
ARIS SUMMARY SHEET

istrict	Geologist, Smither	S	Off Confidential: 92.09.09
ASSESSMEN	T REPORT 21830	MINING DIVISION: L	iard
OPERATOR(AUTHOR(S) REPORT YE COMMODITI SEARCHED REYWORDS:	LAT 57 13 4 UTM 09 634 NTS 104G02W Mess 1-2 S): Skeena Res. : Tucker, T.L. AR: 1991, 41 Page ES FOR: Copper,Gold Triassic-Jura	4457 380264 104G03E s ssic.Tuffs,Andesites,S	andstones,Siltstones,Chalcocite e,Tetrahedrite,Sphalerite
WORK ONE:	ROCK 17 sample SILT 10 sample SOIL 30 sample	cale(s) - 1:10 000 (s) ;ME (s) ;ME	
RELATED REPORTS: MINFILE:	21248 104G		

LOG NO:	NU	V	2	6 1	ונכ	, i	<d.< th=""><th></th></d.<>	
ACTION:	in the second	~						
FILE NO:	· · ·							

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

MESS PROPERTY

Liard Mining Division, British Columbia NTS 104G/2 & 3 Latitude: 57° 13' 46" N Longitude: 130° 59' 01" W

on behalf of

SKEENA RESOURCES LTD. Vancouver, B.C.

by

Terry L. Tucker, B.Sc. KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

October 28, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

Biological and

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	2
	2.2 Physiography and Climate	2 2 3
	2.4 History of Exploration	5 3 4
3.0	GEOLOGY	4
	3.2 Property Geology	4 6 6
4.0	1991 EXPLORATION PROGRAM	7
	4.2 Geochemistry	8 8 9 9
5.0	CONCLUSIONS 10	0
6.0	REFERENCES 12	2

LIST OF APPENDICES

APPENDIX I	Statement of Qualifications
APPENDIX II	Summary of Field Personnel
APPENDIX III	Statement of Expenditures
APPENDIX IV	Rock/Soil/Silt Sample Descriptions and Results
APPENDIX V	Analytical Techniques
APPENDIX VI	1991 Assessment Filing

County of the second

Keewatin Engineering Inc.

Page No.

LIST OF TABLES

Table 1. Table 2.	Claim Status	3
Table 3.	Anomalous Son Samples	9
Table 4.	Anomalous Rock Samples	10

LIST OF FIGURES

		Following Page No.
Figure 2.	Property Location Claim Map Regional Geology	2

LIST OF MAPS

In Pockets

Map 1.	Property Geology	1:10,000
Map 2.	Sample Locations	1:10,000
Map 3.	Au/Cu Geochemistry	1:10,000
Map 4.	Pb/Zn Geochemistry	1:10,000
Map 5.	Ag/As Geochemistry	1:10,000

1

Keewatin Engineering Inc.

Page No.

The Mess property consists of three mineral claims (46 units) in the Bob Quinn Lake area, 153 kilometres northwest of Stewart in northwestern British Columbia. The claims are situated 47 kilometres northwest of the Stewart-Cassiar Highway.

The Mess property was subjected to a reconnaissance rock, soil and stream silt survey in 1991. The area is underlain by favourable Upper Triassic to Lower Jurassic sediments and volcanics which display potential for hosting base and precious metal mineralization.

The property has only previously been evaluated by Skeena Resources Ltd. in 1990. Chalcopyrite, pyrite, tetrahedrite and sphalerite mineralization was found in fracture/shear zones on the north ridge of the Mess 2 claim. Grab samples from these zones returned values of up to 505 ppb gold, 47.0 ppm silver, 17,337 ppm copper, 2,159 ppm lead and 36,480 ppm zinc.

Prospecting during the 1991 field season discovered numerous mineralized float boulders in the central portion of the Mess 2 claim. Mineralization consists of disseminated chalcopyrite within a quartz-carbonate altered volcanic. Two float samples returned values up to 2,151 ppb gold, 4.16% copper and 2.26 oz/t silver. Grab samples north of these float samples returned values up to 649 ppb gold and 2,842 ppm copper. Potential for significant mineralization exists on the Mess claims. Further mapping and prospecting will be required to outline the extent of mineralization and the source of the significant float samples.

2.0 INTRODUCTION

The Mess property is located 47 kilometres northwest of Bob Quinn Lake and is held by Skeena Resources Limited.

The property is underlain by Upper Triassic to Lower Jurassic sedimentary and volcanic rocks. Several mineralized shear and fracture systems have been outlined and a number of anomalous float samples have been found.

Keewatin Engineering Inc. was commissioned by Skeena Resources Limited to carry out an exploration program on the Mess property in 1991. The objective was to evaluate areas of the property which have not been prospected to date.

2.1 Location and Access

The Mess property is located in northwestern British Columbia, approximately 153 kilometres northwest of the Town of Stewart and 47 kilometres northwest of Bob Quinn Lake (Figure 1). The claims are situated within NTS map sheets 104G/2E and 3W and is centred about 52° 13' North latitude and 130° 59' West longitude.

Access to the area is limited to helicopter. Vancouver Island Helicopters have a permanent base at Bob Quinn Lake on the Stewart-Cassiar Highway (#37). Scheduled air service is available to the Bob Quinn airstrip from Smithers. The 1991 field program was based out of Keewatin's Arctic property field camp on More Creek.

2.2 <u>Physiography and Climate</u>

The property straddles a northeast flowing tributary of Mess Creek, approximately 6 km upstream from their confluence. The northern portion of the property covers a narrow, east-west trending ridge. The rest of the property is comprised of very steep slopes. Elevations range from 7,800 feet along the ridge to 3,700 feet beside the creek (Figure 2).

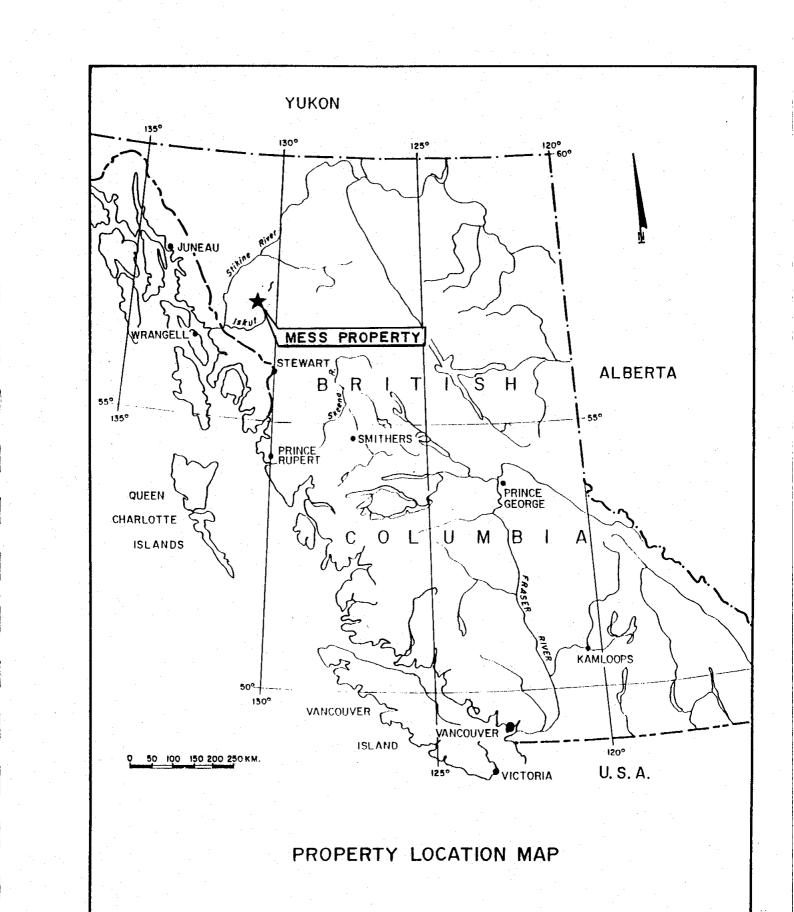
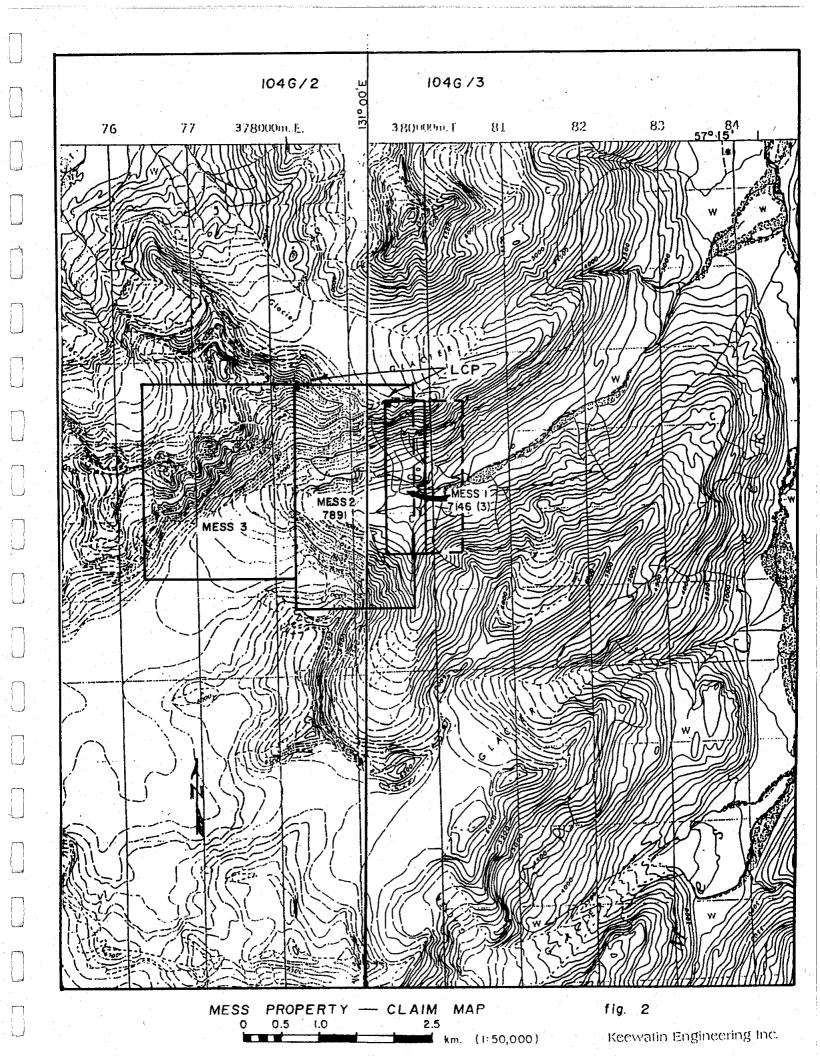



Figure I

KEEWATIN ENGINEERING INC.

A majority of the claim area is above tree line and vegetation is nonexistent. The lower elevations are covered by small patches of dwarfed shrubs.

The climate is typified by cold, snowy winters and short, warm and wet summers. Snow accumulations normally exceed five metres.

2.3 Property Status and Ownership

The Mess property is comprised of three contiguous mineral claims totalling 46 units located within the Liard Mining Division. The claims are illustrated in Figure 2 and claim information is outlined below.

TABLE 1 - CLAIM STATUS						
Claim Name	No. of Units	Record No.	Owner	Expiry Date		
Mess 1 Mess 2 Mess 3	8 18 20	225060 225792 303602	Skeena Resources Ltd. "	March 20, 1994 September 26, 1993 August 25, 1993		

The common Legal Corner Post for the Mess 2 and Mess 3 claims were located during the course of the fieldwork. The Mess 1 claim post was located during 1990 field work. The Mess 3 claim post was placed prior to 1991 field work. The property is held by Skeena Resources Ltd. with offices at #800 - 900 West Hastings Street, Vancouver, B.C., V6C 1E5.

2.4 History of Exploration

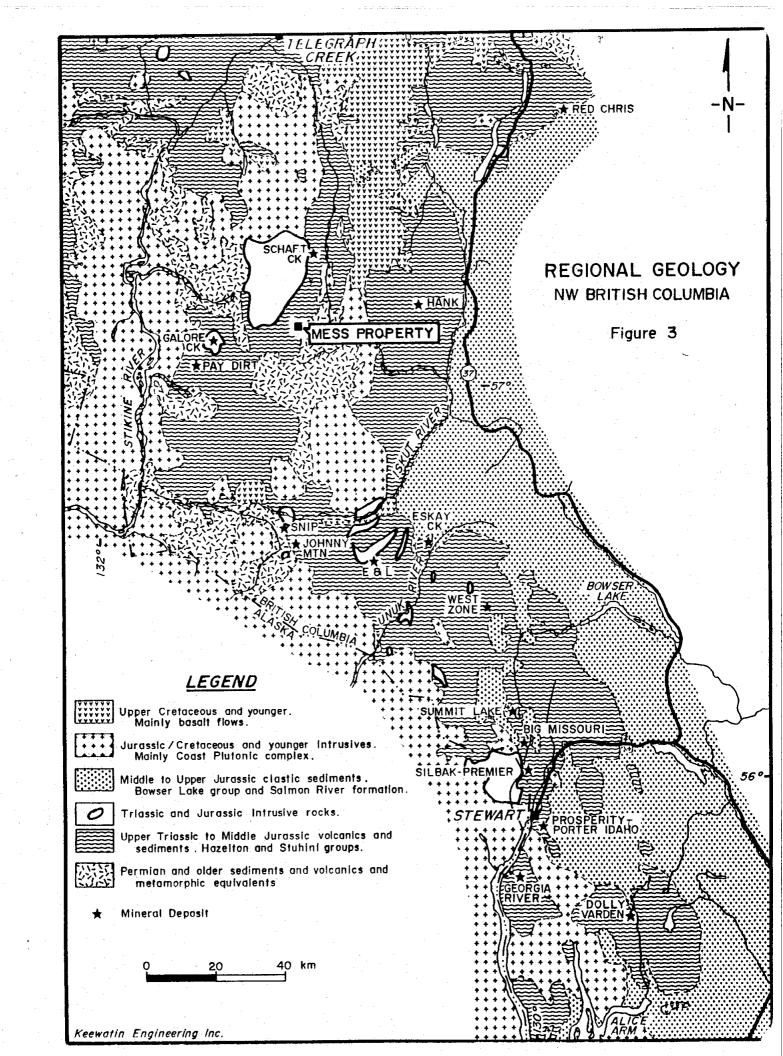
The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig and Bell-Irving Rivers has been explored since the late 1800's when prospectors passed through the region on their way to the interior. Only limited exploration was carried out within the region until the porphyry copper "boom" days (1955-1970), which led to the discovery of the large porphyry copper-gold Galore Creek deposit. Numerous small showings and prospects were documented during this period.

Following a dramatic increase in precious metal prices in 1979, several companies carried out exploration programs in the region. Subsequently, metal prices dropped and exploration was curtailed.

Regional government mapping was completed by the GSC's J.G. Souther (1972) during the late 1950's and 1960's.

The Mess 1 and 2 claims were staked by Skeena Resources Ltd. in 1990 to cover favourable Upper Triassic strata.

Twenty-two rock samples were collected on the property in 1990 and some geological mapping was completed. Prior to 1990, no exploration had been performed and no mineralized occurrences have been reported from the area currently covered by the Mess property.


2.5 Objective of the 1991 Work Program

The objective of the 1991 program was to conduct a reconnaissance soil and prospecting evaluation of the Mess property. The work was intended to evaluate both the gold and base metal potential of the area.

3.0 <u>GEOLOGY</u>

3.1 <u>Regional Geology</u>

The area lies near the western edge of the Intermontane Belt of the Canadian Cordillera, where it parallels the Coast Plutonic Complex (Figure 3). The area includes four, unconformity bounded, tectonostratigraphic assemblages: 1) Paleozoic Stikine Assemblage; 2) Triassic-Jurassic volcano-plutonic complexes of Stikinia; 3) Middle and Upper Jurassic Bowser Group overlap assemblage; and 4) Tertiary Coast Plutonic Complex. This section of the Intermontane Belt forms the west limb of the "Stikine Arch", a roughly horseshoe shaped

area of Upper Triassic to Jurassic stratigraphy that hosts most of the significant mineral deposits in northwest B.C. and the Toodoggone gold camp.

The Paleozoic Stikine Assemblage is the oldest assemblage and contains three distinct, mainly volcanic-carbonate divisions: Early Devonian limestones and intermediate to felsic volcanics, Mississippian bioclastic limestones, and Permian fragmental volcanics and limestone. These rocks are generally metamorphosed and highly deformed.

The Triassic-Jurassic volcano-plutonic complexes (Stewart Complex) are comprised of both the Triassic Stuhini Group and the Jurassic Hazelton Group. The Stuhini consists of limestone and mafic volcanics deposited in an island arc environment. These rocks host the Snip and Johnny Mountain structural gold deposits. Hazelton Group rocks consist of andesitic breccias/lavas, felsic tuffs/breccias, and maroon-green volcanic sediments (siltstone, greywacke, conglomerate and black shale) also of island arc affinity. Black shales (Eskay Creek facies) overlying felsic volcanics (Mt. Dilworth Formation) host the Eskay Creek gold deposits.

Sub-volcanic intrusions accompany most of the volcanic centres of the Mesozoic island arc complexes and range from Alaskan type ultramafics to felsic dykes. Distinctive porphyritic dykes link Upper Triassic and Lower Jurassic volcanics with their plutonic equivalents. Many of the significant mineral deposits in the Stewart Complex are found to have a close association with volcanic centres.

The Middle and Upper Jurassic Bowser Overlap Assemblage are predominantly turbiditic black clastics deposited in the Bowser Basin, formed as a result of uplift to the west due to emplacement of the Coast Range Intrusives.

The Tertiary Coast Plutonic Complex consists of post-tectonic, felsic plutons. Eastward younging of strata and local zones of high strain attest to intrusion and uplift of the complex.

Tertiary to Recent subaerial volcanics cover local, low lying areas.

3.2 Property Geology

Souther (1971) has mapped the Mess property as being underlain by Upper Triassic to Lower Jurassic sediments and volcanics.

The 1990 mapping program indicated that the east-west trending ridge near the northern boundary of the Mess 1 and 2 claims is underlain by intermediate to felsic pyroclastics and feldspar porphyry dykes and flows(?). The pyroclastics are maroon to greyish brown to green in colour and consist of tuff breccias, lapilli tuffs and lesser flows. Contacts appear to be gradational and the pyroclastics, generally coarsen towards the east. The flows contain, approximately, 10% feldspar phenocrysts, amphiboles and rock fragments in an aphanitic matrix. The lapilli tuffs to tuff breccias are polylithic and appear reworked. Rounded to subrounded, epidotized feldspathic fragments, up to 9×12 cm, chloritized amphiboles are hosted by a crowded feldspar phenocrysts, up to 0.8 mm long, and lesser chloritized mafic grains.

These strata are cut by numerous fracture and shear zones, up to 2 metres wide, which display quite variable attitudes $(110^{\circ}-163^{\circ}/32^{\circ}-82^{\circ}SW \text{ and } 150^{\circ}-168^{\circ}/80^{\circ}83^{\circ}E)$. These zones are commonly accompanied by locally intense carbonate (± hematite, ankerite) alteration and lesser epidote fracture fillings. Narrow, up to one metre wide, quartz (± carbonate) veins are also found.

3.3 <u>Mineralization</u>

The mineralization observed within the Mess property consists of chalcopyrite, pyrite, malachite, azurite, tetrahedrite, chalcocite and sphalerite. This mineralization is, generally, restricted to the shear and fracture zones and their accompanying veins and fracture fillings. Locally, intense carbonate, hematite and/or epidote fracture fillings are present. Some of the zones appear to be at least one metre wide and may be up to 5 metres across. Unfortunately, subcrop usually obscures the true dimensions of the zones. The chalcopyrite, chalcocite and tetrahedrite are found as fracture fillings, disseminations and small patches.

in amounts of up to 8%, within the fracture/shear zones on the eastern side of the property. Quartz (\pm carbonate veins, varying from 9 to 100 cm wide, are most abundant on the western side of the property. Locally, these veins host up to 1% euhedral pyrite, <1% chalcopyrite-malachite-azurite, 5% poddy (<1 cm diameter) sphalerite and hematitic patches (Pegg, 1990).

Sampling of this mineralization in 1990 returned a number of significant results including grab sample 90L213MR008 which returned 505 ppb gold, 47.0 ppm silver, 1,712 ppm copper, 2,159 ppm lead, 1,941 ppm zinc, 4,856 ppm arsenic and 1,057 ppm antimony. Other significant results from 1990 include grab samples which returned up to 17,337 ppm copper (90R213MR-006) and 36,480 ppm zinc.

Prospecting in the north-central area of the Mess 2 claim in 1991 has returned a number of significant results. Mineralization consists of quartz veins with chalcopyrite, tetrahedrite, galena to 3% and sphalerite. This appears to be associated with a felsic unit. Samples returned up to 649 ppb gold (91SC215MR003), 2,842 ppm copper (91SC215MR004), 10.4 ppm silver, 2,748 ppm lead and 13,298 ppm zinc (91SC215MR002).

In 1991, several large mineralized float boulders were found in the southern part of the Mess 2 claim. Mineralization consists of disseminated chalcopyrite mineralization associated with quartz carbonate alteration within a volcanic host rock. Two float samples returned 2,151 ppb gold, 10,123 ppm copper (91FD215MF001) and 2.26 oz/t silver, 4.16% copper (91SS215MF003). Several other samples returned anomalous results which are detailed in Table 4.

4.0 1991 EXPLORATION PROGRAM

Field work on the Mess property was carried out between August 25 and 28, 1991. This work consisted of helicopter supported reconnaissance prospecting and soil/stream sediment geochemical surveys.

4.1 <u>Prospecting and Mapping</u>

Mapping and prospecting traverses were plotted on a digitized 1:10,000 base map which was derived from a 1:50,000 topographic map. Approximately five kilometres of traverse was carried out on the property during the program.

Geological information obtained on traverse is found on Map 1.

4.2 <u>Geochemistry</u>

4.2.1 <u>Sampling Procedures</u>

A total of 17 rock samples, 30 soil samples and 10 silt samples were collected on the Mess property during the 1991 field season. Control for sample positions was obtained from 1:10,000 topographic maps, compass, topochain and altimeters. All sample sites were marked with metal tags and flagging. Sample locations are plotted on Map 2. Sample descriptions including geochemical results are included in Appendix IV. Geochemical results are plotted on Maps 3 through 5.

Two soil/silt sample contours were completed on the Mess 1 and 2 claims. Soil samples were collected at approximately the 4,500 foot level and at 100 metre spacings. The samples were generally talus fines or B horizon soils and were collected with a grub hoe.

Silt samples were taken on traverses where possible. Silt development is poor due to the juvenile nature of the terrane. Fine silt from active portions of the stream were collected by hand and placed in kraft paper envelopes.

Rock samples of outcrop and float were also collected. These samples were mineralized and/or altered rocks found during prospecting traverses or during soil sampling.

4.2.2 <u>Analytical Technique</u>

All the samples were sent to the laboratories of Bondar-Clegg and Co. Ltd. in North Vancouver for analyses. This analysis comprised fire assay with atomic absorption finish for gold and a seven element ICP package (Ag, Cu, Pb, Zn, As, Sb, Mo). Samples returning greater than 1,000 ppb gold were analyzed by fire assay with a gravimetric finish. Sample results are included in Appendix IV and analytical techniques used by Bondar Clegg are detailed in Appendix V.

4.2.3 Description and Discussion of Geochemical Results

Two soil samples returned results which can be considered as above background for this area. These are described in Table 2.

TABLE 2 ANOMALOUS SOIL SAMPLES			
Sample No.	Cu ppm		
91FD215MS4500 9+00E 91FD215MS4500 3+00S	153 102		

Two of the ten silt samples returned anomalous results. These are described in Table 3.

TABLE 3 ANOMALOUS SILT SAMPLES Sample No. Zn ppm As ppm				
91TT215ML002	126	44		

The other soil and silt samples returned values which would be considered as background (<9 ppb Au, <0.2 ppm Ag, <72 ppm Cu, <26 ppm Pb, <97 ppm Zn, <12 ppm As, <5 ppm Sb and <5 ppm Mo).

Significant rock sample results not discussed in Section 3.3 (Mineralization) include the following:

TABLE 4 ANOMALOUS ROCK SAMPLES					
Sample No. Au ppb Cu ppu					
91SC215MF005	15	1,503			
91SS215MF002	93	7,058			
91SS215MF004	729	8,215			
91GG215MF004		6,012			
91SC215MF006		3,387			

5.0 <u>CONCLUSIONS</u>

The Mess property is underlain by Upper Triassic to Lower Jurassic volcanics and sediments. During August 1991, a limited program of helicopter supported reconnaissance prospecting and geochemical sampling was carried out on the property. A total of 17 rock, 30 soil and 10 silt samples were collected on the property.

Several mineralized shear/fracture zones and quartz (\pm carbonate) veins which are hosted by felsic to intermediate pyroclastics and flows have been outlined on the northern part of the Mess 2 claim. Although partially obscured by overburden, these southeast to east-northeast trending structures appear to range from 0.09 to over 2.00 metres wide. Generally, copper mineralization, with geochemically anomalous silver values, is found within the shear/fracture zones in the Mess 1 claim and eastern half of the Mess 2 claim. Significant zinc and silver mineralization, with geochemically anomalous copper, gold, arsenic, lead and antimony, is found locally within the narrow quartz (\pm carbonate) veins on the western side of the Mess 2 claim. Further mapping and prospecting will be required to outline the extent of the mineralization. Several float boulders found on the southern part of the Mess 2 claim have

returned anomalous copper and gold values. Detailed mapping and prospecting will be required to locate the source of mineralization.

Respectfully submitted,

KEEWATIN ENGINEERING INC.

Terry L. Tucker, B.Sc.

6.0 <u>REFERENCES</u>

- Logan, J.M., Koyangi, V.H. and Drobe, J.R. (1990): Geology of Forrest-Kerr Creek Area, Northwestern British Columbia (104B/15). British Columbia Resources, Geological Fieldwork 1989, Paper 1990-1.
- Logan, J.M., Koyangi, V.M. and Drobe, J.R. (1990-2): Open File. Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia, NTS 104B/15 and Part of 104B/10, Province of British Columbia.

Minfile 104G (1989): Mineral Occurrence Map.

National Geochemical Reconnaissance, 1:250,000 Map Series (1988). Telegraph Creek, British Columbia (NTS 104F and G). Energy, Mines and Resources Canada, Geological Survey of Canada, GSC Open File 1646.

Pegg, R.S. (1989): Stewart-Sulphurets-Iskut Areas, Geological Compilation (private report).

- Pegg, R.S. (1991): Geological and Geochemical Report on the Mess Property. Skeena Resources Ltd. by Keewatin Engineering Inc.
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia (104G), G.S.C. Paper 71-44.

Read, et al. (1990): GSC Open File 2094; Geology, More and Forest-Kerr Creeks (Parts of 104B/10, 15 and 16 and 104G/1 and 2), Northwestern British Columbia.

Vancouver Stockwatch.

APPENDIX I

[] []

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, TERRY L. TUCKER, of 640 Crystal Court, in the City of North Vancouver, in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of Alberta, Edmonton, Alberta (1989) with a Bachelor of Science degree (specialization in Geology).
- 2) That I have been a practising geologist in Canada, Australia and Papua New Guinea since 1987.
- 3) I was under contract to Keewatin Engineering Inc. of 800 900 West Hastings Street, Vancouver, B.C. for the duration of time I worked on this project.
- 4) I personally participated in the 1991 field program on August 25-28, 1991, on the Mess property as described in this report.
- 5) I am the author of the report entitled "Geological and Geochemical Report on the Mess Property, Liard Mining Division, British Columbia", dated October 28, 1991.
- 6) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Skeena Resources Limited, in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this <u>28th</u> day of October, 1991.

Respectfully submitted,

Terry L. Tucker, B.Sc.

APPENDIX II

A series

[***

-cam Extra

Summary of Field Personnel

SUMMARY OF FIELD PERSONNEL						
Name	Position	Sampler Code	No. of Days			
Terry L. Tucker	Geologist	TT	2.0			
Timuthe L. Hutchings	Geographer	TH	1.0			
Steve G. Creelman	Prospector	SC	2.0			
Francois M.D. Depey	Field Assistant	FD	2.0			
Steve Sheffield	Field Assistant	SS	1.0			

{``` {```

(197) (197)

Provide

APPENDIX III

Statement of Expenditures

STATEMENT OF EXPENDITURES

Pre-Field (maps, reports, permitting)	\$ 205.37
Field Program	
Personnel	2,365.00
Camp Suport Camp Costs Expediting and Freight	740.00 62.20
Transportation Helicopter (3.6 hours)	2,827.95
Geochemical Analysis (40 soils/silts, 17 rocks)	715.00
<u>Tenure</u>	121.00
Post-Field	935.00

TOTAL EXPENDITURES:

<u>\$7,971.52</u>

APPENDIX IV

- 32

Rock/Soil/Silt Sample Descriptions and Results

	8 - 1 -		· ·														
			• •						• •								
						· · · ·											
REEWATIN ENGINEERI	NG INC		ROCK SAMPLE						•					· .	•	·	
PROJECT:	MESS 215	*************			Terry L. Tucker	FROM B			REPOI	RTS:							
AREA:			MAP:			1309.0	, 130	9.1, 1	309.5								
COLLECTOR:		-			Hutchings (TH), Steve Sheffield (SS)											***	
				Туре	Description	Au	Au '	Ag	Ag	Cu	Cu	Pb	Zn	Ав	Sb	Mo	
SAMPLE NUMBER	LOCATION NOTES	DATE	ROCK TYPE	width(metres)	ppb	opt	bbw	opt	ppm .	*	ppm	ppm	ppm	bbw b	p pm	
91 SC 215 M R 001	EL5300/N.SIDE OF GLACIER	AUG 25/91	Volcanic	GRAB	Fels/Volc contact:carb vn,1% spotty cpy	15		0.8	-	152		11	63	15	-5	2	
91 SC 215 M R 002	EL5360/N.SIDE OF GLACIER	AUG 25/91	Qtz vein	GRAB	Frac-fill mal, cpy; tetra, gal to 3%, ZnS?	29		10.4		626	· :	2748	13298	-5	17	18	
91 SC 215 M R 003	EL5380/N.SIDE OF GLACIER	AUG 25/91	Qtz vein	GRAB	Cont. of vn(345/55W)30cm, less galena	649	¹	3.5		497		769	4785	108	9	17	
91 SC 215 M R 004	EL5380/N.SIDE OF GLACIER	AUG 25/91	Volcanic	GRAB	Sidewall volcs/2-3% cpy,mal,az	13		2.1		2842		59	394	-5	-5	5	
91 SC 215 M F 005	3900' South side valley	AUG 28, 91	Volcanic	FLOAT	qtz/carb alt with 2% cpy, malachite	15		1.		1503		53	178	26	67	2	
91 SC 215 M F 006	4260' South side valley	AUG 28, 91	Porphyry?	FLOAT	quartz vein with diss to mass cpy(5%)	-5		-0.2		3387		6	27	13	-5	1	
91 SC 215 M R 007	4090' South side valley	AUG 28, 91	Felsic Dyke	GRAB	felsic with minor quartz stringers	-5		-0.2		17		4	13	-5	-5	3	
91 SS 215 M C 001	4300 south	Aug 25, 91	Volcanic	GRAB	altered volcanic	÷5		0.5		390		4	47	35	15	2	
91 SS 215 M F 002	4400' south	Aug 25, 91	Volcanic	FLOAT	<1% cpy in siliceous altered volcanic	93		2.5		7058		3	3	- 6	5	4	
91 SS 215 M F 003	4400' south	Aug 25, 91	Volcanic	FLOAT	1% cpy in siliceous altered volcanic	225		50	2.26	20000	.16	22	27	25	105	43	
91 SS 215 M F 004	4400' south	Aug 25, 91	sediment	FLOAT	Biliceous breccia, limonitic, tr cpy	729		3		8215		9	125	196	18	3	
91 TH 215 M F 001	4100' North side valley	Aug 28, 1991	Andesite	FLOAT	calcite, barite vein	-5		-0.2		118		6	56	-5	-5	-1	
91 TT 215 M F 001	north side of valley 6020	'Aug 25, 91	Volcanic	FLOAT	gossanous with quartz vein, 2% diss py	24		0.4		187		164	169	15	-5	1	
91 TT 215 M R 002	· –		sediments	GRAB	trace pyrite in gossanous sed	-5		-0.2		6		5	51	-5	-5	2	
	north side of valley	Aug 25, 91	sediments	GRAB	<1 cm quartz vein in rusty seds	11		-0.2		10		17	67	33	-5	1	
	north side of valley	Aug 25, 91	Volcanic	GRAB	mal along frac in marcon volcanic	-5		5.8		6012		10	66	-5	-5	2	
91 FD 215 M F 001	south side 4300'	Aug 28, 1991	Volcanic	FLOAT	cpy and mal in altered volcanic	2151 0	.079	1.8		10123 (0.94	7	. 9	79	29	10	
·					••												

	Mess Projec	r t		MAP:	DIO 71	NILED BI:	Terry L.	LUCKEL	NTS:				ondar-C						
COLLECTORS:		M.B. Depey XXIV (1	••	-		• •						· · ·							
SAMPLE NUMBER	DATE		IORIZO	1.1.1	organi		RESIDUAL TRANSPORT		MOIST	NOTES	ASSAYS:	Au	Ag ppm	Cu	Pb ppm	Zn ppm	As ppm	sb ppm	M
91FD215MS4300 / /0+00S	25 AUG, 91	Imess	в	 15	 o	Med brn	lR	40N	Imed				-0.2		7	30	-5	-5	
91FD215MS4500//1+00S	25 AUG, 91	MESS	в	15	, 0	Med brn	R	35N	med	i -		-5	-0.2	35	7	35	-5	-5	-
91FD215MS4500 / 2+00S	25 AUG, 91	MESS	в	15	, l o	Med brn	R	35N	med	i		-5	-0.2	42	8.	34	-5	-5	
91FD215MS4500 / 3+00S	25 AUG, 91	MESS	в	10	, 0	Med brn	т	35N	med	i		-5	-0.2	102	-8	22	-5	-5	
91FD215MS4500 / 4+00S	25 AUG, 91	MESS	в	10	0	Med brn	T	35N	med	i		-5	-0.2	44	6	31	~ 5	~ 5	
91FD215MS4500 / 5+00S	25 AUG, 91	MESS	в	10	0	Med brn	Т	35N	med	i		-5	-0.2	16	. 7	40	-5	-5	·
91FD215MS4500 / 6+00S	25 AUG, 91	MESS	[В	10	0	Med brn	T	35N	med	i -		5	-0.2	20	10	50	-5	-5	
91FD215MS4500 / 7+00S	25 AUG, 91	MESS	в	15	j o	Med brn	T	35N	med	İ		⁻ -5	-0.2	13	8	33	-5	-5	
91FD215MS4500//7+75S	25 AUG, 91	MESS	в	15	. 0	Med brn	T	35N	med	Ť		-5	-0.2	24	10	39	5	-5	
91FD215MS4500 / 8+005	25 AUG, 91	MESS	в	15	0	Med brn	Т	35N	med	i		-5	-0.2	23	8	40	-5	-5	
91FD215MS4500 / 9+005	25 AUG, 91	MESS	в	15	0	Med brn	T	35N	med	İ.		-5	-0.2	21	8	39	-5	-5	
91FD215MS4500//10+005	25 AUG, 91	MESS	в	15	0	Med brn	R	dir 30	med	1		5	-0.2	16	4	32	-5	-5	
91FD215MS4500 / 11+00S	25 AUG, 91	MESS	в	15	0	Med brn	T	dir 60	med	Ì		-5	-0.2	16	4	32	-5	-5	
91FD215MS4500 / 12+00S	25 AUG, 91	MESS	в	15	0	Med brn	R	dir 60	med	1		-5	-0.2	42	8	31	-5	-5	
91FD215MS4500 / 13+00S	25 AUG, 91	MESS	B	Ì	0	Med brn		dir 60	med	1		-5	-0.2	26	9	31	-5	-5	
91FD215MS4500//0+00E	28 AUG, 91	MESS	a-B	20	40	Med brn	R	255	med	Ì		-5	-0.2	35	6	69	-5	-5	
91FD215MS4500//1+00E	28 AUG, 91	MESS	в	20	5	Med brn	R	305	med	1		-5	-0.2	48	11	64	5	5	
91FD215MS4500 / /2+00E	28 AUG, 91	MESS	в	20	20	Med brn	R	255	med	1		-5	-0.2	48	9	71	6	-5	
91FD215MS4500//3+00E	28 AUG, 91	MESS	в	40	0	Med brn	Т	305	med	i i		9	-0.2	72	11	74	-5	-5	
91FD215MS4500 / 4+00E	28 AUG, 91	MESS	в	10	0	Med brn	T	305	med	1 1		-5	-0.2	60	7	66	-5	-5	
91FD215MS4500 / 5+00E	28 AUG, 91	MESS	A-B	10	50	Dk brn	R	305	med			-5	-0.2	30	7	74	· 7 ·	-5	
91FD215MS4500//6+00E	28 AUG, 91	MESS	в	20	30	Med brn	R	205	med	1		-5	-0.2	27	8	76	7	-5	
91FD215MS4500 / /7+00E	28 AUG, 91	MESS	в	10	40	Dk brn	R	255	med	[·		-5	-0.2	51	7	80	-5	-5	
91FD215MS4500*/8+00E	28 AUG, 91	MESS	в	5	1 0	Lt brn	Т	355	med	1		-5	-0.2	23	5	36	-5	-5	
91FD215MS4500 / /9+00E	28 AUG, 91	MESS	в	30	40	Med brn	R	305	med	1		~5	-0.2	153	6	48	8	-5	
91FD215MS4500 //10+00E	28 AUG, 91	MESS	A-B	20	50	Dk brn	R	205	med	1		-5	-0.2	23	8	97	-5	-5	
91FD215MS4500 / 11+00E	28 AUG, 91	MESS - no sample	i ·	İ	Ì	i i		İ.	1.	1 .									

	KEEWATIN ENGINEERING I	NC		SOIL AN	D SILT SA	PLE DESP	RIPTIONS										
	PROJECT:	MESS 215				D BY: 1	ferry L. Tucker				ondar-C		-	5:	****		INGE
	AREA: COLLECTORS:	Mess Pro Francois	ject J.M.B. Depey XXIV	MAI (FD), Terry		(TT), St	teve Creelman (NTS: SC),	: 	1309.0,	, 1309.	1, 130	9.5				
	SAMPLE NUMBER	DATE	LOCATION	HORIZON DEPI	ORGANICS		RESIDUAL RESIDUAL IRANSPORT SLOPE	MOIST	ASSAYS: Notes	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Mo ppm
29	91FD215MS4500 //13+00E	28 AUG,	91 MESS	А-в 40) 30 Me	l brn I	a 25S	ned			-0.2	20	5	94	-5	-5	-1
30	91 TT 215 M S 001	25 Aug,	91 MESS - 5930'	Í I		- 1	• . T	l I	talus fine	-5	-0.2	34	9	68	-5	-5	-1
31	91 TT 215 M S 002	25 Aug,	91 MESS - 5870*	1 1	1			1	ł	-5	-0.2	68	8	65	-5	-5	-1_
1	91 FD 215 M L 001	25 Aug,	91 MESS - 3750*	i i	i i	· .	la de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de	1		6	-0.2	31	.6.	40	-5	-5	-1
2	91 FD 215 M L 002	25 Aug,	91 MESS - 3750*		i i	1 I.	2	F	1	8	-0.2	70	26	44	5	-5	-1
3	91 FD 215 M L 003	25 Aug,	91 MESS - 3750*	ÌÌ	1	Í		1	T the second	-5	-0.2	19	6	29	-5	-5	-1
4	91FD215ML 4500 3+35E	28 AUG,	91 MESS - 4700'		i i	Í	i i		T in the second s	-5	-0.2	81	9	56	9	-5	1
5	91FD215ML 4500 7+15E	28 AUG,	91 MESS - 4540.	i i	i i				· · .	-5	-0.2	60	12	61	-5	-5	-1
6	91FD215ML 4500 8+75E	28 AUG,	91 MESS - 4380*	i i	i i	i i		1		-5	-0.2	27	9	31	10	-5	-1
7	91FD215ML 4500 10+60E	28 AUG,	91 MESS - 4300'	t i ist	i i	. 1		i e		-5	-0.2	49	9	40	12	÷-5	-1
	91FD215ML 4500 11+55E	· · · · ·		i i		i	i	j .	1	-5	-0.2	49	9	46	-5	-5	-1
		1	91 MESS - 5580'			· · ·		i		-5	-0.2	53	23	110	31	-5	-1
-			91 MESS - 5930'		i i	i.	i			-5	-0.2	64	17 ·	126	44	-5	-1

L

Geochemical Lab Report

\bigcap								A DIVISION	OF INCHCA	PE INSPECTIO	N & TESTINC		·				•
L.,	DCO	OND	T . IK	14_Di	1309.0 (CO	MDIETE)		· [·					E PRINIED UPCT: 215			E 1	
	RCC	UN		·T-01									OFC1: 213		PH0		
	SAI	IPL	E .			ELEHENT	Au	Âg	Cu	Pb	Zn	Âs -	Sb	No		· .	
التلاطنية ا	NUP	1BEF	₹			UNJTS	PPR	PPH	PPN	PPM	PPN	PPM	PPH	PPM	· · · · · · · · · · · · · · · · · · ·		
ل س دیا 	Q1	ED	215	8 9 8	45080+00E		<5	<0.2	35	6	69	<5	<5	4		. <u> </u>	· · · ·
I (45001+00E		(5)	<0.2	48	11	64	5	<5	2			
time of the second second second second second second second second second second second second second second s					45002+00F		<5	<0.2	48	.9	71	6	<5	1			
		· · ·			45003+00E		9	<0.2	72	11	74	<5	<5	2			
					45004+00F		< 5	<0.2	60	7	66	<5	<5	4			
	~	C D															
· · \					45085+00E		<5 (5	<1.2	30	7	74	7	<5	2			
					45006+00E		<5	<11.2	2.7	5 	76	1	<5 (5	1			
					45007+00E		_ < 5	<(1.2	51	· ·	80 24	<5 (5	<5 · · ·	<1			
					45008+00E		<5 	<b.2< td=""><td>23</td><td>5</td><td>36</td><td>.<5</td><td><5 (F)</td><td><1</td><td></td><td></td><td>1 - E</td></b.2<>	23	5	36	.<5	<5 (F)	<1			1 - E
	71	ru	215	<u>n 9</u>	451109+110E		<5	<0.2	153	6	48		<5	<1			
	91	FD	215	N S	450010+00E	-	<5	<11.2	23	8	97	<5	<5	1			
~	91	FD	215	tt S	450012+00E		<5	<0.2	32	5	69	<5	<5	<1			
	91	FD	215	M S	450013+008		<5	<d.2< td=""><td>20</td><td>5</td><td>94</td><td><5</td><td><5</td><td>· <1</td><td></td><td></td><td></td></d.2<>	20	5	94	<5	<5	· <1			
. ألتيا	91	FD	215	N S	45000+00S		<5	<11.2	39	. 7	30	<5	<5	<1			
الندن. الندن	91	FD	215	N S	45001+008		<5	<0.2	35	7	35	<5	<5	<1			
	91	FD	215	N S	45002+005		<5	<0.2	42	8	34	<5	<5	<1			
-					45003+005		<5	<0.2	102	8	22	<5	3	<1			
					45004+00S		<5	<0.2	44	6	31	<5	<5	<1			
- i -					45005+00S		उँ	<0.2	16	7	40	<5	3	<1			
					45006+008		<5	<0.2	20	10	50	<5	<5	<1	×		ĺ
	04	C D	045	- H 0	/ 5007 .000			48.0	42						<u> </u>	<u> </u>	
					45007+00S		< 5	<8.2	13	8	33	<5	<5 (5	<1			
					45007+758		<5	<8.2	24	10	39	5	<5 (5	<1			
					45008+00S		<5 (5	<0.2	23	8	40 20	<5 (5	.<5	. <1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
1					45009+005		<5	<11.2	21	8	39	<5	<5 (5	<1			
<u> </u>	71	FU	215	пъ	450010+008		<5	<0.2	16	4	32	<5	<5	5			
	91	FD	215	M S	450011+008		<5	<0.2	16	4	32	< 5	<5	<1			
	91	FD	215	H S	450012+005		<5	<11.2	42	8	31	<5	<5	<1			
1	91	FD	215	M S	450013+008		. <5	<0.2	26	9	31	<5	<5	<1			
			215				<5	<11.2	34	9 :	68	<5	<5	<1			
1	91	TT	215	H S	002		<5	<11.2	68	8	65	<u> </u>	<5	<1	• •		
1	91	FD	215	N I	801		6	<0.2	31	6	41]		<5	<1		· · · · ·	•
			215				8	<0.2	70	26	44	5	<5	<1			
			215				< <u>\$</u>	<0.2	19	6	29	<5	<5	<1			
					45003+35E	4 	< <5	<0.2	81	9	56	9 ···	<5	<1			
1					45007+15E		<5	<0.2	68	12	61	<5	<5	<1			
									· · ·		· · · · · ·						ł
Ψ. ``					45008+75E 450010+60E		. <5	<(1,2	27	9	31	10	×5	<1			
							<5 <5	<0.2	49	. 9	40	12	<5 /5	<1		1	
6					450011+55E		<5	<(1.2	49	9	46	<5	<5 (5	<1			ĺ
			215				<5 (5	<0.2	53	23	110	31	<5 (5	<1			
<u> </u>	71	11	215	กไ	WUZ		<5	<(1,2	64	17	126	44	<5	<1	· · ·		

ADVISION DE LON DE LON RECHTA DIVERSE SURVE REPORT UNITAL Diversion Diver	Bondar-Clegg & Company Lt 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 '504) 985-0681 Telex 04-35266	· · · · · · · · · · · · · · · · · · ·		BCC BONDAR-CLEGG		Certificate of Analysis
NURBER UNIIS OFT PCI 91 SS 215 H F IIII3 2.26 4.16	REPORT: V91 1113119.6 (C	OMPLETE)	A DIVISION OF	EINCHCAPEINSPECTION& ITS]	DATE PRINIED:	
	91 SS 215 H F 1113	2.	26 4.16	· · · ·		· · · · · · · · · · · · · · · · · · ·
			 P			
		<u> </u>				
		• •		ی کار کار کار ایر کار -		
	<u>.</u>					
	(

Registered Assaver. Province of British Columbi-

Bondar-Clegg & Compan 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (404) 985-0681 Telex 04-31			BONDAR-CLEGG		Certificate of Analysis
(04) 90J-000F JCICA 04-3.	JZARY	A DIVISION OF	INCLOSE INSPECTION & H S	TROSERVICES	· · · ·
REPORT: V91-1113119.6	(COMPLETE)			DALE PRINIED: 18 PROJECT: 215	-SEP 91 PAGE 2
SAMPLE NUMBER	FLEMENT Ag UNITS OPT	Cu PCT			
91 SS 215 M F HH3 Duplicate	2.26 4.16 4.23				
			х 		
					· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			
				Ia)][

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V91-1113119.1 (COMPLETE)							DJFCT: 215): <u>11 -SEP -9</u> 1	PAGE 1
	CONTRACT D								• •••••	
SAMPLE NUMBER	ELEMENT UNTTS	Au PPB	Ag PPM	Cu PPM	Pb PPM	Zn PPM	As PPN	Sb PPM	No PPN	
91 FD 215 N F 001		2151	1.8	10123	7	9	79	29	10	
91 SC 215 H R IIII1		15	.[],8	152	11	63	15	<5	2	,
91 SC 215 N R 1002		29	10.4	626	2748	13298	<5	17	18	
91 SC 215 N R 1103		649	3.5	497	769	4785	1(18	9	17	
91 SC 215 N R 11114		13	2.1	2842	59	394	<5	<5	5	
91 SC 215 N F 11115		15	1.8	1503	53	178	26	67	2	
91 SC 215 M F 1116		<5	<0.2	3387	6	27	13	<5	1	
91 SC 215 H R UN7		<5	<11.2	17	.4	13	< 5	<5	3	
91 SS 215 M C 1001		< 5	0.5	390	4	47	35	15	2	
91 SS 215 H F 11112		93	2.5	7058	3		6	5	4	···
91 SS 215 M F 1113		225	>511,11	>20000	22	27	25	105	43	
91 SS 215 M F 1114		729	3.0	8215	. 9	125	196	18	3	
91 TH 215 N F 001		<5	<11.2	118	6	56	<5	<5	<1 ·	
91 TT 215 M R 1101		24	11.4	187	164	169	15	<5	1	
91 TT 215 N R 0112	· · · · · · · · · · · · · · · · · · ·	<5	<0.2	6	5	51	<5	<5	2	
. IT 215 M R 1103	······	11	<11.2	10	17	67	33	<5	1	
91 TT 215 N F 084		<5	5.8	6012	.19	66	<5	<5	2	
*						. ·				
	· · · · · · · · · · · · · · · · · · ·	<u>.</u>								

֍

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

	REPORT: V91 01309.1 (C	OMPLETE)			UF INCHCAPE	INST LC HO		DAT	PRINTED: JECT: 215	<u>11-SEP-91</u>	PAGE 3
	SAMPLE NUMBER	FLEMENT UNITS	Au PPB	Ag PPN	Cu PPN	Pb Pph	Zn PPM	As PPM	Sb PPM	Mo PPN	
	91 SS 215 M F HU2 Prep Duplicate Duplicate	93 86 97	2.5 2.4 2.8	71158 6732 7735	3 4 3	3 2 3	6 8 6	5 <5 8	4 6 5		
		· · · · · · · · · · · · · · · · · · ·									
0		· · ·									
										· · · · · · · · · · · · · · · · · · ·	
			<u> </u>	<u> </u>							
			·	· · · · · · · · · · · · · · · · · · ·							
			· · · · · · · · · · · · · · · · · · ·								
							· · · · · ·	•			
										· · · ·	
\Box	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·							

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

		CONDUCTO 1			UP INCHUA!	PE INSPECTIC	IN & TESTING	DAT		0 <u>: 10-sep</u>		0405 2	<u></u>
	REPORT: V91-01309.0 (JECT: 21			PAGE 3	·
ار است.	SAMPLE Number	FLENHNT	Au PPB	Ag PPN	Cu PPN	РЬ РР н	Zn PPN	As PPM	Sb PPM	No PPN			
J	91 FD 215 M S 45009+ Duplicate	< 5 < 5	<(1.2 <(),2	153 161	6 6	48 51	8 .5	<5 <5	<1 <1	· · · · · · · · · · · · · · · · · · ·			
	91 FD 215 M S 45(11)12 Duplicate	<5	<11.2 <11.2	42 46	8 7	31 30	<5 <5	<5 <5	ধ ধ				
	91 FD 215 M I. UN3 Duplicate	<5 <5	<11.2	19	6	29	<5	<5	<1				
	· · · · · · · · · · · · · · · · · · ·	<u> </u>											
1				. **	•	· · ·							
}													
2							- -					······································	
i													
						<u></u>						· · · · · · · · · · · · · · · · · · ·	
]													
(<u> </u>				· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	······································				
-			· · · · · · · · · · · · · · · · · · ·										<u></u>
								ی بر ۲۰ مر	. •				
					. *						- <u></u>	, 	

Page 3

1

) }____s

L

 $\left[\right]$

1.

14:53

Speema- mess.

DATE PRINTED: 7-NOV-91 PROJECT: 215 PAGE 1

REPORT: V91-01309.5 (COMPLETE) SAMPLE ELEMENT AU CU NUMBER UNITS OPT PCT 91 FD 215 M F 001 0.079 0.94

APPENDIX V

ويتبعه ا

.

Sampling and Analytical Techniques

	Boudar-Clegg & Company 130 Pemberton Ave. North Vancouver, B.C. V 3P 2P 5 104) 985-0681 Telex (M-35)				BCC NDAR CLEGG			Cert of Ar	ificate alysis	
1			A DIVI	doz ot ize tie	At False Board Re	The others of				
	REPORT; V91-01309.6 (COMPLETE)				R	EFERENCE	INFO: SHIPHENT	# 1	
	CLIENT: KEFWATIN ENGI PROJECT: 215	NEFRING INC.		· · · <u></u>				BY: DICK TI ED: 18-SEP-91		1
	ORDER	FLEMENT		NUMBER OF	LOWFR DETECTION LIMIT	EXTRACTION		METHOD	·····	
	1 A 2 C	g Silver u Copper	(Gravimetric)	1	11.112 OPT 11.111 PCT	HCL-HN03-HF	: 	Fire Assay At Absorp -low	leve)	
-	SAMPLE T	YPES	NHABER		ACTIONS		SAMPLE	PRHPARATTONS N	UMBER	
	R ROCK	OR BHD ROCK	1	2 -15		1	SAMPLES	FROM STORAGE	1	
-	REPORT C	OPIES TO: MS.	. BONNIE WHELAN		<u></u>	INA01C	E 10: MS.	BONNIE WHELAN		
										. 1
								· · · ·		
						· · · · · · · · · · · · · · · · · · ·				<u></u>
										- <u></u>
						· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·								

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V91-01309.1 (COMPLETE)

REFERENCE INFO: SHIPMENT #1.

CLIFNT: KFFWATIN FNGINFFRING INC. PROJECT: 215 SUBMITTED BY: DICK II DATE PRINTED: 11-SEP 91

	ORDER	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION		METHOD		
0	1 Au 2 Ag		ıs 17 17	5 PPB 11.2 PPH	Fire Assay HNO3 HC1 Hot		Fire Assay A Ind. Coupled		
	3 Cu 4 Pb	Lead	17 17	1 PPH 2 PPH	HN03-HC1 Hot HN03 HC1 Hot	Extr.	Ind. Coupled Ind. Coupled	Plasma	
	5 Zn 6 As 7 Sb	Zinc Arsenic Antimony	17 17 17	1 PPN 5 PPN 5 PPN 5 PPN	HN03-HC1 Hot HN03 HC1 Hot HN03-HC1 Hot	Fxtr.	Ind. Coupled Ind. Coupled Ind. Coupled	Plasma	
	8 No	Notybdenum	17	1. PPN	HN03 HC1 Hot	Éxtr.	[nd. Coupled	Plasma	· · · · · · · · · · · · · · · · · · ·
	SAMPLE TYP	PFS N	INDER STZF H	RACTIONS	NUMBER	sampi f i pi	REPARATIONS	NUMBER	
	R ROCK OF	R BED ROCK	17 2 1	511		CRUSH, PU Too Wet	UFRIZE -150	<u> </u>	·
		ASSAY OF HIGH Ag	& CII TO FOLLOW ON V	91 41309.6	· .				
		TEC TAL MC DAN	ITE HUELAND		TAUDTC	TO. NO			
	RFPORT COF	PTFS TO: MS. BON	NIF WHFLAN		JNVOTCF	* TO: MS. I	BONNIF WHEI A	١	
	RFPORT COF	PIFS TO: MS. BON	NIF WHFLAN		JNVOJCF	* TO: MS. I	BONNIF WHELA	١	
	REPORT COF	PIFS TO: MS. BON	NIF WHFLAN		JNVOJCF	- TO: MS. I	RONNIF WHEI A		
]	REPORT COF	PIFS TO: MS. BON	NIF UHFLAN		JNVOJCF	TO: MS. 1	BONNIF WHEI A	1	
	REPORT COF	PIFS TO: MS. BON	VIF WHFLAN		JNVOJCF	TO: MS. 1	BONNIF WHEIA	1	
	REPORT COF	PIFS TO: MS. BON	NIF UHFLAN		JNVOJCF	TO: MS. 1	BONNIF WHEI A	J	
	REPORT COF	PIFS TO: MS. BON	VIF UHFLAN		JNVOJCF	TO: MS. 1	BONNIF WHEIA	1	
	REPORT COF	PIFS TO: MS. BON	VIF UHFLAN		JNVOJCF	TO: MS. 1	BONNIF WHEIA	1	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

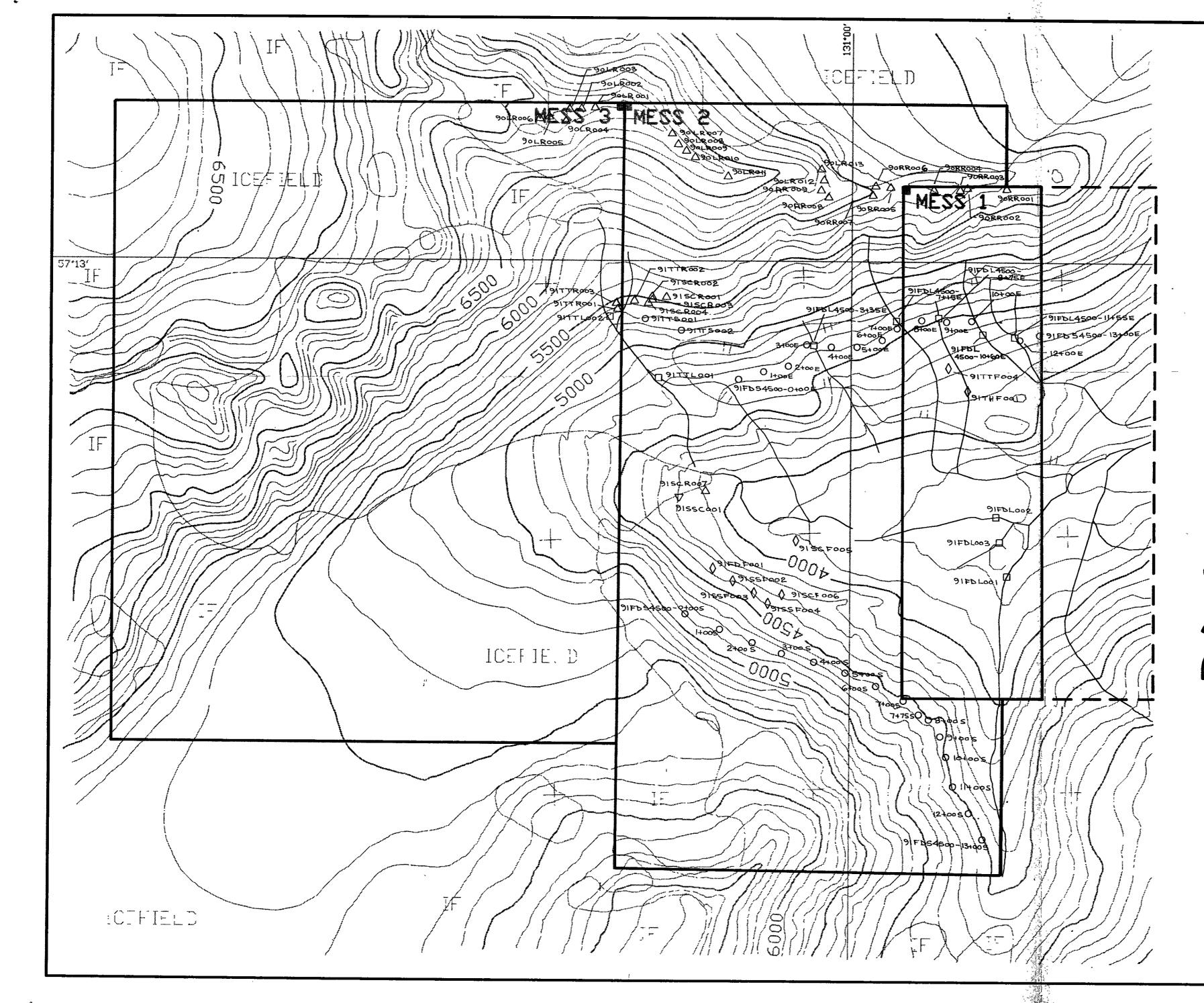
REPORT: V91 01309.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #1

CLIFNT: KFFWATJN ENGINFFRING INC. PROJECT: 215 SUBNJTTED BY: DJCK JI DATE PRINTED: 10-SEP-91

	ORDER	ELEMENT		NUMBER OF ANALYSES		EXTRACTION		METHOD			
		Au Gold 3N g Ag Silver	jra n s	40 40	5 PPB 0.2 PPN	Fire-Assay HNO3-HC1 Hot	Extr.	Fire Assay A Ind. Coupled			
	4 5 6	Cu Copper Pb Lead Zn Zinc As Arsenic Sb Antimony		4(1 41) 4(1 41) 4(1 4(1	1 PPN 2 PPN 1 PPH 5 PPN 5 PPN	HN03-HC1 Hot HN03-HC1 Hot HN03-HC1 Hot HN03-HC1 Hot HN03-HC1 Hot	Extr. Fxtr. Extr.	Ind. Coupled Ind. Coupled Ind. Coupled Ind. Coupled Ind. Coupled	Plasma Plasma Plasma		
	8 Sample	Ho Notybdenu TYPFS	number	40 Sizf H	1 PPN RACTIONS	IINO3-HCI Hot NUMDER		Ind. Coupled			
	S SOIL	S. AM SEDIMENT,SILI	<u>301</u> 111	1 -8	3[]	411	DRY, S	TEVE -8N	40		
	REPORT	COPTES TO: MS. A	IONNIE WHFIAN			JNVOTC	F TO: MS	. BONNJF WHFLAM	1		
	· · · · ·	· · · · · · · · · · · · · · · · · · ·							<u></u> .	<u>.</u>	
				·				· · · · · ·		<u></u>	
· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				2			. :	
							:			· · · ·	
				. <u></u>							

Geochemical Lab Report


A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

STANDARD MARE FIFHANI ANUTIS Au Ag PPR PPR PPD PPR PPD PPR PPR PPR Sb Mo MALYTICAL III IANK MARTYTICAL BUMK MARTYTICAL BUMK MARTYTICAL BUMK MARTYTICAL BUMK STANDARD C3 C1 C2 C1 C5 C5 C1 MARTYTICAL BUMK MARTYTICAL BUMK MARTYTICAL BUMK STANDARD C1 C2 C1 C5 C5 S1 MartyTiCAL BUMK MARTYTICAL BUMK STANDARD C1 C2 C1 C2 C2 2 2 2 MartyTiCAL BUMK MARTYTICAL BUMK STANDARD C3 C1 C2 C1 C2 C2 2 2 2 Standard Beviation D.HII B.HIII B.HIII B.HIII B.HIII B.HIII B.HIII S1 S1 S2 C5 2 Standard Deviation - <t< th=""><th>REPO</th><th>RT: V91-N13N9.N (C</th><th>COMPLETE)</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>TE PRINTE ROJECT: 21</th><th>D: 10-SEP-9 5</th><th></th><th>PAGE</th><th>2</th><th></th></t<>	REPO	RT: V91-N13N9.N (C	COMPLETE)						1	TE PRINTE ROJECT: 21	D: 10-SEP-9 5		PAGE	2	
ANALYTICAL BLANK <5															
Number of Analyses 2 2 2 2 2 2 2 2 2 Mean Value 2.5 0.10 0.5 1.0 0.5 2.5 2.5 4.6 Standard Deviation 0.100 0.000 0.000 0.000 0.000 5.77 Accepted Value 5 - - - - - - GEO TRACE SID 3 1989 - <0.2										<1	<u> </u>				
Mean Value 2.5 0.10 0.5 1.0 0.5 2.5 2.5 2.6 Standard Deviation 0.000 0.000 0.000 0.000 0.000 5.77 Accepted Value 5 - - - - - - - GEO TRACE SID 3 1989 - <0.2 261 27 216 28 <5 2 Number of Analyses - 1 1 1 1 1 1 Mean Value - 0.101 261.3 26.9 216.1 28 <5 2 Mumber of Analyses - 1 1 1 1 1 Mean Value - 0.101 261.3 26.9 216.1 28.2 2.5 2.4 Standard Deviation - - - - - - - - GEO TRACE SID-2 1989 - 4.3 744 185 413 242 40 416 Number of Analyses - 1 1 1 1 1															
Standard Deviation II.III D.IIII II.III II.IIII II.IIII II.IIII III.IIII II.IIII II.IIII II.IIII II.IIII II.IIII II.IIII II.IIIII II.IIIII II.IIII II.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII															
GEO IRACE SID 3 1989 - <(1.2)	1														
Number of Analyses - 1 1 1 1 1 1 1 Nean Value - 0.10 261.3 26.9 216.1 28.2 2.5 2.4 Standard Deviation - - - - - - - ^-cepted Value - 0.5 290 33 255 30 5 4 GEO TRACE STD-2 1989 - 4.3 744 185 413 242 40 416 Number of Analyses - 1 1 1 1 1 1 Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation - - - - - - -	Accel	oted Value	5	-	<u> </u>		- ,		-			• .	<u>,</u> .		
Number of Analyses - 1 1 1 1 1 1 1 Nean Value - 0.10 261.3 26.9 216.1 28.2 2.5 2.4 Standard Deviation - - - - - - - ^-cepted Value - 0.5 290 33 255 30 5 4 GEO TRACE STD-2 1989 - 4.3 744 185 413 242 40 416 Number of Analyses - 1 1 1 1 1 1 Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation - - - - - - -	\												-		-
Number of Analyses - 1 1 1 1 1 1 1 Nean Value - 0.10 261.3 26.9 216.1 28.2 2.5 2.4 Standard Deviation - - - - - - - *-cepted Value - 01.5 290 33 255 30 5 4 GEO TRACE STD-2 1989 - 4.3 744 185 413 242 40 416 Number of Analyses - 1 1 1 1 1 1 Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation - - - - - - -	GEO	IRACE STD 3 1989	i	<ft.2< td=""><td>261</td><td>27</td><td>216</td><td>28</td><td><5</td><td>2</td><td></td><td></td><td></td><td></td><td></td></ft.2<>	261	27	216	28	<5	2					
Standard Deviation -	Numbe	er of Analyses		<u>t</u>	t	t	t	1	1	1					
*-cepted Value - 0.5 290 33 255 30 5 4 GEO TRACE STD-2 1989 - 4.3 744 185 413 242 40 416 Number of Analyses - 1 1 1 1 1 1 Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation - - - - - - -	1		-	0,10	261.3	26.9	216.1	28.2	2.5	2.4					
Number of Analyses - 1 1 1 1 1 1 1 Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation - - - - - - -				.0.5	290	33	255	30	- 5	4	· · · · · ·	<u></u>			,
Mean Value - 4.32 744.4 184.6 412.8 242.3 39.5 415.8 Standard Deviation	GEO	TRACE STD-2 1989	· · · · · ·	4.3	744	185	413	242	40	416					
Standard Deviation			-				-	+							
				4.32	744.4	184.6	412.8	242.3	39.5	415.8					
	1			5.0	8211	250	580	320	50	600					
					·				· · · · · · · · · · · · · · · · · · · ·						
		·	· · · · · ·				•			· · ·					
								· · · ·							
						· · · · · · · · · · · · · · · · · · ·	·····								
						<u>.</u>					-				<u>.</u>
		· · · · · · · · · · · · · · · · · · ·													
		· · · · · · · · · · · · · · · · · · ·				. <u></u>				·····					

Geochemical Lab Report

REPORT: V91-01309.1 (C	OMPLETE)							ATE PRINTE ROJECT: 21		P- 91	PAGE	?	
STANDARD NAME	FITMINT UNTTS	Au PPB	Ag PPN	Cu PPN	Pb PPM	Zn PPM	As PPN	Sb PPM	No PPN				
ANALYTICAL BLANK Number of Analyses Mean Value Standard Deviation Accepted Value	<5 1 2.5 5	<11.2 1 11.111	<1 1 8.5	<2 1 1.	<1 1 ().5	<5 1 2.5	<5 1 2.5 -	<1 1 0.5 -					inim
GEO TRACE SID 3 1989 Number of Analyses Hean Value Standard Deviation Accepted Value	- - - -	N.4 1 N.41 N.5	278 1 278.5 - 2911	29 1 29.3 - 33	236 1 236.1 - 255	211 1 19.9 311	<5 1 2.5 - 5	2 1 2.0 - 4					
		· · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·			- - -						
		· · ·						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	······································	
		· · · ·											
							· · · · · · · · · · · · · · · · · · ·		<u> </u>		······		

LEGEND

Soil-sample

- Silt sample
- Rock sample
- Rock chip sample
- Rock float sample

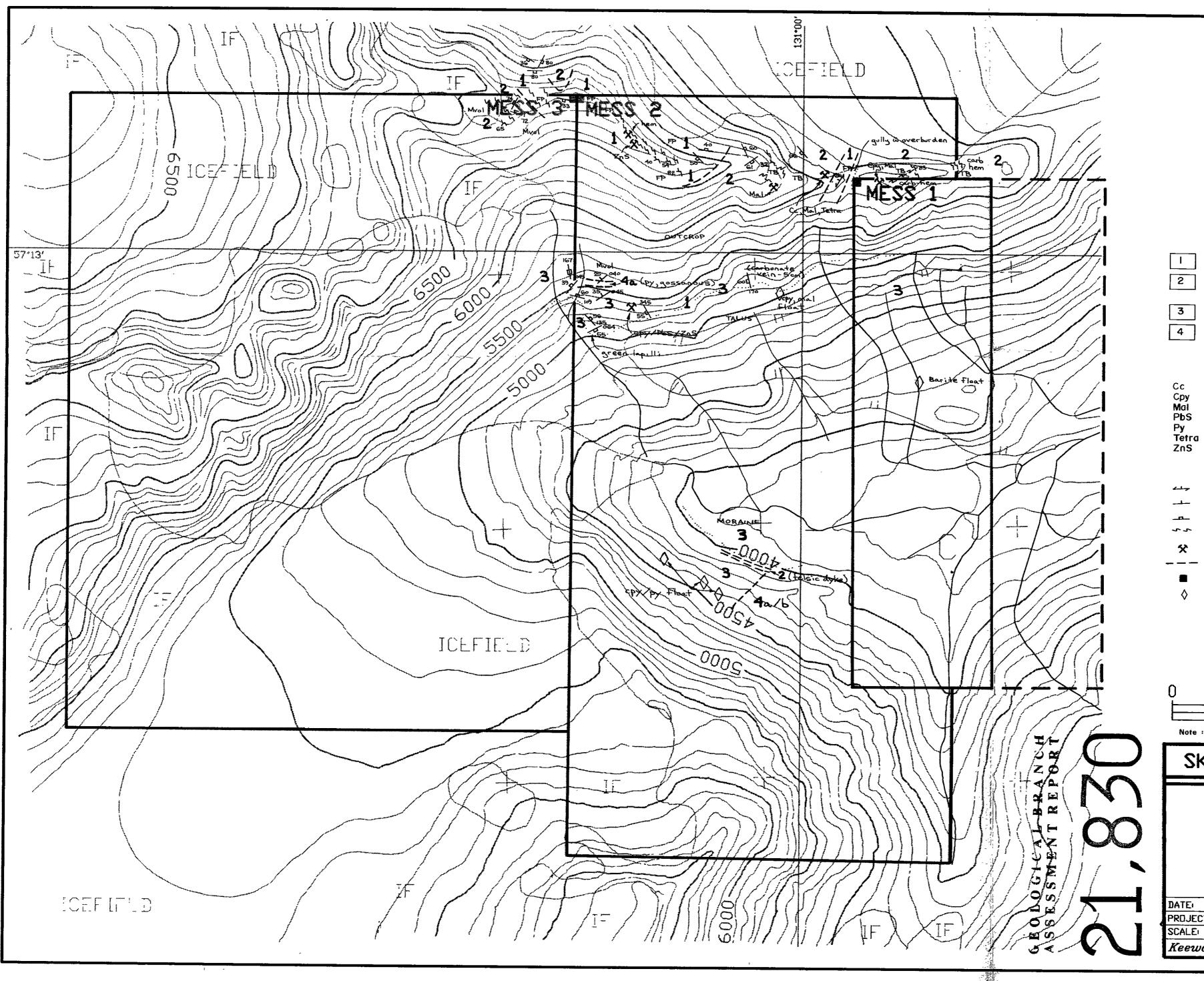
0

Δ

 ∇

 \diamond

אדדד₉₀₄ Sample number 91 prefix – 1991 samples 90 prefix – 1990 samples


\$

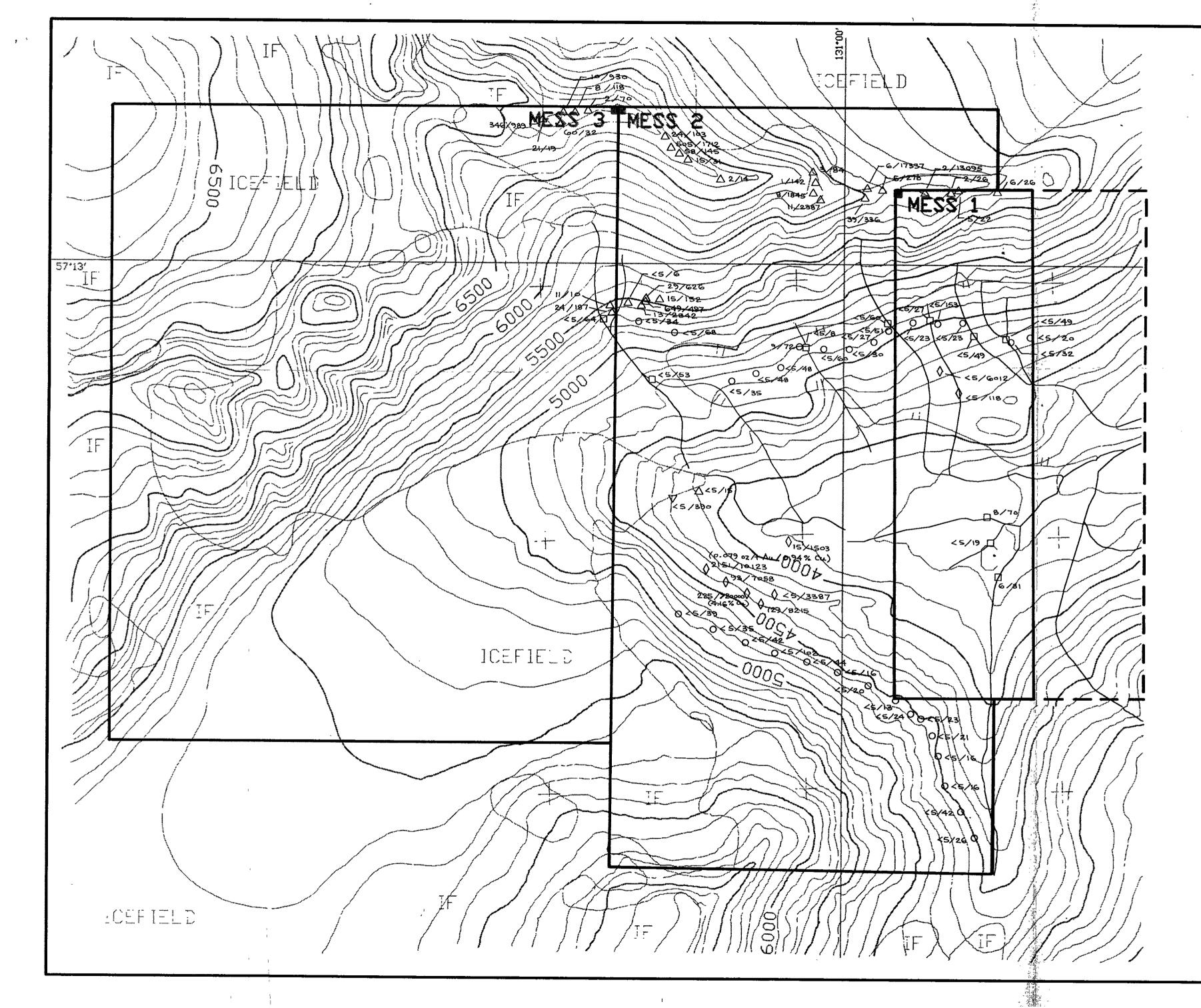
 (\mathbf{N})

GEOLOGICAL BRANCH SESSMENT REPORT

21,	8	3()						
0 200	400	600	800	1000 m					
SKEEN	SKEENA RESOURCES LTD.								
. ME	. MESS PROPERTY								
SAMPLE LOCATIONS									
DATE: NOV. 19	91	NTSi 1	104G/3E,2W	/					
PREJECTI 215	PREJECTI 215 BYI TL TUCKER								
SCALE: 1:10,000									

Keewatin Engineering Inc. MAP No. 2

LEGEND FP Feldspar porphyry Mvol Intermediate to Felsic volcanic TB Tuff breccia to lapilli tuff Maroon andesite volcanic Sediments a – sandstone b - siltstone Chaicocite Chalcopyrite Malachite Galena Py Tetra ZnS Pyrite Tetrahedrite Sphalerite Foliation Bedding Joint Shear zone Mineral occurence Geologic contact (assumed) Legal corner post (located) Rock float 200 400 600 800 1000m


Note : from Pegg 1990 and 1991 Field work

SKEENA RESOURCES LTD. MESS PROPERTY

GEOLOGY

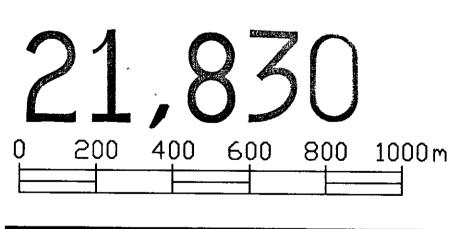
DATE: NOV. 1991	NTS: 104G/3E,2W				
PROJECTI 215	BY: TL TUCKER				
SCALE: 1:10,000					
Keewatin Engineering	Inc. MAP No.				

· - ...

Soii sample Silt sample Rock sample Rock chip sample Rock float sample Au (ppb) / Cu (ppm) 8/70

LEGEND

0

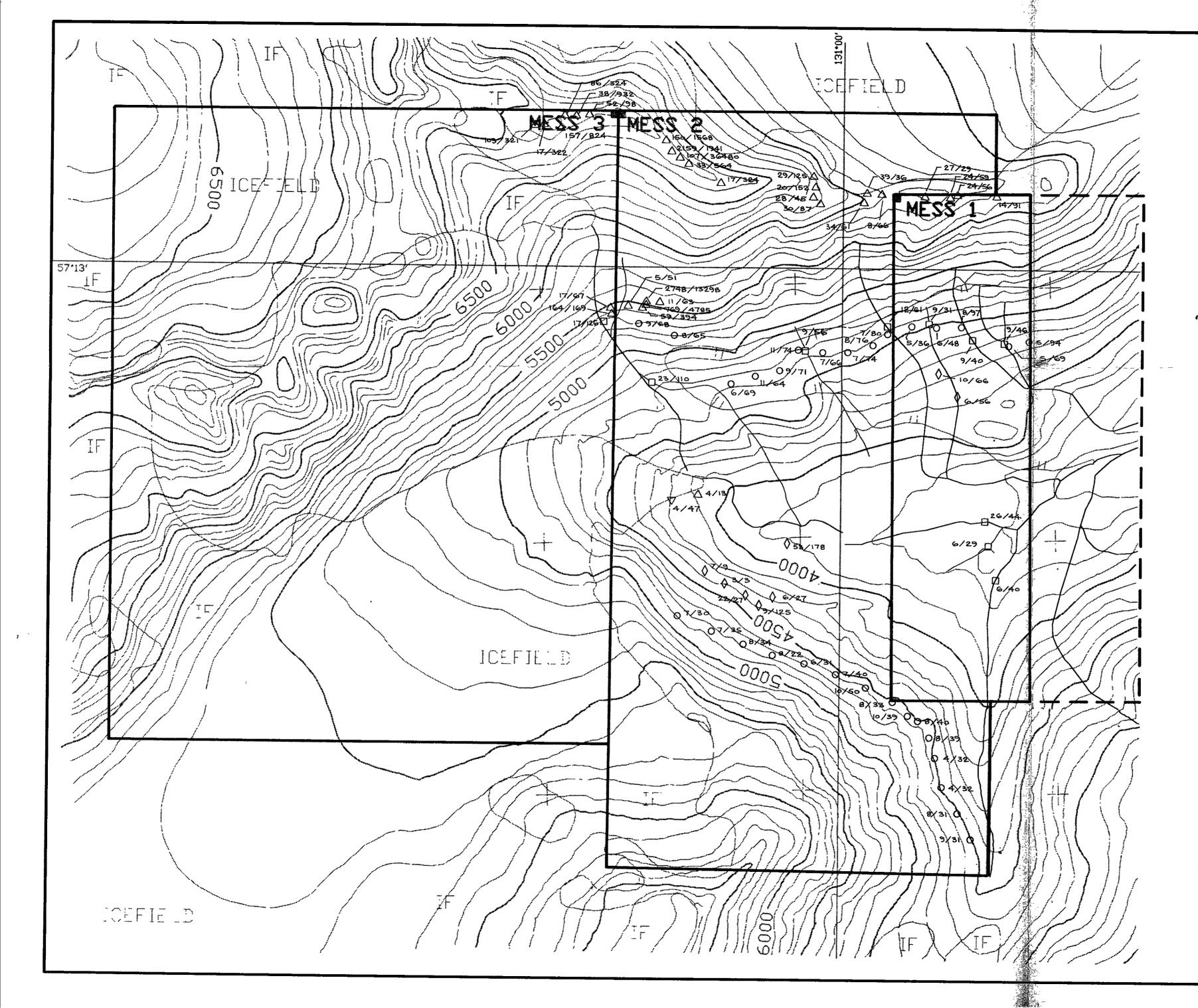

 Δ

 ∇

 \diamond

 (\mathbf{N})

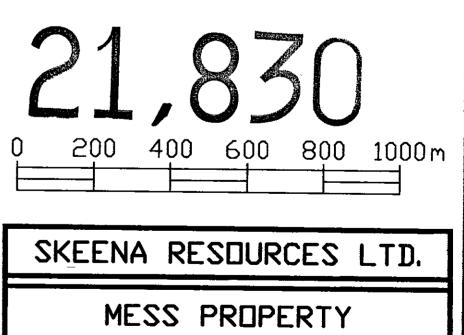
GEOLOGICAL BRANCH ASSESSMENT REPORT



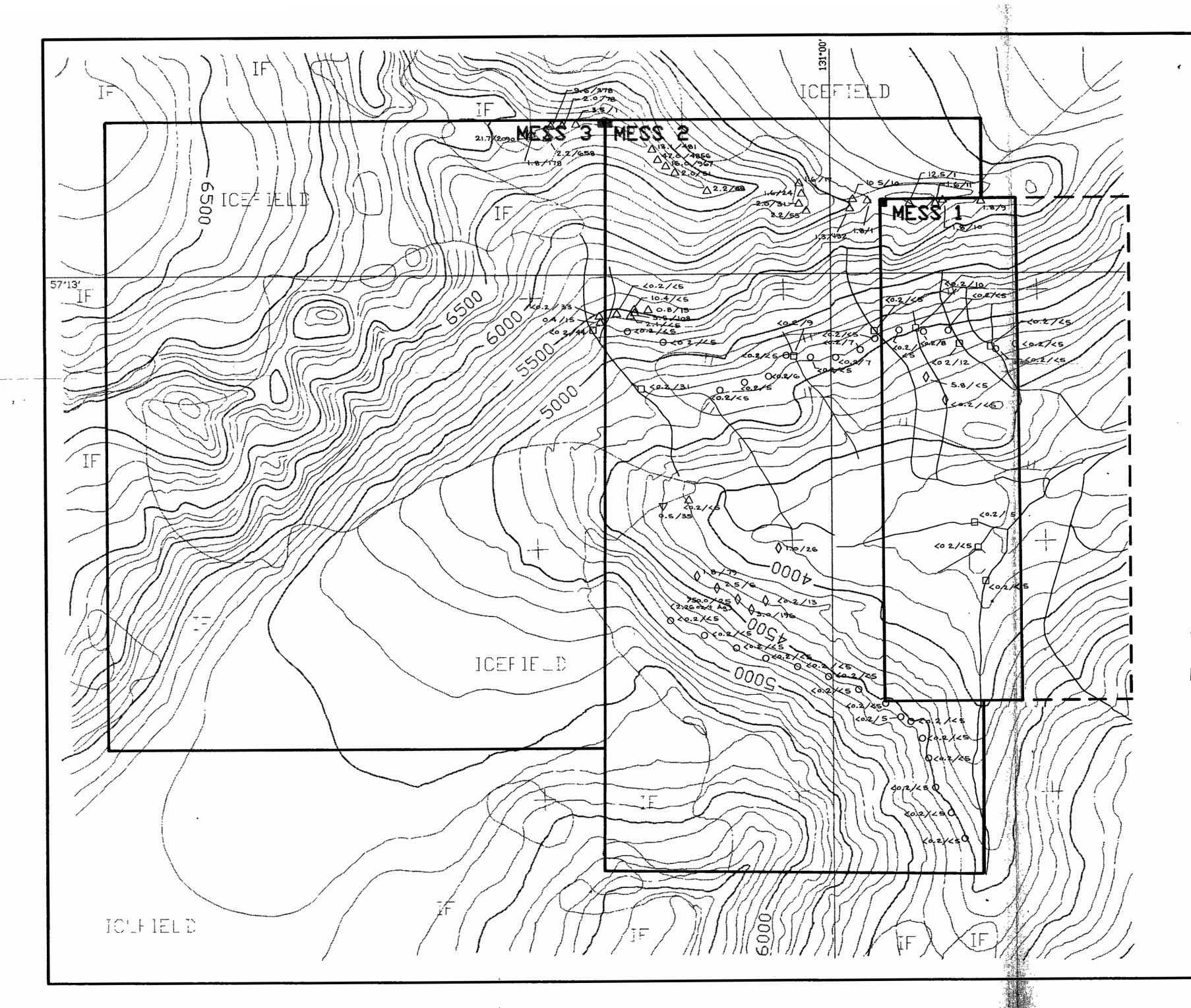
SKEENA RESOURCES LTD.

MESS PROPERTY

Au/Cu GEOCHEMISTRY


DATE NOV. 1991	NTS: 104G/3E,2W
PROJECT: 215	BY TL TUCKER
SCALE: 1:10,000	
Keewatin Engineering	Inc. MAP No. 3

LEGEND


0	Soil sample
	Silt sample
\bigtriangleup	Rock sample
∇	Rock chip sample
\diamond	Rock float sample
6/40	Pb(ppm)/Zn(ppm)

GEOLOGICAL BRANCH ASSESSMENT REPORT

Pb/Zn GEOCHEMISTRY

DATE: NOV. 1991	NTS: 104G/3E,2W
PROJECTI 215	BYI TL TUCKER
SCALE: 1:10,000	
Keewatin Engineering	Inc. MAP No. 4

L	EGEND

 (\mathbf{N})

.--- -

0	Soil sample
0	Silt sample
Δ	Rock sample
∇	Rock chip sample
\diamond	Rock float sample
1.0/26	Ag (ppm) / As (ppm)

GEOLOGICAL BRANCH ASSESSMENT REPOP

2		, 8	3	0					
0	200	400	600	800	1000 m				
S	KEEN	A RE	SOUR	CES	LTD.				
	MESS PROPERTY								

Ag/As GEOCHEMISTRY

DATE: NOV. 1991	NTS	104G/3E,2W	
PREJECTI 215	BY: TL TUCKER		
SCALE: 1:10,000			
Keewatin Engineering	Inc.	MAP No.	5