ARIS SUMMARY SHEET

District Geologist, Smithers Off Confidential: 92.08.
ASSESSMENT REPORT 21821 MINING DIVISION: Skeena
PROPERTY: Sulphurets LOCATION: LAT 56 30 00 LONG 130 15 00 UTM 09 6262217 423049 NTS 104B09W
CAMP: 050 Stewart Camp
CLAIM(S): Xray 4,Xray 6 OPERATOR(S): Newhawk Gold Mines AUTHOR(S): Visagie, D.A. REPORT YEAR: 1991, 64 Pages COMMODITIES
SEARCHED FOR: Copper,Gold,Silver KEYWORDS: Jurassic,Andesites,Tuffs,Shear zones,Stockworks,Gold WORK
DONE: Drilling,Geochemical DIAD 647.3 m 4 hole(s);BQ Map(s) - 1; Scale(s) - 1:5000 SAMP 255 sample(s) ;ME
RELATED F)RTS: 19675 MINFILE: 104B 275.104B 176

LOG	N0: N	<u>V0</u>	22	1991	RD.
ACTI	ON:				

SUB-RECORDER RECEIVED					
NOV 19 1991					
M.R. #					
VANCOUVER, B.C.					

ŧ	сn	C	A	n
ł	TH.	Ľ.	14	U

DRILLING REPORT

SULPHSIDE 1 GROUP

Skeena Mining Division

Latitude: 56[°] 30'N Longitude: 130[°] 15'W NTS: 104B/9

OWNER:

Newhawk Gold Mines Ltd. Granduc Mines Limited

OPERATOR:

Newhawk Gold Mines Ltd.

REPORT BY:

Dave Visagie, B.Sc. October 15, 1991

SU91-410

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

2.0 LOCATION AND ACCESS 1 3.0 PHYSIOGRAPHY AND VEGETATION 1 4.0 PROPERTY HISTORY 3 5.0 CLAIM STATUS 5 6.0 REGIONAL GEOLOGY 6 7.0 1991 WORK PROGRAM 8 7.1 Drilling 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 9 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location 24 Figure 2 Claim Map 7 Figure 4 Drill Hole Location 24 Figure 4 Drill Hole Location 5 APPENDICES	1.0	INTRODUCTION			1
3.0 PHYSIOGRAPHY AND VEGETATION 1 4.0 PROPERTY HISTORY 3 5.0 CLAIM STATUS 5 6.0 REGIONAL GEOLOGY 6 7.0 1991 WORK PROGRAM 8 7.1 Drilling 8 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 10 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES 14 Figure 1 Property Location 2 Figure 2 Claim Map 7 Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back	2.0	LOCATION AND ACCESS			1
4.0 PROPERTY HISTORY 3 5.0 CLAIM STATUS 5 6.0 REGIONAL GEOLOGY 6 7.0 1991 WORK PROGRAM 7 7.1 Drilling 7 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 10 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location 2 Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back APPENDICES	3.0	PHYSIOGRAPHY AND VEGETATION	1		1
5.0 CLAIM STATUS 5 6.0 REGIONAL GEOLOGY 6 7.0 1991 WORK PROGRAM 8 7.1 Drilling 8 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 10 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location 2 Figure 2 Claim Map 4 Figure 3 Regional Geology 3 Figure 4 Drill Hole Location See folder in back	4.0	PROPERTY HISTORY			3
6.0 REGIONAL GEOLOGY 6 7.0 1991 WORK PROGRAM 7.1 Drilling 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 10 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location 2 Figure 2 Claim Map Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back APPENDICES	5.0	CLAIM STATUS			5
7.0 1991 WORK PROGRAM 8 7.1 Drilling 8 7.2 Assaying 8 8.0 DRILL RESULTS 9 8.1 Mitchell 9 8.2 Alder 10 9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES 14 Figure 1 Property Location 2 Figure 2 Claim Map 7 Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back	6.0	REGIONAL GEOLOGY			6
8.0 DRILL RESULTS 8.1 Mitchell 8.2 Alder 9.0 SUMMARY AND CONCLUSIONS 10.0 RECOMMENDATIONS 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location Figure 2 Claim Map Figure 3 Regional Geology Figure 4 Drill Hole Location APPENDICES See folder in back	7.0	1991 WORK PROGRAM 7.1 Drilling 7.2 Assaying			8 8 8
9.0 SUMMARY AND CONCLUSIONS 10 10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES 2 Figure 1 Property Location 2 Figure 2 Claim Map Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back APPENDICES	8.0	DRILL RESULTS 8.1 Mitchell 8.2 Alder			9 9 10
10.0 RECOMMENDATIONS 11 11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12 12.0 STATEMENT OF QUALIFICATIONS 14 LIST OF FIGURES Figure 1 Property Location Figure 2 Claim Map Figure 3 Regional Geology Figure 4 Drill Hole Location See folder in back APPENDICES	9.0	SUMMARY AND CONCLUSIONS			10
11.0 COST STATEMENT - SULPHSIDE 1 GROUP 12.0 STATEMENT OF QUALIFICATIONS LIST OF FIGURES Figure 1 Property Location Figure 2 Claim Map Figure 3 Regional Geology Figure 4 Drill Hole Location APPENDICES 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14	10.0	RECOMMENDATIONS			11
12.0 STATEMENT OF QUALIFICATIONS LIST OF FIGURES Figure 1 Property Location Figure 2 Claim Map Figure 3 Regional Geology Figure 4 Drill Hole Location APPENDICES 14 14 2 2 4 5 8 14 14 14 14 14 14 14 14 14 14	11.0	COST STATEMENT - SULPHSIDE	1 GROUP		12
LIST OF FIGURES Figure 1 Property Location 2 Figure 2 Claim Map 4 Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back APPENDICES	12.0	STATEMENT OF QUALIFICATIONS			14
Figure 1 Property Location 2 Figure 2 Claim Map 4 Figure 3 Regional Geology 7 Figure 4 Drill Hole Location See folder in back APPENDICES		LIST OF	FIGURES		
APPENDICES	Figur Figur Figur Figur	re 1 Property Location re 2 Claim Map re 3 Regional Geology re 4 Drill Hole Location		See folder	2 4 7 in back
		APPEN	VDICES		

Appendix	1	Drill	Logs			16
Appendix	2	Assay	Certificates			41

1.0 INTRODUCTION

The Sulphside 1 Group is located within the "Golden Triangle" area of northwestern British Columbia, 60 kilometres north of the village of Stewart. The Group is part of the larger Sulphurets property which is presently being evaluated by Newhawk Gold Mines Ltd. and Granduc Mines Limited under a joint venture agreement. The Sulphurets property hosts several bulk tonnage gold and/or copper deposits along with high grade gold/silver veins with the Sulphside 1 Group hosting several areas of bulk tonnage Cu-Au It is underlain by Hazelton Group volcanics and potential. volcani-clastics that have been intruded by plutons of sub-alkaline composition. Work on the property dates back to 1935 when coppermolybdenum mineralization was located in the vicinity of the Main Since then it has had various exploration programs Copper Zone. completed on it with the main development occurring in the vicinity of the West Zone, located at Brucejack Lake. As part of the 1991 work program, four BQTK sized drill holes totalling 647.3 metres in length were drilled on two zones; Mitchell, and Alder located on the Sulphside 1 Group. All of the core was split resulting in the taking of 255 core samples. The drilling was completed between July 9th and August 15th, 1991. The results indicate that the Mitchell Zone is highly anomalous in copper and gold. Drilling on the Alder Zone failed to locate any significant mineralized intersections.

2.0 LOCATION AND ACCESS

The property is located within the Coast Range mountains of northwestern B.C., some 60 kilometres northwest of the village of Stewart approximately 920 kilometres northwest of Vancouver, B.C., being centred at 130° 15'W, 56° 30'N on NTS sheet 104B/9.

Access during the early summer is by helicopter from Stewart. During the later part of the summer, supplies were mobilized to the Tide Lake airstrip 35 kilometres south of the property or to Knipple airstrip 15 kilometres southwest of the property and flown in using a helicopter. During major summer programs, access is by barge along Bowser Lake, then by road along the Bowser River with the final access to the camp being by tracked vehicle 16 kilometres up the Knipple Glacier.

3.0 PHYSIOGRAPHY AND VEGETATION

The topography of the Sulphurets property is typical of the Coast Range Mountains with steep glaciated U-shaped valleys being the norm. Elevations range from 670 metres at the foot of Mitchell Glacier to in excess of 1830 metres on some of the mountain ranges. Extensive ice-fields are common throughout the property.

Winters tend to be severe with extensive snowfall and winds while summers tend to be cool and wet. Most of the snowfall occurs between mid-February and mid-April.

Vegetation throughout the property is varied with spruce and fir trees occurring at the lower elevations while lichens, mosses and scrub timber dominate the uplands.

4.0 PROPERTY HISTORY

Exploration in the area dates back to the 1880's when placer gold was located in Sulphurets Creek. In 1935, copper-molybdenum mineralization was located in the vicinity of the Main Copper showing. Until 1959 the property was intermittently evaluated. In 1959, gold and silver values were located in the Brucejack Lake area. Granduc Mines, as a result of this previous work, staked the main claim area in 1960. Follow-up work included an airborne magnetometer survey, a few ground follow-up magnetometer lines and reconnaissance geology. As a result, copper mineralization was located along the Mitchell-Sulphurets Ridge with gold and silver values being discovered at the base of the Iron Cap area.

In 1961, Granduc drilled 224 metres of packsack core in 32 holes at four locations to test the extent of the known copper showings. Additional prospecting resulted in the discovery of gold/silver mineralization in the Hanging Glacier area and molybdenite on the south side of Mitchell Glacier. In 1962, two diamond drill holes, totalling 611 metres in length, tested molybdenum mineralization in the Quartz Stockwork Zone. In 1968, Granduc drilled 1016 metres in six holes on the Main Copper Zone and mapped the area below the Hanging Glacier. In 1970, plane table mapping was carried out from the Hanging Glacier to the south edge of the Mitchell Glacier. Granduc in 1974/75 carried out bedrock geochemical sampling and geological reconnaissance and prospecting throughout much of the property.

In 1980, Esso Minerals optioned the property from Granduc and subsequently completed an extensive program consisting of mapping, trenching, and geochemical sampling that resulted in the discovery of several showings including Snowfields, Shore, West and Galena zones. Esso surrendered its interest in 1985.

In 1985, Newhawk Gold Mines optioned the property from Granduc. Since then it has completed work on of the following zones; West, Shore, Snowfields, Mitchell, Golden Marmot, Sulphurets Gold, and Main Copper zones, and on other lesser known targets.

5.0 CLAIM STATUS

All claims comprising the Sulphurets property are in good standing and occur within the Skeena Mining Division. The property is held under a joint venture agreement between Granduc Mines Limited and Newhawk Gold Mines Ltd. with Newhawk acting as operator. For assessment purposes, the property has been divided into four groups as follows:

Sulphside 1, Sulphside 2, Bruceside 1 and Bruceside 2.

This report documents work done on the Sulphside 1 Group.

SULPHSIDE 1 GROUP

Name of Claim	Title Number	Number of Units
Name of Claim OK #1 OK #2 Xray 1 Xray 2 Xray 3 Xray 4 Xray 5 Xray 5 Xray 6 Xray 7 Tedray No. 1 Tedray No. 2 Tedray No. 3 Iron Cap 1 Iron Cap 1I Iron Cap III Iron Cap 4 Iron Cap 4	Title Number 5101 5102 1861 1862 1863 1864 1865 1866 1867 153 154 155 315 316 317 2409 2409	Number of Units 18 20 1 2 2 6 2 2 2 2 1 1 3 2 1 1 2 1 1 2 1 1 1 1 1 1
Iron Cap 6 Iron Cap 7	2584 2585	2
Ice 1	2411	2
Ice 3	2647	2
Ice 4 Arbee #35	3111 19124	12
Arbee #39	19128	1
Arbee #55	19144	1
Dawson-Ross No. 1	19887	1
Sulphurets 2 Fr. Sulphurets 3 Fr.	2583 2648	1 1 1

6.0 REGIONAL GEOLOGY

The Sulphurets property is underlain by a thick sequence of Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group that have been intruded by plutons of sub-alkaline composition. This complex has been folded and faulted and is now elongated in a northerly direction. It is bounded to the west by the Coast Crystalline complex and to the east by Bowser Basin sediments.

The oldest rocks on the property are the Lower Sediments, reported to have a minimum thickness of 1500 metres, consisting mainly of argillites, siltstone and cherts along with minor amounts of wackes, arenites, tuffs and trachytes. Younger pyroclastic rocks, that range from fine tuff to breccias, are evidence of a major volcanic event in the area. These sometimes contain blocks greater than one metre in size and occur in a northerly trending elongate zone through the central part of the area. Most of thepyroclastics are of andesitic composition and have been subjected to varying degrees of alteration. These altered tuffs and breccias are host for most of the vein deposits in the Stewart area and are the most favourable host rocks on the Sulphurets property. The Upper Sediments consist of an extensive sequence of black shales and argillites that are similar in character to the Lower Sediments.

The volcanic-sedimentary sequence is cut by numerous elongated, sub-parallel northerly trending, late stage intrusive plutons that are probably of Mid-Jurassic age. These intrusives range from diorite to granite in composition and appear to be sub-alkaline. The emplacement of these plutons appears to be related to faulting alteration, and associated intense sillicification and mineralization. Sericite and pyrite are the most abundant alteration minerals with other assemblages locally dominated byfeldspar, chlorite and propyllitic minerals. Some clay alteration minerals have also been recognized in the Brucejack Lake Zones. Porphyry copper-gold mineralization occurs in the northern and central parts of the property and is often associated with K-spar and sericitic alteration.

Structurally controlled gold/silver bearing veins occur mainly in volcanic rocks within one kilometre wide zones of intense predominantly sericitic alteration. The veins consist of quartz, minor calcite, and trace to 20% sulphide minerals. These range from simple single veins to complex vein zones and stockworks. Sulphides within these veins consist of pyrite, sphalerite, galena, tetrahedrite, electrum and chalcopyrite along with argentite, pyragerite and polybasite.

7.0 1991 WORK PROGRAM

As part of the evaluation of the Sulphside 1 group, four BQTK drill holes totalling 647.3 metres were drilled. The drilling was completed by F. Boisvenu Drilling, Delta, B.C. using a JKS 300 drill. Newhawk's camp at Brucejack Lake was used for housing the crew. The mobilization of the crew and drill to the sites of interest was completed using a chartered helicopter from Vancouver Island Helicopters. Climactic conditions resulted in additional drill moving and mobilization time. All assaying was completed by Eco-Tech Laboratories, Kamloops, B.C.

7.1 Drilling

Throughout the length of the drill program two ten hour shifts were employed daily to complete the holes. All sites were prepared by Boisvenu's crews. Upon completion of the drilling the collar was surveyed by Newhawk personnel.

The core was flown daily to the Brucejack campsite to be logged and split. In addition all samples were crushed and pulverized on site prior to being sent out for analysis. The drill core is presently stored at the Brucejack campsite. All drill logs are located in Appendix 1 while the sample results are listed in Appendix 2.

7.2 Assaying

All drill core was assayed for gold by fire assay using a one assay ton subsample. Selected core was either assayed or geochemed for copper. In addition, all of the core was sampled by Inductively Coupled Plasma (I.C.P.). The following is an outline of the procedure used for the preparation and analysis of the samples:

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -150 mesh, then rolled to ensure a homogenous sample.

For the 30 element I.C.P. analysis, a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90° C for 1.5 hours. The sample is then diluted to 20 ml with demineralized water and analyzed. The leach is partial for Al, B, Ba, Cr, Fe, K, Mg, Mn, Na, Sb, Ti, U, and W.

For gold analysis a one assay ton is preconcentrated by conventional fire assay. The resulting Ag prill is digested in 3 ml 30% HNO₂, anything insoluble is dissolved using 3 ml concentrated HCP. The resulting solution is diluted to 10 ml and analyzed by atomic absorption. Each set of forty samples has one random duplicate and a certified assay standard. Any samples with a greater than one gram per tonne are re-run automatically to verify the first set of results and to determine if a nugget effect exists.

Samples having gold values exceeding five grams per tonne are normally re-cut from the reject and screened for "metallics".

For copper geochemistry a 0.500 gram sample is digested in 20 ml HNO₂ for 20 minutes or until all NO₂ fumes have disappeared. The digestion is then cooled, 10 ml HCl are added and digested for 30 minutes The digestion is again cooled and another 50 ml HCl are added and further digested for one hour. When this digestion has cooled to room temperature it is bulked to 200 ml mixed, centrifuged and analyzed by atomic absorption.

8.0 DRILL RESULTS

Two zones of interest, the Mitchell and Alder, were drilled on the Sulphurets 1 Group during the 1991 field season.

8.1 Mitchell

Mapping and sampling showed an extensive zone of quartz-sericitepyrite-chlorite altered andesitic tuffs to host an extensive goldcopper in rock anomaly. The anomaly, as defined by the 0.020 opt Au and 0.10% Cu contour, is at least 1.2 kilometre long x 300 metres wide, with a vertical extent of in excess of 200 metres. It is open along strike. The hosting andesitic tuffs have extensive quartz vein stockwork in which pyrite and minor chalcopyrite occur along with minor molybdenite.

Three holes totalling 498.5 metres were located so as to test the zone. Holes S91-386 and 387 were spotted to test the eastern portion of the zone, while hole S91-394 was designed to test an area of higher than average copper and gold.

All holes intersected extensive quartz vein stockwork within both chloritically altered andesitic tuffs and quartz-sericite-pyrite altered tuffs. The following is a summation of the drill results.

Hole	Length	From	То	Int (m)	Au opt	Cu%
S91-386	153.7	0.0	50.6	50.6	0.021	0.15
		50.6	123.4	72.8	0.024	0.18
		123.4	153.7	30.3	0.019	0.19
	or	0.0	153.7	153.7	0.022	0.17

S91 - 387	154.3	0.0 23.7 53.7	23.7 53.7 154.3	23.7 30.0 100.6	0.023 0.031 0.016	0.15 0.19 0.13
	or	0.0	154.3	154.3	0.020	0.15
S91-395	190.5	0.0 84.5	84.5 128.5	84.5 44.5	0.020 0.026	0.27 0.25
		128.5	190.5	62.0	0.019	0.19
	or	0.0	128.5	128.5	0.024	0.26

The results show the zone to host a large volume of low grade copper-gold mineralization. The zone appears at this time to be steeply north dipping and tabular.

8.2 Alder

The Alder Zone is located in the western section of Mitchell Creek and appears to be on strike with the Mitchell Zone. Mapping and rock chip sampling have shown highly altered (K-spar, silica, pyrite) andesitic tuffs to contain highly anomalous gold values of up to 0.100 opt over a 500 x 100 metre area. Within this anomaly a breccia pipe some 30 metres in diameter was located that averaged 0.070 opt Au. One drill hole, 148.8 metres in length, tested the breccia pipe. The drill results are summarized on the following page.

Hole	Length	Fr	om		То		Int (m)	Au opt	Cu%
S91-396	148.8		0.0		148.8		148.8	0.015	<.01
The resul	ts show	that	in t	this	portion	of	the Ald	er Zone	there was

9.0 SUMMARY AND CONCLUSIONS

little of interest intersected in drill core.

The Sulphurets property hosts several distinct deposits and types of mineralization, two of which were drilled on the Sulphside 1 group: Mitchell and Alder. Both zones are underlain by extensively altered (quartz, sericite and pyrite) andesitic tuffs.

On the Mitchell, mapping and rock chip sampling completed by Newhawk showed an extensive copper-gold anomaly to occur in an area of extensive quartz-vein stockwork. The zone appears to be shear related with extensive foliation occurring throughout the zone. As traced in outcrop it is 1.2 kilometre x 300 metres with a vertical extent of in excess of 200 metres. It is open along strike and appears to be tabular in shape. Three drill holes totalling 498.5 metres were drilled into the zone. All of the holes intersected extensive low-grade copper-gold mineralization with copper values averaging approximately 0.21% with gold averaging 0.020 opt Au.

Sampling and mapping completed on the Alder Zone shows an area of anomalous gold (>.020 opt) to occur in an area of intense K-spar and silicic alteration within andesitic tuffs. Within this zone, a pyritic breccia pipe was located that contained up to 0.100 opt Au. One drill hole, totalling 148.8 metres in length, was drilled, however, the results although anomalous for gold (0.015 opt over 148.8 metres) do not at this time justify further work.

10.0 RECOMMENDATIONS

It is recommended that additional drilling be completed on the Mitchell Zone. Drilling should be completed only after further surface work is completed on the Mitchell with the purpose of locating a higher grade core to the zone. At this time, no further drilling is recommended on the Alder Zone.

11.0 COST STATEMENT - SULPHSIDE 1 GROUP

1. Labour (49 Man-days)

Total: \$ 10,141.00

- Mark Tindal (Corona, Senior Geologist core logging) July 9-16; August 7-12
 15 days @ \$300/day
- ii) Adrian Markos (Core Splitting)
 July 9-16; August 7-12
 15 days @ \$137/day
- iii) Bernie Elliot (Sample Prep) July 10,12,14,16,17; August 10,12,14,16 10 days @ \$137/day
- iv) Dave Visagie (Project Geologist)
 July 9,11,16; August 9,16
 5 days @ \$295/day
- v) Dave Kosmynka (Surveyor)
 July 17; August 17
 2 days @ \$194/day
- vi) Tim Kirby (Surveyor Assistant)
 July 17; August 17
 2 days @ \$174/day

2. Transportation

Total: \$ 74,851.20

a) Drill from Stewart to Knipple airstrip via T.P.A.'s Bristol \$1,000.00

b) Moving drill from Knipple airstrip to
 Brucejack campsite via 205 helicopter \$8,633.75

c) i)	Local Helicopter U Bell 206	sage	
,	July 93.0 hrsJuly 104.6 hrsJuly 113.0 hrsJuly 124.0 hrs	July 13 July 14 July 15	5.6 hrs 5.0 hrs 5.0 hrs
	30.2 hrs x \$698/hr	includes fuel	\$21,079.60
ii)	Hughes 500 August 7 3.0 hrs August 8 4.4 hrs August 9 2.0 hrs	August 10 August 11 August 12	4.0 hrs 2.5 hrs 2.0 hrs
	17.0 hrs x \$750/hr	includes fuel	\$44.137.85

3.	Room & Board	Total:	\$ 10,900.00
i) ii)	Labour: 49 man-days x \$100/day Drillers: 15 days x 4 men x \$100/day	\$4,900 \$6,000	
4.	Consumables Office supplies, plastic bags, nylon b	Total: bags etc.	\$ 500.00
5.	Communications Spacetel phone communications and call	Total: L usage etc	\$ 2,000.00
6.	Equipment Rental Surveying instruments 2 days x \$50/day	Total:	\$ 100.00
7.	Sample shipping/freighting of goods	Total:	\$ 500.00
8.	Drill cost	Total:	\$ 48,186.25
<pre>i) ''''''''''''''''''''''''''''''''''''</pre>	Standby on mobilization \$2 1990 feet drilled @ \$17/ft \$3 135 ft drilled @ \$18.75/ft \$2 198 hrs standby x \$25/hr \$2 55 hrs machine x \$15/hr \$ 1000/mo. \$ 1000/mo. \$ 1000/mo. \$3 1000/mo. \$3 1000	2,300.00 3,830.00 2,531.25 4,950.00 825.00 500.00 500.00	
9.	Assaying 255 samples x \$7.75 - 1 assay ton Au \$3.85 - 30 element I.C.1	Total: P.	\$ 2,958.00
10.	Report Includes base map prep, xeroxing, dram and typing etc.	Total: fting	\$ 3,000.00
	SUB-TOTAL		\$ 122,423.10
11.	Management Fee 10%		\$ 12,142.31
	TOTAL		\$ 133,565.41

12.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I have been steadily employed in the mining industry since then and have since January 1990 been employed by Northair Mines Ltd. as Senior Geologist.

3. The work undertaken on the Sulphside 1 Group was under my supervision.

Dated at Vancouver, British Columbia, this 15th day of October, 1991. Dave Visagie

APPENDICES

	Va												_()_	•	- 														\sum		
											Ć)		-	•								$\left(\right)$				0-	- 50.	.6	₹.	Au, 07+	Cr .18
Aŗ	oper	ndix	1 Drill Lo	ogs				•																	τ.	4	50.6	5- 12	3.4	= .	,02.40	.18
NG	EW OLI		WK MINES ITD	DEPTH E	BEARIN	G D	IP	SURV		/PE	PRO		RTY:	54	elph.	ure	75	LEN	GTH:	153.7	m/5	-04 f	e H	OLE	NO	<u> </u>	<u>59</u>	+ 73 <u> - 3</u>	3.7 <u>8 (</u>	5	·0-1 ·022	53.7m .17
Dia	amon	ld Dril	I Hole Record	COLLAR /	109.2	: <u>2 - 4</u> - 4	12	EL	i d)F /	<u>RA</u>	Υ <u>΄</u>	<u>6</u>	,	BEC	OVE	Ζ <u>ε:</u> BY: ε	<u>13. Q</u>)			0. <i>į</i> BV:		8		<u> </u>	•	
Pro	niect:	54	(nhurst 5	1537		-1	13	<u>م بر</u> م	· d		DEF	PART		- 112	748.0	29770		STA	BTE)· -7	NC RILL	<u> </u>				BY	<u></u> '`	<u>1. /</u>	<u> / n a</u>	<u>la (</u>	· · · ·	
	5,000	-54	124 side	1537	2.04	2 4	13	Tre			ELE	VAT	ION:	0,,1	15000	· <u>5 6</u> 2	· (CON		<u>v √⊿</u> TFD:	Ture	<u>[] 9</u> [] [0	/ 0	URP	OSI	Ξ: <i>τ</i>	<u>. 6</u> 	<u>- F-L</u>	<u></u> 	7 		
				10.01	$\frac{2}{1}$			Altera	ation			T	Mine	eraliz	zatio	n .		As	sav f)ata	2417	3/ 9				1.	<u>, <;</u>		<u>tC4 / /</u>	<u>////</u>	1 604 C	
Inter (met	val ers)	· ·	Geologic Description					E B	m										-											Reco		
From	То	Rock Type	p		From	То	SIL.	님님	CAR			Руh	% Ср	% Ga	% Sp	% ⁰ Gr ∕		Sample Io.	From	10	nt Au opt	Ag opt	Au	Ag kcheck	Cu %	Pb %	Zn %	RQD %	Run	very %		
0	21,25		Allered Andesite		0	3.0	W	5					-			. 10	2-12	510	0	3.0	.0 0.0	2/			1358					100		
		AUDI	2 adevatly - Stragly	foliated	3.0	6.0		_								2	3 0	5/02	3.0	6.0	7.00.02	6			,1554							
			Strongly Chrezd f.	71	6.0	9.0						1				/	2	<u>(103</u>	6.0	9.0	0.02	3			1333		⊢					
		l	agui granular mafic	Volc	9.0	12.0					-				•		4	104	9.0	12.0	0 0.02	<u>2 </u>			1551		$ \blacksquare$					
			W hoz - heavy gez	Stock Would	12.0	14.0		···· ·										105	12.0	(4.0	2.00.02	4	+		<u>153</u> 2							
			Verning 11 to for G	40 101.4	14.0	17.0		, ,					· ·			- /	-7	10%	14.0	17.0	0 0.01	я я			1740 111d		\rightarrow				Ta	1977 - P
			XIG/S 9 1- 22 2 VIALTS	odiment	20.0	2/35										5	-7	101	200	21251	25 7.92	4	1		11.14						Ĵ	
			0 // 10 g12 U4/15	minor	21.25	22.0				····						2	2-3	109	21.25	22.0	75 0.01	/			1840							
			Sericite dulpa along	folice																												
			Franzi gto version 1	= Uquique													•						<u> </u>									
-			1 QUES ~ 15-2070	of Core		· · · ·																·	<u> </u>									
			Tigses U.f moly & cpy	noted													_															
									·												_									<u> </u>		
14.0	17.2		Corr Mari Groken	9	-												-+								-							
			of alling craining -	m Nords				2															+				-+					
			ginn for G 60° to	C. # .	-			\top														-				.	$\neg \uparrow$					
			Changes absuptly bas	ek to									-																			
			mine sericite in to	4/22.0																												
			andesite 6 17.2	24								·]								-					
			· · · · ·						-	_											÷ .		-				\square					
		•						_								_	_															
											+-					_																
				<u></u>	·		L			1.	1:]													
																						- 1										
																										n						
										• • • • • • =																						

NEWHAWK GOLD MINES LTD.

Project:

Drill Hole No. 591-386 Page 2 of 8

 (\cdot)

Into	aval	1.5					Alte	erati	on		1	Min	erali	zatio	วท		A	ssay I	Data		·		-					Co	re Da	ta
(me	ters)	Rock Type	Geologic Description	Erom	70	SIL.	ITTE	HLOR.	ARB.		%	% Cp	% Ga	% Sp	% Gr	70	Sample	From	То	Int	Au	Ag	Au	Ag	Сu %	Pb %	Zn %	RQD %	Run	Reco very %
2125	21.8	QSP	Qt2- Sericite - Chian Schitt		30		-	+			+					<u> ~ 7</u>	-	<u> </u>	· · ·					┝──┘						<u> </u>
	<u> </u>		Abrupt Change @ 21.25						-†										1			<u> </u>								
			20 ~50 % 917 - 30% Sericite	· .							· .								1	1								 		
			15 90 Luly chlazd relict				·																							
			anderite 9 3% py gos is																											
			predominatly unles & moss					· .																						
			matiix sunaunding augural																											
			audesite lanses +							-													ļ	<u> </u>					<u> </u>	
									÷									<u> </u>		ļ		ļ		<u> </u>				ļ	<u> </u>	
21.95	23.5	•	INTIDSE QUY STOCKWOIK	22.0	23.5			<u>.</u>	_		_					4-5	05110	22.0	23.5	1.5	0.016				1670	<u> </u>	ļ	· 		
		3798	Abrupt CLaupe G 21.952						_[ļ	<u> </u>	ļ								. 	<u> </u>	
<u> </u>			20 Intersely s'efd FK W												ļ					ļ								* ·	<u> </u>	
			30-7040 gtz as /2 -													<u> </u>								<u> </u>				 	ļ	
ļ			3 Cm veins w intersely						_		·				<u> </u>		ļ	ļ									<u> </u>	· 		<u> </u>
		-	Slotd & Chirod ik given		· · ·							· .				<u> </u>	 									\vdash	⊢	 	<u> </u>	
·	·		bands & lenses banding &			-		_			<u> </u>					<u> </u>	<u> </u>			<u> </u>			<u> </u>	ļ		\square			ļ	<u> </u>
	·		50% to C.A. Many 1-3mm					_									ļ	<u>-</u>	ļ							\vdash	<u> </u>		<u> </u>	
	<u> </u>		py Unles G 50% to C.A.		· · · ·				_										. 	<u> </u>							<u> </u>			$\left \right $
			To noty, Cpy & Gal				_				·						ļ	ļ	ļ				<u> </u> :	┝──┦						
							-+									<u> </u>	<u> </u>	ļ		<u> </u>	0.027		\vdash	\vdash		├ ──-Ì			<u> </u>	
23.5	51.4		Hafly Altend Andesite/StockWik	23.5	265											3-5		23.5	26.5	3.0	0.028		┥┥	┝─┤	1267	<u> </u>	┝──┥			
		<u>aci. 5</u>	Strongly banded alternating	26.5	29.5											5	1/2	26.5	29.5	3.0	0.019	1	╂	┝──┦	1433					
			52m-2 Cm gt2 wins 0	295	देर र	· · ·						· ·				5	11.3	295	32.5	3.0	0.018		<u> </u>	 	1286					
			Intrusely Child andesite lansas	32.5-	35.5		+									1-8	114	2.2	سح بسحرف	3.0	0.014			┝──┤	1278		┝──┤			
			Some Short Scitions Intense	35.5	38.5										<u> </u>	5	(15	35.5	38.5	3.0	a 012			╞──┥	1344		-			ļ
L	<u> </u>		At2 Veining & flooding to BS to gt2.										·····			L.	<u> </u>	L	L	L		Ļ	1	ل					<u> </u>	

NEWHAWK GOLD MINES LTD. Project: ____

Drill Hole No. <u>S91-386</u> Page 3 of 8

 \bigcirc

Inte	val			1			Alte	ərati	on			Min	eral	izati	on		A	ssay [Data				<u></u>					Co	re Da	ta
(me	ters)	Rock	Geologic Description		r		ШE	ILOR.	BB BB		%	%	%	%	M0 %	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Туре		From	То	2	긔	ㅎ	S_		Pyh	Ср	Ga	Sp	Ģr	PI	No.				opt	opt	check	check	%	%	%	%		%
		[Qug gtz very content varies	38.5	41.5			-							Tr	3-5	05116	38.5	41.5	3.0	0.019				1486					
			bitwere 20 + 50%. Variable	41.5	14.5	<u> </u>			_	-					41%	8	117	41.5	44.5	3.0	0.023	1			1873					
			gimats pr as diss xtals	<i>14:5</i>	47.5					_						2-3	1/8	445	4.7.5	3.0	0.016				1336					
			irregular 3- 72m clots + Agira	\$7.5	496									· ·		3-4	119	475	49.6	2.1	0.018				1576					
			Units, minor sericite along]										
			follbouding & SA-60 to C.A.																					·						
			- Below 32 m degree of																											
			Silicification increases Smally									· .																		
			downhole by 36 m Core																			· · ·								
			15 6 50 % 925 or aug						:																					
			- MoS, in harrow stringers								_																			
			G 42.4 45.0 m		_									· ·																
			- SILC FER deconsing down hold																							-				
			pelow 38 2 by 42 m Core																			1.1							· · · ·	
			15 973 - Seciente Solist we with																• .											
			Chlor in relict motic lenses													· .									·					
•.																											·			
49.6	50.6	Q.U.	Quarty Usin	49.6	50.6							<1				4	120	496	50.6	1.0	0.016				1070.					
		RIN	Massive White 822 41																		·									
			~ 30% included wallow of																						-			-	•	
			Intensely chiezed a scricitized																		- 1									
			Wallet ~ 3 to diss py in																							•				
			Wallow 2170 KY & CRY Globa													· ·	···· .													
			heglid fracts in gt?																		,						-			
			Upper contact broken lores.		· .												1								· · · •					
			lower contact & 55° to C.H																											

 $\left(\begin{array}{c} \end{array} \right)$

NEWHAWK GOLD MINES LTD.

Project:

Drill Hole No. <u>59/-386</u> Page <u>4</u> of <u>8</u>

 $\left(\begin{array}{c} & \\ & \\ & \end{array} \right)$

		ŀ			÷.,		Alt	era	tion			1	Min	erali	zatio	n		As	say [Data			·		:			<u> </u>	Co	re Da	ta
intei (me	ters)	Rock	Geologic Description			—	E	ILOR.	RB.			%	%	%	%	лао %	78	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Type	· · · · · · · · · · · · · · · · · · ·	From	То	5	Ξ	히	S			Pyt	Cp	Ga	Sp	Ø	py	No.				opt	opt	check	check	%	%	%	%		%
50.6	51.4		QTZ-CGlor Schist	50.6	51.4												10	05/21	50G.	51 4	0.8	0.028				2875	-				· ·
			Stronger for F 65 tol. A.			L														 											
		·	4 alternating bands goz	-																	· .	· .						÷			
			Units & Intensely childred															1													
			mafric vie ~ 25% of Core is																l												
			10 glong fol. : D.25 m hass						· .																						
			white Q. V. is surple; N										. * *																		
			10 To py as diss Imm xeels 1						_																						
			harrow units 2-370 1-3mm						•																						
1.1			Py x tals in PTZ Un						}		<u> </u>	<u> </u>		<u> </u>		-															
								·										-													
51.4	153.7		Intensely Slefd Zone	51.4	54.4								ļ				7-8	122	51.4	54.4	3.0	0.022				1375					
			Intensely steld The w	51.4	57.4												10	123	544	57.4	3.0	0.028				2570					
			many 52m-2 Cm gts	57.4	50.4			· ·									810	124	57.4	60.4	30	0.012				1500				1	
			Units and large areas of	60.4	63.4				· .							τ,	8-10	125	60.4	63.4	3.0	0.013				1597					
			total silification many	63.4	66.4													126	63.4	64.4	3-0	0.024				1724					
	· ·		Imm - 10 mm relict Jenses															:	•												
. •			of extension child are										·																		
			Nariable py predon as	-				. }						_ · .																	
			1 - 10 mm Units some diss							_			ĺ																		
			Aug g12 content 70-80% of				2.1																								
			Core		L			·									÷ .														
			- 56.75 - 56.85 Serimess.		·							1							·												
			py n 3090 py osmass																												
			clots & lansis								•																				
·				1									1.									.]									

NEWHAWK GOLD MINES LTD.

(

Project:

Drill Hole No. 591- 386 Page 5 of 8

 $\langle \hat{a}_{ij} \rangle^{+}$

Into							Alt	erat	ion				Min	eral	izati	on		A	ssay [Data									Co	re Da	ta
(me	ters)	Deate	Geologic Description				щ	Ю.	m			0%	0/	%	%	MO	÷70	Camel	From	To	Int	Au	40	A.,	40	<u></u>	Dh	72		Dur	Reco
From	То	Туре		From	То	SIL		ਤ	CAR	1.		Pyh		Ga	Sp	GF	PY	No.			1.00	opt	opt	check	check	%	%	%	нц <i>р</i> %	Hun	very %
			-57.1 folg 50° to C.A.											1					1												100
			- 60.7 - 61.05 ~ 407. of																												
			Cort is irregular mass white	•							•																				
			Qt2 HUMS & Unles W 609,											1.1].																
			included Wallet															÷ _											1		
			- 69 m many hairlike by scaled			.*									T				1.												
			fractures in Att & all angles	66.4	69.4	•											7-8	05/27	66.4	69.4	3.0	0.028				1763					
)	69.4	72.4										T		5	128	69.4	724	3.0	0.048				1797					
			- 72. m for @ 55° to C.A.	71 4	75.4										T		7-8	129	72.4	75.4	3.0	0.023				1825					
				75 4	78.4].				5-7	130	75.4	78.4	3.0	0.027				1535					
				78.4	81.4												3.5	131	78.4	81.4	3.0	0.032				1643					
			- 82.5 foliction G 48 to C.M.	81.4	84.4								Tr		1	Ti	7-8	/31	31.9	34.4	30	0.020				1886					
			- Niege BNIDSS (G B1-35 95 Small																								-				
			111.94 (a) \$1.65 in A12												1																
						·																	1								
			= BB.6-B9.2 Core wKly Slofd	84.4	87.4												4-6	133	844	87.4	3.0	0.016				1812					
			STIDADLY SCHICTTIC STIDAD	87.4	90.4								1		T.		3-5	134	87.4	90.4	30	0.024	1			1860					
			glz STRWAR Still Present														-			-						1704					
			- 94.4 to 96.1 apart change	90.4	934		[1]		Τ		5-7	135	90.4	93.4	3.0	0.019	·			777					95
			to extreme Serierte alter between	93.4	96.4												3-5	136	93.9	96.4	3.0	0.014				1446					
			812 VILLES Much Sericite - Clay	96.9	99.4												7-9	137	96.9	99.4	3.0	0018				1300					
			mud Corebadly broken post.						·									•													
			Shear angle unknown le						·																						
			93.1 gbrup Change back to																												
			Intense Silfeth.								T																	\square			

 $\left(\begin{array}{c} \end{array}\right)$

NEWHAWK GOLD MINES LTD. Project:

1

Drill Hole No. <u>S91-386</u> Page 6 of 8

()

Into					:		Alte	ratio	on			Min	erali	izatio	on		As	ssay [Data					<u></u>				Co	re Da	ta
(me	ters)	Rock	Geologic Description				ITE	ron.	<u>p</u>	·	%	%	%	%	M. %	20	Sample	From	То	Int	Au	Âg	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Туре		From	То	ซีเ	긜	5 3	5		Pyh	Ср	Ga	Sp	C fr	Py	No.				opt	opt	check	{checi	%	%	%	%		%
			- 9905 fol & 65° to C.A.	99.4	102.4			_								12	05138	99.4	1024	3.0	0.019				1300					
	L		-965-99.3 many v. fine						<u> </u>					. 	<u> -</u>															
			PY UNITS & CULTING TTZ UNITS	_																										
			95 Well 95 same generation																											
			Py Units 11 to gtz Units														-													
			-101.4 3 Cm mass white												[.,					· · .										
			972 Usin Minor BY Sharp			ŀ																								
			contacts & 85° to C.A.												Ι															
			-99.7- 49.85 +100.20 to																											
			100.30 Semimass By as																											
			1 - 5mm Xtg/5 & irreg. clots							-							· .													
									-																				[]	
		· .		102.4	105.4											7-10	05139	102.4	105.4	3.0	0.020				1500					
				105.4	108.4											7-10	140	105.4	108.4	3.0	0.027				1697					
		- -	-108.5 -108.6 10 cm mass	108.4	111.4							Tr				5	141	108.4	111.4	3.0	0.048				1602			•		
			White RTZ UN Starp Contects	111.4	114.4						4					3-5	1 22	111:4	114.4	2.0	0,020				2031					
<u>.</u>			Q B7° to C.A. minor py	114.4	117.4							Tr.		$ i_{\gamma} $	Tr	3-5	143	114:4	117.4	3.0	0.026	·		÷ .	1965				1	
		1.	· · · · · · · · · · · · · · · · · · ·	117.4	120.4				·							3-4	144	117.4	120.4	3.0	0.022				1834					
			- 125.5- fol @ 60° to C.A	12.04	123.4										Tr	5-6	175	1204	123.9	3.0	0.024-				2071				[· · · ·]	
														1.1.1		3-5-	14	1229	126.4	3.0	0.015				1731				1	
							\top									5	147	126.4	127.8	1.4	0.008				1596			· · ·		
			- 127.8 to 128.3 Quartz Vein								1.1					5	148	127.8	128.3	0.5	8.009				1668					
			29855 Glite g 27 41 minor																											
			included Secienticzed & chiezdwall				T					14		·				-				÷							-	
			POCK ~ 570 diss Imm pr xtals		·						1																			
			Chara laure consact (\$ 30° to C.A.																											

()

2]

NEWHAWK GOLD MINES LTD.

()

Project:

Drill Hole No. 591-386 Page 7 of 8

 (\cdot)

						Τ	Alte	erat	ion			T	Min	ərali	zatio	on _		As	say [Data			~						Cor	e Dat	a
Inter (mel	vai ers)	- · ·	Geologic Description				ш	н. Н	m			0/	0/	0/	0/	Mo	67.		Fan ini	 	let.	A	A		, , ,	<u></u>	 _				Reco
From	To	Rock		Erom	Та	اير ا	E	F	AR	5 T 1		Pvh	CD	∕∘ Ga	Sn	70 Gf	10	Sample No.	From	10		opt	opt	Au	check	%	PD %	Zn %	NGD %	Run	very %
	10			12.62				-									1-7	on un		10/1	2.0				_			-	<u> </u>		
				128.5	131.3		_										5-7	05 149	1283	1313	3.0	0,020				2002					
<u> </u>		· · ·		1313	133.9								├──				5.7	150	<u>131.3</u>	/33.4	2.6	710.0	l	+	$\left -\right $	2013		$\left - \right $			{
<u> </u>		1	133.9-135.0 Lapilli Tutt	<u>/33.9</u>	135.0	1		\rightarrow	<u> </u>			-	<u> </u>				7-8	/5/	133.9	135.0	l.l	0.027				328					
			Strongly chloritic f. gr dk gry	· ·			-+	+	·		+													<u> </u>							
			matic tuff w variable to (25%)										· ·							. 		·		<u> </u>		· · · ·	┝──┤				
			3-8mm White feldspathic												ļ																
			U.f. g. frags in a taff matrix		 	ļ			-+		-	<u> </u>			 					 			 	-							·
			many frags dangare along	L		ļ					4	ļ					L	ļ		<u> </u>							\square				<u> </u>
	·		a wear for & 55° to C.A.			·														ļ								· .			
			W~7-8 70 U.f py diss py									· ·																			
			glong fol. no silfeth or		ļ	· .	·										·			L											
	· · · ·		9+2 Usining Strongly Scarcitiz	rd	· · · ·	<u> </u>					·		 																		
			upper . lower Contacts basically							1						1															
			mud.																		:										
			- Below 135.0 core is	135.0	136.4			<u>.</u>										152	1350	136.9	1.9	0.016		ļ.		2204					
			Strongly stefd w many yez		<u> </u>						_	1				 .				<u> </u>			<u> </u>]		
			Veinlets & Sections W strongly										· .																		
			chitze wailrock banded w	-																										1997 - 129 1	
			822 weins as described above	1. A.																·		12	1								
	i		- 136.9 - 137.8 Two 2055	136.9	137.B												3-5	5153	136.9	137.8	0.9	0.008				1028					
			WHite BIZ VEGAS WI Minde BY	137.8	140.8							1					5-7	5/54	137.R	140.8	3.0	0.018				1596					
	÷.		Starrated by 0.3 2 of	1 90.8	113.8											Tr	3-5	5155	1408	143.8	3.0	0:019				1748					
			havely Sloff & LCS veined Walliam																					`~							_1
			9/1 contacts here installer	· .																											
												1.															\square				

()

NEWHAWK GOLD MINES LTD.

 \odot

Project:

Drill Hole No. <u>\$9/-386</u> Page <u>\$</u> of <u>8</u>

; j

Inter				1			Alt	erat	tion		· · · · ·		Min	erali	zatio	on		A	ssay [Data	· · · · ·							<u> </u>	Cor	e Da	ta
(me	ters)	Bock	Geologic Description				ТЕ	OR.	ġ			%	%	%	%	%	67.	Samole	From	То	Int	An	Αa	Διι	Aa	Cul	ъ	70	ROD	Dun	Reco
From	То	Туре		From	То	SIL.	ורדו	E	QF			Pyh	Ср	Ga	Sp	Gr	Py	No.				opt	opt	check	check	%	%	%	%	nun	%
			151.0 - 151.15 mass white	143.8	146.8											·	3.5	0.515	1438	146.8	3.0	0.014			4	918					100%
			gtz Va W minor angular	146.8	149.8		·										3-5	157	146.8	149.8	3.0	0.013				2016					
			extremaly chited frags wallyrk	149.8	152.8		· · · ·										2-3	158	149.B	152.8	3.0	0.021			4	2005					
			2-370 pt shap upper contact	152.8	153.7												5-7	159	152.8	1537	0.9	0. 0 B				852					
			a 45° to C.A. lower contact		1.							. ·		-											Ţ						
			6. 70° ±0 c.H.																												
																			· ·			1									
·			-153.2 fol @ 67° to C.A																1.1												
÷ .													÷.,				1														
			153.7 EOH	· .																											
												_						· .													
	· · ·			·				-		-						1															
						· ·		<u> </u>											1					 							
i		<u> </u>	· · · · · · · · · · · · · · · · · · ·														—		· · ·				· · ·					-†			
			· · · · · · · · · · · · · · · · · · ·												<u>-</u>		<u> </u>		· · · · ·												
·		· · · ·						+				·								 -		·					\neg	-1			
			· · · · · · · · · · · · · · · · · · ·															wed	0	100-								+	·		
									+	-								Aug	0	153,7	1537	.02/3									<u> </u>
										+							<u> </u>		844		ia.					1740		-+	+		
									•	+				·			-		01.1	1551	97.3	· .				1739		-+			{
<u> </u>				· · · ·															<u>-</u>	· .					-		-				1
									+			<u> </u>					 ·			· · · .											
									-						· ·		<u> </u>			· · ·							_				
		 								-+-												<u>.</u>						<u></u>	+	·	
								• •					· · ·				-		¦						· .			-+			<u> </u>
									-+								<u> </u>						····					· .			
		L						<u> </u>		<u> </u>		L					<u>L.,</u> ,		<u> </u>	<i>'</i>						<u> </u>		<u> </u>			

89.4-EOH Cu 120528.4 /69.32 = .1440

N	<u>.</u> W	HA	WK	DEPTH /	BEARING	D	Ρ	SURVI	EY TYPI	E PF	ROP	ERTY	1:54	./ph	ure	ts	LEN	GTH:	15	4.3	ک ہد	.06'	HC)LE N	10.:	5	71-	387	7 .	
G	JL	J N	AINES LTD.	COLLAR	193.53	5 - 46	5.66	E.1	D. M.	C	_AIM	: x-	Ra.	6			COR	E SI	ZE:	B	. Q	-	SF	IEET	NO.	10	if 7	7	· · ·	
Dia	amor	nd Dril	I Hole Record	154,3		-4	3	Ac.	d	LA	TIT	JDE:	62.65	063	.220	-N	REC	ÖVE	RY:	G	ood	7952	LC	GGE	D B	Y:	м.	T		41
Pro	niect	· 50	145120 -	1-110	100	,						RTUE	3F				STAF	RTEL). 7	117	10		SA		ED F	3Y:	n .	<u> </u>	<u> </u>	7 -
1 10	5,601		7578	154,3	198	-4	3	Trop	2012				1. <i>4</i>	2352	4.070	OE.	COV		<u>, //</u>		19	/					<u>3, E</u>	: 1/10	12	
													N. 70	20.0	32 1	<u> </u>		IPLE	IED:	- 1	17/	91	1 PU		<u>/SE:</u>	Tes	E /	rite	6.11	Au
Inter	val							Altera	ation			Mii	nera	lizati	on		Ass	say D	Data					<u> </u>	<u>.</u>			re Da	ta	
(me	ers)	Bock	Geologic Description					ЩÖ	E S			% %	%	%	%	с, Ср	Sample	From	То	Int	Au	Aa	Au	Aa C		b Zn	ROD	Bun	Reco	
From	То	Туре			From	То	ซ	티 오	NO S		P	yh C	p Ga	Sp	Gr	10 D1	No.				opt	opt	check	check %	6 %	。%	%		%	
																17								-			1			
Ó	19.1		Altered Mafie Vo	lequics												; ·											1		·	
			Variably chizz	1. 5 4/c/t	ized		•																							
			aslefd for may	lie															-											
			Volcanie rK :	11 -																										
			Toto green or gr	· · · /																										
		1	WICH - motely fo	liated																										
	÷.		minor 3mm - 30	m 413									1																	
			yeinless	0						-																	•			
			- Variable py Co	out can t		÷																								
			as fine discribe ?	narrow						·						· .	· .				·									
			verylets	A. S.																										
			- 3.0-4.0 bod	y broke	- 3.0	4.0					14						· .												100	
			Some Strong Ar Stri	i, tized	46	7.9													·										8.8	
	• •																· .													
			- Below 16.42 co.		0	3.0	W	m	1.1							2-3	05160	0	3.0	3.0	.019				340				100	
			becomes progressic	jely	3.0	6.0	W	W	21							5-6	161	3.0	6.0	3.0	.02/			./	370	-				
	1		more foligied & see	citized	6.0	9.0	W	w	n							10	162	6.0	9.0	3.0	.025			.1	611					
			down hole to 19.1.	n where	9.0	12.0	m	m	21							7-10	163	9.0	12.0	3.0	.035				1243					
			it abruptly bec	omes	12.0	15.0	W	m	W							4.5	14	12.0	15.0	3.0	.026			2	028				1	
			Intersaly silefd.	· .	15.0	18.0	ω	2	W							7-10	1651	\$5.0	18.0	3.0	.020			.1.	807					
			- 18.2 m Strong	y fol	18.0	19.1										3-5	1661	18.0	19.1	1.1	. 035				<u> 528</u>					
			Suicise folg	65° 10 CA	4.																	·								
				· · · · · · · · · · · · · · · · · · ·							<u> </u>	·																		
		-																								-	1	1		

 $d \neq 1$

ales

NEWH	AWK		
GOLD	MINES	LTD.	Pr

Project:

Drill Hole No. 591-387 Page 2 of 7

()

. Inte		[· · · · · ·	1	Alt	erat	ion	· · ·	:	Τ	Min	erali	zatio	n		As	say [Data		·					, <u> </u>		Co	re Da	ta
(me	ters)	Rock	Geologic Description				E	LOR.	BB	*. i c i k		%	%	%	%	%	E.	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Туре		From	То	เริ	Ę	R	<u>रु</u>	Ś		Pyh	Ср	Ga	Sp	Gr	py	No.				opt	opt	checi	chec	%	%	%	%		%
191	23.7		Intensely siefd Zone													-															
	· .	· .,	- Intercely sleft u	19.1	22.1	I			Τ			1	Tr.				7-10	25/67	191	22.1	3.0	.012		.015	1	140					100
			Trings relict extremely	27.1	23-7	I											10	168	221	237	1.6	.018				152	,			[100
			Series tized in the climitic	[122	<u> </u>				
			The second why considered			-			\neg			1												<u> </u>	<u> </u>						
			CALL IS OF ROOM IT COM									<u> </u>						[·										¦───-	-
· · · · ·		1	<u></u>								1.							<u> </u>			:						<u> </u>				
 .			git gits vering is													÷				·										<u>├</u> !	i1
			Thdistinct - oligting it							-+-			· · · · · · · · · · · · · · · · · · ·			·		· · · · · · ·		ŀ										;l	
			destedred, Starp lower	·					-+-			┣																			
			Contact w selist & BS	·																										<u>├</u>	
			to c. K. Variable py				 .											<u> </u>						+			<u> </u> '			ļ	
			95 3mm - 1.5 Cm prins G	ļ				·				 								·	· · ·				ļ	i	<u> </u>				<u> </u>
			all sugles to c.A.		-													·					· ·	ļ		<u> </u>		· ·			· · · ·
										_							<u> -</u>										<u> </u>				· · ·
23.7	447	1	Qt2-Sericite Schist	23.7	26.7	w		w		I		L					5	05/69	23.7	26.7	3.0	,036		ļ		. 232	<u> </u>			'	100
			Heavily Sericiticed, where-	26.7	29.7	W		W		T							10	170	26.7	29.7	3.0	.043				.278			1.1		95
			maily sleft while cheovitic					-																						ا ا	
	·		11 - Tred goty Schist w					· .					-																		
			Variable 3mm - 6 cm It		·								· ·														I				
			arry 312 Veinlets, Most	· .								1											· · .					-			
			he mat heavy at & storing			2				· .	1																				
			Variable by 95 fine disc			·* · ·				-			1 - 1 - L		1.1							1									
			stals & usinters Mass											•						· · · ·									·		
			Care brakes alas a crisitia			4	· -			-	· ·	 							**			-									
			Low Aron wing some										i				-														
		<u> </u>	MFCHITIGS	ŀ	L	<u> </u>					i,	L				1	ا	i			اا			<u> </u>							

NEWH GOLD	AWK MINES	Project:

Drill Hole No. 591-387 Page 3 of 7

 $(\cdot \cdot)$

Into	nyai	[[Al	terat	ion				Min	erali	zatio	on		As	ssay [Data				<u></u>			·	- T	Co	re Da	ta
(me	ters)	Rock	Geologic Description				ΠE	LOR.	RB.	2		%	%	%	%	%	70	Sample	From	To	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Туре		From	То	5	L L	공	5	2		Pyh	Ср	Ga	Sp	Gr	Py	No.				opt	opt	check	check	%	%	%	%		%
· ·			952 Vinlets @ all	29.7	32.	W				T							7-8	05171	297	31.7	3.0	.022				,2629				~	-90
	·		9+glis to core aris, often contacted	32.7	35.7	W				<u>r</u> .							8-10	172	32.7	3.5.7	3.0	.041				. 2882	F	·			97
			- 30.3 - 41.1 Core is	35.7	38.7	w			7	-							10-12	173	35.7	38.7	3.0	.024				.1588					92
		<u> </u>	intensely sericitic & very	38.7	41.7	W	· .			<u>r</u>							12-15	174	38.7	41.7	3.0	.045				.1628					100
	ļ	·	badly broken most G	41.7	44.7	H			,	N							5	175	41.7	44.7	3.0	.029				1381					100
			60 - 70° to C.A.		-																										
		ļ	- 32.8m for 50° to C.A.																												
44.7	603		QtZ StockWork	44.7	47.7	I			. 1-	/							7-8	176	+47	47.7	3.0	.021				.1475			-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100
			Intense 922 Stockwork	47.7	50.7	I			1-	1							8-10	177	47.7	50.7	3.0	.025				17/6					100
			4) relict lanses of intensely	50.7	53.7	I			ŀ	1							7-8	178	50.7	51.7	3.0	.016				/250					100
			Scricitized Wallrock giving	53.7	56.7	Ĩ			ŀ	f							10	179	53.7	56.7	3.0	.019				14/1					100
			core strong foliation most	\$6.7	59.7	I			4								5-7	180	56.7	59.7	3.0	,0/2				1161					100
L			g12 Veinlets 2mm-3cm	597	60.3	I			1								5	181	59.7	60.3	0.6	.034				./27					100
			9 along for some X cutting																			•,									
			fol Most Core 7 50%													Ì															[
_ <u></u>			g12. Variable py most	1.1																			1								
			as harrow Units 11 to fol		_								1																		
			Some X cutting glz Unles																	ч. 1											
			6 all angles : Con far less																												
			broken than in Schist.																				1								
			- Entense Stockwark Viening																											-	
			begins abruptly G + +.7m																												
			W. a tright irregular								· .																				
			Contact @ ~ 65° to C. A.				·							· · ·								-									
				1 S.																											

NEWHAWK GOLD MINES LTD.

Project:

Drill Hole No. 591-387 Page 4 of 7

Inte	rval						Alte	ratio	on				Min	eral	izati	on		As	ssay I	Data				<u>.</u>		P-112		 	Co	re Da	ta
(me	ters)	Bock	Geologic Description				Ш	Ю Ю	n	· .		%	%	%	%	0/	σ.	C	Erom	То	Int	A								[]	Reco
From	То	Туре		From	То	ਲ		퇴 등	SAH			Pyh	Ср	Ga	Sp	Gr	70	No.		10		opt	opt	Au	Ag	Cu %	Рb %	Zn %	RQD %	Run	very %
			- 49.0 m strong fol 6 650						-								1/2			-					<u> </u>	╞╼╼┥			_ 		
	ļ	·	to c.A.								1																				
			- 546 strong for 60°+0																										·		
			6.A.																												
			- 59.3 - 60.1 Core has more											· .																	
			Sections of intense suisite														-										-				
ļ			8 is more proken gt2 Stackalous									- 1																			
			still 7 50% of core														_								· · · ·						
60.3	61.4	<u> </u>	Mofil Toff	60.3	61.4	W	-										1%	05/82	60.3	61.4	1.1	.0/3									100
L			-f.gr. equipronular												-											-207					10.0
· ·			dK grey-green matic tall																												
			Starp, Silicrous, It gouy																												
			horefulsed upper contact																								_				
			W STOCKWIK & 70° to						_	·																					
			C.A. Sharp frost lower									-																			· ·
			Contact @ 60° to C.M.		·																										
	- <u></u>		- Station Contains 0.25				·	_																							
			m white mass. late giz																												
			VRIN & MINON HOPPOLS								· ·																\neg				
			late, white gtz UM/ts.						_																		-				
			minor py as very narrow					_		:																					
	·	·	Veinlets															1													
																					··· ···[.					\neg	\neg	-+		<u> </u>	
			- lattage gt2 stockwort													.•										-	-+	<u> </u>			
			6x10w 61.4																						-	-+	-+		-		

NEWHAWK GOLD MINES LTD.

()

Project: _

Drill Hole No. 591-387 Page 5 of 7

المغمر		. *				Γ	Alte	erat	tion				Min	erali	zatio	on		As	ssay [Data			·						Co	re Da	ita
(me	ters)	Rock	Geologic Description				ШE	LOR.	RB.			%	%	%	%	Мо %	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	ROD	Run	Reco very
From	То	Туре		From	То	SI	Ę	공	5			Pyh	Ср	Ga	Sp	Ġ(PY	No.	 		 -	opt	opt	chec	checi	%	%	%	%		%
		-	- 61-9 for e 650 to	61.4	640	I							1				10-1	05183	61.4	64.0	2.6	.012				1283					·
· .			C. #.																						Γ.	[]			[·		
					 																										
			64.0-65.7 Quartz Vein	64.0	65.7								<u> <1</u>			Tr	5	184	64.0	65.7	1. 7	,02/				.082					100
	 		Mass white gez vein		· · · ·						<u> </u>	ļ'					<u> </u>	ļ						1	L				L	ļ	
			W. Minor lenses & angular														L						·								
			fouger intensely chierd woll		ļ.,			_												 			· .		 						
			VK ~ 590 py as navrow	•						_		L																			
			inconsist Units 2 190 cpy								1														L				L		
			as 2 - Sum dies blebs, Tr. Mos		<u> </u>].								•	. <u>.</u>									I		
			- Shorp upper contact & 60°																												
			to C.A. Broken Consel																											-	
			Contact W Arguist fisss																							1.1					
	1.1	· .	giv goz Stockworks in	-														· .			Ì										
			White gite win y ater																												
											-			_				-			2 ¹										
			- balow 65 7 Stion 9 372	65.7	68.Z	I			·	\perp	<u> </u>						8.10	185	65.7	68.7	3.0	. 628		<u></u>		1506					100
·			STOCKWORK W interse sifern		ļ. 	·				_	_			· .			7-9	186	68.7	71.7	3.0	.007	: :	<u> </u>		1/13					100
	L	. 	as brigg.						\rightarrow		-	-							· .					<u> </u>					ļ	<u> </u>	
					<u> </u>																								 		
			- 69.9-71.1 moss white ges		ļ								· .							Ļ									.		
			Unit w 2-370 f. disspy to		L			_			_							;	<u>.</u>	- 									 		
·			CPY Sharp appen contact (·
			85° 10 C.A.		<u> </u>					. :																					
	·																														
						[]	ſ			1				.]																	

NEWHAWK GOLD MINES LTD. P

Project:

Drill Hole No. <u>591-387</u> Page 6 of 7

		<u> </u>		ľ			Alt	erat	ion			1	Min	erali	zatio	on	<u> </u>	As	ssay D	Data		· ·			·····		<u>.</u>		Co	re Da	ta
(me	vai ers)	Rock	Geologic Description				ШE	LOR.	RB.	·		%	%	%	%	%	%	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	То	Туре	· · · · · · · · · · · · · · · · · · ·	From	То	SIL	긜	2	S S			Pyh	Ср	Ga	Sp	Gr	Py.	No.				opt	opt	chec	kcheck	%	%	%	%		%
			-73.5 fol G 65° to C.A.	71.7	74.7	T					_						5.7	05187	71.7	74.7	3.0	1012				1442					100
		·	- 71.7 20 76.4 ~ 10-15.70	74.7	77.7	\mathcal{I}											5	188	74.7	77.7	3.0	.013				1182					100
			of core is irregular widely				· .			· ·			1.1																		
			Spaced gass verifiers of															<u> </u>													
			late white goz x cutting															2													
			Frv 422 Stockwors	1				•						İ .																	
				777	80.7	I											6-8	189	77.2	30.7	3.0	.017				1088					100
			- 81.6 - 84.7 Several large	80.7	83.7	I											12-15	190	80.7	83.7	3.0	.021				1198					100
			(to sem) irrigular clots of	83.7	86.7	I											7-9	191	83.7	86.7	3.0	.013	•			1304	[73
			Py	86.7	89.7	I											5-6	192	86.7	89.7	3.0	.orr				1516					100
			- 85.0 - 89.7 Core broken														3-5	193	89.7	92.7	3.0	.014				1455	r i				100
			@ all angles to I.M. no apporent				·										3-5	194	92.7	95.0	2.3	.017				1620					
			reason for core 1055													L															
			-86.9 fol & 45° to C M																												
			- 90.0 for E 55° 20 C.H.									<u> </u>																			
			- 95.0 - 99.9 Core excremely	95.0	96.3	I											3.5	195-	95.0	96.3	1.3	. 014				1550	[]			~	61
			broken mast basinally ground	91.3	99.4	I							5				3.5	196	96.3	99.4	3./	.014				1009				~	58
			much ground, minco	99.4	99.9	I											3-5	197	99.4	99.9	0.5	.018				1310				~~	95
			short stations stricts						. .														·								
			mand HD apparent Shearing	99.9	102.9	I											3-5	198	999	1029	3.0	.022				1243			1	~	95
			- 99.9-105.5 Core	102.9	105.9	\mathcal{I}							Tr				3-5	199	102.9	105.9	3.0	.009				1028					73
	-		mothy broken no gravel													· ·								. 							
			of must many intact sections											1. 																	
_			Interply sicht stockwork			1 1					T													1					1		

Intonyo	, i			Т.			Alte	ratio	on			<u> </u>	Mine	erali	zatio	<u>n</u>			say L	Data				•	·····				Co	re Da	ta
(meter	s)	Rock Type	Geologic Description	From	To	SIL.	ILLTE	CHLOR.	CARB.		. 1	% Pyh	% Cp	% Ga	% Sp	% Gr	70	Sample No.	From	То	Int	Au opt	Ag opt	Au	Ag kcheck	Cu %	Pb %	Zn %	RQD %	Run	Reco very %
	-			1055	100	7		<u> </u>	<u> </u>						-		2-3	0520	lar 9	1000	3.0	<i>m</i> /1				100					100
			-102 B. 102 C 10-15 B-	100.1	108.9	+							+				5-7	03200	1000.1	1110	3.0	1012				154					100
				111 4	114.9	T											P-10	201	1110	110.0	3.0	009				100			!		100
			Tatt Durit gir Dains Diarry	110. 9	1170	7			+			-	7.				0.10	2.2	1149	1170	3.0	.010		+		41.01 11/0					100
			Space in grey get Stowwork	114.7	12.0	-		-	-				11		<u> </u>		10	1 200	1179	11.00	2.0	1010		\square		1118					100
			Some of Store Contacts	1177	120.9			·	-+-	-		f	<u>~</u>				10	204	117.7	120.7	5.0	1001		<u> </u>		<u>ومدا،</u>				· · · · · · · · · · · · · · · · · · ·	100
	 ·		a Variatia angles to C.F.			-	···· -					_		<u> </u>		/	· · ·				<u> </u>										
			Some w Cry as strong														<u> </u>	-		<u> </u>		<u>·</u>		+	┼──┤				l		├
			angular bless dissin giz						-			÷				···· · · ·			<u> </u>	ļ			<u>-</u>	-					· · · ·		
		<u></u>	To very fine Silver Sulphide													••••								-							
	·		poss. 2 aly se salare hours											•	:																
			- 111.8 - 114.9 mary hair like		. ¹ .									1			<u> </u> -			 					1 				·	·	
			Py VALLS CROSS CALIFYing gt2										· .			. <u></u>		1			·									<u> </u>	<u> </u>
			STOCKWORK & all angles							_	· .								{		·									<u> </u>	
			- Below 142 more senicitic																		<u> </u>									<u> </u>	
·			leuses some sections foliated	120.9	113.9	I		-		·							5-7	205	120.9	123.9	3.0	.013				.1119			 		10
			most still intensoly sicfd	123.9	126.9	I				*							5	206	123.9	126.9	3.0	.006		<u> </u>		.09				<u> </u>	100
			- 194.2 fol @ 55° to C.M.	126.9	119.9	I.											7-8	207	126.9	129.9	3.0	015		<u> </u>		,1233			·	ļ	10
		1	- 149.9 fol & 50° to C.A	129.9	132.9	I				·		·			·		8-9	208	129.9	1329	3.0	.015	· · · ·	<u> </u>		1360	· .		·	<u> </u>	10
				132.9	135.9	I											5	209	132.9	135.9	3.0	.017				J297					10
			- Hole ends in string	135.9	1389	I		-									3-5	210	135,9	138.9	30	.029				1973					10
			212 STOCKWOIK W.	138.9	141.9	I						7	Ť,				5-7	211	138.9	141.9	3.0	.016			·	1173	1.				.17
		:	Intense Silicification +	141.9	149.9	Ĩ						-	Tr				3-5	2/2	141.9	144.9	3.0	.013				1015			("
			diss py a py weighteds E	144.9	147.9	I			_								5-7	213	144.9	147.9	3.0	.011				847					.11
÷.,			154.3 m	147.9	150.9	T											5-7	214	1 47.9	150.9	3.0	.023				200			i .		"
				1509	1529	I											5	215	150.9	1.52.9	20	.026				1880					.11
				10.0	VCA 2	T			-						•	1	5	211	1529	154 3	14	.019				1710					101

NEWHAWK GOLD MINES LTD.

Project:

Drill Hole No. <u>59/- 387</u> Page 7 of 7

1 - 1

W = weak M = Moderate H = Heavy I = Intense Tr = Trace

Weighted Augs An

0-154.3 m 2.0552/154.3 = 0.0198 g/2 6001 159.3 m 0-68.7 m 1.7819/68.7 = 0.0259 g/2 0001 68.7 m 68.7-154.3 m 1.2733/856 = 0.0148 g/2 0001 85.6 m

23.7 - 44.72 0.7200/21.0 = 0.0343 2/+ Over 21.0m

NOF	ТН		B MINES LTD	DEPTH	BEARING	g DI	P	SURV	EY TYP	E PF	ROPE	RTY	Sul	lohu.	ets.		ENGTH	: 19	0.5	m 6	25-1	HC	LE N	0.:	59	1-	395		
				COLLAR	180°	- 4.	r°	Com	pass	CL	AIM:	X	RA	Υ	6	0	CORE S	IZE:	Bų	Th	,	S⊦	EET	NO.	1 of		5		
Diamo	ond [Drill	Hole Record	111.3m	<u> </u>	-36	° .	AC	ID.	LA	TITU	DE:	26	5731	. 534	c F	RECOVE	RY:	27	00 %		LO	GGE	D BY	: ~	1. 7	Time	1011	
Projec	st:			1875	192	- 30	. 0	T	acri	DE	EPAR	TURI	Ξ: 4	2 2 2	n9 51	, 5	STARTE	D: A	4.5	a 10	1	SA	MPLE		1: /	3. K	-AA ej	Y	
			· · · · · · · · · · · · · · · · · · ·	COLLAR	176 59	1-41	35	E.D.M	10011	EL	EVA	ION	9	<u>-2-3</u> 75	(12				- <u></u>	<u> </u>	<u> </u>	PI	IRPO	SE. 4	<u> </u>		 		
			······································			<u> </u>		A 14.	<u> </u>	<u> </u>		Mire			\$70		Acres 1	<u></u>	174	910/	9/	1.0	1.1.0		<57	W.	<u></u>	786111	Hu 2
nterval			A H H H				- -	Altera		<u>i</u>	+		eran	zauc		- <u> </u> -	Assay			T		ri	<u> </u>			Co	re Da	ta	
neters)	Ro	ock	Geologic Description			· .	Ŀ.		ABB		%	%	%	%	% 7	6 Sa	mple From	То	İnt	Au	Ag	Au	Ag Ci	JPb	Zn	RQD	Run	Reco	
<u>m To</u>	Тур	rpe			From	То	S		3		Ру	n Cp	Ga	Sp	Gr p	,∠ [№]).	<u> </u>		opt	opt	checko	heck %	%	%	%		%	
				·	0.0	3.0	61	M	ŀ			<u> </u>			5	7 05	5370 0.0	3.0	3.0	, 0:1			209	3				100	
, 29.0	2		Andesite		3.0	6.0	ω	M		<u></u>					7-	10 3	71 3.0	6.0	3.0	.237				1.22	1		<u> </u>		
			med green, Fr 7	red gr .	6-0	9.0	ω	<u>M</u>			_				<u> </u>	5	372 60	9.0	3-0	• •				<u></u>				<u> </u>	
			equigranular mixer	cre pt	9.0	11, 9	2	M			_				2	<u>د</u> 3	873 9.0	11.9	2.9	222			<u> </u>	<u>8</u>			<u> </u>		
			Chloritized matic m	ierio's	••••													ļ		 				-			ļ		
			a plag (cherred for	Kapar J															ļ										
			Stoin) minor Cold	ite in	_ <u>_</u>														+	 				-	-		ļ		
			rater Variable	g 12 val2	<u></u>							+		<u> </u>	·										<u> </u>		 :		
-			Variable py as di	ss xtals																	· · ·						ļ		
	_		1 rariow Units.	WRY																									
	· · ·		folioted & 60 to	C. A.														ļ					:				<u> </u>		
			- Some Sections W	2010					····-				·						+			·		_			 		
-			giz Unles WRIY-2d	tly sictd	· · ·		· ·					· ·	·																
								· · ·		[[ļ		
·	• <u>+</u> :		11-9 to 14.0 Core ble	acked to	11.9	14.0	5	W							8-	10 3	74 11.9	14.0	2.1				100	<u>v 233</u>					
			It grey strongly ste	-1 W	14:0	17.0	6.7-34- 1.1-1	201				Tr			3-	537	75 14.0	17.1	3.0	<u></u>				×	۴. 				
	_		many gt2 up/25 6 ul	anging	/7.0	20.0	<u> </u>	- W							- 3-	10 3	76 17.0	20.0	3.0				-	<u> 1 - 21</u>					
-			to C.A. ares appens	5 9	20.0	23.0						· .			 	5 3	77 20.0	23.0	3.0				- 292						
		.	arsappinges over ~ 200.		73.0	16.0					-	+				2 37	25 23.0	26.0	3.0				<u> </u>					100	
			- 01/0W 14.0 912 V	with aug						-+-	-											<u> </u>					<u>├</u> '		
			during of cititations	ang			-	-								-†							-						
+			he No of att	INCLOSE									• • •						$\left - \right $								├I	<u> </u>	
	-		a ind the adiatest	10 . 1-														;									'		
	· · · · ·		mina cp. as jocant		-													·					· -	1			<u>├</u> ी		

· · · · · ·

0 - 84.5 = 84.5 ,27% Cu ,0204 optAu 84.5 - 128.5 = 44m ,25% Cu ,0263 optAu 128.5 - 190,5 = 111.5m ,19% Cu ,01890 pt Au

Project: _

Drill Hole No. <u>591-395</u> Page 2 of 5

Inter	val					<u> </u>	Â	terat	ion				Min	erali	zatio	on		A	ssay	Data		<u>.</u>	<u></u>				<u></u>		l Co	re Da	Ita
(met	ers)	Rock	Geologic Description				巴	ЭН	m			%	%	%	%	0/	67	Com-1	Erom	To	Int							· · ·			Reco
rom	То	Туре		From	То	SIL		ਤ	CAF			Pyh	Ср	Ga	Sp	Gr	P	No.			пй	opt	Ag opt	Au checi	Ag	Cu %	РЬ %	Zn %	ROD	Run	very %
9.0			Qtz Stock WOVK	20.0	29.0	Ŵ		M									8-10	05379	260	29.0	3.0	024				5141		2		<u> </u>	100
			- Abrupt Change & 29.0																	1						12.07		<u> .</u>			100
			from Chitzd anderite 4, 61070																												
			gzz veinlats to Intersely	29.0	32.0	I							Tr				12-15	380	29.0	32.0	3.0	,517				1335	262			<u> </u>	
	· · · · · ·	· · ·	Silefd + gtz veined rock w	32.0	250	7							Tr				12-15	381	320	35.0	3.0	.0/0				2.244		/			
		·	10-2020 highly contorted	35,0	37.7												7-9	382	350	377	27	.0/1			i.	3870	24/2				
			paliet frags & bands of		-																	·				<u>, ,, ,</u>	is (m				-
	•		intersely chlesd tajakfock. Qth							-										· .		-			_						-
		<u>-</u>	usinters are concorred a barry		<u> </u>						.:	. •					н. 19														
_			discerrable in a patrix of							-																					
· • • • •			giz flood, Many rarrow		. .																				-						
			py veivlers & fractore filling										·	•				:								-				·· · · · · ·	
			Cross curring the giz wrinkers.																						1						
			- broken upper contact Stockwork						-	_																			· ·		
			9 andesite Ce ~ 70-75°20C.H.						-																						
										-		· ·					_														
		·	@ 37.7 intensity of yos	37.7	<i>40.7</i>	Μ		11-s				-	Tr				7-9	283	37.7	40.7	3.0	.214				27-1	2031				
			flooding decreases abruptly	10.7	43.7	M		<u>m - s</u>									5-7	384	40.7	43.7	2.0	271			2	70%	2930				
			Strong giz Stockman Ucining	43.7	46.7	M		<u>4.5</u>									5-7	385	43.7	46.7	3.0	623				rjāt į	:677		1		
<u></u>			in a matrix of intensely	46.7	<i>19.7</i>	11	- 1	<u>n.</u>						·			7-10	386	16.7	49.7	2.0	625			2	1.26	2450				100
			Chitzad & Stipeitizing Wallete																										_		
		·	gtz are highly controuted		·												·	·													
-	-+		relict audisitic regenes						_			· .																			
-			observed over very scort																												
_		· · · ·	(1) sactions							<u> </u>					·																-
	·				1	· 1	·							ĺ							Ĩ										

Project:

Drill Hole No. <u>\$9-395</u> Page _3 of _5

			· · · · · · · · · · · · · · · · · · ·	[T	Alt	erati	ion				Min	erali	zatio	n		A	ssay	Data									Co	re Da	ta
(me	ters)	Rock	Geologic Description				ΠE	ILOR.	RB.	Ň		%	%	%	%	%	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	To_	Туре		From	То	S		히	54		1	Pyh	Ср	Ga	Sp	Gr	Py.	NO.				opt	opt	check	check	%	%	%	%		%
			- @ 46.5 mde for @ 40-	£9.7	\$2.7	5		5	5								7-10	05387	49.7	52.7	3.0	.02/				2846	2.5				100
	1.0		45° to C. A.	527	55.8	s		s	5				Tr				10-13	288	52.7	55.8	3.1	NA			· .]	2. 4 %	223	y			
																			ļ				· .		[.]						
			-55.3 -60.5 mdt angunt	55.8	53.8	W		M									7-9	389	55.8	58.8	3:0	.028				rej.	2672				
			912 V-ining , gtz untes 10-	58.8	60.5-	w		M									5-7	390	58.8	60.5	1.7	1020				in y	70.0				•
			30% of core andesite only																				<u> </u>								
			willy stord & notify child		·														<u> </u>				1.1						· .	<u> </u>	· · ·
••••			almost no scripite . No fal.	 						_									. 	. 									L		
			- betow 60.5 aret gez	60.5	63.5	5		5	. 5		_	·	T1				10-12	391	60.5	63.5	3.0		<u> </u>			Y	•				
			VERTICE is Stidning to intense	43.5	685	5		5		5							12.15	392	635	69-5	2.2	/ 8 .					;				
			922 Unles 30-Bo of core	66.5	69.5	w	1	m.	61.	m							7-10	371	66.5	69.5	3.0		ļ			1				Ĺ	
			W Strongly Sleft, child?	69.5	71.5	5		5	5	·							7-10	394	695	72.5	2.0	.34			<u> </u>		2.20				
			Selicitized wallack frags	72.5	75.5	5		5	\$	-							10-12	395	72.5	75.3	3.0	4 <u>11 v</u>					1				
			· · · · · ·	755	78.5	5		5	5				4,5			/.	:15	396	75.5	78.5	3.0					СШ					
			74.7-79.1 core very Strongly	79.5	80.5	5	· · ·	5	5				1.5				7-16	397	78.5	81.5	3.0	142.4				1125	<u>,</u>			1	
· .			fol. W Strong Sericiter - 922	ļ															ļ	<u> </u>		· · · ·	· ·								
			UNT - PY UNIT banding & 60°co					•		<u> </u>	_																			I	
			C.A. poss. ductile shear.	<u> </u>																											
			• • • • • • • • • • • • • • • • • • •							1								· ·					Ì		· .						
			- 30.8 gt2 (looding abouptly	81.5	84.5	5		5	5				4.5				15	398	81.5	845	:0	, 876					n (***)				
			becomes interse algoost All	84.5	87.5	5		5	. 5				<.5				10-12	399	845	875	3.0	.056				,23		·	I	L	
			nipital textures are destroyed	87.5	905	5		5	5				Tr				7-10	400	87.5	90.5	3.0	.025				,28					
			Only mind frags. Intensely	90.5	93.5	5		5	5		_						5-7	401	90.5	93.5	3.0	.018				.24					
			CHILLO 9 Service tiled wallok	93.5	96.5	3		5	2				11				5.7	402	93.5	96.5	3.0	,020				.20					
			P.J. Unlts clearly crossent	96.5	995	5		5	5	-			TI				5.7	403	96.5	99.3	3.0	,022-				.21					
			XT7 114/11/	· ·	.	5	· [5	5	5							5.7	100	995	1023	12.0	.029	[(T	2)					100

Project: ____

Drill Hole No. 591- 395 Page 4 of 5

Inton	1						Alt	erat	ion	<u>.</u>		1	Min	erali	zatio	on		As	say [Data	i			<u> </u>					Co	re Da	tal
(met	ers)	Rock	Geologic Description				ΠE	LOR.	RB.	ĥ,		%	%	%	%	%	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco
From	То	Туре		From	То	SIL	Ę	공	<u>ъ</u>	ŝ		Pyh	Ср	Ga	Sp	Gr	PY	No.		-		opt	opt	check	checi	%	%	%	%		%
				102.5	105.5	S		5		5							7-10	0545	102.5	105.5	3.0	.018				.23					100
	÷.,,			105.5	108.5	s		5		5			Tr				5.7	406	105.0	108 5	20	.022				24					
				108.5	11.5	2		5	2	5		· .	Tr				7-10	407	1085	1115	30	DIR				.27					
14.1	16.5		Krafic Dyke	111.5	1/4.1	S		5		S			Tr				10-11	408	111.5	114.1	2.6	031				.27			i-4		
		1 	med green for equipan.	114.1	116.5								0				0	409	114.1	116,5	2.4	.006				(.01					
			unattend non-magnetic W							<u> </u>													-								
			Sericitic appen contact 6								<u> </u> .	[
			~60° to C.A. Dwar consoct							_	_	<u> </u>																1			
			6 65° to c. A.																					-							
16.5	190,5		QZZ STUCKLOOK	116.5	19.5	5		5	_<	5			TI					410	116.5	1195	3.0	.030				.26					
			Intense gtz Stock WORK							_		<u> </u>																			
			95 described gboye										L																		
			- bezuicon 119.50 122.5 que	117.5	22.5	5		5	. s		_		2-3				20	411	1195	122.5	3.0	,035				.43					
			Several large Clots 0	122.5	125.5	5		5	د ا	:			Tr				7-15	412	123.5	1255	3.0	.027				29					100
·			Unles of serimoss py mixed					•					· . ·					;									· .				
			W CP !		· · ·															1.1											
				·]				1		1.	Ţ.".].								· .					·						
			126.9- 127.9 Shear	125.5-1	28.5	5		5		\$							5-7	213	125.5	1285	3.0	,035				,28					90
			- Cart Very Broken w	12351	131.5	5	2	5		5					·		7-10	414	128.5	131.5	3.0	.022				.24	i.	- i			100
		2	Strong Stricter clay gouse	131.5	139.5	5		5	<u> </u>	5		<u>.</u>		· ·			~5	415	131.5	13.45	2.0	.017				.19					
			Q 30-35° to c.A.	134.5 1	375	ى		5	. 3	5			Tr		н. 1		3-5	416	134.5	137.5	3.0	,022				.18					
				137.5	140.5	5		5	1	; _							5.7	417	137.5	140.5	3.0	017				23					
	· ·			140.5	435	2		5	2	;			· .					218	140.5	1935	3.0	020				21					100
									_															 							100

 $-\frac{1}{2}$

Project: _____

Drill Hole No. <u>591-395</u> Page <u>5</u> of <u>5</u>

				Γ			Alte	rati	on			•	Mine	erali	zatio	on		As	say D	Data									Co	re Da	ta
(met	/ai ers)	Rock	Geologic Description		<u>-</u>		Ш	ILOR.				%	%	%	%	%	70	Sample	From	То	Int .	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
rom	То	Туре		From	То	SI		히	SS			Pyh	Ср	Ga	Sp	Gr	Py	NO.				opt	opt	check	check	%	%	%	%		%
		1 A A		142.5	1465	5		5	5				Tr				3-5	05419	143.5	146.5	3.0	,013				,20					100
			· · · · · · · · · · · · · · · · · · ·	146.5	1495	5		5	5								35	420	126.5	149.5	3.0	.018			;	,23					·
				149.5	152.5	15	ر	5	5								5-7	421	49.5	152.5	2.0	.012	:	ļ		.19					
				1525	155.5	5		5	5								3-5	422	1525	1555	3.1	1013				20					
			160,1-161.8 Shear	155.	158.5	5	و	r	5								3-5	423	155.9	1525	3.0	,010				.15					
			- Core bodly broken w service	585	161.5	5		S	s				Tr				5-7	924	1585	1615	3.0	,014				.13					
	1		Clay gouge Core too broken	161.5	144.5	S	-	5	8				Tr'				7-10	425	1615	16 9.5	3:0	.016				.19	•				
			to measure angles																												
	-		163.4 contrist for between	164.5	167.5	5		<u>s</u> .	5								5-7	426	16 1 .5	167.5	30	.015		· .		.19					
			412 UNIS & BO'TO C.A.	167.5	170-5	5		5	5								7-10	427	167.5	170.5	3.0	.015				.19					
		· · · · ·	- <i>J</i>	170.5	172.5	5		\$	5				TI				7-10	428	170.5	173.5	3.0	,008				.15					
				173.5	176.5	5		5	5				Tr				5.7	129	1725	1725	3.0	.015				.19					·
				176.5	179.5	5	5	5	2				TV	-			2-10	420	765	179.5	30	.013				.17					
	-			1795	182.5	5	5	5	5								5-7	93 1	795	182.5	3.0	,010				.18					
				182.5	185.5	5		5 .	5				- - -				5-7	432	325	185.5	3.0	.016				.17					
			-187.1 STIDAS 922UN/24	185.5	188.5	5	. 4	s	5								5.7	433	135.5	1385	7.0	oll	:			.16					;
		· · :	Stricitic Wallrock banding W	188.5	190.5	5	4	5	5								5-7	134	188.5	190.5	2.0	,003				лL.					100
			for G 65° 20 C.A. 922					-																							
		-	UNITS PATOMAL to for.																												
																							• •								
		· ·	- Hole stillin very strong							:									1.												
			12 STOCKWORK (4 190.5								5																			·	
				· · · ·	- <u>-</u>						Ī																				
			190.5 EOH									1. 1																			
																														[·	

N				DEPTH	BEARIN	G DI	P.	SUR	/EY 1	TYPE	PR	OPE	RTY	: 5c	(ph	uret	ک	LEN	IGTH	198	182	40	98 [^]	н	OLE	NO	.:	s	91-3	96		
IN	UR		IR MINES LID.	COLLAR	337°	-5	5	Cor	mpa.	s 5	CL	AIM:	×	RA	1	4		co	RE SI	ZE:	BW	TW		S	HEE	TN	0. (of	3	5		
Di	amor	nd Dril	II Hole Record 🛛 🛶	COLLAR	329°55	' -51'	'41'	E,D,N	M, 50	RVEY	LA	τιτυ	DE:	6264	+94	9.4	93	REC	OVE	RY:	~10	1070		L	COC	ED	BY:	· _	n. 7	ind	. 11	
Pr	oiect			1188	7790	1-5	2	Ť			DE	PAR	TUR	E: 4	27.10	07	171	STA	BTE	D: A.		110		S	AMF	LEC	BY	1: n	11.	<u></u>	<u></u>	
				14.0.0				1.	10004		EL	EVAT		1: 93	37.7	85		CO			A	10/0		P	URF	205	F: 7	<u></u>	<u></u>	hey -		0
		· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>		Alter					Mir	orol	izoti	00				Joto	149	14/1							<u></u>	<u>ra Da</u>	<u></u>	Uy
Inte	rval								Tatioi	n .	<u> </u>						<u> </u>		say i		<u> </u>		· <u>·</u>	T	1.	<u> </u>	— —–				Beco	
(me	ters)	Rock	Geologic Description				Ŀ_		ABB			%	%	%	%	%	\$70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	very	
From	То	Туре			From	То	S	= (•		Pyl	1 Cr	Ga	Sp	Gr	py.					opt	opi	Lineci		%	<i>%</i>	%	<i>%</i>	<u> </u>	№	
						· · · ·			-									ļ			ļ			<u> </u>						<u> </u>	<u> </u>	
0	1.5	 	OVER BURDEN	<u> </u>	-		-					-					1.	<u> </u>								<u> </u>	\vdash			['	\vdash	
		·							·						+		<u> </u>		L	1.00	<u> </u>	·	<u> </u>		<u> </u>				<u> </u>			
<u>75</u>	90.0		Intense Kspar Altried	ROCH	1.5	4.5									+-		S	05435	1.5	4.5	3.0	,001	1		<u> </u>	.02					85	
			،		4.5	7.5					{- ⁻ -	÷	21		+		5-7	43/2	4.5	7.5	2.0	.013	· · ·	·		,06	┝──┤				120	
			med-dk green	gve/ j-	7.5	10.5			•				Tr		+	· · ·	7-10	437	7.5-	10.5	3.0	,017	<u> </u>			.18					100	
		····	t gr eguigranulau	< 	10.5	12.5								+		+		438	70.5	13.5	3.0	1016			<u> </u>	28					102	
			Ceptanitic, Intens.	ely K	13.5	16.5										+		1 <u>737</u>	10.5	14.5	2.0	.001	ļ		<u>├</u> ─	,06			l	 .	 	
		· · · ·	tild spathesized p	<u>elicitie</u>	10-	17.5							-		•		6	430	19.5	77.5	4.0	1012				,05	<u> </u>			;		
			VOCK. KSp detery	niced by	17.5	<u>040</u>			<u>.</u>		••••	_		+		-	5	111	22.5	200	10	1049		<u> </u>	┝┦	03			[├{	
		<u> </u>	Stark 75270 ot	70701		1.2.5			•••					•	-	1	5-1	40)	150	125.3	2.0	1010	1	<u> </u>		,0 E		 .				
			- many harrow j	<u>412-040</u>	7423.3	~											<u>) - /</u>	173	-2.5	20.5	2.0	1012	+			100	 .		¦!		100	
			CH	Per 10								-[-			<u> </u>	<u>†</u>		<u> </u>											 .		
				l. ry													<u> </u>	<u> </u>														
		·	f ci deni con unive													-		1						1							<u> </u>	
			for a for for the				-			·													1				i 1		ł			
			in a contra	2 3 C					•				1			1								·			<u> </u>				· 1	
	· ·		- Unicht and ac	1000		i	-		_				-		1	1								1					{I	[
	·		fine disc stale and	d'ustec	1				1				-		·	1								1						[]		
_													-			1.	1						<u> </u>	1								
			- Utilitle CAY 5	e dise	-				•			1				T		[[·					1	[]							
			CLASS & WALAS.				. [1													[]			
			- Some shout see	tions W																				Γ								
			2. two chlapped by t	ict on	115							-		1									-						†	ĺ		

1,5-148.8 m = 147.3 m

,52

,1110

Project:

Drill Hole No. <u>591-396</u> Page <u>2</u> of <u>5</u>

Inter	val			<u> </u>			Alt	erati	on				Mine	ərali	zatio	on		A	ssay [Data			<u></u>						Co	re Da	ta
(met	ers)	Rock	Geologic Description	<u> </u>	· ·	i	Ë	ILOR.	BB.			%	%	%	%	%	20	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
From	To.	Туре		From	To	ŝ	Ξ	히	<u>8</u>	_		Pyh	Ср	Ga	Sp	Gr	PY	No.				opt	opt	check	checi	%	%	%	%		%
· ·			to be replacing biotite	28.5	31.5			·									2-3	05 444	285	31.5	30	,011				04.	•				100
			xtals	31.5	34.5												1-2	445	31.5	34.5	2.0	,010				.06					
	~												ć.,					[
			- from Approx 23.8-29.5																												
<u>\</u>			poss Intrusive most med								·							· .													
			grey Kspar w relier white																												
			Subhedral plag phanos (2-Amm)					ŀ																						-	
			Some reliet hbb + pink																										- <i>i</i>		
			KSpar, poss. Sylevite/mora	L																											
			dyke. no contacts Visible															1													
			in Kspar flooding																											[
				34.5	375												3-5-	446	34.5	37.5	3.0	.009				04				[+	
				875	105					1							3-5	447	37.5	40.5	2.0	.013				01					
	-			40.5	43.5												1-2	448	40,5	435	3.0	N/2				.02					
				43.5	46.5												2-3	449	435	4.5	3.0	.0/3				.03				 	
				46.5	49.5-												5	450	46.5	49.5	30	,016				.0/			·····		
			49.5-52.5 2 0.5-1 Cm	49.5	52.5								<1		-	1	3-5-	451	49.5	52.5	3.0	.637.				.35					{
	- -		C.P.I VALTS	52.5	55.5												1-2	453	5.5	555	2.17	00			<u>-</u>	.03					100
				55.5	58.5									_			1	453	5.55	585	30	002				102					
			- from approx 66.3 - 90.0	585	61.5												2-3	454	58.5	61.5	30	009	·			"			···		
			poss brackingted in trusive	61.5	64.5				1								3-5	155	61.5	645	3.0	007				.4]	
			relict while Subledial 2-3	64.5	675									_			7-10	456	64.5	675	3.0	017				н					
			nom Play phonos in sub-anoula	67.5	70.5			_									5-7	457	675	705	30	016				1					
			- Subrowweld intersels &	70.5	73.5									1			9-10	458	705	725	10	013				Й.,	†				
			foldsoath # 2. ed frags to a				- -	_									<u> </u>		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		~,_									
			mattir of appanitic arey				-								_																

Project: __

Drill Hole No. <u>591-396</u> Page <u>3</u> of <u>5</u>

1-1-1-				Γ			Alte	erati	ion				Min	eral	izati	on		A	say (Data	<u></u>			<i></i>			—		Co	re Da	ita
(me	var ters)	Rock	Geologic Description		T		ITE	ILOR.	RB.		Ţ	%	%	%	%	%	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Rećo very
From	То	Туре	· · · · · · · · · · · · · · · · · · ·	From	To	S	Ξ	히	3	· ·	<u> </u>	Pyh	Ср	Ga	Sp	Gr	PY	NO.				opt	opt	chec	check	%	%	%	%		%
			Kspar and yery I gr p.1	73.5	765						_		<u> </u>			ļ	7-9	05459	73.5	76.5	3.0	016	-			401					100
			- Ghy poss. Contacts Obsalinto	76.5	795	·						L			<u> </u>		7-10	460	76.5	79.5	3.0	10/8				н -					
	•		Ly KSpar Flood.	79.5	82.5					· .		L				<u> </u>	3-5	461	79.5	825	3.0	,023	·			n .:					
			- Textures become somewhat	83.5	38.5						_	<u> </u>				<u> </u>	5.7	462	82.5	35.5	3.0	015]			Ч.					
			more intact downhole	855	38.5												-10	463	85.5	33.5	3.0	D18									
				38.5	90.0				-			Į			ļ		5-7	464	885	90.0	1.5	,027				,05			[100
																						·									
10.0	100.0		Trocky Andreite	90.0	13.0	·							<.5				2-3	415	90.0	93.0	3.0	.011				21				[
			mis gry- giver poppyvitic	93.0	96.0	,											3-5	+66	93.0	96.0	3.0	.008		Ì		.02					
			al 2-3 mm Sub Krdvol - Culedvol	96.0	99.0	, .				_					<u> </u>		2-3	467	96.0	99.0	3.0	,006				,01					
			hold phones in a far	99.0	100.0												1-2	468	99.0	100.0	1.0	.008				,0/					100
			+ gurgeonolor gradaness of																												
			motics & white Kspor																												
			- Sharp broken contact w	l							1			<u> </u>	Ì]				[
			Intensely altered rocks up		ŀ																										
	 .		401e 6~35°20 C.A.										ľ									ļ 									
			- very little alteration present	ļ					L																						
			in andreites except mony											: •					÷۲												
	I		hild phenos replaced by epidite		Ì																										
		-	- Rmm unit & large incaylor	· .							_																				·]
			CLOT CAY & algm						-													·									·
			- K feldspal flooding increases														к. ₁ .							·							
			dowa Lote below 92 m to						. *				<u> </u>				1							- 						[
			94 m where most original _																			100									
			Extrus and distroyed epidate																-								·				
ĺ			is still ressent in plana														1														

Drill Hole No. <u>59/-396</u> Page <u>4</u> of <u>5</u>

Inte	rval		Alteration Mineralization As												ssay	Data									Co	re Da	ita			
(me	ters)	Rock Type	Geologic Description	P+		ij.		ABB.			%	%	%	%	%	20	Samp	e From	To	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
TIOM	10	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		From	10	S	= 0				Руп	Ср	Ga	Sp	Gr	PX				<u> </u>	opt	opt	checi	(cneci	°%	%	%	%		%
				(00.0	103.0		_				 					10	054	9100.0	100.9	0.9	,019				2.01					100
			100.0 - 100.9 Breecia 6					_				<u>.</u>																		
-			100.0 rock goes From														. :	1												
			huly to span fload andraige									<u> </u>					-													
			M. Theogenzade certares				·						i				<u> </u>	<u> </u>						<u> </u>					ĺ	
<u> </u>			20 latensely Kfeldspathized			<u> </u>					<u> ·</u>						<u> </u>												i I	
ļ			rock in yoursely progradie					. <u> </u>		·								ļ												
			Subrounded - Sub 2 upulor		¹		· .																				·			
	·		bx frogs in a print respon					<u> </u>																						· · · · ·
			matrix by as visy time																	·					-					
	•		diss years in matrix upper					_																			-			
			Contact of Bx is 5 cm																								-			[
			972 UNICE 55° to C.A.					· .									<u> </u>								-					
		_																1	1					<u> </u>						
100.9	143.B		Intensely Kapan Alected Kock	00.9	103.9										•	5-7	25470	100.9	103.9	3.0	,024				l,d					
			ned grey 2-281 aplanitic	03.9	106.9		- ···									3-5	471	1039	106.9	2.0	,03		-		1.0/					
			Intersely K feldspathized	1.06.9	109.9				·							5-7	472	1069	109.9	3.0	011				06		· .			
			rock. Almost all original	109.9	1/2,9					· · ·						5.7	473	109.9	112.9	3-0	.007				.03		-			
			terzaves dostory+d, youisble	12.91	15.9											5.7	474	113.9	115.9	3.0	011			-f	12					
			Py most as very fine	115.9	118.9											5	475	15.9	117.9	3.0	0/2				A4		-			
See. 1			diss Ktals	118.9	121.9											3-5	476	1180	1.19	20	12/2			ť	04	-		+		
			- Orcassional short sections		,														<u>~107</u>						00		- -			<u> </u>
			w 2-Jaw parches episore								-			<u> </u>				· ·						-+						
			which may be alted frage				<u> </u>		_																					
			······································																					+						
_																									-+			<u> </u>		<u> </u>

Project:

Drill Hole No. <u>\$9/-396</u> Page <u>5</u> of <u>5</u>

				-			Alte	ratio	on	•		Mine	erali	zatic	on -		As	say [Data							· · · ·		Co	re Da	ta
mer (met	ers)	Rock	Geologic Description	·			TE	ILOR.	RB.		%	%	%	%	%	70	Sample	From	То	Int	Au	Ag	Au	Ag	Cu	Pb	Zn	RQD	Run	Reco very
rom	То	Type		From	То	เป	1	5	5		Pyh	Ср	Ga	Sp	Gr	PY	No.				opt	opt	check	check	× % -	%	%	%		%
			122.5-127.8 Fracture 20ne	121.9	124.9											3-5	05977	121.9	124.9	3.0	.0/2				,05					95
			Core very badly broken into	124.9	127.9											3-5	178	124.9	127.9	3.0	.017			-	,05			1		90
			Sharp argular shards fracts	127.9	130.9						 					5-7	479	127.9	130.9	3.0	.006				, 03'					100
			G 5° + 30° TOC.A	130.9	123.9											7-10	480	130.9	133.9	2.2	,011				.21					
			- minor diss cpy over ~	133.9	136.9						 	Tr				10	481	1337	136.9	3.0	,622				,14					
			20 cm_ @ 135 m	136.9	139.9											1-2	48L	136.9	139.9	3.0	,010				,03					
			· · · · · · · · · · · · · · · · · · ·	129.9	142.9											5	482	1399	142.9	3.0	013				,01					
			148.8 EOH													5-7	984	142.9	145.9	30	010				.03					
																3-5	485	145.9	148.8	2.9	,017				6.01					100
			Alder Zone Breecis																											
			intersected from 66.3-	-														•												
			90.0 m.																-											
																													[
																						· · .								
											 -																			

																												<u>├</u>		
					•								:																	
					1.				-		-													··					[
			· · · · · · · · · · · · · · · · · · ·				-							-											-					
													···														<u> </u>			
											 														-					
							-+-	+	-						· ·														ł	<u>├</u>
							_											·												<u> </u>
						·				4							1					L	L				L	1 /	1	1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 26, 1991

CERTIFICATE OF ASSAY ETK 91-479

NEWHAWK GOLDMINES LTD. 860, 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

ATTENTION: DAVID VISAGIE

SAMPLE	IDENTIFI	CATION:	35 PULPS	sample:	s rece SULPHS	ived (IDE	JULY 1	8, 1991	•	
			SHI	PMENT N	UMBER :	16				
			AU	AU						
ET#	Descri	otion	(g/t)	(oz/t)				•		
1 -	0 5101		.72	.021						===
2 -	0 5102		.88	.026						
3 - 8	0 5103		.95	.028						
/4 -	0 5104		.75	.022						
5 -	0 5105		.83	.024						
6 -	0 5106		.62	.018						
7 -	0 5107		.95	.028						
8 -	0 5108		.82	.024						
9 -	0 5109		.39	.011						
10 -	0 5110A		.49	.014						
11 -	0 5110B		.56	.016						
12 -	0 5111A		.92	.027				· · · ·		
13 -	0 5111B		.96	.028						
14 -	0 5112		.64	.019						
15 -	0 5113A		.53	.015					na di seria di seria. Ny fisiana dia mampiasa di seria	
16 -	0 5113B		.61	.018						
17 -	0 5114		.48	.014						
18 -	0 5115		.41	.012						
19 -	0 5116		.66	.019						
20 -	0 5117		.79	.023						
21 -	0 5118		.54	.016						
22 -	0 5119		.61	.018						
23 -	0 5120		.56	.016						
24 -	0 5121		.97	.028						
25 -	0 5122		. 76	.022					· · · ·	
26 -	0 5123		.95	.028						
21 -	0 5124		.41	.012						
20 -	0 5125		.43	.UT3						
J 23 -	0 5126		.83	.024						
30 -	U DIZ/	·		.028						
		1	he da							
			regott				-			

Page 1

FRANK J. PEZZOTTI, Certified Assayer

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

NEWHAWK GOLDMINES LTD. ETK 91-479

JULY 26, 1991

ET#	Description	AU (g/t)	AU (oz/t)	-	
31 -0	5128	1.63	.048		<u></u>
32 -0	5129	.79	.023		
33 -0	5130	.94	.027		
34 -0	5131	1.08	.031		
35 -0	5132	.69	.020	· · ·	

NOTE: < = less than

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

NEWHAWK GOLD MINES LTD. - 91-479

ECO-TECH LABORATORIES LTD.

PAGE 2 BT# DESCRIPTION	AU(ppb)). 	AL(%)	A S	B.	BA	BI CA(\$)	CD	C0	CR	CU FR(%)	K(\$)	LA	HG(%)	KN	HO NA(\$)	NI	P	PB	SB	SN	SR TI(\$)	U	V	¥	Ÿ.	ZN
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- - - - - -	1.0 1.2 1.2 1.4 1.4 1.4 1.0 1.0	.41 .33 .29 .27 .31 .37 .40 .38 .32	40 85 35 35 30 25 25 25 25	8 6 6 6 8 8	10 5 10 10 10 10 10 10 10	(5) .64 (5) .95 (5) .27 (5) .26 (5) .23 (5) .28 (5) .34 (5) .25 (5) .22	3 4 2 2 1 5 2 1 1	12 9 15 15 11 13 13 13 13 14	84 62 57 95 69 89 103 129 96	1588 3.60 1598 2.77 1724 4.46 1763 4.55 1797 4.35 1825 3.93 1588 4.36 1643 4.17 1806 4.06	.12 .05 .08 .08 .11 .11 .10 .08	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	.15 .14 .15 .14 .17 .19 .21 .19 .16	157 135 141 189 217 215 239 226 158	89 <0.01 58 <0.01 56 <0.01 63 .01 74 <0.01 72 <0.01 55 <0.01 94 .01 101 .01	6 5 7 4 6 8 5	2630 4100 1070 950 800 950 1200 870 770	44 44 48 50 32 74 76 50 38	25 65 10 5 5 5 10 5 (5	<pre><20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	114 (0.01 119 (0.01 34 (0.01 38 (0.01 44 (0.01 71 (0.01 76 (0.01 70 (0.01 62 (0.01	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	3 3 2 2 2 3 4 4 3	<pre></pre>		301 305 244 210 141 457 209 136 154

NOTE: < = LESS THAN > = GREATER THAN

BCO-TECH LABORATORIES LTD. PRANK J. PEIZOTTI, A.Sc.T.

B.C. Certified Asayer

CC: NRWHAVK BOX 949 Stevart, BC Vot 100

10041 BAST TRANS CAMADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 PAX - 604-573-4557

JULY 28 , 1991

VALUES IN PPH UNLESS OTHERVISE REPORTED

PAGE 1

860-625 HOWE STREET VANCOUVER, BC V6C 2T6

PROJECT: SULPHSIDE SHIPHENT NUMBER: 16 35 PULP SAMPLES RECEIVED JULY 18, 1991

BT	DESCRIPTION	AU(ppb)	26	ĂL (\$)	AS	B	BA	BI	C2(1)	CD	CO	CR	CU	FB(\$)	K(\$)	L	NG(%)	¥N.	HO HA(\$}	NI.	P	PB	SB	SN	SR TI(%)	IJ	¥	.1	Y	2#
1 -	0 5101	-	3.4	.40	65	8	10	(5	.46	<1	22	68	1350	7.81	.05	(10	.18	193	76 .01	5	1990	88	10	<20	17 <0.01	<10	16	(10	(1	180
2 -	0 5102		2.8	.31	50	8	10	<5	.35	2	24	55	1554	7.12	.03	(10	.16	133	96 .01	5	1480	94	10	<20	23 <0.01	<10	12	(10	(1	301
3 -	0 5103		3.0	.26	50	8	15	<5	.33	2	23	61	1792	6.43	.04	(10	.13	137	72 .01	4	1360	52	5.	<20	33 (0.01	<10	8	(10	1	252
4 -	0 5104	-	3.2	.28	40	10	10	ć5	. 33	3	20	66	1557	6.35	.05	(10	.14	134	97 .01	4	1320	82	10	<20	38 (0.01	<10	11	<10	(1	465
5 -	0 5105	-	3.0	.27	45	8	10	-(5	.31	2	22	51	1532	6.42	.05	(10	.13	137	57 (0.01	- 4	1290	42	10	(20	41 (0.01	<10	9	<10	(1	227
6 -	0 5106	-	3.2	. 36	75	10	10	<5	.27	2	18	62	1191	6.24	.05	<10	.15	84	76 .02	- 5	1130	118	15	<20	23 (0.01	(10	6	<10	<1	378
1 -	0 5107	-	1.8	.42	50	8	10	(5	. 36	2	18	62	1661	4.81	.08	(10	.14	333	68 .02	5	1500	72	5	<20	21 <0.01	(10	9	<10	(1	188
8 -	0 5108	•	2.6	. 41	40	8	10	<5	. 42	2	17	69	1680	4.37	.10	<10	.12	180	89 .02	6	1710	90	10	<20	25 <0.01	<10	8	<10	<1	214
9 -	0 5109	· •	2.0	.56	30	10	10	<5	.72	2	15	86	1040	4.04	.15	(10	.14	187	98 .02	4	3100	192	5	<20	27 <0.01	(10	11	<10	<1	281
10 -	0 5110 A	-	2.6	.54	35	10	10	(5	.51	- 3	17	97	1637	3.81	.12	<10	.16	286	113 .01	6	2170	160	10	(20	20 (0.01	<10	-10	<10	(1	330
11 -	0 5110 B	-	2.6	.57	45	10	10	<5	.53	2	18	96	1691	4.16	.12	(10	.11	278	113 .01	6	2270	154	5	<20	20 (0.01	<10	11	<10	(1	326
12 -	0 5111 A	÷	2.0	. 37	40	8	10	(5	58	3	15	45	1207	5.42	.08	<10	.13	93	65 .02	6	2430	94	<5	<20	27 <0.01	(10	1	<10	(1	311
13 -	0 5111 B	-	2.0	.37	40	6	10	(5	.60	3	15	33-	1203	5.28	.08	<10	.13	91	61 .01	5	2520	- 94	5	<20	28 <0.01	<10	- 1	<10	<1	301
- 14 -	0 5112	-	2.8	.53	115	- 8	10	· (5	. 48	3	19	98	1437	5.46	.08	(10	.19	179	78 .02	6	2030	110	25	<20	18 <0.01	<10	12	<10	<1	384
15 -	0 5113 A		1.6	.41	45	8	10	<5	.40	3	18	64	1206	5.60	.08	<10	.18	253	62 .01	- 4	1710	. 56	10	<20	12 <0.01	<10	10	<10	(1	308
16 -	0 5113 B	-	1.4	.45	40	8	10	<5	.41	3	19	76	1186	5.88	.10	(10	.18	237	61 .02	6	1780	54	10	<20	13 <0.01	<10	11	<10	(1	287
11 -	0 5114	- 1	2.6	.35	95	10	10	<5	.41	1	19	50	1270	5,42	.07	(10	.14	92	84 .01	- 4	1820	46	25	<20	10 <0.01	<10	6	<10	<1	124
18 -	0 5115	-	1.8	.47	30	10	5	<5	.31	4	18	104	1314	4.72	.13	<10	.20	170	109 <0.01	8	1330	48	5	<20	24 <0.01	(10	8	<10	(1	104
- 19 -	0 5116	· 	1.6	.44	30	10	<5	<5	.38	3	13	66	1486	4.35	.11	(10	.23	274	90 <0.01	- 5	1540	88	5	<20	20 <0.01	<10	5	<10	(1	335
20 -	0 5117		1.8	.42	30	. 8	10	<5	. 33	1	13	11	1897	4.37	.13	<18	.20	236	101 <0.01	8	1330	66	5	<20	20 <0.01	<10	- 4	<10	<1	138
21 -	0 5118	-	1.2	.32	25	6	10	<5	.21	1	- 14	93	1336	3.85	.09	(10	.16	159	67 <0.01	10	850	38	<5	<20	11 <0.01	<10	2	<10	<1	153
22 -	0 5119		1.6	.33	30	6	-10	<5	.23	4	13	106	1570	4.42	11	. <10	.14	120	81 .01	- 11	970	30	5	(20	13 <0.01	<10	2	<10	<1	398
23 -	0 5120	÷.	1.2	.48	30	6	10	<5	.25	1	13	142	1070	4.17	.07	(10	.24	141	74 <0.01	1	970	114	10	<20	20 <0.01	<10	4	(10	· (1	133
24 -	0 5121	- 1	2.8		35	6	10	<5	. 39	1	17	91	2035	5.95	.11	<10	.21	195	54 <0.01	9	1590	74	10	<20	19 <0.01	<10	3	<10	(1	167
25 -	0 5122	-	2.0	.33	30	6	5	<5	. 25	0	13	63	1375	4.80	.08	<10	.20	217	56 <0.01	5	950	42	<5	<2₿	24 <0.01	(10	2	<10	(1	146
26 -	0 5123	-	2.4	.35	45	6	10	<5	.34	6	15	87	1570	6.08	.10	<10	.18	161	49 <0.01	1	1380	102	15	<20	26 (0.01	<10	2	(10	<1	628

45

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 26, 1991

CERTIFICATE OF ASSAY ETK 91-480

NEWHAWK GOLDMINES LTD. 860, 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

ATTENTION: DAVID VISAGIE

	SAMPLE	IDENTIFICATION	: 27 PULPS	samples	received	JULY	18, 1991	
	*** *** *** *** ***		- PRO	OJECT:		5		
			3H. All	IPPEANI IN)		
	ET#	Description	(q/t)	(oz/t)				
						======		
	1 -	0 5133	.56	.016				
	2 -	0 5134	.82	.024				
	3 -	0 5135	.65	.019				
	4 –	0 5136	.49	.014				
	5 -	0 5137	.61	.018				
	6 -	0 5138	.66	.019				
)	7 -	0 5139	.70	.020				
	8 -	0 5140	.92	.027				
	9 -	0 5141	1.64	.048				
	10 -	0 5142	.67	.020				
	11 -	0 5143	.89	.026				
	12 - 0	0 5144	.77	.022	• -			
	13 - (0 5145	.81	.024				
	14 - (0 5146	.53	.015		. '		
	15 - (0 5147	.26	.008				
	16 - (0 5148	.31	.009				
	17 - (D 5149	.69	.020				
	18 - (0 5150	.49	.014				
	19 - (0 5151	.82	.024				
	20 - (D 5152	.54	.016				
	21 - (0 5153	.26	.008				
	22 - (0 5154	.61	.018				
	23 - (J 5155	.64	.019				
	24 - (J 5156	.49	.014				
	25 - (J 5157	.46	.013		· .		
	26 - (J 5128	.71	.021				
	21 - 0	1 2728	.46	.013				

NOTE: $\langle =$ less than

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 BAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

JULY 26, 1991

VALUES IN PPN UNLESS OTHERWISE REPORTED

PAGE 1

860-625 HOVE STREET VANCOUVER, BC V6C 2T6

PROJECT: SULPHSIDE SHIPHENT NUMBER: 16 35 PULP SAMPLES RECEIVED JULY 18, 1991

BT#	DESCRIP	TION	AU(ppb)	ÅG	AL(\$)	AS	B	8A 	BI (Ch(\$)	- CD	CO	CR	CU	PB(1)	K(\$)	61 i	HG(\$)	NN	HO NA(%)	NI	P	PB	SB	SĦ	SR TI(\$)	IJ	V	Ĩ	Ĭ	ZN
1 -	0 5133		-	.8	.32	30	8	20	<5	.27	(1	14	142	1812	4.83	.10	(10	.11	73	86 .01	4	1020	20	10	<20	68 (0.01	(10	3	<10	<1	124
2 -	0 5134		·-	1.0	.33	25	6	20	(5	.33	1	12	113	1860	4.71	.08	<10	.13	108	88 <0.01	4	1250	22	(5	<28	24 (0.01	10	4	(19	0	80
3 -	0 5135		-	1.0	.31	.40	. 8	20	(5	.28	(1	13	92	1704	4.75	.08	(10	.13	133	74 <0.01	2	1020	24	5	<20	13 (0.01	10	3	<10	(1	112
4 -	0 5136		•	1.0	.24	75	8	25	<5	.15	- (1	14	153	1777	5.29	.05	(10	.10	49	93 .02	6	480	32	20	<20	15 <0.01	10	3	<10	a	70
5 -	0 5137		-	.6	.22	85	6	30	×5 ·	.12	<1	14	128	1446	5.35	.04	<10	.09	39	77 .01	-4	390	22	25	(20	15 <0.01	10	3	(10	a	48
6 -	0 5138		. -	.6	.24	55	. 6	25	(5	.18	- (1	15	117	1300	6.09	.06	<10	.10	61	55 (0.01	5	640	18	10	(20	17 <0.01	10	3	<10	a	18
1 -	0 5139		-	.4	.20	60	8	25	(5	.10	(1	14	115	1508	5.68	.05	<10	.10	112	133 .01	3	250	16	10	<20	16 <0.01	10	3	(10	a l	26
8	0 5140		• · ·	.8	.18	35 -	8	25	<5	.07	(1	15	152	1697	6.26	.05	(10	.09	15	60 <0.01	5	160	18	- 5	(20	12 <0.01	10	3	<10	(1	30
9 -	0 5141			4.0	.23	55	4	20	<5	.18	<1	13	85	1602	5.79	.05	(10	.12	137	67 (0.01	4	620	28	5	<20	14 <0.01	10	2	<10	(1	- 96
10 -	0 5142		-	3.8	.21	95	10	30	(5	.09	(1	14	163	2031	5.30	.04	10	. 89	69	106 <0.01	12	220	10	25	<20	10 <0.01	<10	(1	<10	(1	84
11 -	0 5143		•	3.4	.20	40	. 8	28	(5	.13	(1	10	118	1965	4.43	.06	(10	.10	97	137 (0.01	.7	400	16	10	(20	8 <0.01	<10	2	(10	(1	144
12 -	0 5144		-	4.2	.28	45	10	25	(5	.19	(1	15	162	1834	5.53	. 88	(10	.15	143	194 (0.01	12	610	34	(5)	<20	11 <0.01	<10	4	<10	(1	80
13 -	0 5145		-	3.2	.35	60	10	30	<5	.30	4	16	171	2071	6.42	.10	10	.17	119	136 <0.01	10	1080	60	10	<20	17 <0.01	10	4	(10	<1 ·	138
14 -	0 5146		-	2.0	.30	50	- 8	20	<5	.16	<1	13	203	1731	5.02	.08	<10	.15	115	86 <0.01	11	460	62	10	<20	10 <0.01	<10	3	<10	(1	121
15 -	0 5147		-	1.6	.26	45	6	25	<5	.13	(1	9	138	1596	3.60	.06	<10	.15	86	70 (0.01	. 5	400	38	5	(20	11 <0.01	(10	2	<10	1>	96
16 -	0 5148		- .	1.4	.55	30	8	. 25	.(5	.21	- (1	12	278	1668	5.02	.09	10	.31	233	88 <0.01	13	580	54	10	<20	16 <0.01	<10	5	<10	(1	95
17 -	0 5149		-	1.4	.34	50	8	25	(5	.22	4	13	146	1790	5.31	.09	10	.19	110	117 <0.01	9.	770	36	10	<20	12 <0.01	<10	3	<10	<1	- 95
18 -	0 5150		-	1.6	. 36	80	- 8	30	<5	.17	1	16	207	2093	5.43	.07	10	.17	81	91 (0.01	14	630	44	10	<20	7 <0.01	10	- 4	(10	<1	156
19 -	0 5151		÷ , '	.8	.24	90	. 8 .	35	<5	.40	<1	48	36	356	9.15	.05	20	.12	21	24 <0.01	- 4	1600	26	(5	<20	10 <0.01	20	8	<10	(1	127
20 -	0 5152		-	2.0	. 46	- 65	8	30	(5	.22	(1	18	172	2204	6.31	.10	10	.25	115	91 .01	15	650	28	10	<20	8 <0.01	<10	5	(10	(1	13
21 -	0 5153		-	1.0	.44	85	6	30	<5	.26	:(1	9	190	1028	4.07	.08	10	.18	. 75	57 <0.01	8	820	38	20	<20	5 <0.01	<10	4	<10	(1)	52
22 -	0 5154		-	1.0	.35	70	8	25	<5	.25	(1	13	165	1546	4.88	.08	10	.20	111	77 <0.01	14	900	44	10	<20	7 (0.01	<10	14	<10	(1	76
23 -	0 5155			1.2	.41	45	10	25	<5	.18	<1	-15	175	1748	5.19	.11	10	.22	123	81 <0.01	- 11	520	26	(5	<20	10 <0.01	10	4	<10	(1	99
24 -	0 5156		-	1.4	. 48	. 50	. 8	30	(5	.22	(1)	16	171	1918	6.01	.13	10	.26	126	79 <0.01	16	688	28	10	(29	9 (0.01	10	5	(10	(1	11
25 -	0 5157		- .	1.8	. 48	55	10	30	. (5	.31	(1	19	185	2016	6.38	.14	10	.24	133	71 <0.01	13	970	40	5	<20	11 <0.01	10	1	(10	(1	142
26 -	0 5158		-	1.4	.49	40	10	25	(5	.28	(1	17	95	2005	5.45	.11	10	.29	142	82 <0.01	- 14	780	50	5	<20	10 <0.01	<10	5	(10	(I)	109
27 -	0 5159		-	1.6	. 44	- 55 -	10	30	(5	.22	(1	18	152	1852	5.58	.12	10	.23	103	186 <0.01	14	800	48	10	<20	6 (0.01	10	4	(10	(1	71

NOTE: < = LESS THAN

CC:NBWHAWK BOX 949 STEWART, BC VOT 1VO

BCO-TECH LABORATORIES LTD. CLINTON AYERS

LABORATORY MANAGER

47

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 1 , 1991

CERTIFICATE OF ASSAY ETK 91-485

NEWHAWK GOLDMINES LTD. 860-625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SAMPLE IDENTIFICATION: 48 PULP samples received JULY 22, 1991 -PROJECT: SULPHSIDE SHIPMENT NO.: 20

ET#	Description	Au (g/t)	Au (oz/t)	
1 -	5160	64	n19	; # # # # # # # #
2 -	5161	72	021	
3 -	5162	86	025	
) 4 -	5163	1,21	035	
5 -	5164	.88	.035	
6 -	5165	.70	.020	
7 -	5166	1.20	.025	
8 -	5167 A	40	012	
9 -	5167 B	52	015	
10 -	5168	.62	018	
11 -	5169	1.22	036	
12 -	5170	1.46	.030	
13 -	5171	.76	022	
14 -	5172	1.42	.041	
15 -	5173	.84	.024	
16 -	5174	1.59	.046	e a
17 -	5175	.98	.029	
18 -	5176	.73	.021	
19 -	5177	.87	.025	
20 -	5178	.88	.026	
21 -	5179	.64	.019	
22 -	5180	.41	.012	
23 -	5181	1.15	.034	
24 -	5182	.45	.013	
25 -	5183	.77	.022	
26 -	5184	.73	.021	
27 –	5185	.96	.028	
28 –	5186	.23	.007	
) 29 -	5187	. 41	.012	
30 –	5188	.45	.013	
	<u> </u>	11	La	

Frank J. Pezzati, Certified Assayer

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

1991

NEWH	IAWK	GOLDMINES LTD. E	TK 91-485		AUGUST	1.,
ET# ====		Description	Au (g/t)	Au (oz/t)		
31	_	5189	.57	.017		
32	-	5190	.72	.021		
33	-	5191	. 45	.013		
34		5192	.37	.011		
-35		5193	.81	.024		
36	-	5194	.58	.017		
37	-	5195	.49	.014		
38		5196	.48	.014		
39	·	5197	.63	.018		
40	<u> </u>	5198	.77	.022		
41	-	5199	.32	.009		
42	-	5200	.41	.012		
43	-	5201	.33	.010		
44		5202	.32	.009		
45	· —	5203	.34	.010		
46	-	5204	.31	.009		
47	- · .	5205	.44	.013		
48	-	5206	.22	.006		

NOTE: < = less than

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

NEWHAWK GOLD MINES LTD. - 91-485

BT #	DESC	RIPTIC	N.	AU(ppb)	AG	AL(\$).	A S	B	BA	B1	CA(%)	CD	C0	ĊR	CU I	FB(%)	K(\$)	LX I	IG(1)	MN	MO	NA(\$)	NI	P	PB	SB	SN	SR TI(\$	}	U .	¥	. 8	Y	ZN
	*****	======				*******	******	=====	=====	*****				*****			******	******	*******	*****			*****	******		22222	=====	*********	====;	*****	z====	******		
27 -	0 5	185		-	2.0	.14	135	8	5	. <5	.15	.0	11	132	1506	3.58	<.01	<10	.05	50	131	<.01	1	540	50	35	<20	8 <.0	1 (10	1	<10	0	51
28 -	05	186		-	1.8	.11	95	10	5	<5	.10	<1	8	202	1113	3.10	<.01	<10	.05	65	11	<.01	9	370	26	20	<20	6 (.0	1 (10	(1	<10	<1 -	47
29 -	0 5	187			2.4	.12	65	· 8	5	<5	.09	<1	. 9	139	1442	3.95	01	<10	.06	45	- 57	<.01	6	310	24	25	<20	6 (.0	1 (10	1	<10	(1	58
30 -	0 5	188		-	1.0	.12	20	8	. 5	<5	.08	(1	8	131	1182	3.18	.02	(10	.08	76	. 78	<.01	8	200	22	- (5	<20	7 (.0	1 . (10	1	<10	(1	28
31 -	05	189		-	1.0	. 79	25	10	5	<5	.09	(1	12	322	1088	3.80	.12	(10	.47	304	84	.01	17	270	18	10	<20	10 (.0	1 (10	16	(10	(1	59
32 -	0 5	190		-	1.4	-14	35	10	5	<5	.07	(1	14	150	1190	5.80	.02	<10	.13	83	63	(,01	11	200	50	<5	<20	8 (.0	1 <	10	(1	<10	<1	29
33 -	0 5	191		· -	1.0	. 27	25	12	5	<5	.09	· (1	11	185	1304	3.93	.09	(10	.11	83	107	(.01	. 9	340	38	5	(20	5 (.0	1 (10	3	<10	(1	21
34 -	0 5	192		- 1	1.2	.18	25	8	5	<5	.09	(1	-11	155	1516	4.47	.05	(10	.11	67	76	<.01	8	340	16	(5	<20	4 (.0	1	10	1	(10	(1	19
35 -	0 5	193		•	1.2	.20	20	8	5	· (5	.10	(1	11	150	1455	3.66	.06	(10	.10	88	68	(.01	7	350	10	5	(20	7 (.0	1 (10	2	<10	(1	21
36 -	0 5	194		-	1.2	.22	20	. 8	5	(5	.12	(1	11	133	1630	3.70	.03	(10	.17	148	11	<.01	8	400	12	(5	<20	9 6.0	1 (10	ĩ	(10	a	-34
37 -	0.5	195		-	1.2	.23	25	8	5	(5	.05	(1	11	198	1556	4.04	.06	(10	.12	84	91	6.01	8	130	16	5	(20	4 (.0	1 (10 .	2	(10	ā	33
38 -	0 5	196		-	. 8	. 22	15	10	5	(5	.06	(1	8	286	1009	3.05	.08	(10	0.8	71	91	× 01	Ŕ	200	10	Š	(20	1 ()	1 . 1	10	ž	(10	ä	17
39 -	0 5	197		· _	1.2	.17	20	10	5	(5	.07	ö	, 9	193	1310	3.40	. 84	<10	. 09	84	90	< 01	7	240	18	Š	(78	5 ()	1 7	10	2	210	a	23
40 -	0 5	198		-	1.8	.16	50	10	10	(5	.11	(1	9	202	1213	3 12	- 05	(10.	A6	46	113	(0)	8	410	20	30	(20	3 (0	1 2	10	ì	210	1	12
41 -	0 5	199		· _·	1.0	.15	35	10	10	. (5	.05	d	1	254	1028	2.41	94	(10	05	58	101	C 81	ž	210	20	20	22A	2 2 0	1 1	10	2	210	1	13.
42 -	0 5	200		. ·	1.2	. 47	45	Â	ŝ	25	10	ä	, 8	129	1522	2 84	ñ1	210	15	20	101	2 01	ŝ	200	12	25	220	2 2 0	i	10	<i>n</i>	210	/1	25
13 -	S	201		-	1 2	06	20	ě	Š	25	04	(1	6	152	1263	2 64	2 01	210	05	50	85	/ 01	ις.	100	14	15	/20	7 7 6	1 /	10	/1	710	/1	23
14 -	A S	202		_	1 2	.00	40	10	. 5	75	07	1	g	127	1103	2 47	01	210	0.05	55	100	2 01	5	220	22	15	/30	7 7 7 6	1 1	10	21	110	11	109
15 -	0 5	202		· _	1.1	16	10	10 10	5	75	07	1	0	104	1110	2 44	.01	210	.00	00 6 C	140	× 01	. J C	2,00	J2 CA	10	120	1 1.0	1 1	10	14	110	1	100
16 -	- 0 J	203			1 0	10	10 40	10	10	72	10	1	2	160	1202	J.71 205	.03	10	.01	0J 17	192	1.01	0 C	¥0Ų 300	00 14	70	120	1 2 4	1 (1)	10	4	10	- (1	100
17 -	0 5	201			1.0	.03	10	10	τų	10	۹1. د ۸		1	107	1110	2.00	02	10	.00	11	123	1.01	5	330	24	20	120	5 5.0	1 (10	1	110	1	82
4/ -	U) A r	403 407		-	1.0	11.	. 23	0	2	()	.04	(1	1	102	1119	3.03	.03	(10	.00	6U 60	16	(.01		130	40	10	< 20	1. (10	1 (10	1	(10	(I	42 .
- 10 -	U 5	200		-	.8	. 48	25.	10	2	< 5	.13	(1	1	100	212	2.52	.01	< 18	.05	67	88	<. 01	8	520	42	5	K 20	13 (.0	1 (10	1	(10	4	75

NOTE: < = LESS THAN > = GREATER THAN CC: NEWHAVK GOLD MINES STEWART, B.C. VOT 1V0

PAGE 2

- Cleyoth

BCO-TECH LABORATORIES LTD. PRANK J. PK2ZOTTI B.C. CBRTIFIED ASSAYER

10041 BAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 PAX - 604-573-4557

AUGUST 1,1991

VALUES IN PPN UNLESS OTHERWISE REPORTED

860-625 HOWE STREET VANCOUVER, BC V6C 2T6

PROJECT: SULPHSIDE 48 PULP SAMPLES RECEIVED JULY 22, 1991

871	DESCRIPTION	AV(pob)	ÅG	AL(\$)	AS	B	BA	BI	CA(\$)	CD	CO	CR	CU PB(%)	K(\$)	ĹÅ	HG(%)	MN	NO	RA(1)	N1	P	28	SB	SN	SR 1	1(\$)	V	V	¥	Ŷ	ZN
- {	8 5160	~	1.4	.81	25	- 10	 5	<5	.27	(1	11	94	1346 4.24	.21	<10	.41	192	79	<.01	3	1140	38	5	<20	6	<.01	(10	8	<10	<1	91
2 -	0 5167	-	1.4	1.30	20	12	10	<5	.20	a	10	15	1370 4.16	.16	(10	.95	400	89	<.01	2	1080	16	5	(20	6	<.01	(10	10	<10	<1	150
3 -	6 5162	-	1.6	.96	25	10	ŝ	(5	.19	1	12	80	1611 4.54	.13	(10	.62	339	53	(.01	2	950	36	5	<20	4	(.01	<10	6	<10	<1	161
4 -	0 5163	· _	1.8	.66	25	8	5	<5	.22	2	13	113	2243 5.20	.14	<10	.35	182	74	(.01	3	940	30	5	<20	7	<.01	<10	3	(10	1	158
5-	0 5164	-	1.8	.56	30	8	5	(5	.28	2	13	137	2820 4.78	.21	(10	.15	92	91	.01	4	1310	30	5	(20	8	(.01	<10	5	<10	(1	214
6 -	0 5165		1.6	1.25	20	8	10	<5	.27	1	12	62	1803 4.42	.13	<10	. 79	430	. 99	<.01	1	1180	18	5	(20	8	<.01	<10	7	<10	(1	176
1 -	0 5166	-	1.4	.79	25	10	10	(5	.24	1	12	76	1828 4.98	.13	<10	. 42	261	86	<.01	2	1070	30	5	<20	5	K.01	<10	- 4	(10	<1	188
8 -	0 5167 A	-	1.2	.31	40	12	5	(5	.35	1	8 -	312	1477 4.87	.08	<10	.13	125	.39	<.01	6	1510	20	10	(20	24	<.01	<10	6	<10	<1	123
9 -	0 5167 B	-	1.0	.30	48	12	- 5	(5	.35	1	8	240	1490 4.89	.08	<10	.13	129	42	<.01	4	1530	22	5	<20	23	<,01	(10	5	(10	<1	124
10 -	0 5168	- '	1.0	.20	30	. 8	5	<5	.10	(1	8	188	1522 4.35	.04	<10	.11	88	28	(.01	4	460	18	5	<20	15	<,01	<10	3	<10	<1	60
11 -	0 5169	-	1.6	.42	35	10	. 5	(5	.23	4	13	101	2321 5.49	.15	<10	.13	83	55	.01	2	1200	36	5	<20	1	<.01	<10	3	(10	<1	340
12 -	0 5170	-	1.4	. 39	40	10	10	15	.27	(1	13	146	2781 6.24	.12	<10	.15	97	43	<.01	- 4	1130	28	5	(20	5	<.01	(10	3	<10	(1	113
13 -	0 5171	-	1.0	.53	30	10	5	(5	.30	<1	11	156	2029 4.88	.15	(18	.20	165	78	.01	4	1290	22	5	<20	9	<.01	<10	4	<10	(1	96
14 -	0 5172	-	1.2	. 44	75	10	5	(5	.21	1	13	234	2005 5.42	.09	<10	.14	112	87	.01	6	830	32	10	<20	9	<.01	<10	4	<10	<1	174
15 -	0 5173	•	1.6	.35	135	6	5	<5	.11	<1	15	195	1588 5.54	.04	<19	.10	48	97	.02	4	320	50	20	<20	11	<.01	<10	2	<10	(1	161
16 -	0 5174	-	2.0	.19	390	6	10	<5	.08	5	14	11	1628 7.01	<.01	<10	.12	40	114	.01	- 4	220	88	10	<20	20	(.01	<10	0	(10	(1	1068
17 -	0 5175		.8	.18	80	6	5	(5	.15	1	11	94	1381 5.35	.01	<10	. 89	43	71	.01	4	460	16	10	(20	14	(.01	(10		(10	1	273
18 -	0 5176		1.8	.19	80	6	5	<5	.11	1	12	144	1475 5.08	.01	<10	.08	48	99	.02	5	340	92	10	(20	15	(.01	(10	1	(10		281
19 -	0 5177	-	1.2	.10	35	6	10	<5	.13	6	12	103	1316 5.04	<.01	<10	.07	42	115	.01	5	450	100	5	(20	10	<.UI	(10		(10		185
20 -	0 5178	-	1.4	.07	50	8	5	<3	.12	1	11	127	1250 3.98	<.01	(10	.05	31	51	(.81	5.	450	56	5	(20	10	(01	(10	CI ((10		239
21 -	0 5179	-	1.6	.15	65	6	5	.(5	.16	(1	10	193	1411 3.95	(.01	(10	.06	- 45	104	.91	Å.	348	56	10	(20	13	(.01	(10	1	(10	. (1	170
22 -	0 5180	-	1.2	.21	155	. 6	5	(5	.16	(1	10	219	1161 3.89	(.01	(10	.06	41 CA	90	.02	2	540	24	20	(20	15	(.01	().0	-1 C	(10		110
23 -	0 5181	-	1.6	. 48	55	. 6	5	. (5	. 22	4	13	221	1277 4.34	.08	(10	1.12	07		.03	1	1120	30	3	120	10	(.01	10	122	(10		202
- 24 -	0 5182	-	<.Z	3.41	50	6	25	<5 /5	. / >	(1	52	10	₫9 b.4/	.02	(10)	1.09	1110	112	.01	1	1179	10	10	110	15	1 01	110	125	110	1	190
25 -	0 5183	-	1.8	40	55	6	5	()	- 14	1	14	210	1283 5.28	.08	(10	,16	14	11/	.02	0	110	55	10	10	12	1,01	10	15	210	1	155
26 -	0 5184	-	1.6	.58	30	8	10	()	.12	\mathbf{q}	11	123	yyy 3.55	C.01	(10	. 39	242	115	1,01	1	420	0,U	10	120	2	1.01	10	15	110	1	132

10041 BAST TRANS CANADA HVY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

VALUES IN PPN UNLESS OTHERWISE REPORTED

PAGE 1

AUGUST 1, 1991

NEWHAWK GOLD MINES LTD. - 91-494

860-625 HOVE STREET VANCOUVER, AC V6C 216

PROJECT: SULPHSIDE 38 PULP SAMPLES RECEIVED JULY 23, 1991

BT#	DESCRIPTION		λG	AL(\$)	AS	B	BA	BI CA	(\$)	CD	CO	CR	CU	FB(\$)	K/ * 1	LA	NG (\$)	MN	NO	RA(%)	H]	8	88	SB	SH	SR T1(%)	V	V	T	Y	ZN
1 -	0 5207		1 (15	26	 	10	/[103	1977						555221 A 1			252222						22025:			
. 1 -	0 3201		1.0	•10	. 30	0	10	13		11	12	103	1233	4.08	. U 4	(18	.00	32	16	<:U1	<u> </u>	à 2 A	28	15 (.20	5 (.01	<10	- 2	<19	(]	21
2 -	0 5208		2.4	.17	-65	8	. 10	< 5	.26	<1	- 14	153	1380	5.00	.04	(10	.07	91	90	<.01	10	1080	26	20 <	20	4 (.01	<10	. 2	(10	(1	43
3 -	0 5209		2.0	.20	60	8	10	(5)	.20	(1	15	156	1297	5.58	.06	<10	.08	83	120	<.01	- 13	840	30	15 (20	6 <.01	<10	2	(10	<1	33
4 -	0 5210		1.4	.21	25	6	10	<5	.14	<1	15	162	1973	5.67	07	<10	.10	87	96	(.01	12	590	22	5 <	20	2 (.01	<10	2	<10	(1	38
5 -	0 5211		1.8	.20	85	6	10	<5	.25	(1	16	141	1133	4.68	.05	<10	.07	65	101	(.01	12	1030	26	20	20	1 (.01	(10	ā	<10	(1	58
6 -	0 5212		2.0	.17	150	6	10	. <5	.28	1	15	148	1015	4.78	. 61	(10	. 67	76	74	(.01	12	1190	26	30 0	20	16 (.01	(10	i	(10	ā	-61
1 -	0 5213		1.4	.19	. 75	6	10	(5	.23	(1	16	139	847	5.56	.05	(10	.08	66	76	<.01	10	920	28	15 (20	21 (.0)	(10	â	(10	a	53
8 -	0 5214		1.4	.24	20	6	10	<5	.15	<1	14	215	2000	5.29	.08	(10	.12	106	12	<.01	10	580	20	5 (20	4 (.0)	(10	3	(10	ā	39
9 -	0 5215		1.6	. 29	· (5	8	10	(5	.13	(1	13	188	1880	5.63	.10	<10	.14	110	143	(.0)	10	480	22	5 (20	6 (.0)	(10	4	(16	a	35
10 -	0 5216		1.6	. 22	15	10	10	(5	.09	2	11	204	1760	4.76	.07	(10	.11	87	192	(.01	. 8	340	76	5 (20	4 4.01	<10	3	(10	a	179
••			*	• - •		•	••			•											. 2			-							~
		1																													

Ωť, hered

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 1, 1991

CERTIFICATE OF ASSAY ETK 91-494

HECEIVED AUG - 9 1991

NEWHAWK GOLDMINES LTD. 860-625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SAM 	PLE 	TIFICATION:	38 PUL PROJI SHIPI	P samples re ECT: SULPH MENT NO.: 22	eceived JUL (SIDE 2	Y 23,	1991	
ET# ====		 Descriptio	n	Au (g/t)	Au (oz/t)			
1		0 5207	• • • • • • • • • • • • • • • • • • •	.51	.015			
2	_	0 5208		.51	.015			
3	-	0 5209		.57	.017			
4	'	0 5210		.98	.029			
5		0 5211		.55	.016			
6	-	0 5212		.43	.013			
7	- .	0 5213		.37	.011			
- 8	-	0 5214		.80	.023			
9		0 5215		. 89	.026			
10		0 5216		.98	.029			

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 5,1991

CERTIFICATE OF ANALYSIS ETK 91-660A

NEWHAWK GOLDMINES LTD. 360, 625 HOWE ST. /ANCOUVER, B.C. /6C 2T6

ATTENTION: DAVID VISAGIE

SAMPLE	IDENTIFICATION:	49 CORE samples	received AUGUST 20, 1991
ی چنپ شته چی ها داند این		PROJECT : SHIPMENT	SULPHSIDE NUMBER: 37
ET#	Description	(ppm)	
	5350		: = = = = = = = = = = = = = = = = = = =
2 -	5351		
3 -	5352	_	
4 -	5353		
5 -	5354	_	
—	5355	_	
	5356	_	
d -	5357	- · ·	
9 -	5358	-	
10 -	5359		
11 -	5360	-	
12 -	5361		
13 -	5362	-	
14 -	5363	. 	
15 -	5364		
16 -	5365	-	
17 -	5366		
18 -	5367	-	
19 -	5368	-	
20 -	5369		
21 -	5370	1942	
22 -	53/1	2680	
23 -	5372	2568	
24 -	5373	2128	
25 -	5374	2396	
27 -	5375	2218	
28 -	5377	217/ 1007	
29 -	5378	1907	
30 -	5379	4034	
		1COT	
	• • • • • • • • • • • • • • • • • • •	TCI. IA	
<u> </u>		- Kayore-	

Frank J. Pezeotti, Certified Assayer

je 1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

NEWHAWK GOLDMINES LTD. ETK 91-660

SEPTEMBER 5, 1991

3T#	Description		
31 -	5380	3627	
32 -	5381	2081	
33 -	5382	3984	
34 -	5383	2031	
35 -	5384	2930	
36 -	5385	2677	
37 -	5386	2480	
38 -	5387	2766	
39 -	5388	2234	
40 -	5389	2046	
41 -	5390	2217	
42 -	5391	3146	
43 -	5392	2459	
44 -	5393	1838	
45 -	5394	2063	
46 -	5395	3164	
47 -	5396	2211	
48 -	5397	2248	
-	5398	2077	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 28, 1991

CERTIFICATE OF ASSAY ETK 91-660

NEWHAWK GOLDMINES LTD. 860, 625 HOWE ST. VANCOUVER, B.C. V6C 2T6

ATTENTION: DAVID VISAGIE

SAMPLE	IDENTIFICATION:	49	CORE sam	ples	receive	d AUGUS	ST 20,	1991			
			PROJ	ECT:	SULPHS	IDE					
			SHIP	MENT	NUMBER:	37					
			AU		AU						
ET#	Description		(g/t)	(oz	/t)						
=======		===:		====				======	====	=====	===
-					~						

2 S -	5570		. 16 .	- 941		
22 -	5371		1.08	.031		
23 -	5372		.75	.022		
24 -	5373		.76	.022	•	
25 -	5374		.48	.014		
26 -	5375		.64	.019		
27 -	5376		.81	.024		
28 -	5377		.54	.016		
29 -	5378		.62	.018		
29 -	5379		.837	∧ 024		
			21 I			
:	0 -	le	<u> 8 14</u>	ym		
Fuye 1	Perr	rank J. Pez	zzotti,	Certifi	led Assa	ıyer
			1			

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

IEWHAWK GOLDMINES LTD. TK 91-660 AUGUST 28, 1991

!T#	Description	AU (g/t)	AU (oz/t)	
31 -	5380	.59	.017	
32 -	5381	.34	.010	
33 -	5382	.39	.011	
34 -	5383	.66	.019	
35 -	5384	.71	.021	
36 -	5385	.78	.023	
37 -	5386	.85	.025	
38 -	5387	.72	.021	
39 -	5388	.66	.019	
40 -	5389	.97	.028	
41 -	5390	.67	.020	
42 -	5391	.39	.011	
43 -	5392	.62	.018	
44 -	5393	.67	.020	
45 -	5394	.62	.018	
46 -	5395	.81	.024	
47 -	5396	.76	.022	
48 -	5397	.83	.024	
40 -	5398	.69	.020	

ECO-TECH LABORATORIES LTD. PerFrank J. Pezzotti, A.Sc.T.

Frank J. Pezzotti, A.Sc. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. EWHAWK GOLDMINES LTD.-ETK 91-660 10041 EAST TRANS CANADA HWY. 60, 625 HOWE ST. KAMLOOPS, B.C. V2C 2J3 V6C 2T6 PHONE - 604-573-5700 GUST 28, 1991 FAX - 604-573-4557 ATTENTION: DAVID VISAGLE LUES IN PPM UNLESS OTHERWISE REPORTED GE 1 PROJECT: SULPHSIDE 49 ROCK PULP SAMPLES RECEIVED AUGUST 20, 1991 DESCRIPTION AG AL(%) AS B BA BICA(%) CD CO CR CU FE(%) K(%) LAMG(%) MN MONA(%) NI P PB SB SN SR TI(%) U V W Y ZN ____ 8 810 - 5369 3.4 .45 40 10 10 <5 1.15 3 17 39 696 4.18 .12 <10 .43 1198 141 <.01 <u>م</u>و ÷ Nev 5370 2.4 1.61 40 35 <5 1.84 <1 37 2093 4.21 .18 <10 1.35 1404 20 <.01 3 1110 24 10 <20 36 <.01 <10 10 <10 <1 116 _ 10 -5371 2.6 -43 100 5 <5 .40 1 11 46 2570 3.88 .07 <10 .31 326 13 <.01 3 740 44 10 <20 8 <.01 <10 3 <10 <1 70 4 -5372 2.6 1.04 50 4 20 <5 .30 <1 10 45 2868 3.77 .12 <10 .63 364 14 <.01 2 960 38 5 <20 10 <.01 <10 6 <10 <1 99

.16 <10 1.02 492

.09 <10 .17 179

50 2952 4.63 .16 <10 1.07 1398

12 <.01

11 <.01

10 <.01

4 1170

5 800

3 1020

30

80

10 <20

30 10 <20

20 <20

13 <.01

9 <.01 <10

27 <.01 <10

<10

11 <10

2 <10

7 <10

<1 133

<1 164

<1 96

5373

i - 5374

- 5375

-

2.2

4.8

2.2

1.42

1.29

.28 125

45

40

30

6

4 5

6 15

<5 .52

<5 .27

<5 1.76

<1 11

2 10

<1 12

43

2598 4.05

72 3045 4.31

IEWHAW	K - ETK 91-66(\bigcirc													. (\bigcirc					,					A	JGUST 2	8, 199	91	(\bigcirc
T#	DESCRIPTION	AG	AL(%)	AS	в	BA	BI	CA(\$)	CD	со	CR	CU	FE(%)	K(\$)	LA	MG(\$)	MN	MO	NA(%)	NI	P	PB	SB	SN	SŘ	TI(\$)	U	v	W	Y	ZN
27 -	5376	2.6	.52	60	4	10	<5	. 59	<1	11	36	2683	4.36	. 12	<10	.46	471	9	<.01	1	1070	30	5	<20	7	<.01	<10	3	<10	<1	81
28 -	5377	2.6	.94	40	6	15	<5	.49	<1	11	45	2439	4.12	.13	<10	.60	286	14	<.01	3	1060	20	5	<20	12	<.01	<10	6	<10	<1	96
29 -	5378	1.8	1.33	10	4	15	<5	.53	<1	10	40	2129	4.12	.12	<10	.97	400	8	<.01	1	870	28	5	<20	13	<.01	<10	8	<10	<1	75
30 -	5379	1.8	1.36	10	4	15	<5	.35	. <1	10	37	2161	4.38	.12	<10	.90	359	12	<.01	. 1	970	16	5	<20	8	<.01	<10	6	<10	<1	77
31 -	5380	3.2	. 18	45	4	5	10	.13	i	10	73	4334	4.41	.06	<10	.12	62	12	<.01	4	540	- 24	5	<20	15	<.01	<10	<1	<10	<1	52
32 -	5381	2.0	.08	45	4	5	<5	.09	<1	9	55	2241	4.63	.01	<10	.10	53	7	<.01	3	360	22	5	<20	9	<.01	<10	<1	<10	<1	43
33 -	5382	3.4	.07	210	6	<5	10	.06	<1	8	102	3870	3.81	<.01	<10	.08	37	10	<.01	5	290	150	25	<20	4	<.01	<10	<1	<10	<i< b=""></i<>	70
34 -	5383	1.0	.59	30	6	10	<5	.18	<1	8	64	2214	4.28	.07	<10	.41	239	12	<.01	3	770	12	5	<20	4	<.01	<10	2	<10	<1	82
35 -	5384	2.0	.44	15	4	10	<5	.16	1	7.	39	2704	3.68	.05	<10	. 35	166	8	<.01	2	690	46	5	<20	5	<.01	<10	1	<10	<1	91
36 -	5385	1.6	.77	15	. 4	5	<5	.21	<1	11	68	2759	4.67	.12	<10	. 56	276	13	<.01	3	850	24	5	<20	. 7	<.01	<10	5	<10	<1	70
37 -	5386	1.8	. 33	30	4	-5	<5	.17	<1	10	62	2820	4.50	.08	<10	.23	108	12	<.01	3	730	48	5	<20	. 3	<.01	<10	<1	<10	<1	63
38 -	5387	1.6	.42	20	6	5	<5	.17	<1	10	70	2846	4.22	.09	<10	.30	147	14	<.01	2	760	32	<5	<20	7	<.01	<10	2	<10	<1	65
39 -	5388	2.2	.28	35	4	10	<5	.21	1	13	73	2478	5.61	.11	<10	.17	86	10	<.01	4	840	32	5	<20	7	<.01	<10	1	<10	<1	73
40 ÷	5389	1.4	1.27	10	6	10	<5	. 47	<1	10	35	2406	4.79	.10	<10	.94	482	10	<.01	1	880	10	5	<20	18	<.01	<10	7	<10	<1	54
41 -	5390	2.0	1.23	15	2	15	5	.30	<1	11	58	3271	4.94	.10	<10	.85	383	10	<.01	2	820	6	5	<20	9	<.01	<10	7	<10	<1	72
42 -	5391	1.8	.30	25	6	5	5	.20	<1	10	61	3178	5.23	.08	<10	.22	99	22	<.01	4	740	28	5	<20	7	<.01	<10	<1	<10	<1	48
43 -	5392	1.6	.26	50	4	5	. 5	.22	1	8	35	2706	4.16	-05	<10	.20	94	10	<.01	3	960	30	10	<20	4	<.01	<10	<1	<10	<1	82
44 -	5393	1.6	1.38	20	4	20	<5	. 69	<1	9	49	1969	4.46	.13	<10	1.03	731	13	<.01	1	950	26	5	<20	9	<.01	<10	7	<10	<1	90
45 -	5394	1.6	.65	20	2	10	<5	.24	1	9	47	2072	4.42	.09	<10	.52	206	13	.01	2	1000	32	5	<20	5	<.01	<10	1	<10	<1	81
46 -	5395	2.2	.26	90	2	5	<5	.29	<1	10	64	3512	4.98	.09	<10	.15	78	11	<.01	2	1200	24	15	<20	5	<.01	<10	<1	<10	<1	60
47 -	5396	2.0	.22	30	4	5	<5	.31	<1	10	33	2588	5.06	.08	<10	.15	103	11	<.01	ì	1120	24	5	<20	5	<.01	<10	<1	<10	<1	36
48 -	5397	2.0	.45	30 .	6	<5	<5	.27	<1	11	51	2285	5.13	.08	<10	.26	185	15	<.01	· 3	1150	26	5	<20	6	<.01	<10	<1	<10	<1	44
49 -	5398	1.4	.11	55	4	<5	<5	.28	.4	7	72	1968	4.85	.03	<10	.10	64	9	<.01	4	1220	22	5	<20	5	<.01	<10	<1	<10	<1	763

OTE: < = LESS THAN

ECO-TECH LABORATORIES LTD. CLINTON S. AYERS LABORATORY MANAGER

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 26, 1991

CERTIFICATE OF ASSAY ETK 91-657

EWHAWK GOLDMINES LTD. 60, 625 HOWE ST. ANCOUVER, B.C. 6C 2T6

TTENTION: DAVID VISAGIE

		900 hay 100	PROJ SHIP	PMENT NUM	LPHSIDE BER: 39	
			AU	AU	CU	
	ET# 	Description	(g/t)	(oz/t)	(%)	
	1 -	5399	1.92	.056	.23	
	2 -	5400	.86	.025	.28	
	3'-	5401	.61	.018	.24	
	4 -	5402	.68	.020	.20	
	5 -	5403	.74	.022	.21	
	6	5404	.99	.029	.21	
	$\left(\right)$	5405	.61	.018	.23	
		5406	.74	.022	.24	
	9 –	5407	.63	.018	.27	
	10 -	5408	1.07	.031	.27	
	11 -	5409	.19	.006	< .01	
	12 -	5410	1.02	.030	.26	
	13 -	5411	1.20	.035	.43	
	14 -	5412	.93	.027	.29	
•	15 -	5413	1.21	.035	.28	
•	16 -	5414	.76	.022	.24	
	17 -	5415	.59	.017	.19	
	18 -	5416	.76	.022	.18	
	19 -	5417	.58	.017	.23	
	20 -	5418	.68	.020	.21	
	21 -	5419	.43	.013	.20	
	22 -	5420	.63	.018	.23	
	23 -	5421	.42	.012	.19	
	24 -	5422	.44	.013	.20	
	25 -	5423	.36	.010	.15	
	26 -	5424	.49	.014	.19	
	27 -	5425	.55	.016	.19	
	28 -	5426	.50	.015	.19	
	29 -	5427	.52	.015	.19	
	30 -	5428	n 1.27	.008	.15	

a 📿

PacFRANK J. PEZZOTTI, Certified Assayer

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

HAWK	GOLDMINES LTD.				AUGUST 26, 1991
		AU	AU	CU	
iT#	Description	(g/t)	(oz/t)	(%)	
:======					·····································
31 -	5429	.51	.015	.19	
32 -	5430	.46	.013		
33 -	5431	.35	.010	.18	
34 -	5432	.56	.016	.17	
35 -	5433	.38	.011	.16	
36 -	5434	.31	.009	.11	
37 -	5435	.25	.007	.02	
38 -	5436	.45	.013	.06	
39 -	5437	.57	.017	.18	
40 -	5438	.56	.016	.08	
41 -	5439	.23	.007	.06	
42 -	5440	.41	.012	.05	
43 -	5441	.84	.024	.03	
44 -	5442	.34	.010	.02	
45 -	5443	.40	.012	.02	
46 -	5444	.38	.011	.04	
47 -	5445	.36	.010	.06	
48 -	5446	.30	.009	.04	
49 -	5447	.43	.013	.01	
50 -	5448	.40	.012	. 02	
7	5440	46	013	03	
\sim	5450	56	016	01	
53 -	5450	1 00	020	- 25	
· 54	5451	1.03	012		
55	5452	•40	.012	.03	
55 -	5455	•27		< .01	
50 -	5454	• 30	.009	< .01	
57 -	5455	.23	.007	< .01	
50 -	5450	.60	.017	< .01	
59 -	5457	.55	.016	< .01	
60 -	5458	.44	.013	< .01	
61	5459	• 55	.016	< .01	
62 -	5460	.61	.018	< .01	
63 -	5461	•78	.023	< .01	
64 -	5462	.51	.015	< .01	
65 -	5463	.61	.018	< .01	
66 -	5464	.93	.027	.05	
67 -	5465	.37	.011	.21	
68 -	5466	.29	.008	.02	
69 -	5467	.19	.006	.01	
70 -	5468	.28	.008	.01	
71 -	5469	.65	.019	< .01	
72 -	5470	.81	.024	< .01	
73 -	5471	.46	.013	< .01	
74 -	5472	.39	.011	.06	
75 -	5473	1 1.24	.007	.03	
	Λ	//	· · · · ·		
\bigcirc	les	Hym	•••		ter en la constante de la constante de la constante de la constante de la constante de la constante de la const Este de la constante de la const

FRANK J. PEZZOTTTI, Certified Assayer

age 2

		ECO	I-TECI		ORAT	DRIES	3 LTC
\bigcirc	000	10041 East	ASSAY Trans Canada H	ING - ENVII Iwy., Kamloop	RONMENTAL s, B.C. V2C 2J3	TESTING (604) 573-570	0 Fax 573-4
AWK	GOLDMINES LTD.	ETK91-657			AUGUST	26, 1991	
		AU	AU	CU		• • • •	
r# 	Description	(g/t)	(oz/t)	(%)			
76 -	5474		.011	- 02		*********	
77 -	5475	.40	.012	.04			
78 -	5476	.42	.012	.06			
79 -	5477	.40	.012	.05			
80 -	5478	.58	.017	.05			
81 -	5479	.22	.006	.03			
82 -	5480	.38	.011	.21			
83 -	5481	.76	.022	.14			
84 -	5482	.35	.010	.03			
85 -	5483	.43	.013	.01			
86 -	5484	.33	.010	.03			
87 -	5485	.57	.017				

)TE: < = less than

ECO-TECH LABORATORIES LTD. Per Frank J. Jezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LID. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

UGUST 28, 1991

ALUES IN PPM UNLESS OTHERWISE REPORTED

NEWHAWK - ETK 91-657 860, 625 HOWE ST. VANCOUVER, B.C. V6C 2T5

ATTENTION: DAVID VISAGLE

PROJECT: SULPHSIDE 87 ROCK/PULP SAMPLES RECEIVED AUGUST 19, 1991

62

-500.

T#	DESCRIPTION	 AG	AL(1)	AS	В	BA	BI CA(%)	CD	co	CR	CU	PE(%)	R(%)	LA MG(%)	MN	MO NA(%)	NI	P	PB	SB	SN	SR TI	I(8)	σ	V.	W	¥	ZN
87 -	5485	8.4	. 49	40	<2	25	<5 2.87	46	11	33	595	i 3.74	.22	10 .31	4625	2 <.01	3	1280	2594	5	<20	100	.05	<10	13	<10	2 3	334

OTE: < = LESS THAN

ECO-TECH LABORATORIES LTD. CLINTON AYERS LAB MANAGER

