	سيامب بالجيزة بسنيهي	
LOG NO:NOV 22 1991	RD.	
ACTION:	•	
FILE NO:		1

•••

GEOLOGICAL, GEOCHEMICAL REPORT

ON THE

KNIGHT CLAIMS

KNIGHT 1	301572	KNIGHT 3	301574
KNIGHT 2	301573	KNIGHT 4	301575

Lillooet Mining Division N.T.S. 920/3 Latitude 51°05'50", Longitude 123°01'35"

ł

Owner and Operator: Noranda Exploration Company, Limited (no personal liability)

Author: J. McCorquodale Date : October, 1991

SU2-RECORDER

N.V 1 8 1991

محجم فأربع المحجم فالمحجم

GEOLOGICAL BRANCH **ASSESSMENT REPORT**

851

TABLE OF CONTENTS

.

SUMMARY

ŕ

1.0	INTRODUCTION		
	<pre>1.1 Property Location</pre>		
2.0	GEOLOGY 8		
	2.1 Regional Geology 8 2.2 Property Geology		
3.0	GEOCHEMICAL SURVEYll		
	3.1Soil Geochemistryll3.2Rock Geochemistryll		
4.0	DISCUSSION OF RESULTS12		
5.0	CONCLUSIONS13		
	REFERENCES		

STATEMENT OF QUALIFICATIONS

APPENDICES

Appendix I: Statement of Costs Appendix II: Detailed Description of Method of Analysis Appendix III: Geochemical Certificates of Analysis Appendix IV: Rock Sample Descriptions

LIST OF FIGURES

<u>PAGE</u>...

1.	Location Map (1:7,500,000)		. 6
2.	Claims Location (1:50,000)		7
3.	Regional Geology (1:50,000)		9
4.	Property Geology Rock Sample Locations (1:5,000)	In	Pocket
5.	Soil Geochemical Survey (1:5,000)		Pocket

SUMMARY

The Knight property is situated within the Coast Mountain range on NTS map sheet 920/3. It is comprised of four claims (Knight 1-4) totalling 50 units. The property is located within the Tyaughton Trough and is underlain by Upper Triassic to Middle Jurassic sediments which have been intruded by an alkalic stock.

Twenty man days were spent, soil and rock sampling, mapping, prospecting, and establishing a 10.6 line km grid. This field survey covers a 2 km² area within the southern third of the property.

The grid soil survey confirmed a previously reported Cu, Au soil anomaly (Assessment Reports #9196 & 9753). The northwest half of the soil survey outlines a coincident anomalous Cu, Au soil response, while the southeast portion of the grid is dominated by a Au soil anomaly.

The limited mapping, prospecting and rock sampling of the grid area did not fully explain the source of these highly elevated and widespread soil anomalies.

1.0 INTRODUCTION

1.1 Property Location

The Knight property is located within the Coast Mountain Range (N.T.S. Map Sheet 920/3E), north of Tyaughton Creek. The property is situated 33 km NNW of Gold Bridge, B.C. at 51°05'50" latitude, 123°01'35" longitude (Figure 1).

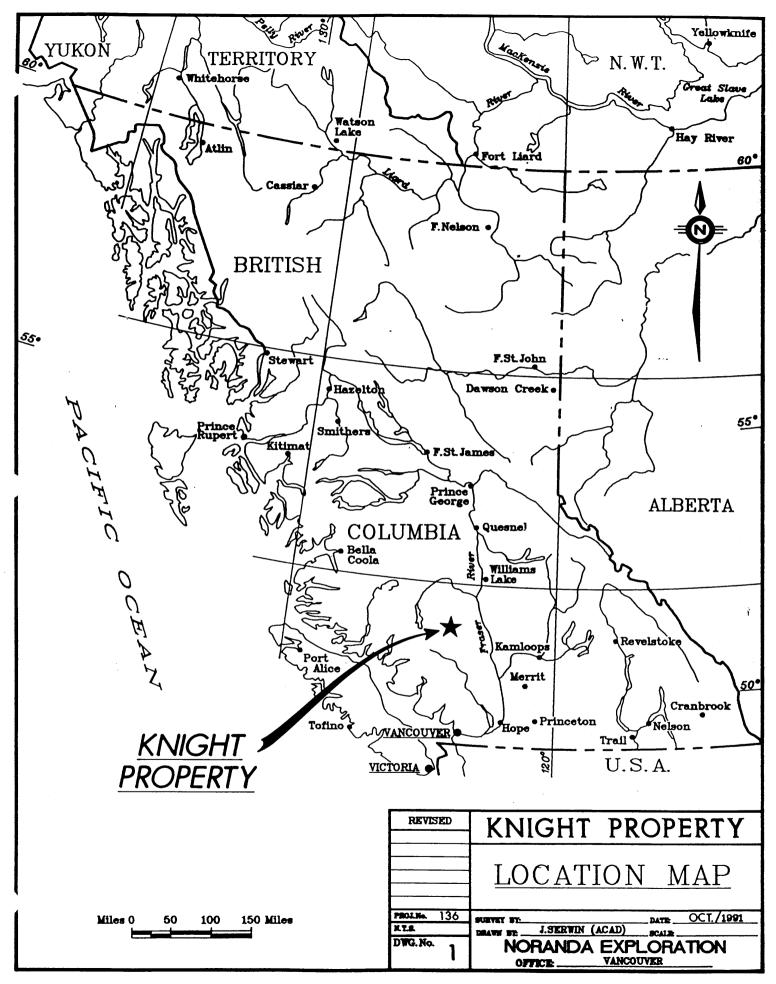
1.2 Access

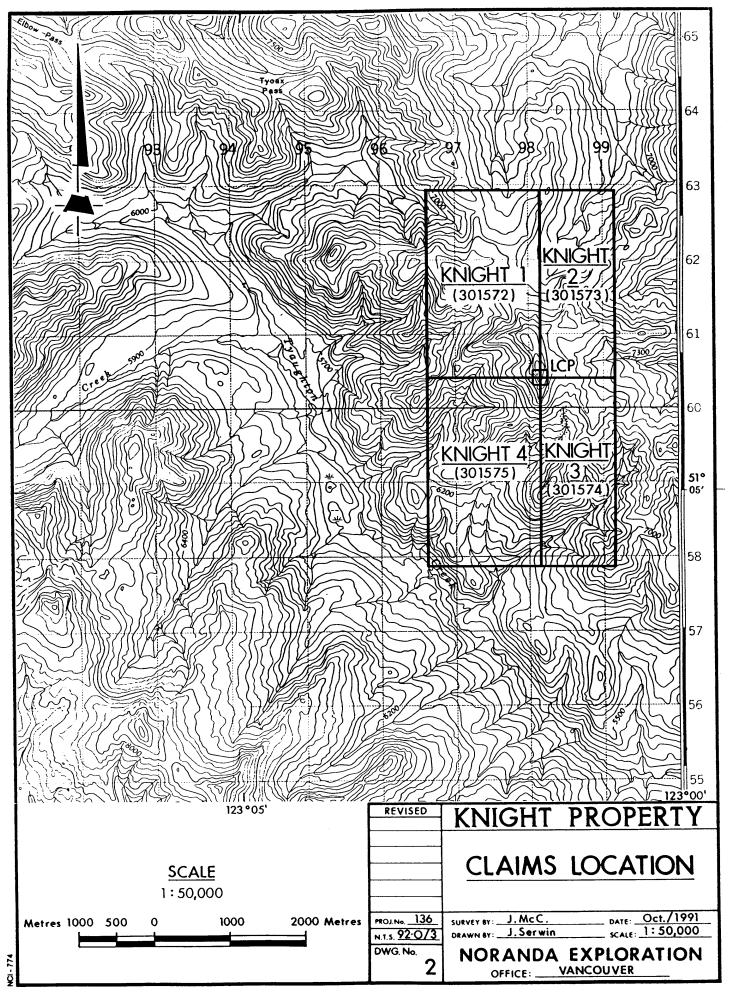
Access to the property is by helicopter either from Gold Bridge, 33 km to the SSE, or from Pemberton 90 km to the south.

1.3 <u>Physiography</u>

Topographic relief is quite severe. The elevation varies between 1800 m to 2440 m giving a local relief of about 640 m.

The southern third of the claim group is below treeline. The mature forest cover is generally open with moderate underbrush. The northern two thirds is alpine, predominantly talus and scree slopes with rock outcrops generally limited to ridge tops.


Several small creeks drain the property to the southwest and empty into Tyaughton Creek.


1.4 <u>Ownership - Property Status</u>

The Knight claim group consists of 4 claims totalling 50 units and are owned by Noranda Exploration (Figure 2). The following is a list of all claims and to which assessment will be applied.

<u>Claim</u>	<u>Record #</u>	<u>Units</u>	Record Date	Expiry Date *
Knight 1 Knight 2 Knight 3 Knight 4	301572 301573 301574 301575	15 10 10 15	June 10/91 June 10/91 June 10/91 June 11/91	June 10/94 June 10/94 June 10/94 June 11/94
	TOTAL	50 Units	5	
		==		

* Upon approval/acceptance of the work provided within this report.

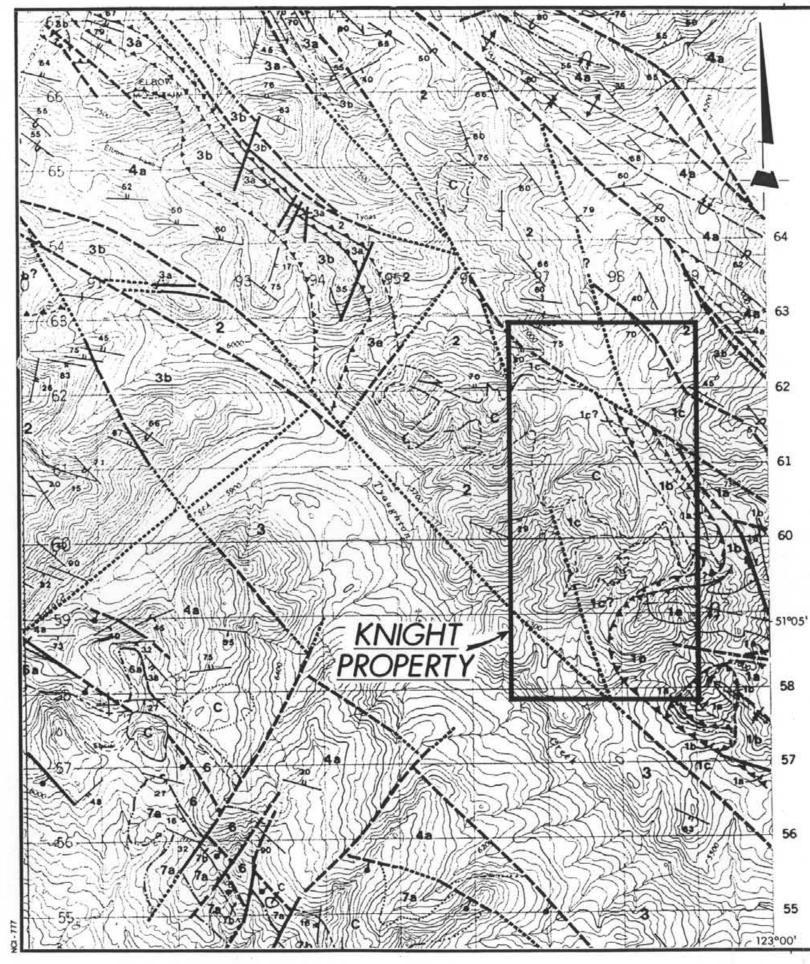
Page 7

1.5 Previous Work

The only previous work reported within the area, is that of Prism Resources Ltd., 1980 and 1981 field programmes. The work consisted of a soil grid survey covering an area of 2 km², and 126 rock samples were collected from the grid and surrounding area. The soil survey outlined good Cu anomalies with partially coincident Au anomalies. Rock geochemical results were fairly disappointing.

1.6 Project Objective

Noranda Exploration's 1991 objectives were to confirm the previously reported Cu-Au soil anomalies and attempt to explain the source of the soil anomaly using rock geochemistry, prospecting and geological mapping.


2.0 GEOLOGY

2.1 <u>Regional Geology</u>

The claims are located within the Tyaughton Trough and are underlain by trough related sediments which are divided into two groups, the Tyaughton and Relay Mountain groups. The sediments were subsequently intruded by an unnamed alkalic porphyry, (Figure 4).

The oldest sediments are of the Tyaughton Group and are Upper Triassic to Middle Jurassic in age. They range from dark grey, black calcareous shale, greywacke, to green and grey sandstone, shale, conglomerate and conglomeritic sandstone, through to massive limestone and limestone conglomerate. These sediments are in fault contact with the Relay Mountain Group of Middle Jurassic to Lower Cretaceous Age. The Relay Mountain Group is comprised of dark grey siliceous shale, interbedded with siltstone and calcarenite; greywacke, grit and volcanic conglomerate.

An alkalic porphyry of Upper Cretaceous-Eocene Age intrudes the sediments. Regionally it is described as a hornblende, plagioclase, biotite porphyry with accessory quartz.

LEGEND

PLEISTOCENE AND RECENT Qel Alluvium

STRATIFIED ROCKS

MIDCENE AND/OR PLIDCENE

8 Plateau lava, basalt flows

EOCENE (?)

7 Rhyolite, dacite flows, pyroclastic rocks and volcanic sediments (7a); basalt flows and flow breccias (7b)

UPPER CRETACEOUS (CENOMANIAN AND (?) YOUNGER

6c Bedded lanaric andesitic breccia and epiclastic sedimen

60 Andesitic breccia, lapilli tuff, crystal tuff, with mini andesitic to basaltic flows

60 volcanic sandston, and conglomerate; polymict conglomer

6 Undivided: mostly Unit 6b with minor epiclastic sedimen

S Micaceous sandstone, shale and polymict conglomerate

LOVER CRETACEOUS (APTIAN AND ALBIAN) TAYLOR CREEK GROUP

Argillite, siltstone, sandstone, chert pebble conglomer (ka); dacitic to andesitic flows and volcaniclastic roc interbedded with shale and siltstone (%b)

MIDDLE JURASSIC TO LOWER CRETACEOUS

RELAY MOUNTAIN GROUP

(BERRIASIAN TO BARRENIAN)

3b interbedded grey to greenish grey siltstone, shale, gre 3b minor cobble conglomerate and limestone

(U. DIFORDIAN TO U. TITHONIAN)

3# Dark grey to green greywacke, siltstone, shale and mino conglomerate

3 Undivided

(CALLOVIAN AND L. OXFORDIAN)

Dark grey siliceous shale interbedded with siltstone ar calcarenite: greywacks, grit and volcanic conglomerate

UPPER TRIASSIC TO HIDDLE JURASSIC

TYAUGHTON GROUP

(SINEMURIAN TO M. BAJOCIAN)

Serk grey to black calcareous shale and argillite, grey greywacke

(U. NORIAN TO L. SINEMURIAN)

1b Green and grey sandstone, shale, conglomerate and congl sandstone

(H. AND U. NORIAN)

18 Red conglomerate and conglomeratic sandstone, massive limestone and limestone conglomerate

Geology from ; Open File Map 1987/3 "3A. Geology of the Warner Pass Area", N.T.S. 92 O/3

INTRUSIVE ROCKS

D	Equigranular quartz monzonite to granodiorite
C	Nornblende plagioclase biotite porphyries with accessory quartz
8	COAST PLUTONIC COMPLEX: quartz diorite to quartz monzonite
A	Nornblende plagioclase porphyries; minor diorite

SYMBOLS

	Geologic contact
30	Unconformity
115	Bedding, tops known +/%/ /
rate	Bedding, tops unknown
165	(horizontal, inclined, vertical)
	Anticline, syncline; overturned.
	Thrust fault
	(defined, approximate, assumed) (teeth in direction of dip and Indicate upthrust side)
rate cks,	High angle fault
	Normal fault
eywache;	Strike-slip fault
or	11
nd	
	146048725
Y	an and a second s
. 1	Metres 1000 500 0 1000 Metres
lomeratic	
2514650	
REVISED	KNIGHT PROPERTY
	REGIONAL GEOLOGY
104	1 H-C Oct (1991
NT.S. 92 0/3	SURVEY BY: J. McC. DATE: Oct./1991 DRAWN BY: J. Serwin SCALE: 1:50,000
DWG. No.	
3	OFFICE: VANCOUVER
	PJA

Page 9

The dominant structural trend of the region displays a number of NW trending high angle faults of undetermined displacement.

Within the Tyaughton Group sediments, thrust faulting and folding are prevalent. Thrust faults and right lateral strike-slip faults are truncated by regional high angle faults. The axial traces of the folded sediments trends in a WNW direction.

2.2 Property Geology

The field survey was limited to the southern third of the Knight claim group. Geological mapping was confined to the grid area (Figure 4). Rock outcroppings occur primarily along the ridge tops with heavy talus cover on the slopes.

The mapped area is underlain by Tyaughton Group sediments, consisting of grey siltstone, dark grey to black argillite, conglomeritic sandstone and red greywacke. These sediments have synclinal and anticlinal folding with axial traces trending eastwest, and are cut by shear zones trending NE.

To the north is a mesocratic plagioclase, hornblende ± biotite porphyry stock. The stock occupies the central third of the property. Porphyritic dykes observed south of the stock trend in a NE direction. Another intrusive unit, seen only in talus float is a fine grained leucocratic aplite, with quartz eyes. The orientation and abrupt change in the talus suggests that this aplite cross-cuts the Tyaughton Group sediments.

Alteration within the sediments is weak to moderate and localized. Overall, there is a slight clay (argillic) alteration throughout the sediments. Locally, more intense argillic and phyllic alteration occurs proximal to small (3-7 cm wide) quartzcarbonate veinlets. Mineralization in the form of malachite and chalcopyrite are associated with the quartz carbonate veins and is seen to extend into the bounding wallrock up to 0.75 m. Best exposures reflecting this style of mineralization has to date been recognized on the west ridge within the gridded area at approximately L.114+00N, 105+00W.

The plagioclase hornblende porphyry is mostly unaltered and exhibits only minor metasomatic alteration with the bounding country rock.

3.0 GEOCHEMICAL SURVEY

3.1 <u>Soil Geochemistry</u>

A compass and chain soil grid was established to evaluate an area reported to contain a large Cu-Au soil geochemical anomaly (Prism Resources 1982). The grid covers the southern third of the claim group (Figures 4 & 5).

The baseline was established at 315° azimuth over a distance of 2.0 km with crosslines established at 200 m centres. Stations along the survey lines were picketed at 25 m intervals with soil samples collected at 50 m intervals. To better define historical anomalous soil results, soil samples were locally collected at 25 m intervals.

Soil samples were taken from the B horizon, generally 15-20 cm in depth. In areas of heavy talus cover, talus fines were collected. Soil and talus fines were placed in a brown 8.9 cm x 15.5 cm open ended Kraft envelope for storage and shipment to Noranda's geochemical laboratories in Vancouver. Full description of the method of analysis is in Appendix II.

A total of 117 soil samples were collected and analyzed using 30 element ICP plus Atomic Absorption for gold. For results see Figure 5 and Appendix III.

3.2 Rock Geochemistry

A total of 10 rock samples were collected from the grid area. Chip sampling of both vein and wall rock exposures were completed to determine the extent and tenor of mineralization.

All rock samples were analyzed using 30 element ICP plus Atomic Absorption for gold. Figure 4 shows the rock sample locations and values, and Appendix IV contains the rock sample descriptions.

4.0 **DISCUSSION OF RESULTS**

A soil geochemical contour map for Cu & Au is shown on Figure 5. Copper in soils have been contoured at 300 ppm Cu and 900 ppm Cu. Gold in soils have been contoured at 50 ppb Au and 200 ppb Au. The soil contour map shows two anomalous zones. The northwest half of the grid is dominantly Cu, while the southeast is dominated by Au.

Within the northwest portion of the grid the highest Cu soil anomaly is defined by the ≥ 900 ppm Cu contour and contains spot highs up to 2567 ppm Cu. A coincident Au soil anomaly (≥ 50 ppb Au) is enveloped within the 900 ppm Cu contour. The ≥ 300 ppm Cu contour encircling both the 900 ppm Cu and 50 ppb Au contours is open to the northwest.

Within the southeast half of the grid the ≥ 50 ppb Au soil contour defines an area of approximately 500 m x 800 m, and contains two elongated ≥ 200 ppb Au soil zones. A zone 300 x 400 m containing Cu ≥ 100 ppm in soils has only two results >300 ppm Cu and lies totally within the >50 ppb Au contour.

The results of the rock geochemistry were inconclusive with regards to explaining the gold soil anomaly. Significant Cu values were however returned from rocks collected within the northwest portion of the grid.

Two contiguous samples collected from limited outcrop on the north-west ridge with approximate grid co-ordinates of L114+00N/ 102+00W (Figure 4) returned the following Cu, Au values:

SAMPLE NO.	<u>Cu (ppm)</u>	Au (ppb)	WIDTH (m)
R115145	3177	143	0.01
R115146	3671	87	1.0

R115145 is a sample of a 1 cm wide mineralized (malachite, chalcopyrite) quartz-carbonate veinlet. R115146 is a 1 metre chip sample from the veinlets' hangingwall and footwall. The host rock is a poorly sorted red coloured greywacke with chalcopyrite and malachite proximal to the veinlet. The presence of these quartz-carbonate veinlets appears to be essential with regards to Cu mineralization of the greywacke.

Rock sample R114686 collected at approximately L110+00N, 106+00W consists of medium to dark grey pyritic laminated siltstone. Sulphide mineralization (pyrite and chalcopyrite) is very finely disseminated throughout the rock, and along hairline fractures. This sample returned values of 4678 ppm Cu and 18 ppb Au over 1 m.

5.0 <u>CONCLUSIONS</u>

The soil geochemical survey has defined anomalous Cu and Au zones. Coincidental Cu & Au is seen on the northwest half of the grid, while on the southeast portion of the grid, anomalous Au in soils is prevalent with less strongly anomalous but coincidental Cu values. The soil anomalies are large in size and are moderately to strongly anomalous. Surface mapping, prospecting and rock sampling has not adequately explained this large soil anomaly. It should be noted that because soil development was poor, talus fines were often collected instead of soil samples. This may have lead to the large and widespread anomalies, as talus fines tend to report higher level trace metal values.

STATEMENT OF QUALIFICATIONS

I, Joan E. McCorquodale, of the City of Vancouver, Province of British Columbia do hereby certify that:

- I am a geologist residing at 127 West 21st Avenue, Vancouver, B.C.
- 2. I graduated from the University of Alberta in 1988 with a BSc. degree (specialization) in Geology.
- 3. I have worked in mineral exploration and government geology since 1985.
- 4. I am presently a Contract Geologist with Noranda Exploration Company, Limited.

Jan F. Wilognoolole

Joan E. McCorquodale

REFERENCES

Geological and Geochemical Report, Tyon Claim. Assessment Report 9196. Denwonck, B. (1981): Geological and Geochemical Report, Tyon Claim. Assessment Report 9753. Denwonck, B. (1981): Glover, J.K., et al (1987):

3A. Geology of the Warner Pass Area. N.T.S. 920/3. Open File Map 1987/3.

. - -

APPENDIX I

•

Ŷ

...

·

STATEMENT OF COSTS

STATEMENT OF COSTS

a) <u>Wages:</u>

No. of Days :	20 man days	
Rate per Day:	\$140/man day	
Dates From :	August 27-31, 1991	
Total Wages :	20 ⁻ x \$140.00	\$2,800.00

b) <u>Food & Accommodation:</u>

No. of Days : 5 days food, 1 night accommodation Rate per Day: \$140.80/day ÷ 4 crew = \$35.20/manday Dates From : August 27-31, 1991 Total Cost : 20 man days x \$35.20/day \$ 704.00

c) <u>Transportation</u>:

Helicopter No. of Hours : 2.16 hours Rate per Hour: \$750/hour Total Cost : 2.16 hrs. x \$750/hr. \$1,622.00

Truck No. of Days : 5 days Rate per day : \$41.60/day Dates From : August 27-31, 1991 Total Cost : \$41.60/day x 5 days \$ 208.00

ř

e) <u>Analysis:</u>

<u>Soil</u>

117 samples analyzed for ICP 30 element plus AA gold. Average cost for samples: \$17.49/sample Total Cost : 117 samples x \$17.49 \$2,046.33

<u>Rock</u>

10 samples analyzed by rock geochemistry ICP 30 element plus
AA gold.
Average cost for samples: \$17.49/sample
Total Cost : 10 samples x \$17.49 \$ 174.90

d) <u>Report:</u>

Author	\$320.00
Drafting	\$240.00
Typing	\$240.00
Total Costs	

ł

\$800.00

.

TOTAL COSTS

\$8,355.23

• • •

.

,

APPENDIX II

.

ř

...

DETAILED DESCRIPTION OF METHOD OF ANALYSIS

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its <u>entirety</u>, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Ì

Elements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95° C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

Ŷ.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	Mn – 20	Zn - 1	Au - 0.01
Cd - 0.2	Mo - 1	Sb - 1	W - 2
Co - 1	Ni - 1	As - 1	U - 0.1
Cu - 1	Pb - 1	Ba - 10	
Fe - 100	V - 10	Bi - 1	

APPENDIX III

.

....

GEOCHEMICAL CERTIFICATES OF ANALYSIS

.

NORANDA VANCOUVER LABORATORY Geochemical Analysis

Project Name &	No.: TYAUGHTON (KNIGHT) - 136	Geol.: J.MC.	Date received: SEP. 03	LAB CODE:
Material:	128 SOILS	Sheet: 1 of 3	Date completed: SEP. 20	0100.00000
Remarks:	* Sample screened @ -35 MESH (0.5 mm)			
	4 Oceanic, A Humus, S Sulfide	Áu - 100 -	an and the effected with a construction of the second by A. S.	

Au - 10. regia and determined by A.A. (D.L. 5 PPB)

ICP - 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 11 ml with water. Leeman PS3000 ICP determined elemental contenta. N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

*Sb - Aqua Regia/Tartaric acid /AA

9109-028

T.T.			111	Ag	Al		Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	K	La	Li	Mg	Mo	Мо	Na	Ni		РЪ	Sr	Ti	v	Zn
No.	<u>No.</u>	PI	<u>pb</u>	ppm	<u>%</u>			ppm		%	ppm	ррш	ppm	ppm	ppm	%	<u>%</u>	ppm	ppm		ppm	ррш	%	ppm	%	ppm	ppm	%	ppm	ppm
2	10000N-10000W		5	0,4	6.58		289	0.9	- 5	0.19	0,6	25	18	29	74	5.83	0.74	14	40	0,53	775	5	0.17	23	0.12	20	121	0.10	140	214
3	10100		5	02	5.54	218	266	0.8	5	0.35	0.8	29	20	22	62	5.41	0,64	13	- 35		1117	4		21	0.10	15	91	0.13	133	221
4	10200 10300		10	02	5.65	215	220	0.9	5	0.29	0.5	28	22	20	62	5.66	0.79	13	- 36	0.72	646	2	0.08	21	0.07	16	58	0.14	129	184
6	10000N-10400W		10	02	6.24	205	257	0.8	5	0.29	0.6	24	16	21	47	5.15	1.09	10	- 35	0.76	607	2	0.07	17	0.07	11	56	0.11	132	137
ľ	1000011-1040074		10 🛔	0.2	5.22	229	184	0.8	5	0.36	0.8	31	22	24	71	5.38	0.50	13	31	0.64	788	4 .	0.09	28	0.09	18	56	0.16	116	220
17	10000N-10500W		5	02	4.15	128	158	 0.6	5	0.32			16	~		4.35				A 4A	000									
8	10600	•	15	02	5.08	254	232	0.8	5	0.32	1.4 1.2	28 33	16 19	21	44 89	4.37	0.31	12	27	0.49	802	5	0.10	22	0.09	15	56	0.16	103	223
9	10700		20	0.2	4.87	144	236	0.8	5	0.29	0.9	31	18	18 21	53	5.62 5.01	0.55 0.50	14	26 77	0.57 0.62	646	9	0.09	25	0.11	18	84	0.14	133	175
10	10800		ĩš	0.2	4.22	141	159	0.7	5	0.36	1.5	31	10	25	55 64	4.92	0.39	13 13	27	0.62	941 776	5	0.08	24	0.07	13	56	0.14	130	178
111	10000N-10900W		35	04	3.15	310	92	0.5	-		0.8	23	15	18	103	4.36	0.39	10	22 13		500	89	0.11 0.11	26	0.10	14	62	0.17	108	208
1			1		0.10	210		0.5	5	0.00		2	15	10		4.50	0,40	10		0.00	- 500 §		0.11	20	0.12	25	48	0.12	74	135
12	10200N-10000W	3	10	0.6	5.19	185	167	0.7	5	1.91	1.0	38	13	23	- 54	4.08	0.57	13	30	0.48	650	4	0.10	- 11	A 12		1/2	A 11	100	
13	10100		50	0.4	4.99	363	214	0.6	5	0.35	0.7	28	21	14	54	5.61	0.64	12	27	0.46	979		0.07	21 18	0.13	16	162	0.11 0.09	128 120	143
14	10200	-	55	0.2	5.45	782	162	0.6	š	0.19	0.2	21	19	9	48	5.71	0.67	10	· · · · · · · · · · · · · · · · · · ·		818	200302302	0.07	15	0.08	19	55 45	0.09		184
15	10300	18	ड है	0.4	5.20	730	110	0.6	5	0.23	0.9	22	22	12	67	5.88	0.53	10	35	0.33	739		0.03	17	0.07	18			124	143
16	10200N-10400W		5	0.4		428	136	0.5	š	0.41	1.3	26	24	10	66	5.47	0.47	10		0.48	927		0.04	10	0.07	37 29	46 40	0.10 0.10	117 103	162 210
			- 33						-				21	••		0.47	V.47			0,40	141		0.05	19	0.07		40	0.10	102	210
17	10200N-10500W	3	юŐ	0A	4.72	303	149	0.7	5	0.29	07	27	17	22	278	6.29	0.28	14	22	0.68	470	19	0.07	38	0.12	31	58	0.18	140	158
18	10600	9	15 🕈	0.4	4.62	604	120	0.6	5	0.32	0.6	27	15	23	232	8.86	0.31	14		0.66	492		0.05	39	0.12	56	53	0.18	152	138
19	10700	24	10 Å	0.6	4.60	704	89	0.5	10	0.24	11	25	9	22	308		0.23	16		0.57	232	(***)	0.05	23	0.17	50	87	0.17	123	96
20	10800	14	Ю 🎚	0.8	6.18	493	192	0.9	6	0.36	1.4	40	22	20		8.87	0.49	21	22	0.68	592		0.07		0.14	25	77	0.18	118	234
21	10200N-10900W	7	0 🖔	0.2	4.81	376	194	0.9	5	0.49	1.1	41	40	24			0.67	17		0.55	1727	ann bhann an	0.07		0.14	24	85	0.14	115	160
															83		••••						••••	<u> </u>	V.14		00	V.14	••••	
1	10400N-10000W	3	5 🖉	1.2	5.79	78	116	0.6	5	4.48	0.5	37	15	12	60	3.88	0.91	9	31	0.31	821	7	0.11	15	0.06	14	269	0.06	146	84
23	10100	6	0 ဳ	0.4	5.31	373	172	0.6	5	0.48	0.7	35	17	17	77	5.05	0.61	13	02000000	0.44	789	2002020	0.09		0.10	36		0.11	126	155
24	10200	- 53	0 🖉	1.4	5.53	2565	169	0.8	6	0.24	3.6	32	38	14	102	9.60	0.69	15	27	0.27	2103	4	0.06		0.11	183		0.07	138	518
25	10300	26	0 🖁	0.2	6.76	530	141	0.5	5	0.04	0.2	19	3	6	33	3.98	0.65	10	27	0.27	75	1	0.05		0.05	16		0.11	151	65
26	10400N-10400W	• 11	0 🖗	0.8	3.83	874	161	0.5	5	0.10	0.6	22	12	23	142	6.60	0.42	13	18	0.60	432		0.09		0.13	66		0.15	125	129
`			- 8											ŝ				ŝ			2005								- -	
	10400N-10500W	17	- X0	0.8		1172	158	0.6	5	0.28	1.1	32	22	26	256	6.24	0.41	15	21	0,89	807	5	0.06	25	0.11	72	50	0.24	142	232
28	10600	6	- 000	0.2	3.20	424	132	0.5	5	0.33	0.4	27	15	17	900 - 966	6.79	0.28	12	SC 2-9-5 -	0.60	421	86 - 66 T C	0.06		0.11	23	68	0.18	98	88
29	10700	32	0 🖉	1.0	5.66	1306	115	0.7	9	0.29	0,6	29	14	19	240 1		0.37	15	64.000	0.56	449		0.07		0.18	116		0.17	132	136
30	10800	100	0 🏽	0.8	6.68	815	131	0.9	11	0.23	0.6	36	20	21	168 1		0.56	21	2020.000.0	0.60	792	Second Co.	0.11		0.19	25		0.19	113	219
31	10400N-10900W	40	0 🛞	0.2	5.44	394	182	0.9	5	0.31	1.5	31	21	27	98		0.47	17	1000-000-00		1022		0.09		0.15	21		0.16	137	246
						Ň								8																
	10600N-10000W	80	0 🏽		5.15	41	85	1.2	5	8.19	0.2	28	9	8 🖗	- 55	4.23	0.60	5	35	0.29	610	3	0.07	9	0.07	28	433	0.04	165	74
33	10100	:	5 🛞	02	2.68	17	29	0.6	5 2	20.64 🕺	02	8	7	13			0.09	1		0.19	370		0.04		0.05	5		0.10	113	37
34	10200	37(6.19	1381 🖁	188	0.7	5	0.21	04	21	17	17	112	9.89	0.84	12	Sector Contract	0.35	547	SS - 1980 - 1	0.05		0.14	73		0.08	167	224
35	10300	510	- 232	6. TRA 16		2190	190	0.8		0.26	11	24	44	20	242 1	2.56	0.49	14			1672	Sector as	0.06		0.15	181		0.13	122	233
	10600N-10400W	5	5 🛞	0,4	3.07	279	267	0.4	5	0.08	0.3	27	_13	15	333	6.65	0.60	14	17	1.16	437		80.0		0.12	24		0.19	137	121
Oct	RK RHI JMC 61	3																												

2001 NK KW JMC ON

T.T		Au	Ą	-	Al	As	Ba	Bc	Bi	Ca	Cd	Ce	Co	G	Cu	Fe	K	La	Li	Mg	Mn	Мо	Na	Ni	P	РЪ	Sr	Ti	V	Zn 9109-028
No.	No.	ppb	ррп			ppm_			ppm		ррш				ррт	%		ppm				ррт		ppm	%		ррш			ppm Pg. 2 or 3
37	10600N-10500W	120	0.5	63C	1.55	596	163	0.5	5		0,4	35	22	16	200	7.39	0.38	17	17		769	8			0.12	65	56	0.20	143	126
38	10600 •	330	- 24	59 T.		1292	204	0.7	5	0.33	0,4	28	17	11	281	9.93	0.59	15	31		572	4			0.11	63 53	107 152	0.17 0.16	147 140	157 149
39	10700 10800	310	14			1139	205	1.0			0.6	33	19 22	19 24	206		0.48	18	32	0.67	660 581		0.09		0.17 0.13	22	94	0.10	152	266
40	10600N-10900W	25	0.2		.41	684	198	1.0	-	0.35	1.8	35 33	27		115		0.39	19	31	0.61	621	10	0.07 0.17		0.13	11	127	0.14	132	200 341
41	10000N-10900W	10	0,2	0	5.84	334	211	0.9	2	0.33	13	22	27	21	93	6.58	0.41	16	37	0.52	021	. 7	0.17	47	0.11		147	0.10	1.57	
42	11000N-10000W	10	02	×	5.25	54	236	0.7	٢.	0.20		28	15	· 27	110	5.30	0.33	14	26	0.67	643	. g	0.08	24	0.15	9	61	0.16	142	137
43	10100	20	02	86 T.	.22	77	226	0.7	5	0.20	0.2 0.2	29	15	- 27	115	5.82	0.33	15	30	0.72	351	ំំំ	0.08		0.13	10	69	0.17	155	136
44	10200	10	02	- A - A - A - A - A - A - A - A - A - A	5.68	87	208	0.8	5	0.23	0.3	33	16	23	132		0.42	13	22	0.87	390	11	0.10		0.13	11	57	0.16	162	105
45	10300	170	02	- 18 F	.69	84	193	0.8	-	0.24	0.2	28	15	6		11.73	0.58	14	31		337		0.20	-	0.17	6	207	0.08	89	71
46	11000N-10400W	20	0.2	202	.11	32	236	0.6		0.19	03	29	18	24	615	5.34	0.41	14	25	1.01	437		0.04		0.11	Ğ	42	0.22	155	108
1	1100011-1040014	***			***			0.0	5	0.15			10	-		5.54	0.41	•7		1.01	1.57		0.04	55	V.11			V.24		·•••
47	11000N-10500W	20	0.2	84	.97	43	226	0.7	5	0.29	0.4	29	21	21	399	6,46	0.29	14	22	0.54	843	14	0.06	27	0.16	16	69	0.15	159	128
48	10600	5	02		.57	221	327	1.0		0.26	11	34	17	13	110	6.02	0.60	17		-0.45	417		0.11		0.12	29	98	0.15	167	244
49	10700	10	02		.63	27	230	0.7		0.47	1.0	34	15	19	239	5.10	0.45	14	38	0.69	544	12	0.19		0.13	8	132	0.16	152	143
51	10800 •	15	0.2	5	.69	87	283	0.7	5	0.86	0.3	33	12	16	63	4.59	0.51	12	44	0.52	543	6	0.22	21	0.06	7	134	0.12	144	115
52	11000N-10900W	5	02	6	.49	39	252	0.7	5	0.37	0.2	26	14	17	43	5.15	0,54	11	52	0.59	316	6	0.25	18	0.07	1	153	0.13	167	126
				8															881			888				833				
53	11000N-11000W	5	02	60 - C	.61	40	288	0.8		0.38	0.2	27	12	21	43	4.89	0.55	12	56	0.66	195				0.07	5	169	0.16	197	136
54	11200N-10000W	90	O.4		.85	315	144	0.4	5	0.06	0.2	20	6	13	193	8.01	0.47	12	16	1.15	196		0.05	-	0.12	3	30	0.14	169	43
55	10100	25	0,6		53	55	216	0.5		0.16	0.2	28	18	18	671	5.05	0.45	13	18	0.83	416				0.10	4	26	0.19	144	75
56	10150	30	0.6	80 T I	.66	21	387	0.6	•	0.49	0.5	40	22	25	967		0.54	18	18	1.23	504	Sec. 1977 - 1987	0.03		0.13	Ş		0.25	163	114
57	11200N10200W	20	0.2	4,	.27	24	259	0.6	5	0.19	0.3	26	17	20	697	5.51	0.31	12	21	0,75	431	27	0.06	36	0.12	5	44	0.19	159	93
						_																		•			• •	~ ~~	10	
58	11200N-10250W	5	0.2	ee	.44	8	88	0.2	-	0.08	Q,2	14	6	10	190	1.97	0.19	6		0.20	163		0.02	-	0.05	÷.	14	0.07	60	31
59	10300	10	0.4	88 - E	.33	14	300	0.6	-	0.18	02	26	16	18	450	6,50	0.24	13	20	0.71	434		-		0.12		44	0.17	198	96
60	10350	10	02	20 C	.11	5	260	0.6	-	0.06	0.2	34	19	13		10.24	0.45	20	19	0.74	463		0.25		0.13	4	153	0.11	183	119
61	10400	50	89. I.S.	25	.73	3	199	0.6		0.32	0.2	37	22	29	1066	5.82	0.35	16	16	0.57	612	Se 1997 - 19	0.02	* -	0.13	18	65 49	0.13 0.12	159 174	116 148
62	11200N-10500W	15	0,4	0.	.03	17	102	1.0	5	0.19	0,2	42	31	20	248	7.80	0.23	19	30	0.33	775	6	0.04	39	0.14	14	47	0.12	1/4	
63	11200N-10600W	10	0.8	7	<i>.5</i> 3	10	160	1.0	<	0.33	03	42	24	16	240	6.77	0.30	23	37	0.45	753		0.07	35	0.12	13	62	0.15	186	134
64	10700	Š	0.4	S	.95	65	241	0.9	-	0.41	ò.s	38	21	20	191	5.97	0.47	19	29	0.48	956	16			0.15	10	73	0.15	183	121
65	10800	5	02	93 T T	.61	56	385	0.9		0.32	0.7	35	17	17	149	5.39	0.71	16	28	0.41	676		0.11		0.15	9	86	0.15	139	146
66	10900	40	0.2	20.1	.41	49	943	1.5	-	0.35	1.7	51	27	13	104	7.08	1.13	27	35	0.58	736	887	0.08		0.13	10	62	0.23	148	245
67	11200N-11000W	5	0.2	s)	.11	45	367	0.8		0.74	3.9	40	19	19	87	4.57	0.72	16	35		1049		0.11		0.18	11	83	0.17	119	200
		-		9 8 8					-			••						3												
68	11400N-10000W	15	0,4	3.	.14	60	224	0.5	5	0.30	0.2	34	15	16	435	4.48	0.40	14	18	0.89	439	10	0.03	19	0.10	13	25	0.17	119	95
69	10100	30	1.0	86 - î -	.62	18	278	0.6	6	0.37	0.6	37	20	20	831	5.00	0.50	16	17	1.05	514	18	0.02	28	0.11	12	35	0.20	142	136
70	10150	100	2.0	S2	.80	7	166	0.9		0.42	0.2	45	33	11	2553	7.37	0.59	20	25	0.72	763	60	0.02	40	0.12	24	95	0.11	153	91
71	10200	110	1.8	÷.	.02	12	236	0.7	5	0.30	0.6	37	31	29	2567	7.80	0.64	20	19	0.99	630	30	0.02	34	0.13	38	26	0.17	153	127
72	11400N-10250W	55	1.4		.26	6	242	0.6	5	0.26	0.4	34	22		1232	6.41	0.49	16	20	0.69	555	21	0.02	29	0.12	41	75	0.14	151	139
				ŝ														200 200												
73	11400N-10300W *	30	12	3.	.15	15	161	0.5	5	0.24	0.2	29	17	13	651	4.77	0.33	13 🖁	14	0.33	446	10	0.02	21	0.10	17	51	0.10	109	100
74	10350	15	0.6	4.	.46	5	247	0.7	5	0.49	0.4	41	27	22	909	6.25	0.49	16 🖁	2	0.59	947		0.03	34	0.16	18	75	0.16	174	147
75	10400	65	1.0	6.	33	2	281	1.1	5	0.39	0.2	49	35	20	1464	8.95	0.32	23	- 30	0.43	1107	SSE 2007 TO S	0.03	47	0.13	- 8	72	0.12	283	157
76	10450	40	0.6	5.	.10	2	146	0.8	-	0.29	02	40	33		1040		0.29	18	- CC - CC - C	0.46	760	0000777-00	0.03		0.14	5	74	0.15	193	121
77	11400N-10500W	50	0.6	4.	.72	10	106	0.9	5-	0.22	0.2	49	44	20	970	8.31	0.28	21	23	0.40	962	95	0.03	45	0.16	10	51	0.14	210	144
				ŝ		200 A							•																	
	11400N-10550W	30	0.4	X * *	29	2	113	0.8	-	0.29	0.2	41	37	9	272		0.20	18	- 36	0.25	986	71	0.04	43		13	94	0.12	169	137
79	10600	35	0.8	6 77	.94	4	200	0.9	-	0.41	03	47	38	23	1270		0.35	21	27	0.78	914	00.0773	0.04		0.13	10		0.18	214	141
80	10700	40	0.4		.77	38	220	0.8		0.06	0.2	37	23	16	44	9.02	0.41	23	657 GOO 9	0.54	471		0.13		0.17	2		0.16	174	115
81	10800	120	0.4			204	2.58	1.0	-	0.18	0.2	41	27	22	208		0.45	21		0.49	802		0.09		0.16	8		0.13	155	123
<u>82</u>	11400N-10900W	75	0,4	ຼ 5,	<u>84</u>	572	333	1.0	5	0.16	0.6	36	27	14	126	8,21	0.70	18	26	0,43	935	38 7 0.	0.08	_23_	<u>0.13 🛛</u>	8	53	0.13	147	193

'n

•

-

T.T.			Au Ag			Ba	Be	Bi	Ca	Cd	Ce	Co	Gr		Fe	K		Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	Zn 9109-028
No.	<u>No.</u>		ppb ppm					ppm	%				ppm		<u>%</u>		ppm			ppm		<u>%</u>	ppm	% 0.16	ppm 8	<u>ppm</u> 82	<u>%</u> 0.13	<u>ррт</u> 108	ppm Pg. 3 of 3 185
83	11400N-11000W		5 0,2			465	0.9	5	0.44		35	14	14	53		0.64	15		0.32	1252	00000000000000000	0.10	20	0.16	5	58	0.15	135	78
84	11600N-10000W		10 0.2				0.7	5	0.10	0.2	31-	16	12	Sec. 1997	5.27	0.49	13	1000 C 1000 C	0.59	422		0.07	22		5		0.18	248	109
85	10100		20 0.8	4.74			0.7	5	0.33	0.2	41	25		1195	6.88	0.50	18		0.73	533		0.05	41	0.15	8	118	0.14	161	97
86	10200		45 1.0	N 1			0.7			0.2	43	24		2010/06/07/07	6.47	0.41	18	18	0.47	584	17		31 41	0.14	12	170	0.14	203	198
87	11600N-10250W		60 1.2	6.42	2	216	0.9	7	0.31	0.3	48	30	15	1721	7.45	0.50	21	28	0.62	1018	17	0.03	41	0.15	- 14	170	0.15	205	
											~ .	10	~		0.55	0.05	10	340°	0.15	721	3	0.02	20	0.11	4	66	0.10	133	89
	11600N-10300W	_	60 0.4	5 7	-	- COM - COM	0.7		0.27	0.2	31	19	6	1361		0.25	10		0.15	731 429	2	0.02	20	0.09	4	58	0.10	107	70
89	10350	:	15 0.8	4.07	2	1000010000104	0.6		0.15	0.2	28	18	8	920	3.80	0.20	11 17	20	0.20 0.77	429 952	28	0.03	51	0.09	9	83	0.19	206	134
90	10400	•	40 1.0	4 1			0.7		0.24	0,4	40	35	34	1102	6.94	0.46	17		0.62	1280	S. 2000 - 2000 -	0.03	79	0.14	2	197	0.16	258	161
91	10450		140 1.6				0.8		0.60	02	47	63	46	1896		0.43	24	- 200 - 200		1230	· · · · · · · · · · · · · · · · · · ·	0.03		0.13	15	33	0.17	237	173
92	11600N-10500W		40 1.0	3.82	2	169	0.7	2	0.52	03	56	48	43	1253	8.68	0.44	A	24	1.46	1440		0.05		0,14		55	0.17	ω,	
-					•				0.00	8 .	40	75	12	488	8.63	0.45	26	22	0.42	491	26	0.13	28	0.16	5	123	0.17	224	186
	11600N-10600W		30 0.6	4 1	-				0.20	0.2 0.2	45	35 28	13 15	394	8.13	0.45 0.40	22	20	0.37	696	18	0.12	24	0.17	2	95	0.17	168	123
94	10700		25 1.0	2				-	0.13		39 39	23	13	22A	8.77	0.52	23	0000000000	0.45	729	100000.00	0.11	20	0.17	े ह	78	0.17	146	151
95	10800	•	20 0.4	9 11		·			0.13	0.2 0.2	39 28	15	16	77	6.04	0.52	16		0.35	965	8 á	0.11	22	0.18	2	54	0.17	145	168
86	10900		10 0.2		22	310	1.0 1.2		0.13	0.2	22	21	3	67		0.55	12		0.14	836	2	0.04	44	0.12	2	72	0.08	112	304
97	10000N-11000W		5 0.2	7.98	11	373	1.2	2	0.04	84	44	21	د		7,13	0.57	14		0.14	0.00		0.0.1		V.11					
98	11800N-10000W		30 0.6	8.47	47	392	1.0	<	0.11	0.2	35	14	9	176	10.00	0.85	21	34	0.49	287	19	0.18	30	0.19	25	134	0.13	199	91
90 99	10100		10 0.2	s = 1		241		-	0.14	02	25	18	15	256		0.40	14		0.64	403	11	0.09	30	0.11	4	58	0.19	151	131
101	10100		55 1.0				0.7	-	0.17	02	40	31	20	1079	5.82	0.33	15		0.53	750	40	0.03	30	0.13	18	53	0.13	155	93
102	10200		30 0.6				0.9	-	0.24	02	48	40		1014		0.58	22		0.91	947	48	0.04	46	0.18	12	79	0.18	202	177
	11800N-10400W		30 1.0		.		0.7		0.18	02	35	20	23	902	5.98	0.31	16	0000000000	0.68	458	74	0.06	29	0.13	8	57	0.18	158	88
105	1100011-10-0011			4.00	**		v .,		0.10						••••														
104	11800N-10500W		20 0.8	7.15	9	235	0.9	5	0.33	0.2	51	11	12	358	10.66	0.18	28	10	0.34	251		0.21	22	0.22	11	192	0.17	224	54
105	10600		40 0.6		8	190	0.7	5	0.30	0.2	44	28	25	710	6.25	0.28	18	19	0.63	759	27	0.05	41	0.14	13	50	0.16	190	122
106	10700		10 0.6		21	271	1.2	5	0.14	0.2	48	51	9	211	11.48	0.30	21	25	0.54	2559	10	0.06	24	0.17	13	82	0.13	141	162
107	10800		5 02	6.00	23	264	1.1	5	0.12	0.2	34	16	14	85	7.41	0.43	17	31	0.35	1320	7	0.07	19	0.18	12	44	0.15	139	129
	11800N-10900W		5 0.4			271	0.8	5	0.21	0,6	28	16	13	88	5.64	0.40	13	35	0.32	879	10	0.10	27	0.18	15	84	0.14	134	153
			- 8338																						88 B .				
109	11800N-11000W		5 0.2	5.63	79	204	0.8	5	0.23	0.3	28	14	18	95	5.26	0.37	12	47	0.35	595	en anter de la contra de la contr	0.11	27	0.13	10	66	0.15	128	124
110	12000N-10000W	•	5 0.2	4,15	36	2A2	0.6	5	0.11	0.5	29	10	14	132	5.13	0.44	13	0000000000	0.45	298	1000 C 100	0.12	19	0.11	11	92	0.13	117	214
111	10100		5 0.4	6.19	44	346	0.8	5	0.14	0.2	27	14	17	151	5.70	0.56	15 🖇	- 24	0.58	278	7	0.14		0.12	10	111	0.14	144	227
112	10200	•	5 02	6.12	37	305	0.8	5	0.20	0.2	30	14	18	154	5.58	0.56	16	24	0.64	469	11	0.13	25	0.12	12	100	0.16	161	163
	12000N-10300W		50 0.8	6.57	4	287	0.6	5	0.08	0.2	37	16	15	341	8.72	0,40	20	23	0.49	197	18	0,13	17	0.18	4	146	0.16	158	57
														388 <u>8</u>															
114	12000N-10400W		5 0,2	5.82	16	290	0.8	5	0.15	0,2	31	15	19	352	6.51	0.38	17		0.63	332	- 22	0.12		0.14	6	92	0.18	151	90
115	10500	•	20 0.4		23	391	0.8	5	0.08	0.2	37	7	9	330	12.69	0.52	20	26868-8559	0.58	210	C. 201 201	0.15		0.16	7	92	0.12	121	60
116	10600		15 0.6	7.53	47	380	1.6		0.23	0.2	53	19	7		13.23	0.35	39		0.43	231		0.17		0.27	8	278	0.03	110	214
117	10700		10 0.4	5.07	8	187	0.7	5	0.19	0,2	35	21	22	476		0.36	17 👔	. 90000.0000	0.60	717	and the second second	0.06		0.15	11		0.15	173	113
118	12000N-10800W		5 0.2	5.46	19	276	1.0	5	0.15	0,2	24	16	11	78	6.39	0.42	13 🖁	29	0.30	895	6	0.10	18	0.13	10	56	0.13	125	120
				į													100		_	_									A (
119	12000N-10900W	*	25 0.6	8.99	81	219	1.2		0.07	0,2	25	16	5	166		0.42	14		0.17	329	- 25	0.16	43	0.15	9	128	0.08	115	76
120	12000N-11000W		5 0.2	4.74	- 77	240	0.7	5	0.22	0.2	24	_ 16	20	98	5,27	0.34	12	28	0.42	611	6	0.09	29	0.11	1	52	0.17	132	126

· · ·

з

•

$\begin{array}{c c c c c c c c c c c c c c c c c c c $										GE	осн	HOLE	CAL	. Ar	ialys		ERT	TETO	CATE	iya	agen	19 74	Kingh	4 (J'	ne j		1	
ppm ppm <th>ΤŤ.</th> <th></th> <th></th> <th>Ţ</th> <th><u>iorz</u></th> <th><u>nda</u></th> <th><u> </u></th> <th><u>plo</u></th> <th><u>rat</u></th> <th><u>ion</u></th> <th><u>co.</u></th> <th><u>Lt</u> 1050</th> <th>d. Davie</th> <th>PRO St.</th> <th><u>JECT</u> Vancou</th> <th>910 /er BC</th> <th><u>9-0</u> V6E</th> <th><u>28</u> M4</th> <th><u>136</u></th> <th>Fil</th> <th>≥ #</th> <th>91-</th> <th>4179</th> <th></th> <th></th> <th></th> <th>Ŀ</th> <th></th>	ΤŤ.			Ţ	<u>iorz</u>	<u>nda</u>	<u> </u>	<u>plo</u>	<u>rat</u>	<u>ion</u>	<u>co.</u>	<u>Lt</u> 1050	d. Davie	PRO St.	<u>JECT</u> Vancou	910 /er BC	<u>9-0</u> V6E	<u>28</u> M4	<u>136</u>	Fil	≥ #	91-	4179				Ŀ	
R114687 3 136 2 40 .2 17 8 228 3.67 14 5 ND 1 55 .4 2 2 88 .35 0.06 2 41 1.30 37 .15 2 1.65 .10 .06 3 RE R115144 2 2.6 4 15 .1 5 3.07 14 5 ND 1 25 4.05 4.01 11 1 R114688 1 7.26 2.54 2 2 3 1.30 0.34 2 6 .05 4.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 5 7 2 2 67 .72 .025 4 11 .33 2 1.1 1.33 .20 .17 3 1.83 .26 .10 1 1.83 .20 .14 .02 .03 1 .13	SAMPLE#					2010-01-02						-	•			X						Mg X						66 E.
R115142 3 214 5 22 .3 14 7 109 6.60 6 5 ND 1 67 .7 2 2 67 .72 005 4 11 .33 20 .17 3 1.83 .26 .10 1 R115143 30 49 2 50 .1 5 1 447 1.48 7 5 ND 1 122 .4 3 2 13 15.17 .006 2 3 7.13 45 .01 2 .14 .02 .03 1 R115144 2 19 4 14 .1 4 1 39 .27 2 5 ND 1 25 .2 2 2 1 .35 030 2 4 .13 41 .01 6 .32 .04 .10 1 R115145 8 3177 2 39 4.5 19 11 175 3.21 4 5 ND 2 70 .6 2 2 43 .52 .053 6 15 .34 177 .04 6 .45 .05 .18 1 1 R115146 2 3671 4 40 2.2 19 10 230 2.78 6 5 ND 2 78 .6 2 2 44 1.01 .05 1 6 19 .56 167 .05 6 .44 .04 .22 1 R115147 4 565 2 41 .4 15 9 222 2.82 2 5 ND 2 129 .4 2 2 30 1.34 .042 6 10 .60 63 .01 8 .32 .04 .11 1 R115148 2 307 3 47 .3 18 9 315 2.28 2 5 ND 2 129 .4 2 2 30 1.34 .042 6 10 .60 63 .01 8 .32 .04 .11 1 R115148 2 307 3 47 .3 18 9 315 2.28 2 5 ND 2 34 .4 2 2 47 .83 .062 6 22 .68 125 .09 4 .65 .04 .28 1 STANDARD C/AU-R 18 57 40 132 7.1 70 32 1034 3.95 42 19 7 38 54 18.6 16 18 56 .47 .089 38 58 .88 180 .09 34 1.90 .06 .15 12 4 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Semples begigNing 'RE' are duplicate samples.	R114687 RE R115144	3	136 26	4	40	.2 .1	17 5	8	228 39	3.67	14 2	5	ND ND	1 2	55 📖	2 2	2	88 3	.35 206	6 2	41	1.30	37 .15 43 .01	2 ' 7	1.65	.10 .04	.06	200
R115144 2 19 4 14 .1 4 1 39 .27 2 5 ND 1 25 .2 2 2 1 .35 030 2 4 .13 41 .01 6 .32 .04 .10 1 R115145 8 3177 2 39 4.5 19 11 175 3.21 4 5 ND 2 70 .6 2 2 43 .52 .053 6 15 .34 177 .04 6 .45 .05 .18 1 1 R115146 2 3671 4 40 2.2 19 10 230 2.78 6 5 ND 2 129 4 2 2 30 1.34 .042 6 10 .60 63 .01 8 .32 .04 .11 1 R115147 4 565 2 41 .4 19 .25 .129 .4 2 2 .01 .6		-			54 22	.6 .3					6			•	108 1. 67 .	5 2 7 2	2		1.90 .03	s 3 5 4	11	.70	28 .04 20 .17	3				
R115145 8 3177 2 39 4.5 19 11 175 3.21 4 5 ND 2 70 .6 2 2 43 .52 053 6 15 .34 177 .04 6 .45 .05 .18 1 1 R115146 2 3671 4 40 2.22 19 10 230 2.78 6 5 ND 2 78 .6 2 2 44 1.01 .051 6 19 .56 167 .05 6 .44 .04 .22 1 R115146 2 307 3 47 .3 18 9 315 2.28 2 5 ND 2 34 .4 2 2 47 .83 .062 6 22 .68 125 .09 4 .65 .04 .28 1 R115148 2 307 3 47 .3 18 9 315 2.28 2 5 ND 2 34 .4 2				2	50			1	447	1.48	7	5		1	122				15.17 .00	6 2	3	7.13						
R115148 STANDARD C/AU-R $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R115145 R115146	8 2	3177 3671	2	39 40	4.5 2.2	19 19	11 10	175 230	3.21 2.78		5 5	ND ND	2	70 78	52 52	2 2	43 44	.52 .05	36 16	15 19	.34 .56	177 .04 167 .05	6	.45 .44	.05 .04	.18 .22	
STANDARD C/AU-R 18 57 40 132 7.1 70 32 1034 3.95 42 19 7 38 54 38.6 16 18 56 .47 089 38 58 .88 180 09 34 1.90 .06 .15 12 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.				2								-				8	-	-										
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>		-		-											34 54 18.	5 16										-		· · · ·
				S LEA	CH IS	PART	IAL F	or mi ock a	FE SI	R CA P Re samp	LA CR LES I	MG B. FCU	A TI PB ZN	8 W /	AND LIMI	red fo	R NA J PPM &	(AND) AU >	AL. AU D 1000 PPB	ETECTI	ON LI							
	DATE RE	CEIVE	ASS - S	AMPLE	TYPE							_		FROM	10 GN SA	MPLE.	-	$\overline{\gamma}$	7					CERTI	FIED E	3.C. /	ASSAYERS	
	DATE RE	CEIVE	ASS - S	AMPLE	TYPE							_		FROM	10 GN SA	MPLE.	-	$\overline{\gamma}$	7					CERTI	FIED E	B.C. /	ASSAYERS	
	DATE RE	CEIVE	ASS - S	AMPLE	TYPE							_		FROM	10 GN SA	MPLE.	-	$\overline{\gamma}$	7					CERTI	FIED E	B.C. /	ASSAYERS	

and a standard and the second second second standard standard standard standard standard standards and standard

.

-

APPENDIX IV

...

.

÷

ROCK SAMPLE DESCRIPTIONS

ŕ

NORANDA EXPLORATION COMPANY, LIMITED

PROJECT # ______

.

N.T.S. <u>920/3</u>

DATE August '91

LAB REPORT # <u>9109-028 136</u>

1

PROJECT KNIGHT

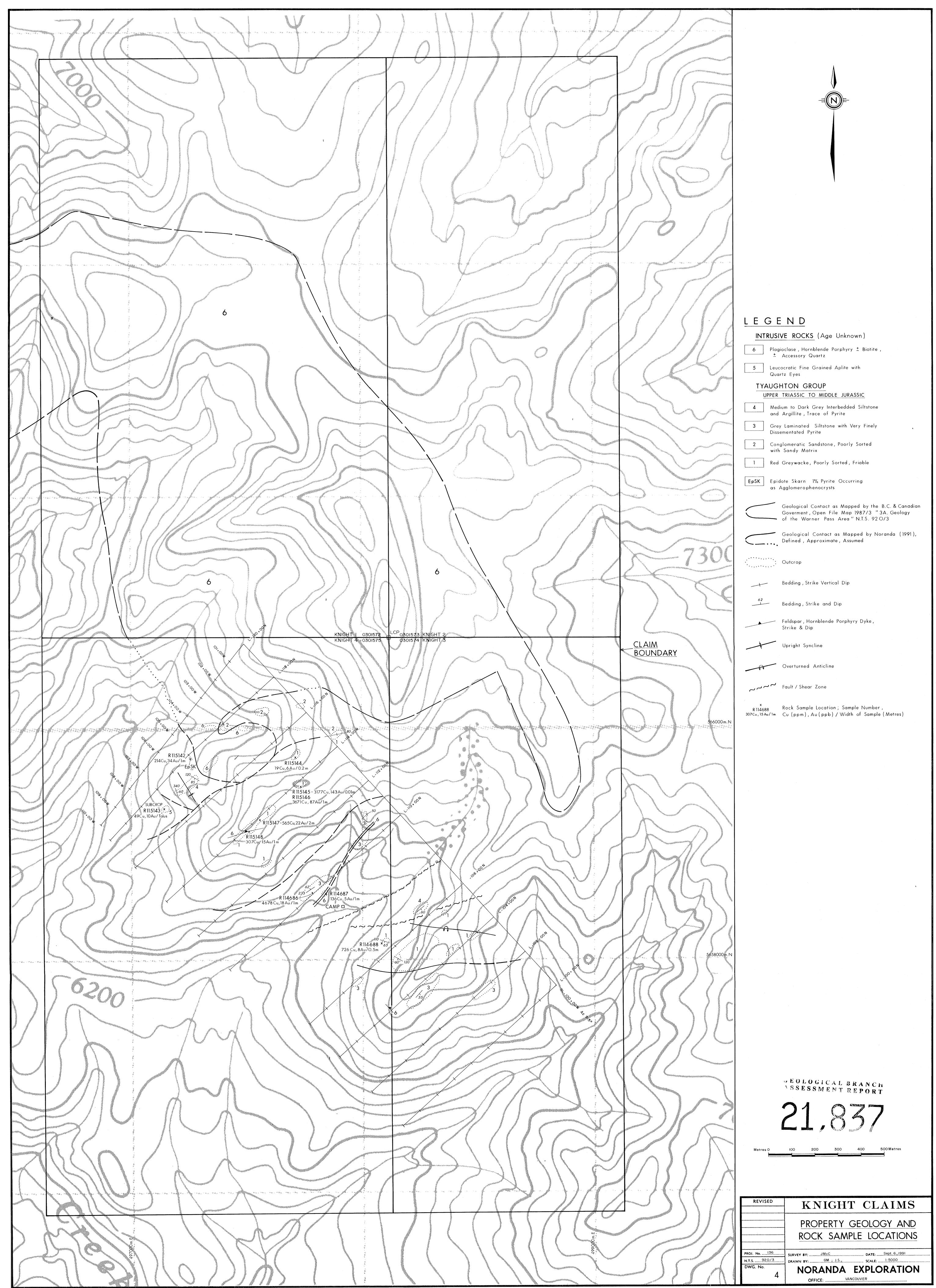
ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	% Sulph.	TYPE	WIDTH (m)	Cu ppm	Au ppb	Mo ppm	Ag ppm	Pb mqq	Zn ppm	As ppm	SAMPLED BY
R114686	Medium to dark grey pyritic lamenated siltstone. Fine grained disseminated and frac- ture filling pyrite.		Chip	1	4678	18	92	1.6	2	35	89	J.M.
R114687	Hornblende, plagioclase silici- fied porphyry dyke. <1% pyrite.		Chip	1	136	5	3	0.2	2	40	14	т.в.
R114688	Grey calcareous shale - argil- lite up to 2% pyrite.		Chip	0.5	726	8	1	0.6	2	54	6	т.в.
R115142	Epidote skarn ~1% fine grained pyrite.		Chip	1 -	214	34	3	0.3	5	22	6	J.M.
R115143	Leucocratic fine grained aplite with quartz eyes.		Talus	-	49	10	30	0.1	2	50	7	J.M.
R115144	Same as above (R115143) hosted by greywacke.		Chip	0.2	19	6	2	0.1	4	14	2	ј.м.
R115145	Quartz-carbonate filled shear zone ~10 cm wide, <1% malachite trace of chalcopyrite.		Chip	0.01	3177	143	8	4.5	2	39	4	J.M.
R115145	zone ~10 cm wide, <1% malachite		Chip	0.01	3177	143	8	4.5	2	39	4	ј.м.

.

NORANDA EXPLORATION COMPANY, LIMITED

PROJECT # _____


N.T.S. <u>920/3</u> DATE <u>August '91</u>

LAB REPORT # 9109-028 136

PROJECT __________

ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	۶ Sulph.	TYPE	WIDTH (m)	Cu ppm	Au ppb	Mo mqq	Ag mqq	Pb ppm	Zn ppm	As ppm	SAMPLED BY
R115146	Half a metre chip on both sides of shear zone (sample R115145). Metamorphosed greywacke with quartz veinlets and very fine grained chalcopyrite.		Chip	1	3671	87	2	2.2	4	40	6	J.M.
R115147	Small (1-2 mm) wide quartz veinlets within greywacke, trace of pyrite.		Chip	2	565	22	4	0.4	2	41	2	J.M.
R115148	Hornblende, plagioclase dyke ~1% fine grained disseminated pyrite.		Chip	1	307	15	2	0.3	3	47	2	J.M.

102001 GEOLOGIC 1000 ASSESSME	SOIL CONTOURS 900 ppm Cu 300 ppm Cu 200 ppb Au 50 ppb Au NT REPORT
21,	REVISED KNIGHT CLAIMS
	SOIL GEOCHEMICAL SURVEY Cu (ppm) / Au (ppb)
noranda	DRDJ.No. 136 DATE: October 7/91 NT.S. 092003 DRAWN BY: Norplot/AutoCAD (R. Fenton) SCALE: 1:5000 DWG.No. NORANDA EXPLORATION COMPANY, LIMITED 5 DFFICE: Vancouver