ARIS SUMMARY SHEET

Di rict Geologist, Smithers

Off Confidential: 92.08.15

ASSESSMENT REPORT 21844

MINING DIVISION: Atlin

PROPERTY:

Maple Leaf

LOCATION:

LAT 58 56 00 LONG 133 48 00

UTM 08 6533039 569076

NTS 104K13W

CLAIM(S): Glacier Light 1-4

OPERATOR(S): American Bullion Min.

AUTHOR(S): Konkin, K.J. REPORT YEAR: 1991, 64 Pages

COMMODITIES

SEARCHED FOR: Gold, Silver, Copper, Lead, Zinc

KEYWORDS: Paleozoic, Gneisses, Schists, Quartzites, Sphalerite, Galena, Pyrite

Chalcopyrite

WORK

DONE:

Geochemical, Geophysical

EMGR 3.0 km; PEM

ROCK 75 sample(s); AU, AG, CU, PB, ZN
SILT 32 sample(s); AU, AG, CU, PB, ZN
SOIL 124 sample(s); AU, AG, CU, PB, ZN
Map(s) - 1; Scale(s) - 1:5000

LOG NOTOY	221991	RD.
ACTION:		
FILE NO:	A STATE OF THE STA	

GEOPHYSICAL GEOCHEMICAL SAMPLING REPORT PROPERTY MAPLE LEAF MO THE

> ATLIN MINING DIVISION N.T.S.: 104K/13

RECEIVED NOV - 5 1991

SUB-RECORDER

M.R. #\$..... VANCOUVER, B.C.

LATITUDE: 58° 56' NORTH LONGITUDE: 133º 48' WEST

AMERICAN BULLION MINERALS LTD. 15th Floor 675 West Hastings Street Vancouver, B.C. Canada V6B 1N2

BY: K.J. KONKIN, B.Sc., F.G.A.C.

OCTOBER, 199EOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

	Page No.
SUMMARY	
INTRODUCTION	2
Location and Access	2
Physiography and Climate	
Claim Status	
History	6
REGIONAL GEOLOGY	7
PROPERTY GEOLOGY	9
MINERALIZATION	9
ROCK GEOCHEMICAL SURVEY	11
SOIL AND SILT GEOCHEMICAL SURVEY	12
PULSE ELECTROMAGNETIC SURVEY (PEH)	15
CONCLUSIONS AND RECOMMENDATIONS	18
STATEMENT OF 1990 AND 1991 EXPLORATION EXPENDITURES	20
PROPOSED 1992 EXPLORATION EXPENDITURES	21
REFERENCES	22
STATEMENT OF QUALIFICATIONS	23

LIST OF FIGURES

Fig	ure No.	Page No.
1	LOCATION MAP	3
2	CLAIM MAP	5
3	REGIONAL GEOLOGY MAP	8
4	COMPILATION MAP	10
5	ROCK AND SILT GEOCHEMICAL MAP 3100, 3300 AND 3500 ZONE	back pocke
6	SOIL GEOCHEMICAL MAP	back pocke
. 7	SOIL GEOCHEMICAL PROFILE SECTION A-A'	13
8	SOIL GEOCHEMICAL PROFILE SECTION B-B'	14
9	CRONE PEM SURVEY VERTICAL COMPONENT	16
10	CRONE PEN SURVEY HORIZONTAL COMPONENT	17

LIST OF APPENDICES

I i	ANAL.	YT	ICAL	METI	HODS
-----	-------	----	------	------	------

- II ANALYTICAL RESULTS
- III SAMPLE LEDGERS
- IV GEOPHYSICAL SPECIFICATIONS

SLMMARY

The Maple Leaf Property, within the Tulsequah District in northwestern British Columbia is located 73 air-kilometers south of Atlin, B.C. Volcanogenic precious metal bearing polymetallic sulphides occur within a thick section of felsic volcanic rocks located 25 kilometers northwest of the Tulsequah Chief deposit. The Property covers a 5 kilometer strike length of favourable geologic setting hosting base and precious metal sulphides.

Preliminary prospecting has led to the discovery of several mineralized horizons. The "3100 Zone" consists of a 60 meter thick section of pyritic felsic volcanics with zones of volcanogenic sulphides associated with a siliceous exhalative unit. Large float blocks of banded sulphide grade to 5.14 g/T gold, 129.60 g/T silver, 11.25% zinc, 8.22% lead and 0.15% copper. The "3300 Zone" consists of a 100 meter thick section of pyritic felsic volcanics hosting a siliceous exhalative horizon containing disseminated and laminated zinc-lead mineralization that has been traced over a strike length of 1.0 kilometer. Preliminary mapping of both zones indicates that the thickness and grade of polymetallic sulphide mineralization is increasing with depth. A soil sampling survey outlined northwest trending coincident Au-Cu-Pb-Zn anomalies overlying favourable host units. A pulse electromagnetic survey delineated northwest trending conductors, suggesting the presence of sulphide horizons.

In summary, initial exploration has identified a new volcanogenic precious metal-bearing polymetallic sulphide system. Further exploration is warranted that would include drilling. The estimated cost of the proposed program is \$165,000.

INTRODUCTION

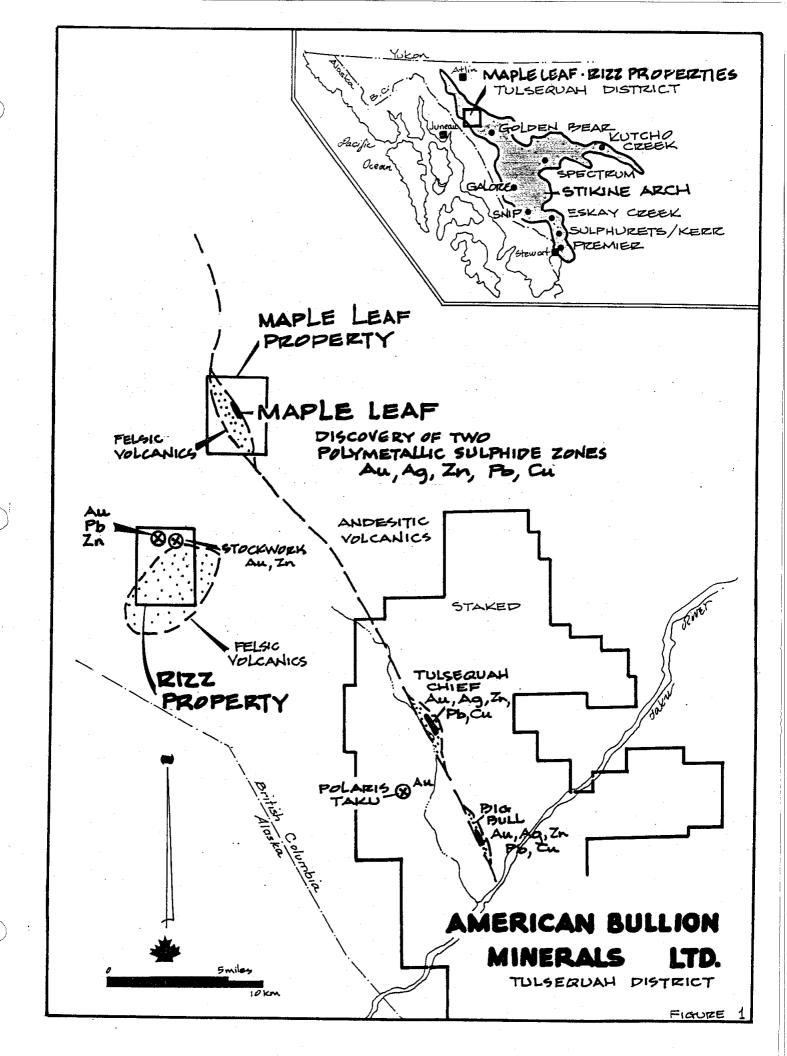
American Bullion Minerals Ltd., a mineral exploration company based in Vancouver, B.C., has completed preliminary exploration on the Maple Leaf Property. A two phase reconnaissance prospecting and rock geochemical sampling program was carried out during the months of August and September in 1990 with follow-up geochemical and geophysical surveys conducted during July, 1991. This report summarizes the work completed during the late 1990 and 1991 field seasons.

Location and Access

The Maple Leaf Property is located within the Atlin Mining Division in northwestern British Columbia, approximately 73 air-kilometers south-southwest of the town of Atlin, B.C. (see Figure 1). The Property is centered at coordinates 58°, 56' north latitude and 133°, 48' west longitude on N.T.S. map sheet 104 K/13.

Access to the Property is gained by helicopter from Atlin, B.C. Mobilization of camp equipment, drill rigs and machinery with fixed-wing aircraft is possible via Tulsequah airstrip located near the confluence of the Tulsequah and Taku Rivers approximately 35 air-kilometers southeast of the Maple Leaf Property.

Physiography and Climate


Although the topography of the Tulsequah district is generally composed of rugged, mountainous terrain, much of the Maple Leaf Property is within hummocky and gently sloping ground, allowing easy foot access over most of the grid area.

A small glacier belonging to the Tulsequah system cuts east-west through the center of the Property. This glacier has created a south facing, 183 m high cliff face that hosts recently discovered mineral showings. The elevation of the Property ranges from 640 m to 1932 m. Water is in plentiful supply during the summer field season as numerous small run-off streams drain the area. Several small lakes and ponds are also found throughout the Property.

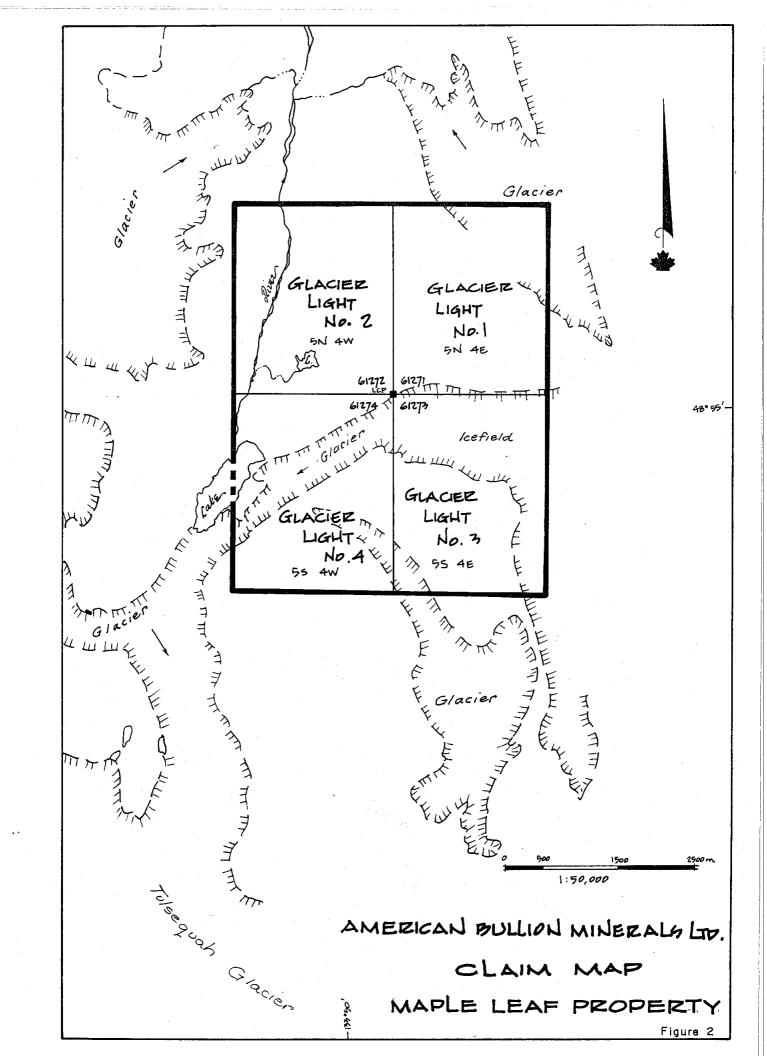
Timber supply is sparse with only a small stand of alpine fir located along the eastern edge of a 250 meter wide lake. Alpine grasses, mosses and lichens together with thick patches of dwarf fir and juniper are common throughout the entire property area while minor tag alder is restricted to lower elevations surrounding lakes and streams.

Precipitation is moderate to heavy, typical of the northern coastal region. Snowfall occurs in early October, limiting prospecting programs to a four month season.

Rock exposure on the Property varies from 35 to 40 percent outcrop with overburden varying in depth from one to two meters. The entire area has been glaciated but very little glacial till has been deposited. Due to the recent recession of glacial activity, only poorly developed "C" horizon soils exist.

Claim Status

The Maple Leaf Property is wholly owned by American Bullion Minerals Ltd. The four contiguous, modified-grid, mining claims were staked by the company as the Glacier Light #1-4 claims (see Figure 2). The claims, located within the Atlin Mining Division, are summarized below:


CLAIM NAME	RECORD NUMBER	RECORDING DATE	DUE DATE	NO. UNIT	
Glacier	-				
Light #1	4312	Aug. 18/90	Aug. 18, 1994	20	
Glacier					
Light #2	4313	Aug. 18/90	Aug. 18, 1994	20	
Glacier					
Light #3	4314	Aug. 18/90	Aug. 18, 1994	20	
Glacier					
Light 34	4315	Aug. 18/90	Aug. 18, 1994	20	
			Total Units	80	

Personnel and Operations

A two phase prospecting and reconnaissance rock geochemical program was carried out during August and September of 1990 by American Bullion Minerals Ltd. personnel. The exploration crew included:

NAME	<u>POSITION</u>	<u>PERIOD</u>	DAYS
John Brock	President	Sept. 09 - 11, 1990	3
Wayne Roberts	Vice-President, Expl.	Sept. 09 - 11, 1990	3
Peter Risby	Prospector	Sept. 09 - 11, 1990	3
Dave Heino	Prospector	Aug. 28 - Sept. 12, 1990	16
Ken Konkin	Project Geologist	Aug. 28 - Sept. 12, 1990	16

Equipment and crew were mobilized utilizing a Bell 206 helicopter contracted from Discovery Helicopters based in Atlin, B.C. Food and supplies were also obtained in Atlin.

During the 1991 field season, American Bullion Minerals Ltd. personnel conducted a rock sampling and grid soil geochemical survey. Euro-Canadian Geological Services Inc. was contracted to complete 3.0 km of pulse electromagnetic survey (PEM). Personnel included the following:

NAME	POSITION	PERIOD	<u>DAYS</u>
Ken Konkin	Project Geologist	July 14 - 29, 1991	16
Howie Ridge	Geological Assistant	July 14 - 29, 1991	16
Marcus Sayward	Geophysicist	July 23 - 26, 1991	4

Crew and equipment were mobilized to the Tulsequah airstrip by a fixed-wing Cessna 207 aircraft from Atlin, B.C., then to the Property via a 206 helicopter. Rock, soil and silt samples were shipped to Min-En Labs in Smithers for analysis. Wayne Roberts, Vice President of Exploration for American Bullion Minerals Ltd., supervised all field operations.

History

The Maple Leaf Property is a new discovery and has no previous history of exploration. The Tulsequah area although has a long history of mining and exploration dating back to the discovery of the Polaris-Taku, Tulsequah Chief and Big Bull Mines in the 1920's. The Polaris-Taku produced 760,000 tons of ore yielding 231,000 ounces gold, 12,000 ounces silver and 90 tons of copper during eleven years of operation. Combined production from the Tulsequah Chief-Big Bull Mines total 1,029,089 tons yielding 94,254 ounces gold, 3,400,773 ounces silver, 13,603 tons copper, 13,463 tons lead, 62,346 tons zinc and 227 tons cadminum. Reserves of the Tulsequah volcanogenic massive sulphide deposit currently being explored by Redfern Resources are reported at 8.6 million tons grading 1.65% Cu, 1.2% Pb, 6.5% Zn, .08 opt Au and 3.2 opt Ag.

REGIONAL GEOLOGY

A major unconformity divides the layered rocks in the Tulsequah map—area into two broad divisions. The first includes Precambrian to Triassic rocks of the Atlin Horst and Stikine Arch. The second division of rocks are younger Mesozoic sedimentary and volcanic rocks lying between the Stikine Arch and Atlin Horst. Much of the western part of the 1:250,000 scale map—area is underlain by granitic rocks of the Coast Crystalline Belt. (see Figure 3).

Near the Canadian-USA border the rocks are mostly Paleozoic age metamorphics intruded by Cretaceous-Tertiary age granitic Coast Plutonic Complex. Late Paleozoic age andesitic units predominately underlie the district near the Taku-Tulsequah River confluence, while metamorphosed felsic volcanics and sediments are encountered within the property area.

Unconformably overlying the late Paleozoic volcanics are the Upper Triassic Stuhini Group volcanic and volcanoclastic units. These rocks are in turn overlain by late Cretaceous and early Tertiary Sloko Group intermediate volcanics and derived sediments. The eastern region of the Tulsequah map-area is overlain by flat-lying late Tertiary and Pleistocene basalt.

Structurally, three major episodes of tectonic activity are documented in the Tulsequah map-area. The three episodes, culminating in mid-Triassic, Upper Jurassic and early Tertiary time, left major unconformities. The oldest mid-Triassic Tahltanian Orogeny was a time of uplift, folding, regional metamorphism and granitic intrusion. It preceded the Upper Triassic period of volcanism and clastic sedimentation. Folding and deformation of the Tahltanian Orogeny was partly masked by younger less intense folds of Upper Jurassic age. Tectonic structures related to the early Tertiary deformation can only be observed where Sloko Group rocks are affected.

The northwesterly trending King Salmon Thrust Fault and Nahlin Faults are located in the northeast corner of the Tulsequah map-area. The area is predominantly underlain by clastic sediments of Jurassic age Laberge Group and limestone of Upper Triassic age Sinwa Formation.

Maple Leaf PROPERTY MT HANEY

LEGEND

QUATERNARY
PLEISTOCENE AND RECENT

Fluviatile gravel, sand, silt; glacial outwash, till, alpine moraine and undifferentiated colluvium; 19a, landslides

TERTIARY AND QUATERNARY LATE TERTIARY AND PLEISTOCENE LEVEL MOUNTAIN GROUP

Basalt, olivine basalt, related pyroclastic rocks; in part younger

HEART PEAKS FORMATION: rusty-weathering trachyte and rhyolite flows, pyroclastic rocks, and related intrusions

CRETACEOUS AND TERTIARY LATE CRETACEOUS AND EARLY TERTIARY SLOKO GROUP

Light green, purple and white rhyolite, dacite, and trachyte flows, pyroclastic rocks, and derived sediments

Probably genetically related to 14; 6 15. Feisite, quartz-feldspar porphyry 16. Medium- to coarse-grained, pink

PRE-LIPPER CRETACEOUS

CENTRAL PLUTONIC COMPLEX: granodiorite, quartz diorite: minor diorite, leuco-granite, migmatite and agmatite; age and relationship to 12 uncertain

JURASSIC AND/OR CRETACEOUS POST MIDDLE JURASSIC

12a, hornblende-biotite granodiorite; 12b, biotite-hornblende quartz diorite; 12c, hornblende diorite; 12d, augite diorite. Age and relationship to 13 uncertain

JUBASSIC

LOWER AND MIDDLE JURASSIC

LABERGE GROUP (10, 11)

TAKWAHONI FORMATION: granite-boulder conglomerate, chert-pebble conglomerate, greywacke, quartzose sandstone, siltstone, shale

INKLIN FORMATION: well bedded greywacke, graded siltstone and silty sandstone, pebbly mudstone, limy pebble conglomerate; 10a, limestone

TRIASSIC

LIPPER TRIASSIC

SINWA FORMATION: limestone; minor sandstone, argillite, chert

7. Mainly volcanic rocks; andesite and basalt flows, pillow lava, volcanic braccia and agglomerate, lapilli tuff; minor volcanic sandstone, greywacke, and siltstone B. KING SALMON FORMATION: thick bedded, dark greywacke, conglomerate, mudstone, siltstone, and shale; minor andesitic lava, volcanic breccia, tuff, limestone, limy shale; locally enclosed in 7

LOWER OR MIDDLE TRIASSIC (?)

STUHINI GROUP (7-8)

Fine- to medium-grained, strongly foliated diorite, quartz diorite; and minor oranodiorite: age uncertain

TRIASSIC AND EARLIER PRE-UPPER TRIASSIC

Fine-grained, clastic sediments and intercalated volcanic rocks, largely altered to greenstone and phyllite, chert, jasper, greywacke, limestone, 4a, mainly chert, slate, argillite; minor greenstone; 4b, mainly green stone; 4c, limestone, may include

Quartz-albite-amphibole gneiss; quartz-biotite schist, garnetilerous schist, augen gneiss, tremolite marble; mainly metamorphosed equivalents of 3 and 4, may be in part older than 3

PERMIAN

Chiefly limestone and dolomitic limestone; minor chert, argillite, sandy limestone

PERMIAN (?)

May not all be of the same age
1. Peridotite, serpentite, small irregular bodies of gabbro and 2. Fine- to medium-grained gabbro and pyroxene diorite

Diorite gneiss, amphibolite, migmatite; age unknown

NOTE: Geology: After Souther 1971 Tulsequan and : Map 1262 Juneau Geology: Map 1262A

AMERICAN BULLION MINERALS LTD.

15th Floor, 675 W. Hastings Street, Vancouver, B.C., Canada V6B 1N2 Facsimile (604) 687-2419 Telephone (604) 687-4951

MAPLE LEAF PROPERTY

GEOLOGY MAP

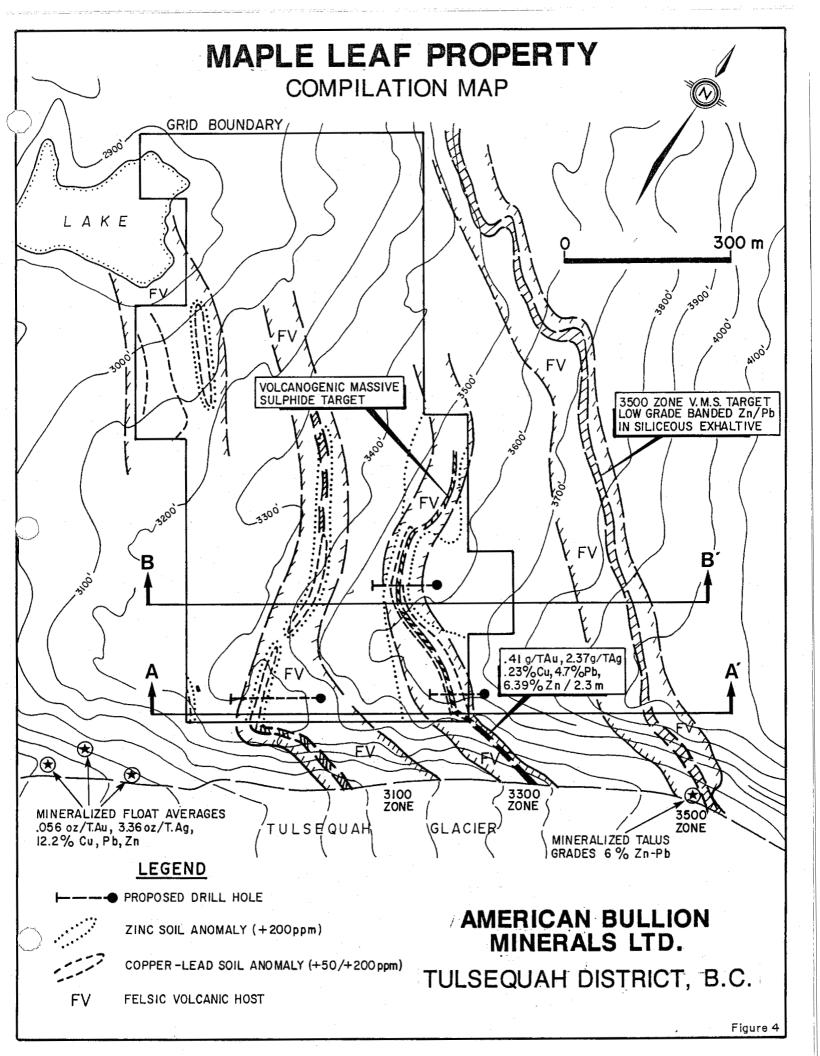
ATLIN MINING DNISION

NTS: 104K/17 Geology by : Drawn by: V. Hutchings Scale: 1:250,000

PROPERTY GEOLOGY

The Maple Leaf Property is largely underlain by regionally metamorphosed sedimentary and volcanic rock units of Paleozoic age. Rock types consist of finely laminated quartz-feldspar-mica gneiss and schist along with micaceous quartzite interlayered with lesser amounts of fine-grained hornblende-biotite-chlorite schist and quartz-sericite schist. Strong crenulation cleavage is exhibited within various schistose units particularly the sericite schist. Andesite dykes to several meters thick with vertical dips trend parallel to the north-northwest trending metamorphic foliation.

The host rock containing volcanogenic sulphide mineralization is an intensely altered sericite—schist, that is locally highly silicified. This sericite schist appears to be a metamorphosed felsic volcanic containing a siliceous exhalative with polymetallic sulphide mineralization (see Figure 4).


A least three distinct felsic volcanic exhalative horizons occur on the Property; the 3100, 3300 and 3500 zones. The zones are characteristically yellow-orange iron stained, and gossaneous in outcrop. The felsic volcanics are observed to be underlain by meta-sediments interfingered with intermediate meta-volcanics and overlain by meta-andesites. The felsic volcanics are up to 100 meters in thickness and traceable for over 1000 meters along strike. Rock units trend northwest and dip moderately to the east.

HINERALIZATION

Mineralization occurring on the Maple Leaf Property consists of volcanogenic polymetallic sulphides in a siliceous exhalative host. Sulphides observed in float and outcrop include pyrite, sphalerite, galena, and chalcopyrite. The polymetallic sulphide mineralization occurs as disseminated massive, brecciated and banded styles within three horizons. The most impressive and abundant mineralization has been found in large float boulders down ice west of the mineralized zones.

A small basin, located approximately 800 m west of the cliff face, containing the discovery showing, has many transported, mineralized boulders. Systematic grab and chip sampling of 18 boulder samples averaged 1.92 g/T Au, 115.20 g/T Ag, .17% Cu, 5.10% Pb, and 6.90% Zn. Values as high as 5.14 g/T Au, 129.60 g/T Ag, 11.25% Zn, 8.22% Pb and .15% Cu were obtained from the boulder sampling. (see Figure 5).

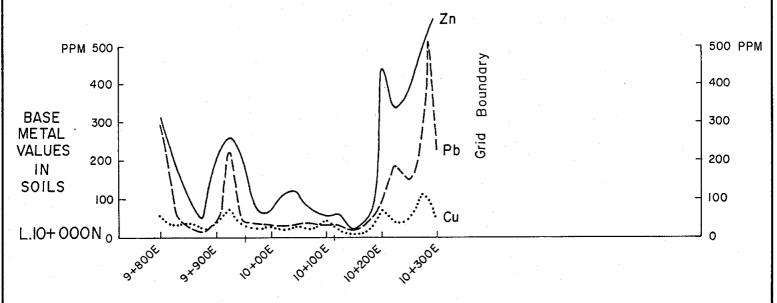
A 2.3 meter wide channel cut taken from the upper portion of 3300 Zone in the discovery showing yielded values of .41 g/T Au, 81.26 g/T Ag, .225% Cu, 4.67% Pb and 6.27% Zn. A grab sample taken from the same zone yielded .96 g/T Au, 112.46 g/T Ag, .226% Cu, 6.16% Pb and 7.68% Zn. As this showing is located on a steep cliff face, additional follow-up sampling would require the use of mountaineering gear.

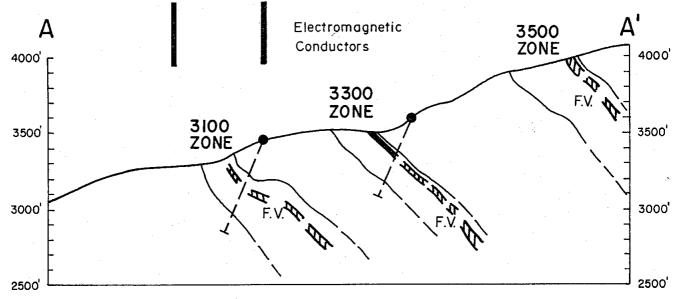
ROCK GEOCHEMICAL SURVEY

During the 1990 and 1991 field seasons a total of 75 rock samples were collected from float boulders and outcrop located on the Maple Leaf Property. Samples were shipped to Min-En Labs and analysed for gold, silver, copper, lead and zinc. Figure 5 illustrates sample locations and assay values. Analytical data and individual sample descriptions are given in the appendicies.

Sampling has been minimal along the cliff faces of the 3100 and 3300 Zone and has not been attempted along the 3500 Zone cliff face. The cliff face should be sampled by personnel utilizing mountaineering gear. A channel cut was taken from the upper contact zone of the 3300 zone. Semi-massive to disseminated sphalerite and galena with disseminated pyrite and chalcopyrite was present in a silicified felsic volcanic host. The sulphides occurr in deformed lenses within a leached crenulated, schistose, sericite altered host. Continued saw-cut channel sampling is recommended for sampling the smooth, glaciated cliff face. Systematic sampling of glacially deposited brecciated and layered, semi-massive polymetallic sulphides, hosted by large (up to 1.5 m wide) silicified felsic volcanic boulders west of the 3100, 3300 and 3500 Zones, suggests the source of the mineralization to be from the cliff face. Further prospecting and detailed sampling of the cliff face is recommended.

SOIL AND SILT GEOCHEMICAL SURVEYS


During the 1991 field season, a total of 124 soil samples were collected from 25 meter stations on lines spaced 200 meters apart. Soil horizon development is poor. Generally, a thin humus layer covers a grey, pale brown "C" soil horizon containing small rock fragments.


Soil samples were shipped to Min-En Labs and were analysed by atomic absorption for gold, copper, lead and zinc. Several coincident multielement anomalies are present over the felsic, volcanic host unit. The soil geochemical anomalies are shown in plan view on Figure 6 while Figures 7 and 8 demonstrate the anomalous nature of the felsic volcanic exhalative zones along sections A-A' and B-B'. The multielement anomalies coincide with northwesterly lithological and structural trends on the Property. Unfortunately the grid was not extended far enough to the east to cover the projected extension of the 3500 Zone mineralization.

The 3100 and 3300 Zones are both reflected by a 400 meter-long copper-lead-zinc soil anomaly overlying the favourable felsic volcanic horizons. The zinc anomaly outlining the 3300 Zone is "open" beyond the limits of the sampled area.

During the 1990 and 1991 field seasons, a total of 32 silt samples were taken from various small streams within and beyond the limits of the Property. Analytical results are plotted on Figure 5. The silt samples were analysed for gold, silver, copper lead and zinc by Min-En Labs. The lack of anomalous values obtained during this program is most likely attributable to the recent glacial melt and absence of erosion.

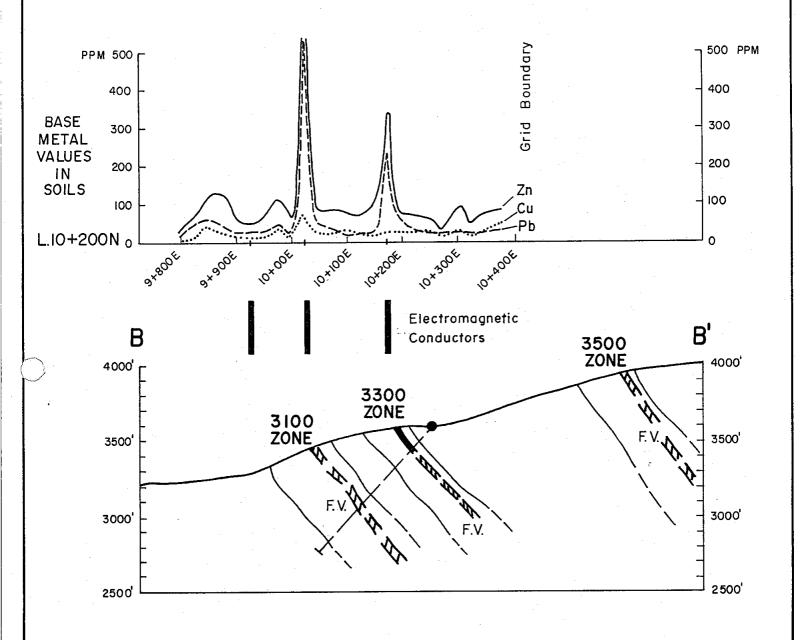
MAPLE LEAF PROPERTY SECTION A-A'

PROPOSED DRILL HOLE

- III

VOLCANOGENIC MASSIVE SULPHIDE TARGET

F۷


FELSIC VOLCANIC HOST

O 300 m

AMERICAN BULLION MINERALS LTD.

TULSEQUAH DISTRICT, B.C.

MAPLE LEAF PROPERTY SECTION B-B'

PROPOSED DRILL HOLE

VOT.

VOLCANOGENIC MASSIVE SULPHIDE TARGET

۴V

FELSIC VOLCANIC HOST

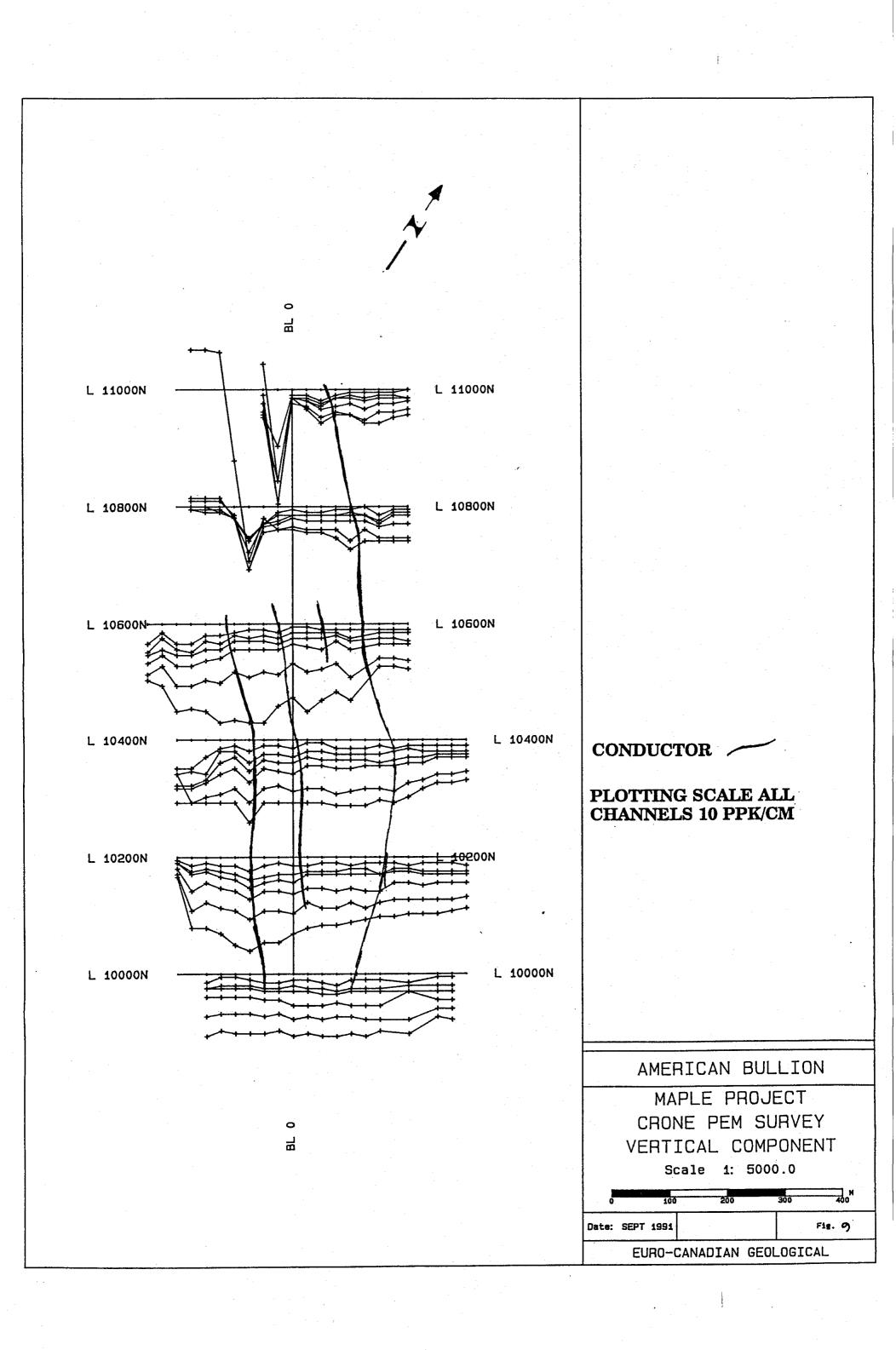
0 300 m

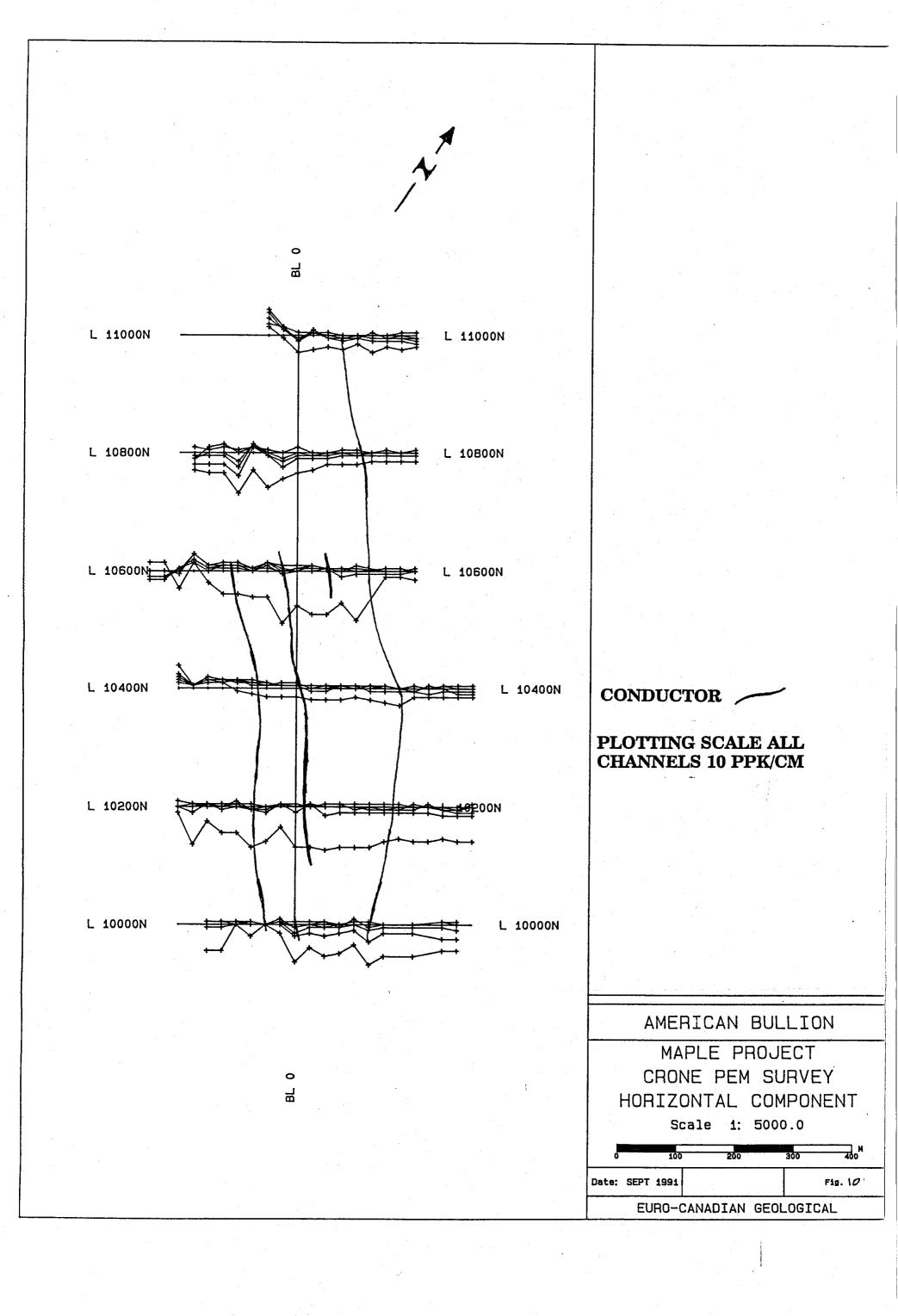
AMERICAN BULLION MINERALS LTD.

TULSEQUAH DISTRICT, B.C.

PULSE ELECTROMAGNETIC SURVEY (PEM)

In late July 1991 a test Crone PEM survey was conducted on the American Bullion Maple Project in an attempt to trace the extent of polymetallic massive sulphide horizons found in outcrop on a cliff face. Six 500 meter long lines with 200 meter spacings were completed. Station Readings were taken at 25 meter intervals.


The Crone Pulse Electromagnetic system is a time domain E.M. system which can be used in the standard horizontal loop mode. The primary field for the standard horizontal loop method is produced by a portable transmitter loop of 6, 10, or 50 meters diameter. A depth of search of approximately 75% of the separation is obtainable due to the high sensitivity of the receiver system. As measurements of the time derivative of the secondary field occur during primary field off time the method is relatively free from geometrical restrictions. Interpretation is accomplished with the aid of Slingram horizontal loop curves.


The primary field for the 2000 watt fixed source system is provided by a 500 by 1000 meter transmitter loop. A 150 by 150 meter loop is used with the 500 watt system. The time derivative of the secondary field resulting from the presence of a conductor is sampled during eight windows on the decay curve, during the primary field off time. These eight channels of secondary field

information are equivalent to a wide spectrum of frequencies from approximately 2KHz to 16 KHz thus allowing conductor character and strength determination. The vertical and horizontal components are obtained at each station on the traverse, using the convention of vertical component positive upwards and horizontal component positive away from the transmitter loop. In areas of high surficial conductivity the primary field on time of 10.8 ms and the receiver delay times may be doubled in order to obtain late time information. Time is received by radio or cable link.

The apparent primary field information is recorded at each occupied station. Normalization of the data with respect to instrument gain produces a constant gain plot. In this format a vertical plate-like conductor anomaly would be symmetric. Normalization with respect to the apparent primary field at each station provides a constant primary field plot that is useful in recognizing conductors in the far primary field and in correlating anomaly amplitudes from line to line. The anomalies lose symmetry in this format but the condition of anomaly amplitude dependence on distance from the loop is relaxed. In the case of stacked profiles on plan maps it is practical to use advantages of both of these methods and plot a constant gain profile normalized to the apparent primary field at the station near the conductor axis. This facilitates the correlation of conductors from line to line at varying distance in coverage from several transmitting loops.

Both the vertical and horizontal component of the transient electromagnetic signal were recorded and are presented as stacked profiles in Figures 9 and 10. The electromagnetic anomalies coincide with the soil geochemical anomalies (see Fig. 7 and 8).

The polymetallic massive sulphide targeted by this survey contains a very high percentage of sphalerite. Sphalerite is a poorly conducting sulphide resulting in poor conductivity—thickness constants even when large conductors are present. Several weak near surface (within 25 m) conductors were located by the survey. The conductors strike generally grid north—south. These conductors may be a response of massive sulphide, shear zones an/or graphite. The proximity of known massive sulphide outcroppings increases the likelihood of a massive sulphide source.

CONCLUSIONS AND RECOMMENDATIONS

American Bullion Minerals' prospecting crews have discovered a large volcanogenic sulphide system within the Tulsequah District in northwestern British Columbia. Volcanogenic precious metal bearing polymetallic sulphides occur within a thick section of felsic volcanic rocks. Three zones of yellow-stained felsic volcanics are structurally underlain by sediments with interfingering intermediate volcanics and overlain by intermediate volcanics. All units trend northwest and dip moderately to the northeast. The mineralization found by American Bullion is an original discovery, there being no other evidence of prior exploration.

The 3300 Zone consists of a 100 meter thick section of pyritic felsic volcanics with zones of volcanogenic sulphides associated with a siliceous exhalative unit. Prospecting along the discovery showing has identified mineralized horizons of polymetallic sulphides. A channel sample taken across

the 3300 Zone yielded a 2.3 meter thick horizon of massive sulphides assayed .41 g/T Au, 81.26 g/T Ag, .23% Cu, 4.7% Pb and 6.3% Zn. The 3100 Zone has been traced along surface for over 460 meters. Within the area of the 3100 Zone hundreds of large float blocks of banded sulphide have been found that grade of 5.14 g/T Au, 128.60 g/T Ag, 0.15% Cu, 8.22% Pb, and 11.25% Zn. Assays from systematic chip sampling of 18 blocks averaged 1.92 g/T Au, 115.20 g/T Ag, 0.17% Cu, 5.12% Pb and 6.9% Zn.

A preliminary soil sampling grid has outlined a 400 meter long copper, lead and zinc geochemical anomaly overlying the favourable horizon. Anomalous zinc response has been outlined for over 600 meters and continues beyond the limits of the grid. Additional coincident copper, lead and zinc anomalies outlined suggest potential for additional sub-parallel zones of mineralization. A test survey of deep penetrating Pulse EM has also defined weak conductors within the favourable horizons.

The 3500 Zone occurs in a cliff forming area 120 meters above the 3300 Zone and consists of 100 meter thick section of pyritic felsic volcanics. These felsic rocks host a siliceous exhalative horizon containing disseminated and laminated zinc-lead mineralization that has been traced over a strike length of 1.0 km. Preliminary sampling of banded sulphides near the discovery showing yielded assays of 6% combined zinc-lead and 75.43 g/T Ag. It is recommended that the soil grid be extended 400 meters to the east to outline the mineralized horizon in the 3500 Zone. The area should also be further prospected, sampled and mapped.

Mapping along the 200 meter high bluff that contains the 3100, 3300, and 3500 Zones indicate that the thickness and grade of polymetallic sulphide mineralization is increasing with depth.

Preliminary targetting programs have outlined several horizons of precious metal bearing volcanogenic massive sulphide mineralization within felsic volcanics. Mapping, sampling and geochemical soil sampling have indicated strike lengths in excess of 1.0 km. Attractive gold, silver, copper, lead and zinc grades indicate excellent opportunity for discovery of a multi-million ton volcanogenic massive sulphide deposit.

A three hole, 450 meter diamond drill hole program is recommended to test for polymetallic mineralization in the 3100 and 3300 Zones during the 1992 field season. The estimated cost of the 1992 exploration program is \$165,000.

STATEMENT OF 1990 AND 1991 EXPLORATION EXPENDITURES

(During the period September 19, 1990 - July 31, 1991)

Exploration Function	Expenditures
Analysis - Geochemical	\$ 2,223.00
Analysis - Assays	2,292.95
Accommodation	3,771.89
Consulting - Geological	5,920.00
Maps, Prints, Drafting	1,412.06
Expediting, Telephone	987.22
Equipment - Lease, Rentals	221.52
Equipment - Consumables	261.24
Fuel	266.05
Salaries & Wages	20,315.90
Surveys - Geological	3,450.00
Transportation - Airlines	271.38
Transportation - Fixed Wing	2,370.59
Transportation - Helicopter	27,234.73
Transportation - Vehicle	873.84
Transportation - Freight	137.3 9
Project Management Paid	1,148.45
TOTAL EXPENDITURES	\$73 <u>,158.21</u>

PROPOSED 1992 EXPLORATION EXPENDITURES

EXPLORATION FUNCTION	ESTIMATED COST
ν.	
•	\$ 10,000
Assays	8,000
Accommodation	9,000
Consulting - Geological	2,000
Consulting - Metallurgical	3,000
Drafting	2,500
Expediting	45,000
Drilling Equipment - Consumables	2,000
Fuel	2,500
Property Maintenance	2,500
Salaries and Wages	17,400
Transportation - Airlines	5,200
Transportation - Fixed Wing	5,500
Transportation - Helicopter	30,000
Transportation - Vehicle	1,000
Transportation - Freight	2,000
Drill Site Preparation	3,000
mili olve i aparavio.	
Subtotal	150,100
Project Management	14,900
Total	<u>\$165,000</u>

REFERENCES

- Adamson, R.S., (1987) Report on the Tulsequah Properties Taku River, B.C., Orcan Mineral Associates Ltd.
- B.C.M.E.P.R., (1929 1957) Tulsequah Chief, Big Bull and Polaris Taku Mines.
- Brock, J.S. (1990) Maple Leaf Property, A New Volcanogenic Sulphide Discovery, American Bullion Minerals Ltd., Private Report.
- Greig, J.A. (1990) The Tulsequah Chief Massive Sulphide Project, Northwestern B.C., Summary Report.
- Roberts, W.J. (1991) Exploration Proposal, Maple Leaf Project, American Bullion Minerals Ltd, Private Report.
- Sayward, M., (1991) Pulse Electromagnetometer Survey, Maple Leaf Property, Atlin, B.C., Private Report.
- Souther, J.G., (1971) Geology and Mineral Deposits of Tulsequah Map-Area, British Columbia, Memoir 362.
- Souther, J.G., (1971) Tulsequah and Juneau Geology Map 1262A, 1:250,000.
- Stokes, W.P. (1988) Polaris-Taku Mine, Geological Review and Exploration Program Summary Report, Atlin, B.C., Beacon Hill Consultants Ltd. for Suntac Minerals Corp.

STATEMENT OF QUALIFICATIONS

- I, KENNETH J. KONKIN, Geologist, resident at 4117 Burkeridge Place, in the City of West Vancouver, in the Province of British Columbia, hereby certify that:
 - I received a Bachelor of Science degree in Geology from the University of British Columbia in 1984.
 - 2) I am a Fellow of the Geological Association of Canada (#F5743).
 - Since 1980, I have been involved with numerous mineral exploration programs throughout Canada and the United States of America.
 - 4) I am a consulting geologist working on behalf of American Bullion Minerals Ltd.
 - 5) This report is based on a review of reports, documents, maps, other technical data, and on my field work carried out during August and September, 1990 and July, 1991.
 - 6) I hold no direct or indirect interest in the property, nor in any securities of American Bullion Minerals Ltd. or in any associated companies, nor do I expect to receive any.

October 30, 1991 Date

K.J. Konkin, B. Sc., F.G.A.C

APPENDIX I

ANALYTICAL METHODS

PHONE: (604) 980-5814 (604) 988-4524

TELEX: VIA USA 7601067

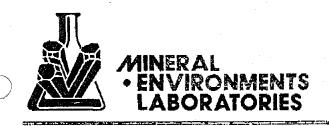
FAX: (604) 980-9621

GOLD ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.


ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK
PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

ANALYTICAL PRECEDURE REPORT FOR ASSESSMENT WORK:
PROCEDURE FOR WET GOLD GEOCHEMICAL ANALYSIS

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

5.00 grams of sample is weighed into porcelain crucibles and cindered @ 800 C for 3 hours. Samples are then transferred to beakers and digested using agua regia, diluted to volume and mixed.

Further oxidation and treatment of 75% of the above solution is then extracted for gold by Methyl Iso-butyl Ketone.

The MIBK solutions are analyzed on an atomic absorption spectrometer using a suitable standard set.

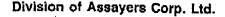
PHONE: (604) 980-5814 (604) 988-4524

TELEX: VIA USA 7601067

FAX: (604) 980-9621

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR TRACE ELEMENT ICP


Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:
PROCEDURE FOR AG, CU, PB, ZN, NI, CO OR CD GEOCHEM

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analysed on atomic absorption spectrometers using the appropriate standard sets. A background correction can be applied to Ag, Pb, and Cd if requested.

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067

FAX: (604) 980-9621

APPENDIX II
ANALYTICAL RESULTS

SEP 2 5 1990

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

<u>Certificate</u> Geochemical Analysis

OV-1472-RG1

Company:

AMERICAN BULLION

Date: SEP-19-90

Project:

MAPLE LEAF/RECONN

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

WAYNE ROBERTS

We hereby certify the following Geochemical Analysis of 10 ROCK samples submitted SEP-17-90 by W.ROBERTS.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	PB PPM	ZN PPM	
11501	61	13.6	110	1900	68	
11502	525	20.9	15000	3350	690	
11503	2	1.6	445	64	67	
11504	6 .	2.4	49	42	36	
11505	7	9.4	30	4400	4750	
11504	3	0.9	70	182	425	
11507	4	1.4	40	1060	1450	
11508	2	0.9	20	32	82	
11551	1	1.3	.80	33	69	
11556	4	1.6	31	27	94	

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

Assay Certificate

0V-1472-RA1

Company:

AMERICAN BULLION

Date: SEP-18-90

Project:

MAPLE LEAF/RECONN

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn: WAYNE ROBERTS

We hereby certify the following Assay of 10 ROCK samples submitted SEP-17-90 by W.ROBERTS.

Sample Number	AU g/tonne	AU oz/ton	AG g/tonne	AG oz/ton	CU %	PB %	ZN %
11557	.01	.001	نت نب پست سے نمی تخلق دیا ہے کہ جہ د				
11558	.10	.003	4.0	1.12	.038	.06	.06
11559	.02	.001	195.0	5.69	.140	. 65	32.90
11560	.07	.003	8.1	.24	.277		
11561	.01	.001	2.2	.06			
11562	.02	,001	1.8	.05			
11563	.01	.001	0.5	.01			
11564	.01	.001	1.0	.03			
11565	.01	.001	1.1	.03			
11566	5.65	.165	342.0	9.78	.298	5.85	.02

Certified by

SEP 1 8 1990

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

Assay Certificate

OV-1435-RA1

Company:

AMERICAN BULLION

Date: SEP-14-90

Project:

MAPLE LEAF R122

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Assay of 24 ROCK samples submitted SEP-12-90 by JOHN BROCK.

Number g/tonne oz/ton g/tonne oz/ton % % 11509 .01 .001 .06 .02 .003 .01 .0 11510 .44 .013 10.2 .30 .039 .02 .6 11511 .05 .001 4.1 .12 .014 .01 .1 11512 .03 .001 1.8 .05 .008 .01 .0 11513 11.04 .322 5.6 .16 .001 .01 .0 11514 *86.25 .182 405.0 11.81 .076 17.40 6.7 11515 .22 .006 49.9 1.46 .008 2.04 3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34	Sample		AU	AU	AG	AG	CU	PB	ZN
11510 .44 .013 10.2 .30 .039 .02 .6 11511 .05 .001 4.1 .12 .014 .01 1.1 11512 .03 .001 1.8 .05 .008 .01 .0 11513 11.04 .322 5.6 .16 .001 .01 .0 11514 *46.25 .182 .405.0 .11.81 .076 .17.40 .6.7 11515 .22 .006 .49.9 1.46 .008 2.04 .3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 .46.0 1.34 .028 2.26 1.1 519 1.32 .039 .91.0 2.65 .017 3.94 6.6 .1520 .18 .005 .25.7	1		g/tonne	oz/ton	g/tonne	oz/ton	% 	%	<u> </u>
11510 .44 .013 10.2 .30 .039 .02 .6 11511 .05 .001 4.1 .12 .014 .01 1.1 11512 .03 .001 1.8 .05 .008 .01 .0 11513 11.04 .322 5.6 .16 .001 .01 .0 11514 *6.25 .182 .405.0 11.81 .076 17.40 6.7 11515 .22 .006 .49.9 1.46 .008 2.04 3.3 11516 .5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 .46.0 1.34 .028 2.26 1.1 519 1.32 .039 .91.0 2.65 .017 3.94 6.6 .1520 .18 .005 .25.7	11509		.01	.001	0.6	.02	.003	.01	.01
11511 .05 .001 4.1 .12 .014 .01 1.1 11512 .03 .001 1.8 .05 .008 .01 .0 11513 11.04 .322 5.6 .16 .001 .01 .0 11514 *6.25 .182 405.0 11.81 .076 17.40 6.7 11515 .22 .006 49.9 1.46 .008 2.04 3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 .25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 <t< td=""><td></td><td></td><td>. 44</td><td>.013</td><td>10.2</td><td>.30</td><td>.039</td><td>.02</td><td>.67</td></t<>			. 44	.013	10.2	.30	.039	.02	.67
11512 .03 .001 1.8 .05 .008 .01 .0 11513 11.04 .322 5.6 .16 .001 .01 .0 11514 *6.25 .182 405.0 11.81 .076 17.40 6.7 11515 .22 .006 49.9 1.46 .008 2.04 3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 <			.05	.001	4.1	.12	.014	01	1.10
11514 *6.25 .182 405.0 11.81 .076 17.40 6.7 11515 .22 .006 49.9 1.46 .008 2.04 3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1520 .18 .005 25.7 .75 .593 .87 1.6 .1521 2.35 .069 230.0 6.71 .790 9.82 11.5 .1522 .61 .018 70.5 2.06 .042 4.03 7.9 .1523 1.93 .056 <td></td> <td></td> <td>.03</td> <td></td> <td></td> <td>.05</td> <td>.008</td> <td>. O1</td> <td>.02</td>			.03			.05	.008	. O1	.02
11515 .22 .006 49.9 1.46 .008 2.04 3.3 11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 .1510 .18 .005 .25.7 .75 .593 .87 1.6 .1521 .235 .069 .230.0 6.71 .790 9.82 11.5 .11522 .61 .018 70.5 2.06 .042 4.03 7.9 .11523 .193 .056 .157.0 <td>11513</td> <td></td> <td>11.04</td> <td>.322</td> <td>5.6</td> <td>.16</td> <td>.001</td> <td>.01</td> <td>.01</td>	11513		11.04	.322	5.6	.16	.001	.01	.01
11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 </td <td>11514</td> <td></td> <td>*6.25</td> <td>.182</td> <td>405.0</td> <td>11.81</td> <td>.076</td> <td>17.40</td> <td>6.73</td>	11514		*6.25	.182	405.0	11.81	.076	17.40	6.73
11516 5.24 .153 164.0 4.78 .152 8.22 11.2 11517 .04 .001 4.2 .12 .002 .06 .0 11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027<			.22	.006	49.9	1.46	.008	2.04	3.34
11518 .52 .015 46.0 1.34 .028 2.26 1.1 .1519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11529 .02 .001 4.0<			5.24	.153	164.0	4.78	. 152	8.22	11.25
11518 .52 .015 46.0 1.34 .028 2.26 1.1 519 1.32 .039 91.0 2.65 .017 3.94 6.6 11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 .01 .0 11530 .01 </td <td></td> <td></td> <td>.04</td> <td>.001</td> <td>4.2</td> <td>.12</td> <td>.002</td> <td>.06</td> <td>.07</td>			.04	.001	4.2	.12	.002	.06	.07
11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0		e eggs som et groot	.52	.015	46.0	1.34	.028	2.26	1.16
11520 .18 .005 25.7 .75 .593 .87 1.6 11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	519	<u></u>	1.32	.039	91.0	2.65	.017	3.94	6.65
11521 2.35 .069 230.0 6.71 .790 9.82 11.5 11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0			.18	.005	25.7	.75	.593	.87	1.61
11522 .61 .018 70.5 2.06 .042 4.03 7.9 11523 1.93 .056 159.0 4.64 .129 7.98 7.9 11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0			2,35	.069	230.0	6.71	.790	9.82	11.50
11524 *4.86 .142 124.0 3.62 .605 5.00 4.8 11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0			.61	.018	70.5	2.06	.042		
11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	11523		1.93	.056	159.0	4.64	.129	7.98	7.95
11525 *2.91 .085 133.0 3.88 .268 6.65 6.7 11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	11524		*4.86	.142	124.0	3.62	.605	5.00	4.89
11526 1.30 .038 135.0 3.94 .078 6.17 10.6 11527 .94 .027 53.8 1.57 .028 1.96 4.2 11528 .49 .014 50.0 1.46 .019 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0			*2.91	.085	133.0	3 . 88	.268	6.65	6. 78
11528 .49 .014 50.0 1.46 .017 2.06 4.2 11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0			1.30	.038	135.0	3.94	.078	6.17	10.60
11529 .02 .001 4.0 .12 .002 .02 .0 11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	11527	*	.94	.027	53.8	1.57	.028	1.96	4.24
11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	11528		. 49	.014	50.0	1.46	.019	2.06	4.26
11530 .01 .001 2.2 .06 .001 .01 .0 11531 .02 .001 0.3 .01 .002 .01 .0	11529		.02	.001	4.0	.12	.002	.02	.04
11531 .02 .001 0.3 .01 .002 .01 .0	11530			.001	2.2	.06	.001	.01	.02
				.001	0.3	.01	.002	.01	.02
				.001	0.9	.03	.001	.O1	.02

SSAMPLES CONTAIN METALLIC GOLD, RECOMMEND METALLIC GOLD ASSAY.

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958

FAX (807) 623-5931

SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

Assay Certificate

0V-1435-RA2

Company:

AMERICAN BULLION

Date: SEP-14-90

Project:

MAPLE LEAF R122

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn: JOHN BROCK

He hereby certify the following Assay of 22 ROCK samples submitted SEP-12-90 by JOHN BROCK.

Sample Number	AU g/tonne	AU oz/ton	AG g/tonne	AG oz/ton	Z. CU	FB %	ZN %
11533	.15	.004	9.9	. 29	.002	.01	.02
11534	.02	.001	0.3	.01	.001	.01	.01
11535	. 54	.016	15.4	. 45	.002	,01	.01
11536	.12	,004	28.0	.82	.024	.87	1.88
11537	2.71	.079	103.0	3,00	. 125	4.30	4.47
11538	. 24	.007	6.5	.19	.027	.04	1.84
11539	.06	.002	10.2	.30	.022	.03	.22
11540	*2.88	.084	16.6	. 48	. 049	.02	2.27
11541	*2.42	.071	28.4	.83	.100	.04	9.65
11542	.16	.005	5.8	.17	.011	.02	.87
1543	.12	.004	10.0	. 29	.012	.02	.23
11544	*7.2 0	.210	16.7	. 49	.010	.02	. 42
11545	.18	.005	75.0	2.19	.032	2.87	3.17
11546	.18	.005	6.8	.20	.030	.03	1.30
11547	2.26	.066	58.3	1.70	.210	.06	11.40
11548	, 09	.003	5.9	. 17	.012	.01	2.91
11549	.18	.005	42.0	1.23	.022	1.45	4.06
11550	27.65	.806	425.0	12.40	.068	.53	15.90
11552	.02	.001	4.2	.12	.009	.01	1.40
11553	2.12	.062	111.0	3.24	.140	3.57	9.20
11554	1.83	 .053	90.0	2,63	. 039	3.85	10.60
11555	1.60	.047	130.0	3.79	.010	6.02	15.40

SAMPLES CONTAIN METALLIC GOLD, RECOMMEND METALLIC GOLD ASSAY

Certified by

COMP: AMERICAN BULLION PROJ: MAPLE LEAF R122 ATTN: JOHN BROCK MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1435-RJ1

DATE: 90/11/02 * PULPS * (ACT:F31)

ATIN: JOHN BRO	CK										(0	004)900	- 3014	OK (C	,04,,,00	7767														
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	L I PPM	MG PPM	MN PPM	MO PPM	NA PPM 1		P PPM	PB PPM			TH PPM PF	U PM	V PPM	ZN PPM		SN PPM F	W CR
11514 11515 11516 11517 11518	384.3 44.9 161.5 1.7	1000 5390	97 66 104 18 66	1 1 1 1	82 122 47 68 96	.1 .2 .1 .1	2	390 2140	237.4 98.3 416.1 .1 38.4	4	701 63 1352 14 256	20000 27460	940 3930 1080 1310	1 1 1 1	160 2750 70 140 320	404 1132 720 1 86	12 7 17 8 6	10 30 10 200 40	2 1 5 1	290 340 300 280	104150 16926 48373 210 21308	52 209 1 122	21 3 6	1 1 1 1	1 1 1 1	1.1	64035 28036 111943 243 10255	1 2 1 1	2 1 4 3 2	1 131 1 96 1 154 1 76 2 141
11519 11520 11521 11522 11523	86.2 25.1 225.7 68.1 149.2	1990 1700	64 62 1 139 128	1 1 1 1 1	36 190 71 56 62	.1 .1 .1 .1	1	1050 2780 170	240.7 63.6 531.1 279.5 294.2	62 14	137 5422 7751 412 1154	104410 21980	3810 9000 1350 1440	1 1 1 1	90 710 19750 130 180	305 88 1585 421 494	17 7 34 23 15	440 40 180 10 30	1 1	630 230 1030 380 340	38047 7998 88269 35467 49825	9 91 96 192	15 8 22 18 17	1 1 1 1	1 1 1 1 1	1.3 2.0 78.3 1.9 2.0	65189 13090 96739 77194 78122	1 7 1 1	3 6 5 3	1 155 1 126 1 1 1 70 1 147
11524 11525 11526 11527 11528		1510 1560 1250	127 86 117 56 66	1 1 1 1	69 47 48 44 36	.3 .1 .1 .1	1 1 2 2	440 400 490 480	164.9 238.0 384.1 135.6 137.3	4 5 3 3		20970 18270 24030 16310 12480	1520 1150 1430 750	1 1 1 1	410 150 130 90 80	495 447 777 214 150	13 14 15 10 8	10 20 30 220 370	2 1 1 2	160 230 360 300 320	50082 51371 58371 18723 20130	182 172 73 84	11 10	1 1 1 1	1 1 1	1.1	46603 66635 103630 38133 38986	1 1 1 1	2 3 4 2 1	1 154 1 122 1 125 1 189 1 138
11553 11554 11555	99.7 91.0 120.6	2690 1650 980	117 129 101	1 1 1	53 45 37	.1 .1 .1	1 2 6	410	332.0 371.1 555.2	5 4 6		23260 16860 25130	1090	1 1	170 100 50	639 690 939	16 17 17	160 150 130	5 6 5	310 350 470	38163 39230 46320	136	18 20 26	1	1	1.6 1.3 1.0	91460 100401 137649	2 1 1	3 4	1 192 1 242 5 153
															- "														-	
			-													• • •								, a .						
														-	-															
			,											•																
				•																+ 1										
	-						,										·													
			-																				-		_					

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Certificate Ossay

OV-1238-RA1

Company:

AMERICAN BULLION

Date: AUG-23-90

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

WAYNE ROBERTS

We hereby certify the following Assay of 13 ROCK samples submitted AUG-22-90 by .

Sample Number		AU g/tonne	AU oz/ton	AG g/tonne	AG oz/ton	*CU **	PB 7	ZN */.
11151	and the second seco	. 21 . 01	, 004 . 001	21,9 1,8	.64 .05	.023 .003	.82 , .08	. 46 . 01
11153 11154		.02 	.001 .008	8.0 82.0	. 23 <u>1 </u>	.011 .329	.12 3.76	,14 2.37
11155 	الله عليه المالة	. 01 . 24	.001 .007	0.4 7.2	.01 .21	.002 .005	.01 .19	.03 .10
11157 11158		.16 .01	.005 .001	11.8 . 3.4	.34 .10	.001 .002	. 44 . 05	1.19
11159		.19	.005 .004	24.0 14.2	.70 .41	.017 .015	1.23 .85	1.42
1161 11162 11163	And the second s	. 02 . 18 . 04	.001 .005 .001	1.3 21.9 1.7	.04 .64 .05	.02 .017 .013	.06 .97 .19	.04 1.60 .35

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Certificate <u>Geochemical</u> Analysis

0V-1472-SG1

Company:

AMERICAN BULLION

Date: SEP-22-90

Project:

MAPLE LEAF/RECONN

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

WAYNE ROBERTS

He hereby certify the following Geochemical Analysis of 22 SOIL samples submitted SEP-17-90 by W.ROBERTS.

Sample	AU-FIRE	AG	CU	PB	ZN	Sur
Number	PPB	PPM	PPM	PPM	PPM	
MLS-01	3	0.9	42	14	97	OVANUE LIBARI
MLS-02	1	0.8	32	17	92	
MLS-03	1	1.1	46	18	96	
MLS-04	2	0.9	42	23	88	
MLS-05	1	0.8	36	22	82	
MLS-06 MLS-07 MLS-08 MLS-09 MLS-10	1 2 3 2	0.9 0.7 0.5 0.7 0.6	41 39 30 37 38	14 12 18 15	86 84 74 79 82	
MLS-11 MLS-12 MLS-13 MLS-14 MLS-15	1 2 1 3	0.6 0.5 0.7 0.7 1.0	37 17 45 32 48	14 9 17 8 14	84 76 137 75 85	
MLS-16	1	0.7	32	9	79	
MLS-17	1	1.1	40	11	87	
MLS-18	1	0.9	46	6	90	
MLS-19	2	0.9	30	4	76	
MLS-20	1	0.8	36	7	74	
K-160 K-161	1 2	· · · · · · · · · · · · · · · · · · ·	38 48	10 8	64 68	

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Analysis <u>Geochemical</u>

1S-0251-RG1

Company:

AMERICAN BULLION

Date: AUG-01-91

Project: Attn:

JOHN BROCK

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 30 ROCK samples submitted JUL-29-91 by JOHN BROCK.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	PB PPM	ZN PPM	
16601 16602 16603 16604 16605	3 2 4 2 1	2.0 1.2 0.4 1.4 1.0	30 49 67 60 47	20 5 6 5 16	61 10 15 40 22	
16606 16607 16608 16609	56 4 2 3 5	14.9 0.5 1.3 1.0	433 14 6 7 2	11300 154 33 43 483	6685 188 61 87 134	
16611 16612 16613 16614 16615	 384 19 2 4 7	73.2 2.3 3.6 2.3 3.1	2060 71 29 13 41	42500 1100 498 375 121	49920 1460 414 233 110	
16616 16617 16618 16619 16620	1 805 8 51 2	1.8 94.7 2.8 3.5 1.4	91 1940 41 11	146 52000 772 553	773 59000 895 250 144	
16621 16622 16623 16624 16625	 4 1 19 38 40	1.5 1.5 1.3 2.4 1.4	57 66 65 206 42	98 68 66 98 97	114 114 68 113 447	
16626 16627 16628 16629 16630	43 2 1 2 5	1.2 2.4 1.8 0.8 2.3	95 29 31 148 50	77 52 22 19 25	55 77 50 22 13	

Certified by

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VAIVOOUVER OFFICE. 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Geochemical</u> <u>Analysis </u> Certificate

1S-0251-RG2

Company:

AMERICAN BULLION

Date: AUG-01-91

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Geochemical Analysis of 3 ROCK samples submitted JUL-29-91 by JOHN BROCK.

Sample Number	AU-FIRE PPB	AG PPM	CU PFM	PB PPM	ZN PPM	
16632	4: **	1.4	5	35	30	
16633	1	1.2	15	87	25	
16634	2	1.8	132	306	150	

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certificate <u> Assay</u>

1S-0251-XA1

Company:

AMERICAN BULLION

Date: AUG-08-91

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

We hereby certify the following Assay of 2 PULP samples submitted AUG-07-91 by JOHN BROCK.

Sample Number	**	AU g/tonne	AU oz/ton	AG g/tonne	AG oz/ton	CU %	PB	ZN %
16611		"40	"012	81.3	2.37	. 225	4.67	6.27
16617		"96	.028	112.5	3.28	. 226	6.16	7.68

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Geochemical Analysis Certificate</u>

1S-0293-RG1

Company:

AMERICAN BULLION

Date: AUG-09-91

Project:

MAPLE LEAF

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Geochemical Analysis of 1 ROCK samples submitted AUG-01-91 by JOHN BROCK.

Sample	AU-FIRE	AG	CU	PB	ZN	
Number	PPB	PPM	PPM	PPM	PPM	
16631	Δ		7	12	7	

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

1S-0251-SG6

Company:

AMERICAN BULLION

Date: AUG-06-91

Project:

AMERICAN DOLLIO

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

rrojeci Attn:

JOHN BROCK

We hereby certify the following Geochemical Analysis of 9 SILT samples submitted JUL-29-91 by JOHN BROCK.

Sample Number	AU-FIRE PPB	CU PPM	PPM PPM	ZN PPM		
91 MLS 02		49	16	<u></u> 69		
91 MLS 03	1	30	12	67		
91 MLS 04		40	17	86		
91 MLS 05	27	56	. 18	72		
91 MLS 06	::- :/	54	21	34		
91 MLS 07	4	39	18	102		Martin Sanger species groupes debute Addition Squade
91 MLS 08	. 1	.31	17	65		
91 MLS 09'	12	29	17	54		
91 MLS 10	2	50	20	100		

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

1S-0251-SG1

Company:

AMERICAN BULLION

Date: AUG-06-91

Project:

MITTAL DODE

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

We hereby certify the following Geochemical Analysis of 30 SOIL samples submitted JUL-29-91 by JOHN BROCK.

Sample Number	AU-FIRE PPB	CU PPM	PB PPM	ZN- PPM	
11000N 9700E 11000N 9725E 11000N 9750E 11000N 9775E 11000N 9800E	3 1 1 2 4	7 14 8 17 2	25 9 23 21 21	32 35 46 55 16	
11000N 9825E 11000N 9850E 11000N 9875E 11000N 9900E 11000N 9925E	2 4 6 1 2	17 19 24 5	41 50 24 48 21	104 76 52 32 55	
000N 9950E 11000N 9975E 11000N 10000E 11000N 10025E 11000N 10050E	2 2 1 1 2	4 9 6 17 10	18 13 11 17 21	45 60 86 101 80	
11000N 10075E 11000N 10100E 11000N 10125E 11000N 10150E 11000N 10175E	31 3 1 2 12	10 12 22 6 18	14 22 253 31 23	39 45 47 37 65	
11000N 10200E 10800N 9800E 10800N 9825E 10800N 9850E 10800N 9875E	6 80 1 5	8 54 17 29 22	19 70 22 28 26	131 156 145 69	
10800N 9900E 10800N 9925E 10800N 9950E 10800N 9975E 10800N 10000E	2 2 6 1 2	18 4 5 26 10	23 8 6 15 12	75 17 13 57 89	

Certified by

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Centificate Analysis <u>Geochemical</u>

1S-0251-SG2

Company:

AMERICAN BULLION

Date: AUG-06-91

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Geochemical Analysis of 30 SOIL samples submitted JUL-29-91 by JOHN BROCK.

Sample Number		AU-	FIRE	CU PPM	PB PPM	ZN PPM			
10800N 1 10800N 1 10800N 1 10800N 1 10800N 1	0050E 0075E 0100E		5 2 6 4 2	32 10 24 10	18 11 26 18 23	94 30 64 43 28			
10800N 1 10800N 1 10800N 1 10600N 9	0175E 0200E 7700E		1 2 1 10 37	19 15 15 21 111	24 22 31 85 478	63 78 63 99 69			:
10600N 9 10600N 9 10600N 9 10600N 9	775E 2800E 2825E	gain gain dan 1867 taga gaya ugar untu dan dan	2 10 20 8 2	93 20 26 73 12	486 17 36 239 23	35 64 100 1230 40			
10600N 9 10600N 9 10600N 9 10600N 9	'900E '925E '950E	and the size of th	29 20 2 1 5	14 17 29 19 22	15 17 22 18 30	34 48 80 44 101		The same same series does does does	
10600N 1 10600N 1 10600N 1 10600N 1	0025E 0050E 0075E		3 . 6 17 6 . 12	13 10 9 12	39 26 29 27 7	60 29 44 55 22	 		
10600N 1 10600N 1 10600N 1 10600N 1	0150E 0175E 0200E		7 10 12 16 17	30 23 23 23 23 31	26 21 21 37 32	79 80 79 78 113			

Certified by_

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Analysis Certificate Geochemical

1S-0251-SG3

Company:

AMERICAN BULLION

Date: AUG-06-91

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Geochemical Analysis of 30 SOIL samples submitted JUL-29-91 by JOHN BROCK.

Sample Number			AU-FIRE PPB	CU PPM	PB PPM	ZN			
10400N	9850E		1	73	27	86			
10400N			2	17	27	41			
10400N	9900E		3	9	23	44			
10400N	9925E		1 .	15	37	50			
10400N	9950E		28	33	32	154			
10400N	9975E		14	15	21	37			
10400N	10000E		2	21	22	66			
10400N	10025E	•	20		40	154			
10400N	10050E		6	41	33	263			
10400N	10075E		19	10	19	30			
	 10125E		14	29	63	 178			
	10150E		12	41	41	115			
	10175E		12	78	39	162			
10400N	10200E		12	33	30	109			
10400N	10225E		19	37	왕	422			
10400N	10250E		4	 51		355		The state of the s	
	10275E		12	42	41	721			
	10300E		16	23	21	85			
10200N			22	-	11	29			
10200N	9825E	4	4	13	45	66			
10200N	 7850E		3	4 <u>1</u>	 60	120		· .	
10200N	9875E		2	29	49	127			
10200N	9900E		6	19	31	66			
10200N	9925E		2	16	29	49			
10200N	9950E		3	14	26	73			
10200N	9975E	, ,	. 	<u>-</u> 39	4.3	417			 ,
10200N	10000E		2	19	21	71			
10200N	10025E		4	66	1083	620			
	10050E		Á	23	51	81			
	10075E		1	30	38	84			
			·						

Certified by

EN LABORATORIES

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certificate Analysis <u>Geochemical</u>

1S-0251-SG4

Company:

AMERICAN BULLION

Date: AUG-06-91

Project:

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

Attn:

JOHN BROCK

He hereby certify the following Geochemical Analysis of 30 AOIL samples submitted JUL-29-91 by JOHN BROCK.

Sample Number		AU-F	IRE PPB	CU PPM	PB PPM	ZN PPM		
10200N 10200N 10200N	10100E 10125E 10150E 10175E 10200E		9 3 34 9 6	31 22 19 32 29	19 21 24 230 57	77 66 96 342 77		
10200N 10200N 10200N	10225E 10250E 10275E 10300E 10325E		2 3 2 1 2	27 28 2 9 13 27	26 23 21 22 22	66 62 63 34 86		
10200N			6 3 4 3 4	14 31 47 56 30	20 23 27 296 54	46 73 80 315 174		
10000N 10000N 10000N 10000N	9875E 9900E 9925E		2 26 4 3 2	37 26 44 71 33	34 19 46 222 41	120 49 213 262 175		
10000N 10000N	7975E 10000E 10025E 10050E 10075E		2 2 25 24 6	21 28 13 27 21	38 34 31 36 33	74 71 107 105 72		
10000N 10000N 10000N	10100E 10125E 10150E 10175E 10200E		3 2 14 8 3	41 17 5 8 73	36 35 18 48 85	56 62 21 50 441		· · · · · · · · · · · · · · · · · · ·

Certified by

• EN LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

1S-0251-SG5

Company:

AMERICAN BULLION

Date: AUG-06-91

Project: Attn:

JOHN BROCK

Copy 1. AMERICAN BULLION, VANCOUVER, B.C.

We hereby certify the following Geochemical Analysis of 4 SOIL samples submitted JUL-29-91 by JOHN BROCK.

Sample Number	AU-FIRE PPB	CU PPM	PB	ZN PPM		
10000N 10225E 10000N 10250E 10000N 10275E 10000N 10300E	3 41 5 8	35 43 117 48	191 156 511 227	337 386 535 826		

Certified by_

Sample Name	Typo	Cu	ър	Zn	Ag	Au	
		%	X	7,	oz/st/	oz/st	A
0-11353	Rock	0.01	0.02	<0.01	0.05	<0.005	
0-11354	Rock	<0.01	<0.01	0.01 /	<0.01	<0.005	
D-11355	Rock	<0.01	<0.01	<0.07	0.01	0.035	10001846
J-11356	Rock	<0.01	-0.01	<0/01	0.01	0.019	MAPLE LEAF
0-11357	Rock	<0.01	<0.01	90.01	0.08	0.055	1
0-11358	Rock	<0.01	<0.01/	<0.01	0.01	0.009	∫ ,
0-11359	Rock	<0.01	c0.01	<0.01	0.05	0,058	V .
0-11360	Rock	0.01	<0.01	0.01	0.03	<0,005	
0-11361	Rock	0.01	<0.01	<0.01	0.04	<0.005	
0-11362	Rock	0.01	<0.01	<0.07	<0.01	<0.005	10.27
0~11363	Rock	<0.01	0.02	0.06	<0.01	<0.005	P12
0-11364	Rock	0.02	<0.01	<0.01	0.03	0.008	
D-11365	Rock	0.01	<0.01	0.01	0.04	<0.005	1
0-11366	Rock	0.01	<0.01	0.01	<0.01	<0.005	
0~11367	Rock	0.01	8.25	7.30	16.36	0,100	\vee
0-11368	Rock	<0.01	0.02	0.02	<0.01	<0.005	

Sign out Ken: de following page acceptable?

0.005

FAGrav

Minimum Detection 0.01 0.01 0.01 100,00 100.00 100.00 1000.00 1000,000 Maximum Detection Assay Assay Assay

-- = Not Analysed unr = Not Requested ins r Insufficient Sample

APPENDIX III

SAMPLE LEDGERS

Page No. _

SAMPLE LEDGER

					T	· · · · · · ·			
SSAY TAG No.	SAMPLE I Metres	NTERVAL Feet	SAMPLE Metres	LENGTH Feet	Au	Ag	cu Pb	žn,	DESCRIPTION
11501	grab		grab		<u> </u>	13.6	110/1920	ppn be	Sur- 4/2 schist Tions to dissus Pr
02	floa+	·	Float		525	20.4	15,000/ /3350	690	10 10 10 10 10 10 10 10 10 10 10 10 10 1
<u>03</u>	1.		(,		2	1.6	445/64	67	5-liceous isiled bi-glz schist 10-157. PY
04	٠,		٠. (,		6	2.4	49/12	36	Sur- 9/2 schist 715-203 Pi
0<		3.0		3.0	7	9.4	30/4400	4750	Sti-g/2 Schist 3-59, PT, 1-32 Sc +60
06	float		float		3	0.9	70/82	425	6+2 un bx 10-15% 56, 3-56Pix-1P
07		0-10		10.0	4	1.4	40/1060	1450	gtz-serschist 1-3% Pr, 1-23.54 +1-174
08		0-10		10.0	2	0.9	20/32	82	Ser- qt 2 schist, will siled fissil 2-39, Dr Rizzellim Glacier Vola
R122 09	float		flour		.001	·2/1	.003 %	% .01	finanite glz w. a 3-5% PV + Py Hanging
10	11		٤,		, e 13	.30	.039	.67	R:22 (lain fulsic col. 3-57 Pt. DT, 1-2% SL to
) //	1.				.001	.12	.014	1.10	
(12	The Andrews and the Andrews are the	المراجع المساولة المس	Skirobala pandaka di Seria		. 0 61	.05	800.	.02	Gussan Jon. P: 52 (lain, 5: / si s: Hstone 2 39.
13	4		0.7 m		,322	.16	ci	.01	10-15 6 5 770 PT. 11 LP
	te		flodibull		.182	11-81	17-4	6.73	Bould Boul ser-glz school 10187 & 7-1016
	1,		0.3.67		.006	1-46	2.04	3.34	3-54.54 20-17.61
16	10		clast bouth		.153	4.78	8.22	11.75	5-78PK1-296P, 10x gt 2 win 20-217, 36, 10-157,5 1. massive St+66 lands over 3010.
	F.		4 (,001	0.12	0.06	0-67	Ser-yts six. st 3-109 Pt Boulder Boul
	C,				.015	1-34	+	1.16	But lete Book 5: / set gt2-811 seh-5+ 5-79, 764 150
19	1,				.039	2.65		6.65	" bx w. E 3.54.64,5-7:56, 239/7
	"				.005	0.75	. 593	1.61	· · ·

SAMPLE LEDGER

Page No. ______

<u> </u>	- CA/Y	 , , op	,0, ,,						
SAY TAG	SAMPLE Metres	INTERVAL Feet	SAMPLE Metres	LENGTH Feet	Au	Ag	Cu Pb	Zn.	DESCRIPTION
	flourt		Float		,069	6.71	.19 982	11-50	Double Dowl, foot bull size 30% St. 15366
22	Float bould		05		.018	2.06	.04 4.03	7.90	" Zns Pys bands +3 cm, + CP, 92:
23	Flood Boulder 0-12.8		2.8		056	4.64	13/7.98	7-95	
	Flood Boulder		0.3		142	3.62	61 5.00	4-89	" " 134 ds 245 Pbs (Pinch Serve
X 26	0-1.0		1.0		.038	3.94	.08/6 17	10.60	" " G/2 be zon: Sir Silist 7-10% SES
	f 100-		Elsat.		.085	3.88	. 27/6.65	6.78	" " fortball size Zns Phs (00
	04		.4		.027	1.57	03/196	4-24	" " Su-glaselist, by glan, 7-10, x, 5-73 cc
28	02		.2		.014	1.46	.02/2.00	4-26	400. E Bolds Doul, bod Pszzni gtz
29	0-1.5	a a a a a a a a a a a a a a a a a a a	1.5		.001	0.12	. 02	.04	Uper Glacier of sersehist sp
	07		0.2		1001	0.06	.0[~¢2	" " gtz win adj to gtz - 81- 81/1
3/	9,65		cycb		.001	0.01	.01	-02	
	0-15	·	£ 1.5		.00]	0.03	.01	-02	" (our 20 3-57) Py at 160.
37	12-1.0		1.0		. ७०५	0.29	. 41	.02	
34	float		float		. 00 1	0.01	.01	-01	" " susty dk gruy ste, phother.
35	6-1.0	2. 12. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	1.0		-016	0.45	1	.0	14 4 9-12 DV C- C- C- 1-71 P-
1155/	9146		grab		l ppb	1.3 ppm	⁸⁰ /33	69.	Maple Leaf Cq, PD, PY Stringers.
							<u> </u>		
	•								

MARIFIFAF Property

SAMPLE LEDGER

ALA	TE IFA.	Prop	erty			3 AUL	LE LED	GEN.	
SSAY TAG	SAMPLE Metres	NTERVAL Feet	SAMPLE Metres	LENGTH Feet	Au	Ag	Cu Pb	2n	DESCRIPTION
11536	float		float		0.004	0.82	.024	1-88	DESCRIPTION J-10'1.5L 2-39.GL 3-50 P; Boulder Ridge 425 E Boulder Boul 1/2 Lx in Six, 10-15'1.5L 5-59.GL 1.CP 3-59. By 558 70- 2 Six-gl2schist 3-57. diss (1-25) 588 1. "
31	flout		float		0.079	3.00	4.3	4.47	1. 600 m E " " " " " " " " " " " " " " " " " "
45 49 53 54 55	١٢		(,		0.002	2-19	2.87	3.17.	758 3-5% Pg Pom 2 Su-glzschist 3-5% diss 66, 1-26
49	. 14		د,		0.005	1.23	1.45	4.06	1. " . e
53	(/		.,		0.062	3.24	3.57	9.20	Boulde Bout gt & bx 2ns Pbs in Sil Axbelat.
54	()		()		0-053	2.63	-039 3-85	10.60	10 " Zine la Zone! 107. Zn
-55	11		1.		0.047	3.79	6.02	15.40	RINGY " " 4+2 DX SI -1xhalkitive
				·		·			
								,	Strains and the strain of the
-									
				<u> </u>					
		-				1	1		
		- 			 		 		
			_t	1	<u> </u>			1	

GLACIER LIGHT Property

SAMPLE LEDGER

						- ,,			-	
SAY TAG	SAMPLE Metres	INTERVAL Feet	SAMPLE Metres	LENGTH Feet	Au	Ag	Cu	bр	Zn	
111151	TAWS		GRABS		.606	.64	.023	82	.46	LANGE SCAN A TOTAL YOURS ON THE TOTAL Y
152	11		Lį	,	.001	.05	.663	.88	.ol	Base of Cliff, zone 2, services oft i demonte willing after silvenus surhalature. Cliff face Zone 1, therine pyinte, the diss south cliff face, Zone 1, what yellow selvice weter.
153	3-4		4.0	,	.001	-23	.011		.14	the Zore , Marine painter, Mr. 1015 2018
154	0-1.3		1,3		.008	2,39	.329	3.7b	177	1 Eine 1 of Eine The Constant District
155	TACUS		grelor		.001	.01	.002	10.	ξσ,	cell Face, Zone Z; coorse on brother of a Scales ogno with rod + lune. A Zon S. I de live accorde what exhabitive soll less proving distinguish
156	Ų.S		lι		. 007	.21	.005	۱٩	.10	what exhabitive 50% Proposity die Zngrain
157	L A		l,		.005	.34	1 .	1.4	ای بیا	I cliff the come a landon til 20 a latter i come and
158	ч		u		.001	.10	.002	,05	.02	school, neword of E 212 Page
159	\.		l)		.005	-70	.017	1.13	1.42	in oto seriale schieft
160	11		11	·	.004	.41		.85	1.47	" " back ZHS+ 19 9/7 801 School
161	•		L ₄		.001	.04		ph	.04	in sencia school de de l'allande
162			and 10 H		.005	.64	.017	91	1.60	Zore 2, 600 yr. I'W of top of each face that
163	0-15 M		mer lon		.001	.05	.613	.19	.35	Zore Z, Footh May 1 for of cell fine ail
						ļ				
				ļ						
										
				<u> </u>						
							<u> </u>			
									1	

/11/71		0,000			JAH		Done	
SSAY TAG No.	SAMPLE INTERVAL Metres Fee	I -	LENGTH Feet	ppb Au	₽₽₽ Ag	PpM	Pb	DESCRIPTION
16601	Cloud		Float	3	2.0	30	20/61	
602	grab		grab	2	1.2	49	5/10	RILLICE 35m NW of poil Lilie wil tr-181
1 603	gral	,	Scap	4	0.4	67	14/	Rizz 40m NWLCE Learly fels. 1 vol sibed
604	Floa	+	float	2	1.4	60	5 40	1mmile 125, 7-30 1158 124
N 605	grab		arab		1.0	47	16/22	Muste Leaf Rizz atz-bi schist interse Fe ex
2 606	Élou	<u> </u>	Float	56	14.9	453	111.30	R:22 LCP gtz win = 1-20, GL+SL, CIG 01:5
607	Flou	1	Plant	4	0.5	14	154	P
608	l (11	2	1.3	6	33/61	11 " weakly perphysica Celsiciol Pr
608	7(1/ :	3	1.0	フ	43/89	1. " x+1-1ithin tuff z-32 diss Px
610	11		1,	5	1.0	2	483	11 41 5:/12 Ungen tr-12 115:30
61/	0-7	5	7.5	384	73.2	2060	41 Mg/	3300 Zone Channel out 5: 1-15% SLAGE 3
612	- Crab		Q-ab	19	2.3	71	1100	33.22 7 Pt 2
613	aral	,	grub	2	3.6	29	498	11 11 11 11 11 11 11 11
614	gral		arub	4	2.3	13	233	
615	0-6		6.0	7	3.(41	121	" " S. feel atz-ser sch. st 3-56 PTIL
6/6	grat	,	grab	1	1.8	91	146	3100 is bi-45- ser a bost = 1-24 Asse Ps
617	e, c4b		Grah	805	94.7	1940	59,000	3300 " 5: 1-ed alt fulsic vol 7-107.5%
613	g-ub		arch	8	2.8	41	172	100m A) Camp bake Pulsicupt strong Ser at
619	grab		grab	51	3.5	L1	553	735 m 1) 11 11 (1/51 VIII) SIE 1/4 5/4
620	1		11	2	1.4	19	126/	900mN H 11 5: / Else val strong from

MAPLE LEAF Property

AMPLE LEDGER

11 174	ILL LLA	riop	city			5,		BO NA	
SSAY TAG	SAMPLE Metres	INTERVAL Feet	SAMPLE Metres	LENGTH Feet	PP Au	ρρΜ Ag	ppM	Ph	DESCRIPTION
16621		grab		grab	4	1.5	51	98/114	2010m N MLS-07 Site in Steep guilly att-see Dower Presidents Zone
622		grah		grab	-	1.5	66	68	Som wide zone to babyte aft vol 4-12 Py
623		grab		arab	19	1.3	65	66/8	Smurd, Fr curb -atz alt Wol. 4-12, Pr
624	1	0-5'		5,0	38	2.4	206	98/	tol Claurer Te cab- gtz alt vol 3-5mm Pive
1.25] ;/		Sio		40	1.4	42	97	Pres Zone 5: 14d countabled graph for subst
1,28		Ploat		& bout	43	1.2	as	1-17/	Prizzone placed at 2 - Ser Schist 2-3 cm ?-
627		grub		grab	2	2.4	29	52	11 11 50m hade Fe-Cub yte alt vol
1028		11		4	- (1.8	31	22/50	11 "1 Atz-Sw-bi Suhist pouch atz
629			50		2	0.8	148	1922	11 11 Ser-gtz Schist, puple-wangs Fe ex
630		Flour		Float	5	2.3	50	25/13	11 11 51/28 at2-Ser schist = 5-72 PY
(63)		7.1		11	6	0.2	7	127	Mudi lint Good giled ser-ctz Schist Z-31
632		0-3		3.0	1	1.4	5	35/30	11 "1 " 5: 1-ed 6+2-54 Schist = 1
633		0-4		4.0		1.2	15	87/25	li il il il il il as about
634	4	0-2		7.0	2	1.8	132	306	1. 11 11 Ser-gtz schist 1-2 % Py mt
			. :						•
								İ	
, 		L							

APPENDIX IV

GEOPHYSICAL SPECIFICATIONS

1 EQUIPMENT

ic field by integrative sampling over eight,

WINDOW	WIDTH	MID PT.
-200 to 0	200	-100
200 to 400	200	300
400 to 800	400	600
800 to 1400	600	1100
1400 to 2200	800	1800
2200 to 3600	1400	2900
3600 to 6000	2400	4800
6000 to 10K	4000	8000
10K to 15.6K	5600	12.8K

21.6ms. Time Base

nges (X1, X10, X100). Data retrieval made

between the transmitter and the receiver,

nannels, and stores the results for display.

ect thunderstorm spikes and power line

IMENSIONS: 37 cm x 27 cm x 35 cm (14½" x 10½" x 14")

/EIGHT: 14.5kg (32lb)

- PULSE EM TRANSMITTER EQUIPMENT

ine with belt drive to D.C. alternator; maximum output 120V, 30 weight: 33 kg, shipping: 47 kg.

itput; continuously variable between 24V and 120V D.C.; 20 ampripping: 24 kg.

ER:

and linear current shut-off ramp time. Radio and cable time synnal crystal clock sync system; on-off times for 60 Hz areas 8.33ms, 10.0ms, 20.0ms, 40ms; for analog PEM operation 10.9ms, 21.8ms; ip times of 0.5, 1.0 and 1.5ms; monitors for shut-off ramp operation, ntinuity, and overload output current; automatic shut-down for open 1: 22 kg.

ND MAST:

ation on large survey grids; range up to 2 km; radio has 12V r; antenna is fiberglass mounted on a 4 section aluminum mast each ipping: 6.0 kg; mast and antenna shipped as bundle: 6.4 kg.

TIMING LINK:

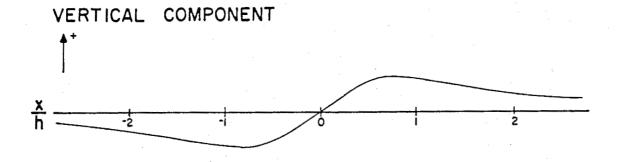
nal box mounted to be plugged into PEM-Tx. Gel rechargeable power 15 kg.

ìS:

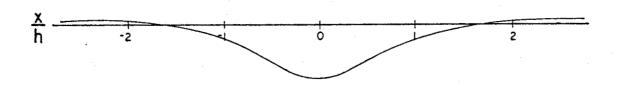
r No. 12 AWG copper in 310m or 410m lengths, 1 length per spool; 2 mounted on a magnesium packframe.

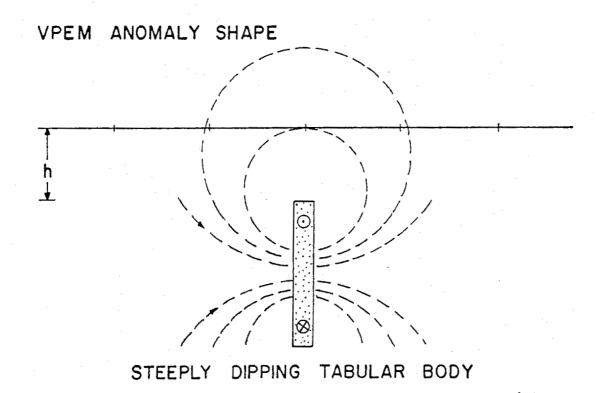
op with plugs to break into 2 sections. Aluminum or copper wire and rea being used.

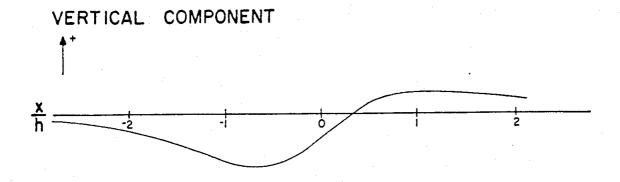
pattery supply for use with PEM-Tx as power source rather than motor-case, with clamp connectors. Weight: 20.5 kg, shipping: 29 kg.

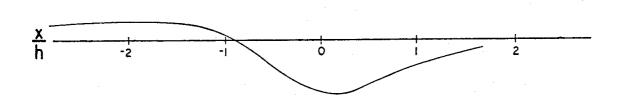

chargeable battery units.

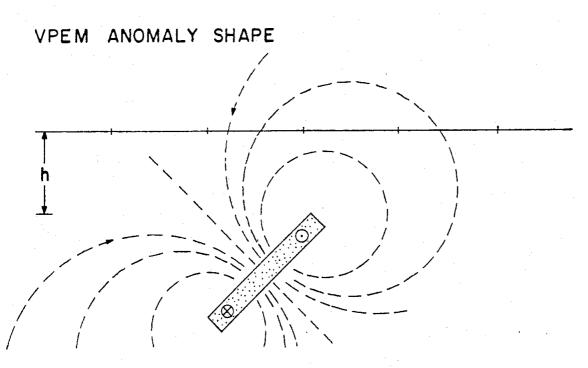
erational from -40°C to +50°C.


ood construction with closed cell foam shock protection.

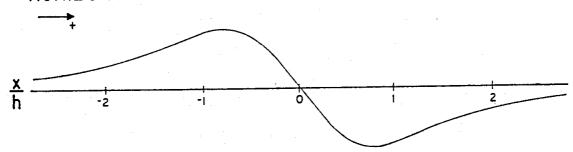

VEIGHT: 21.8kg (48lb)

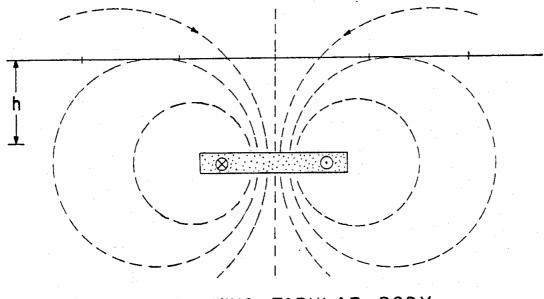

SIONS: 35 cm x 30 cm x 53 cm (14" x 11%" x 21")


HORIZONTAL COMPONENT

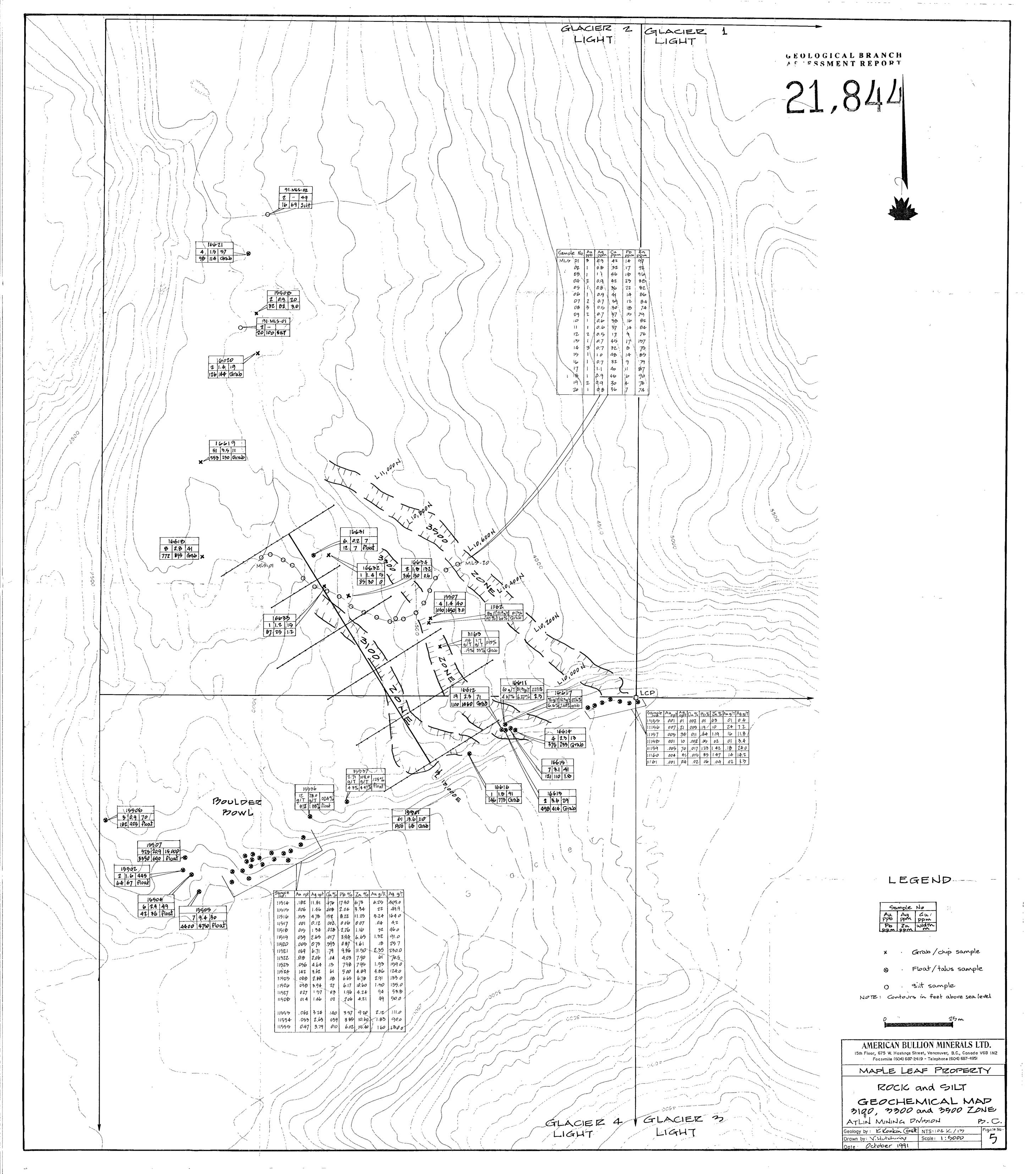


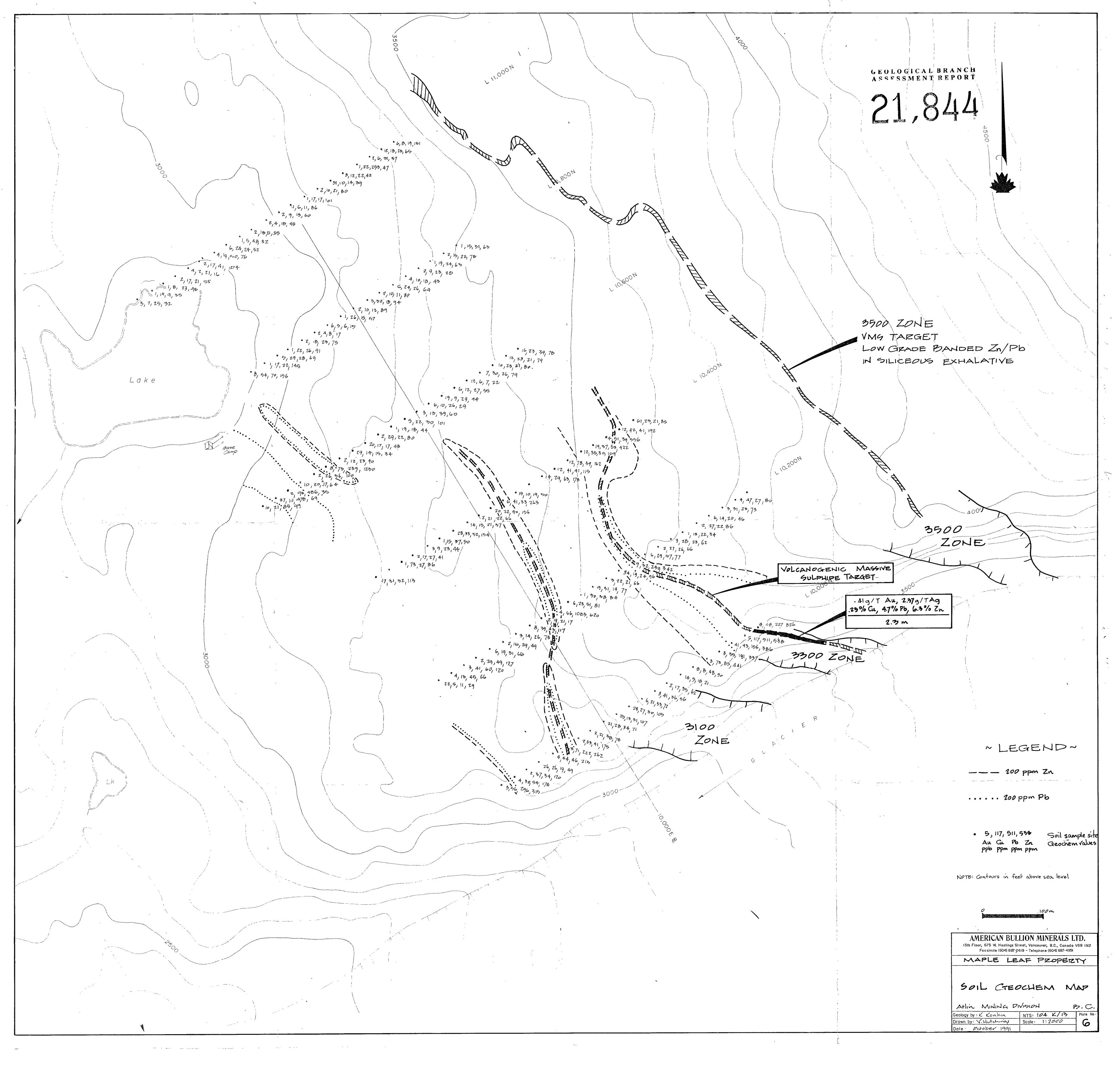
HORIZONTAL COMPONENT




INCLINED TABULAR BODY

HORIZONTAL COMPONENT




VPEM ANOMALY SHAPE

FLAT LYING TABULAR BODY

MPLF91AR

