bbw) (bb	m) (ppm)	(ppm)	(ppm)	
508959	Elevation: 450 m	Sample Width : 1.0 m	Oxides : AZ, MC	8220	2.2 37	769 <2	12	<5	
	Orientation: 044? / 64?	NW True Width : 0.9 m	Host : Syentic dyke?						

is found throughout while the copper-oxides are visible only along the fractures.

APPENDIX D

| | | |

-

CERTIFICATES OF ANALYSIS

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A9119482

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9119482

Comments: ATTN: HENRY AWMACK

		ANALYTICAL PROCEDURES										
CHEMEX CODE	NUMBER SAMPLES		METHOD	DETECTION LIMIT	UPPE LIMI							
100	19	Au ppb: Fuse 10 g sample	FA-AAS	5	10000							
396	. 7	Au oz/T: 1/2 assay ton	FA-GRAVIMETRIC	0.003	20.000							
922	19	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200							
921	19	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00							
923	19	As ppm: 32 element, soil & rock	ICP-AES	5	10000							
924	19	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000							
925	19	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0							
926	19	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000							
927	19	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00							
928	19	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0							
929	19	Co ppm: 32 element, soil & rock	ICP-AES	1	10000							
930	19	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000							
931	19	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000							
932	19	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00							
933	19	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000							
951	19	Hg ppm: 32 element, soil & rock	ICP-AES ICP-AES	0.01	10000 10,00							
934	19	K %: 32 element, soil & rock	ICP-AES	10	10000							
935 936	19 19	La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00							
936	19	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000							
938	19	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000							
939	19	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00							
940	19	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000							
941	19	P ppm: 32 element, soil & rock	ICP-AES	10	10000							
942	19	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000							
943	19	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000							
958	19	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000							
944	19	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000							
945	19	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00							
946	19	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000							
947	19	U ppm: 32 element, soil & rock	ICP-AES	10	10000							
948	19	V ppm: 32 element, soil & rock	ICP-AES	1	10000							
949	19	W ppm: 32 element, soil & rock	ICP-AES	10	10000							
950	19	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000							

EQUITY ENGINEERING LTD.

Project: GRACE P.O. # : PSH91-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-AUG-91.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 294 298	19 19 19	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) ICP - AQ Digestion charge
* NOTE	1:	·

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-A Total Pages :1 Certificate Date: 19-AUG-91 Invoice No. :19119482 P.O. Number :PSH91-01

Project : GRACE Comments: ATTN: HENRY AWMACK

									- 		CE	ERTIFI	CATE	OF /	ANAL	YSIS	/	49119	482	<u></u>	
SAMPLE DESCRIPTION	PRE COI		Au ppb FA+AA	Au FA oz/T	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca.	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga PPm	Eg Ppm	K %	La ppm	Mg %
508751 508752 508753 508753 508754 508755	205	294 294	<pre>< 5 >10000 1610</pre>	0.396	1.6 0.2 10.2 0.6 10.6	0.31 0,25 1.07 1.92 0.09	10 < 5 55 < 5 40	470 < 10 100 400 320	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 20 < 2 < 2 < 2	0.03 >15.00 0.98 0.33 0.61	< 0.5 1.5 < 0.5 < 0.5 0.5	4 1 40 40 9	20 82 283 60 241	35 94 >10000 5220 6510	3.27 0.44 6.65 5.04 2.18	< 10 30 10 < 10 < 10	< 1 < 1 3 < 1 2	0.27 < 0.01 0.93 1.84 0.04	20 10 30 < 10 < 10	0.02 0.25 1.32 1.95 0.14
508901 508902 508903 508904 508904	205 205 205 205 205 205	294 294 294	10 8300 205	0.262	< 0.2 < 0.2 6.6 < 0.2 22.2	0.63 0.90 3.43 0.37 0.57	< 5 10 < 5 < 5 < 5 < 5	120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 20 < 2 < 2 < 20	0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 11 35 58 26	28	107 192 >10000 4250 >10000	2.16 3.16 6.93 >15.00 4.49	10 10 < 10 10 < 10	< 1 3 < 1 10 4	0.45 0.27 3.41 0.27 0.53	20 30 10 10 10	0.09 0.69 4.08 0.44 0.60
508951 508952 508953 508954 508955	205 205 205 205 205 205	294 294 294	5 90 25	0.760	< 0.2 < 0.2 < 0.2 < 0.2 0.2 5.8	1.56 1.45 1.81 0.38 0.23	15 < 5 < 5 < 5 5		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		1.41 1.27 >15.00		38 6 24 12 22	105 105 88 48 86	744 182 2140 679 158	6.39 4.97 5.70 1.48 7.80	< 10 < 10 < 10 < 10 40 10	< 1 < 1 < 1 1 1	1.07 0.94 1.27 0.01 0.22	30 30 40 10 10	1.43 1.38 1.91 1.33 0.59
508956 508957 508958 508959	205 205 205 205	294 294	40 8320	0.274 0.272	11.8 < 0.2 2.4 2.2	0.23 1.33 0.63 0.58	< 5 < 5 10 < 5	150 30 30 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 2 < 2 < 2 < 2	0.83 1.65	< 0.5 < 0.5 < 0.5 < 0.5	17 14 29 7	157 152 105 80	>10000 402 157 3770	5.74 4.77 8.75 3.75	10 < 10 10 10	< 1 < 1 < 3	0.17 0.50 0.26 0.22	< 10 10 < 10 < 10	0.06 1.26 0.73 0.32

Г

CERTIFICATION:

).(a

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number : 1-B Total Pages : 1 Certificate Date: 19-AUG-91 Invoice No. : 19119482 P.O. Number : PSH91-01

Project : GRACE Comments: ATTN: HENRY AWMACK

									CER	CERTIFICATE OF ANALYSIS						6 A9119482			
SAMPLE DESCRIPTION	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	Pbur B	Pb ppm	Sb ppm	Sc PPm	Sr ppm	Ti %	Tl ppm	U	v Ppm	W	Zn ppm			
508751 508752 508753 508754 508755	205 294 205 294 205 294 205 294 205 294 205 294	40 685 680 350 205	32 < 1 < 3 < 1 7	0.03 < 0.01 0.01 0.03 0.02	< 1 < 1 108 14 9	350 < 10 1000 330 50	32 68 180 < 2 184	< 5 < 5 40 < 5 310	4 4 23 13 4	57 0	.01 .05 .22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 20 270 260 14	10 10 < 50 < 10 < 10	24 98 210 48 180			
508901 508902 508903 508904 508904 508905	205 294 205 294 205 294 205 294 205 294 205 294	560 355 660 270 250	1 3 < 1 < 1 7	0.05 0.08 0.03 0.01 0.03	< 1 < 1 105 55 18	920 1240 1400 40 600	6 < 2 2 32 202	< 5 < 5 < 5 < 5 < 5 < 5	3 6 19 6 11	33 0 25 0	.01 .02 .36 .12 .05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 108 374 2090 244	10 10 < 50 < 50 < 50	24 18 64 16 256			
508951 508952 508953 508954 508954 508955	205 294 205 294 205 294 205 294 205 294 205 294	280 365 445 995 380	10 8 11 23 116	0.08 0.07 0.10 0.01 0.01	24 15 24 14 26	980 1070 1120 70 1000	< 2 6 4 4 416	< 5 < 5 < 5 < 5 35	6 6 8 10 12	145 0		< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	157 149 188 48 49	20 20 10 20 30	32 24 40 12 24			
508956 508957 508958 508959	205 294 205 294 205 294 205 294 205 294	100 220 545 290	20	<pre>< 0.01 0.05 < 0.01 0.01</pre>	37 28 28 19	400 870 470 810	< 2 8 12 < 2	< 5 < 5 < 5 < 5	4 6 7 9	29 < 0 110 0 53 < 0 59 < 0	.28 .01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 173 77 82	250 20 40 < 10	138 12 20 12			

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9120224

Comments: ATTN: HENRY AWMACK

С	ERTIFI	CATE A9120224	ANALYTICAL PROCEDURES													
QUITY E roject: .0. # :	NGINEER GRACE PSH91-		CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT								
		01 ed to our lab in Vancouver, BC. printed on 26-AUG-91.	301	4	Cu %: HClO4-HNO3 digestion	AAS	0.01	100.0								
	SAM	PLE PREPARATION														
HEMEX	NUMBER SAMPLES	DESCRIPTION		_												
214	4	Received sample as pulp														
<u></u>	-															

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number : 1 Total Pages : 1 Certificate Date: 26-AUG-91 Invoice No. : 19120224 P.O. Number : PSH91-01

Project : GRACE Comments: ATTN: HENRY AWMACK

			 CERTIFI	CATE OF ANALYSIS	A9120224	
SAMPLE DESCRIPTION	PREP CODE	Cu ¥				
508753 508903 508905 508956	214 214 214 214 214	1.41 1.06 1.35 5.15				
						~
					111	
. —			н 1	CERTIFICATIO	N: CIGNA	he

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

С	ERTIFI	CATE	A9119480
EQUITY E	ENGINEER	ING LTD.	
Project: P.O. # :	GRACE PSH91-	01	
Samples This rea	submitte	ed to our lab printed on l	o in Vancouver, BC. 19-AUG-91.
	po20 #40	F	
	SAM	PLE PREP	ARATION
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION
201 298	3	Dry, sieve ICP - AQ Di	to -80 mesh gestion charge
* NOTE	1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9119480

Comments: ATTN: HENRY AWMACK

	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
100	3	Au ppb: Fuse 10 q sample	FA-AAS	`5	10000
922	3	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
921	3	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
923	3	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	3	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	3	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	3	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	3	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	3	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	3	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	3	Cr ppm: 32 element, soil & rock	ICP-AES	ī	10000
931	3	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	3	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	3	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	3	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	3	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	3	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	3	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	3	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
938	3	Mo ppm: 32 element, soil & rock	ICP-AES	ĩ	10000
939	3	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	3	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	3	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	3	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	3	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
958	3	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
944	3	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
945	3	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	3	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
947	3	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	3	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	3	W ppm: 32 element, soil & rock	ICP-AES	10	10000
950	3	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

CERTIFICATE OF ANALYSIS

CERTIFICATION:

Page Number :1-A Total Pages :1 Certificate Date: 19-AUG-91 Invoice No. :19119480 P.O. Number :PSH91-01

Project : GRACE Comments: ATTN: HENRY AWMACK

A9119480

). (ang

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppn	Be ppn	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K &	La ppm	Mg %	Mn ppn
91-МВ-01 91-МВ-02 91-МВ-03	201 298 201 298 201 298	955 50 340	0.8 < 0.2 0.4	1.31 1.65 1.32	< 5 < 5 30	60	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.92	< 0.5 < 0.5 < 0.5	22 14 19	156 177 134	1045 336 867	6.29 5.33 5.29	< 10 < 10 < 10	< 1 1 < 1	0.36 0.33 0.37	< 10 < 10 10	1.53 1.47 1.48	745 340 715
		-																		
											, [.]									
					·															
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		·								· · · · ·		• • * =•• • • • •		!!!!			V.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Comments: ATTN: HENRY AWMACK

Page Number :1-B Total Pages :1 Certificate Date: 19-AUG-91 Invoice No. : 191 19480 P.O. Number : PSH91-01

5. Cangli

GRACE Project :

CERTIFICATE OF ANALYSIS A9119480 Tl W SAMPLE PREP Mo Na Ni P Pb Sb Sc Sr Τi U V Zn CODE £ DESCRIPTION ppn ¥ ppm ppm ppmppm ppm ppm ppm ppm ppm ppm ppm 5 84 0.14 30 70 201 298 1490 58 9 < 10 < 10 247 91-MB-01 16 0.01 44 < 5 0.25 20 38 91-MB-02 201 298 4 0.02 48 780 4 5 68 < 10 < 10 164 201 298 52 5 9 89 0.15 < 10 < 10 204 20 62 91-MB-03 16 0.01 37 1370

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 6**75 W. HASTINGS ST.** VANCOUVER, BC V6B 1N2

A9119481

Comments: ATTN: HENRY AWMACK

CERTIFICATE

A9119481

EQUITY ENGINEERING LTD.

Project: GRACE P.O. # : PSH91-01

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-AUG-91.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201 238	35 35	Dry, sieve to -80 mesh NITRIC-AQUA REGIA DIGESTION

ANALYTICAL PROCEDURES DETECTION UPPER CHEMEX NUMBER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 100 Au ppb: Fuse 10 g sample FA-AAS 5 10000 35 As ppm: HNO3-aqua regia digest AAS-HYDRIDE/EDL 1 10000 13 35 200 Ag ppm: 9 element, soil and rock ICP-AES 0.5 1005 35 10000 Co ppm: 9 element, soil & rock ICP-AES 1 1929 35 ICP-AES 10000 1931 Cu ppm: 9 element, soil & rock 1 35 ICP-AES 15.00 1932 35 Fe %: 9 element, soil & rock 0.01 1937 35 Mn ppm: 9 element, soil & rock ICP-AES 5 10000 Mo ppm: 9 element, soil & rock ICP-AES 10000 1938 35 1 1940 35 Ni ppm: 9 element, soil & rock ICP-AES 1 10000 10000 1004 35 Pb ppm: 9 element, soil and rock ICP-AES 5 10000 1950 35 Zn ppm: 9 element, soil & rock ICP-AES 2

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1 Total Pages :1 Certificate Date: 19-AUG-91 Invoice No. :19119481 P.O. Number :PSH91-01

Project : GRACE Comments: ATTN: HENRY AWMACK

,								CERTI	FICATE	OF AN	ALYSIS	5 /	A91194	81	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	As ppm	Ag ppm	Co	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm			
CL-675 0+00N CL-675 0+25N CL-675 0+50N CL-675 0+75N CL-675 0+75N CL-675 1+00N	201 23 201 23 201 23 201 23 201 23 201 23	8 400 8 345 8 275	14 12 14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 31 30 29 31	590 463 622 457 794	5.32 6.31 6.14 6.14 6.36	765 1040 1035 950 995	8 12 11 11 14	52 70 68 62 65	28 42 40 38 44	64 86 86 74 88			
CL-675 1+25N CL-675 1+50N CL-675 1+75N CL-675 2+00N CL-675 2+25N	201 23 201 23 201 23 201 23 201 23 201 23	8 170 8 200 8 115	8 16 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 26 30 14 22	205 548 680 215 684	5.80 5.89 6.30 6.65 7.15	540 895 1020 505 780	6 8 9 4 10	45 62 67 61 62	20 30 32 12 30	72 82 80 62 80			
LL-675 2+50N LL-675 2+75N CL-675 3+00N LL-675 3+25N CL-675 3+50N	201 23 201 23 201 23 201 23 201 23 201 23	B 155 B 140 B 260	10 8 12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 15 25 34 33	279 314 315 876 619	7.13 7.40 6.76 6.96 6.58	660 620 965 1105 1110	5 9 5 7 6	61 47 60 61 54	20 28 28 28 28 28 24	78 70 88 84 84			
CL-675 3+75N CL-675 4+00N CL-675 4+25N CL-675 4+50N CL-675 4+75N	201 23 201 23 201 23 201 23 201 23 201 23	8 170 8 145 8 175	10 10 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 20 23 18 27	175 422 420 158 489	3.98 6.55 6.59 5.76 6.48	380 770 920 685 1005	5 6 7 3 5	19 49 51 45 71	18 26 22 12 14	60 82 72 58 76			
L-675 5+00N L-700 0+00N L-700 0+25N L-700 0+25N L-700 0+50N L-700 0+75N	201 23 201 23 201 23 201 23 201 23 201 23	B 275 B 130 B 240	10 14 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 31 24 24 27	409 640 417 306 397	6.19 6.64 6.75 5.79 6.47	870 895 930 730 915	5 6 8 6 7	49 56 57 49 57	16 20 28 18 26	70 68 82 74 82			
L-700 1+00N L-700 1+25N L-700 1+50N L-700 1+50N L-700 1+75N L-700 2+00N	201 23 201 23 201 23 201 23 201 23 201 23	8 285 8 205 8 105	10 8 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	29 34 29 17 23	455 552 411 229 240	6.35 6.46 6.13 5.88 6.36	1175 1055 1080 590 990	5 5 5 4 3	61 58 51 47 61	20 20 18 16 16	80 74 72 62 66		,	
2L-700 2+25N 2L-700 2+50N 2L-700 2+75N 2L-700 3+00N 2L-700 3+25N	201 23 201 23 201 23 201 23 201 23 201 23	3 70 3 115 3 20	4 4 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	30 9 16 11 15	400 77 177 104 119	6.74 6.02 6.10 4.85 4.97	1200 330 550 225 450	7 3 8 6 4	69 31 49 35 60	18 18 10 16 16	82 38 60 34 54			
							·	<u>. </u>		CEF	RTIFICATIO	N:	B.	Car	d.

APPENDIX E

L

 \Box

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, BRUNO KASPER, of 101-1990 West 6th Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- THAT I am a graduate of the University of Alberta with a Bachelor of Science degree in Geology.
- 3. THAT my primary employment since June, 1988 has been in the field of mineral exploration.
- 4. THAT this report is based on fieldwork carried out under my direction.
- 5. THAT I have no interest, directly or indirectly, in the property.

DATED at Vancouver, British Columbia, this 15^{h} day of <u>October</u>, 1991.

Bruno Kasper, Geologist

Respectfully submitted, EQUITY ENGINEERING LTD.