OG NO:	NOV	22	1001	RD.	
CTION:			- 33 -		

RECEIVED

NOV - 5 1991

VANCOUVER, B.C.

IF **U M** ZC **A A**

2 🖾

a ~ リー

< Z

с ш Σ S C 0 0

> 0 0 (山) (),) <

FILE NO:

1991 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE SCREECH #1 & #2 CLAIMS

Located in the Galore Creek Area Liard Mining Division NTS 104G/3W 57° 04' North Latitude 131° 28' West Longitude Gold Commissioner's Office

-prepared for-GREAT WESTERN GOLD CORP.

-prepared by-Bruno J. Kasper, Geologist

October, 1991

1991 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE SCREECH #1 & #2 CLAIMS

TABLE OF CONTENTS

5.0 6.0 6.1	REGIONAL Prev 1990 REGIONAL PROPERTY Geology Mineraliz GEOCHEMIS	LAIMS ACCESS AND GEOGRAPHY AND PROPERTY MINING HISTORY vious Work Exploration Program GEOLOGY GEOLOGY AND MINERALIZATION	Page .1. .1. .1. .3. .4. .5. .8. .10. .10. .11.
APPENDIC Appendix Appendix Appendix Appendix Appendix	A B C D	Bibliography Statement of Expenditures Rock Sample Descriptions Analytical Certificates Statement of Qualifications	
LIST OF Figure 1 Figure 2 Figure 3 Figure 4 Figure 5		Location Map Claim Map Regional Mineral Occurrence Map Regional Geology Geology and Geochemistry	Following Page .1. .1. .3. .5. -Pocket-
LIST OF		Claim Data	<u>Page</u>

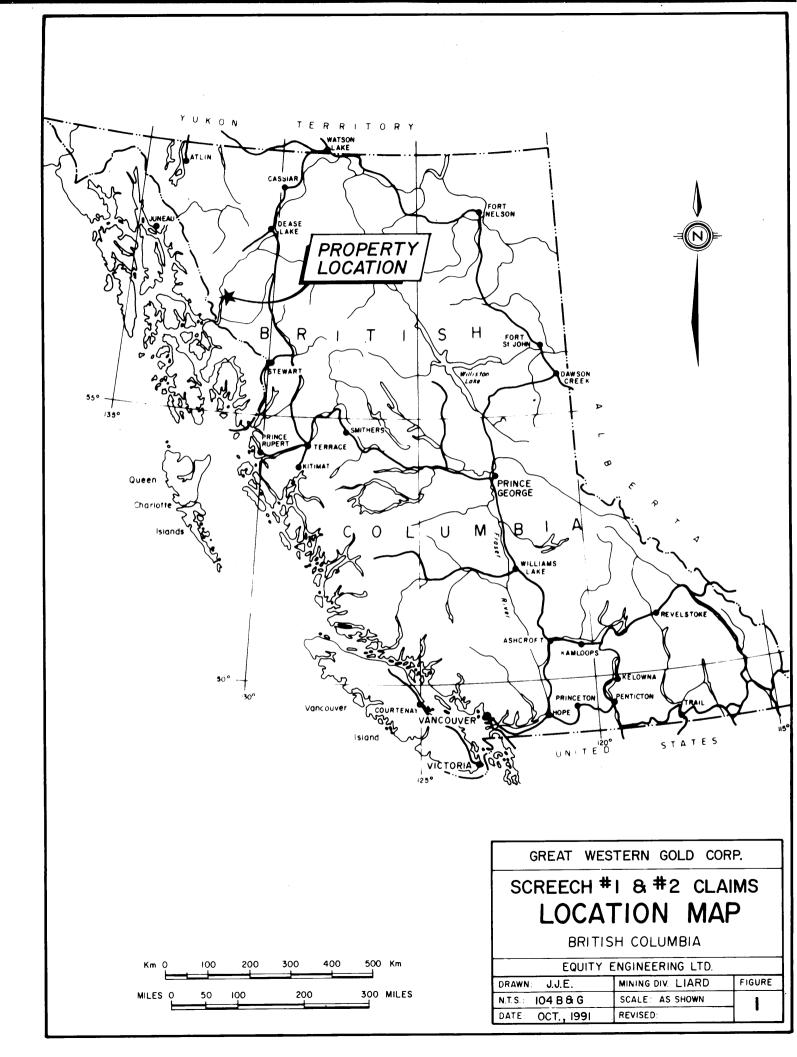
1.0 INTRODUCTION

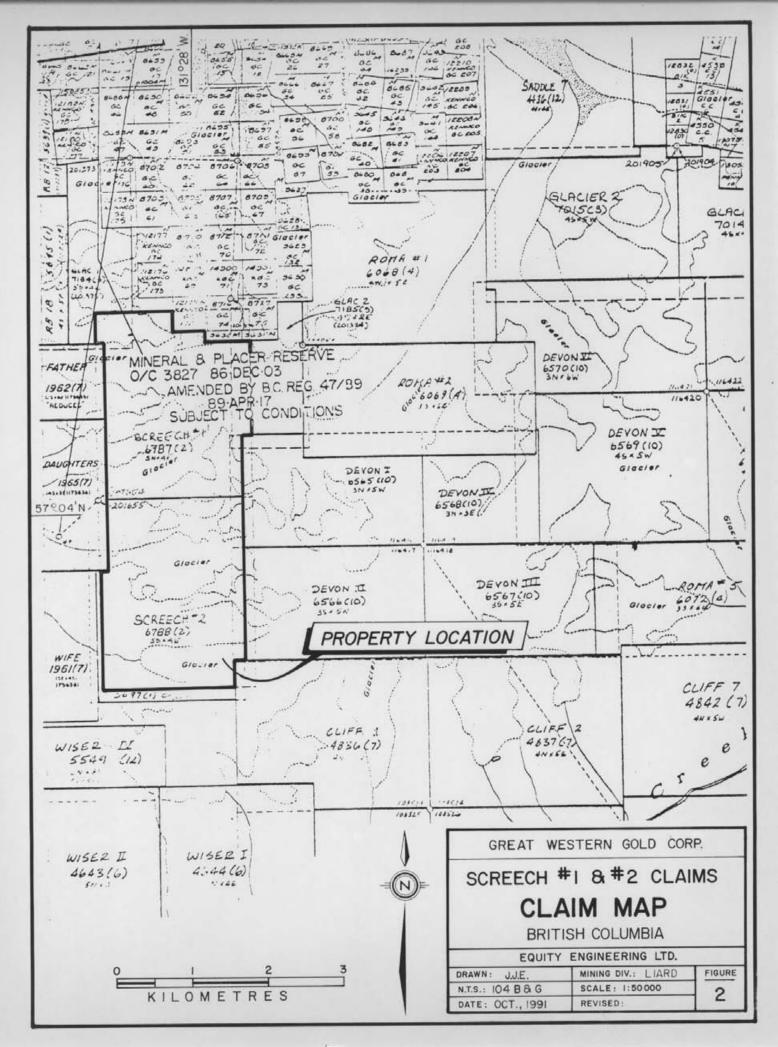
The Screech #1 & #2 claims are located approximately 160 kilometres northwest of Stewart in the Galore Creek district of northwestern British Columbia (Figure 1). They were staked in February of 1990 and cover an Upper Triassic volcano-sedimentary sequence similar to that hosting the majority of mineralized occurrences in the area. The Galore Creek area has been undergoing extensive exploration throughout the past few years for its precious metal potential.

Limited geological mapping and prospecting was carried out on the Screech property in September 1991 to fulfil assessment work requirements. Equity Engineering Ltd. conducted this program for Great Western Gold Corp. and has been retained to report on the results of the fieldwork.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the Screech #1 & #2 claims (Figure 2) are owned by Pass Lake Resources Ltd.. Separate documents indicate that they are under option to Great Western Gold Corp., formally International Texoro Resources Ltd.. Claim data for the properties is summarized in Table 2.0.1.


TABLE 2.0.1 CLAIM DATA


Claim <u>Name</u>	Record Number	Tenure Number	No. of Units	Record Date	Expiry Year
Screech #1	6787	224709	20	February 24, 1990	1992
Screech #2	6788	224710	_20_	February 24, 1990	1992
			40		

The Screech #1 & #2 claims overlap previously staked ground of the Father and Daughter claims to the west and the Cliff 1 claim to the southeast, reducing the actual ground coverage from 40 units to approximately 38 units. The positions of the legal corner posts have not been verified by the author.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Screech #1 & #2 claims are located within the Boundary Range of the Coast Mountains approximately 160 kilometres northwest of Stewart and 100 kilometres south of Telegraph Creek in

northwestern British Columbia (Figure 1). These claims are located within the Liard Mining Division, centered at 57° 04' north latitude and 131° 28' west longitude.

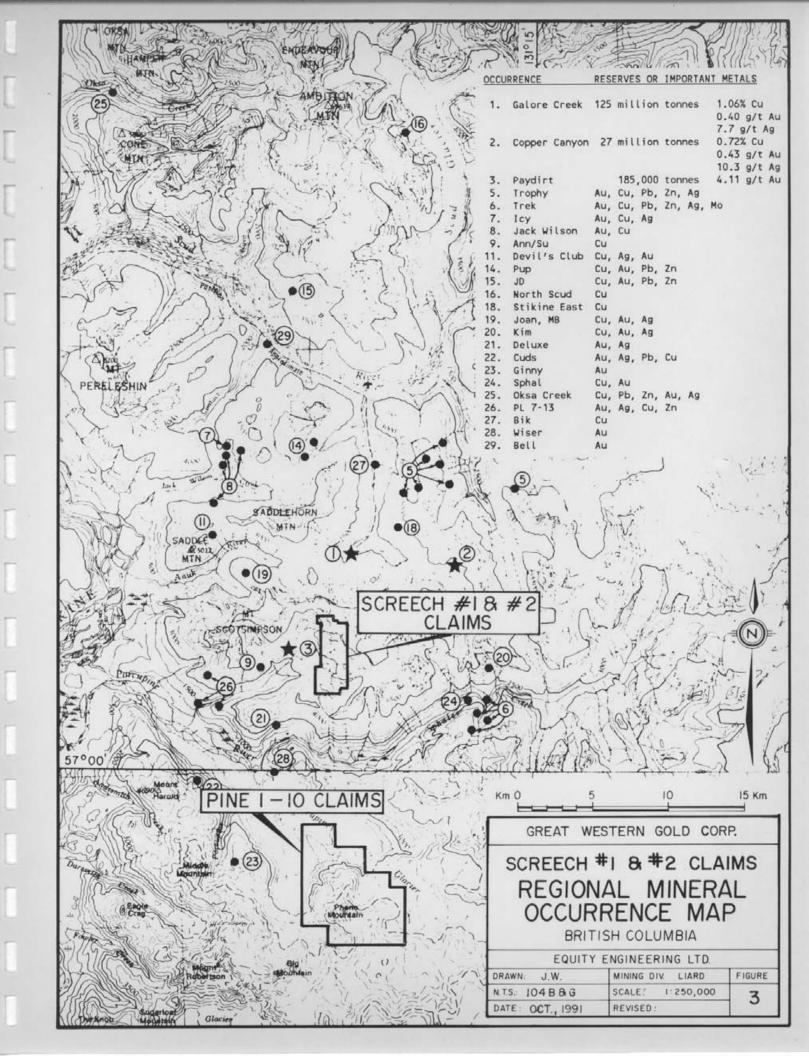
Access to the Screech property during the 1991 field season was provided by helicopter setout from the Porcupine River airstrip and base camp, which is located approximately nine kilometres southwest from the center of the Screech #1 & #2 claims. Fixedwing aircraft up to the size of a Twin Otter fly charters from Smithers or Wrangell to the Porcupine River airstrip throughout the field season. In the 1960's, Julian Mining Co. Ltd. constructed a cat road from the Porcupine River airstrip up Split Creek to their Ann/Su copper porphyry prospect. This cat road, which requires reconstruction, terminates approximately four kilometres down Split Creek from the Screech claims, and could aid future land access to that property.

On the Alaskan side of the border, Wrangell lies approximately 80 kilometres to the southwest, and provides a full range of services and supplies, including a commercial airport. The Stikine River has been navigated by 100-ton barges upriver as far as Telegraph Creek, allowing economical transportation of heavy machinery and fuel to within fifteen kilometres of the property.

The Screech claims straddle the western slopes of an unnamed peak (termed "Split Peak" in this report) at the eastern headwaters of Split Creek. Topography is rugged, with elevations ranging from 1,010 metres to over 2,350 metres on Split Peak. Approximately 60% of the Screech property is covered by either glacier or permanent snowfields, restricting access to a large portion of it.

The entire property lies above treeline where open alpine vegetation occurs. The property has excellent outcrop exposure except in the valleys, where thick successions of unconsolidated glacial sediments occur.

The property lies in the wet belt of the Coast Range Mountains, with annual precipitation between 190 and 380 centimetres (Kerr, 1948). Except during July, August and September, precipitation at higher elevations falls mainly as snow, with accumulations reaching three metres or more. Both summer and winter temperatures are moderate, ranging from -5° C in the winter to 20°C in the summer months.


4.0 REGIONAL AND PROPERTY MINING HISTORY

4.1 Previous Work

The Galore Creek district was extensively explored for its copper potential throughout the 1960's, following the discovery in 1955 of the Galore Creek copper-gold porphyry deposit (Figure 3), whose Central Zone hosts reserves of 125 million tonnes grading 1.06% copper and 400 ppb gold (Allen et al., 1976), is located approximately five kilometres north of the Screech #1 claim. Several major mining companies conducted regional mapping and silt sampling programs over the entire Galore Creek area, and in 1957 the Copper Canyon copper-gold porphyry was discovered eight kilometres east of the Central Zone. The Screech #1 claim is located adjacent to the South Butte deposit of the Galore Creek The South Butte deposit consists of chalcopyrite and property. pyrite mineralization occurring as irregular replacements and fracture infillings. Further to the northeast, the Saddle Zone, an equidimensional breccia body comprised of angular syenite fragments cemented by magnetite and to a lesser extent, chalcopyrite (Barr, 1966), was found to be significantly enriched in gold when sampled by Mingold Resources Inc. in 1989 (Summary Paper and Presentation presented at the Cordilleran Round-Up, Extensive reevaluation is currently being carried out on 1990). the Galore Creek deposits, including diamond drilling, relogging of old core and geological mapping. The Copper Canyon deposit, with 35.7 million tonnes at a grade of 0.75% and 1.17 g/tonne (0.034 oz/ton) gold (Cons. Rhodes, 1991), was actively explored in 1990 after a hiatus of 33 years.

In the mid-1950's, prospecting crews for K. J. Springer noted abundant low-grade chalcopyrite mineralization on the north side of Split Creek approximately three kilometres west of the present location of the Screech #2 claim (Figure 3). In 1965, Julian Mining Co. Ltd. conducted geological mapping, induced polarization surveys, bulldozer trenching and 2,190 metres of diamond drilling on these showings, known as the Ann or Su prospect, intersecting extensive mineralization grading around 0.1% to 0.2% copper. In 1981, Teck Corp. staked the Ann/Su prospect and conducted a reconnaissance silt sampling program for base and precious metals over the immediate area. Follow-up of geochemical anomalies led to the discovery of the Paydirt gold deposit approximately one kilometre northeast of the center of the Ann/Su copper porphyry Soil geochemistry, rock sampling, trenching and 760 deposit. metres of diamond drilling on the Paydirt deposit have delineated 185,000 tonnes of indicated reserves grading 4.11 g/tonne (0.12 oz/ton) gold (Holtby, 1985).

Several significant precious metal occurrences were discovered on each of the Trek, Trophy, Wiser, PL 7-13, Icy and JW properties

during the 1988 and 1989 field seasons (Figure 3). In most cases, these properties had been explored for copper during the 1960's, but had never received due attention for their gold potential.

The earliest recorded work on what are now the Screech #1 & #2 claims was conducted in 1965 by Conwest Exploration Limited on their PH claim group which had extended to the east and north from the northeast corner of the Screech #1 claim (Grant, 1965). Conwest mapped and prospected the claim group and surrounding ground but no mineralization was reported from this work program. In the summer of 1966, Stikine River Mines Ltd. performed a reconnaissance exploration program on the AC and Alpha claims which extended west from the toes of the two glaciers on the Screech #2 claim. This exploration program outlined areas of anomalous copper results in the southern part of the claims (Dawson and Hall, 1966).

During the course of exploration on Teck's Paydirt property in 1981, a number of silt samples were collected downstream from streams draining the Screech property (Folk, 1982). Further information on the western border of the Screech property is provided by geological mapping of the Paydirt property during the summers of 1985 and 1986 (Holtby, 1985; Dunn, 1986). Regional mapping over the Screech property has been done by Conwest Explorations (Grant, 1964), the Geological Survey of Canada (Souther, 1972) and the British Columbia Geological Survey (Logan et al, 1989).

In 1987, the federal and provincial geological surveys conducted a joint regional silt sampling program over the entire Iskut River and Sumdum-Telegraph Creek mapsheets, taking two samples from streams draining the Screech #1 & #2 claims (GSC, 1988). Both samples contained detectable levels of gold and the could be considered weakly anomalous (>80th percentile for the government sampling over the Sumdum-Telegraph Creek mapsheets).

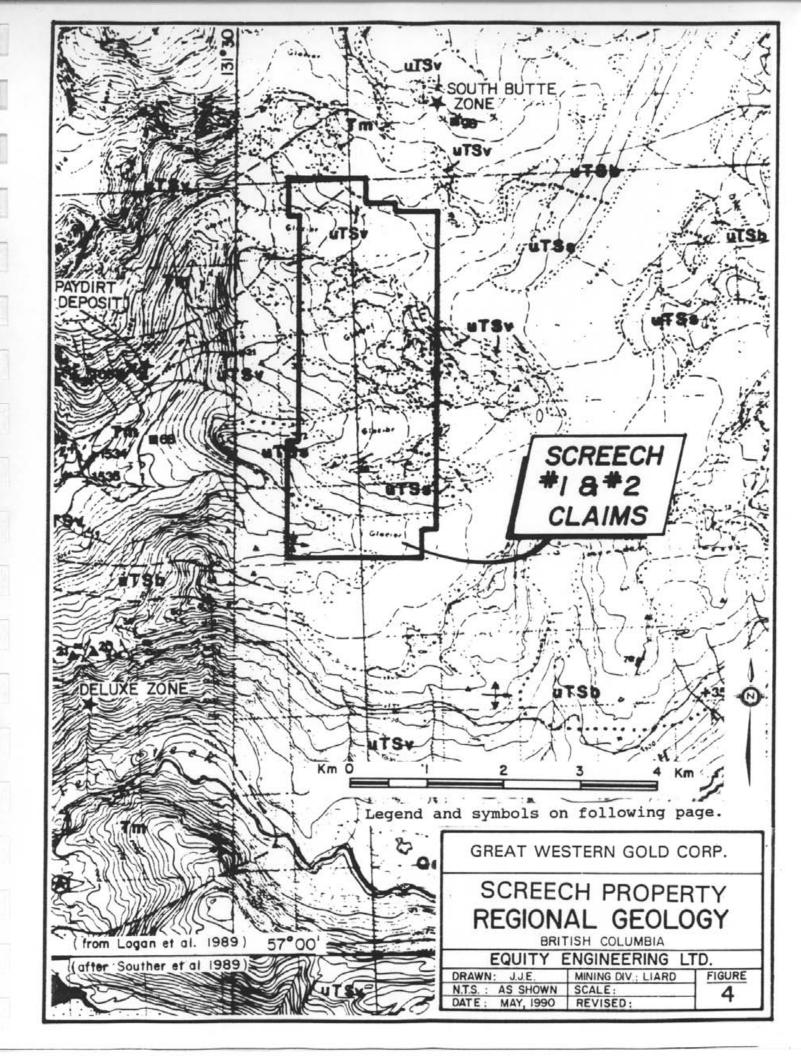
During October of 1990, International Texoro Resources Ltd. carried out initial exploration on the Screech #1-#2 claims, consisting of geological mapping, prospecting and stream sediment sampling, taking one silt sample and four rock samples. No significant mineralization was found during this program.

4.2 1991 Exploration Program

In September of 1991, Great West Gold Corp. carried out a limited exploration program on the Screech property in order to satisfy assessment requirements. This work was done with a helicopter set out from the Porcupine River base camp.

For this program, prospecting and reconnaissance geology were carried using 1:10,000 enlargements of the government 1:50,000

-4


topographic map as a base (Figure 5). Twenty-five rock samples which are described in Appendix C, were taken from zones of alteration and mineralization and analyzed geochemically for gold and 32 elements by ICP. Analytical certificates are attached in Appendix D.

5.0 REGIONAL GEOLOGY

The first geological investigations of the Stikine River in northwestern British Columbia began over a century ago when Russian geologists came to Russian North America assessing the area's mineral potential (Alaskan Geographic Society, 1979, <u>in</u> Brown and Gunning, 1989a), and was followed by the first Geological Survey of Canada foray of G.M. Dawson and R. McConnel in 1887. Several more generations of federal and provincial geologists have been sent to the Stikine, including Kerr (1948), the crew of Operation Stikine (GSC, 1957), Panteleyev (1976), Souther (1972), Souther and Symons (1974), Monger (1977), and Anderson (1989). The British Columbia Geological Survey has recently completed regional mapping of the area at a scale of 1:50,000 by Brown and Gunning (1989a,b), Logan and Koyanagi (1989) and Logan et al (1989).

The Galore Creek Camp lies within the Intermontane Belt, a geological and physiographic province of the Canadian Cordillera, and flanks the Coast Plutonic Complex to the west (Figure 4). At Galore Creek, the generally northwest-trending structure of the Intermontane Belt is discordantly cut across by the northeasttrending Stikine Arch which became an important, relatively positive tectonic element in Mesozoic time when it began to influence sedimentation into the Bowser Successor Basin to the southeast and into the Whitehorse Trough to the northwest (Souther et al., 1979).

Stikinian stratigraphy ranges from possibly Devonian to Jurassic, and was subsequently intruded by granitoid plutons of Upper Triassic to Eccene age. The oldest strata exposed in the Galore Creek Camp are Mississippian or older mafic to intermediate volcanic flows and pyroclastic rocks (Units 4A and 4B) with associated clastic sediments (Units 4C, 4D, 4G and 4J) and carbonate lenses (Unit 4E). These are capped by up to 700 metres of Mississippian limestone with a diverse fossil fauna (Unit 4E). It appears from fossil evidence that all of the Pennsylvanian system is missing and may be represented by an angular unconformity and lacuna of 30 million years, though field relationships are complicated by faulting (Monger, 1977; Logan and Koyanagi, 1989). Permian limestones (Units 6A, 6B and 6C), also about 700 metres thick, lie upon the Mississippian limestone but are succeeded by a second lacuna amounting to about 20 million years from the Upper Permian to the upper Lower Triassic.

LEGEND

(To accompany Figure 4)

LAYERED ROCKS

UPPER	TRIASSIC
	Stuhini Group (where undivided denoted as uTSv)
uTSs	Siltstone, sandstone, conglomerate, minor limestone (Units 8A, 8B, 8C)
uTSb	Intermediate to mafic fragmentals, breccia, tuff, lahar (Unit 8H)

INTRUSIVE ROCKS

TERTIARY

Tm

I

[

Π

Biotite quartz monzonite (Unit 13)

SYMBOLS

Geological contact (defined, approximate, assumed)	
Unconformable contact (defined, assumed)	~~~ ~ ~ ~
Bedding (horizontal, inclined, overturned)	× ~ * *
Foliation	"
Fault (observed, inferred)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thrust or high angle reverse fault (defined, assumed)	
Anticline (direction of plunge indicated)	×°.
Syncline (direction of plunge indicated)	"×
Minor fold axis. (S, Z, and M symmetry), lineation	x x x x 1
Joint	~"
Dyke	432
Vein	
Limit of geologic mapping (limit of permanent snow and ice)	
Macro Fossil locality (indeterminate, positive identification)	• E

Geology from Logan et al (1989).

Middle and Upper Triassic siliciclastic and volcanic rocks (Unit 7) are overlain by Upper Triassic Stuhini Group siliciclastic (Units 8A and 8B) and volcanic (Units 8D, 8E, 8G, 8H and 8I) rocks, consisting of mafic to intermediate pyroclastic rocks and lesser flows. The Galore Creek porphyry copper deposit appears from field evidence to mark the edifice of an eroded volcanic center with numerous sub-volcanic plutons of syenitic composition. Jurassic Bowser Basin strata onlap the Stuhini Group strata to the southeast of Iskut River but, because of erosion and non-deposition, are virtually absent from the Galore Creek area.

The plutonic rocks follow a three-fold division (Logan and Koyanagi, 1989 and Logan et al, 1989). Middle Triassic to Late Jurassic syenitic and broadly granodioritic intrusions are partly coeval and cogenetic with the Stuhini Group volcanics and include the composite Hickman Batholith (Unit 9) and the syenites of the Galore Creek Complex (Unit 11). Jura-Cretaceous Coast Plutonic Complex intrusions (Unit 12) occur on the west side of the Galore Creek Camp, along the Stikine River, with the youngest of these intrusions occupying more axial positions along the trend of the Coast Plutonic Complex flanked by older intrusions. The youngest intrusives in the Galore Creek Camp are Eocene (quartz-) monzonitic plugs (Unit 13), felsic and mafic sills and dykes (Unit 14), and biotite lamprophyre (minette) dykes (Unit 14C).

The deformational history in the Galore Creek area has produced upright, north-trending, open to tight folds which have been overprinted by northwest-trending, southwest-verging isoclinal folds and thrust faults. These two phases may represent parts of a continuous deformation event complicated by competence contrasts rather than discrete events in time. Southwest-verging deformation involves the marginal phases of the Hickman Batholith and so is, at least in part, no older than late Triassic. Metamorphism throughout the area is of the greenschist facies. Localized contact metamorphism ranges as high as pyroxene hornfels grade; biotite metasomatism is also noted near intrusions.

Steeply dipping faults which strike north, northwest, northeast, and east have broken the area into a fault-block mosaic. North-striking faults are vertical to steeply east-dipping and parallel to the Mess Creek Fault (Souther, 1972), which was active from Early Jurassic to Recent times (Souther and Symons, 1974); northwest-striking faults are probably coeval with the northstriking faults, but locally pre-date them. East-west trending normal faults are vertical or steeply dipping to the north, whereas northeast-striking faults are the loci of left lateral transcurrent motion (Brown and Gunning, 1989a).

A number of metallic deposit types have been recognized in the Galore Creek Camp: porphyry copper \pm molybdenum \pm gold

deposits, structurally-controlled, epigenetic precious metal vein/shear deposits, skarns and breccia deposits (Figure 3). Porphyry copper deposits of this area include both the alkalic Galore Creek copper-gold and calc-alkalic Schaft Creek coppermolybdenum deposits. Galore Creek, which is associated with syenitic stocks and dykes rather than a quartz-feldspar porphyry, is further contrasted from the calc-alkaline Schaft Creek in that molybdenite is rare, magnetite is common and gold and silver are important by-products. The mineralization is clearly coeval and cogenetic with the spatially associated intrusive bodies.

The Ann/Su porphyry copper prospect, centered approximately four kilometres east of the Screech property, consists of disseminated pyrite and chalcopyrite in Stuhini Group andesitic tuffs, flows and subvolcanic diorite. Diamond drilling and bulldozer trenching were carried out over an area one kilometre in diameter, with the best hole returning grades in the order of 0.10% to 0.20% copper over its entire 230 metre length (BCDM, 1966). Other porphyry copper occurrences in the Galore Creek area include the Copper Canyon, Sphal and Jack Wilson Creek deposits (Figure 3).

Structurally-controlled gold-silver deposits have been the focus of exploration in recent years. The vein/shear occurrences are similar throughout the Galore Creek Camp in that they are mesothermal in nature, containing base metal sulphides with strong silica veining and alteration. However, it appears that the intrusive bodies associated with this mineralization fall into two classes on the basis of age and composition. These two classes are reflected in differences in the style of structures, sulphide mineralogy and associated alteration products. The intrusive types 1) Lower Jurassic alkaline "Galore Creek" stocks; and 2) are: Eocene quartz monzonite to porphyritic granodiorite intrusions. Lead isotope data from the Stewart mining camp (Alldrick et al., 1987) further supports the proposition that separate Jurassic and Tertiary mineralizing events were "brief regional-scale phenomena".

Structures associated with the Lower Jurassic syenites are typically narrow (less than 2.0 metres) quartz-chlorite veins mineralized predominantly with pyrite, chalcopyrite and magnetite. Examples of these structures in the Galore Creek Camp include many of the discrete zones peripheral to the Galore Creek deposit and the gold-rich veins at Jack Wilson Creek.

The Tertiary mineralization is comprised of discrete quartz veins and larger shear zones characterized by pervasive silicification, sericitization and pyritization whose total sulphide content is commonly quite low. The quartz veins contain a larger spectrum of sulphide minerals including pyrite, chalcopyrite, pyrrhotite, arsenopyrite, galena and sphalerite. Unlike the Jurassic mineralization, silver grades may be very high.

The most fully explored example of the Tertiary mineralization type is the Paydirt gold deposit, located two kilometres west of the Screech claims, which is a zone of silicification, sericitization and pyritization of andesitic volcaniclastics (Holtby, 1985). The zone, which is exposed on surface over an area of 100 metres by 25 metres, strikes northerly and dips moderately to the west. Gold mineralization occurs preferentially in intensely silicified and material rather than with heavily pyritic more sericitic The best diamond drill intersections averaged 5.86 alteration. g/tonne gold over 12.0 metres in hole 85-1 and 10.59 g/tonne gold over 4.95 metres in hole 85-4 (Holtby, 1985).

Skarns represent a minor percentage of the precious metalbearing occurrences in the Galore Creek Camp. The mineralogy of these deposits could be influenced by the composition of the intrusion driving the hydrothermal fluids, in much the same way as described above for the structurally-controlled deposits. If the invading intrusives are alkalic, the skarn assemblage will be dominated by magnetite and chalcopyrite, as at the Galore Creek deposit and the Hummingbird skarn on the east side of the South Scud River.

The breccia hosted precious metal deposits discovered in the Galore Creek Camp appear to be unique in style and mineralization. Three occurrences have been located in the camp: (1) the zinc-silver-gold Ptarmigan zone in the South Scud River area, (2) the copper-molybdenum-gold-silver breccia at the Trek property on Sphaler Creek and (3) the copper-bearing and magnetite breccias (eg. Saddle Zone) of the complex Galore Creek deposit. The single common denominator of each is that the zones are located along fault structures which may represent the main conduit for mineralizing fluids.

6.0 PROPERTY GEOLOGY AND GEOCHEMISTRY

6.1 Geology

Although no property-scale geological mapping has been reported for the Screech property, limited mapping has been conducted by Grant (1965) in the northeastern corner of the Screech #1 claim, by Dawson and Hall (1966) over the western portion of the Screech #2 claim and by Doyle and Awmack (1991) in the southwestern corner of the Screech #2 claim. Detailed geological mapping has been conducted over the Paydirt property which adjoins the Screech claims to the west (Holtby, 1985). Logan et al (1989) conducted regional geological mapping for the British Columbia Geological Survey at a scale of 1:50,000 over the Galore Creek area including the Screech claims. Less detailed regional mapping over the area was also conducted previously by Souther (1971). Previous mapping

has been updated by the 1991 field program (Figure 5).

The majority of the Screech property is underlain by undivided Upper Triassic Stuhini Group sedimentary and volcanic rocks (Unit 8, Figure 5). Logan et al (1989) has mapped a sedimentary sequence consisting of thin to medium-bedded wacke, volcanic arenite and volcanic conglomerate (Unit 8A), in the northeastern corner of the Screech #1 claim. A sequence of thinly bedded argillites and volcanic wackes (Unit 8A) separate an agglomerate from bedded crystal ash tuffs in the southwest corner of the Screech #1 claim.

Bedded tuffs and agglomerates are the dominant rock units on The tuffs and tuffaceous sediments (Unit the Screech #2 claim. 8G) consist of thinly bedded, light green to buff fine-grained tuff interbedded with thick beds of crystal ash tuff. Bedding within the tuffs and sediments strikes between 080° and 135°, dipping moderately to steeply to the southwest. Fining upwards sequences and scour marks indicate that the beds are upright and are indicative of a turbidite flow deposition. The agglomerate (Unit 8H) forms massive beds over twenty metres thick and is interbedded with the finer-grained tuffs. Towards the southern part of the Screech #2 claim the agglomerate becomes the dominant rock unit. Clasts within the agglomerate consist mainly of feldspar-phyric volcanics, some of which closely resemble the crystal ash tuff. A few clasts of sedimentary origin are also present. Α microdiorite (Unit 8F) cuts the agglomerate in the southwest corner This medium-grained, equigranular of the Screech #2 claim. intrusive is slightly magnetic and believed to be an intrusive variety of the Stuhini Group pyroxene or feldspar-phyric flows. Further to the south, Doyle and Awmack (1991) observed isolated outcrops of feldspar-porphyritic andesite, the probable extrusive equivalent of the microdiorite, and noted that "... these units are not on a mappable scale.". All Stuhini Group rocks have been weak to moderately altered by epidote, chlorite and calcite. Although the alteration is pervasive throughout, certain ash layers and some volcanic clasts within the agglomerate exhibit preferential epidote alteration. Epidote also forms selvages around some of the quartz veinlets found on the ridge separating the two claims.

Tertiary stocks and dykes intrude all stratified rocks within the Screech claim area. Holtby (1985) mapped a small granodiorite stock between the Paydirt and Su/Ann deposits, describing it as "light grey to pale greenish grey with a fine-grained siliceous contact zone". Further east, he mapped a dark grey hornblende diorite with traces of disseminated pyrite and 1-2% disseminated magnetite. Locally, this diorite grades into amphibolite. This diorite closely resembles that of the Stuhini Group microdiorite of Unit 8F, indicating that it may be related to the Upper Triassic Stuhini Group volcanics rather than the Eocene intrusives. Logan et al (1989) included these two stocks with a larger Tertiary biotite quartz monzonite stock dated as Eocene age (Unit 13A), located to the southwest on Sphaler Creek. A north trending, 1.5 metre wide rhyolitic dyke (Unit 14E) crosscuts the agglomerate in the southern part of the Screech #2 claim. This medium-grained, dyke is recognized by its whitish appearance and the presence of quartz eyes , which could form up to 5% of the rock.

The stratigraphic rock units on the property have experienced at least two episodes of fracturing or faulting. Left-lateral displacement of the tuffs is found along southeasterly trending fractures on the ridge separating the two claims. At least one fault along the same ridge has a parallel orientation. North-south trending faults crosscut the southeasterly trending faults and form deep incised gulleys along the ridge lines. Iron-carbonate alteration may be found along both fault trends and is recognized by calcite and/or quartz veining within an extensive ankeritic alteration halo.

6.2 Mineralization

Numerous samples containing sulphide mineralization were sampled during the 1991 program, but no significant precious or base metal occurrences were found. Several samples were taken from outcrops of propylitized volcaniclastics containing abundant disseminated pyrite (Figure 5). All returned low precious and copper values up to a maximum of 45 ppb gold and 232 ppm copper. Numerous quartz veins, mineralized with blebs of chalcopyrite, were sampled and contained up to 914 ppm copper with no associated gold. Chalcopyrite and galena were found within narrow and discontinuous quartz veinlets within the iron-carbonate altered fault zones. Grab samples from the ankeritic faults returned up to 2.6 ppm silver, 152 copper and 1452 lead. A piece of quartz vein float found along the ridge separating the two Screech claims, returned 16.6 ppm silver, 765 ppm copper, 3810 ppm lead and 1955 ppm zinc. Although the source of this float was not found, its similarity to the quartz veinlets found within the ankeritic fault zones indicates the most probable source.

A highly pyritic halo was mapped by Folk (1982) around the Paydirt and Su/Ann prospects on the claims to the west of the Screech property. The northeasterly extension of this halo would outcrop onto the Screech #1 claim, but no work has been completed in this area to date.

7.0 GEOCHEMISTRY

Although no silt samples were collected during the 1991 field program, silt samples have been collected in previous years from streams which drain the southern part of the Screech #2 claim

(Figure 5). Two of these samples, which were taken by Stikine River Mines Ltd., exceeded the 95th percentile in copper when compared to the government statistical data from a silt sampling survey of the Telegraph Creek-Sumdum map sheet (GSC, 1988). Silt samples SR1 and SR2 which contained 260 ppm and 240 ppm copper, respectively (Dawson and Hall, 1966), were taken in the southwestern corner of the Screech #2 claim. Although both samples have not been analyzed geochemically for gold, all were tested for silver, lead, zinc and molybdenum, but the lack of sample numbers on Dawson and Hall's (1966) map makes a correlation between the copper and other metal values impossible.

8.0 DISCUSSION AND CONCLUSIONS

A limited amount of geological mapping, prospecting and geochemical sampling has been conducted on the Screech claims. Extremely steep terrain and extensive glacial cover restricts the amount of ground that is actually accessible. To date, no significant precious or base metal-bearing mineralization has been found on the property.

Silt samples collected in previous years suggests further copper mineralization may still be found on the Screech claims. The extent of glacial debris on the Screech claims may have masked any gold or copper geochemical anomaly in the silt samples taken further to the north. Future silt sampling should concentrate on taking samples from drainages above the glacial moraine cover.

The Screech property is underlain by Upper Triassic Stuhini Group volcanics which have been intruded by a biotite quartz monzonite stock in the northwestern corner of the Screech #1 claim. A similar geological setting hosts the gold-bearing Paydirt deposit three kilometres to the west. No work has yet been done in this area on the Screech #1 claim. The band of pyritic alteration mapped by Folk (1982) enveloping the Su/Ann and Paydirt deposits, extends eastward into this same area. Elevated copper values were returned from silt samples collected within this alteration halo and within 1500 metres of the Screech #1 claim boundary.

Within the past few years, several significant zones of precious metal mineralization have been discovered elsewhere in the Galore Creek district. To date, only areas on the Screech #2 claim have been investigated by mapping, prospecting and geochemical sampling. The lack of encouraging results limits the potential on the Screech #2 claim; however, further work is required on the Screech #1 claim to determine the extent and significance of the extension of the "pyrite halo" that extends from the Paydirt deposit to the west.

Respectfully submitted, EQUITY ENGINEERING LTD.

440 Brune J. Kasper, Geologist

Vancouver, British Columbia October, 1991

.

APPENDIX A

BIBLIOGRAPHY

.

BIBLIOGRAPHY

- Alaskan Geographic Society (1979): The Stikine River; V. 6, 94 pp.
- Alldrick, D.J., Gabites, J.E. and Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp, <u>in</u> Geological Fieldwork 1986; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1987-1, pp. 93-102.
- Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek, in CIM Special Volume 15; pp. 402-414.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River map area, Northwestern British Columbia, <u>in</u> Current Research, Part E; Geol. Surv. Can. Paper 89-1E, pp. 145-154.
- Barr, D.A. (1966): The Galore Creek Copper Deposits; Canadian Institute of Mining and Metallurgy, Bulletin, V.59, pp. 841-853.
- BCDM (1963-1967): Annual Reports; British Columbia Department of Mines.
- Brown, D.A., and Gunning, M.H. (1989a): Geology of the Scud River area, North Western British Columbia, (104G/5,6), <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 251-267.
- Brown, D.A., and Gunning, M.H. (1989b): Geology of the Scud River area, North Western B.C. (map); British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Open File 1989-7.
- Consolidated Rhodes Resources Ltd. (1991): News Release dated May 29, 1991.
- Dawson, R.H., and Hall, A.O. (1966): Geological and geochemical report covering AC 1 to 21, AC No. 1 Fraction, and Alpha 1 to 24 inclusive M.C.'s; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #846.
- Doyle, A.L. and Awmack, H.J. (1991): 1990 Geological and Geochemical Report on the Screech #1 & #2 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

- Dunn, D.St.C. (1986): Report on Geological Mapping, Geochemical Sampling and Trenching Programs on the Paydirt Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #15,806.
- Folk, P. (1982): Report on the Geological, Geochemical, Geophysical Surveys and Diamond Drilling conducted on the Paydirt Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #9,999.
- Geological Survey of Canada (1957): Stikine River area, Cassiar District, British Columbia; Geological Survey of Canada Map 9-1957.
- Geological Survey of Canada (1988): National Geochemical Reconnaissance, Sumdum - Telegraph Creek, British Columbia (NTS 104F - 104G); GSC Open File 1646.
- Grant, G.W. (1964): Final Geological Report CW Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #621.
- Grant, G.W. (1965): Final Geological Report PH Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #620.
- Holtby, M.H. (1985): Geological, Soil Geochemical, Trenching and Diamond Drilling Programme on the Paydirt Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #14,980.
- Kerr, F.A. (1948): Taku River map-area, British Columbia; Geological Survey of Canada, Memoir 248, 84 pp.
- Logan, J.M., and Koyanagi, V.M. (1989): Geology and Mineral Deposits of the Galore Creek area, Northwestern B.C., 104G/3,4, <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 269-284.
- Logan, J.M., Koyanagi, V.M., and Rhys, D. (1989): Geology and Mineral Occurrences of the Galore Creek Area; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch Open File 1989-8, Sheet 1 of 2.
- Monger, J.W.H. (1977): Upper Palaeozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution; Can. Jour. Earth Sci., V.14, pp. 1832-1859.

- Panteleyev, A. (1976): Galore Creek map area, British Columbia, <u>in</u> Geological Fieldwork 1975; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch, Paper 1976-1, pp. 79-81.
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.
- Souther, J.G., and Symons, D.T.A. (1974): Stratigraphy and Palaeomagnetism of the Mount Edziza volcanic complex, northwestern British Columbia; Geological Survey of Canada Paper 73-32, 48 pp.
- Souther, J.G., Brew, D.A., and Okulitch, A.V. (1979): Iskut River 1:1,000,000; Geological Atlas Geological Survey of Canada, Map 1418A.

APPENDIX B

.

.

STATEMENT OF EXPENDITURES

SCREECH #1 AND #2 CLAIMS (SEPTEMBER 17 - 26, 1991)	
PROFESSIONAL FEES AND WAGES: Donald McInnes, Prospector 1.375 days @ \$250/DAY \$ 343.75 Bruno Kasper, Project Geologist 1.5 days @ \$375/day 562.50 Stewart Harris, Geologist 1.35 days @ \$300/day 405.00 Clerical 50.00	\$ 1,361.25
CHEMICAL ANALYSES: Rock Geochemical Analyses 25 samples @ \$15.58 each	389.50
EQUIPMENT RENTAL: Generator \$ 30.00 Handheld Radio's 15.00 Fly Camp <u>60.00</u>	105.00
EXPENSES: Aircraft Charters \$ 1,011.20 Courier and Telefax 28.25 Food 13.88 Freight 20.62 Helicopter Charters 918.12 Meals 109.28 Printing and Reproductions 35.51 Telephone Distance Charges 2.18 Travel 8.00	<u>2,147.04</u> 4,002.79
MANAGEMENT FEE @ 15% ON EXPENSES	<u>380.48</u> 4,383.27
REPORT (ESTIMATED)	<u>1,500.00</u> <u>\$5,883.27</u>

APPENDIX C

•

ROCK DESCRIPTIONS

Mineral Abbreviations:

	Mineral Abbr	eviatio	ons:
AK	Ankerite	JA	Jarosite
AS	Arsenopyrite	KF	Potassium Feldspar
AZ	Azurite	LI	Limonite
BÍ	Biotite	MC	Malachite
BO	Bornite	MG	Magnetite
CA	Calcite	MO	Molybdenite
CC	Chalcocite	MN	Manganese-oxides
CB	Fe-Carbonate	MR	Mariposite
CL	Chlorite	MS	Sericite
CP	Chalcopyrite	MU	Muscovite
CV	Covellite	PO	Pyrrhotite
CY	Clay	ΡY	Pyrite
DO	Dolomite	QZ	Quartz
EP	Epidote	SI	Silica
GA	Garnet	SM	Smithsonite
GE	Goethite	SP	Sphalerite
GL	Galena	TA	Talc
GY	Gypsum	\mathbf{TT}	Tetrahedrite
HE	Hematite		
		.	• • • • • • •
Alte	eration Intensities:	tr	trace
•		W	weak
		m	moderate
		S	strong

	EERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-1-					
Property : S	Screech #1 & #2 c	laims	NTS : 104G/3W	Date : 10/	17/91						
Sample No.	Location :	6325 600 N	Type : Float	Alteration :	mCL, mEP, mSI	Au	Ag	Cu	Pb	Zn	As
		351 225 E	Strike Length Exp. : m	Sulphides :	10% PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509051	Elevation:	1320 m	Sample Width : m	Oxides :	GE, JA	45	<0.2	232	36	22	<5
	Orientation:	/	True Width : m	Host :	Agglomerate						
Comments :	20cm by 30cm by	20cm boulder cor	ntaining silicified clasts. PY fou	und mainly in the	matrix.						
Sample No.	Location :		Type: Float	Alteration ·	sca, mcl, mep	Au	Ag	Cu	Pb	Zn	As
Sample NO.	Location :	351 225 E	Strike Length Exp. : m	Sulphides :	trCP, 1-2%PY	(ppb)	-				
509052	Elevation:	1320 m	Sample Width : m	Oxides :	GE, HE	5	(ppm) <0.2	(ppm) 202	(ppm) <2	(ppm) 52	(ppm) 10
209022			•		•	,	NO.2	202	12	75	10
Comments :	Orientation: PY and CP found	•	True Width : m ets.	Host :	Agglomerate						
									_		
Sample No.	Location :		Type : Grab	Alteration :	mCA, sCL, sEP	Au	Ag	Cu	Pb	Zn	As
		350 250 E	Strike Length Exp. : >10 m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
FAAAFR	Elevation:	1350 m	Sample Width : 1.0 m	Oxides :	None visible	<5	<0.2	143	<2	62	5
509053											
	Orientation:		True Width : 1.0? m	Host :	Agglomerate						
Comments :	Orientation: Dominant fractur	e oriented 209/7	76W. Grab along 20 metres of expos								
Comments :	Orientation:	e oriented 209/7	76W. Grab along 20 metres of expos			Au	Ag	Cu	Pb	Zn	As
Comments :	Orientation: Dominant fractur	e oriented 209/7	76W. Grab along 20 metres of expos	sure which forms a	cliff.	Аи (ррb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Comments :	Orientation: Dominant fractur	e oriented 209/7	76W. Grab along 20 metres of expos Type : Chip	sure which forms a Alteration :	CA veinlets		-				
Comments : Sample No.	Orientation: Dominant fractur Location : Elevation:	e oriented 209/7 6325 715 N 350 150 E	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m	sure which forms a Alteration : Sulphides :	CA veinlets None visible	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments : Sample No. 509054	Orientation: Dominant fractur Location : Elevation: Orientation:	6325 715 N 350 150 E 1350 m 178 / 87 W	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm	sure which forms a Alteration : Sulphides : Oxides : Host :	CA veinlets None visible sGE, 2%HE Agglomerate	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments : Sample No. 509054 Comments :	Orientation: Dominant fractur Location : Elevation: Orientation:	6325 715 N 6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Isic dyke? Specular HE found withi	sure which forms a Alteration : Sulphides : Oxides : Host :	CA veinlets None visible sGE, 2%HE Agglomerate	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Comments : Sample No. 509054 Comments :	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear	6325 715 N 6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Lsic dyke? Specular HE found withi	Alteration : Sulphides : Oxides : Host : In the CA veinlets	CA veinlets None visible sGE, 2%HE Agglomerate	(ppb) <5 Au	(ppm) <0.2	(ppm) 32 Cu	(ppm) <2 Pb	(ppm) 66 Zn	(ppm) 5 As
Comments : Sample No. 509054 Comments : Sample No.	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location :	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 6325 770 N 349 865 E	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Isic dyke? Specular HE found withi Type : Grab Strike Length Exp. : 30 m	sure which forms a Alteration : Sulphides : Oxides : Host : in the CA veinlets	CA veinlets None visible sGE, 2%HE Agglomerate	(ppb) <5	(ppm) <0.2 Ag (ppm)	(ppm) 32	(ppm) <2	(ppm) 66	(ppm) 5
Comments : Sample No. 509054 Comments :	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 6325 770 N 349 865 E 1315 m	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Lsic dyke? Specular HE found withi	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible None visible	(ppb) <5 Au (ppb)	(ppm) <0.2	(ppm) 32 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 66 Zn (ppm)	(ppm) 5 As (ppm)
Comments : Sample No. 509054 Comments : Sample No.	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 6325 770 N 349 865 E	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Isic dyke? Specular HE found withi Type : Grab Strike Length Exp. : 30 m Sample Width : 1.5 m	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides : Oxides :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible	(ppb) <5 Au (ppb)	(ppm) <0.2 Ag (ppm)	(ppm) 32 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 66 Zn (ppm)	(ppm) 5 As (ppm)
Comments : Sample No. 509054 Comments : Sample No. 509055	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 6325 770 N 349 865 E 1315 m	76W. Grab along 20 metres of expos Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Isic dyke? Specular HE found withi Type : Grab Strike Length Exp. : 30 m Sample Width : 1.5 m	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides : Oxides :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible None visible	(ppb) <5 Au (ppb)	(ppm) <0.2 Ag (ppm)	(ppm) 32 Cu (ppm)	(ppm) <2 Pb (ppm)	(ppm) 66 Zn (ppm)	(ppm) 5 As (ppm)
Comments : Sample No. 509054 Comments : Sample No. 509055 Comments :	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation: Orientation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 6325 770 N 349 865 E 1315 m 020 / 79 E	 76W. Grab along 20 metres of expositive for the second s	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides : Oxides : Host : Host :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible None visible Rhyolite dyke	(ppb) <5 Au (ppb) <5	(ppm) <0.2 Ag (ppm) <0.2	(ppm) 32 Cu (ppm) 11	(ppm) <2 Pb (ppm) 12 Pb	(ppm) 66 Zn (ppm) 26 Zn	(ppm) 5 As (ppm) 10 As
Comments : Sample No. 509054 Comments : Sample No. 509055 Comments : Sample No.	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation: Orientation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 	 76W. Grab along 20 metres of exposent Type : Chip Strike Length Exp. : 6 m Sample Width : 40 cm True Width : 40 cm Isic dyke? Specular HE found withi Type : Grab Strike Length Exp. : 30 m Sample Width : 1.5 m True Width : 1.5 m True Width : 1.5 m 	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides : Dxides : Host : Alteration : Sulphides :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible None visible Rhyolite dyke	(ppb) <5 Au (ppb) <5	(ppm) <0.2 Ag (ppm) <0.2 Ag (ppm)	(ppm) 32 Cu (ppm) 11 Cu (ppm)	(ppm) <2 Pb (ppm) 12 Pb (ppm)	(ppm) 66 Zn (ppm) 26 Zn (ppm)	(ppm) 5 As (ppm) 10 As (ppm)
Comments : Sample No. 509054 Comments : Sample No. 509055 Comments :	Orientation: Dominant fractur Location : Elevation: Orientation: 40cm wide shear Location : Elevation: Orientation:	6325 715 N 350 150 E 1350 m 178 / 87 W zone along a fel 	 76W. Grab along 20 metres of expositive for the second s	Alteration : Sulphides : Oxides : Host : in the CA veinlets Alteration : Sulphides : Dxides : Host : Alteration : Sulphides :	CA veinlets None visible sGE, 2%HE Agglomerate Unaltered None visible None visible Rhyolite dyke WCA, wEP 1-2%MG, trPY	(ppb) <5 Au (ppb) <5 Au (ppb)	(ppm) <0.2 Ag (ppm) <0.2	(ppm) 32 Cu (ppm) 11	(ppm) <2 Pb (ppm) 12 Pb	(ppm) 66 Zn (ppm) 26 Zn	(ppm) 5 As (ppm) 10 As

.

	NEERING LTD. Screech #1 & #2 c	laims	ROCK SAMPLE DESCRIPTIONS NTS : 104G/3W	Date : 10,	17/91	ra	ge-2-					
Samala Na	Location :	6325 790 N	Type : Grab	Alteration :	UCA	wCL, sEP	Au	Ag	Cu	Pb	Zn	As
Sample No.	Location :	349 615 E	Type : Grab Strike Length Exp. : m	Sulphides :	-	, trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	
509057	Elevation:	1320 m	Sample Width : 1.0 m	Oxides :		visible	<5	<0.2	91	<2	44	(ppn <5
207021	Orientation:		True Width : 1.0 m	Host :		omerate	~	-U.L	,,	~		
Comments :		•	at the contact with the microdiori									
ample No.	Location :	6325 685 N	Type: Chip	Alteration :	Unal	tered	Au	Ag	Cu	Pb	Zn	As
ampre no.		350 315 E	Strike Length Exp. : 10 m	Sulphides :		visible	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509066	Elevation:	1400 m	Sample Width : 1.5 m	Oxides :	HE	VISIDLE	<5	<0.2	7	10	6	<5
307000	Orientation:		True Width : 1.0 m	Host :		lite dyke	~		•	10	Ũ	
Comments :	of fentacion.	: , :		ilost ,	Kiiyo							
Sample No.	Location :	6325 670 N	Type : Select, grab	Alteration :	WCL,	mEP	Au	Ag	Cu	Pb	Zn	As
		350 310 E	Strike Length Exp. : >20 m	Sulphides :	None	visible	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509067	Elevation:	1385 m	Sample Width : 2.0 m	Oxides :	None	visible	<5	<0.2	97	<2	100	10
	Orientation:	? /?	True Width : ? m	Host :	Aggl	omerate						
Comments :	Representative o	f rock in the a	rea.									
Sample No.	Location :	6325 695 N	Type : Float	Alteration :	sCA,	sCL, sEP, QZ sweats	Au	Ag	Cu	Pb	Zn	As
		350 340 E	Strike Length Exp. : m	Sulphides :	trPY		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppi
509068	Elevation:	1420 m	Sample Width : m	Oxides :	None	visible	<5	<0.2	6	<2	10	<5
	Orientation:	/	True Width : m	Host :	Volca	aniclastic?						
Comments :	One of two miner	alized float bou	ulders found 1 metre apart. Both w	ere 20cm by 30cm	in siz	e. Strong propylitic	alterat	ion.				
Sample No.	Location :	6325 695 N	Type : Float	Alteration :	mCA,	mCL, sEP, sSI	Au	Ag	Cu	Pb	Zn	As
		350 340 E	Strike Length Exp. : m	Sulphides :	5%PY		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509069	Elevation:	1420 m	Sample Width : m	Oxides :	GE		45.	<0.2	102	<2	16	<5
	Orientation:	/	True Width : m	Host :	Volca	aniclastic						
omments :	Found near float	sample 509068.	Strong propylitic alteration. PY	is finely dissem	ninated	throughout.						
Sample No.	Location :	6325 740 N	Type : Grab	Alteration :	WCA,	w to mCL, wEP	Au	Ag	Cu	Pb	Zn	As
		350 370 E	Strike Length Exp. : 5 m	Sulphides :	3%PY		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509070	Elevation:	1470 m	Sample Width : 10 cm	Oxides :	GE		<5	<0.2	102	6	56	<5
	Orientation:	? /?	True Width : 10? cm	Host :	Crys	tal ash tuff						
	Conversion in 1.0	matea uida D	is finely disseminated throughout							•		

	NEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-3-					
Property : S	Screech #1 & #2 (claims	NTS : 104G/3W	Date : 10/	17/91						
Sample No.	Location :	6325 775 N	Type : Float	Alteration :	wCA, mCL, mEP, QZ vein	Au	Ag	Cu	Рb	Zn	As
		350 415 E	Strike Length Exp. : m	Sulphides :	<1%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509071	Elevation:	1500 m	Sample Width : m	Oxides :	AZ, MC	<5	0.6	700	<2	50	10
	Orientation	: /	True Width : m	Host :	Agglomerate						
Comments :		- ,	in size. Although found 1 metre b	•		CP blebs					
	found in the 1-2	2 cm. wide QZ/CA	vein while PY is generally dissem	inated thoughout t	he wallrock.						
ample No.	Location :	6325 775 N	Type : Grab	Alteration :	mCL, mEP, QZ vein	Au	Ag	Cu	Pb	Zn	As
		350 415 E	Strike Length Exp. : 4 m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509072	Elevation:	1500 m	Sample Width : 1.0 m	Oxides :	None visible	<5	<0.2	24	<2	10	5
	Orientation	:? /?	True Width : 0.5 m	Host :	Mafic volcanic						
Comments :	Barren quartz ve	ein. Disseminat	ed PY found in the mafic volcanic	host.							
								_		_	
Sample No.	Location :		Type: Grab	Alteration :		Au	Ag	Cu	Pb	Zn	As
		350 495 E	Strike Length Exp. : 7 m	Sulphides :		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509073		1550 m	Sample Width : 20 cm	Oxides :		<5	<0.2	42	<2	50	15
	Orientation	:? /?	True Width : 5 cm	Host :	Lapilli tuff						
Sample No.	Location :	6325 830 N 350 495 E	Type : Grab Strike Length Exp. : 5 m	Alteration : Sulphides :	wCA, mCL, m to sEP, QZ None visible	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppr
509074	Elevation:	1552 m	Sample Width : 10 cm	Oxides :	None visible	<5	<0.2	47	<2	100	<5
								••	-		-
	Orientation	2 12	True Width : 10 cm	Host :	lanilli tuff						
comments :	Orientation: Rock contains CA	•	True Width : 10 cm es and a 5 mm wide quartz veinlet.	Host :	Lapilli tuff						
		filled fractur	es and a 5 mm wide quartz veinlet.		Lapilli tuff						
	Rock contains CA	filled fractur	es and a 5 mm wide quartz veinlet.		Lapilli tuff CL, QZ	Au	Ag	Cu	РЬ	Zn	As
	Rock contains CA	filled fractur	es and a 5 mm wide quartz veinlet.		·	Au (ppb)	-	Cu (ppm)		Zn (ppm)	
	Rock contains CA	6325 945 N	es and a 5 mm wide quartz veinlet. Type : Grab	Alteration :	CL, QZ		Ag (ppm) 1.6		Pb (ppm) <2		
Sample No.	Rock contains CA	6325 945 N 350 505 E 1660 m	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m	Alteration : Sulphides :	CL, QZ <1%CP	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
Sample No. 509075	Rock contains CA Location : Elevation: Orientation:	6325 945 N 350 505 E 1660 m 37 / ?	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m Sample Width : 10 cm	Alteration : Sulphides : Oxides : Host :	CL, QZ <1%CP MC	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
Sample No. 509075 Comments :	Rock contains Cf Location : Elevation: Orientation: Vein appears to	6325 945 N 350 505 E 1660 m ? / ? be vertical in	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m Sample Width : 10 cm True Width : 10 cm orientation. Vuggy Q2>>>CL vein c	Alteration : Sulphides : Oxides : Host : ontains CP blebs.	CL, QZ <1%CP MC Crystal ash tuff	(ppb)	(ppm)	(ppm) 914	(ppm) <2	(ppm) 44	(ppn 5
Sample No. 509075 Comments :	Rock contains CA Location : Elevation: Orientation:	6325 945 N 350 505 E 1660 m ? / ? be vertical in 6326 110 N	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m Sample Width : 10 cm True Width : 10 cm orientation. Vuggy QZ>>>CL vein c 	Alteration : Sulphides : Oxides : Host : ontains CP blebs. Alteration :	CL, QZ <1%CP MC	(ppb) <5 Au	(ppm) 1.6 Ag	(ppm)	(ppm)	(ppm)	(ppr 5
ample No. 509075 comments :	Rock contains CA Location : Elevation: Orientation: Vein appears to Location :	6325 945 N 350 505 E 1660 m 7 / ? be vertical in 6326 110 N 350 655 E	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m Sample Width : 10 cm True Width : 10 cm orientation. Vuggy QZ>>>CL vein c Type : Grab Strike Length Exp. : 1 m	Alteration : Sulphides : Oxides : Host : ontains CP blebs.	CL, QZ <1%CP MC Crystal ash tuff	(ppb) <5	(ppm) 1.6 Ag (ppm)	(ppm) 914 Cu (ppm)	(ppm) <2	(ppm) 44	(ppi 5 As
Sample No. 509075	Rock contains Cf Location : Elevation: Orientation: Vein appears to	6325 945 N 350 505 E 1660 m 7 / ? be vertical in 6326 110 N 350 655 E	es and a 5 mm wide quartz veinlet. Type : Grab Strike Length Exp. : 3 m Sample Width : 10 cm True Width : 10 cm orientation. Vuggy QZ>>>CL vein c 	Alteration : Sulphides : Oxides : Host : ontains CP blebs. Alteration :	CL, QZ <1%CP MC Crystal ash tuff mCL, m to sEP, wQZ	(ppb) <5 Au	(ppm) 1.6 Ag	(ppm) 914 Cu	(ppm) <2 Pb	(ppm) 44 Zn	(ppr 5 As

	NEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-4-					
roperty :	Screech #1 & #2 o	laims	NTS : 104G/3W	Date : 10/	17/91						
Sample No.	Location :	6327 590 N	Type: Grab	Alteration :	sSI	Au	Ag	Cu	РЬ	Zn	As
		349 255 E	Strike Length Exp. : 0.3 m	Sulphides :	5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppn
509081	Elevation:	1525 m	Sample Width : 25 cm	Oxides :	GE	<5	<0.2	121	76	52	10
	Orientation	020 / 80 E	True Width : 20 ? cm	Host :	Bedded ash and crystal a	ash tuffs.					
Comments :	Siliceous zone w	ithin the bedded	tuffs. PY is finely disseminated	l throughout. Zon	e appears to be pinched by	y another					
	fracture oriente	•									
ample No.	Location :		Type: Grab	Alteration :	sCB (AK), sSI, QZ veini	ng Au	Ag	Cu	Pb	Zn	As
-		349 305 E	Strike Length Exp. : 5.0 m	Sulphides :	trCP, 5%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509082	Elevation:	1540 m	Sample Width : 1.10 m	Oxides :	HE	5	1.2	152	28	74	25
	Orientation:	125 / 45 NE	True Width : 1.0 m	Host :	Bedded ash and crystal a	ash tuffs.					
omments :	Two metre wide (B-SI altered she	ar zone. CP found as small blebs	within the QZ vei	nlets while the PY is find	ely dissen	ninated				
	throughout. Sma	all exposures of	the shear zone can be traced for a	approx. 20 metres.		-					
Sample No.	Location :	4707 E7E N	Tumo e Elect	Alteration .	QZ vein	A	4.4	C 11	Dh	7.5	Ac
ampte No.	Location :		Type : Float Strike Length Exp. : m	Alteration :		Au	Ag	Cu	Pb	Zn	As
500087	* 1	349 305 E	- 1	Sulphides :	<1%CP, <1%GL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509083	Elevation:	1560 m	Sample Width : m	Oxides :		10	16.6	765	3810	1955	<5
	Orientation:	÷	True Width : m	Host :							
comments :			loat measuring 15cm by 10cm by 5cm ltered shear zone.	, contains blebs	of CP and GL. Float toun	а арргох.					
	·										
ample No.	Location :	6327 610 N	Type : Select	Alteration :	wCL, sMS, sSI	Au	Ag	Cu	Pb	Zn	As
		349 385 E	Strike Length Exp. : >10 m	Sulphides :	1% PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
509084	Elevation:	1635 m	Sample Width : 30 cm	Oxides :	GE	30	<0.2	36	38	24	5
	Orientation:	? / ?	True Width : ? m	Host :	Agglomerate.						
comments :	Preferential ser	icite and silica	alteration of some of the clasts	in the agglomerat	e. Select sample taken f	rom gossar	nous				
	pods located on	the east side of	a probable fault zone. Trend of	the fault is 010	degrees.						
ample No.	Location :	6327 660 N	Type: Grab	Alteration :	SI?	Au	Ag	Cu	Pb	Zn	As
•		349 515 E	Strike Length Exp. : 5 m	Sulphides :		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(рр
509085	Elevation:	1690 m	Sample Width : 30 cm	Oxides :	GE	<5	<0.2	132	12	62	5
		085 / 60 S	True Width : 20 cm	Host :							
omments :		•	sic tuffs. Tuffs appear to have b			rs to be					
	approximately 2.										
•											
Sample No.	Location :	6327 660 N	Type: Chip	Alteration :	sCB (AK?), QZ sweats	Au	Ag	Cu	Pb	Zn	As
		349 375 E	Strike Length Exp. : 10 m	Sulphides :	None visible	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
509086	Elevation:	1615 m·	Sample Width : 71 cm	Oxides :	HE	<5	<0.2	44	12	46	<5
	Orientation:		True Width : 71 cm	Host :	Lapilli tuff (feldspar d	crystal).					

.

...........

•••••

EQUITY ENGINEERING LTD. Property : Screech #1 & #2 claims			ROCK SAMPLE DESCRIPTIONS			Pa	Page-5-							
			NTS : 104G/3W	Date : 10/17/91										
Sample No.	Location :	6327 660 N	Type : Grab	Alteration	:	sCB (AK?), QZ sweats	Au	Ag	Cu	РЬ	Zn	As		
		349 390 E	Strike Length Exp. : 10 m	Sulphides	:	GL	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
509087	Elevation:	1620 m	Sample Width : 1.5 m	Oxides	:	None visible	<5	2.6	35	1425	406	15		
	Orientation:	045 / 35 SE	True Width : 1.3 m	Host	:	Agglomerate								
			f to the west by another northerly metres. Blebs of GL found in the		alt	ered shear zone. True wid:	lth of							

•

APPENDIX D

•

CERTIFICATES OF ANALYSIS

.

_____ Equity Engineering Ltd. ____

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Comments: ATTN: DAVID A. CAULFIELD

A9122570

CERTIFICATE

A9122570

EQUITY ENGINEERING LTD.

Project: SCREECH CLAIMS P.O. # : TEX91-02

Samples submitted to our lab in Vancouver, BC. This report was printed on 4-OCT-91.

	SAMPLE PREPARATION						
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION					
205 294 298	25 25 25	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) ICP - AQ Digestion charge					
* NOTE	.						

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
100	25	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
922	25	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
921	25	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
923	25	As ppm: 32 élement, soil & rock	ICP-AES	5	10000
924	25	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
9 25	25	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	25	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	25	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	25	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	25	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	25	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	25	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	25	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	25	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	25	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	25	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	25	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	25	Mg %: 32 element, soil & rock	ICP-AES ICP-AES	0.01	15.00 10000
937	25	Mn ppm: 32 element, soil & rock	ICP-AES	5 1	10000
938	25	Mo ppm: 32 element, soil & rock	ICP-AES ICP-AES	0.01	5.00
939 940	25 25	Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock	ICP-AES	0.01	10000
	25	P ppm: 32 element, soil & rock	ICP-AES	10	10000
941 942	25	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
942 943	25	Sb ppm: 32 element, soil & rock	ICP-AES	2 5	10000
943	25	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
944	25	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
945	25	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	25	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
947	25	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	25	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	25	W ppm: 32 element, soil & rock	ICP-AES	10	10000
950	25	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : SCREECH CLAIMS Comments: ATTN: DAVID A. CAULFIELD Page Number : 1-A Total Pages : 1 Certificate Date: 04-OCT-91 Invoice No. : 19122570 P.O. Number : TEX91-02

					· =						CE	RTIFI	CATE	OF A	NAL	YSIS		A9122	570		
SAMPLE DESCRIPTION	PREP CODE		Au ppb FA+AA	Ag ppm	al %	As ppm	Ba ppm	Be ppn	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg PPm	K ¥	La ppm	Mg %	Mn PPm
509051	205 2			< 0.2	0.69	< 5	90	< 0.5	< 2	0.59	1.5	16	39	232	5.92	< 10	< 1	0.25	< 10	0.48	200
509052	205 2			< 0.2		10	1420	< 0.5	< 2	11.20	< 0.5	11	28	202	4.07	20	< 1	0.26	10	1.76	1635
509053 509054	205 2			< 0.2		5 5	120 1030	< 0.5 < 0.5	2 2	1.78 11.15	< 0.5 < 0.5	15 18	34 35	143 32	3.88 4.88	< 10 20	< 1 < 1	0.50 0,26	< 10 10	1.52 0.78	710 2150
509055	205 2			< 0.2		10	190	< 0.5	< 2		< 0.5	2	47	11	0.53	< 10	< 1	0.39	10	0.11	735
509056	205 2			< 0.2		10	60	< 0.5	2	1.43	< 0.5	9	51	33	3.10	< 10	< 1	0.24	< 10	1.01	405
509057	205 2			< 0.2		< 5	40	< 0.5 < 0.5	< 2 < 2	1.72	< 0.5 < 0.5	15 < 1	30 46	91 7	3.27 0.26	< 10 < 10	< 1 < 1	0.28 0.34	< 10 10	1.10 0.03	525 425
509066 509067	205 2			< 0.2		< 5 10	100 120	< 0.5	< 2	3.97	< 0.5	18	22	97	4.91	10	< 1	0.54	10	1.93	1440
509068	205 2			< 0.2		< 5	< 10	< 0.5	< 2	8.05	< 0.5	4	50	6	1.28	20	1	0.15	< 10	0.34	645
509069	205 2		45	< 0.2		< 5	140	< 0.5	< 2	0.96	< 0.5	15	32	102	4.75	< 10	< 1	0.12	< 10	0.34	160
509070 509071	205 2 205 2		< 5 < 5	< 0.2		< 5	40 50	< 0.5 < 0.5	26	1.56	1.0 < 0.5	17 12	30 50	102 700	4.19 3.30	< 10 < 10	< 1 < 1	0.27 0.14	10 10	1.23 1.20	505 670
509072	205 2			< 0.2		10 5	20	< 0.5	< 2		< 0.5	6	93	24	1.57	< 10	< 1	0.17	< 10	0.26	285
509073	205 2		< 5	< 0.2		15	50	< 0.5	< 2	6.71	< 0.5	24	23	42	2.90	10	< 1	0.16	10	1.22	1135
509074	205 2			< 0.2		< 5		< 0.5	< 2	4.25	< 0.5	14	30	47	4.14	10	< 1	0.13	< 10	2.38	1120
509075 509076	205 2	94 94	< 5 < 5	1.6		5 5	30 90	< 0.5 < 0.5	< 2 < 2	0.86	< 0.5 < 0.5	10 14	108 33	914 162	2.83 4.12	< 10 < 10	< 1 < 1	0.07 0.10	< 10 < 10	1.03 1.27	505 585
509081	205 2		< 5	< 0.2		10	70	< 0.5	< 2		< 0.5	22	35	121	4.11	< 10	< 1	0.25	< 10	0.65	245
509082	205 2		5	1.2		25	150	< 0.5	< 2	4.17	< 0.5	16	33	152	4.23	10	< 1	0.48	10	0.93	855
509083	205 2		10	16.6		< 5	10	< 0.5	< 2	0.55	28.0	3	191	765	1.37	< 10	< 1	0.02	< 10	0.33	355
509084 509085	205 2		30 < 5	< 0.2		5 5	740 40	< 0.5 < 0.5	< 2 2	0.97 0.95	< 0.5 < 0.5	3 12	13 35	36 132	3.40 3.77	< 10 < 10	< 1 < 1	0.60 0.08	< 10 < 10	0.20 1. 16	105 595
509086		94		< 0.2		< 5		< 0.5		>15.00	< 0.5	7	17	44	2.65	30	< 1	0.27	10	0.70	1910
509087	205 2		< 5	2.6		15	270	< 0.5	4	6.59	15.5	9	74	35	3.88	10	< 1	0.22	10	0.08	1170
•						·												0		0	

CERTIFICATION:

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : SCREECH CLAIMS Comments: ATTN: DAVID A. CAULFIELD Page Number : 1-B Total Pages : 1 Certificate Date: 04-OCT-91 Invoice No. : 19122570 P.O. Number : TEX91-02

											<u> </u>	BTIE	CATE				A9122570	
							. <u> </u>										A3122310	
SAMPLE DESCRIPTION	PREP CODE		Mo ppm	Na %	Ni PPm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppma	Ti %	Tl ppm	U PPE	v PPm	W Ppm	Zn PPm		
509051 509052 509053 509054 509055	205 29 205 29 205 29 205 29 205 29 205 29	4	65 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.03 0.01 0.04	8 4 8 7 1	1770 1010 1770 1060 190	36 < 2 < 2 < 2 < 2 12	< 5 < 5 < 5 < 5 < 5 < 5	7 7 5 9 1	46 235 < 106 72 42	0.26 0.01 0.23 0.05 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 69 117 111 12	< 10 < 10 < 10 < 10 < 10 < 10	22 52 62 66 26		
509056 509057 509066 509067 509068	205 29 205 29 205 29 205 29 205 29 205 29	4	< 1 < 1 < 1 1 < 1	0.13 0.03 0.06 0.02 < 0.01	9 7 < 1 7 1	1360 1750 50 1970 620	< 2 < 2 10 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5 < 5	9 5 < 1 15 1	74 142 54 < 154 165	0.20 0.24 0.01 0.19 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	121 114 4 167 78	< 10 < 10 < 10 < 10 < 10 < 10	22 44 6 100 10		
509069 509070 509071 509072 509073	205 29 205 29 205 29 205 29 205 29 205 29	4	44 9 < 1 < 1 1	0.03 0.03 0.02 < 0.01 0.01	5 8 6 2 6	1130 2560 1590 310 2110	< 2 6 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5 < 5	6 4 8 1 7	82 187 114 79 287	0.31 0.27 0.13 0.02 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 117 113 33 99	< 10 < 10 < 10 < 10 < 10 < 10	16 56 50 10 50		
509074 509075 509076 509081 509082	205 29 205 29 205 29 205 29 205 29 205 29	4	< 1 < 1 2 3 < 1	0.01 0.01 0.03 0.01 0.01	8 6 8 12 8	2330 1070 1800 1640 1910	< 2 < 2 < 2 76 28	< 5 < 5 < 5 < 5 < 5 < 5	8 9 6 10 7	108 26 84 50 441	0.14 0.07 0.25 0.39 (0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	117 113 128 145 37	< 10 < 10 < 10 < 10 < 10 < 10	100 44 54 52 74		
509083 509084 509085 509086 509086 509087	205 29 205 29 205 29 205 29 205 29 205 29	4	111 < 1 < 1	< 0.01 0.02 0.03 0.01 < 0.01	4 2 8 3 5	370 3290 1800 860 1040	3810 38 12 12 1425	< 5 < 5 < 5 < 5 5	1 4 3 7 5	296 59 331 •	<pre>< 0.01 0.13 0.23 < 0.01 < 0.01</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 56 112 64 34	< 10 < 10 < 10 < 10 < 10 < 10	1955 24 62 46 406	e.	
																		~7

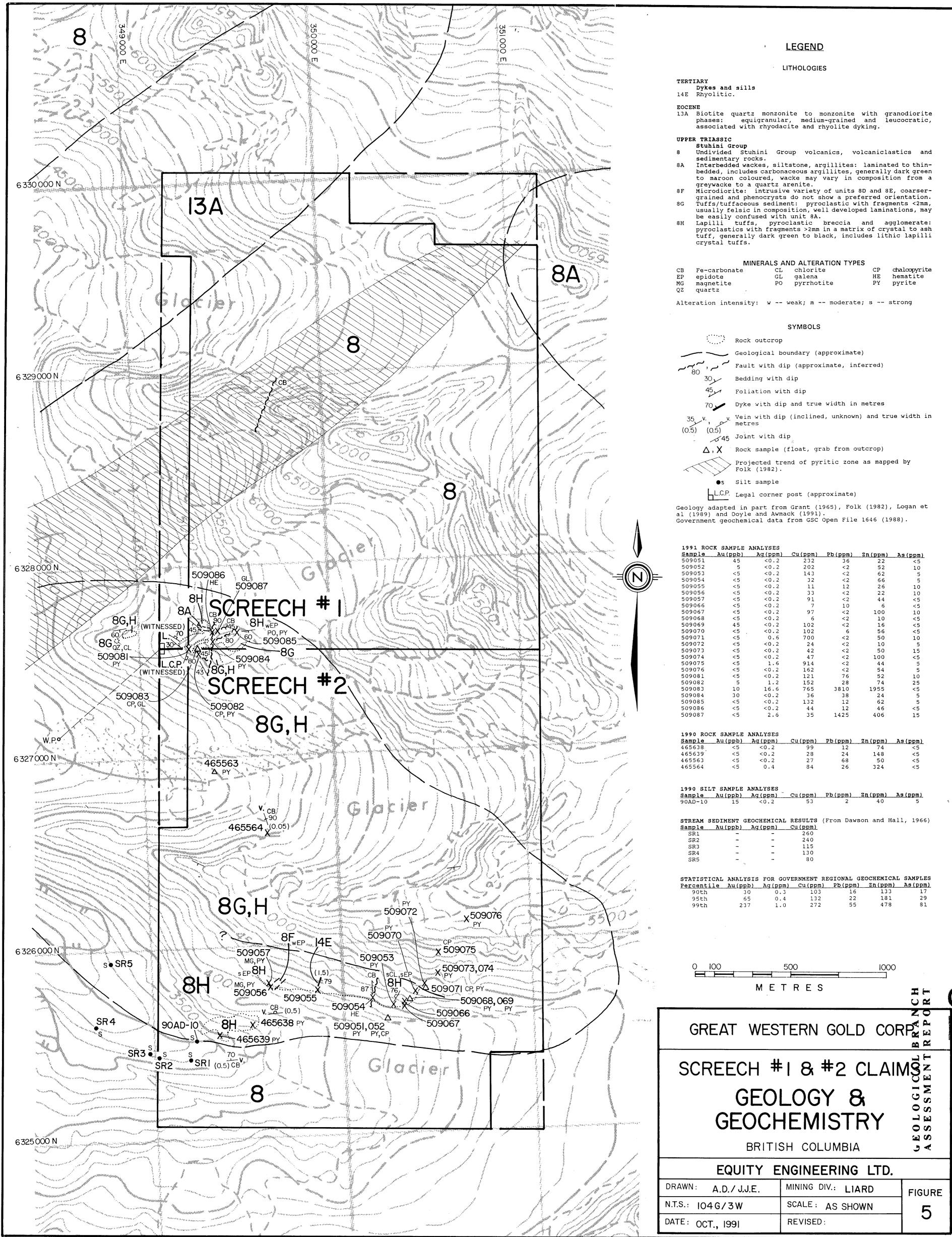
CERTIFICATION:

APPENDIX E

.

STATEMENT OF QUALIFICATIONS

_____ Equity Engineering Ltd. ____


STATEMENT OF QUALIFICATIONS

I, BRUNO KASPER, of 101-1990 West 6th Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of Alberta with a Bachelor of Science degree in Geology.
- 3. THAT my primary employment since June, 1988 has been in the field of mineral exploration.
- 4. THAT this report is based on fieldwork carried out under my direction.
- 5. THAT I have no interest, directly or indirectly, in the securities or property of Pass Lake Resources Ltd. and Great Western Gold Corp. or any of their affiliates.

DATED at Vancouver, British Columbia, this 5^{-h} day of <u>Movember</u>, 1991.

Bruno Kasper, Geologist

CB	Fe-carbonate	CL	chlorite	CP	chalcopyrite
EP	epidote	GL	galena	HE	hematite
MG	magnetite	PO	pyrrhotite	PY	pyrite
QZ	quartz				

.991 ROG		1	A. . . .	ml	a	
ample 09051	<u>Au (ppb)</u> 45	<u>Ag(ppm)</u> <0.2	<u>Cu(ppm)</u> 232	<u>Pb(ppm)</u> 36	<u>Zn (ppm)</u>	As(ppm)
09052	45	<0.2	202	2 S	22 52	<5 10
09053	<5	<0.2	143	<2	62	5
09054	<5	<0.2	32	<2	66	5
09055	<5	<0.2	11	12	26	10
09056	<5	<0.2	33	<2	22	10
09057	<5	<0.2	91	<2	44	<5
09066	<5	<0.2	7	10	6	<5
09067	<5	<0.2	97	<2	100	10
09068	<5	<0.2	6	<2	10	<5
09069	45	<0.2	102	<2	16	<5
09070	<5	<0.2	102	6	56	<5
09071	<5	0.6	700	<2	50	10
09072	<5	<0.2	24	<2	10	5
09073	<5	<0.2	42	<2	50	15
09074	<5	<0.2	47	<2	100	<5
09075	<5	1.6	914	<2	44	5
09076	<5	<0.2	162	<2	54	5
09081	<5	<0.2	121	76	52	10
09082	5	1.2	152	28	74	25
09083	10	16.6	765	3810	1955	<5
09084	30	<0.2	36	38	24	5
09085	<5	<0.2	132	12	62	5
09086	<5	<0.2	44	12	46	<5
09087	<5	2.6	35	1425	406	15
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.0	ر د.	114 1	100	
990 ROC ample	K SAMPLE Au(ppb)	ANALYSES Aq(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)	As(ppm)
65638	<5	<0.2	<u>99</u>	12	74	<5
65639	<5	<0.2	28	24	148	<5
65563	<5	<0.2	27	68	50	<5
65564	<5	0.4	84	26	324	<5
			54	20	247	~~
000 011	0 01.117 P	ANATVORO				
	T SAMPLE		(11 ()	Dh (nne)	Zn (nne)	Ag (nnm)
ample	Au (ppb)	Ag (ppm)	Cu(ppm)	Pb(ppm)	Zn (ppm)	As (ppm)
0AD-10	15	<0.2	53	2	40	5
		BOOK STATES -	00001000	(Ence Der		211 1060
		EOCHEMICAL		(From Daw	son and H	all, 1966)
ample	EDIMENT G Au(ppb)	EOCHEMICAL Ag(ppm)	Cu(ppm)	(From Daw	son and H	all, 1966)
ample SR1			<u>Cu(ppm)</u> 260	(From Daw	son and H	all, 1966)
ample SR1 SR2			<u>Cu(ppm)</u> 260 240	(From Daw	son and H	all, 1966)
ample SR1 SR2 SR3			<u>Cu(ppm)</u> 260 240 115	(From Daw	son and H	all, 1966)
ample SR1 SR2 SR3 SR4			Cu(ppm) 260 240 115 130	(From Daw	son and H	all, 1966)
ample SR1 SR2 SR3			<u>Cu(ppm)</u> 260 240 115	(From Daw	son and H	all, 1966)
ample SR1 SR2 SR3 SR4			Cu(ppm) 260 240 115 130	(From Daw	son and H	all, 1966)
ample SR1 SR2 SR3 SR4 SR5	Au (ppb) - - - - - -	<u>Ag (ppm)</u> - - - - -	<u>Cu(ppm)</u> 260 240 115 130 30	,		
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti	Au(ppb) - - - - - CAL ANALY .le Au(pp	<u>Ag(ppm)</u> - - - - - - SIS FOR GO b) <u>Ag(ppm</u>	<u>Cu(ppm)</u> 260 240 115 130 80 VERNMENT) Cu(ppm	REGIONAL) Pb(ppm	GEOCHEMIC) Zn (ppm	AL SAMPLES) As(ppm)
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th	Au(ppb) - - - - CAL ANALY le Au(pp 3	Ag (ppm) - - - - - - - - - - - - - - - - - - -	<u>Cu(ppm)</u> 260 240 115 130 80 VERNMENT) <u>Cu(ppm</u> 103	REGIONAL) Pb(ppm 16	GEOCHEMIC) Zn (ppm 133	AL SAMPLES) <u>As(ppm)</u> 17
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th	Au(ppb) - - - - CAL ANALY le Au(pp 3	Ag (ppm) - - - - - - - - - - - - - - - - - - -	<u>Cu(ppm)</u> 260 240 115 130 80 VERNMENT) <u>Cu(ppm</u> 103	REGIONAL) Pb(ppm 16	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) <u>As(ppm)</u> 17
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As(ppm) 17 29
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272	REGIONAL) Pb(ppm 16 22	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 500	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 500	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81))) T (
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 500	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au(ppb) - - - - - - - - - - - - - - - - - - -	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 500	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81))) T (
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 5000 R E S	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81 0 X F U X Z O
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 5000 R E S	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81 0 X F U X Z O
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 5000 R E S	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81 0 X F U X Z O
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au (ppb)	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 5000 R E S	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES As (ppm) 17 29 81 0 H H U M V M V M L O O C C C C C C C C C C C C C
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT) Cu (ppm 103 132 272 5000 R E S	REGIONAL) Pb(ppm 16 22 55	GEOCHEMIC) Zn (ppm 133 181 478	AL SAMPLES) As (ppm) 17 29 81 0 X F U X Z O
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES) As (ppm) 17 29 81 0 H H U M V M V M V M V M V M V M V M V
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES) As (ppm) 17 29 81 0 H H U M V M V M V M V M V M V M V M V
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES) As (ppm) 17 29 81 0 H H U M V M V M V M V M V M V M V M V
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES As (ppm) 17 29 81 0 H L U M V M V M V M V M V M V M V M V
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES As (ppm) 17 29 81 0 H L U M V M V M V M V M V M V M V M V
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb)	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S ERN	REGIONAL) Pb (ppm 16 22 55 55	GEOCHEMIC) Zn (ppm 133 181 478 	AL SAMPLES <u>As (ppm)</u> 17 29 81 H 2 0 H 1 0 0 H 1 0 H 1 0
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb) - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S TERN I 8	GOL	GEOCHEMIC) Zn (ppm 133 181 478 1000 D CC D CC CLA	AL SAMPLES <u>As (ppm)</u> 17 29 81 H 2 0 H 1 0 0 H 1 0 H 1 0
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb) - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S TERN I 8	GOL	GEOCHEMIC) Zn (ppm 133 181 478 1000 D CC D CC CLA	AL SAMPLES <u>As (ppm)</u> 17 29 81 H 2 0 H 1 0 0 H 1 0 H 1 0
ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb) - - - - - - - - - - - - -	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S TERN I 8	GOL	GEOCHEMIC) Zn (ppm 133 181 478 1000 D CC D CC CLA	AL SAMPLES <u>As (ppm)</u> 17 29 81 H J U U H J U U U U U H J U U U U U H J U U U U U U U U U U U U U U U U U U
Ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb) CAL ANALY Au (pp 3 23 00 EAT EAT REEC G	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S FERN I & OG CO Cu (ppm 103 132 272 600 Cu (ppm 103 132 132 132 132 132 132 132 13	GOL FBC (PPM 16 22 55 GOL #2 Y E	GEOCHEMIC) Zn (ppm 133 181 478 D CC D CC CLA 3	AL SAMPLES <u>As (ppm)</u> 17 29 81 H 2 0 H 1 0 0 H 1 0 H 1 0
Ample SR1 SR2 SR3 SR4 SR5 TATISTI ercenti 90th 95th 99th 99th	Au (ppb) CAL ANALY Au (pp 3 23 00 EAT EAT REEC G	Ag (ppm) 	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S FERN I & OG CO Cu (ppm 103 132 272 600 Cu (ppm 103 132 132 132 132 132 132 132 13	GOL FBC (PPM 16 22 55 GOL #2 Y E	GEOCHEMIC) Zn (ppm 133 181 478 D CC D CC CLA 3	AL SAMPLES <u>As (ppm)</u> 17 29 81 H J U U H J U U U U U H J U U U U U H J U U U U U U U U U U U U U U U U U U
o G G C C C C C C C C C C C C C	Au (ppb) CAL ANALY Au (pp 3 23 00 EAT EAT REEC G	Ag (ppm) - - - - - - - - - - - - -	Cu (ppm) 260 240 115 130 80 VERNMENT Cu (ppm 103 132 272 600 R E S FERN I & OG CO Cu (ppm 103 132 272 600 Cu (ppm 103 132 132 132 132 132 132 132 13	GOL FBC (PPM 16 22 55 GOL #2 Y E	GEOCHEMIC) Zn (ppm 133 181 478 D CC D CC CLA 3	AL SAMPLES <u>As (ppm)</u> 17 29 81 H J O H H J O H