LOG NO:	OCT	29.199	1 RD.
ACTION:			
FILE NO:			

1991 DIAMOND DRILLING REPORT ON THE EAGLE PROPERTY (Eagle 1-7, AL 1-5 Claims)

OMENICA MINING DIVISION

NTS 93 N/2

Latitude : 55'12' Longitude : 124'52'

NORANDA EXPLORATION COMPANY LIMITED (no personal liability)

GEOLOGICAL BRANCH ASSESSMENT REPORT

REPORT BY : Fraser Stewart : Terry Walker July 1991

TABLE OF CONTENTS

•

SUMMARY	1
INTRODUCTION	3
Location and Access	3
Claim Statistics	3
Exploration History	4
	4
Diamond Drilling	6
Gibson Grid Drilling (Holes 1-5 and 14-17)	6
Main Grid Drilling (Holes 6-13)	<u>8</u>
CONCLUSIONS	12
	13

LIST OF FIGURES

Figure 1	-	Location Map
Figure 2	-	Claim Map (1:50,000)
Figure 3	-	Compilation and Drill Hole Location Map (1:10,000)
Figure 4	-	Drill Hole Location Map - Gibson Grid (1:2500)
Figure 5	-	Drill Hole Location Map - Nighthawk Zone (1:2500)
Figure 6	-	Drill Hole Location Map - Vector Zone (1:2500)

LIST OF TABLES

Table 1	- Claim Statistics	
Table 2	- Gibson Grid Holes	- Significant Assays Summary
Table 3	- Main Grid Holes -	Significant Assays Summary

LIST OF APPENDICES

APPENDIX	I	-	STATEMENT OF COSTS
APPENDIX	II	-	STATEMENT OF QUALIFICATIONS
APPENDIX	III		DIAMOND DRILL LOGS
APPENDIX	IV	-	DRILL HOLE CROSS SECTIONS

SUMMARY

The 1991 diamond drill program commenced on June 5 and was completed by June 23. A total of 1483.3 m in 17 holes was drilled during this period. These drill holes tested a variety of coincident magnetic, induced polarization and geochemical anomalies associated with known mineralization on both the Main Grids and Gibson Grids.

Nine of the holes (657.3 m) were drilled on the Gibson Grid to test the recently discovered Gibson Showing and strong multielement soil geochem and IP anomalies on adjacent lines 200 m on either side of the showing. All holes drilled on the Gibson grid intersected significant sections of intensely clay-sericitequartz altered and pyrite-galena-sphalerite mineralized volcanics. The most significant assays from these holes are as follows :

<u>EA-91-01</u> :	9.18 m of 4.34 gpt Au, 224.3 gpt Ag, 0.9% Pb and 0.6%
	Zn.
<u>EA-91-02</u> :	5.3 m of 2.59 gpt Au, 122.9 gpt Ag, 0.625% Pb and 1.50%
	Zn.
<u>EA-91-03</u> :	1.02 m of 3.63 gpt Au, 494.8 gpt Ag, 1.85% Pb and 1.12%
	Zn.
<u>EA-91-04</u> :	0.99 m of 6.41 gpt Au, 252.0 gpt Ag, 0.77% Pb and 1.0%
	Zn.
<u>EA-91-05</u> :	4.26 m of 6.77 gpt Au, 1828.8 gpt Ag, 3.34% Pb, 2.69%
	Zn and 0.27% Cu.
<u>EA-91-15</u> :	Zone 1 - 1.55 m of 2.19 gpt Au, 29.49 gpt Ag, 0.06% Pb
	and 0.18% Zn. Zone 2 - 2.85 m of 0.62 gpt Au, 20.57
	gpt Ag, 0.15% Pb and 0.55% Zn.
FA-91-17.	
$\underline{\mathbf{D}\mathbf{A}}$ $\underline{\mathbf{J}\mathbf{L}}$ $\underline{\mathbf{I}}$	
	and 1.09% Zn. Zone 2 - 3.8 m of 1.46 gpt Au, 94.5 gpt
	Ag, 0.73% Pb and 1.75% Zn.
<u>EA-91-17</u> :	gpt Ag, 0.15% Pb and 0.55% Zn. Zone 1 - 4.1 m of 1.79 gpt Au, 47.72 gpt Ag, 0.53% Pb and 1.09% Zn. Zone 2 - 3.8 m of 1.46 gpt Au, 94.5 gpt

Eight of the holes (826.0 m) tested the Nighthawk and Vector Showings plus the large moderate to strong chargeability anomaly located on lines 40000N, 40400N and 40800N. The four holes drilled in the Nighthawk and Vector zones intersected significant Cu-Au porphyry style mineralization over moderate widths with visible chalcopyrite <u>+</u> bornite in sulphide stringers and dissemination ranges from 2-10%. Significant assays from these holes are as follows :

Nighthawk Zone -<u>EA-91-06</u>: 27.28 m of 0.87% Cu, 0.32 gpt Au and 3.85 gpt Ag. <u>EA-91-07</u>: 15.74 m of 0.69% Cu, 0.20 gpt Au and 2.19 gpt Ag.

Vector Zone -<u>EA-91-12</u>: 17.9 m of 0.82% Cu, 0.47 gpt Au and 4.11 gpt Ag. <u>EA-91-13</u>: 20.2 m of 0.56% Cu, 0.29 gpt Au and 2.84 gpt Ag.

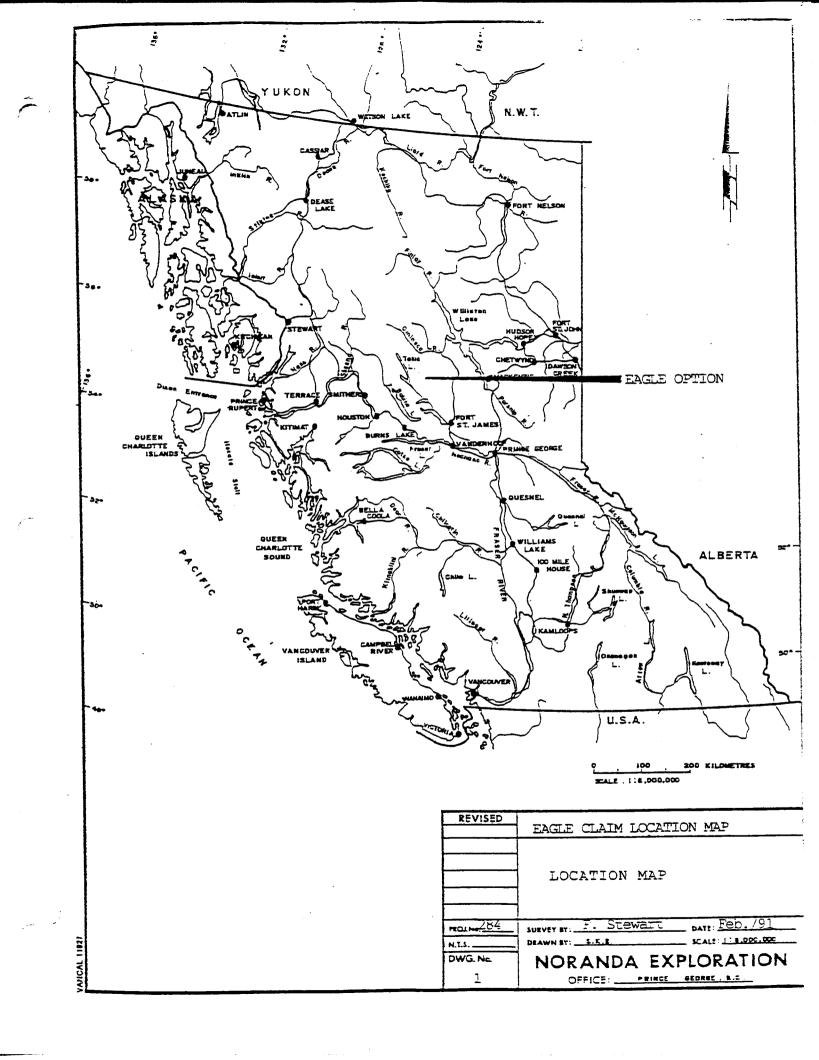
1991	DIAMOND	DRILLING	REPORT	PAGE 2
ON TI	HE EAGLE	PROPERTY		<u>July 1991</u>

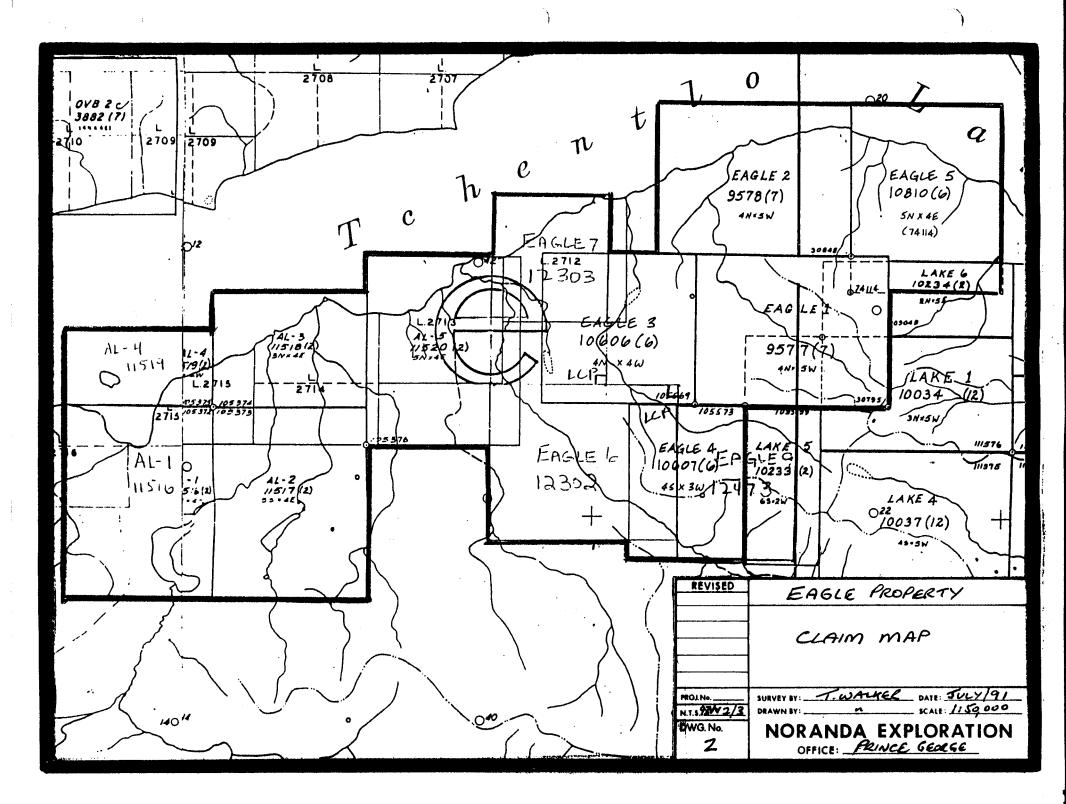
The other four holes were drilled to test coincident magnetic and IP anomalies in the general area of the Nighthawk Zone. These holes intersected intense magnetite-biotite altered mafic diorite with trace chalcopyrite, bornite and 1% pyrite. These holes tend to indicate strong contributions to the IP response from the pervasive magnetite flooding.

1991 DIAMOND DRILLING REPORT ON THE EAGLE PROPERTY

INTRODUCTION :

The 1991 drill program consisted of nine holes on the Gibson Grid and eight holes on the Main Grid. The eight holes drilled on the main grid were designed to evaluate a large coincident IP chargeability and magnetic anomaly flanking the known Cu-Au porphyry mineralization at the Nighthawk and Vector Showings and the showings themselves. The nine holes on the Gibson grid were designed to evaluate the coincident IP chargeability anomaly and Pb-Zn-Au-Ag mineralization encountered at the Gibson Showing, and the coincident multi-element geochemical and IP anomalies on the lines 200 m north and south of the showing.


LOCATION & ACCESS:


The Eagle property is located in the Omineca Mining Division, approximately 210 km northwest of Prince George, on the southern shore at the east end of Tchentlo lake (see Figures 1 & 2).

Access to the property can be gained by a 23 km boat ride from the Tchentlo Lake Lodge at the west end of the lake, or by float plane and helicopter out of Fort St. James. The property is situated 15 km from all weather logging roads to the south.

CLAIM STATISTICS:

The Eagle property consists of 12 claims, Eagle 1-7 and AL 1-5. Noranda Exploration holds an option to acquire the Eagle 1 & 2 claims from the owner, W. H. Halleran. The Eagle 3, 4 and 5 claims were staked by Noranda for W. H. Halleran and are part of the option agreement. The Eagle 6 and 7 and AL 1-5 claims were staked later and are not part of the option agreement. The claims are listed in Table 1 and shown in Figure 2.

PAGE 4 Julv 1991

Table 1.

Name	Record #	Units	Due Date	Owner
Eagle 1	240039	20	July 22/01	Norex
Eagle 2	240040	20	July 22/01	Norex
Eagle 3	240770	16	June 4/01	Norex
Eagle 4	240771	12	June 4/01	Norex
Eagle 5	240973	20	June 5/98	Norex
Eagle 6	242452	20	July 26/93	Norex
Eagle 7	242453	15	July 25/93	Norex
AL 1	241670	20	Feb. 27/93	Norex
AL 2	241671	20	Feb. 27/93	Norex
AL 3	241672	12	Feb. 28/93	Norex
AL 4	241673	8	Feb. 28/93	Norex
AL 5	241674	20	Feb. 28/93	Norex

EXPLORATION HISTORY :

Since Noranda Exploration optioned the Eagle property in 1988 they have completed the following surveys: 28 km of induced polarization, 32.5 km of ground magnetometer, 40 km of grid mapping, 40 km of soil sampling at 25 m sample interval, 46 km of linecuting and 1483.3 m of BDBGM diamond drilling. These surveys indicate the presence of a large Cu-Au bearing system with a very good tonnage potential on the Main Grid and a Pb-Zn-Ag-Au bearing system on the Gibson Grid that appears to be part of a peripheral vein system.

PROPERTY GEOLOGY:

The Eagle claims cover the contact zone of the Hogem Batholith and the Takla Group volcanics. The Takla Group rocks are believed to be Upper Triassic to Lower Jurassic in age, while the Hogem Batholith is dated at Upper Triassic to Lower Jurassic.

The Main Grid is within the Hogem Batholith. There are several phases of the Hogem present on the Eagle property. The dominant phase is a diorite; two other significant phases include a k-spar rich granodiorite and a coarse grained plagioclase pyroxene gabbro.

The Gibson Grid is located to the south west of the main Eagle Grid and is within the Takla Group rocks. Locally the Takla Group is comprised of augite porphyries and volcanic tuffs that are variably hornfelsed near the contact zone with the Hogem Batholith.

1991	DIAMOND	DRILLING	REPORT
ON TH	IE EAGLE	PROPERTY	

The dominant intrusive phase on the property is a light grey green mesocratic equigranular, medium grained, diorite containing 70-80% plagioclase, 5-15% magnetite, 5-10% hornblende, 5-10% augite, and 1-5% biotite. This diorite phase has a gradational contact over tens of metres to the north east part of the claims with a more k-feldspar rich phase. This phase is a light grey medium to coarse grained granodiorite containing 50-60% plagioclase, 5-20% k-feldspar, 1-5% magnetite, 5-10% hornblende, 5-10% pyroxene and 1-10% biotite.

In the central part of the Main Grid there is an irregular shaped body of very coarse grained (almost pegmatitic) feldspar quartz - magnetite - biotite dominated phase that was previously mapped as a gabbro. We have now interpreted this to be a potassic alteration zone that consists primarily of quartzmagnetite flooding with common secondary biotite. There is commonly trace chalcopyrite associated with this zone.

These intrusive rocks are moderately fractured with the principle shear zones trending northwest which corresponds to the orientation of the Pinchi fault zone to the west. The two dominant fractures have average orientations of: 1) strike 150', dip 65' East, and, 2) strike 50', dip 40' West. The main copper showings are associated with these northwest trending shear zones, with the three main showings forming a roughly linear feature striking at approximately 150'. The main structural trend observed at the showings appears to be at 20-40' to this trend (ie. 110-130') and may reflect complimentary shears.

Towards the western boundary of the Eagle 3 and 4 claims is the contact zone of the 'Hogem' diorite and the Takla volcanics. This contact (where observed) is gradational over a few metres. These volcanic rocks are invariably hornfelsed to some degree near the contact zone. The intrusive - volcanic contact zone invariably contains 3-5% disseminated pyrite and some local trace chalcopyrite. This zone is fairly narrow and did not return any significant assay results. The hornfelsed volcanics away from this contact zone are a very fine grained siliceous hornfelsed volcanic usually light purple colored (biotite hornfels). In some areas remnant banding can be observed in the volcanics, these rocks are interpreted to be volcanic tuffs. Locally there are some zones that are identifiable as augite porphyries.

1991 DIAMOND DRILLING REPORT ON THE EAGLE PROPERTY

DIAMOND DRILLING :

The 1991 diamond drilling program consisted of 1483.3 m of BDBGM core in 17 holes. Nine of these holes were on the Gibson Grid and were drilled to test the size and continuity of the recently discovered Gibson Showing. All of the holes drilled on the Gibson Grid intersected significant clay-sericite-quartz altered and pyrite-galena-sphalerite mineralized volcanics. This system appears to be a peripheral vein type hosted in the Takla Volcanics (hornfelsed tuffs and andesites) near the contact zone with the Hogem Batholith. The remaining eight holes were drilled on the Main Grid and were drilled to test the size and continuity of the Nighthawk and Vector mineralization as well as a large moderate to strong IP chargeability anomaly located on lines 40000N, 40400N and 40800N. The drill hole locations are on figure 1-4 and the drill logs are in appendix II at the rear of this report. Cross sections displaying Au-Ag-Pb-Zn for the Gibson holes and Cu-Au for the Main Grid holes are in appendix III at the rear of this report.

GIBSON GRID DRILLING (Holes 1-5 and 14-17)

<u>EA-91-01</u> : This hole is located at 40595N 37574E and was drilled at a dip of -45' and bearing of 219'. This hole was drilled to test a strong 25 m wide IP anomaly coincident with the Gibson Showing. It intersected 1.83 m of overburden and 51.47 m of hornfelsed volcanics with a zone from 9.43-26.00 m that was strongly fractured/brecciated and pervasively clay-sericitequartz altered containing up to 5-10% pyrite, 1-2% galena and 1-2% sphalerite. The zone from 14.10-23.28 m (9.18 m) averaged 4.34 gpt Au, 224.3 gpt Ag, 0.92% Pb and 0.61% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

<u>EA-91-02</u>: This hole is located at 40589N 37556E and was drilled at a dip of -45' and bearing of 350'. This hole was drilled to intersect the mineralization encountered in hole 1 more perpendicular to the zone strike interpreted from the core angles in hole 1 and the showing. It intersected 1.50 m of overburden and 46.32 m of hornfelsed volcanics with a zone from 17.20-22.50 m that was strongly fractured and pervasively claysericite <u>+</u> quartz altered containing up to 5-8% pyrite, 2-3% galena and 2-3% sphalerite. The zone from 17.20-22.50 m (5.30 m) averaged 2.59 gpt Au, 122.9 gpt Ag, 0.625% Pb and 1.50% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

1991	DIAMOND	DRILLING	REPORT	PAGE 7
ON TH	HE EAGLE	PROPERTY		<u>July 1991</u>

<u>EA-91-03</u> : This hole is located at 40572N 37568E and was drilled at a dip of -45' and bearing of 351'. This hole was drilled to intersect the zone encountered in the first two holes 10 m east along strike and 15 m back from the interpreted surface trace of the zone. It intersected 1.00 m of overburden and 75.20 m of hornfelsed volcanics tuffs and andesites that were moderately to strongly fractured with common zones of intense pervasive clay-sericite-quartz alteration and a few narrow zones with 2-3% galena and 2-3% sphalerite. The zone from 29.15-30.17 m (1.02 m) averaged 3.63 gpt Au, 494.8 gpt Ag, 1.85% Pb and 1.12% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

EA-91-04 : This hole is located at 40584N 37541E and was drilled at a dip of -45' and bearing of 350'. This hole was drilled to test the westward extension of the mineralization encountered in the first three holes. It intersected 3.50 m of overburden and 58.98 m of hornfelsed volcanic tuffs with common zones of strongly fractured pervasive clay-sericite-quartz altered volcanics containing up to 3-5% pyrite, 2-3% galena and 2-3% sphalerite. The zone from 25.80-26.88 m (1.08 m) averaged 6.41 gpt Au, 252.0 gpt Ag, 0.77% Pb and 1.0% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

EA-91-05 : This hole is located at 40574N 37534E and was drilled at a dip of -45' and bearing of 006'. This hole was planned for a down dip intersection of the mineralization encountered in hole 2. It intersected 1.74 m of overburden and 98.54 m of hornfelsed volcanics containing common zones of pervasive clay-sericite-quartz alteration with up to 5% pyrite, 15% galena and 5% sphalerite. The zone from 58.34-62.60 m (4.26 m) averaged 6.77 gpt Au, 1828.8 gpt Ag, 3.34% Pb, 2.69% Zn and 0.27% Cu. This zone is interpreted to be a down dip extension of the mineralized zone intersected in hole 2 (see figure 2 for location and appendices II and III for logs and cross sections).

EA-91-14: This hole is located at 40800N 37650E and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test an IP chargeability anomaly and coincident multielement geochem anomaly on the line 200 m north of the Gibson Showing. It intersected 6.30 m of overburden and 69.59 m of hornfelsed volcanic tuffs containing common zones of intense pervasive clay-sericite alteration with 3-10% pyrite. There were no significant assays (see figure 2 for location and appendices II and III for logs and cross sections).

<u>EA-91-15</u> : This hole is located at 40800N 37562E and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test another chargeable source in the same anomaly tested in hole 14. It intersected 4.60 m of overburden and 86.74

1991	DIAMOND	DRILLING	REPORT	PAGE 8
ON TH	IE EAGLE	PROPERTY		<u>July 1991</u>

m of biotite hornfelsed volcanic tuffs containing common zones of pervasive clay-sericite alteration with 3-10% disseminated pyrite, 2-3% sphalerite and 1-2% galena. The zone from 9.95-11.50 m (1.55 m) averaged 2.19 gpt Au, 29.49 gpt Ag and 0.06% Pb and 0.18% Zn. The zone from 71.55-74.40 m (2.85 m) averaged 0.62 gpt Au and 20.57 gpt Ag, 0.15% Pb and 0.55% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

<u>EA-91-16</u>: This hole is located at 40400N 37500E and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test an IP chargeability anomaly and coincident multielement geochem anomaly on the line 200 m south of the Gibson Showing. It intersected 5.70 m of overburden and 61.96 m of hornfelsed volcanic tuffs containing common zones of pervasive clay-sericite alteration with up to 2-3% pyrite, 1-2% galena and 2-5% sphalerite. The zone from 16.85-26.28 m (9.43 m) averaged 0.21 gpt Au, 8.78 gpt Ag and 0.07% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

<u>EA-91-17</u>: This hole is located at 40400N 37562E and was drilled at a dip of -60° and bearing of 221°. This hole was drilled to test another chargeable source in the same anomaly that was tested in hole 16. It intersected 2.20 m of overburden and 80.10 m of hornfelsed volcanic tuffs containing common zones of intense pervasive clay-sericite alteration with several narrow zones of up to 15% pyrite, 2-3% sphalerite and 1-2% galena. The zone from 39.30-43.40 m (4.1 m) averaged 1.78 gpt Au, 47.72 gpt Ag, 0.53% Pb and 1.09% Zn. The zone from 54.50-58.30 m (3.80 m) averaged 1.46 gpt Au, 95.5 gpt Ag, 0.73% Pb and 1.75% Zn (see figure 2 for location and appendices II and III for logs and cross sections).

MAIN GRID DRILLING (Holes 6-13)

<u>EA-91-06</u>: This hole is located at 40120N 40045E and was drilled at a dip of -45' and bearing of 211'. This hole was drilled to test the continuity and width of the Nighthawk Cu-Au Showing. It intersected 2.10 m of overburden 98.18 m of diorite containing a zone from 5.07-22.45 m that is strongly fractured and pervasively chlorite-carbonate <u>+</u> quartz altered with 3-4% chalcopyrite, 2-3% pyrite and traces of bornite. The zone from 5.07-32.35 m (27.28 m) averaged 0.87% Cu, 0.32 gpt Au and 3.85 gpt Ag (see figure 3 for location and appendices II and III for logs and cross sections).

EA-91-07: This hole is located at 40135N 40110E and was drilled at a dip of -45' and bearing of 210'. This hole was drilled to test the down dip continuity and width of the mineralization encountered in hole 6. It intersected 2.80 m of overburden and 103.57 m of diorite containing a zone from 48.16-

1991 DI	AMOND DRILLI	NG REPORT	PAGE 9
ON THE	EAGLE PROPER	Г <u>Ү</u>	July 1991

63.25 m that is strongly fractured and strongly chloritecarbonate \pm clay altered with 2-3% chalcopyrite and 2-3% pyrite. The zone from 48.16-63.90 m (15.74 m) averaged 0.69% Cu, 0.20 gpt Au and 2.19 gpt Ag (see figure 3 for location and appendices II and III for logs and cross sections).

<u>EA-91-08</u>: This hole is located at 40000N 39850E and was drilled at a dip of -60° and bearing of 041°. This hole was drilled to test a moderate to strong chargeability anomaly on the edge of a strong copper geochem anomaly. It intersected 4.9 m of overburden and 117.02 m of magnetite bearing diorite with a zone from 25.30-43.00 m being 30-40% magnetite. This is interpreted to be the cause of the IP anomaly. There were no significant assays (see figure 3 for location and appendices II and III for logs and cross sections).

<u>EA-91-09</u>: This hole is located at 40400N 40125E and was drilled at a dip of -60' and bearing of 221'. This hole was drilled to test a strong chargeability anomaly within a Cu geochem anomaly. It intersected 1.70 m of overburden and 120.22 m of magnetite bearing diorite with a zone from 34.65-87.80 m being pervasively magnetite flooded averaging 15-20% magnetite. This is interpreted to be the cause of the chargeability anomaly. There are several 5-10 m zones near the top of the hole containing trace to 1% chalcopyrite and bornite averaging 0.05% Cu but there were no other significant assays (see figure 3 for location and appendices II and III for logs and cross sections).

EA-91-10: This hole is located at 40400N 39950 E and was drilled at a dip of -60° and bearing of 221°. This hole was drilled to test a strong IP chargeability anomaly coincident with a Cu geochem anomaly. It intersected 1.25 m of overburden and 104.21 m of diorite containing a zone from 32.60-53.40 m that is pervasively magnetite flooded that averages 20-30% magnetite. This is interpreted to be the cause of the IP anomaly. There is an average of 0.06% Cu over 20 metres at the top of the hole but other than this there are no significant assays (see figure 3 for location and appendices II and III for logs and cross sections).

EA-91-11 : This hole is located at 40800N 39450E and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test a moderate to strong IP chargeability anomaly on the edge of a large Cu geochem anomaly. It intersected 2.20 m of overburden and 94.73 m of diorite. This hole was weakly fractured with common epidote-chlorite-magnetite-biotite alteration and trace chalcopyrite. There were no significant assays (see figure 3 for location and appendices II and III for logs and cross sections).

1991	DIAMOND	DRILLING	REPORT	PAGE 10
<u>ON 1</u>	HE EAGLE	PROPERTY		July 1991

<u>EA-91-12</u> : This hole is located at 42675N 40392E and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test the continuity and width of the Vector Zone mineralization associated with the IP chargeability anomaly on line 42600N. It intersected 15.00 m of badly broken diorite (fault zone) and 76.44 m of diorite containing a zone from 17.20-36.40 m that is strongly fractured and strongly chlorite \pm quartz and carbonate altered with 2-3% pyrite and 3-8% chalcopyrite. The zone from 18.50-36.40 m (17.90 m) averaged 0.82% Cu, 0.47 gpt Au and 4.11 gpt Ag (see figure 4 for location and appendices II and III for logs and cross sections).

<u>EA-91-13</u> : This hole is located at 42500N 40350E about 150 m along the strike of the Vector zone from hole 12 and was drilled at a dip of -45' and bearing of 221'. This hole was drilled to test the continuity and width of the Vector Zone mineralization associated with the IP chargeability anomaly located on line 42425N. It intersected 14.75 m of very badly broken diorite (felsemere/fault ?) and 66.88 m of diorite containing a zone from 22.00-48.40 m that is strongly fractured and strongly chlorite \pm quartz and carbonate altered with 3-10% chalcopyrite and 1-2% pyrite. The zone from 22.00-42.20 m (20.20 m) averaged 0.56% Cu and 0.29 gpt Au and 2.84 gpt Ag (see figure 4 for location and appendices II and III for logs and cross sections).

The significant assays from all of the holes drilled during the 1991 program are tabulated in Tables 1 and 2 below.

1991 DIAMOND DRILLING REPORT ON THE EAGLE PROPERTY

PAGE 11 July 1991

Table 2.	
----------	--

1

•	GIBSON GRI	D HOLES (Holes 1-5	5 and 14-1	L7)	······································
HOLE	INTERVAL m	WIDTH m	Au gpt	Ag gpt	Pb %	Zn %
EA-91-01	14.10-23.28	9.18	4.34	224.3	0.9	0.6
EA-91-02	17.20-22.50	5.30	2.59	122.9	0.6	1.5
EA-91-03	29.15-30.17	1.02	3.63	494.8	1.8	1.1
EA-91-04	25.89-26.88	0.99	6.41	252.0	0.8	1.0
EA-91-05	58.34-62.60	4.26	6.77	1828.8	3.3	2.7
EA-91-15	9.95-11.50 71.55-74.40	1.55 2.85	2.19 0.62	29.5 20.6	0.0 0.1	0.2 0.5
EA-91-16	16.85-26.28	9.43	0.21	8.8	0.0	0.0
EA-91-17	39.30-43.40 54.50-58.30	4.10 3.80	1.78 1.46	47.7 95.5	0.5 0.7	1.1 1.7

Table 3.

_	MAIN GRID	HOLES (Ho	les 6-13	3)	·····
HOLE	INTERVAL m	WIDTH m	Cu %	Au gpt	Ag gpt
EA-91-06	5.07-32.35	27.28	0.87	0.32	3.85
EA-91-07	48.16-60.66	15.74	0.69	0.20	2.19
EA-91-12	18.50-36.40	17.90	0.82	0.47	4.11
EA-91-13	22.00-42.20	20.20	0.56	0.29	2.84

CONCLUSIONS :

The 1991 diamond drilling program on the Gibson Grid (holes 1-5 and 14-17) tested the strong IP chargeability anomalies and coincident multi-element geochem anomalies associated with the recently discovered Gibson Showing.

All of the holes drilled on the Gibson Grid encountered zones of pervasive clay-sericite alteration and from anomalous to ore grade Au-Ag-Pb-Zn zones. The first five holes were drilled at a relatively close spacing to try and determine an accurate orientation of the vein system, but after drilling the five holes we were still unable to determine an exact orientation of the vein system and we may in fact be dealing with a multidirectional system. We are able to conclude that the same style of alteration and similar grades of mineralization are present on the lines 200 m north and south of the Gibson Showing. This plus the extensive surface geochem anomalies and additional IP targets (see figures 1 & 2) indicates potential for a large high grade peripheral vein system to exist.

The diamond drilling program on the Main Grid (holes 6-13) tested the size and continuity of the Nighthawk and Vector Zone mineralization as well as large moderate to strong IP chargeability anomalies and coincident Cu \pm Au geochem anomalies located on lines 40000N, 40400N and 40800N.

The two holes testing the Nighthawk Showing (holes 6 and 7) both delineated good copper-gold-silver grades over 27 m in hole 6 and 15 m in hole 7. This zone was not tested along strike or any deeper than 40 m vertical depth. The adjacent geophysical lines are 400 m away and holes 8-11 tested only a small part of the broad anomalies located on these lines. The Cu<u>+</u>Au geochem anomalies associated with the Nighthawk zone continues about 200 m to the south and 1000 m to the north of holes 6 and 7 (see figure 1). This leaves the system open to the north and south and leaves excellent potential for a high grade Cu-Au porphyry system to exist in the Nighthawk area.

Holes 8 to 11 were drilled to test a large moderate to strong IP chargeability anomaly located on lines 40000N, 40400N and 40800N. It appears that in the areas tested by these holes, the IP anomalies are caused by the presence of large amounts (20-50 %) of disseminated to massive magnetite combined with trace pyrite and chalcopyrite. This may represent a potassic alteration zone that consists primarily of quartz-magnetite flooding and common secondary biotite.

Holes 12 and 13 were drilled to test the width and continuity of the mineralization in the Vector Zone. These two

		DRILLING	REPORT	PAGE 13
<u>ON T</u>	<u>HE_EAGLE_</u>	PROPERTY		<u> </u>

holes were located 150 m apart along the strike of the zone and both returned very good copper-gold-silver grades over 18 m in hole 12 and 20 m in hole 13. This zone is still open to the north and south and has not been tested at vertical depths more than 25 m which leaves excellent potential for a high grade Cu-Au porphyry system to exist in the Vector Zone.

RECOMMENDATIONS :

The first nine holes drilled on the Gibson Grid indicates that a fairly large alteration and mineralizing system is present in this area. Unfortunately however, the principle orientation of the vein systems are still in question. To help resolve this problem it is recommended that a mechanical trenching and washing be carried out near the showing followed by close spaced VLF, magnetics and IP surveys between lines 40200N and 41000N. This work should then be followed up with further diamond drilling to confirm the strike and extent of the mineralization.

Both the Nighthawk and Vector Zones are open in both strike directions and at depth and are sufficiently well documented to allow follow up by step out drilling along strike and down dip. Initially 100 metre step outs appear to be reasonable.

In summary, a further program consisting of approximately 8 km of VLF, magnetics and IP surveys on the Gibson Grid and 2000 metres of diamond drilling on the Gibson and Main Grids is recommended to follow up the positive results from the drilling to date.

1991 DIAMOND DRILLING REPORT ON THE EAGLE PROPERTY

.

APPENDIX I

STATEMENT OF COSTS

A) FIELD COSTS :

,

.

B)

DIAMOND DRILLING: Contract charges (Van Alphen Diamond drilling) Meterage - 1483.3 m @ \$95/m Mob/Demob charges Contract Total :	\$ 140,914 <u>11,684</u> \$ 152,598
NOREX LABOUR: Geologist - 50 mds @ \$225/md Coresplitter - 50 md @ \$125/md Total Labour :	\$ 11,250 6,250 \$ 17,500
ASSAY CHARGES: 431 samples @ \$30.45/sample	\$ 13,125
TRANSPORTATION: Truck Rentals - 50 days @ \$65/day Boat & Motor - 50 days @ \$50/day Casual Helicopter - 14 hrs @ \$695/hr Total Transportation :	\$ 3,250 2,500 <u>9,730</u> \$ 15,480
TOTAL FIELD COSTS :	\$ 198,703
REPORT PREPARATION :	
Authors - 10 mds @ \$275/md Drafting - 3 mds @ \$150/md Typing - 1 md @ \$100/md	\$ 2,250 450 100
TOTAL REPORT PREPARATION :	\$ 2,800
TOTAL PROGRAM COSTS :	<u>\$ 201,503</u>

APPENDIX II

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, FRASER J. STEWART, hereby certify that:

- 1. I am a geologist residing at 302-1910 Renwick Crescent, Prince George, B. C.
- 2. I graduated from the University of Alberta in April 1989, with the degree of Bachelor of Science in Geology.
- 3. I have been employed by Noranda Exploration Company, Limited as a geologist since May 1989.
- 4. I personally took part in the surveys described in this report and that this report is based upon a personal knowledge of the property.

Fraser J. Stewart, (B.Sc.)

STATEMENT OF QUALIFICATIONS

I, Terence Walker, of Prince George, British Columbia hereby certify that:

- I am a graduate of University College, London with a B.Sc. degree in Geology (1968) and a graduate of McGill University, Montreal with an M.Sc. in Mineral Exploration (1978).
- 2. I have practiced my profession with various mining companies in Europe and North America since graduation.
- 3. I am currently employed as a Senior Project Geologist working for Noranda Exploration Company, Limited.
- 4. I am a member of the Canadian Institute of Mining and Metallurgy, the Geological Association of Canada, the Prospectors and Developers Associations and the British Columbia and Yukon Chamber of Mines.
- 5. The information contained in this report is based on published and unpublished reports on the property and surrounding area, and on work done by Noranda.
- 6. I have no current interest in the property.

Terence Walker Sr. Project Geologist

APPENDIX III

DIAMOND DRILL LOGS

.

PAGE : 1

PROPERTY : Eagle HOLE No. : EA-91-01 Grid System : Main/Gibson Collar Bastings : 37574.000 Collar Northings : 40595.000 Collar Blevations : 1243.000 Goliar Bearing : 219.00 Grid Baseline : 131.00

Collar Inclination :-45.00Grid Bearing :41.00Pinal Depth :53.35Claim No. :Eagle 9

.

Logged by : Praser Stewart Date : June 6 - June 6 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTER PROM	IVAL(m) To	MAJOR/MINOR DNITS	DESCRIPTION	SAMPLE NOMBER	INTERVAL (FROM	TO	SAMPLE WIDTH 	Củ \$	Pb \$	3n \$	Ag oz/t	Àu oz/t	ASSATS
0.00 0.00	53.35 1.8	VHPBLS 3	CASING * VOLCANIC HORNPELS : (1.83 - 53.35) - dark to med. green f.gd. siliceous flinty volcanic with no visible minerals - common hem-carb vnlts @ 30-40 to CA and a later stage @ 100 to CA - common ch] vnlts @ 20-30 to CA that										
1.83	5.49) broken	<pre>predate all carb vnlts - tr-1 % dissem. py - lower contact @ 40 to CA - very badly broken rock with about 65 %</pre>				, , , , , , , , , , , , , , , , , , ,						
6.30	6.5) c)yser		37642 37626		6.50 9.43	0.20 1.93	0.02	0.04 0.01	0.05 0.01	0.20 0.01	0.001 0.001	
9.43	9.9		 strong to intense clay-seric. alt washed out to lt grey green mod fract. (50 to CA few carb-gtz stringers 5-8 % py as small stringers, blebs and assoc. fine dissem. trace galena, sphalerite and cpy 	37627	9.43	9.98	0.55		0.02	0.03	0.59	0.094	
9.98	10.63	c lyser		37628 37629		0.63	0.65 1.62		0.26 0.01	0.87	0.76 0.02	0.024 0.001	

ì

PROPERTY : Bagle HOLE No. : EA-91-01

INTERVAL(=) MAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) SAMPLE ASSAYS 1 FROM **T**O DNITS NUMBER 1 FROM **T**0 WIDTH 3 1 Cu 2n Au Ag Ł Ł oz/t oz/t - small stringer of black mineral (possib. sphal ?) 10.63 - 10.95 : breccia zone, carb. cement : 11.90 - 12.25 : clay-seric. alt w common carb-chl vns/vnlts 12.25 13.15 | - strong to intense clay-seric. alt zone ; 37630 12.25 13.15 : 0.90 ; 0.03 0.04 0.14 0.001 clyser : - It grey green washed out appearance ↓ - upper contact sharp € 60 to CA ; - 5-6 % py stringers, blebs, dissem., tr-1 % sphal, tr galena 13.15 13.70 clay - intense clay alt., ver badly broken 37631 13.15 13.70 ; 0.55 ; 0.30 0.34 0.88 0.007 - some carb alt - 1-2 % dissem. py, 1 % galena 37632 13.70 14.10 clyser ; - int. fract. w perv. clay-seric. alt 13.70 14.10 ; 0.40 ; 0.07 0.12 1.14 0.008 - It grey to It green (washed out) 1 - 5-6 % py stringers and blebs, 1 % gal ; 37633 14.10 15.25 brecc - strong to intensely fract. (breccia) w 14.10 15.25 ; 1.15 ; 6.60 3.36 44.16 0.119 almost complete replacement by sulfides carbonate ; - 10-15 % py stringers and blebs 1 - 8-10 % galena stringers and blebs : - 1-2 % sphal blebs - tr-l 1 cpy - 10-15 % very hard f.gd. black mineral-(tourmaline ?, sphal ?) - upper contact sharp @ 50 to CA - principle fracture and mineralization (35 to CA - common gtz vning and stringers parallel to mineralization 15.25 16.00 - alteration and fract. density continues | 37634 15.25 16.00 : 0.75 0.25 0.24 1.39 0.042 but galena drops off to 2-3 %, sphal tr-1 %, py 8-10 % ; all sulfides occur as stringers and blebs 1 - fract, orient, changes to 5-15 to CA _____

)

.

PROPERTY : Bagle HOLE No. : BA-91-01

INTERV	AL(m)	MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
PROM	TO	UNITS		NUMBBR	FROM	TO	WIDTH 	Cu t	Pb \$	3n t	Ag oz/t	Au oz/t	
			- rock is lt grey in color - clay-seric. alt. t	5 6 7 7 8									
16.00	16.75	clyser	<pre>- strong to int. fract. and lt grey green perv. clay-seric. alt - principle fract. and min. @ 35 to CA - one small sphal vnlt (2 mm) @ 35 to CA - one small gal vnlt (4 mm) @ 30 to CA - 8-10 % py stringers</pre>	37635	16.00	16.75	0.75		0.21	0.38	10.08	0.160	
16.75	23.40	c]yser	<pre>py stringers, 1-2 % gal, tr sphal strrongly fract w princ. orient. @ 30-40 to CA to CA common small breccia zones</pre>	37636 37637 37638 37639 37640 37641	16.75 17.50 18.50 19.50 20.50 21.50	17.50 18.50 19.50 20.50 21.50 23.28	1.00 1.00 1.00 1.00		0.26 0.20 0.96 0.04 0.01 0.01	0.74 0.34 0.09 0.10 0.11 0.02	4.04 2.23 2.45 0.99 1.01 0.10	0.102 0.036 0.083 0.017 0.481 0.101	
25.60	26.00	clyser	t - strongly fract. clay-seric. alt zone w 8-10 % py stringers and dissem. - tr sphal and galena - contacts and miner. @ 75 to CA	37643	25.60	26.00	0.40	0.01	0.16	0.52	0.54	0.017	
26.63	27.15	brecc	- breccia zone w strong clay-chl alt		i ;								
27.15	28.83	clyser	- mod to strongly fract. w perv clay- sericchl alt along fract @ 60-65 to CA 28.10 - gtz-carb vn @ 20 to CA, tr sulfide		F F F 1 F 1 F 1 F 1								
30.17	30.62	clyser	 strongly fract. w perv clay-seric. alt and 3-5 % py stringers, tr sphal and smithsonite princ. fract. @ 75 to CA 	37644	30.17	31.65	1.48	0.01	0.01	0.02	0.01	0.002	
31.00	31.60	brecc	 int. fract. (breccia zone) w moderate clay-seric. alt fracture sets (45 and 130 to CA common large (1 cm) gtz-carb vnlts with two diff. orient., the 45 postdates the 		4 9 9 9 7 7 8 9 8 9 8 9								

.

PROPERTY : Bagle HOLE No. : EA-91-01

INTERV		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERVA		SAMPLE		-				ASSAYS
PROM	T0	UNITS		NUMBER	PROM	TO	WIDTH		Pb 1	3n 2	Ag oz/t	Au oz/t	
			: 130										
31.60	32.30) clýser	* - int clay-seric. alt zone w 5-8 % diss py and py stringers	37645	31.65	33.30	1.65	0.01	0.03	0.06	0.03	0.001	
32.30	40.75		* - mod to strongly sheared zone with common irregular orientated gtz-carb vnlts - mod fract. cont. sericitic alt - tr sulfides										
40.75	53.35	j	• wk to mod fract. dark green volcanic hornfels w common gtz-carb vnlts @ 20-30 and 70-80 to CA - tr sulfides										
			BON = 53.35 m										
			, ,			-	1 1 1 1						
						;	4 1 1		•				
						:							
						:	:						
						1							
						, 							
			1			1	1						

PROPERTY : EagleHOLE No. : RA-91-02Grid System : Main/GibsonCollar Bastings : 37556.000Collar Northings : 40589.000Collar Blevations : 1247.000Collar Bearing : 350.00Grid Baseline : 131.00

Collar Inclination :-45.00Grid Bearing :41.00Final Depth :47.82Claim No. :Bagle 9

.

PAGE : 1

Logged by : Praser Stewart Date : June 6 - June 7 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTRE	(VAL(m)	NAJOR/MINOR	CONTRACTOR DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
FROM	TO	ONITS		NOMBER	FROM	TO	WIDTH	Cu	Pb	Zn t	Ag oz/t	Au oz/t	
									••••••	••••••			
0.00	47.82	VRPBLS						÷					
0.00	1.52		CASING	1									
			VOLCANIC HORNFELS : (1.52 - 47.82)	1									
			 lt grey green mod to strongly fract. f.gd. volcanic with some feld. and 										
			augite pheno. visible locally - mod to strongly clay-seric. altered w			1							
			common chl-carb stringers +/- tr sulfide										
			<pre>1 - principle fract. @ 60-85 to CA 1 - 1-2 % py stringers w local tr gal, sphal</pre>	1									
1.52	7.10	fels	+ - very badły broken (70 % recovery)										
1456	7.10	1018	felsemere										
			- tr py										
7.10	9.10	Beric	 ! - mod to strongly fract w mod perv seric. ! alt. and common chl-carb stringers @ 70- ! 80 to CA 	37658	7.10	8.10	1.00	0.01	0.01	0.02	0.01	0.001	
			* * * * * * * * * * * * * * * * * * *			1							
			irregular carb stringers and mod										
			<pre>perv seric. alt. - 2-4 % dissem py and stringers</pre>										
9.10	9.70	brecc	* ; - breccia zone w common carb wns			:							
13.30	13.35	seric	* - It grey washed out - wk perv seric. alt	: : 37651	15.90	17.20	1.30		0.01	0.02	0.05	0.001	
			¦ - 2-3 % galena, 2-3 % sphalerite as										
			stringers 0 20 to CA - common hem staining on fractures			i	i						
17.20	21.50	galena	: - int. fract w perv. clay seric. alt	37652	17.20	17.80	0.60		0.90	2.00	9.31	0.031	
		-		37653	17.80	18.70		1	1.10	2.20	5.01	0.064	
			- dominant fract. orient 65 to CA	37654	18.70	19.50	0.80 ;		0.16	0.32	1.12	0.240	

)

.

PROPERTY : Eagle HOLE No. : EA-91-02

INTERV		MAJOR/NINOR	DESCRIPTION	SAMPLE	INTER		SAMPLE !						ASSAYS
FROM	T 0	DRITS	· ·	NOMBER	PROM	T O	WIDTH	Cu 1	Pb ¥	Zn t	Ag oz/t	Au oz/t	
			sphal, py and tr cpy	37655 37656 37657	19.50 20.20 21.50	20.20 21.50 22.50			1.46 0.34 0.20	2.68 0.60 2.06	8.34 1.08 0.20	0.200 0.015 0.016	
			17.20 - 17.50 : 5-6 % galena, 3-4 % sphal as stringers and blebs @ 60 to CA										
			17.50 - 17.65 : gtz vn w irregular contact					k.					
			17.80 - 18.70 : 3-4 % sphal, 2-3 % gal, 4-6 % py as stringers @ 60-65 to CA										
			- common gtz string @ 65 to CA										
			18.70 - 19.50 : int. fract. w common gtz vnlts										
			19.50 - 20.20 : int. fract. w 3-4 % sphal, 2-3 % gal, 8-10 % py as stringers a and blebs @ 60 to CA - common fuschite										
			20.20 - 21.50 : mod to strong fract. with wk to mod clay-seric. alt - some unaltered zones appear to be a maroon andesite										
			21.40 - 21.45 : sphal-gal-py string @ 65 to CA										
22.30	22.3	5 gtzvn	- gtz vn (1cm) @ 35 to CA w gal, sphal,py stringers	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
24.20	24.4) clyser	- strong clay-seric. alt; lt grey green - tr sphal, tr galena and 4-5 % py	37659	24.20	24.40	0.20	0.01	0.01	0.02	0.01	0.001	
30.65	31.4	5 clyser	- int perv clay-seric. alt w common gtz- carb stringers @ 60-70 to CA, tr py	37660	30.65	31.45	0.80	0.01	0.01	0.02	0.01	0.001	
45.00	46.4	i clyser	- int clay-seric. alt w abundant chl-carb- gtz stringers § 50 to CA	37661	45.00	46.45	1.45	0.01	0.01	0.02	0.01	0.002	

PROPERTY : Bagle HOLE No. : BA-91-02

_____ ----------ASSAYS MAJOR/MINOR ; DESCRIPTION SAMPLE INTERVAL(m) SAMPLE : INTERVAL(a) NUMBER : PROM ORITS TO | WIDTH | Au PROM **T**0 1 Cu Pb 2n λg t oz/t oz/t ł 1 1 ł 1 1 ----------| - tr-1 % sulfide 46.45 47.82 whfels | - remainder of hole consists of fairly fresh volcanic hornfels that is wkly fra : fract w common gtz carb stringers @ 55-; 70 to CA : - common hem on fractures - some local epidote ŧ EOH = 47.82 m

``}

PROPERTY : Eagle HOLE No. : EA-91-03 Grid System : Main/Gibson Collar Eastings : 37549.000 Collar Northings : 40567.000 Collar Blevations : 1247.000 Collar Bearing : 351.00 Grid Baseline : 131.00

Collar Inclination : -45.00 Grid Bearing : 41.00 Pinal Depth : 76.20 Claim No. : Bagle 9

Logged by : Fraser Stewart Date : June 7 - June 7 Downhole Survey : acid test

Drilled By : Van Alphen Core Size : BD

INTER FROM	WAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLB NUMBER	INTER FROM	AL(m) TO	SAMPLE WIDTR	Cu ł	Pb %	3n \$	Ag oz/t	Au oz/t	ASSAYS
			1	;	 ¦		.						
0.00	36.15	VHPELS		1 1 1	;								
0.00	1.00		CASING	•	;	1							
			VOLCANIC BORNFELS : (1.00 - 36.15)	;	1 1 1	;	*						
			<pre>: - dark green f.gd. siliceous volcanic : - v. common gtz-carb stringers @ 75-90 to</pre>	!	1								
			CA CA		, , ,								
			: - common hem as fract coatings : - wkly fract	;									
			: - contains several zones of narrow gal- sphal-py rich perv clay-seric. alt	;	1 1 1	;							
			*	:	, 	:	:						
8.00	8.84	clyser	<pre>- perv clay-seric. alt and strongly fract - common gtz +/- carb stringers @ 80 to CA</pre>		: 8.00 :	8.84	0.84	0.02	0.36	0.77	1.88	0.040	
			- 5-8 % py stringers, 3-4 % galena, 1-2 %		r 1)		i						
			sphal as stringers and blebs @ 80 to CA	:		1							
11.14	11.65	qtzser	- int fract w perv gtz-seric. +/- carb alt	37677	11.14	11.65	0.51	0.03	0.21	0.53	4.02	0.007	
			<pre>: - dominant fract./stringers @ 75 to CA : - 5-6 % py stringers, 1-2 % gal, 1-2 %</pre>	1 1 1									
			; sphal assoc. w gtz vnlts	:		1	ļ						
12.90	13.10	gtzser	, - int. fract breccia zone perv gtz-meric.	37678	12.90	13.10	0.20	0.01	0.01	0.02	0.18	0.005	
			<pre>1 alt +/- chl w 5-6 % py stringers, 1-2 % 1 sphal assoc. w gtz vnlts</pre>	1									
			*			,							
22.18	22.48	gtzser	- strongly fract w perv gtz-seric. alt and common gtz vnlts @ 70 to CA	37679	22.18	22.48	0.30 ;	0.03	0.90	0.78	3.78	0.035	
			- 6-8 % py blebs/stringers, 4-6 % sphal				1						,
			and 2-3 % galena as stringers @ 65-75 to CA										
24.60	28.35	qtzser	* - mod to strongly fract w mod fract contr.	37684	24.60	26.51	1.91	0.02	0.01	. 0.02	0.02	0.001	
- 1104	20133	40000	gtz-seric. alt	37685	26.51	28.35		0.01	0.02	0.02	0.02	0.001	
			- common gtz +/- carb stringers			1	1						

PROPERTY : Bagle HOLE No. : BA-91-03

- 4

INTER	VAL(m)	MAJOR/NINOR	. DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
FROM	T 0	UNITS		NUNBER FROM TO WIDTH Cu	Pb \$	Zn t	Ag oz/t	Au oz/t					
			- 3-5 % py blebs and stringers, tr gal and sphalerite - principle fract. 40-70 to CA -some chlorite stringers, minor hematite										
28.35	30.77	gtzøer	<pre>: - common gtz-carb stringers/vnlts : - 10-15 % py stringers, 3-4 % sphal, 3-5 %</pre>	37680 37681 37682 37683	28.35 29.15 29.65 30.17	29.15 29.65 30.17 30.77	0.50 0.52	0.02 0.01 0.13 0.01	0.38 0.34 3.30 0.10	0.94 0.13 2.08 0.09	1.50 2.10 26.28 1.32	0.008 0.097 0.114 0.003	
32.80	33.15	brecc	- breccia zone w perv. clay-seric-gtz alt. - common carb stringers - some hematite as fract coatings	37686	32.80	33.15	0.35	0.01	0.01	0.01	0.02	0.001	
35.15	36.15	brecc	; - breccia zone w perv clay seric. alt and common gtz-carb stringers	37687	35.15	36.15	1.00	0.01	0.01	0.01	0.01	0.001	
36.15	52.25	PA AND	HORNPELSED FELDSPAR AUGITE ANDESITE : - dark green f.gd. matrix w common feld. and augite pheno, often replaced by gtz and py - common small gtz-carb-chl stringers @ 40-60 to CA - locally some hem-carb stringers; minor epidote and fuschite										
36.15	40.00	chl	and py stringers	37688 37689 37690	36.15 37.35 38.65	37.35 38.65 40.00	1.30 :	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01	0.001 0.001 0.001	
40.00	40.10	gtz vn	- gtz breccia vn w gtz-seric. alt										
42.30	43.10	clyser	- perv clay-seric. alt w some qtz stringer @ 70 to CA - lt grey pink alt (potassic ?)										
43.60	44.10	qtzser	- mod perv clay-seric-gtz alt w common gtz-hem stringers @ 60-80 to CA										

PROPERTY : Eagle HOLE No. : EA-91-03

ł

		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERVAL(m)		SAMPLE			_			ASSAYS
FROM	TO	UNITS	, , , ,	NOMBER	FROM	TO	WIDTH	Cu L	Pb \$	Zn L	Ag oz/t	Au oz/t	
				;					~				
50.40	52.25		1	37691	50.40	52.60	2.20	0.01	0.01	0.02	0.01	0.001	
52.25	76.20	VHPELS	VOLCAWIC BORNFELS : - f.gd. dark green siliceous volcanic - common ch]-gtz +/- carb stringers @ 50-70 to CA - v. hard and flinty w no visible minerals - tr py					·					
54.30	56.00	gtzøer	- int perv gtz-seric-clay alt w abundant gtz vnlts @ 40-65 to CA - strongly fract w rare hem and fuschite	37692	54.30	56.00	1.70	0.01	0.01	0.01	0.01	0.001	
64.20	65.10	·	- perv clay-seric-gtz alt w common gtz vnlts @ 50-60 to CA - some chl on fractures and rare carb - mod to strongly fractured - tr py ± EOH = 76.20 m	37693	64.20	65.10	0.90	0.01	0.01	0.01	0.01	0.001	
						-					•		
							1 1 1 1 1						
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•			
		1	1	.		1	;						

PROPERTY : Eagle HOLB No. : EA-91-04 Grid System : Main/Gibson Collar Eastings : 37541.000 Collar Northings : 40584.000 Collar Elevations : 1244.000 Collar Bearing : 1244.000 Grid Baseline : 131.00

Collar Inclination :-45.00Grid Bearing :41.00Final Depth :62.48Claim No. :Eagle 9

.

Logged by : Fraser Stewart Date : June 9 - June 9 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTERVAL(m)		NAJOR/NINOR	DESCRIPTION	SAMPLE	INTERVAL(m)		SAMPLE :						ASSAYS
PROM TO DNITS		NUMBER	FRON	T O	WIDTH ;	Cu 1	Pb 1	In L	Ag oz/t	Au 02/t			
						;	:						
).00 0.00	62.48 3.50	VHPBLS	CASING			1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•					
			VOLCANIC HORNFELS : (3.50 - 62.48) - dark green f.gd. siliceous flinty - volcanic w no visible minerals - wk to mod fract w common qtz-carb string										
			 45-50 to CA 3.50 - 6.00 : very badly broken rock with about 70 % recovery - common iron staining 										
4.57	6.60	qt28er	* - mod to strongly fract w perv qtz-seric. alt and common chl stringers & 45-60 to CA - 2-3 % py stringers and blebs - tr-1 % gal, tr-1 % sphal and tr cpy - some minor clay alt	37701	4.57	6.60	2.03	0.02	0.95	1.03	7.29	0.014	
			4.57 - 5.80 : 8-10 % py stringers and bleb and 8-10 % gal vnlts & 65 to CA - tr-1 % sphal, 1-2 % cpy							L			
			6.50 - 6.60 : 4-5 % cpy, 2-3 % py, 1-2 % sphal, 1-2 % gal as stringers @ 50 to CA			1 	8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
6.60	11.00		- mod to strongly fract w common gtz-carb stringers @ 50-60 to CA and wk perv gtz- seric. alt - common chl on fractures - washed out to a lt grey green - 1-2 % py stringers + blebs, tr cpy		6.60 8.84 10.34	8.84 10.34 11.75	2.24 1.50 1.41	0.02 0.01 0.01	0.22 0.01 0.02	0.52 0.02 0.06	0.26 0.04 0.04	0.001 0.001 0.001	

•

4

PROPERTY : Bagle BOLE No. : BA-91-04

1.7

	MAJOR/MINOR		SAMPLE	INTERVAL(m)		SAMPLE						ASSAYS	
FROM	TO	UNITS		NUMBBR	FRON	TO	WIDTR 	Cu t	Pb %	3n 1	Ag oz/t	Au oz/t	
			8.54 - 8.64 : 15 % gal, 3-5 % sphal, 8-10 % py as stringers/vnlt @ 45 to CA			1							
11.00	16.40	qt28er		37705 37706 37707	11.75 13.05 14.25	13.05 14.25 16.40	1.30 1.20 2.15	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.02	0.01 0.01 0.01	0.001	
16.40	17.87	,	 int. perv gtz-seric. alt washed out to a lt grey green 5-8 % py stringers, 1-2 % cpy stringers, 2-4 % gal and 1-2 % sphal in stringers @ 45-60 to CA 	37708	16.40	17.87	1.47	0.01	0.29	0.13	1.62	0.012	
17.87	25.80	gt zerb		37709 37710 37711	17.87 18.70 24.80	18.70 20.73 25.80	0.83 2.03 1.00	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.02	0.01 0.01 0.02	0.001 0.001 0.001	
25.80	26.88	gtzser	 int perv gtz-seric. alt w 8-10 % py, 2-3 % sphal, 3-4 % gal stringers and blebs @ 50 to CA washed out to v. lt grey green 	37712	25.80	26.88	1.08	0.04	0.77	1.00	7.35	0.187	
26.88	27.50	gtzser	- perv gtz-seric. alt; lt grey green - 2-3 % py stringers	37713	26.88	28.00	1.12	0.01	0.01	0.02	0.14	0.004	
27.50	30.61	qzc] sr	- mod to strongly fract w common gtz-seric -clay-chl alt on fractures - some local hem on fract t 30.50 - 30.60 : int clay-chl alt (fault)	37714 37715	28.00 29.56	29.56 30.61	1.56 1.05	0.01 0.01	0.01 0.01	0.01 0.01	0.06 0.01	0.001 0.001	
30.61	35.30	qtzchl	1 * ·	37716	30.61	32.31	1.70	0.01	0.01	0.01	0.04	0.001	
			33.64 - 33.84 : feldspar andesite dyke Q 50 to CA			:				•			

PAGE : 2

the statement of the st

.

PROPERTY : Bagle HOLE No. : BA-91-04

INTERVAL(m)		NAJOR/NINOR		SAMPLE			SAMPLE :			_			ASSAIS
PROM	TO	UNITS	 	N DMBBR	PROM	T O	WIDTH :	Cu 1	Pb %	8n 1	Ag oz/t	Au oz/t	
			34.90 - 35.30 : feldspar andesite dyke w some hem fract. coatings										
35.30	35.92	clyser	- int perv clay-seric-gtz alt w tr py	37717	35.30	35.92	0.62	0.01	0.01	0.01	0.01	0.001	
35.92	48.36	gt z ser	- wk to mod fract w few gtz vnlts # 60-80 to CA, some wk seric. alt, tr py					•					
			42.90 - qtz-seric-clay stringer # 15 to CA										
			43.60 - 43.65 : gtz breccia vn (2.5 cm)										
48.36	49.00	gt zøer	- strong perv gtz-seric. alt; it grey green - tr py	37718	48.36	49.00	0.64	0.01	0.01	0.01	0.01	0.001	
50.00	51.20	-	- int perv gtz-clay-seric. alt, lt grey - strongly fractured (breccia) - rare chlorite - tr py	37719	50.00	51.20	1.20	0.01	0.01	0.02	0.06	0.001	
52.75	53.55	gtclsr	 int perv gtz-clay-seric alt w 1-2 % py, 1 % gal, 1 % sphal in stringers and blebs @ 60 to CA rare chl 	37720	52.75	53.55	0.80	0.01	0.01	0.01	0.01	0.001	• •
			* EOK = 62.48 m										
									•				
			1 1 1	; ;									
						:							
										•			

PROPERTY : Eagle ROLE No. : EA-91-05 Grid System : Main/Gibson Collar Eastings : 37534.000 Collar Worthings : 40574.000 Collar Blevations : 1249.000 Collar Bearing : 6.00 Grid Baseline : 131.00

1.1

Collar Inclination : -45.00 Grid Bearing : 41.00 Pinal Depth : 100.28 Claim No. : Eagle 9

Logged by : Regan Chernish Date : June 8 - June 9 Downhole Survey : acid test

PAGE : 1

Drilled By : Van Alphen Core Size : BD

INTERVAL(m)		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERVA	INTERVAL(m)							ASSAYS
PROM	TO	ONITS		NUMBER	FROM	TO	WIDTE	Cu t	Pb %	Zn L	Åg oz/t	Au oz/t	
							1. 1						
0.00	86.68	VHFELS											
0.00	1.74	111 000	CASING										
			VOLCANIC HORNFELS : (1.74 - 86.68)										
			<pre>; - dk green silic. f.gd. volcanic hornfels ; -low-mod fracturing</pre>										
			; -common carb and gtz stringers @ 80 & 40										
			¦ CA ¦ - 1-3 % py as blebs & stringers in veins					÷					
1.74	3.66	vhfels	1 1	037976	1.74	3.66	1.92	0.01	0.01	0.02	0.02	0 001	
1./4	3.00	AULEIS	: -mod recovery (70 %) : -broken rock		1./9	7*00	1.74	0.01	4.41	0.01	0.02	4.041	
			* 2.14 - 3.66 : -clay/seric alt										
			- 2-3 % py as blebs -mod fract										
			-limonite weathering along fract			1							
4.16	6.16	clyser	t i -clay/seric alt	037977	4.16	6.16	2.00	0.01	0.01	0.02	0.02	0.001	
			: -mod fract w/ limonite along fract	1									
			<pre>: -qtz stringers @ 40 & 70 CA : -py 1-2 % as blebs and isolated stringers</pre>	i i 1		1							
6.21	6.51	brecc	t * -mod-strongly brecciated	:									
			-limonite along fract										
			¦ -fract @ 70 CA ¦ -trace py										
6.79	7.94	clyser	t -clay/seric alt	037978	6.79	7,94	1.15	0.01	0.01	0.01	0.01	0.001	
••••	,.,,	orfáci	: -upper contact sharp(follows fract)						,				
			; -trace Mn weathering ; -mod-strongly fract										
			-trace py										
			; -carb & gtz stringers @ 80 & 40-50 CA; ; 40-50 stringers offset by 80										

.

PROPERTY : Bagle HOLE No. : EA-91-05

÷ð

INTERV	AL(m)	MAJOR/HINOR	DESCRIPTION	SAMPLE	INTERV/	AG(m)	SAMPLE :						ASSAIS
PRON	TO	DNITS) 	N OMBER	PROH	TO	WIDTH	Cu t	Pb %	Zn Z	Ag oz/t	Au 02/t	
			-lower contact sharp, follows fract	 ; ; ;	;								
8.45	9.35	gtzvn	- wk-mod fract -qtz vns @ 70-80 CA w/ fract at 90 to vns, fract offset by vns - 2-3 % py as blebs -no alt	037979	8.45	9.35	0.90	0.01	0.01	0.01	0.01	0.001	
9.35	9.75	•	-clay/ser/sil alt -upper contact follows fract -gtz & carb stringers & 70-80 CA -strongly fract -hem in stringers -no sulfides	037980	9.35	9.75	0.40	0.01	0.01	0.01	0.01	0.001	
10.06	11.30		1	037981	10.06	11.30	1.24	0.01	0.13	0.25	0.24	0.010	
11.30	11.95	chl	-pervasive chlorite alt -mod fract -few gtz stringers @ 80 CA	1 1 7 7 1 1	4 1 1 1 1 1 1 1								
11.95	12.95	•	-clay/ser/sil alt -mod-strongly fract -few carb & gtz stringers @ 70-80 CA -no sulfides	037982	11.95	12.95	1.00	0.01	0.01	0.01	0.02	0.001	
12.95	14.50	chlhen ,	-mod fract -few carb & gtz stringers @ 70-80 & 40-50 CA -minor hem in stringers -py 1-3 % as diss blebs -minor chl alt	037983	12.95	14.50	1.55	9.01	0.01	0.01	0.01	0.001	
14.50	14.75	chì	-strongly chloritized -no sulfides		• 								

PROPERTY : Bagle HOLE No. : BA-91-05 .

INTERV	 AL(m)	MAJOR/MINOR	DESCRIPTION	: SAMPLE	INTERV	AL(n)	SAMPLE :						ASSAYS
PRON	TO	UNITS		I NOMBER	FROM	ŤO		Cu	Pb	Sn L	Ag oz/t	Au oz/t	100310
			, 		, ,		· 						
			-strongly fract		1 1 1								
14.75	14.94	c l seqz	-clay/ser/sil alt -strongly fract -abundant carb & gtz stringers @ 40-50 CA -py 5-7 % as blebs & stringers @ 10-20 & 70-80 CA -gn 3-5 % as stringers assoc w/ py & as blebs -sphal 1-2 % assoc w/ galena	037984	14.75	14.94	0.19	0.01	0.17	0.85	0.53	0.005	
14.94	18.30	vhfels	-minor chl -minor fract -few carb & gtz stringers @ 70-80 & 20-40 CA - avg 3-5 % py as blebs	037985	14.94	18.30	3.36	0.01	0.01	0.01	0.03	0.001	
18.99	19.40		-pervasive chl alt -strongly fract -hem in stringers -abundant gtz stringers @ 70-80 & 20-40 CA -highly disturbed		P 4 1 1 1 1 1 4 4 4 4 1								
19.40	26.60		-low-mod fract -trace py, f.diss -numerous gtz stringers @ 60 & 80 CA -few stringers of chl		1 1 1 1 1 1 1 1								
26.60	27.13	clsegz	-pervasive clay/ser/sil alt -strongly fract -few carb stringers @ 50-60 CA -trace py in fract -few chl stringers	037986	26.60	27.14	0.54	0.01	0.03	0.06	0.07	0.002	
27.14	28.28	·	-clay/ser/sil alt strongly fract -few carb stringers & 70-80 CA -py 25-35 % as stringers & blebs -galena 15-20 % as stringers & blebs -sphal 2-5 % assoc w/ galena -some mineralization w/i carb stringers	037987	27.14	28.28	1.14	0.06	3.25	2.45	13.19	0.035	

PROPERTY : Bagle HOLE No. : EA-91-05

INTERVA PROM	1L(∎) TO	NAJOR/NINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVA PRON	L{n} TO	SAMPLE WIDTH	Cu Ł	Pb \$	Zn Ł	Ag oz/t	Au oz/t	ASSAYS
			-lower portion of interval is progressively less altered and contains fewer sulfides -minor hem in stringers near lower contact										
29.33	29.45	c] seqz	-clay/ser/sil alt -abundant carb & qtz stringers @ 70 CA offsetting stringers @ right angle to them -no sulfides -sharp contacts at both ends	1 1 1 1 1 1 1 1 1 1 1 1 1	1 6 7 7 7 1 1 1								
29.45	30.20	vhfels	-low-mod fract -py 1-2 %, f.diss -abundant gtz stringers @ 70-80 & 40-50 CA	r 2 1 2 2 2 3	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
30.20	30.45	c i seq z	-clay/ser/sil alt -mod-strongly fract -abundant gtz stringers @ 70-80 CA -py 2-3 %, blebs	037988	30.20	30.45	0.25	0.01	0.03	0.04	0.17	0.001	
31.33	31.63	c l seqz	-clay/ser/sil alt -few fract -py 5-7 %, f. diss -galena 1-2 % as stringers	037989	31.33	31.63	0.30	0.01	0.06	0.06	0.84	0.015	
33.40	39.01	vhfels	-few fract -abundant carb & qtz stringers @ 70-80 CA -py 2-3 % f. dissem. isolated cubes - (unlikely to be of hydrothermal origin)) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				,					
40.92	42.31	vhfels	-few fract -minor chl stringers -abundant carb & qtz stringers & 70-80 CA -trace py										
42.31	43.19	vhfels	-abundant chl stringers -mod fract -carb & gtz stringers & 10-20 & 60-70 CA -py 2-5 % blebs and stringers	037990	42.31	43.19	0.88	0.01	.0.01	0.01	0.06	0.001	

PROPERTY : Eagle HOLE No. : EA-91-05 .

14

INTERV. PROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERV PROM	AL(m) TO	SAMPLE WIDTH	Cu ł	Pb 1	Zn Ł	Ag oz/t	Au oz/t	ASSAYS
44.15	48.95	vhfels	-abundant chl stringers -py 3-5 % blebs and stringers -galena 1-2 % blebs and stringers	037991 038000 037992	44.15 48.95 50.21	48.95 50.21 52.00	4.80 1.26 1.79	0.01 6.01 0.01	0.01 0.01 0.01	0.02 0.01 0.01	0.04 0.01 0.01	0.001 0.001 0.001	
51.20	52.00	chl	-pervasively chloritized -mod fract -few carb & gtz stringers @ 80 & 30-40 CA -py 3-5 % blebs and stringers										
52.00	53.00	clyser	-weak clay/ser alt -pervasively chloritized -py 3-5 % -intensely fractured -carb & gtz stringers parallel to CA	037993	52.00	53.00	1.00	0.01	0.01	0.01	0.02	0.001	
53.00	54.40	clyser	- wk clay-seric alt, trace py		I								
54.40	54.60	c lyse r	-intense clay/ser alt -mod-strongly fract -few carb & qtz stringers @ 30-40 CA -py 7-10 % as stringers and blebs -galena 3-5 % as stringers	037994	54.54	54.60	0.06	0.02	0.01	0.01	0.03	0.001	• · ·
54.60	55.60	clyser	-intense clay/ser -no sulfides	037226	54.60	55.30	0.70	0.01	0.01	0.01	0.01	0.001	
55.60	57.76	vhfels	-few fract -mod carb & gtz stringers & 30-40 CA -minor hem in stringers -py 3-5 % as blebs and stringers	037227	55.60	57.76	2.16	0.01	0.01	0.01	0.01	0.001	
57.76	58.34	cisegz ,	-clay/ser/sil alt -low-mod fract -abundant chlorite stringers; minor carb & qtz stringers @ 60-70 CA -py 1-2 % -trace galena	037995	57.76	58.34	0.58	0.01	0.01	0.81	0.22	0.001	
58.34	58.64		-intensely fract -abund gtz stringers @ 60-70 CA -py 20-25 % stringers	037996	58.34	58.64	0.30	0.45	5.18	3.47	91.44	0.284	

PROPERTY : Bagle HOLE No. : EA-91-05

۰.

INTERV	AL(m)	NAJOR/MINOR	CESCRIPTION	: SAMPLE	INTERV	AL(m)	SAMPLE ;						ASSATS
PROM	TO	UNITS		NOMBER	FROM	T 0	WIDTH :	Cu ¥	Pb %	Zn t	Àg oz/t	Au oz/t	
			-galena 10–15 % stringers -sphal 5–7 % assoc. w/ galena										
58.64	59.20	clyser	-galena 20-25 % as stringers and massive -py 10-15 % -sphal 5-7 % assoc w/ galena -epidote vein @ 60-70 CA	037997	58.64	59.20	0.56	0.84	12.97	9.95	163.57	0.338	
59.20	60.30		-py 15-20 % stringers and blebs -galena 10-15% stringers and massive -sphal 5-7 % assoc w/ galena -intensely fract	037998	59.20	60.30	1.10	0.45	4.50	3.64	90.94	0.293	
60.30	62.60	c l Beqz	-intense clay/seric/gtz alt -mod-strong fract -carb and gtz stringers @ 40-60 CA -py 7-10 % stringers and blebs -gal 7-10 % stringers and blebs -sphal 3-5 % assoc w/ gn	037999	60.30	62.60	2.30	0.03	0.20	0.37	3.53	0.106	
62.60	63.50	cl yser	-mod clay/seric alt -strongly fract -abundant carb & qtz stringers @ 30-40 & 60-70 CA -py 3-5 % stringers & blebs -gal 3-5 % stringers and blebs -sphal 3-5 % assoc w/ gal and as stringers	037228	62.60	63.50	0.90	0.01	0.03	0.12	0.55	0.008	
63.50	64.80	vhfels	-few fract, few carb & qtz stringers @ 40- 60 CA -py 1-2 % as f.diss, abundant hem in vns										
64.80	66.20	chl	-mod chloritized -low-mod fract, few carb & qtz stringers & 40-50 CA -py 3-5 % as blebs & stringers in vns -minor hem	037231	64.80	66.20	1.40	0.01	0.01	0.01	0.02	0.001	
66.20	67.05	clyser I	-mod clay/ser alt -mod-strong fract, qtz & minor carb stringers 0 30-40 & 70-80 CA	037229	66.20	67.05	0.85	0.01	0.01	0.01	0.01	0.001	

.

PROPERTY : Bagle HOLE No. : EA-91-05

.

INTERV	AL(m)	MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
FROM	TO	UNITS		NUMBBR	FROM	t0	WIDTH	Cu \$	Pb \$	Zn ł	Ag oz/t	Au oz/t	
			-py 2-3 % as blebs & stringers in vns -upper & lower contacts gradational	1 1 1 1 1 1	a F F F F F F F								
67.05	67.60	c l yser	-intense clay/ser alt -abundant hem in vns, py 2-3%	037230	67.05	67.60	0.55	0.01	0.01	0.01	0.02	0.001	
67.60	70.66	chl	-weak chl alt -mod-strong fract, carb & gtz stringers & 30-40 & 80-90 CA -py 3-5 % as blebs & stringers, decreases to 1-2 % @ end of interval	037232	67.60	70.66	3.06	0.01	0.01	0.01	0.01	0.001	
70.66	70.86	clyser	-mod clay-seric alt. -carb & gtz stringers @ 70-80 CA, wk-mod fract, py 2-3 % as blebs & stringers -abundant chl stringers in fract	037233	70.66	70.86	0.20	0.01	0.01	0.01	0.01	0.001	
70.86	72.40	ch]	-wk chl alt -low fract w/ carb & gtz stringers @ 20-30 CA, py 2-3 % as f. diss,blebs, stringers	037234	70.86	72.40	1.54	0.01	0.01	0.01	0.01	0.001	
72.40	73.50	breec		037235 037236	72.40	73.50 75.00		0.01 0.01	0.01 0.06	0.01 0.21	0.01 0.17	0.001 0.006	•
74.50	75.00		-intense alt -strong fract, minor carb & gtz stringers & 50-60 CA -py 7-10 % as blebs & stringers in fract -gal 7-10 % as blebs & stringers in fract -sphal 3-5 % assoc w/ gal, l contact sharp		0 0 1 1 1 1 1 5 1 1 1 1 1			,					
75.00 75.10	75.10 78.94	brecc vhfels	-vhfls, intensely breec, tr py -low-mod fract, mod carb & qtz stringers @ 50-60 CA, py 1-2 % f.diss, minor hem, minor hem		f 1 1 1 1 1 1 1								
78.94	82.00	chl	-minor chl alt, minor fract, py 2-3 % in fract & f.diss, few gtz stringers @ 30 CA	037237	78.94	82.00	3.06	0.01	0.01	0.01	0.01	0.001	
82.00	82.95	brecc	-mod fract, 2-3 % py as diss & in fract	037238	82.00	82.95	0.95	0.01	0.01	0.01	0.01	0.001	

.

INTERV Prom	AL(m) TO	NAJOR/MINOR UNITS	DBSCRIPTION	SAMPLE NUMBER	I NTERVI PROM	AL(m) TO	SAMPLE WIDTH	Cu 1	Pb \$	3n 3	Ag oz/t	Au oz/t	ASSAYS
85.10	85.78		-low fract, few carb stringers @ 70-80 CA -py 3-5 % as blebs & minor stringers in fract	037239	85.10	85.78	0.68	0.01	0.01	0.01	0.01	0.001	
85.78	86.68	brecc	-intensely brecciated -abundant carb stringers @ 40-50 & 70-80 CA,minor chl, 2-3 % py as blebs & minor stringers	037240	85.78	86.68	0.90	0.01	0.01	0.01	0.02	0.001	
86.68	89.81	PA AND	 HORNFELSED FELDSPAR/ADGITE ANDESITE dk green w/ remnant feldspars low-mod fract; abund carb/gtz stringers 0.70-80 to CA; 2-3% py diss & blebs 										
86.68	87.45	qtzcar	- abund gtz/carb stringers @ 70-80 to CA - 2-3% py blebs & diss	037241	86.68	87.45	0.77	0.01	0.01	0.01	0.01	0.001	
87.95	89.81	gtzcar	- few gtz/carb stringers 0 60-70 to CA; minor chl stringers; 2-3% py blebs 6 stringers t	037242	87.95	89.81	1.86	0.01	0.01	0.01	0.01	0.001	
89.81 10	80.28	VHPELS	VOLCANIC HORNFELS - aa above - NOTB: few carb/gtz stringers @ 50-60 to CA; 1-2% py blebs & stringers										
90.74	94.50	chl	- wk chl alt; low-mod fract; 2-3% py as f.diss & stringers	037243	90.74	93.60	2.86	0.01	0.01	0.01	0.01	0.001	
94.50	99.28	hen	- minor hem in fractures										
99.28	109.28	py	- 3-5% py blebs & stringers; mod-str fract - carb/gtz stringers @ 40-60 to CA; minor chi stringers	037244	99.28	100.28	1.00	0.01	0.01	0.01	0.01	0.001	
		i	BOH = 100.28										
		8					;						

PROPERTY : Eagle ROLE No. : EA-91-06 Grid System : Main/Gibson Collar Eastings : 40045.000 Collar Northings : 40120.000 Collar Blevations : 1376.000 Collar Bearing : 211.00 Grid Baseline : 131.00

Collar Inclination : -45.00Grid Bearing : 41.00Pinal Depth : 100.28Claim No. : Bagle 1

.

Logged by : Praser Stewart

PAGE : 1

Date : June 8 - June 9 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

	RVAL(m)	MAJOR/MINOR	: DESCRIPTION	SAMPLE	INTERV	\L(m)	SAMPLE ;						ASSAYS
FROM	T0	UNITS	 	NOMBER	FROM	TO	WIDTH	Cu t	Pb %	Zn t	Ag oz/t	Au oz/t	
0.00 0.00	75.95 2.14	DIOR	CASING	40776	2.14	5.07	2.93	0.01	0.01	0.01	0.06	0.001	
			* * DIORITE / MONZONITE : (2.14 - 75.95) - dark grey to blackish grey med grained equigranular mesocratic intrusive - comprised of 35-50 % plag, 1-10 % k-spar 5-15 % magnetite, 5-10 % biotite, 15-20 hornblende and tr-1 % quartz - wkly fract w qtz-carb stringers with fairly random orientations (stockwork) - stongly magnetic - some rare potassic alteration - minor hematite w qtz-carb vnlts - sulfides present include cpy and py, but there is also what appears to be cuprite										
5.07	7.60	сру	· · · · · · · · · · · · · · · · · · ·	40777 40778	5.07 6.10	6.10 7.60		0.85 0.37	0.01 0.01	0.13 0.02	0.26 0.20	0.007 0.002	
7.60	16.00	сру	<pre>! - 8-10 % cpy and 2 % py as whits and large ! blebs up to 1.5 cm wide</pre>	40780 40781 40782 40783 40783 40784	7.60 9.05 10.40 11.89 13.30 14.73	9.05 10.40 11.89 13.30 14.73 16.00	1.35 1.49 1.41 1.43	1.75 1.45 3.01 2.58 2.21 0.73	0.01 0.01 0.01 0.01 0.01 0.01	0.04 0.01 0.02 0.01 0.01 0.01	0.32 0.17 0.26 0.18 0.31 0.06	0.022 0.033 0.028 0.021 0.025 0.007	

PROPERTY : Eagle HOLE No. : EA-91-06

INTERVAL	6(m)	MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE						ASSAYS
'ROM	t 0	UNITS		NUNBER	FROM	TO	WIDTH	Cu t	Pb \$	3n L	Ag oz/t	Au oz/t	
			- weakly magnetic (mag to chl) - the fracturing in this zone is fairly intense and random (stockwork breccia ?)										
16.00	22.45	ру сру	9.30 - 9.48 : gtz vn breccia w cpy + py * - chl alt becomes much weaker and is only	40785	16.00	17.55	1.55	0.70	0.01	0.01	0.04	0.003	
10.00	22445	¥1 (¥)	fract contr. (vs. pervasive above) - some sones of intense fract over a few	40786 40787 40788	17.55 18.80 21.55	18.80 21.55 24.08	1.25 : 2.75 :	1.45 0.11 0.15	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.14 0.02 0.03	0.009 0.001 0.001	
			 avg. 1-2 % cpy + 2-3 % py stringers and blebs with some higher grade vnlts minor epidote with sulfides wk to mod chl replac. of mafics mod magnetic * 										
22.45	67.30	dior	; contr. alt and few chl-carb stringers	40789 40790 40791 40792 40793	24.08 26.73 29.40 32.20 32.35	26.73 29.40 32.20 32.35 35.00	2.67 : 2.80 : 0.15 :	0.06 0.13 0.05 9.55 -0.04	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.04 0.01	0.01 0.01 0.02 0.94 0.02	0.001 0.001 0.001 0.150 0.002	
			26.53 - 26.93 : perv. potassic alt zone w common ep-chlreplacing mafics - 1-2 % py, 1 % cpy	37901 37902 40794 37903 40795	35.00 37.19 39.65 39.85 43.00	37.19 39.65 39.85 43.00 43.80	2.46 ; 0.20 ; 3.15 ;	0.02 0.02 0.18 0.02 0.02	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.06 0.01 0.02	0.001 0.001 0.002 0.001 0.001	
			29.10 - 29.13 : cpy-py valt (0.8 cm wide)	37904 37905	43.80 45.56	45.56 1	1.76 1.79	0.02	0.01 0.01	0.01 0.01	0.01 0.02	0.001	
			10 % py and common cuprite (hem?)	37906 37907 37908	47.35 51.40 55.45	51.40 55.45 57.25	4.05	0.02 0.02 0.02	0.01 0.01 0.01	0.01 0.01 0.01	0.02 0.01 0.01	0.001 0.001 0.001	
				37909 37910 37911	57.25 59.95 62.10	59.95 ; 62.10 ; 64.73 ;	2.15	0.02 0.02 0.02	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.03	0.001 0.001 0.001	
			* * 43.00 - 43.80 : mod to strong chl-clay alt	37912	64.73	67.30		0.02	0.01	0.01		0.001	
			w some gtz vning, minor hem - tr py			}							

PROPERTY : Bagle HOLE No. : BA-91-06

INTER FROM	(VAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVA FRON	L(m) TO	SAMPLE ; WIDTH ;	Cu \$	Pb	Zn R	Ag oz/t	Au oz/t	ASSATS
			49.10 - 50.20 : mod ch]-clay alt (feldspar are chalky grey) - tr py										
			52.60 - 52.70 : mod pot-chl alt, tr py		1 1 †								
			56.20 - 56.28 : granitic dyke @ 45 to CA		i r 1 r								
			58.45 - 58.65 : wk chl-ep-clay alt along fract		9 6 7 7								
			55.83 - 56.33 : perv chl alt replac. mafic		1 1 1								
			62.40 - 62.60 : strongly fract w perv chl- chl-carb +/- qtz , tr py		Ϋ́ 1 1 1 1								
			67.10 - 67.20 : granitc dyke @ 45 to CA		1 7 9 1								
67.30	72.1	0 chlcly		37913 37914	67.30 70.10	70.10 72.34	2.80 2.24	0.02 0.01	0.01	0.01 0.01	0.01 0.01	0.00 <u>1</u> 0.007	
72.10	72.2	5 gtzchl	- gtz-ch] breccia vn w 5-6 % cpy and common cuprite (hem ?)		1 1 1 1				•				
72.25	75.9	5 chl	* - mod to strong perv chl alt causing rock to take on a dark blackish green appear. - few gtz stringers w random orient.		72.34 74.65	74.65 77.00	2.31	0.02 0.02	0.01 0.01	0.01 0.01	0.01 0.01	0.001 0.001	
			75.50 - gtz stringer w cpy bleb		1 1 9 1								
5.95	76.80	DYKE	VOLCANIC DYKE : - f.gd. dark green volcanic dyke w ep replacing small feld phenos - both contacts sharp @ 45 to CA							•			

.

.

PROPERTY : Bagle HOLE No. : EA-91-06

•••

INTE	RVAL(m)	NAJOR/MINOR	DESCRIPTION	; SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
FROM	T 0	UNITS	1	NUMBER	FROM	TO	WIDTH :	Cu 1	Pb	2n \$	Ag oz/t	Au oz/t	
			· · · · · · · · · · · · · · · · · · ·		, 	י 	·	••••••	•	•			
			; ! t			;							
6.80	100.28		DIORITE : - (same as previous description)										
76.80	76.90	brecc	- breccia zone w common pot alt and gtz stringers	37917	77.00	80.35	3.35	0.02	0.01	0.01	0.02	0.001	
78.44	78.54	brecc	- breccia zone w gtz-hem vnlts			1							
78.54	78.60	dyke	- volcanic dyke w both contacts sharp @ 60 to CA										
78.60	100.28	dior	 wk to mod fract w few gtz +/- carb stringers and common chl on fractures rare pot-ep-gtz alt +/- chl in fract. some small zones where mafics are partially replaced by chl zones of higher fract. density tend to be the intervals of pot-ep-gtz alt but contain tr-0 % py 	37918 37919 37920 37921 37922 37922 37923 37923 37924 37925	80.35 83.35 86.10 88.45 91.10 94.00 96.23 98.73	83.35 86.10 88.45 91.10 94.00 96.23 98.73 100.28	2.75 ; 2.35 ; 2.65 ; 2.90 ; 2.23 ; 2.50 ;	0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	
			EOH = 100.28 m			• • •							
						1							,
						1							
			, 1 1										
			1 1 1 1										
			1 1 1 1										
						1 1 1	1 						
			1 9 1 2							•			
							Í						

: 41.00

: 106.38

: Bagle i

Collar Inclination : -45.00

Grid Bearing

Pinal Depth

Claim No.

PROPERTY : Bagle HOLE No. : BA-91-07 Grid System : Main/Gibson Collar Bastings : 40110.000 Collar Worthings : 40135.000 Collar Elevations : 1378.000 Collar Bearing : 210.00 Grid Baseline : 131.00

Logged by : Regan Chernish Date : June 9 - June 10 Downhole Survey : acid test Drilled By : Van Alphen : BD Core Size

PAGE : 1

INTBRV. PROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVAI PROM	,(m) TO	SAMPLE : WIDTH :	Cu %	Pb \$	Zn Ł	Ag oz/t	Au oz/t	ASSATS
0.00 1	.06.38 2.75	DIOR	CASING		1 1 1 1 1 1 1 1						****		
			<pre>bigger = bigger = bigger</pre>										
2.75	4.27	chl	-wk chl alt with minor pot alt -rare carb stringers at 50-60 to CA	40893	2.75	4.27	1.52						
4.27	5.27	pot	-wk pot alt with v wk chl alt -wk-mod fract at 40-50,20-30 to CA -rare carb stringers at 40-50 and 80-90 CA -minor hem in fract	40801 40894	4.27 5.27	5.27 6.75			0.01	0.01	0.01	0.001	
5.50	6.75	pot	-wk pot alt -wk-mod fract, few carb stringers at 20-30 to CA, several fractures parallel to CA, remainder 50-60 to CA, no sulfides										
6.75	9.80	, chj	-mod-strong chl alt w/ tr pot -wk-mod fract, few parallel to CA,most 40- 50 to CA -few carb stringers at 40-50 to CA, 'rust' weathering along fractures, tr-0 py	;	6.75	9.80	3.05	Q.0 <u>1</u>	9.01	0.02	0.01	0.001	
			-8.65-8.75 : brecc, carb vns at 20-40 CA	1	1		1	1					

NORANDA BXPLORATION CO. LTD. Diamond Drill Log

PROPERTY : Bagle HOLE No. : EA-91-07 .

1.1

Ė

INTERVA PROM	L(=) TO	MAJOR/NINOR DNITS	DESCRIPTION	SAMPLE	INTERV/ PROM	1L(m) TO	SAMPLE WIDTH	Cu 1	Pb 1	Zn t	Ag oz/t	Au oz/t	ASSAYS
9.80	. 10.88	pot	* -wk-mod pot alt, tr ep -wk-mod fract, few parallel to CA most 0 40-50 to CA; few qtz and carb stringers 40-50 to CA; tr-0 sulfides, tr hem (cuprite ?)		9.80	11.40	1.60	0.01	0.01	0.01	0.01	0.001	
11.10	11.40	chl	<pre>* * * * * * * * * * * * * * * * * * *</pre>	40895	11.40	12.47	1.07						
11.65	11.80	pot	* -wk-mod pot alt in 5 mm carb vn at 50-60 to CA, tr hem(cuprite ?) adj to fract		P B B 1 1								
12.47	13.27	pot	* -mod pot alt w/ wk ep and minor chl, mod fract at 40-50 to CA, carb stringers at 40-60 to CA; tr cpy		12.47	13.27	0.80	0.02	0.01	0.01	0.01	0.001	
13.27	14.02	dior	* -trpy *	40896 : 40897	13.27	13.92 17.28							
14.72	14.92	pot	-mod pot alt w/ minor ep; mod-strong fra with carb vns at60-70 to CA										
15.30	15.40	Vn	; -5 mm wide carb vn at 40-50 to CA; pot a in vn; minor hem(cuprite ?)	ilt i	; ; ;		;						·
15.54	17.00	hem ?	; - 1-2 % hem(cuprite ?) as blebs; tr-0 ; sulfides		i 1 1 1 1			`					
17.28	18.25	pot	* - mod-strong pot alt w/ abund ep in fract - mod-strong fract, few carb stringers at 40-50 to CA; tr-1 % cpy		17.28 18.25	18.25 19.00			0.01	0.01	0.01 0.02	0.001 0.001	
19.00	21.30	potep ,	* -mod pot/ep alt; mod-strong fract, few carb stringers at 30-40, 50-60 to CA -tr-1 % py,cpy; ep in fract; tr hem {cuprite ?}	40807 40898	19.00 21.30	21.30 24.38			0.01	0.01	0.01	0.001	
22.05	22.35	chì	-mod chl alt; tr-0 sulfides	40899	24.38	26.80	2.42						
25.35	25.50	chl	; ; -strong chl alt w/ minor pot,ep; tr hem	; ; 40900	26.80	28.40	1.60						

.

PROPERTY : Bagle HOLE No. : EA-91-07 .

,

INTERV PROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTBRV FROM	AL(m) TO	SAMPLE ; WIDTH ; ;	Cu Ł	Pb 1	Zn Ł	Ag oz/t	Ău oz/t	ASSAYS
			(cuprite ?)	40810	28.40	29.57	1.17	0.02	0.01	0.01	0.01	0.001	
28.50	28.90	ep	-abund ep in fract w/ wk pot alt; mo fract w/ few carb stringers at 40-50 and 70-80 to CA; tr sulfides	P									
			29.37-29.38 : carb vn at 30-40 to CA w/ 5-10 % cpy,2-5 % py	r 1 1 1									
29.57	32.00	dior	-tr hem(cuprite ?), tr cpy,py	40886	29.57	32.00	2.43	0.03			0.04	0.001	
32.00	32.50	VN	-carb vn parallel to CA, offsets other fract; tr hem(cuprite ?), tr-0 sulfides	40887	32.00	34.50	2.50	0.02			0.01	0.001	
32.55	32.92	brecc	-strongly fract at 10-20 to CA	1) 								
33.33	33.48	, vn	-several 5 mm carb vns at 90 and 30-40 to CA	•)) 1 1								
33.75	34.30	brecc	-strongly fract at 10-20 to CA		t T 1								
34.50	35.35	, pot		40812 40888	34.50 35.35	35.35 35.58		0.02 0.01	0.01	0.01	0.01 0.01	0.002 0.001	
35.58	36.53	ch]	-wk chi alt; few fract, few carb stringers at 20-40 to CA; tr hem(cuprite?), tr-1 % PY		35.58	36.53	0.95	、 0.05	0.01	0.01	0.02	0.001	
			-35.88-35.91 : 1.5 cm wide carb vn @ 40-50 to CA; 3-5 % cpy and 2-3 % py as stringers and blebs		2 4 5 7 9 8 4 8								
36.53	37.20	hen ?	- 2-3% hem(cuprite?) as blebs and stringer -low-mod fract, few carb stringers @ 30-40 to CA; tr chl		36.53	37.28	0.75	0.02	0.01	0.01	0.01	0.001	
37.28	38.05	i dyke	i -f.gd mafic diabase dike; contacts v.sharp at 80-90 to CA, 1-2 % py as f.diss and blebs; mod-strong fract, carb stringers % 0-30 CA	1	37.28	38.05	0.77	0.01	0.01	0.01	0.01	0.001	

PROPERTY : Bagle HOLE No. : BA-91-07 .

.

INTERV FROM	AL(m) TO	NAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVA PROM	і L (m) ТО	SAMPLE WIDTH	Cu ¥	Pb \$	ån k	Ag oz/t	Au oz/t	AS5AYS
38.05	38.30	carb	+ -wk fract w/ carb stringers at 20-30 and 90 to CA; 2-3% py and tr cpy as stringer in fract +	40816	38.05	39.10	1.05	6.02	0.01	0.01	0.01	0.001	
38.50	38.60	ep	; -strong ep alt w/ minor pot; strong fract	1	• • •								
39.10 40.30	40.00 40.70	hem ? pot	- 2-3 % hem(cuprite?) as blebs * -mod pot alt w/ minor ep; strongly fract w/ few carb stringers @ 40-50 & parallel to CA; minor hem(cuprite?)	40817 40889	39.10 40.00	40.00 41.36	0.90 1.36	0.02 0.01	0.01	0.01	0.03 0.03	0.001 0.001	
41.31	43.40	chł	<pre>t co ch, minor memouplice;; t t -strong chl alt; wk fract at 40-50 to CA ; - 2-3 % py, 1-2 % cpy as blebs & stringer ; - 1-2 % hem(cuprite?)</pre>	40818 8	41.36	43.40	2.04	0.09	0.01	0.01	0.01	0.001	
43.40	44.20	potep	-mod-strong pot/ep alt; mod-strong fract w/ gtz & carb vns & stringers @ 10 & 90 to CA; 1-2 % cpy, 1-2 % py as blebs and f.diss; minor chl	40819	43.40	44.95	1.55	0.04	0.01	0.01	0.01	0.001	
44.95	46.33	۷N	-mod fract with 5 mm vn § 0 to CA; minor ep,chl; 2-3 % cpy, 1-2 % py as blebs with minor hem(cuprite?)	40820	44.95	46.93	1.98	0.04	0.01	0.01	0.01	0.001	
46.33	46.63	clay	; -mod clay alt of plag ;	1	 								
46.93	48.16	chì	<pre>: -pervasive chl alt; strongly fract w/ car vn at 30-40 to CA; 2-3 % hem(cuprite?) : - 2-3 % cpy, 1-2 % py as blebs and stringers</pre>	b : 40821	46.93	48.16	1.23	0.03	0.01	0.01	0.02	0.001	
48.16	51.21	ср у, ру	-strong chl alt; mod-strong fract, mod carb stringers at 40-60 CA; 5-7 % cpy, 2-3 % py as blebs and stringers; minor clay alt in fract	40822	48.16	51.21	3.05	0.53	0.01	0.01	0.06	0.004	
51.21	56.80	сру, ру	; -wk chl alt; wk-mod fract w/ carb ; stringers & 30-40,120-130 to CA; ; - 5-7 % cpy, 2-3 % py as blebs & stringer	40879 40880	51.21 54.25	54.25 56.80			0.01 0.01	0.01 0.01	0.07 0.04	0.005 0.006	

PROPERTY : Eagle HOLE No. : EA-91-07

· ,

.

.

4

INTERVA PROM	IL(m) To	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE Nomber	INTERVA Prom	L(m) TO	SAMPLE WIDTH	Cu L	Pb 1	Zn t	Ag oz/t	Au oz/t	ASSAYS
			minor clay alt in fract	F F F F) 								
56.80	57.30	chì	-mod chl alt; mod fract w/ carb vns @ 30- 40 & 40-50 to CA (vn width .5-1.0 cm) w/ cpy in vns; - 7-10 % cpy, 5-7 % py as blebs and stringers	40823	56.80	57.30	0.50	1.04	0.01	0.01	0.07	0.008	
57.30	59.70	C P Y , P Y	-strong chl alt; strongly fract w/ few carb vns & 80-90 to CA and abundant carb stringers & 50-60 to CA; mod clay alt of plag; - 10-12 % cpy, 7-10 % py as blebs & stringers parallel to carb stringers; -minor hem(cuprite?) as blebs	40824	57.30	59.70	2.40	1.83	0.01	0.02	0.15	0.016	
			-58.30-58.80 : strong clay alt, 5-7 % cpy 3-5 % py	; ; ; ;	1 1 1 1								
59.70	60.66	сру , ру	-wk chl alt; wk fract w/ few carb stringers @ 70-80 to CA; 3-5 % cpy, 3-5 % py as stringers, mod alt of plag over lower 50 cm of sub unit	40825	59.70	60.66	0.96	0.26	0.01	0.01	0.02	0.002	•
60.66	61.45		-pervasive clay alt; mod chl stringers; -mod fract w/ carb vns and stringers @ 50-60 to CA; mineralization occurs in vns and stringers - 2-3 % cpy, 2-3 % py as blebs & stringers -tr hem(cuprite?)	:	60.66	61.45	0.79	0.11	0.01	0.01	0.01	0.001	
61.45	63.25	сру , ру	-wk-mod clay alt of plag w/ minor chl; wk fract w/ few carb stringers @ 30-40 to CA and parallel to CA; - 2-3 % cpy, 2-3 % py as diss,blebs and stringers; lower boundry grades into dior	40890 	61.45 63.25	63.25 63.90			0.01	0.03	0.04	0.001 0.001	
63.90	65.33	pot	-wk-mod pot alt w/ minor ep,chl; mod- strong fract w/ few carb vn(2mm) & stringers @50-60 to CA; 1-2 % cpy, 1-2 % py as blebs and stringers; carb vns cut	40877	63.90	65.33	1.43	0.03	0.01	0.01	0.02	0.001	

PAGE : 5

PROPERTY : Bagle HOLB No. : BA-91-07 .

1.

.

.

INTERVA PROM	L(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE	INTERV PRON	AL(m) TO	SANPLE : WIDTH :	Cu	Pb	Za	Àg	Ău	ASSAYS	
1 ROM		UNIID	· · ·	1 1 1	{			\$	\$	\$	oz/t	oz/t		
			ep stringers and pot and ep conc increase near bottom contact	 	 									
65.33	66.90	chl	-wk chl alt; tr py; mod fract & carb stringers @ 30-40 & 50-60 to CA, 2-3% hem	40891	65.33	68.28	2.95	0.02			0.01	0.001	0.	
66.90	68.28	chl	-mod chl alt; mod fract & carb stringers @ 40-50 to CA, rare pot, tr-0 sulfides	40881	68.28	68.68	0.40	0.03	0.01	0.01	0.01	0.001		
68.60	72.20	clygtz	-pervasively clay/qtz altered; strongly fract, abundant qtz vns {3-5mm} and stringers @ 40-50 & 10-20 to CA respectively; tr-0 sulfides; tr hem	40883 40884	68.68 72.00	72.00 72.40		0.01 0.02	0.01 0.01	0.01 0.01		0.001 0.001		
72.20	72.85	chl	-wk chl alt; plag destructive clay alt	41101	72.40	74.15	1.75							
72.85	13.65	clygtz	-mod clay/qtz ait; no fract		i 1 1									
73.65	79.15	chl	-wk-mod chl alt; few fract @ 10-20,70-80 & 0 to CA; 3-5 % hem	41102 41103	74.15	77 .8 5 79 . 75								
79.15	84.45	chi .	-wk-mod ch] alt; tr hem; mod fract 0 0,30- 40, £ 70-80 to CA	41104	79.75 82.52	82.52 85.25								
84.45	84.50	۷D	-pot alt of vn @ 40 to CA, 2 cm thick		8 6 7									
84.65	87.10	chl	-wk-mod chl alt; mod fract 0 20-30 & 60-70 to CA; few carb stringers at 20-30 to CA tr cpy,py,hem		85.25 87.00	87.00 88.00	1.75							
87.10	87.17	potchl	-strong pot/chl alt; brecc, fract @ 70-80 to CA; 1-2 % cpy as stringers	t 1 1 1 1	9 1 1 1 1 1									
87.17	87.69	chl	-wk chl alt	; 1 1										
87.69	87.84	, pot	-10 cm wide pot alt zone @ 40-50 to CA	* * *	1 5 1									
87.84	93.70	clychl		, 41107 ; 41108 ; 41109	88.00 90.82 93.30	90.82 93.30 96.50	2.48 1							
93.70	93.75	pot		41110	96.50	98.85								

.

(a) A state of the second sec second sec

PROPERTY : Bagle HOLE No. : BA-91-07

Gang

· .

1.1.1.4.1.54

INTBRV/ PROM	AL(») TO	MAJOR/MINOR DRITS	DESCRIPTION	SAMPLE NUMBER	INTERVAL(m) PRON TO	SANPLB WIDTH	Cu L	Pb \$	Zn t	Ag oz/t	Au oz/t	ASSA¥5
			chl t		1 1 1 1 1							
97.23	97.48	dyke	<pre>: -syenite dyke: 50-60% k-spar, 15-20% plag, ; 5-10% qtz, 5 % biotite; contacts v.sharp ; % 40-50 to CA *</pre>	; ; ;								
97.48	105.35	chl	-wk-mod chl alt; mod-strong fract @ 120- 130 offset by fract @ 30-40 to CA; chl in fract	41111 41112 41113	98.85 101.50 101.50 103.94 103.94 106.38	2.44	-					
105.35	105.40	YD	-few 5mm wide carb vns @ 30-40 to CA	1 1 1								
105.48	105.78	pot	-wk pot alt; 5mm carb vn @ 30-40 CA; abund chl stringers			* * * *						
105.78	106.38	chl	-wk chi ait				 					
			BOH=106.38	1		1						
						t 9 1	8 8 5					
						1	1 1 1					
						1	1 7 1					
				: :	4 1 1	1						
				;	1 † 1	 	4 1 1 1					
				: :								
				: :	1 1 1		: :					
		•			• • • •							
				;		† 1 †	• 1 •					
						i l	•					

PAGE : 7

COMPLETE AND ADDRESS OF A DECK OF A DECK

PAGE : 1

PROPERTY : EagleHOLK No. : EA-91-08Grid System: Main/GibsonCollar Eastings: 39850.000Collar Northings: 40000.000Collar Blevations: 1376.000Collar Bearing: 41.00Grid Baseline: 131.00

Collar Inclination : -60.00 Grid Bearing : 41.00 Pinal Depth : 121.92 Claim No. : Bagle 1 Logged by : Praser Stewart Date : June 11 - June 12 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTI FROM	BRVAL (m T		NAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTES PROM	WAL(m) TO	; SANP ; Wid	LE TH	Cu t	Pb \$	Zn t	Ag oz/t	Au oz/t	ASSAYS
0.00		2 5.00	DIOR	CASING * DIORITE : (5.00 - 121.92) - medium to coarse grained mesocratic equigranular intrusive that grades from a very typical 'diorite' to a coarser grained gabbroic textured phase - these gradations occur over a few cm - both phases are comprised of the same minerals but in slightly different pro- portions : 35-50 % plagioclase, 15-25 % hornblende, 5-15 % prozene, 5-100 % mag and 5-15 % biotite (red to black) - wkly fract w few gtz-ep +/- chl stringer and rare fract cont pot alt - common zones of magnetite flooding that may consist of 5-10 % dissem. mag to massive magnetite - v. strongly magnetic - tr py											
5.0	0	6.20	Bag	- massive magnetite zone completely replac all of the original rock - very strongly magnetic	40855	5.00	6.4	0 1.	40	0.01	0.01	0.01	0.02	0.001	
11.2	5 1	1.27	ep	- ep vnlt @ 60 to CA, tr py				1 1 1	;						
11.9	5 1	9.27	Rag .	 mod fract. w strong perv magnetite flooding; 8-10 % dissem. mag w several narrow zones of massive magnetite common pot-ep alt on fracts phases alternate between the coarser grained gabbroic phase and the typical m.gd. diorite, gradational contacts over a few cm 	40856 40857	14.90 17.80	16.4 19.2		50 ;	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.001 0.001	

.

PROPERTY : Bagle HOLE No. : BA-91-08

INTERV PROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE : NUMBBR :	INTERVA PROM	L(m) TO	SAMPLE : WIDTH	Cu %	Pb ¥	Zn t	Ag oz/t	Au oz/t	ASSATS
19.27	19.50	dyke	∗ - syenite dyke € 50 to CA, lt pink m.gd.					•					
19.50	25.30	mag bt	 coarser grained gabbroic textured unit w common ep on fractures and common red brown biot books rare small qtz stringers wk mag flooding (5-6 % dissem) and few narrow (5-10 cm) massive mag zones strongly magnetic common chl-ep alt of mafics along fracts rare pot alt tr py 		20.60	22.00	1.40	0.01	0.01	0.01	0.02	0.001	
25.30	43.00		; - very strongly magnetic	40860 40861 40862 40863	27.40 31.80 36.00 38.40 40.90	28.85 33.22 38.40 40.90 43.00		0.01 0.01 0.01 0.01 0.09	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.02 0.01 0.04	0.001 6.001 6.001 6.001 6.001 6.001	
			 - (100 % magnetite) 40.25 - 40.35 : gtz vn breccia w tr py 41.75 - 43.00 : massive mag w tr-1 % cpy blebs and strong fract. contr. chl alt 										
43.00	121.92	dior	 wk to mod fract w common to few carb stringers and rare pot alt along fracts rare wk chl alt of mafics along fracts few talc stringers rare red brown biotite tr-0 % sulfides 	40864	43.00	44.80	1.80	0.04	0.01	0.01	0.01	0.001	

.

PROPERTY : Eagle HOLE No. : EA-91-08

1

INTERVAL(») HAJOR/MINOR PROM TO UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVAL(m) PROM TO	SAMPLE WIDTH	; Ci	u Pl	b 3	in Aq 3 oz/t	Au oz/t	ASSAYS	
	71.01 - 72.84 : strongly fract w strong ch chl alt, no sulfides										
	77.41 - 78.33 : breccia zone w perv chl- biot (hem ?) alt	1 1 1 1 4 1									
	80.46 - 81.38 : common talc stringers										
	86.56 - 88.08 : int perv chl alt, no sulf										
	101.80 - 102.41 : int perv chl alt			1 1 1							
	106.37 - 107.89 : int perv chl-clay alt			1 1 1	1 						
	BOH = 121.67				 						
	ןי ו ו ו										
					1 1 1						
					, , , ,						,
					4 9 1						
				1 1							
				1	1						
				1	;						
				f 9 1	k 1 1						
				1 4 1	;						
					:						
				1	:						

 PROPERTY : Eagle

 HOLE NO. : EA-91-09

 Grid System
 : Main/Gibson

 Collar Eastings
 : 40125.000

 Collar Northings
 : 40400.000

 Collar Blevations
 : 1379.000

 Collar Bearing
 : 221.00

 Grid Baseline
 : 131.00

Collar Inclination :-60.00Grid Bearing :41.00Final Depth :121.92Claim No. :Eagle 1

.

Logged by : Praser Stewart Date : June 10 - June 11 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTER PROM	VAL(m) TO	NAJOR/MI Units		DESCRIPTION	SAMPLE NUMBER	INTER PROM	VAL(B) TO	SANPLE WIDTH			2	Zn to	Ag oz/t	Au oz/t	ASSAY5
0.00 0.00	121.92 1.7	DIOR 0	CASING *												
			- dk g med intr - mod +/- mafi - comg % hk and - comg - seve 15-3	E : (1.70 - 121.92) rey green to grey black mesocratic to coarse grained equigranular usive (gabbro textured ?) to strongly fractured w few qtz-pot carb stringers and wk chl alt of cs and stringers rised of 35-50 % plagioclase, 15-20 lende, 5-15 % pyrozene, 5-15 % mag 1-10 % biotite (some secondary) non red brown biotite and ep stringet ral narrow zones of mag flooding - 0 % dissem. mag to narrow massive veins											
1.70	3.8	0 brok		y broken rock w about 60 % recovery on chl-pot-ep alt on fractures											
3.80	5.4) qzptc	; stri	ngly fract w abund gtz-pot-chl ngers and mod perv chl alt on local ep alt around fractures	37851	4.30	7.00	2.70	0.07	•		0	.08	0.001	
5.40	5.7	9 chigt	; repl	perv chl-gtz alt completely acing diorite - dark greenish black grained soft (first appearance ?)		, , , ,		, , , , , ,	· · · ·						
5.79	25.7	0 ch]	, and - rare - seve	o mod fract w common wk chl +/- carh few gtz-pot stringers ep alt and rare red brown biotites ral small shears ((10 cm) w perv chl and tr cpy t	37853 37854	9.80 15.23 20.90	10.89 16.60 22.20	1.37	0.08			Ó).03).05).11	0.001	

PAGE : 1

4

PROPERTY : Eagle HOLE No. : EA-91-09

ASSAYS INTERVAL() MAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) SAMPLE WIDTH UNITS RUMBER FROM **T**0 Cu Pb þÁ Au PROM **T**0 2n 1 ł t oz/t oz/t 9.75 - 10.25 : shear zone w strong perv qtz-chl alt + 5-10 % dissem mag : 10.25 - 11.00 : strongly fract w common qtz-chl stringers and red brown biotite : 11.00 - 11.60 : shear zone w strong perv gtz-chl alt 14.80 - 15.00 : perv clay-chl-ep alt zone - bleaching along fractures 16.20 - 16.80 : int perv gtz-mag flooding w common lge red brown biot flakes ! - v strongly magnetic - common chl stringers - tr cpy 16.80 - 21.00 : common fract controlled gtz-mag-bt alt w common chl-ep stringers - some local clay alt on fractures - common red brown biotite flakes - tr-0 % cpy 21.00 - 25.70 : strong perv gtz-mag-bt alt ! w common ep-chl alt on fractures - mod to strongly magnetic w 10 -20 % dissem mag - tr py, tr-0 % cpy 0.11 0.05 0.001 - wk to mod fract w strong perv epidote ; 37855 26.42 29.20 ; 2.78 : 25.70 32.00 epid 2.85 80.0 0.05 0.001 alt (first major appearance) that has 37856 29.20 32.05 ; replaced mainly the feldspars - few chl-qtz stringers - rare red brown biotite books ; - very little (1 %) magnetite left in the ep zones and no further mag enrichment other than primary mag

)

PROPERTY : Bagle HOLE No. : EA-91-09

INTERVAL(m) NAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) SAMPLE ASSAYS FROM **T**O UNITS RUMBER PROH **T**0 WIDTH λu Cu 2n λq ٤. ł 1 oz/t oz/t Volcanic Dyke : f.qd. dark green siliceous ; 37857 34.60 ; 0.03 0.01 0.002 32.00 34.65 dyke 32.08 2.52 | ; 37858 34.60 0.05 volcainic dyke 37.37 ; 2.77 : 0.07 0.001 - wkly fract w stringers of ep-gtz-pot alt - both contacts sharp @ 50 to CA 33.50 - 34.00 : int perv ep alt completely replacing host rock 34.65 35.45 - back in to the coarse grained diorite pen 1 - strongly fract w perv mag flooding and massive mag-qtz zones - common ep, rare pot alt - rare red brown bt : - tr py, tr-0 % cpy and tr-0 % bornite 8.08 0.002 35.45 45.20 ep bt - mod fract w common epidote and red brown | 37859 37.37 40.20 : 0.08 2.83 biot and fract cont pot-mag-qtz stringer ; 37860 40.20 43.16 2.96 0.03 0.06 0.002 37861 43.16 46.05 : 2.89 : 0.02 0.04 0.001 39.60 - 39.75 : int perv epidote alt w qtz-mag alt - tr cpy 1 39.75 - 42.86 : mod fract w wk perv mag flooding (10-15 % dissem mag) and common ep-gtz-ch] alt and rare pot alt - tr cpy and tr-0 % born . 45.20 51.35 ntqzbt : - mod to strongly fract w strong perv mt- : 37862 46.05 48.46 | 0.03 0.07 0.009 2.41 gtz-bt alt 1 37863 48.46 51.35 ; 2.89 ; 0.01 0.07 0.001 - common qtz stringers w trace py and cpy - common blotchy epidote alt and red brown biotite - rare pot alt 51.35 80.00 + - very coarse grained wkly fract diorite + 37864 54.20 55.40 ; 0.01 0.05 0.001 chigtz 1.20 : - comm chl stringers and few gtz-pot vnlts : 37865 60.84 62.30 ; 1.46 0.01 0.02 0.001 1 - wk fract contr mag-bt alt and some : 37866 63.70 65.20 ; 1.50 0.01 0.03 0.001 : 37867 narrow zones of massive mag (3-5 cm) 72.60 74.00 1.40 0.01 0.09 0.001 : - some qtz stringers have mt-chl+/-ep ; 37868 76.35 77.75 : 1.40 0.01 0.07 0.001 : - tr cpy and py

.

PROPERTY : Bagle HOLE No. : BA-91-09

• .

INTERVA PROM	L(B) TO	MAJOR/MINOR UNITS	DBSCRIPTION	SAMPLE NUMBER	INTERV PROM	AL(m) TO	SAMPLE WIDTH	Cu Ł	Pb %	Zn t	Ag oz/t	Au oz/t	ASSATS
			 t 70.30 - 70.35 : perv ep alt 73.00 - 73.20 : vuggy gtz vn w common chl stringers upper contact grad over 2 cm and lower contact sharp at 60 to CA 74.30 - 74.50 : perv mt-chl-bt alt tr py x 75.80 - 77.30 : common gtz vns w mod chl- bt-mt alt on fractures 										
80.00	87.78	gtzmag	 mod to strong perv qtz-mt flooding with common red brown biot some ep along fracts rare small pot stringers up to 30 % qtz flooding over most of zone 	37869 37870	80.80 86.40	83.65 87.78	2.85	0.01 0.01			0.01		
87.78	121.92		<pre>quartz +/- biotite alteration almost completely destroying all primary text. - common epidote</pre>	37874 37875		89.20 94.38 99.60 105.00 118.80	2.63 2.48 3.20	0.01 0.01 0.01 0.01 0.01	v			0.001	
												·	

PROPERTY : Eagle HOLE No. : EA-91-10 Grid System : Main/Gibson Collar Eastings : 39950.000 Collar Northings : 40400.000 Collar Elevations : 1360.000 Collar Bearing : 221.00 Grid Baseline : 131.00

...

Collar Inclination : -60.00 Grid Bearing : 41.00 Pinal Depth : 105.46 Claim No. : Eagle 1

.

Logged by : Regan Chernish Date : June 12 - June 13 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

PAGE : 1

INTER PROM	VAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	;	INTERVAL (PROM	n) TO	SAMPLE : WIDTH :	Cu t	Pb %	Zn t	Ag oz/t	ASSAYS Au oz/t
0.00 0.00	32.60 1.25	DIOR	CASING * DIORITE/MONIONITE : (1.25 - 32.60) - dark grey green equigranular mesocratic intrusive, strongly magnetic, wk fract; few qtz and carb stringers; rare chl.ep, clay, and pot alt; tr-0 py as f.diss										.059 21.57 m
1.25	1.75		-moderate recovery (60%)		i 		;	i					
1.75	5.20	ep	-wk-mod ep alt w/ minor clay alt; wk fract w/ few 1 cm carb vns at 80-90 to CA and fract at 40-50, 80-90 and 0 to CA; 1-2 % py as f.diss and tr-0 cpy; 3-5% red biot; minor ep and clay alt along fract			1.75	4.55	2.80	0.08			0.06	0.001
5.20	5.50	VN	-l cm gtz vns at 0 to CA w/ mod ep alt adj to and w/i vns; minor pot alt		• • •		, , , ,						
5.50	7.70	ep	* -wk ep alt; wk fract at 40-50 and 80-90 to CA; minor chl along fract; tr-1% sulfides f.diss; 3-5% red biot		, , , , , ,					° к.			
7.70	7.90	ep	-strong ep alt with gradational boundries		i 			i 1 1					
8.25	8.40	ep/chl	-strong ep and chl alt along fractures at 40-50 to CA		1		 	1 1 1					
9.00	11.00	ep	-wk-mod ep alt primarily along fractures but as blebs as well; mod fract @ 30-40, 70-80 & 80-90 to CA w/ few carb and gtz vns @ 50-60 & 70-80 to CA; tr f.diss cpy; 2-33 red biot *	37877		9.00 1	2.00	3.00	0.05			0.07	0.001

Ŀ

PROPERTY : Bagle HOLE No. : EA-91-10

14

INTERV PROM	AL(D) TO	MAJOR/MINOR UNITS	; DESCRIPTION	SAMPLE NOMBER	INTERV PROM	AL(m) TO	SAMPLE : WIDTH ;	Cu \$	Pb 1	8n %	Ag oz/t	ASSAYS Au oz/t
11.00	12.60	ep	-wk fract w/ str ep alt along the fract @ 60-80 to CA	37878	12.00	14.65	2.65	0.04			0.04	0.001
12.60	12.80	chl	-mod-str chl alt; 2-3% mag									
12.80	13.30	dyke	-f.gd green dyke w/ v.sharp contacts @ 10- 20 to CA; mod-str ep alt w/ minor pot,chl alt, str fract @ 10-20 and 50-70 to CA					,				
13.30	14.15	ch]	-str chl alt; mod fract @ 50-70 to CA w/ few gtz stringers; 7-10% mag; mod ep in fract and as blebs									
14.15	14.85	chl	<pre>-intense chl alt w/ mod ep; str fract @ 50-70 to CA w/ few gtz stringers & vns @ 50-70 and 80-90 to CA</pre>	37879	14.65	17.12	2.47	0.07			0.07	0.001
14.85	15.00	ep	-mod ep alt				1					
15.00	16.20	mag	- 5-7% mag; wk chl,ep alt; wk fract @ 50- 70 to CA; tr-1% cpy blebs; 3-5% red biot									
16.20	17.12	Bag	-str mag(7-10% mag) w/ wk-mod chl alt; tr cpy;minor ep; mod fract w/ gtz stringers and vns @ 30-50 to CA									
17.12	17.62	ep	-spotted ep alt; tr-0 sulfides, red biot, 5-7 % mag	9 9 1 9 1 1 1 1 1 1 7 1								
18.05	18.35	۹¥	-str ep alt in 1cm vn @ 20-30 to CA	9 9 9 1 1 7 9 4			1					
18.40	18.85	ep	-wk ep spotting; 5-7% mag, 2-3% red biot; 1-2% cpy as blebs & f.diss, few born flks v.wk fract @ 50-70		18.40	19.32	0.92	0.08			0.09	0.001
			-18.60-18.62 : -2cm gtz vn @ 80-90 to CA w/ minor chl alt				· · · · · · · · · · · · · · · · · · ·					
18.85	19.00	ep	; -minoir ep spotting,wk-mod fract @ 30-40 & ; 60-70 to CA; tr-1% cpy; few carb vns w/ ; tr hem									

PROPERTY : Bagle HOLE No. : EA-91-10

ŧ1

INTERV/ PROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVA PROM	L(m) TO	SAMPLE WIDTH	Cu	Pb	Zn	Ag	Au	Assays
					*	 	ا 	<u>ہ</u>	1	*	02/t	oz/t	
			1 1		, , ,	1							
19.00	19.20	ep.	-mod-str ep blebs on surface										
19.20	22.33	ep/ch]	<pre>: -wk chl/ep alt(chl in fract & ep as blebs) -wk-mod fract w/ few gtz stringers @ 60-80 to CA; tr-1% cpy, 2-3% red biot, 5-7% mag</pre>)) 1 1 1 1 1 1		6 6 5 1 1 1						
22.33	22.38	brecc	-brecc;carb vn @ 70-80 to CA; minor chl.ep		• • •								
22.38	22.57	ep	-str ep along fract @ 40-60 to CA		* 	1	1						
22.57	23.57	ер	-wk-mod ep alt(blebs & stringers) w/ minor chl; mod-str fract w/ abund carb vn @ 70- 90 to CA; mod pot alt in some vns, tr-0 cpy *	37881	22.57	24.30	1.73	0.03			0.04	0.001	
23.57	24.30	ep	-mod-str ep alt w/ winor chl; wk fract w/ few gtz stringers & 60-70 to CA		, , , ,	, , , ,							
24.30	26.81	ep	-wk-mod ep alt; mod fract @ 40-60 to CA w/ few gtz stringers @ 70-80 & 160-170 to CA - 5-7% mag, 2-3% red biot, tr-1% cpy w/ tr-0 flecks of born; minor chl		24.30 26.80	26.80	2.50	0.05 0.11			0.04 0.04	0.001 0.007	
26.81	28.30	nag	- 7-10% mag; wk ep/ch] alt; v.wk fract @ 70-80,0 to CA; tr-1% cpy, 2-3% red biot		e f e e	1	1 1 1 1						
28.30	31.50	clychl	-mod clay/chl alt; mod-str fract; tr-1% py & cpy *	37884 37885	28.80 31.00	31.00 32.60	2.20	0.09 0.07	`			0.005 0.004	
31.50	32.00	chl	-mod-str ch] alt, minor ep; rx has fabric @ 40-50 to CA w/ few carb stringers @ 40- 50 and 130-140 to CA; tr cpy,py; 'rust' along fractures *		T 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,							
32.00	32.50	brecc	-brecc w/ mod-strong chl alt, l.contact grades into clay altered brecc		 	, 1 1 1 1	1 1 1 1 1						
32.50	32.60	brecc	- -brecc w/ intense clay alt (fault gouge?) qtz stringers @ 50-50 to CA		T 9 3 3	, , , , , ,	1 1 1						

•

1

INTE	(VAL(m)	MAJOR/MINOR	DESCRIPTION	; SAMPLE	INTERVA	L(m)	SAMPLE ;						ASSAYS
PROM	TO	UNITS	1	NOMBER	PROM 1	T 0	WIDTH :	Cu L	Pb \$	Zn %	Ag oz/t	Au oz/t	
32.60	53.40	N.MAG	MAGNETITE FLOODED ZONE: original texture of rock is masked by mag -mag is f.gd & coarse; minor chl.ep alt; wk fract @ 20-30 to CA w/ few carb stringers @ 60-80 to CA	37886	32.60	35.05	2.45	0.01			C.O5	0.001	
33.22	34.12	ep/ch]	-intense ep/ch] alt; rr has sheared tert @ 40-50 to CA; few carb/gtz vn @ 40-50 to CA; minor hem; 15-20% mag		, 1 1 1 1 1		, , , , , , , , , , , , , , , , , , ,						
34.12	35.85	nag	-intense mag flooding;abund carb stringers -wk ep; 1-2% red biot; rare pot/ch] alt	37887	35.05	37.84	2.79	0.01			0.03	0.001	
35.85	36.58	ch]	-pervasive chl alt; mod fract; abund carb vns & stringers @ 40-50 to CA; 2-3% red biot; minor pot alt		f 1 1 1 1								
36.58	37.80	chl	-wk-mod ch] alt; mod-str fract @ 70-80 to CA; carb stringers @ 120-130; 3-5% red biot; chl mainly in fract		f 1 1 1 1 1 1								
37.80	39.66	Bag	-mag flooding; mod fract w/ mod ep alt in and near fract		: ; ; ;								
39.66	40.21	ep	-pervasive ep alt; str fract; tr red biot	37888	39.66	42.30	2.64	0.02			0.01	0.001	
40.21	40.81	сру/ру	-str chl alt; 1-2% cpy,py as blebs & stringers in carb vns; mod-str fract; stringers & vns @ 10-20,70-80 to CA	4 3 3 3 4 4	f 1 1 1 1 1				·				
40.81	41.80	Mag	-mag flooding; mod ep alt in fract; str fract w/ gtz/carb stringers/vns @ 20,40- 50,130-140 to CA; tr red biot		1 1 1 1 1 1								
41.80	41.91	ep	pervasive ep alt; 3-5% py as diss & blebs str fract; stringers & vns @ 20-30 are youngest		1) j (9 (9) 1) 2) 3) 3) 3) 4) 4) 4) 4) 4) 7) 4) 7) 7) 7) 7) 7) 7) 7) 7					·	
41.91	42.91	clay	; -mag flooding w/ clay alt; str fract; qtz stringers; rare ep spots; chl in fract	37889	42.30	45.10	2.80	0.01			0.07	0.001	

-----ASSAYS INTERVAL(=) MAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) 1 SAMPLE : NUMBER PROM **T**O ; WIDTH Au UNITS FROM **T**0 Cu Pb 2n Åg s oz/t oz/t 1 1 \$ ł - 42.51-42.54: 2cm carb vn @ 70-80 to CA 42.91 49.90 -mag flooded; wk fract @ 60-70 to CA; 2-3% ; mag red biot; minor chl stringers; tr-0 sulfides; ep present in fract -pervasive clay/qtz alt; 6cm vn @ 60-70 to 53.30 53.40 clygtz CA * 53.40 57.60 -DIORITE/MONZONITE: as detailed previously DIOR - NOTE: wk-mod gtz/clay alt - 54.30-54.45: 1cm gtz vn @ 40-60 to CA - 55.00-55.20: mag flooded zone - 56.00-56.70: gtz/clay flooded zone - 57.15-57.20: pervasive ep alt -MAGNETITE FLOODED ZONE: as detailed 57.60 105.46 M.MAG previously ۰, 0.02 0.001 ; 37890 57.60 60.45 2.85 ; 0.01 57.60 60.05 chl -mod chl alt; minerals appear oriented 🖡 50-60 to CA; mod fract; rare pot; gtz replacing minerals -qtz flooding (replacing orig stals); 2-3% 63.70 64.40 qtz red biot 64.70 64.80 qtz -qtz flooding; all qtz 64.80 65.00 clychl -pervasive clay/chl alt @ 70-80 to CA 65.00 66.75 ch] -abund chl alt; wk-mod fract @ 30-40,60-70 : to CA w/ few qtz stringers; patchy qtz flooding; 1-2% red biot

PROPERTY : Bagle BOLE No. : EA-91-10

INTERVA	AL(m)	NAJOR/MINOR	DESCRIPTION	SAMPLE :	INTERV	/AL(m) ;	SAMPLE :						ASSAYS
FROM	T 0	DNITS	1 1 1	NUMBER 1	PROM	t 0	WIDTH :	Cu	Pb \$	Zn z	Ag oz/t	Au oz/t	
			' 	, , , , , , , , , , , , , , , , , , ,		, 	·						
66.75	105.46	Mag	€ 40-60 to CA; patchy gtz flooding	; 37892 ; ; 37891 ; ; 37893 ; ; 37894 ; ; 37895 ;	68.95 73.40 81.40 83.45 88.58	70.50 74.40 82.85 84.60 90.00	1.55 1.00 1.45 1.15 1.42	0.01 0.01 0.01 0.01 0.01			0.01 0.03 0.08	0.001 0.001 0.001 0.001 0.001	
			1 1	: 37896 : : 37897 :	95.25 99.00	96.75 100.00		0.01 0.01				0.001 0.001	
			- 70.45-70.65: wk pot alt										
			- 73.40-74.40: syenite dyke; sharp contact @ 0-5 to CA; chl alt on contact										
			- 80.30-81.00: tr-0 py										
			* - 81.40-83.90: gtz dyke w/ contact @ 0-10 } to CA; massive; upper/lower contacts v. } broken										
			* ; - 90.60-91.00: str chl alt										
			* 91.90-92.70: str pot alt adj to fracts • • • • • • • • • • • • • • • • • • •			1	;						•
			- 95.25-95.55: hb] rich (70%) w/ 20% mag 1-2% py as blebs and stringers			i 1 1							
			- 95.55-96.00: silicious brecc; 1-2% cpy as stringers in gtz vns @ 50-60 to CA			1							
			- 97.95-105.46: wk-mod chl alt; few gtz stringers @ 60-70 to CA			1 1 1 1 1	;						
			к ЕОН = 105.46ж				1						
							1						
									·				
							1						
			;				:						

Ĭ,

PROPERTY : EagleHOLE No. : EA-91-11Grid System: Main/GibsonCollar Bastings: 39450.000Collar Northings: 40800.000Collar Blevations: 1260.000Collar Bearing: 221.00Grid Baseline: 131.00

+

Collar Inclination : -45.00 Grid Bearing : 41.00 Final Depth : 96.93 Claim No. : Logged by : Regan Chernish Date : June 17 - June 18 Downhole Survey : acid test Drilled By : Van Alphen Core Size : DB

INTERV PROM	VAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVAL(m) FROM TO	SAMPLE : WIDTH :	Cų ¥	Pb \$	Zn t	Ag oz/t	Au oz/t	ASSATS
0.00 0.00	96.93 2.20		CASING * DIORITE : (2.20 - 96.93) - f.gd mesocratic equigranular intrusive - comprised of 40-50% plag, 10-15% hbld, 10-15% biot, and 10-15% mag - strongly magnetic - wk-mod fract w/ few carb stringers @ 40- 50 to CA; rare ep in stringers @ 80-90									
3.75 5.45	4.00 5.65	c)ay Nag	to CA -minor chl stringers; 1-2% red biot; tr-0% py -wk-mod clay alt -abund blebs of mag; minor ep alt; 2-3% red biot									
6.55	7.00	chl	+ +wk chl alt w/ rare massive mag; 2-3% red biot; tr-0% cpy	37826	6.55 7.95	1.40	0.03			0.01	0.001	0.
8.05	8.10	ep	* -strepalt @ 90 to CA					۴.				
8.15	8.30	pot/ep	-wk-mod pot/ep alt	;								
8.95	9.10	chl	-minor chl alt in fractures									
9.10	9.20	mag	-massive mag w/ wk-mod ep alt; tr-0% cpy									
9.20	9.45	ep	-mod ep alt w/ minor mag; tr-0% cpy	1								
9.50	9.80	∎ag	-massive mag blebs; wk clay alt; few carb stringers @ 50-60 to CA; minor pot					•				

PAGE : 1

١

PROPERTY : Bagle HOLE No. : EA-91-11

.

.

INTERV		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERVA		SAMPLE :	6 11	Dh	1.	٦r	Au	ASSAYS
PROM	T 0	UNITS	; ; 	NUMBER	FROM	TO	WIDTH ;	Cu t	Pb 3	2n \$	Ag oz/t	AU 02/t	
10.00	11.70	chì	; ; -v.wk chl alt (mainly in fract); local mag ; as blebs, 3-5% red biot ; *		 								
11.70	11.80	chl	-strchlalt	37827	11.70	13.75	2.05	0.02			0.02	0.002	0.
11.80	11.95	ep	-intense ep alt obscuring all orig text; - 2cm carb vn & 60-70 to CA		r 								
11.95	12.45	clay	-str pervasive clay alt; mod-str fract w/ carb stringers @ 70-80 to CA, lcm carb vn @ 10-20 to CA; abund secondary mag as f. diss and blebs		1 1 7 2 9 9								
12.50	12.55	nag	-massive mag horiz, tr-0% cpy		1 1 1								
12.70	13.10	clay	<pre>-wk-mod clay alt, predom along fract; mod fract @ 60-70 & 150-160 to CA w/ abund carb stringers; minor chl stringers; 3-5% red biot *</pre>	1	1 1 1 1 1 1 1 1 1 1								
13.10	13.30	clay	-str clay alt w/ abund mag										
13.30	13.55	ep/qtz	-intense perv ep/gtz alt; all orig text destroyed; tr-O% py as blebs; l.contact sharp @ 50-60 to CA		1 6 7 7 8								•
15.15	19.25	dior	-diorite w/ mod massive mag blebs, 2-3% red biot	37828	17.98	19.25	1.27	0.01			0.01	0.001	0.
			- 15.35-15.40: str ep alt @ 90 to CA		4 1 1								
			- 15.75-15.80: str ep alt @ 90 to CA w/1cm mass mag vn	1 	1 1 1 1 1 1 1								
			- 18.10-18.50: str ep alt w/ mod fract; mass mag zones between ep alt		0 1 1 1 1 1								
			- 18.90-19.00: gtz/mag flooding, no orig text; 1-2% red biot	1 1 1 1	J 4 1 1 1								
20.60	20.70	ер	; -str ep w/ f.diss mag	1	1 1 1								

PROPERTY : Bagle HOLE No. : EA-91-11

1.

INTERVA		NAJOR/HINOR	DESCRIPTION	SANPLE	INTERV		SAMPLE					•	ASSAYS
FROM	TO	UNITS		NUMBBR	FROM	TO	WIDTE :	Cu Ł	Pb \$	Zn L	Ag oz/t	Au oz/t	
				; ;	; ;								
20.70	21.03	mag	-abund mag (15-20%) ad f.diss and blebs										
21.03	21.10	clay	-pervasive clay alt	37829	21.03	23.55	2.52	0.03			0.03	0.001	
21.15	21.40	c]y/ep	-str clay/ep alt; str fract w/ few gtz stringers @ 50-70 to CA		4 1 1 1								
21.40	21.50	brecc	-brecc w/ abund carb infilling, carb vns @ 60-70 to CA	, , , , , ,	1 1 1 1 1 1								
21.90	22.35	ep	, -intense perv ep alt,orig text destroyed	1 1 1	1 1 1								
22.35	24.08	dior	-dior w/ few mod ep alt zones of 1cm width @ 90 to CA; mod mag blebs & stringers, tr-0% cpy; wk-mod fract @ 60-70 to CA w/ minor chl in fract	37830	23.55	25.90	2.35	0.04			0.03	0.002	
			- 23.80-28.83: 3cm str ep alt	, , ,	1 1 1								
24.08	25.80	dior	-dior w/ 3-5% red biot; mod mag as sm.bleb tr-0% cpy; wk fract @ 60-70, 130 to CA; few ep & qtz stringers & vns	1 1 1 1 1 1	r F I I I		r 1 6 1 7						
25.80	26.10	chlmag	-intense pervasive chl/mag alt, 5-7% red biot; mod-str fract w/ chl stringers @ 50-60 to CA; orig text destroyed	37831	25.90	26.50	0.60	0.04			0.01	0.001	0.
26.50	26.75	clygtz	-wk clay/qtz alt; wk fract w/ minor chl stringers; 3-5% red biot	P T T T	1 1 1 1				`				
26.75	26.90	epchag	-pervasive ep/chl/mag alt; few gtz/carb vn @ 60-70 to CA; wk-mod fract	1 1 1 1	F 1 F 1 F		T T T T T T T T T T						
27.10	27.15	ep	-str ep alt; wk fract; few gtz vns & stringers @ 60-70 to CA	9 9 1 1 1 1	1 1 1 1		, , , , , , , , , , , , , , , , , , , ,						
			-DIORITE HAS BECOME COARSER AND IS NOW MEDIUM GRAINED		1 1 1 1		1 1 1 1 1 1 1 1 1 1						
27.15	27.55	chl	: -wk chl alt w/ abund mag; wk-mod fract w/	•	1								

PROPERTY : Bagle HOLE No. : EA-91-11

ASSAYS DESCRIPTION SAMPLE SAMPLE INTERVAL(m) MAJOR/MINOR INTERVAL(=) NUMBER FROM **T**0 WIDTH Pb þÅ Au DNITS Cu 2n FROM **T**0 ł oz/t oz/t 1 ł few gtz stringers @ 60-70 to CA; 2-3% red ; biot : - 27.50-27.55: fault w/ 2cm offset, ep in fract : -wk ep/chl alt, abund mag as blebs; v.wk 27.55 ep/ch] 30.90 fract; 2-3% red biot, tr-0% cpy - 29.55-29.60: 1cm carb vn @ 60-70 to CA - 29.90-29.95: 1cm gtz vn @ 60-70 to CA, str ep alt 🖡 edges 30.90 33.90 chl -wk chl alt, 10-15% mag; tr-0% cpy; v.wk fract; 3-5% red biot; chl stringers @ 50- ; 60 to CA 0.04 0.02 0.002 : 37832 36.80 ; 2.70 ; 0. 35.70 -wk-mod chl alt; wk fract w/ few gtz 34.10 34.10 chl stringers @ 50-60 to CA; 1-2% cpy blebs 10-15% mag; rare ep in fract 36.00 -intense qtz flooding; 3-5% mag blebs; wk 35.70 gtz fract (0 to CA; minor chl in fract 38.71 ch Ì -wk-mod chl alt w/ 10-15% mag as blebs & 36.00 f.diss; wk fract w/ ch] stringers @ 50-60 | to CA; tr-O% sulfides; 2-3% red biot; rare ep along fract 0.01 0.01 0.001 -mod-str chl alt w/ minor clay alt; wk-mod ; 37833 38.71 40.40 1.69 0. 38.71 39.10 ch I fract @ 0,30-40 to CA 39.10 39.60 ch) : -str ch] alt w/ qtz stock work, str fract : - 3-5% py as f.diss,blebs; tr-1% cpy blebs -minor red biot -str chl alt; mod fract w/ few qtz/carb 39.60 41.70 chl stringers @ 60-70,150-160 to CA; 2-3% red ; biot; mod-str magnetic

.

.

PROPERTY : Bagle HOLE No. : BA-91-11

.

1 4

.

INTERVA		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV		SAMPLE	-	-1	•	•.	•	ASSAYS
FROM	TO	ONITS		NUMBER	PROM	T 0	WIDTE :	Cu \$	Pb \$	2n %	Ag oz/t	Åu oz/t	
41.70	42.00	ep	-str ep alt, obscuring orig tex										
42.00	43.00	chl	-str chl alt w/ str fract w/ gtz/carb stringers & vn @ 0, 50-60,90 to CA; tr hem in vn, 2-3% red biot; 1-2% py, tr-0% cpy; rare ep alt along fract										
43.00	44.40	clymag	-str clay/mag alt w/ mod-str fract w/ abund carb stringers and vns @ 0,90,60-70 to CA; 1-2% red biot	37834	44.35	45.85	1.50	0.01			0.01	0.001	
			- 43.50-43.65: total replacement by carb										
44.40	53.00	chÌ		37835 37836	47.40 52.85	48.90 54.30		0.01 0.01			0.01 0.01	0.001 0.001	
			- 50.85-51.00: 60% mag w/ str ch]	1									
			- 52.00-52.20: 5mm carb vn 0 60-70 to CA	1 1 1									
			- 52.50-52.65: few carb vn @ 50-60 to CA	t 1 1	1								
53.00	54.00	chl	-str chl alt w/ carb stock work; minor ep along fract; tr hem in vns; mag stringers pink carb in some vns	9 9 1 6 9 9									
			- 53.85-53.95: abund carb vn w/ mag stringers t						•				
54.00	55.40	ch]	<pre>; -mod-str ch] alt; str fract w/ gtz/carb ; stringers (abund) @ 60-70 to CA w/ minor ; fract @ 90 to above fract; tr-1% py; ; abund mag; minor ep stringers</pre>										
55.40	55.45	ep	-strepalt @ 60-70 to CA	1 1 1									
55.45	58.95	dior	f.gd dior w/ rare chl/ep on fract	37837	58.55	60.10	1.55	0.01			0.01	0.001	
58.95	59.10	ep	-str ep alt; 1-2 % cpy	1									

PAGE : 5

Ì

PROPERTY : Bagle HOLE No. : BA-91-11

> ASSAYS INTERVAL(m) MAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) SAMPLE NUMBER | FROM TO WIDTH Cu Au 10 UNITS 2n Åg FROM ł Ł \$ oz/t oz/t -str ch] alt; return to med gd dior; wk 37838 62.80 64.63 1.83 ; 0.01 0.02 0.001 63.20 chl 59.30 fract w/ few qtz stringers @ 70-80 to CA; abund mag; 2-3% red biot - 60.66-60.95: str ep alt @ 60-70 to CA; mod fract w/ few carb stringers @ 60-70 to CA; minor chl stringers - 61.70-61.90: ep/gtz alt w/ gtz vn @ 70-80 to CA 63.20 63.80 gtz -str qtz replacement of minerals; abund blebs of mag; orig text is still visible 63.80 64.63 chlqtz -intense pervasive chl/gtz alt; sheared texture @ 70-80 to CA; gtz vn parallel to : fabric; minor ep/hem; 2-3% red biot in bands @ 70-80 to CA 64.63 68.80 chl -mod chl alt; wk fract w/ few gtz/carb stringers @ 60-70 to CA; minor ep along fract; 2-3% red biot - 66.00-66.20: str pervasive ep alt obscuring orig text 0.02 0.001 -str chl alt; mod fract w/ gtz vn & 37839 68.80 70.30 ¦ 1.50 1 0.01 68.80 70.90 chl stringers & random orientations; minor stock work; 2-3% red biot w/ local variation; wk-mod magnetic 0.01 0.001 76.10 chl -mod-str chl alt, wk fract w/ few gtz vn & 1 37840 71.65 73.15 : 1.50 : 0.01 70.90 stringers @ 40-50,70-80 to CA; 2-3% red biot; chl in fract; rare ep; no sulfides - 72.18-72.20: gtz vn @ 60-70 to CA - 72.60-72.62: str ep alt - 73.00-73.10: two qtz vns @ 60-70 to CA; str chl alt adj to vns; minor hem; vns

PROPERTY : Bagle HOLE No. : EA-91-11

1.

INTERV/		MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV		SAMPLE			_			Assays
PROM	T O	UNITS	 	NUMBER	PROM	TO	WIDTH	Cu L	Pb \$	Zn ł	Ag oz/t	Au oz/t	
			are deformed										
			- 73.60-73.65: gtz vn @ 60-70 to CA w/ str chl alt adj to it										
			- 74.00-74.25: spotty ep wk alt w/ abund chl stringers					÷					
76.10	76.50	ch l	-str chi alt w/ wk fract @ 70-80 to CA; mod magnetic		1 1 1								
76.50	77.00	ch]	-pervasive ch] alt w/ mod fract w/ abund gtz stringers & vn @ 60-70 to CA; ch] stringers in vns		1								
77.35	81.60	alt	-black alt; mod fract w/ few chl stringers	37841	77.35	78.85 83.05		0.02				0.001 0.001	0.
81.60	88.10	dior	<pre>-wk-mod fract w/ few gtz stringers @ 0,60- 70 to CA; tr-0% sulfides; abund chi stringers in fract; 1-2% red biot; mod- str magnetic; rare ep in fract</pre>										
88.10	90.00	chl	-str-intense chi alt; wk-mod fract w/ few carb stringers @ 50-60 to CA; rare pot	37843	89.80	91.25	1.45	0.02			0.01	0.001	•
90.00	90.80	dior	- 1-2% cpy w/ rare born flecks		6 6 6								
90.80	91.55	chl	<pre>-wk chl alt; wk magnetic; few fract w/ few gtz stringers @ 70-80 to CA; minor pot/ep alt</pre>		P 				Ľ				
91.55	96.00	dior	* -rare pot alt	37844	95.50	96.93	1.43	0.02			0.04	0.001	
			- 92.05-93.00: extensive carb stock work w/ pink carb		t 1 1 1		9 9 9 9						
96.00	96.93	he n	- abund hem stringers; mod fract w/ few gtz stringers @ 50-60 to CA		1 1 1 1 1 1		1 1 1 1 1 5 1 5 1 7 1 7						
			EOH = 96.93		1 		 						

PAGE : 7

A THOMAS TOWARD

PROPERTY : EagleHOLE No. : EA-91-12Grid System : Main/GibsonCollar Eastings : 40392.000Collar Worthings : 42675.000Collar Blevations : 955.000Collar Bearing : 221.00Grid Baseline : 131.00

Collar Inclination : -45.00 Grid Bearing : 41.00 Final Depth : 91.44 Claim No. : Eagle 2

Logged by : Regan Chernish Date : June 14 - June 15 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

INTER FROM	VAL(m) TO	NAJOR/MINOR UNITS	DESCRIPTION	¦ SAMPLE ¦ NOMBER	INTERV PROM	AL(m) TO	SANPLB WIDTH	Cu \$	Pb \$	Zn K	Ag oz/t	Au oz/t	ASSATS
0.00 0.00	91.44 15.00	DIOR	CASING t DIORITE/NONSONITE: (15.00 - 91.44) - c.gd. mesocratic equigranular intrusive - 50-60 % plag, 5-10 % bt, 5-10 % hblde, and 5-10 % mag.; mod fract w/ few qtz/ carb vns & stringers @ 50-60 to CA; rare										
15.00	17.15	dior	pot alt - poor recovery (50-60%)	41126	: 15.00	18.50	3.50	0.09			0.04	0.001	0.
17.15	18.00	сру/ру	* -mod-str chl alt; str fract w/ few carb stringers @ 60-70 to CA; abund wns of blk chl @ 60-70,150-160 to CA; 3-5% cpy, 1-2% py as blebs and stringers in chl wns; tr hem; rare ep										
18.00	22.40	сру/ру	-mod-str chl/pot alt; mod-str fract w/ few carb stringers @ 0,40-50 to CA; in local areas the rock appears shattered; common blk chl in vns; 7-10% cpy, 5-7% py as blebs and stringers		18.50 21.40	21.40 23.80	2.90 2.40	1.73 1.01			0.24 0.12	0.024 0.014	0. 0.
			 - 18.00-18.70: mod-str pot/chl alt; mod- str fract @ 60-70 to CA; minor ep, tr he hem; 1-2% cpy, 5-7%py as blebs and stringers 										
			 - 18.70-19.50: str-intense chl alt w/ minor pot; shattered text; str fract w/ abund chl vnlts; mod magnetic, minor mag blebs; 3-5% cpy, 2-3% py as blebs and stringers; tr ep 										
		1	- 19.50-22.40: str chl/pot alt; str fract			:	1						

PROPERTY : Bagle HOLE No. : EA-91-12

ASSAYS INTERVAL(B) MAJOR/MINOR : DESCRIPTION SAMPLE INTERVAL(m) SAMPLE NUMBER FROM 10 ¦ WIDTH : Au FROM DNITS T0 Cu Ph ZB. Àq t oz/t oz/t ł ł w/ abund blk chl stringers & vns in a stock work; str mineralization w/i chl vns & stringers; 7-10% cpy, 3-5% py as blebs and stringers; few minor carb vns and stringers; tr ep -mod chl/pot alt; wk fract w/ few chl or 1 41129 23.80 26.50 2.70 ; 0.43 0.09 0.012 0. 22.40 24.38 cpy/py hem stringers @ 50-70 to CA; 2-3% cpy, 3-5% py as blebs and stringers located in ; chl vns and stringers; minor ep blebs; minor stock work in v.localized sections . 24.38 25.10 cpy/py -str chl alt; 2-3% cpy, 1-2% py as blebs & ; stringers; mod fract w/ few qtz stringrs -tr hem in stringers; minor ep/pot; unit appears deformed -mod-str pot alt w/ mod ch1; ch1 mainly as { 41130 26.50 29.15 2.65 ; 0.39 0.05 0.001 0. 25.10 27.85 cpy/py vns & stringers @ random,30-60 CA; rare ep; 1-2% cpy, 1-2% py as blebs & stringer ! mineralization tends to occur w/i str fract zones w/ chl; later qtz stringers cut all features - 25.00-25.80: str fract w/ str pot alt & abund chl vns w/ 3-5% py, 2-3% cpy as blebs & stringers in vns - 25.90-26.15: str pot/ep; str fract w/ abund gtz stringers @ 20-30,50-60 to CA; 1-2% cpy as stringers and blebs - 27.20-27.30: str chl alt w/ blk chl vns 3-5% cpy as blebs & stringers; minor ep - 27.60-27.85: str blk chl alt; 3-5% cpy as blebs and stingers 27.85 28.85 -str-intense chl alt; 5-7% cpy, 1-2% py as { cpy/py blebs and stringers; str fract w/ gtz in- : filling the fract

.

PROPERTY : Bagle HOLB No. : BA-91-12

.

|;

!														
P	INTERV/ ROM	AL(m) TO	MAJOR/NINOR UNITS	DESCRIPTION	SAMPLE NDMBER	INTERV PROM	AL(m) TO	SAMPLE WIDTH	Cu	Pb	2n	Åg	Åu	ASSATS
 !				! !	¦ 	;	:		\$	<u>ہ</u>	<u>؛</u>	oz/t	oz/t	
				±	 									
	28.85	30.18	сру/ру	<pre>: -str pot alt; 1-2% cpy, 1-2% py as blebs; : wk-mod fract w/ few gtz stringers : 1-cutting all & 20-30,30-40 to CA; minor : ep/chl</pre>	41131	29.15	31.30	2.15	1.15			0.15	0.006	
1 1 5 1				: - 29.00-29.50: str chl alt; 3-5% cpy, 2-3% py as blebs & stringers; few blk chl vns										
· · · · · · · · · · · · · · · · · · ·	30.18	30.78	сру/ру	-str chl alt w/ minor pot; 5-7% cpy, 2-3% py as blebs & stringers; few blk chl vns; qtz stringers & 80-90 to CA cut all		 								
• · · · · · · · · · · · · · · · · · · ·	30.78	31.60	chl	-wk-mod chl alt; wk-mod fract @ 60-70 to CA w/ few gtz stringers @ 40-50 to CA cut all; Smm blk chl vn @ 0-5 to CA w/ 1-23 cpy as f.diss; tr hem	41132	31.30	33.83	2.53	0.77			0.13	0.021	0.
	31.60	33.40	C DA \DA	-str chl alt; mod blk chl alt as vns; 5-7% py, 3-5% cpy as blebs & minor stringers; wk-mod fract w/ blk chl stringers & vns @ 30-40 to CA & qtz stringers cutting @ 0, 120-130 to CA; minor pot around some vns; tr hem; minor ep blebs	* * * *	r 								
	33.40	34.10	pot	- mod-str pot alt w/ minor chl; str fract abund chl stringers @ 40-70 to CA; 1-2% cpy as f.diss; abud hem in gtz stringers @ 30-40 to CA	41133	33.83	36.40	2.57	0.24			0.07	0.007	0.
	34.10	34.80	сру/ру	-str chl alt w/ minor pot; mod-str fract w/ no orientation; few gtz/hem stringers @ 30-40,110-120 to CA; 2-3% cpy, 1-2% py as f.diss and blebs	r 8 9 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,								
	35.30	35.70	,ch1	-str-perv chl alt w/ minor pot; v.broken core w/ abund hem stringers & 30-40 to CA - 5-7% py as blebs & stringers	 	1 1 1 1 1			• • •					
	35.70	36.00	pot	-mod-str pot alt; mod fract @ 70-80 to CA; minor hem in few gtz stringers @ 5-10 to	, 41134 1	36.40	38.30	1.90	0.08			0.01	0.001	0.

PAGE : 3

-- 5

.

PROPERTY : Bagle HOLE No. : EA-91-12

+

INTERVI PRON	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERV PROM	AL(m) TO	SAMPLE WIDTH	Cu L	Pb 3	Zn \$	Ag oz/t	Au oz/t	ASSAYS
			CA; 1-2% cpy, py as f.diss		1 1 1 1								
36.70	37.00	potchl	-mod-str pot/chl alt; 1-2% cpy,py as bl 6 f.diss; minor ep; mod-str fract w/ 4 50 to CA w/ abund gtz stringers; min h	0- ;	e 1 1 1 1 1								
37.00	37.20	chl	-wk chl alt; tr-1% f.diss sulfides		1 1 1 1								
37.20	37.90	ch]	-mod chl alt; mod-str fract w/ abund ch stringers @ 40-50 to CA; tr-1% cpy,py blebs										
37.90	39.70	chl	-intense pervasive chl alt; no orig ter core badly broken; 1-2% cpy,py as f.di and blebs	t; 41135 88	38.30	41.10	2.80	0.07			0.01	0.001	0.
39.70	41.50	chl	-str chl alt; mod fract w/ abund qtz & stringers @ 50-60 to CA; 1-2% py, tr-1 cpy as diss	hem 41136 2	41.10	42.67	1.57	0.13			0.01	0.002	0.
			- 41.45-41.46: 1cm vn of cpy 0 90 to CA				• • •						
41.50	49.40	сру/ру	; wk-mod chl/clay alt of dior; wk-mod fr 	ep; ; 41137 88 ; 37202	42.67 43.70 45.25	43.70 45.25 46.80	1.55				0.03	0.001	
			<pre>-local occurance of cpy related to chl and vn</pre>	alt 37203 41138	46.80	47.55 50.55					0.04	0.001	
			43.67-43.97: abund chl vns @ 40-50 to 3-5% cpy,2-3% py as blebs related to mineralization does not extend outsid of vns	vns i			9 9 9 9 9 9 9						
			- 44.70-44.80: chl vnlt w/ 2-3% cpy,1-2 py as blebs in vn @ 50-60 to CA	28			• • • •						
		•	- 44.85-44.90: chl vnlt w/ 3-5% cpy as blebs in vnlt @ 50-60 to CA		r 6. 1.								
			- 45.42-45.52: 2 chl vnlts @ 50-60 to (w/ 3-5% cpy,2-3% py as blebs	CA			1						

PROPERTY : Bagle HOLE No. : EA-91-12

INTERVAL(m) PROM TO	MAJOR/MINOR UNITS	DESCRIPTION	'SAMPLE 'NUMBER	INTERVAL(m) PROM TO	SAMPLE WIDTH	Cu Pb	•	ASSAYS Au oz/t	
		* - 46.40-46.42: ch] vnlt @ 50-60 to CA w/ 1-2% f.diss py							
		- 48.40-48.50: chỉ vnlt @ 40-50 to CA w/ tr-0% cpy,1-2% py as diss w/ rust halos							
49.40 51.15	chl	- str chl alt; mod fract w/ gtz vnlts & stringers @ 30-40 to CA, also random localized stock work; minor ep/pot; 1-2% cpy,1-2% py as blebs & stringers in chl alt	37204	50.55 52.00	1.45				
		- 40.60-40.70: str pot alt w/ chl; gtz stock work; few mag blebs							
		- 40.70-41.20: pervasive chl alt w/ gtz stock work; 2-3% cpy, 1-2% py as stringers in str chl alt zones							
		 41.20-41.40: pervasive ep alt, w/ abund hem blebs; wk fract w/ few gtz stringers @ 40-50 to CA; orig text destroyed 							
		- 50.50-50.90: str pot alt w/ chl,few gtz vnlts & 70-80 to CA; tr-1% f.diss cpy,py							
		 - 50.90-51.20: str pervasive chl alt; mod- str fract w/ qtz vnlts & stringers & 50- 60 to CA; 2-3% py, 1-2% cpy as stringers cpy in chl zones 	1 1						
52.00 52.90	clychl	-wk clay/chl alt w/ v.wk fract w/ few gtz stringers @ 30-40 to CA; rare ep/pot; few chl stringers		52.00 52.80 52.80 55.27		0.06	0.04	0.001	
	• • • •	- 52.50-52.52: chl vnlt @ 50 to CA w/ 1-2% cpy as blebs, pot alt around margins							
52.90 55.90	chì	-str-pervasive chl alt; mod-str fract w/ few gtz stringers @ 60-70 to CA, some	41140	55.27 56.50	1.23	0.23	0.07	0.024 0.	

PAGE : 5

.

PROPERTY : Eagle HOLE No. : EA-91-12

1 ..

INTERVA PROM	(L(m) TO	MAJOR/NINOR DNITS	DESCRIPTION	SAMPLE Romber	intervai Prom	5(m) ; TO ;	SANPLE WIDTH	Cu L	Pb \$	3n L	Ag oz/t	Au oz/t	ASSAYS
			carb stringers; 1-2% py, tr-1% cpy as blebs; local minor pot clay alt; minor ep core v.broken			, , , , , , , , , , , , , , , , , , ,							
55.90	56.50	ep	-str-pervasive ep, orig text destroyed; str fract @ 40-70 to CA w/ abund chl/hem/ gtz stringers; 1-2% cpy as blebs in chl										
56.50	60.35	clychl		41141 37206	56.50 57.70	57.70	1.20 2.65	0.02			0.05	0.001	
			- 56.80-56.90: clay/mag alt in vnlts @ 30- 40 to CA										
			57.20-57.60: carb stock work		, 1 1	1	1						
			- 57.60-57.80: str pot alt w/ abund ep.chl stringers		9 1 1 1 1 5		1						
			- 58.30-60.35: mod chl/clay alt, abund chl stringers; tr hem; minor ep stringer cut fract @ 90		P 9 9 9 9 1								
60.35	61.15	сру/ру	 str-pervasive chl alt w/ blk chl vnlts; mod-str fract @ 30-40 to CA w/ abund chl stringers & vns, few pink carb stringers; 3-5% cpy, 2-3% py as blebs & stringers; tr hem in vns 		60.35	61.90	1.55	0.18			0.09	0.001	
61.70	62.30	ep	-wk ep alt zone; ep stringers @ 30-40 to CA; gtz stringer @ 120-130 to CA	37207	61.90	64.01	2.11						
62.30	65.23	ciychi	-mod-str clay/chl alt; core badly broken; str fract w/ abund chl stringers; several gtz stringers cutting @ 30-40 to CA	41143	64.01	65.85	1.84	0.01			0.01	0.001	
65.23	65.60	chl		37208	65.85	66.85	1.00						

PAGE : 6

1000

--!

PROPERTY : Bagle HOLE No. : BA-91-12

INTERV/ PROM	AL(B) TO	MAJOR/MINOR DNITS	DESCRIPTION	SAMPLE RDMBER 	INTERVAL (PROM	(m) TO	SAMPLE : WIDTH :	Cu t	Pb \$	3n \$	Ag oz/t	Au oz/t	ASSAYS
65.88	77,.40	clychl		41144 37209 41145	67.30 6	57.30 59.80 71.30	0.45. 2.50 1.50	0.02 0.02			0.04	0.001 0.001	
			* - 66.85-67.30: intense pot alt; total replacement by pot; str fract @ 50-60 to	41146 37210	71.30 73.70 76.10 77.80	73.70 ; 76.10 ; 77.80 ; 78.35 ;	2.40 2.40 1.70 0.55	0.02				0.001	
			* - 69.80-70.00: mod ep alt in fract @ 30-40 to CA; minor chl stringers	37212	78.35	80.75 ; ; ;	2.40						
			 70.30-70.60: wk-mod ep alt along fract @ 30-40 to CA 4 70.71-70.80: mod pot alt 										
			t - 71.80-72.00: str chl alt w/ minor pot; core broken up				1 1 1 1 1 1 1						
	÷		- 72.35-72.50: mod ep/pot lat along fract § 50-60 to CA; chl in fract w/ ep and pot is on the margins	, , , , , , , , , , , , , , , , , , ,		1 1 1 1 1							· · ·
			- 73.05-73.10: mod ep alt w/ adj pot alt - 73.40-73.60: mod ep alt w/ adj pot alt	1 1 1 1 1	9 8 . 9 1 1 1								
			* - 74.35-74.50: str-intense chl alt w/ ep; 1-2% py as blebs; zone # 60-70 to CA	L B B B B B L	 			·					
			- 77.25-77.30: str ep alt @ 40-50 to CA -dior w/ carb valt @ 0 to CA; chl alt w/i	41148	80.75	81.99	1.24	0.01			0.01	0.001	
80.00	84.30		vnlt w/ wk pot alt adj to vnlt	41149	81.99	84.30 85.80	2.31	0.04			0.01		
84.30	91.44	l _c hlcly	<pre>: -wk chl/clay alt, abund chl stringers 0 ; 70-80 to CA; tr-0% py, tr-1% cpy as blebs ; in chl vnlts ;</pre>		85.80 87.70	87.70 89.15 91.44	1.90 ¦ 1.45 ¦	0.08				0.001	
			- 84.40-84.60: str chl alt; 2-3% cpy, 1-2% py as blebs		, , , , , , , , , , , , , , , , , , ,		1						

1

PROPERTY : Eagle HOLE No. : EA-91-12

4

INTERVAL(m) PROM TO	NAJOR/MINOR UNITS	DESCRIPTION	SAMPLE Nomber	INTERVAL(#) FROM TO	SAMPLE WIDTH	Cu t	Pb %	Zn %	Ag oz/t	Au oz/t	ASSAYS	
		ł	1									
		- 84,70-84,90: mod pot/ep alt, wk fract; one gtz vnlt @ 50-60 to CA	1									
		 85.10-85.20: mod chl/pot/ep alt; mod-str fract w/ abund random gtz stringers; 2-3% cpy, 1-2% py as f.diss and blebs 	 									
		- 87.00-87.03: str ep/chl/pot alt on fract @ 70-80 to CA; 2-3% cpy stringers	1 1 1									
,		- 87.20-87.25: ch] vnlt @ 70-80 to CA - 87.75-87.95: str ep/pot alt @ 90 to CA; 3-5% cpy as stringers in 5 cm ep vn - 88.55-88.60: str pot alt zone @ 90 to CA							•			
		t - 89.25-89.65: str ep/pot alt € 50-60 to CA; tr-0% cpy; few gtz stringers € 10-20 140-150, 50-60 to CA t	1 									
				1 1 1 1	1 1 1							
				1 6 7 1	r 1 7 1							
				6 7 8 3	: : :	L						
			, 1 1 1	- 4 5 5 1	1							
			1 F T 1	1 1 1 1								
	`		- 	1 1 1 1	;							
			1 1 1	1 1 1 1								

PAGE : 8

1.1.2. But the second s Second s Second s Second s Second seco

ì

PAGE : 1

- m - 5 - - 5 - 7 m

PROPERTY : Eagle HOLE No. : EA-91-13 Grid System : Main/Gibson Collar Eastings : 40350.000 Collar Northings : 42500.000 Collar Blevations : 995.000 Collar Bearing : 221.00 Grid Baseline : 131.00

1

Collar Inclination : -45.00Grid Bearing : 41.00Pinal Depth : 81.68Claim No. : Eagle 2

.

Logged by : Praser Stewart Date : June 15 - June 16 Downhole Survey : acid test Drilled By : Van Alphen Core Size : BD

in the second

													200200
INTE FROM	RVAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVI From	то То	SAMPLE : WIDTH :	Cu	Pb	2n	Åg	Au	ASSAYS
	••						: :	1	٤	ł	oz/t	oz/t	
			1										
0.00	14.75	CASING	CASING : very badly broken rock w very little recovery (fault ?)	37801	14.57	17.57	3.00	0.02			0.01	0.001	
14.75	81.68	DIOR	DIORITE :	37802	17.57	20.05	2.48	0.02			0.01	0.002	0.
				37803	20.05	22.00	1.95	0.01			0.01	0.002	0.
			; - wkly farctured w common gtz-chl stringer ; and wk fract contr. potassic alt										
			- rare epidote alt - principle fracture @ 65-85 to CA										
22.00	28.51	chlpy		37804 37805	22.00 24.40	24.40 27.10	2.40	0.11 0.19			0.01 0.01	0.004 0.004	0. 0.
				37806	27.10	28.51		0.34			0.05	0.005	
			fract. controlled and are closely tied to the chlorite alteration										•
			<pre>; to the thiorite alteration ; - mod to strong pervasive potassic alt. ; - very little mag in this zone (1-5 %)</pre>										
			- rare epidote						•				
			<pre>; - 3-5 % cpy and tr-1 % py as fract contr. ; stringers and blebs w wk chl alt</pre>										
			; - there is a very strong fract control in ; the hornfels that strongly controls										
			the sulfide zones										
28.51	38.50	stkwrk		37807 37808	28.51 30.90	30.90 33.83		0.79 1.30			0.12 0.21	0.010	0. 0.
			destroying all primary textures	37809	33.83	36.29	2.46	1.15			0.19	0.011	0.
			- 8-10 % cpy blebs and stringers and 2-3 %	37810	36.29	38.50	2.21	0.32			0.02	0.004	0.
			- common late stage gtzstringers that cut all phases of alteration and mineraliz.										
	*********		, all phases of alleration and mineraliz.	· · · · · · · · · · · · · · · · · · ·			· ·						

PROPERTY : Bagle HOLE No. : EA-91-13

INTERVA	L(m)	MAJOR/MINOR	description	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
PROM	T 0	UNITS		NUMBBR	PROM	TO	WIDTH	Cu \$	Pb \$	2n t	Ag oz/t	Au oz/t	
			- common epidote, rare magnetite t	L F I I	r F F								
38.50	41.70	chlep	 fracture density and alt become much less intense w wk to mod fract contr. ep-gtz-pot-chl alteration 2-4 % cpy and 3-4 % py as blebs and stringers closely associated w chl alt. both the alt and mineral. has a very str. structural control w very little - of either penetrating very far into the host rock ((0.5 cm) 	37811 37012	38.50 40.70	40.70 42.20		0.26 0.21				0.004 0.002	0. 0.
			NOTE : the ratio of py:cpy increases rapid rapidly as you get farther away from the "stockwork" zone	, , , , ,									
41.70	48.35	chlep	 wkly fractured w common ep-chl +/- sulf stringers and some wk pot alt around fractures tr-1 % cpy and 2-3 % py as small blebs and stringers 	37813 37814 37815	42.20 44.60 47.45	44.60 47.45 48.35	2.85 ;	0.02 0.11 0.02			0.01 0.01 0.01	0.001 0.001 0.001	0.
			46.10 - 46.15 : mod to strong chlorite alt w 5-6 % cpy as stringers, tr- 1 % py	F 1 1 1 1									
48.35	49.35	dyke	Syenite Dyke : - v. c.gd. (0.8-1.2 cm) intrusive dyke comprised dominantly of K-feldspar - common small chl-ep blebs/blotches and 3-4 cpy + 1-2 % py s blebs/dissem.	37816	48.35	49.35	1.00	0.28	`		0.06	0.001	
49.35	52.10	potchl	· · · · · · · · · · · · · · · · · · ·	37817 37818	49.35 51.60	51.60 53.00		0.03 0.02				0.001 0.002	
52.10	81.68	gtz	stringers @ 40-70 to CA and wk fract.	39128 37819 37820	53.00 54.50 57.80	54.50 55.40 59.20	0.90 ;	0.02				0.002 0.001	0.

PROPERTY : Bagle HOLE No. : EA-91-13

-----'----------ASSAYS INTERVAL(m) HAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) SAMPLE TO DNITS NUMBER FROM 10 I WIDTH Cu Pb Au FROM 20 Åg ł ł t oz/t oz/t 1 1 - 1 : - rare epidote ; 39126 59.20 60.25 ; 1.05 ; 60.25 2.75 ; - tr cpy and py 39127 1 63.00 : 39129 63.09 64.50 ; 1.41 ۲. 37821 64.50 65.95 ; 1.45 ; 0.02 0.002 ; 54.10 - 54.20 : ep vn € 50 to CA 0.03 0. : 39130 65.95 68.63 ; 2.68 : 1 : 71.00 - 73.00 : fault zone - v. badly ; 39131 68.63 71.20 ; 2.57 1.20 ; broken w about 70 % recovery ; 39132 ; 72.70 73.90 : ; 39133 73.90 76.50 ; 2.60 : - wk chl-pot alteration ; 37823 76.50 77.65 ; 1.15 ; . 0.01 0.01 0.002 0. : 74.30 - 74.50 : fault zone -badly broken ; 39134 77.65 78.84 : 1.19 ; 78.84 with about 80 % recovery 39135 89.35 ; 1.51 ; * 37824 80.35 81.68 ; 1.33 ; 0.03 0.01 0.002 ; 79.00 - 79.10 : gtz-chl shear-zone, tr cpy : 80.20 - 81.00 : wk perv pot-ep-chl alt - tr cpy ŧ EOH = 81.68 m

PAGE : 1

 PROPERTY : Eagle

 HOLE No. : EA-91-14

 Grid System
 : Main/Gibson

 Collar Eastings
 : 37650.000

 Collar Morthings
 : 40800.000

 Collar Blevations
 : 1200.000

 Collar Blevations
 : 221.00

 Grid Baseline
 : 131.00

1.8

Collar Inclination :-45.00Grid Bearing :41.00Final Depth :75.89Claim No. :Bagle 9

Logged by : Praser Stewart Date : June 16 - June 17 Downhole Survey : acid Drilled By : Van Alphen Core Size : BD

I NTER PROM	RVAL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVI FROM	AL(m) TO	SAMPLE WIDTH	Cù L	Pb \$	Sn Ş	Ag oz/t	Au oz/t	ASSAYS
0.00	75.89 6.3	BTHPBL Q	CASING	37776	6.30	8.53	2.23	0.01	0.01	0.02	0.01	0.001	
			 BIOTITE HORNFELSED TUFF : (6.30 - 75.89) v. f.gd. dark purplish grey banded tuff very hard flinty siliceous contact metamorphosed volcanic tuff several zones contain fine laminae on scale of 2-4 mm; banding alternates from coarser lt purplish grey to finer dark purplish grey the ltr coarse bands contain 5-8 % py as dissem. cubes (1-2 mm) generally the unit is wk to mod fract w common py stringers (2-3 % py) banding occurs on the 2-4 mm scale as well as the 0.5-1.0 m scale, but it is the finely laminated zones that contain the py. 										
7.30	8.2	0 banded	- finely banded laminae w 5-8 % dissem. py in the bands Q 10-15 to CA	37777	8.53	10.90	2.37	0.01	0.01	0.01	0.01	0.001	
10.30	10.5	0 seric	- lt green bleaching - gtz-sericite(?)- around fractures @ 10-15 to CA	37778	10.90	13.10	2.20	0.01	0.01	0.01	0.01	0.001	
11.15	11.5	0 banded	- finely laminated tuff w qtz vnlts and 4-6 % dissem py - laminae @ 10-15 to CA										
11.90	12.1	0 fault	I - fault zone (65 to CA - perv gtz vning and clay alt (gouge) w some chl-seric alt, tr py							,			
12.50	13.0	0 qtzser	; ; - int perv lt green bleaching (gtz-seric.)	37779	13.10	15.60	2.50	0.01	0.01	0.02	0.01	0.001	

PROPERTY : Eagle HOLE No. : EA-91-14

·----SAMPLE ASSAYS INTERVAL(m) MAJOR/MINOR DESCRIPTION SAMPLE INTERVAL(m) NDMBER FROM **T**0 WIDTH Au UNITS Cu Pb FROM 10 Zn Λg ł ٤ Ł oz/t oz/t w 2-5 % disem py and stringers 15.60 18.10 : 2.50 0.01 0.01 0.01 0.01 0.001 13.50 banded - finely laminated @ 10-15 to CA w 8-10 % ; 37780 13.30 dissen. py 16.80 17.40 fault fault gouge/breccia w common gtz stringers and 2-3 % py stringers & diss. . banded - finely laminated @ 10-15 to CA is still | 37781 18.10 20.90 2.80 0.02 0.15 0.28 0.83 0.007 0. 17.40 19.70 visible but now a later stage gtz stringers prosscut the banding @ 45-60 to the banding - 2-3 % py fract contr. and dissem w common gtz stringers 19.70 20.00 strongly fractured dark purplish grey fract hornfels w 8-10 % py stringers @ 20-30 to CA : 37782 2.50 1 0.12 0.07 0.25 0.003 strongly fract. bt hfels w 15-20 % py 20.90 23.40 0.01 20.40 21.10 fract stringers and dissem. @ 20-30 to CA 22.25 22.35 qtzser - It green bleaching (gtz-seric ?) around fracture @ 2 to CA w 4-6 % py and 3-4 % pyrrhotite 22.70 22.75 - It green gtz-seric alt zone w 3-5 % pyrr ; 37783 23.40 25.70 2.30 0.01 0.01 0.01 0.02 0.001 qtzser and 1-2 % py 2.80 0.01 0.01 0.01 0.001 - mod fract w mod perv qtz seric, alt 37784 25.70 28.50 0.01 24.70 25.60 qtzser - rare carb-chl stringers - tr py 26.20 27.80 - mod to strongly fract and washed out to seric a lt grey green sericitic color w common chl-sulf stringers - 3-4 % py in stringer @ 10-15 to CA 2.70 - wkly fractured w 1-2 % py stringers : 37785 28.50 31.20 ; 0.01 0.01 0.01 0.01 0.001 27.80 42.65 hfels - some wk lt green bleaching (sericite) ; 37786 31.20 33.50 ; 2.30 ; 0.01 0.01 0.02 0.01 0.001 ; 37787 33.50 36.40 ; 2.90 : 0.02 0.01 0.02 0.01 0.001 around fractures only

.

PROPERTY : Eagle HOLE No. : EA-91-14

.

INTERVA FROM	AL(B) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE	INTERV. PROM	AL(m) TO	SAMPLE WIDTH	Cu	Pb	Zn	ya	Au	ASSAYS
								•	\$	¥	oz/t		
		·	- common gtz +/- carb stringers - relatively fresh biotite hornfels	37788	41.80	42.85	1.05	0.01	0.01	0.01	0.01	0.001	
42.65	47.85	Beric	 washed out to lt grey green (sericite) wkly fract w common chl-carb stringers and blebs +/- sulfides 1-2 % py as late stringers fracturing has very irregular orientat. 	37789	46.75	48.90	2.15	0.01	0.01	0.01	0.01	0.001	
47.85	50.70	hfels	- dk purplish bt hfels w tr py										
50.70	53.80	chlcrb	- wkly washed out to a lt grey green around fract w common chl-carb stringers - tr-1 % py	37790	52.60	53.75	1.15	0.01	0.01	0.01	0.01	0.001	0.
53.80	56.25	seric	- wkly fract. w sericitic alt around the fractures (0.5cm) - tr-1% py w ch)										
56.25	57.40	Beri c	 strong perv. sericitic alt w few carb stringers and some fract contr. chl alt tr-l % py 	37791	57.40	58.80	1.40	0.01	0.01	0.01	0.01	0.001	
58.70	61.00	seric	 strong perv sericitic alt w common carb- gtz stringers and few chl stringers tr-1 % py along fract 	37792	58.80	61.10	2.30	0.01	0.05	0.16	0.15	0.023	0.
61.00	75.89	crbgtz		37793 37794	61.10 69.25	62.90 70.50		0.02 0.03	0.01 0.01	0.02 0.01	0.02 0.01	0.002 0.001	0.
			69.90 - 70.40 : fault breccia zone										
			74.00 - 74.10 : ep vnlt w 2-3 % py			1							
			75.55 - 75.89 : wk sericitic alt, rare ep - tr-1 %py										
			EOH = 75.89										

PROPERTY : Eagle HOLE No. : EA-91-15 Grid System : Main/Gibson Collar Eastings : 37562.500 Collar Northings : 408000.000 Collar Blevations : 1202.000 Collar Bearing : 221.00 Grid Baseline : 131.00

•

÷

Collar Inclination : -45.00Grid Bearing : 41.00Pinal Depth : 91.34Claim No. : Eagle 9

.

Logged by : Regan Chernish Date : June 20 - June 21 Downhole Survey : acid Drilled By : Van Alphen Core Size : BD

II Proi		AL(m) TO	M	IAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NUMBER	INTBRVAI Prom	.(m) TO	SAMPLE WIDTE	Cu ł	Pb \$	Zn Ł	Ag oz/t	Au oz/t	ASSAYS
0.00		4.40		CASING	CASING		4 1 2 2 1 1			5 1					
4.40		91.34		VHPLS	 -VOLCANIC HORNPELS: f.gd; dk green-gray; mod-str fract; minor gtz stringers & vnlt common white alt(seric); rare purple biot stringers; siliceous w/ flinty fracture; rare banding of hfls(dril) scour?) 		, , , , , , , , , , , , , , , , , , ,								
4	.40	7.	01	seric	-str seric alt; mod recovery (60-70%) core badly broken; str fract w/ fract @ 60-70, 150-160 to CA; minor purple biot infract; 2-3% py as blebs & stringers w/ some rust alt seen in few fract		4.40	7.50	3.10	0.02	0.01	0.03	0.01	0.001	
. 7	.01	10.	50	serchl	-wk-mod seric/chl alt; rare purple biot stringers; 2-3% py as blebs and stringers -most of min occurs in alt zones	37752 37753	7.50	9.95 11.50			0.01 0.06	0.02 0.18	0.01 0.86	0.001 0.062	• •
					- 7.25-7.65: abund biot stringers & 50-60 to CA; 2-3% py as blebs & stringers - 7.65-7.85: mod-str chl/pot/seric alt w/		1 1 1 1 1 1 1				,				
					minor ep @ 160 to CA; alt zone cuts biot stringers @ 50-70 to CA; several chl fract @ 50-70 to CA cut alt zone; 3-5% py as blebs *										
					- 8.40-8.65: mod-str chl/pot/seric alt; 2-3% py as blebs *		1 5 9 1								
10.	.50	15.	24	seric	<pre>-mod-str seric alt; 3-5% py as diss,blebs, & stringers (str fract control); mod recovery{70%); tr-1% f.gd black bands (gal?); tr-minor purple biot; str fract; abund ch] in fract; few gtz stringers @</pre>	37754 37755		14.02 16.40		0.01 0.01	0.01 0.02	0.05 ·0.05	0.08 0.10	0.003 . 0.007	

.

PROPERTY : Bagle HOLE No. : BA-91-15

•

- 19

INTERVI FROM	AL(m) TO	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE Nomber	INTERVA Prom	L(n) TO	SAMPLE WIDTH	Cu L	Pb %	30 2	Ag oz/t	Au oz/t	ASSATS
			40-50,135-145 to CA; wk banding @ 70-80 to CA(drill scour?)										
			- 10.65-10.85: str perv seric alt; 3-5% py		1 1 1								
			- 10.85-11.20: wk seric alt; 3-5% py; 3-5% f.blk massive mineral(gal?)) 9 9 7								
			- 11.20-12.15: mod-str seric w/ minor chl; tr-1% py										
			- 12.50-13.00: str fract w/ gtz stringers @ 40-50 to CA; wk-mod seric alt; 2-3% py										
			- 13.00-14.02: abund chl; lt.purple biot bands @ 60-70 to CA; tr-1% py		4 1 1 1 4								
			 14.80-15.24: str fract w/ abund gtz vnlt 0.40-50 to CA; 3-5% py as f.diss,blebs,6 stringers; dk.gray blebs 6 bands of dk mineral(gal?); minor chl 										
15.24	17.60	chl	- str chl alt w/ minor seric; mod fract w/ abund gtz stringers @ 50-60 to CA; 1-2% py f.diss & stringers(str fract control)	37756	16.40	18.65	2.25	0.01	0.14	0.30	0.27	0.001	•
			- 16.10-16.80: mod recovery(60%); mod-str seric alt; 1-2% py										
			- 17.07-17.60: str ch] alt;wk fract w/ few carb vnlt @ 50-60 to CA; 2-3% py										
17.60	21.40	ga l sph	-mod-str seric alt w/ minor chl; rare pot; str fract w/ abund gtz vnlt & stringers @ 40-50 to CA; tr blue carb(smithsonite?); 3-5% py stringers,blebs; 1-2% gal; 1-2% sphal		18.65 21.03	21.03 23.07			0.05 0.50	0.18 1.06	0.15 1.03	0.003 0.018	
		·	- 18.40-19.30: 5-7% py stringers; 3-5% gal vnlts @ 40-60 to CA; 1-2% sphal							•			

.

.

-ì-

PROPERTY : Bagle HOLE No. : EA-91-15

14

INTERV.	AL(m)	MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERVA	L(m)	SAMPLE :						ASSAYS
PROM	TO	UNITS		NUMBER	FROM	TO	WIDTH	Cu t	Pb \$	Zn L	Ag oz/t	Au oz/t	
			<pre>- 19.30-20.03: 7-10% py;few sphal vnlts(2- 3%) @ 60-70 to CA;1-2% gal stringers; abund chl im tension cracks t</pre>	 									
			- 20.03-21.40: mod ch] alt w/ minor pot/ep alt; stk work style fract; 2-3% py	1	1 1 1 1								
21.40	23.50	ga 1 sph	-str seric alt; stk work fract; abund ch] stringers; 7-10% py stringers @ 20-30 to CA; 1-2% gal; 1-2% sphal	37759	23.07	26.40	3.33	0.02	0.01	0.03	0.01	0.001	
			- 22.46-22.95: banded sulfides @ 50-60 to CA: 10-15% py; 3-5% gal; 3-5% sphal; minor brecc	1 1 1 1 1 1	1 1 1 1 1 1								
			- 22.95-23.50: stk work w/ chl stringers; 3-5% py, tr-0% gal	† 	1 1 1 1								
23.50	27.40	chl	-wk-mod chl alt; mod fract w/ few gtz stringers @ 40-50 to CA; common purple biot; 1-2% py stringers & diss; minor stk work w/ chl/gtz infilling	37760	26.40	29.55	3.15	0.91	0.01	0.01	0.01	0.001	
			- 25.40-25.50: str seric alt; 5-7% py; tr- 1% gal; str fract	9 4 8 1	0 0 1 1								
27.40	33.95	ch]		37761 37762	29.55 32.20	32.20 34.80		0.02 0.01	0.01 0.01	0.05 0.03	0.01 0.01	0.001 0.001	
			 - 30.18-32.40: common purple biot in vnlts 1-2% py blebs,diss; local shattering filled by gtz 										
			- 32.40-32.55: minor ep; 2-3% py stringers blebs; gtz vnlts @ 20-30 cut by carb stringers @ 130-140 to CA;										

.

PROPERTY : Bagle HOLE No. : EA-91-15

44

INTERV.	AL(m)	MAJOR/MINOR	DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE						ASSAYS
FROM	TO	UNITS	; ;	NUMBBR	PRON	TO	WIDTH	Cu 1	Pb %	Zn t	Ag oz/t	Au oz/t	
			- 32.85-33.10: mod ep; 2-3% py diss,blebs										
			- 33.10-33.95: 3-5% py as diss,blebs										
33.95	44.10	ga l sph			34.80 37.20 40.05 41.90	37.20 40.05 41.90 44.70	1.85	0.01 0.01 0.01 0.01	0.03 0.28 0.27 0.01	0.04 0.63 0.11 0.03		0.002 0.017 0.004 0.001	
			- 33.85-34.20: 5-74 f.gd py & 2-34 f.gd gal stringers @ 50-60 to CA										
			- 35.97-36.60: wk seric alt;carb stk work tr-1% py										
			- 36.60-38.30: 2-3% py, tr-1% gal blebs; 5-7% blk mineral(sphal?) @ 50-60 to CA										
			- 38.30-39.62: 10-12% py; 3-5% gal; tr-1% sphal; sulfides in stringers @ 50-60 to CA		, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;								
			- 39.67-40.90: str chl alt w/ stk work, 7-10% py; 1-2% gal; 2-3% sphal?		r 1 1 1								
			- 40.90-41.80: stk work/brecc; 5-7% f.gd py; 2-3% gal as blebs & stringers; 2-3% sphal as blebs		9 9 9 9 9				`				
			- 41.80-44.10: minor chl;1-2% py cubes, blebs;str fract,shattered text;abund gtz										
44.10	48.16	chl	-wk-mod chl alt; str fract; rare qtz/carb stringers @ 30-50,120-140 to CA; 1-2% py as blebs & stringers; rare biot stringers common vn & vnlt of blk alt(chl?)	37768	44.70 47.20	47.20 49.15	2.50 1.95	0.01 0.01	0.01 0.29	0.05 0.18	0.04 0.68		
			* - 44.10-44.76: carb stk work; 1-2% py; stk ; work cut by stringers @ 10-20 to CA									·	

.

PROPERTY : Bagle HOLE No. : EA-91-15

. .

1.

INTERVA	AL(m) TO	NAJOR/MINOR DRITS	DESCRIPTION	SAMPLE Nomber	INTERVA Prom	L(m) TO	SAMPLE WIDTH	Cu	Pb	2 n	Àq	Au	ASSAYS
PROM	TU	UNITS	۱ ۱ ۱	• WVIDDN • • • • • • • • •	r KVM	10		در ع	\$	8 	oz/t	oz/t	
			- 47.80-48.16: wk-mod seric alt;minor chl 2-3% py										
48.16	48.40	chl	-str chl alt; 10-12% py as f.gd blebs and stringers; 2-3% f.gd gal; 1-2% sphal; min stringers @ 50-60 to CA										
48.40	49.25	ga l sph	-str seric alt;brecc;tr chl;3-5% py f.gd blebs,stringers;tr-1% gal stringers & blebs;tr-0% sphal;min str fract cont; rare blk alt(chl?)	37769	49.15	52.63	3.48	0.01	0.03	0.08	0.07	0.001	
			- 48.20-48.25: perv carb; fract \$ 50-60 to CA; 10-12% py as diss										
			- 48.60-48.65: 10-15% py, 3-5% gal, 1-2% sphal @ 70-80 to CA (some min in gtz vn)										
49.25	52.73	seric -	<pre>-mod seric/chl alt;str fract;gtz stringers 6 vnlt @ 0-5 to CA,cut by 40-50 to CA; common chl stringers;1-2% f.gd py;tr-0 gal,sphal; minor blk blocks of alt { (chl?); min str fract control</pre>	37770	52.63	55.05	2.42	0.01	0.14	0.13	0.10	0.003	
			- 50.45-50.47: 2cm gtz vn € 40-50 CA										
			- 51.10-51.20: gtz vnlt @ 50-60 to CA w/ 7-10% py, 1-2% gal on edges of vnlt										
			- 51.60-52.03: abund blk blocks alt(chl?)	1 1 1 1 1 1									
52.73	53.80	8eric	-str perv seric alt; str fract w/ abund chl stringers @ 40-50 offset fract @ 70- 80 to CA; chl alt more perv along fract; tr-1% py as f.diss; l.contact gradational										
53.80	54.25		-str blk(chl?)/seric alt; 5-7% py as blebs & stringers; 1-2% f.gd gal; min fract cont; wk banding @ 50-60 to CA; str fract w/ abun gtz stringers @ 140-150 to CA									•	
			1 W/ ADUN 402 BEIINGEIS E 140 150 CO CA										

PAGE : 5

)

.

PROPERTY : Bagle ROLE No. : EA-91-15

.

INTERV	AL(m)	MAJOR/MINOR	description	SAMPLE	INTERVA	L(m)	SAMPLE :						ASSAYS
PROM	TO	DNITS		NUMBER 	PROM	T O	WIDTH	Cu Ł	Pb 1	2n 1	Ag oz/t	Au 02/t	
			- 53.80-54.08: 10-12% py w/ 2-3% gal; min @ 50-60 to CA *										
54.25	57.00	chlser	-mod chl/seric alt; seric dominant @ top of interval; str fract w/ abund gtz vnlts & stringers @ 70-80 to CA (few random); abund chl stringers; minor blk blocks {chl?}; 1-2% f.diss py, tr-1% gal; tr hem		55.05	57.91	2.86	0.01	0.01	0.22	0.01	0.001	
57.00	59.70	chl	-wk chl ait; str fract w/ abund gtz/carb vnlts & stringers @ 40-50 to CA, abund random fract; common hem in stringers; 2-3% py cubes,blebs,stringers; l.contact gradational @ 30-40 to CA	37772	57.91	60.45	2.54	0.01	0.01	0.03	0.01	0.001	
59.70	61.50	seric	-str seric alt; mod str fract;abund chl stringers & vnlts @ 40-50 to CA;common biot in fract; tr py	37773	60.45	63.30	2.85	0.01	0.01	0.03	0.01	0.001	
61.50	67.00	chì	-wk-mod chl alt; str fract w/ abund gtz/ carb stringers & vnlts @ 40-50 to CA,carb vnlts @ 5-10 cut all; rare hem; 1-2% py; tr-1% small blk blebs(sphal?); rare seric	37775	63.30 65.60	65.60 68.70		0.01 0.01	0.01 0.01	0.06 0.01	0.01 0.01	0.001 0.002	
			- 63.40-63.80: chl? bands @ 90 to CA; 2-3% py as blebs & stringers	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
			- 63.90-65.20:str-perv seric alt;2-3% py; minor chl - 66.45-67.00: 2-3% py blebs	, , , , , , , , , , , , , , , , , , ,									
67.00	73.00	8eric	-str seric alt;mod-str fract,brecc in local areas;abund gtz vnlts & stringers @ 0,70-80,20-30(old-young) to CA; common fuschite;1-2% py as diss,stringers;abund small blk blebs(chl?sphal?)	37726 37727	68.70 71.55	71.55 74.40		0.01 0.01	0.09 0.15	0.18 0.55	0.30	0.003 0.018	
			- 67.70-67.80: gtz/carb vn @ 0 to CA; 5-7% py, tr-1% gal										

)

PROPERTY : Bagle HOLE No. : EA-91-15

.

INTERV		MAJOR/NINOR	; DESCRIPTION	SAMPLE	INTERV	AL(m)	SAMPLE :						ASSAYS
PROM	TO	UNITS		NOMBER	FROM	TO	WIDTR	Cu Ł	Pb \$	Zn L	Ag oz/t	Au oz/t	
			; - 67.80-68.35: 10-15% blk specks(sphal?); 1-2% py, str fract	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1								
			- 68.60-68.70: several py/blk speck stringers @ 30-40 to CA offset by fract @ 70-80 to CA; tr-1% py	1 1 1 1 1 1	1 1 1 1 1 1 1								
			- 71.15-71.93: 3-5% py;1-2% gal;2-3% sphal all min @ 30-40 to CA	1 1 1 1 1 1	1 1 1 1 1								
			- 71.93-72.70: 2-3% py,tr-1% gal,3-5% blk specks(sphal?)	5 T T T T	f 1 1 1 1								
			- 72.70-73.00: 10-15% py, 2-3% gal vnlt @ 80-90 to CA, 3-5% blk specks(sphal?), 1-2% brown sphal	f 1 1 1 1 1 1	4 1 1 1 1 1 1								
73.00	74.60	chl	, -wk chl alt; str fract w abund gtz vnlts & stringers @ 70-80,30-40,120-130(y-o);1-2% py blebs; abund 5mm stringers @ 50-60 CA		74.40	77.15	2.75	0.01	0.01	0.02	0.02	0.001	
74.60	91.34	8eric	-str seric alt w/ minor chl;2-3% blk spks (sphal?);str fract w/ abund gtz stringers & vnlts @ 40-50 cut by vnlt @ 150-160 to CA;common fuschite;tr py as bleb & string	37730 37731 37732	77.15 80.10 82.74 85.75	80.10 82.74 85.75 88.39	3.01 2.64	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.002 0.001 0.001 0.001	
			- 74.60-75.28: minor chl alt;gtz vn @ 150- 160 cut all; 2-3% py blebs; 10% blk specks(sphal?)	37733	88.39	91.34	2.95	0.01	0.01	0.01	0.02	0.007	
			- 76.10-76.70: gtz vn & fract @ 150-160 to CA; 1-23 py,tr gal,tr hem on edge of vn										
			- 76.85-77.15: 5-7% blk specks(sphal?); 1- 2% f.gd py	• • •									
			- 77.15-77.35: 3-5% blk spks(sphal?)			1						÷	
		1	- 79.60-80.10: 5-7% py; tr-1% gal				i 1 1			•			
			- 80.10-81.99: wk chl;3-5% py; 10cm brecc										

PAGE : 7

)

PROPERTY : Eagle HOLE No. : EA-91-15

4

INTERVAL(1) MAJOR/MINOR YROM TO UNITS	DESCRIPTION	SANPLE Nomber	INTERVAL(PRON	m) TO	SAMPLE : WIDTH : ;	Cu ¥	Pb 1	In L	Ag oz/t	ASSAYS Au oz/t	
	1-2% ga]			;	;						
	- 83.84-83.94: vuggy;2-3% py stringers @ 30-40 to CA		f f f f								
	- 85.20-85.23: brecc(fault?) @ 60 to CA										
	- 87.32-87.39: brecc # 60 to CA; 2-3% py			1	1						
	- 87.49-88.45: brecc(fault?); 5-7% py		r 8 8 8								
	- 88.45-89.34: 3-5% py		t C D								
	- 89.34-89.85: core broken;3-5% py;tr-1% gal				1						
	- 90.70-91.25: gtz vn \$60-70 to CA;3-5% py										
	- 91.29-91.34: 3-5% py,tr gal										
	BOH = 91.34				1 1 1						
			8 9		;						·
			8 1 9								
					1						
					1						
				i i							
					1						

PAGE : 1

PROPERTY : EagleHOLE No. : EA-91-16Grid System : Main/GibsonCollar Bastings : 37500.000Collar Northings : 40440.000Collar Blevations : 1245.000Collar Bearing : 221.00Grid Baseline : 131.00

Collar Inclination :-45.00Grid Bearing :41.00Final Depth :67.66Claim No. :Bagle 9

Logged by : Praser Stewart Date : June 21 - June 22 Downhole Survey : acid Drilled By : Van Alphen Core Size : BD

INTERVAL(m) MAJOR/MINOR PRON TO UNITS	DESCRIPTION	SAMPLE NUMBER	INTERVA PROM	1 L(m) TO	SAMPLE WIDTB 	(PE	iu M	Pb ppm	ān pp n	Ag ppm		GBOCRENICAL SAMPLES Au ppd
0.00 67.66 VHPELS 0.00 5.70 CASING	* VOLCANIC BORNFELS : (5.70 - 67.66) - dk green f.gd. hornfels - mod fract w common gtz +/- chl stringers	41156	5.70 8.75 11.40 13.70 14.88 16.85	8.75 11.40 13.70 14.88 16.85 19.20	2.65 ; 2.30 ; 1.18 ; 1.97 ;	115 119 94 104	2 2 2 2 31	54 49 55 63 64 109	5	3 3 2	1 2 4 2 9 230	0.07% 200 6.76 0.84 Ag
17.00 25.38 clay	common carb-chl stringers	41157 41158 41159	19.20 21.70 24.58	21.70 24.58 26.28		142	630 605 16	145: 850 214	1	1.6	120 350 100	
	fresh hornfels 1 20.60 - 21.70 : strongly fract w int perv clay +/- ep alt and common carb stringers - 15-20 % dissem. py + tr-1 % galena and 1-2 % sphal blebs - strong fracture control on sulfide mineralization *							,				
	21.70 - 22.86 : Breccia Sone - int fract and perv clay alt to dk grey black to grey green - 10-15 % dissem py - common carb stringers * 22.86 - 25.38 : perv wk clay alt (+/- ep)							,				

:

. . 1

14

٠

INTERV. PROM	AL(m) TO	NAJOR/NINOR UNITS	DESCRIPTION	SAMPLE NUMBER	I NTERVA Prom	L(m) TO	SAMPLE WIDTH	(PF	lu Me	Pb ppm	3n ppm	Ag ppm	Au ppb	
			<pre>w common chl-carb stringers - 5-8 % dissem py, tr galena and tr sphalerite - strongly fractured *</pre>											
25.38	27.40	clay	- mod to strongly fract w perv lt green clay-ep alt w 6-8 % dissem py - discrete cubes 1mm x 1mm	41160	26.28	28.85	2.57	243 .	70	227	1.	3)	
27.40	29.47	vhfels	- wkly fract rel fresh grey black volcanic hornfels, tr-1 % py	41161	28.85	31.60	2.75	129	100	182	3.	5	20	
29.47	30.17	brecc	 breccia zone : int fract w perv clay- carb alt and 10-15 % dissem py and py stringers tr sphal and galena fault gouge 											
30.17	31.10	clay	 strongly fract w common carb-chl stringers and perv clay alt tr-1 % dissem py 											
31.10	33.57	vhfeis	 wk to mod fract w common fract cont clay ep-carb alt +/- chl alt tr-l % py rel fresh 	41162	31.60	34.40	2.80	142	9	115	.5	, (5	
33.57	35.20	clay	- int perv clay alt - upper contact sharp @ 50 to CA - common chl-carb stringers - 4-5 % dissem py cubes	41163 41164		37.20 39.60	2.80 2.40		59 4	262 76	.7 .5		19 5	
37.45	37.95	dyke	 feldspar porphyritic volcanic dyke contacts irregular and gradational over few cm's 								r			
37.95	43.58	4 4 1 1 1		41165 41166		41.95 44.00			7 14	81 206	.4 .8		·	

.

۰.,

1.

INTERVA PROM	11. 10	MAJOR/MINOR UNITS	DESCRIPTION	SAMPLE NOMBER	INTERV. PRON	AL(B) TO	SAMPLE WIDTH		Cu pp n	Pb ppm	3n ppn		ig Ma	Au ppb	GEOCHENICAL SAMPLES
43.58	45.32	carb	t - dk green volc. hfels w some late stage fracturing and common carb vnlts/string - some minor wk clay alt around fractures - 1-2 % py w carb stringers	41167	44.00	46.70	2.70	152	5	64	•	.4	3		
45.32	49.15	crbch]	- wk to mod fract (late stage) w carb-ch] stringers and 1-2 % dissem py	41168	49.10	50.50	1.40	113	5	66	•	.6	73		
49.15	51.30	carb	- mod to strongly fract w common stringers and vnlts - washed ou to a lt greyish green - 3-4 % dissem py and py blebs - rare epidote												
52.20	53.70	bthfel	 mod to strongly fract (late stage) w wk biotite hornfelsing and common chl-carb alteration brecciated w some clasts becoming subrou subrounded - carbonate cement tr-1 % py 	:	52.20	53.90	1.70	117	2	32		.3	4		
53.70	67.66	vhfels	 wk to mod fract (late stage) w very little to no alteration common carb-chl stringers tr epidote tr py 	41170 41171	57.80 62.90	59.20 64.30			2 2	41 42 、	•	.5 .4	2 4		
			64.00 - 64.30 : int perv ep-chl alt copmpletely replacing host - dominantly epidote - 5-6 % dissem py	0 0 1 1 1 1											
			BOR = 67.66 m												
		-													

.

PAGE : 1

PROPERTY : EagleHOLE No. : EA-91-17Grid System: Main/GibsonCollar Eastings: 37562.000Collar Northings: 40400.000Collar Blevations: 1248.000Collar Bearing: 221.00Grid Baseline: 131.00

Collar Inclination :-60.00Grid Bearing :41.00Pinal Depth :82.30Claim No. :Eagle 9

.

Logged by : Fraser Stewart Date : June 22 - June 23 Downhole Survey : acid Drilled By : Van Alphen Core Size : BD

INTER PROM	VAL(m) TC		MAJOR/MINOR UNITS	DESCRIPTION	; SAMPLE ; NOMBER ;	INTERVAI PROM	;(m) TO	SAMPLE WIDTH	C PP				•	GEOCREMICAL SAMPLES Au pd
0.00 0.00	82.30 2) 2.20	VHFBLS CASING	CASING	9 8 9 9 9 9 9									
				<pre>VOLCANIC HORNFELS : (2.20 - 82.30) - dk green f.gd. flinty hfelsed volcanic - wk to mod fract w common carb +/- chl stringers - dominant fract @ 50 to CA - rare epidote - tr py</pre>	9 5 5 1 1 7 8 9 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1								
2.20	8	3.00	broken	- very badly broken w about 75 % recovery	• • •	F F F								
8.00	25	5.97	vhfels	 wk to mod fract w common carb-chl stringers tr-1 % py very fresh rock 	9 8 9 9 1 1 1 1 1	P 1 1 1 1 1 1 1 1		0 0 1 1 1 1						•
25.97	26	5.80	clycrb	- int perv clay-carb alt w common chl stringers, tr py	1 									A.
26.80	39	.30	crbch]	- wk to mod fract w common carb-chl stringers, tr py	41176	36.40	39.30	2.90	96	ł	74	.5	18	1.706 5 kanner 11.1m
39.30	43	.40	c}ygtz		1 7 1	40.65	40.65 42.00 43.40	1.35	258	3583 6393 5780	7008 11410 14099	34 54.1 54.8	2160 1990 1230	1.09 220 Ag 47.72 9 40 0.53 % P'0
43.40	52	.80	crbch l	dtz stringers	41180 41181 41182	45.70	45.70 48.00 50.80		170	391 33 44	658 103 177	4.5 .6 .7	54 12 11	

.

PROPERTY : Bagle HOLE No. : BA-91-17

100

INTERVAL (PROM	n) To	MAJOR/MINOR UNITS	DESCRIPTION .	SAMPLE NOMBER	INTERV PROM	AL(m) TO	SAMPLE NIDTH	C PP		eb Si Su ppi)
54.50	59.43		* - strongly fract w int perv clay-gtz-carb alt w common gtz vnlts/stringers - 15-20 % dissem py and py stringers, 3-4 % sphalerite stringers and 1-2 % galena blebs - main sulfide stringers & 30-40 to CA	41186	50.80 53.00 54.50 55.65 57.00 58.30	53.00 54.50 55.65 57.00 58.30 60.85	1.50 1.15 1.35 1.30	92 200 365 261	1051 - 23 7669 9287 4871 73	3301 113 15258 26221 10512 263	8 1.8 125.6 104.8 56.2 1.2	91 9 2670 1120 740 41	13% Ro over 3.200 135% Ro over 14.5 gr Ag 1.116 St A.4
59.43	57.10	clay	 strongly fract w int perv clay alt and common carb-chl stringers and rare gtz stringers washed out to a pale grey (clay alt) 1-2 % dissem py and rare stringers 	41189 41190	60.85 63.78	63.78 67.10	2.93 3.32		48 25	260 142	.9 .4	10 18	
67.10	73.50	crbch]	- wkly fract volc hfels w common carb-chl stringers - tr-1 % py										
73.50	74.20	clay	 strongly fract w int perv clay alt and common chl-carb vnlts tr py 	41191	73.50	74.20	0.70	78	19	95	.1	4	
74.20	74.55	dyke	- feldspar porphyritic volcanic dyke - common carb +/- chl stringers										
74.55	76.00	vhfels	- mod to strongly fract volc. hfels w common carb +/- chl stringers			1				•			
76.00	77.80	clay	- int perv clay-carb +/- chl alt - tr-1 % py	41192	76.00	77.80	1.80	86	18	170	.1	1	
77.80	32.30	bthfe]	 mod fract biotite hornfels w common carb-chl stringers notable first appearance of biotite hornfels - It purplish brown tr py 										
		-	BOH : 82.30 m	: :		;	;						

.

APPENDIX IV

DRILL HOLE CROSS SECTIONS

	SAMPLE#	Cu		lst	<u>2nd</u>	
CIDICULVICU		8	Ag oz/t	Au	Au	
	37801	.02	.01	.001	.001	
	37802	.02	.01		.001	
	37803	.01	.01	.002	.001	
JUL - 9 1991	37804	.11	.01	.004	.002	
	37805	.19	.01	.004	.003	
• • • • • • • • • • • • • • • • • • • •	37806	.34	.05	.005	.005	
	37807	.79	.12	.010	.009	
	37808	1.30	.21	.027	.030	
	37809	1.15	.19	.011	.010	
	37810	.32	.02	.004	.002	
	37811	.26	.05		.003	
	37812	.21	.02		.003	
	37813	.02	.01	.001	.001	
	37814	.11	.01	.001	.002	
	37815	.02	.01	.001	.001	
	37816	.28	.06	.001	.001	
	37817	.03	.01	.001	.001	
	37818	.02	.01	.002	.002	
	37819	.02	.01	.002	.001	
	37820	.02	.01	.001	.001	
	37821	.03	.02	.002	.001	
	37822	.01	.01	.001	.002	
	37823	.01	.01	.002	.001	
	37824	.03	.01	.002	.002	
	37826	.03	.01	.001	.002	
	37827	.02	.02	.002	.001	
	37828	.01	.01	.001	.002	
	37829	.03	.03	.001	.001	
	37830	.04	.03	.002	.002	
	37831	.04	.01	.001	.002	
py: Teny W it: 226 Cagle						
tion and P	37832	.04	.02	.002	.003	
N' LLO Cagle	37833	.01	.01	.001	.002	~ .
U U	37834	.01	.01	.001	.001	
	37835	.01	.01	.001	.001	
	37836	.01	.01	.001	.001	
	37837	01	0.1	001	001	
	STANDARD R-1/AU-1	.01	.01 2.98	.001 .100	.001 .102	

- 1 GM SAMPLE LEACHED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. AU - 10 GM ACID LEACHED / MIBK, ANALYSIS BY AA. - SAMPLE TYPE: CORE

DATE RECEIVED: JUN 24/1991

DATE REPORT MAILED: June 27/91

SIGNED BY. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

<u>Noranda Ex</u>	<u> xploration Co</u>	. Ltd.	PROJECT	<u>9106-067</u>	226	FILE #	91-1963	Page 2
-------------------	-----------------------	--------	---------	-----------------	-----	--------	---------	--------

				lst_	2nd	
	SAMPLE#	Cu	Ag	Au	Au	
		00	oz/t	oz/t	oz/t	
	37838	01	02	001	001	
	37839	.01	.02	.001	.001	
		.01	.02	.001	.001	
	37840	.01	.01	.001	.001	
	37841	.02	.03	.001	.002	
	37842	.02	.02	.001	.001	
	37843	.02	.01	.001	.001	
	37844	.02	.04	.001	.001	
	40885	.02	.02	.001	.001	
	40886	.03	.04	.001	.001	
	40887	.02	.01	.001		
	40007	.02	.01	.001	.001	
	40888	.01	.01	.001	.001	
	40889	.01	.03	.001	.001	
	40890	.11	.03	.001	.001	
	40891	.02	.01	.001	.002	
	40892	.02	.02	.001	.002	
	41126	00	0.4	0.01	000	
		.09	.04	.001	.002	
	41127	1.73	.24	.024	.025	
	41128	1.01	.12	.014	.017	
	41129	.43	.09	.012	.014	
	41130	.39	.05	.001	.003	
	41131	1.15	.15	.006	.006	
	41132	.77	.13	.021	.022	
	41133	.24	.07	.007	.005	
	41134	.08	.01	.001	.002	
	41135	.03	.01	.001		
	41133		•01	.001	.002	
	41136	.13	.01	.002	.003	
	41137	.02	.03	.001	.001	
	41138	.07	.04	.001	.001	
	41139	.06	.04	.001	.001	
	41140	.23	.07	.024	.020	
	47747		05	001	0.01	
	41141	.02	.05	.001	.001	
	41142	.18	.09	.001	.001	
	41143	.01	.01	.001	.001	·
	41144	.02	.03	.001	.001	
	41145	.02	.04	.001	.001	
	41146	.02	.01	.001	.001	
	STANDARD R-1/AU-1	.97	2.95	.103	.105	
••••••••••••••••••••••••••••••••••••••	DIMUMU R-I/AU-I		2.30	. 103	• 103	

e 2

Noranda Exploration Co.	Ltd.	PROJECT	9106-067	226	FILE #	91 - 1963	Page 3
-------------------------	------	---------	----------	-----	--------	----------------------	--------

 			lst	2nd	
 SAMPLE#	Cu %	Ag oz/t	AU oz/t	AU oz/t	
41147	.01	.01	.001	.001	
41148	.01	.01	.001	.001	
41149	.04	.01	.001	.001	
41150	.08	.01	.001	.001	

<u>Noranda Exp</u>	<u>loration Co.</u>	Ltd.	PROJECT	9106-067	226	FILE #	91-1963	Page 4
--------------------	---------------------	------	---------	----------	-----	--------	---------	--------

					lst	2nd
SAMPLE#	Cu	Pb	Zn	Ag	Au	Au
	%	%	%	oz/ť	oz/t	
37726	.01	.09	.18	.30	.003	.003
37727	.01	.15	.55	.60	.018	.018
37728	.01	.01	.02	.02	.001	.001
37729	.01	.01	.01	.01	.001	.002
37730	.01	.01	.01	.01	.001	.001
57750						
37731	.01	.01	.01	.01	.001	.001
37732	.01	.01	.01	.01	.001	.002
37733	.01	.01	.01	.02	.007	.007
37751	.02	.01	.03	.01	.001	.001
37752	.02	.01	.02	.01	.001	.001
37753	.02	.06	.18	.86	.060	.064
37754	.01	.01	.05	.08	.003	.003
37755	.01	.02	.05	.10	.007	.007
37756	.01	.14	.30	.27	.001	.001
37757	.01	.05	.18	.15	.003	.003
37758	.01	.50	1.06	1.03	.018	.018
37759	.02	.01	.03	.01	.001	.001
37760	.01	.01	.01	.01	.001	.001
37761	.02	.01	.05	.01	.001	.001
37762	.01	.01	.03	.01	.001	.001
37763	.01	.03	.04	.03	.001	.002
37764	.01	.28	.63	.86	.017	.017
37765	.01	.27	.11	.64	.003	.004
37766	.01	.01	.03	.01	.001	.001
37767	.01	.01	.05	.04	.001	.001
37768	.01	.29	.18	.68	.003	.003
37769	.01	.03	.08	.07	.001	.001
37770	.01	.14	.13	.10	.003	.002
37771	.01	.01	.22		.001	.001
37772	.01	.01	.03	.01		
37773	.01	.01	.03	.01	.001	.001
37774	.01	.01	.06	.01	.001	
37775	.01	.01	.01	.01	.002	
37776	.01	.01	.02	.01	.001	1
37777	.01	.01	.01	.01	.001	
37778	.01	.01	.01	.01	.001	.001
STANDARD R-1/AU-1	.82	1.49	2.46	2.91		
· · · · · ·				_	and an an a stand a gala	

.....

Noranda Exploration Co. Ltd. PROJECT 9106-067 226 FILE # 91-1963 Page 5

-

					lst	2nd	
SAMPLE#	Cu	Pb	Zn	Ag	Au	Au	
	%	8	%	oz/t	oz/t	oz/t	
37779	.01	.01	.02	.01	.001	.001	
37780	.01	.01	.01	.01	.001	.001	
37781	.02	.15	.28	.83	.007	.008	
37782	.01	.12	.07	.25	.003	.003	
37783	.01	.01	.01	.02	.001	.001	
37784	.01	.01	.01	.01	.001	.001	
37785	.01	.01	.01	.01	.001	.001	
37786	.01	.01	.02	.01	.001	.001	
37787	.02	.01	.02	.01	.001	.001	
37788	.01	.01	.01	.01	.001	.001	
37789	.01	.01	.01	.01	.001	.001	
37790	.01	.01	.01	.01	.001	.002	
37791	.01	.01	.01	.01	.001	.001	
37792	.01	.05	.16	.15	.023	.021	
37793	.02	.01	.02	.02	.002	.002	
37794	.03	.01	.01	.01	.001	.002	
STANDARD R-1/AU-1	.86	1.36	2.32	3.08	.103	.104	i I

ACME ANALYTICAL L	ABORATORIES L	ITD.	852 E.				.C. V6A 1R6 604)253-1716
	ASSAY C	Certifi	CATE		and the second	and the second	
<u>Noranda Explor</u>	<u>ation Co. Ltd</u>	. PROJE	<u>CT 910</u>	7-007	<u>226</u> F	LLE # 91-	2052R
	SAMPLE#	Pb	Zn	Ag	Au**		
	· · · · · · · · · · · · · · · · · · ·	%	%	oz/t	oz/t		
	41177	.49	.82	1.05	.062		
	41178	.88	1.37	1.68			
	41179	.81	1.60				
	41185	.96		3.73			
	41186	1.20	2.55	3.00	.032		
	41187	.63	1.21	1.57	.020		
	- 1 GM SAMPLE LEACHE - SAMPLE TYPE: ROCK AU** BY FIRE ASSAY F	PULP ROM 1 A.T. S	SAMPLE.		^	nl. algi	
DATE RECEIVED:	JUL 4 1991	DAT	E REPO	RT MAI	LED:	nly 8/91	•
SIGNE	D BY	• D.TOYE,	C.LEONG,	J.WANG; CE	ERTIFIED B.C	. ASSAYERS	
		•					
					Г		
		ſ	т. –	1.0.11	. W	2	
		C	Eguy.	very		n JUL 1	1 1991
			1 -1 :-	N/ 5	- //	11	
		í.	file - "	126-0	agle.	//	
		5	filo - "	Terry 726-E	agle.	lisos	
		5	filo - a	(26-C	agle.	lisos	שבוסט

	SAMPLE#	Cu %	Pb %	Zn %	Ag oz/t	Au** oz/t
DELLAL	37642	.02	.04	.05	.20	.001
	37643	.01	.16	.52	.54	.017
UL - 3 1991 I	37644	.01	.01	.02	.01	.002
00 0 1931	37645	.01	.03	.06	.03	.001
एटगगाइट	37658	.01	.01	.02	.01	.001
·····	37659	.01	.01	.02	.01	.001
CTerry	37660	.01	.01	.02	.01	.001
Copy of g	37661	.01	.01	.02	.01	.001
1	37676	.02	.36	.77	1.88	.040
Corry Terry Le:226 EHGLÉ	37677	.03	.21	.53	4.02	.007
EHGLE		.01	.01	.02	.18	.005
	37679	.03	.90	.78	3.78	.035
	37680	.02	.38	.94	1.50	.008
	37681	.01	.34	.13	2.10	.097
	37682	.13	3.30	2.08	26.28	.114
	37683	.01	.10	.09	1.32	.003
	37684	.02	.01	.02	.02	.001
	37685	.01	.02	.03	.06	.001
	37686 37687	.01	.01	.01	.02	.001
	5/06/	.01	.01	.01	.01	.001
	37688	.01	.01	.01	.01	.001
	37689	.01	.01	.01	.01	.001
	37690	.01	.01	.01	.01	.001
	37691	.01	.01	.02	.01	.001
	37692	.01	.01	.01	.01	.001
	37693	.01	.01	.01	.01	.001
	37701	.02	.95	1.03	7.29	.014
	37702	.02	.22	.52	.26	.001
	37703	.01	.01	.02	.04	.001
	37704	.01	.02	.06	.04	.001
	37705	.01	.01	.01	.01	.001
	37706	.01	.01	.01	.01	.001
	37707	.01	.01	.02	.01	.001
	37708	.01	.29	.13	1.62	.012
	37709	.01	.01	.01	.01	.001
	37710	.01	.01	.01	.01	.001
	STANDARD R-1/AU-1	.84	1.34	2.18	3.01	.097
	AU** BY FIRE - SAMPLE TYP	E: CORE				ume 25/91.

SAMPLE#	Cu %	Pb %	Zn %	Ag oz/t	Au** oz/t
37711	.01	.01	.02	.02	.001
37712	.04	.77	1.00	7.35	.187
37713	.01	.01	.02	.14	.004
37714	.01	.01	.01	.06	.001
37715	.01	.01	.01	.01	.001
37716	.01	.01	.01	.04	.001
37717	.01	.01	.01	.01	.001
37718	.01	.01	.01	.01	.001
37719	.01	.01	.02	.06	.001
37720	.01	.01	.01	.01	.001
37976	.01	.01	.02	.02	.001
37977	.01	.01	.02	.02	.001
37978	.01	.01	.01	.01	.001
37979	.01	.01	.01	.01	.001
37980	.01	.01	.01	.01	.001
37981	.01	.13	.25	.24	.010
37982	.01	.01	.01	.02	.001
37983	.01	.01	.01	.01	.001
37984	.01	.17	.85	.53	.005
37985	.01	.01	.01	.03	.001
38000	.01	.01	.01	.01	.001
STANDARD R-1/AU-		1.35	2.34	2.92	.096

-

SAMPLE#	Cu	Pb	Zn	Ag	Au**
	8	क्ष	ક	oz/t	oz/t
37226	.01	.01	.01	.01	.001
37227	.01	.01			
37228			.01	.01	.001
	.01	.03	.12	.55	.008
37229	.01	.01	.01	.01	.001
37230	.01	.01	.01	.02	.001
37231	.01	.01	.01	.02	.001
37232	.01	.01	.01	.01	.001
37233	.01	.01	.01	.01	.001
37234	.01	.01	.01	.01	
37235	.01				.001
57255	.01	.01	.01	.01	.001
37236	.01	.06	.21	.17	.006
37237	.01	.01	.01	.01	.001
37238	.01	.01	.01	.01	.001
37239	.01	.01	.01	.01	.001
37240	.01	.01	.01	.02	.001
0,240	.01	.01	•01	.02	.001
37241	.01	.01	.01	.01	.001
37242	.01	.01	.01	.01	.001
37243	.01	.01	.01		 Accession of the second se Second second seco
37244				.01	.001
37901	.01	.01	.01	.01	.001
57901	.02	.01	.01	.01	.001
37902	.02	.01	.01	.01	.001
37903	.02	.01	.01	.01	.001
37904	.02	.01	.01	.01	.001
37905	.02	.01	.01		and the first of the state
37906				.02	.001
57500	.02	.01	.01	.02	.001
37907	.02	.01	.01	.01	.001
37908	.02	.01	.01	.01	.001
37909	.02	.01	.01	.01	.001
37910	.02	.01	.01	.01	1000001210202000
37911	.02	.01	.01		.001
	.02	.01	.01	.03	.001
37912	.02	.01	.01	.01	.001
37913	.02	.01	.01	.01	.001
37914	.01	.01	.01	.01	.007
37915	.02	.01	.01	.01	.001
37916	.02	.01	.01		
0,910	.02	.01	.01	.01	.001
37917	.02	.01	.01	.02	.001
STANDARD R-1/AU-1	.86	1.41	2.40	2.99	.095

••••••

SAMPLE#	Cu %	Pb %	Zn ۶	Ag oz/t	Au**	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		02/1		
37918	.01	.01	.02	.01	.002	
37919	.02	.01	.01	.01	.001	
37920	.02	.01	.01	.01	.001	
37921	.01	.01	.01	.01	.001	
37922	.01	.01	.01	.01	.001	
37923	.02	.01	.01	.01	.001	
37924	.02	.01	.01	.01	.001	
37925	.02	.01	.01	.01	.001	
40801	.02	.01	.01	.01	.001	
40802	.01	.01	.02	.01	.001	
				_		
40803	.01	.01	.01	.01	.001	
40806	.02	.01	.01	.01	.001	
40807	.02	.01	.01	.01	.001	
40808	.02	.01	.01	.01	.001	
40810	.02	.01	.01	.01	.001	
40812	.02	.01	.01	.01	.002	
40813	.05	.01	.01	.02	.001	
40814	.02	.01	.01	.01	.001	
40815	.01	.01	.01	.01	.001	
40816	.02	.01	.01	.01	.001	
40817	.02	.01	.01	.03	.001	
40818	.09	.01	.01	.01	.001	
40819	.04	.01	.01	.01	.001	
40820	.04	.01	.01	.01	.001	
40879	.74	.01	.01	.07	.005	
40880	.53	.01	.01	.04	.006	
40881	.03	.01	.01	.01	.001	
40883	.01	.01	.01	.01	.001	
40884	.02	.01	.01	.01	.001	
STANDARD R-1/AU-1	L .88	1.34	2.32	3.02	.097	

SAMPLE#	Cu %	Pb %	Zn ع	Ag oz/t	Au** oz/t
40855	.01	.01	.01	.02	.001
40856	.01	.01	.01	.01	.001
40857	.01	.01	.01	.02	.001
40858	.01	.01	.01	.02	.001
40859	.01	.01	.01	.01	.001
40860	.01	.01	.01	.01	.001
40861	.01	.01	.01	.02	.001
40862	.01	.01	.01	.01	.001
40863	.09	.01	.01	.04	.001
40864	.04	.01	.01	.01	.001
	07	1 25		• • •	
STANDARD R-1/AU-1	.87	1.35	2.33	2.99	.095

ASSAY CE randa Exploration Co. Ltd. PR					-EA - 91 91-1839	
1050 Davi	e St., Van	couver BC V	6E 1M4			-
SAMPLE#	Cu	Pb	Zn	Ag**	Au**	
	ક	%	8	oz/t	oz/t	
37986	.01	.03	.06	.07	.002	
37987	.06	3.25	2.45	13.19	.035	
37988	.01	.03	.04	.17	.001	
37989	.01	.06	.06	.84	.015	
37990	.01	.01	.01	.06	.001	
37991	.01	.01	.02	.04	.001	
37992	.01	.01	.01	.01	.001	
37993	.01	.01	.01	.02	.001	
37994	.02	.01	.01	.03	.001	
37995	.01	.01	.01	.22	.001	
37996	.45	5.18	3.47	91.44	.358	
37997	.84	12.97	9.95	163.57	.493	
37998	.45	4.50		90.94	.317	
37999	.03	.20	.37	3.53	.106	
40776	.01	.01	.01	.06	.001	
40777	.85	.01	.13	.26	.007	
40778	.37	.01	.02	.20	.002	
40779	1.75	.01	.04	.32	.022	
40780	1.45	.01	.01	.17	.033	
40781	3.01	.01	.02	.26	.028	
40782	2.58	.01	.01	.18	.021	
40783	2.21	.01	.01	.31	.025	
40784	.73	.01	.01	.06	.007	
40785	.70		.01	.04	.003	
40786	1.45	.01	.01	.14	.009	
40787	.11	.01	.01	.02	.001	
40788	.15	.01	.01	.03	.001	
40789	.06		.01		.001	
40790	.13		.01		.001	
40791	.05	.01	.01	.02	.001	
40792	9.55	.01	.04	.94	.150	
40793	.04		.01		.002	
40794	.18	.01	.01	.06	.002	
40795	.02	.01	.01	.02	.001	
40876	.11	.01	.01	.01	.001	
40877	.03	.01	.01	.02	.001	
40878	.16		.03			
STANDARD R-1/AU-1	.89		2.44		.096	
	Y FIRE ASSA	Y FROM 1 A	.т.			
DATE RECEIVED: JUN 18 1991			ער איז איז	TLED.	une 25/9	+/

SAM	PLE# Cu %	Pb %	Zn ع	Ag** oz/t	Au** oz/t
408	21 .03	.01	.01	.02	.001
408	22 .53	.01	.01	.06	.004
408	23 1.04	.01	.01	.07	.008
408	24 1.83	.01	.02	.15	.016
408	25 .26	.01	.01	.02	.002

.07 .05 .08 .06 .11	.08 .03 .05 .11 .05	.001 .001 .001 .001	PEEENT
.08 .06 .11 .08	.05 .11	.001 .001	
.06 .11 .08	.11	.001	
.11 .08		1	0
.08	.05		n JUN 2 5 1991
		.001	
	.05	.001 l	JUEVESUVE
.03	.01	.002	•••••••••••••••••••••••••••••••••••••••
.05	.07	.001	Conjeg: Tenya
.08	.08	.002	1 3
.03	.06	.002	Conjeg: Terry W file: 226-Eag
0.2	04	001	[
.01	.02	.001	
.01	.04	.001	
. 01	. 07	. 001	
.01	.05	.001	
.01	.05	.001	
.01	.10	.001	
.08	.06	.001	
.05	.07	.001	
.04	.04	.001	
.07	.07	.001	
.08	.09	.001	
.03	. 04	.001	
.11	.04	.007	
.09	.06	.005	
.07	.02	.004	
.01	.05	.001	
	.03 .02 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	.03 .06 .02 .04 .03 .07 .01 .07 .01 .05 .01 .02 .01 .03 .01 .09 .01 .07 .01 .01 .01 .04 .01 .07 .01 .04 .01 .05 .01 .05 .01 .05 .01 .05 .01 .10 .08 .06 .05 .07 .04 .04 .07 .07 .08 .09 .03 .04 .11 .04 .09 .06	.03 $.06$ $.002$ $.02$ $.04$ $.001$ $.03$ $.07$ $.009$ $.01$ $.07$ $.001$ $.01$ $.05$ $.001$ $.01$ $.02$ $.001$ $.01$ $.02$ $.001$ $.01$ $.03$ $.001$ $.01$ $.03$ $.001$ $.01$ $.07$ $.001$ $.01$ $.07$ $.001$ $.01$ $.07$ $.001$ $.01$ $.07$ $.001$ $.01$ $.05$ $.001$ $.01$ $.05$ $.001$ $.01$ $.05$ $.001$ $.01$ $.05$ $.001$ $.03$ $.04$ $.001$ $.03$ $.04$ $.001$ $.05$ $.04$ $.001$ $.11$ $.04$ $.007$ $.09$ $.06$ $.005$

SAMPLE#	Cu	Ag**	Au**
	8	oz/t	oz/t
37887	.01	.03	.001
37888	.02	.01	.001
37889	.01	.07	.001
37890	.01	.02	
37891	.01	.05	.001
37892	.01	.02	.001
37893	.01	.01	.001
37894	.01	.03	
37895	.01	.08	
37896	.01	.07	.001
37897	.01	.06	.001
STANDARD R-1/AU-1	.88	3.19	.097

<b>££</b>		<u>N</u>	ora	<u>nda</u>	EX	<u>plo</u> :	<u>rat</u>	<u>ion</u>		<u>. L</u>	tđ.	PR	JJE	CT		7-00	)7 2	226		Fil	agle e #					age			•		
IPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X		U ppm	Au ppm	th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	- 0000000000	La ppm	Cr ppm	Mg X	Ba ppm			Al X	Na %	K X	W ppm	
01	2	270	5	32	.2	8	19		5.90	7	5	ND		116	.2	2	6			. 180	8			205	.24		2.22	.20	.35	2	1
02 03	2	220	40	33 38	.2	8	20		6.09	8	5	ND	2	131	.2	4	2			. 167	8			2787	.24		2.01	.20	.24		1
04	1	186 136	2		.2 .2	6 6	21 16		5.85	2 8	5 5	ND ND	3	118 132	.2	25	2			.177	9 8			199 1475	.26		2.90 2.53	.21 .18	.25	2	1
05	1	101	3	44	.3	6	15		5.45	6	5	ND	ź	130	.2	ź	Ž			.169	7		1.24		.19		2.41	.21	.21	i	
06	1	102	5	33	.2	6	19	622	5.94	4	5	ND	4	195	.2	3	2	168	2.73	.174	0	4	1.38	124	.22	9	2.16	.25	.29	1	
07	1	196	211	32	.8	5	18		5.58	5	5	ND	2	163	.2	2	ž			.158	7			578			2.22	.28	.26	Í.	
08	1	86	2	43	.3	6	19	720	6.03	4	5	ND	4	156	.4	2	2	148	3.14	.170	9		1.42			8	2.74	.20	.19	3	
09	1	134	2	45	.1	7	16	575	5.85	2	5	ND	3	130	.2	2	2	147	2.59	. 186	10	3	1.25	112	.23	13	2.37	.26	.21	2	
10	1	214	3	40	.3	9	15	558	5.42	4	5	ND	4	111	.2	2	2	150	2.10	. 180	10	3	1.04	82	.20	8	1.69	. 18	.20	1	
11	1	106	2	35	.1	8	17		5.46	3	5	ND	2	125	.2	2	2	153	1.89	.165	9	4	1.07	142	.23	9	2.10	.20	.23	2	
12	1	208	2	39	.3	5	18		5.70	3	5	ND	3	162	.3	2	2			- 171	11		1.29		.22		2.19	.35	.26	2	
13	1	93	3	30	.2	6	16		5.33	5	5	ND	3	120	.2	2	2			.173	. ?	_	1.01	·	.21		1.80	.22	.28		
14 15	1	136 139	3 2	34 36	.1 .3	8 7	15 17		5.35	5	5 5	ND ND	3	107 103	.2	2 2	2		1.77	- NA 2000 - 1995.	11 13	5	.91 1.02		.21		1.72	.20 .20	.24 .24	2	
26	1	100	7	74	•	•	15	501	E //	F	F		7	171			-				47	_							70		
27		182 313	3 2	36 45	.3	9	15 17		5.44		5 5	ND ND	3	121 135	.4 .2	2	2		2.48	. 196	13 13	5	.99	177 96	.23		1.64 2.23	.22 .21	.39 .21	5	
28	1	197	4	31	.3	7	17		5.54	4	5	ND	4	114	.2	ź	ź			.203	13		1.03	98	.21		1.58	.15	.23	1	
29	1	113	2	45	.2	5	15		5.76	2	5	ND	3	117	.2	ž	ž			.178			1.14	95	.21		2.41	.22	.20	ź	
30	1	142	2	48	.3	6	17		5.50	3	5	ND	4	111	.2	2	2			199	13		1.28		.24		2.44	.22	.27	2	
31	1	98	115	34	.5	7	16	688	5.28	4	5	ND	3	148	.2	2	2	127	2.92	.179	10	4	1.10	63	.21	6	1.64	.11	.10	1	
32	1	136	2	43	.2	5	15	706	5.02	3	5	ND	3	142	.2	2	2			183	12	3	1.18	62	.21	5	1.66	.12	. 15	2	
33	1	175	2	48	.2	5	16	958	5.46	3	5	ND	2	209	.6	2	2	133	4.35	181	12	3	1.34	49	. 18	8 3	2.19	.24	.12	2	
34	1	132	2	45	•1	5	16		5.66	4	5	ND	3	144	.2	3	2	144	3.11	.197	13	3	1.15	68	.20	8 3	2.08	.12	.16	3	
35	1	170	2	66	.2	5	21	882	6.33	ંડ	5	ND	3	158	.5	2	2	130	2.80	.182	10	5	1.55	90	.22	5	2.44	.26	.11	3	1
93	1	158	2	53	.3	9	20	845	6.10	10	5	ND	2	126	.2	2	2	168	1.55	. 195	12	4	1.47	107	.24	7	2.17	. 13	.17	1	
94	1	182	2	49	.3	7	19	<b>858</b>	5.71	8	5	ND	2	83	.2	2	2	153	2.10	.190	13	4	1.29	91	.20	6	1.72	.11	.17		
95	1	137	2	45	.2	8	16		4.88	6	5	ND	2	99	.2	2	2			. 165	10	4	1.40		.23		2.02	.22	.23	2	
96		82	3	70	.2	2	16		5.43	5	5	ND	2	114	.5	2	2			.162	9		1.21		.20		2.60	.28	.21	2	
97		189	2	46	.3	7	19	687	5.62	4	5	ND	2	124	.3	2	2	162	1.94	.218	13	4	1.33	214	.22	(	2.19	. 18	.23	1	
98	1	232	3	43	.3	7	20		5.68	9	5	ND		135	.3	2				.210	13			184			2.06		.21	2	
99	1	207	2	34	.3	6			5.91	17	5	ND	2	118	.2	2				.181	10				.21		1.96			4	
00	1 1	195	2	41	.3	8			5.79	13	5	ND	1	138	-5	2				.193	12			222			2.11			1	
01 02	1	170 188	2	41 50	.3	/ R	15 18		4.63	) 7	5 5	ND ND		152 141	.6	2				.182	11 12	3 6		139 156	.17		1.66		.24 .27	2	
			_			, v					_					L															
03 NDARD C/AU-R	1	175 61	2 36	41 130	.3 7.5	8 69			5.49	2 38	5 18	ND 7	2 39		.2 18.5	2 15	2 22			.205	12 40	6 59		214 170	.21		1.72			1	5
	_ <b>4</b>	THIS		HIS	PARTI	AL FO	R MN	FE SF	CA F	I 3ML C	R MG I	BA TI	HNO3- BW	H2O A AND L	T 95 I IMITEO SAMPI	DEG. ( D FOR	C FOR NA K			AND I AU DE	S DIL	UTED ON LI	TO 10 MIT E	BY ICF	9 IS 3	PPM.	للم	_(Ŀ)		IV	T
DATE REC			JUN 2								$\Lambda$			1				(')	L.							; CER		IUL	- 3	191	91



Noranda Exploration Co. Ltd. PROJECT 9107-007 226 FILE # 91-2052

Page 2

ACHE ANALYTICAL																															ACHE AN	ALYTICAL
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm		Ni ppm		Mn ppm	Fe %	- 2020 Y		Au ppm			section d. T.	Sb ppm		V ppm	Ca X		La ppm	Cr ppm		Ba ppm				Na X		W	Au* ppb	
41104 41105 41106 41107 41108	1 1	177 176 166 162 172	2 2 2 2 2	45 51 50 45 42	.2 .3 .1 .2 .1	8 8	18 17 18 19 17	578 540 480	5.15 5.09 5.23 5.11 5.30	42255	5 5 5 5 5	ND	2 1 1	137 143 115 111 130	.2 .3 .2 .2 .4	2 2 2	2 2 2	153 156 153	1.39 1.66 1.68	. 191 . 186 . 191 . 194 . 192	10 11 10	5 5 4	1.18 1.05 1.09 1.04 .99	207 107 138	.18 .19 .17	6 5 6	1.69 1.84 1.90 1.72 1.43	.21 .11 .14	.34 .20 .22	1 1 2	5 6 3 6 2	
41109 41110 41111 41112 41113	1 1 1	182 195 221 169 147	2 2 5 2	45 40 40 44 55	.3 .1 .3 .3 .4	7		480 514 527		2 4 2 3 5	5 5 5	nd Nd Nd Nd Nd	2 1 1	132 113 114 111 113	.5 .2 .2 .4 .3	2 2 2	2 2 2	136 153 151	1.11 1.30 1.72	.203 .177 .198 .193 .197	9 10 10	5 5 5	1.02 .79 .94 1.03 1.31	176 148 135	. 15 . 17 . 18	4 4 6	1.57 1.24 1.30 1.54 1.81	.19 .18 .15	.32 .28 .23	1 1 1	5 4 7 5 3	
41151 41152 41153 41154 41155	1 1 1	108 115 119 94 104	2 2 2 2 2	54 49 55 63 64	.3 .2	15 12 12	20 17 18	541 614 581 693 868	3.68 3.23 3.98	4 9 8 7 10	5 5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1		.2 .5 .4 .7 .6	2 2 2		91 85 100	2.89 2.58 3.08	.059 .054 .062 .055 .056	2 2 2	14 13 15	1.16 1.28 1.32 1.60 1.46	55 106 49	.21 .20 .19	15 16 12	2.63 2.84 2.70 2.77 2.64	.15 .24 .14	.08 .07 .08	1	1 2 4 2 9	
41156 41157 41158 41159 41160	1 1 1	88 103 142 114 243	31 630 605 16 70	214	- A - SA	9 27 24	20 18 17	1674	5.49 4.86 3.86	970 482 1459 612 45	5 5 8 6	ND ND	1	77 56 103 132 112	1.4 19.6 10.8 1.9 2.2	29	2 2 2	62 35 77	4.41 4.08 5.70	.055 .053 .070 .063 .067	2 4 4	12 16 28	.93 1.18 1.18 1.21 1.46	47 48 71	.01 .01 .10	5 6 6	.82 1.97 .85 2.37 2.71	.01 .01 .14	.19 .24 .09	1 1 1	230 120 350 100 9	
41161 41162 41163 41164 41165	1 1 1	129 142 122 137 138	100 9 59 4 7	182 115 262 76 81	.7 .5	29 28 28	17 17 18	2513 1127 1357 848 798	3.99 3.82 3.62	483 77 138 10 22	5 5 5 5 5	ND ND ND	1	146 206 149 91 91	2.1 1.2 3.3 .7 .4	20 5 5 2 2	2 2 2 2 2 2	75 64 83	4.79 4.86 3.48	.068 .068 .064 .071 .073	6 5 4	25 23 24	1.36 1.27 1.14 1.25 1.23	101 113 126	.10 .11 .22	10 10 8	1.42 2.31 1.99 2.60 2.54	.20 .13 .18	.06 .07 .07	1	120 6 19 5 4	
41166 41167 41168 41169 41170	2 1 1	152 152 113 117 143	14 5 2 2	206 64 66 32 41	.4 .6	32 23 11	19 15 15	728 552 895 526 553	2.65 3.17 3.31	30 32 82 10 9	11 5 5 5 5	ND ND	1	74 100 86 232 86	1.2 .5 1.2 .3 .2	2 2 2 2 4	2 2 2 2 2 2 2	52 55 85	2.84 5.76 2.24	.077 .071 .067 .061 .063	5 5 4	15	.85	113 57 386	.24 .16 .34	14 15 6	1.89 2.17 2.13 2.48 2.37	.27 .12 .28	.07 .11 .14	1 1 1	4 3 73 4 2	
41171 41176 41177 41178 41179	1 2 2	258	6393	42 74 7008 11410 14099	54.1	,13 ,14	19 19 19	3275 3958	4.72 9.53 7.78	11977	√ 5 √ 5	ND ND 5 3 2		83	.6 1.2 91.6 150.8 181.4	203	2 2 2	98 14 15	3.48 2.83 3.72	.049 .057 .043 .037 .044	3 2 2	10 29 35	.95 1.31 .97 1.30 1.10	59 20 19	.01 .01	7 2 2	2.66 2.68 .46 .39 .52	.14 .01 .01	.11 .22 .22	1 1 1	4 18 2160 1990 1230	
41180 STANDARD C/AU-R			391 40		4.5 7.4					305 38					8.1 18.7					.062 .090							2.79 1.93				54 480	

✓ ASSAY RECOMMENDED

ΔΔ
ACRE AND ATTCAL

Noranda Exploration Co. Ltd. PROJECT 9107-007 226 FILE # 91-2052



Page 3

ACHE ANALYTICAL

SAMPLE#	Mo ppm p	Cu	Pb ppm	Zi	1 333	Ag		Co		Fe		U			Sr	Co	8		V	Ce		PL Kpp		Cr		Ba ppm		E ppr	3 / •	AL ¥	Na Y		V ppm	
	PPm P	P	ppin	pp	<u> </u>	ppm	Ph.	ppin	ppm		ppm	ppii	ppii	ppiii	ppn		i hhii	ppm	ppii		•	<b>* 11</b>	<u> </u>	<b>рш</b>		- ppii		M					PP4	100
41181	3 1	70	33	103	;	.6	32	16	737	2.91	68	5	ND	2	122	1.1	6	2	60	3.33	.07	9	5	23 1	.11	249	.13	9	> 2.1	82 .	.27	.07	1	12
41182	1 1 1	58	44	177	7 🔠	.7	31	20	1306	4.48	153	9	ND	2	95	1.5	5	2	92	4.99	.08	1	6	33 1	.37	136	.09	7	7 2.	58.	.13	.11	1	11
41183	2 1	43	1051	330		8.0	35	21	1729	5.42		5	ND	ī	150	42.5	X	2		4.98		N 12			.52		.01	X '	1.					91
41184	2		23	113	. 809	1.8		16	1830	4.61	78	11	ND		237						.06	100 C			2.04		.01	2 1			.01		1	9
41185	3 2	00	7669	15258							39158 v	5	2	Ž		200.7				.53		-	2		.14		.01	0 T			.01		1	2670
41186	3 30	65 9	92871	2622	1/10	4.8	/ 19	15	193	8.44	12468	′ s	ND	1	18	339.9	152	2	6	.45	.05	8	2	55	.11	19	.01	2	2 -	33.	.01	.21		1120
41187	1 20	61 /	4871	10512	√ 5	6.2	19	16	2528	5.24	4897	5	ND	1	92	146.2	176	2	13	2.85	.05	5	2	23	.84	21	.01	5	i .1	37.	.01	.23	8 P	740
41188	1 1	94	73	263	s 😳	1.2	18	17	1590	5.12	1947 C 1 1 2 4	6	ND	1	195	2.6			66	4.72	.06		2	15 1			.01	9			.02			41
41189	1 1	78	48	260	)	.9	30	19	1530	5.19	67	5	ND	2	194	2.0	10	2	74	4.11	.06	2	3	18 1	.58	156	.01	8	1	52.	.02	.11		10
41190	1 1	17	25	142	2	.4	21	23	1426	5.98	104	6	ND	Ž	220	1.2	12	2	94	4.69	.08	6	5	18 1	.74	170	.01	10	) 1.	17.	04	.17	1	18
41191	1 :	78	19	95	;	_1	17	19	1358	5.52	50	5	ND	1	170	1.1	12	2	94	4.64	.06	1	5	13 1	.77	82	.01	11		54.	.02	. 14	1	4
41192	1 1 8	86	18	170	)	1. 1	19	27	1471	5.61	236	5	ND	1	190	1.3	16	2	101	5.35	.06	5	4	23 1	.81	87	.01	8	3 1.1	18 .	.02	.14	1	1
STANDARD C/AU-R	18 0	60	38	134		7.3	70	33	1111	4.02	39	16	7	40		18.5					.09	500 C				188	2.48	32	2 2.0				11	530

✓ ASSAY RECOMMENDED



ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-455

JUNE 11, 1991

CERTIFICATE OF ASSAY ETK 91-326

NORANDA EXPLORATION CO. LTD. STE 3A - 1750 QUINN STREET PRINCE GEORGE, B.C. V2N 1X3



fill 226- Ea

- I '

ATTENTION: TERRY WALKER, PROJECT GEOLOGIST

SAMPLE IDENTIFICATION: 23 CORE samples received JUNE 10, 1991 ----- PROJECT: 226

ET	'# 		Description	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	
326	-	1	37626	<.03	<.001	<.1	<.01	 .01	·===: 、
326	-	2	37627	.28	.008	19.4	.57	.01	
326	-	3	37628	.67	.020	25.0	.73	.01	
326	-	4	37629	<.03	<.001	.1	<.01	.01	
326	-	5	37630	<.03	<.001	4.4	.13	<.01	
326		6	37631	.12	.003	28.3	.83	.01	
326	-	7	37632	.14	.004	39.2	1.14	.01	
326	-	8	37633	3.82	.111	1250.	36.45	.16	t
326	-	9	37634	1.19	.035	50.1	1.46	<.01	
326	-	10	37635	5.31*	.155	324.0	9.45	.04	
326	-	11	37636	3.01	.088	144.2	4.21	.02	
326	-	12	37637	. 99	.029	80.1	2.34	.01	
326	-	13	37638	2.52	.073	82.2	2.40	.01	
326	-	14	37639	4.40	.128	35.8	1.04	<.01	
326	-	15	37640	14.74*	. 430	28.1	.82	<.01	
326	-	16	37641	3.17	.092	3.5	.10	<.01	
326	-	17	37651	.04	.001	.9	.03	<.01	
326	-	18	37652	.94	.027	292.8	8.54	.04	
326	-	19	37653	1.89	.055	178.1	5.19	.03	1
326	-	20	37654	7.27*	.212	39.8	1.16	<.01	
326	-	21	37655	6.76*	.197	271.8	7.93	.03	1
326	-	22	37656	.38	.011	39.2	1.14	<.01	
326	-	23	37657	. 47	.014	42.8	1.25	<.01	

NOTE: < = LESS THAN * SAMPLES SCREENED AND METALLIC ASSAYED

ECO-TECH LABORATORIES LTD.

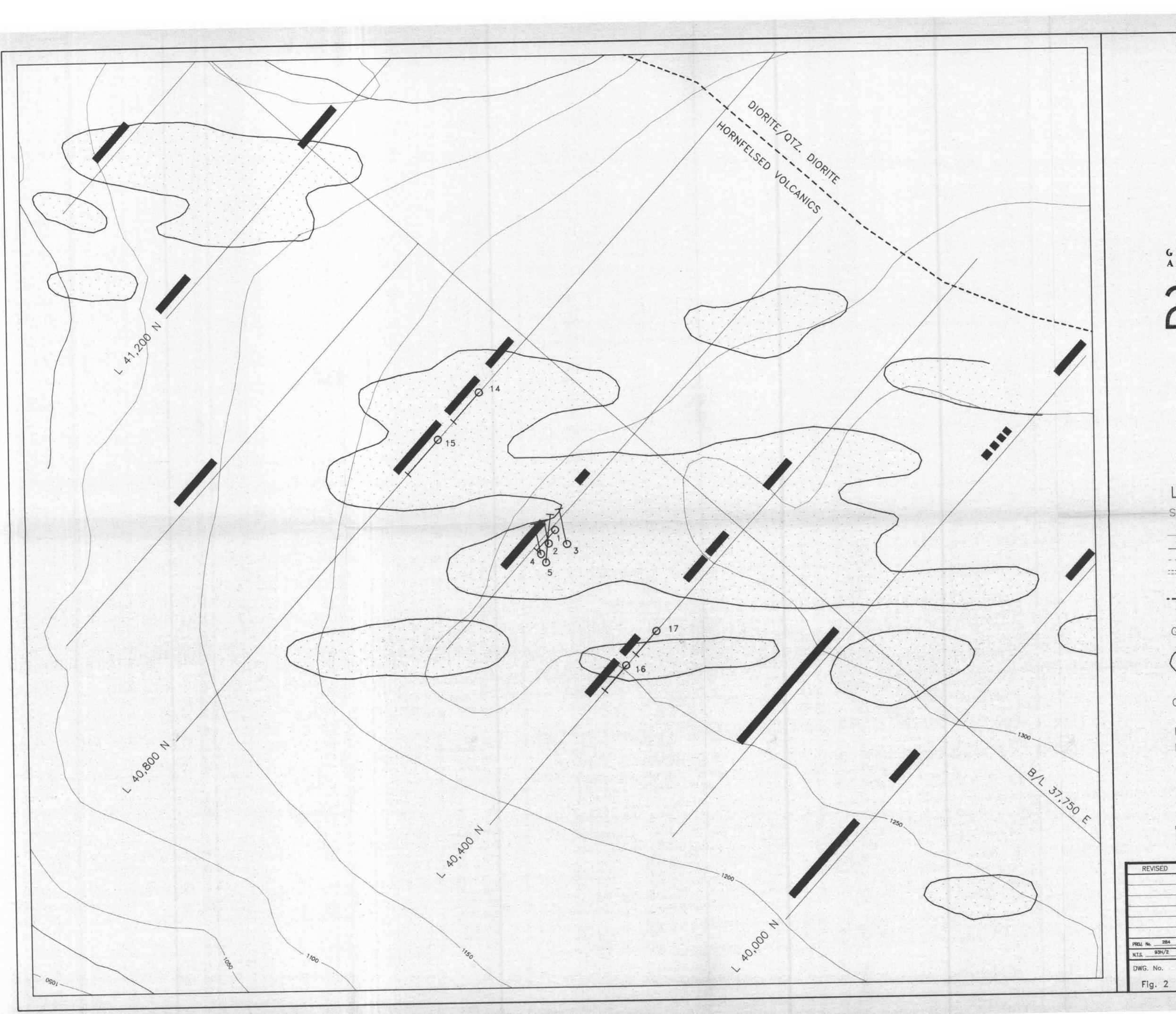
ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. CERTIFIED ASSAYER

FAX: NORANDA WPG

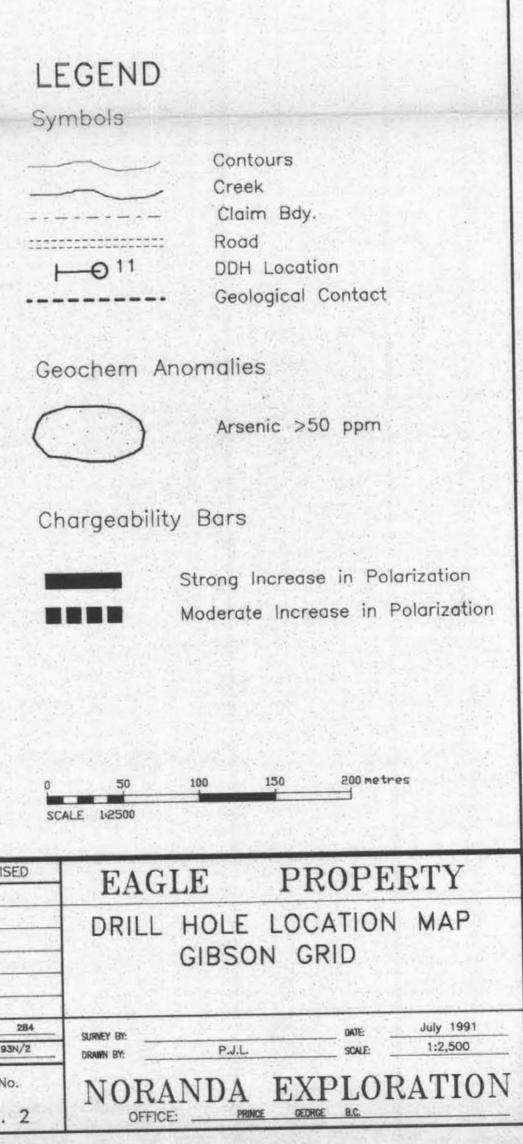
SC91/NORANDA1

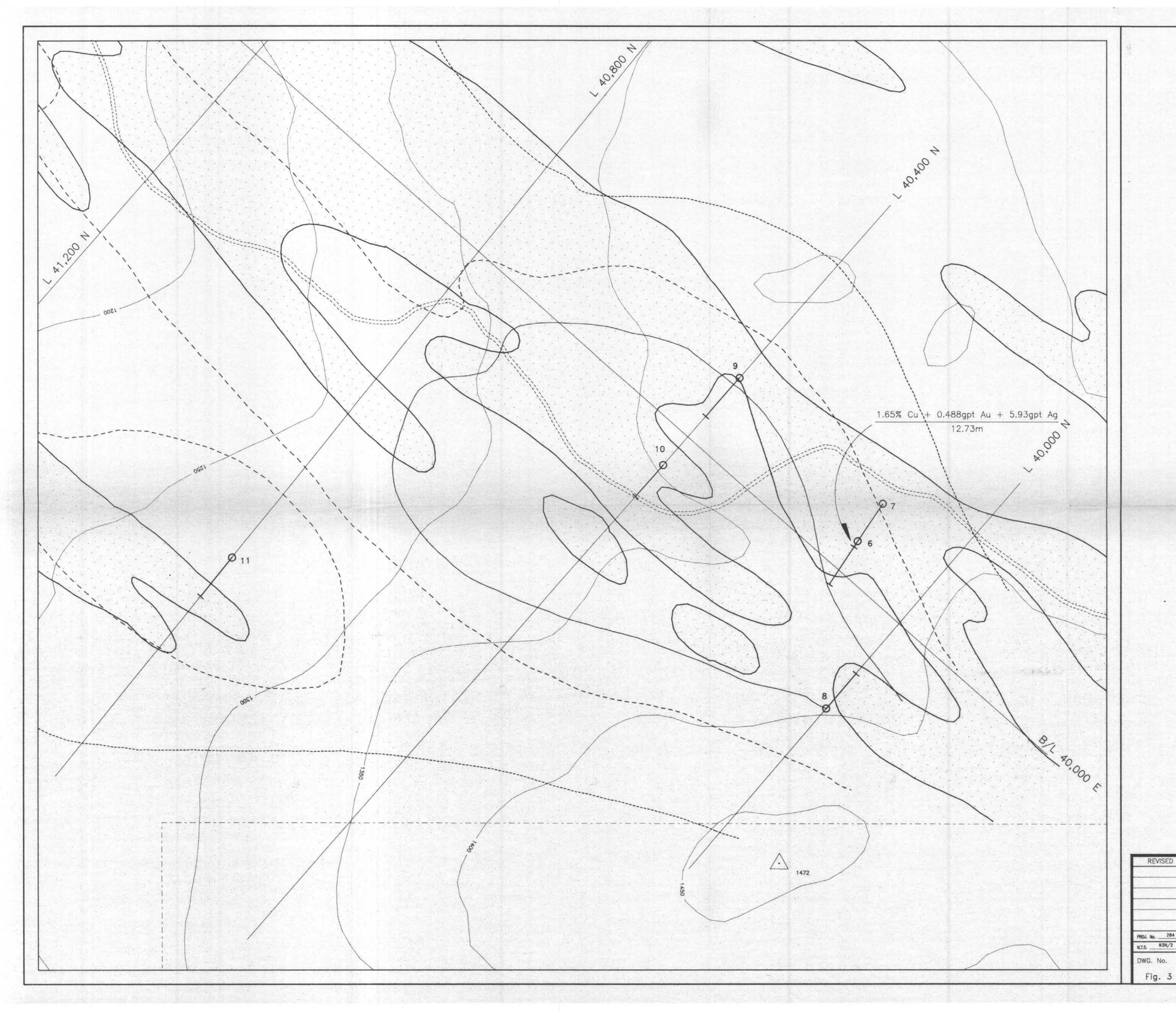






SAMPLE NUMBER	METALLIC (	CALCULATION	
326-10 326-15 326-20 326-21	-140 VALUE 5.98 15.27 7.61 6.79		CALCULATED VALU 5.308766 14.74349 7.256465 6.7609

JUN 1 7 1991 ••••• •••••


.


------





## ceological branch assessment report 21,762





Z

	Contours
	Creek
	Claim Bdy.
	Road
H-011	DDH Location
	Geological Contact
Geochem Ano	malies
	Copper > 200 ppm
Chargeability	Contours in msec.
	30
	20
	10
GEO ASS	10 LOGICAL BRANCH ESSMENT REPORT
ASS 2 50 10 SCALE 1-2500	LOGICAL BRANCH ESSMENT REPORT 1,762 200 metres
ASS 2 50 10	LOGICAL BRANCH ESSMENT REPORT 1,762 200 metres
ASS 2 50 10 SCALE 12500 EAGLE DRILL H	LOGICAL BRANCH ESSMENT REPORT 1,762 200 metres

OFFICE: PRINCE GEORGE B.C.



		0 10 20 30 40 50 60 70 metres SCALE 1 1,000
	REVISED	VECTOR ZONE
		GEOLOGY AND SAMPLE LOCATIONS
	PROJ. No	
	DWG. No.	NORANDA EXPLORATION