LOG NONOV 2 2 1991	RD.	
ACTION:		
FILE NO:	<u> </u>	

GEOCHEMICAL REPORT ON THE BAT 1 CLAIM

Liard Mining Division NTS 104 G / 8 W

Latitude: 57°23' North Longitude: 130°27' West

A Report prepared for

Chris Graf, P. Eng. 307 - 475 Howe Street Vancouver, B.C. V6C 2B3

Ву

David St. C. Dunn, P. Geo. 2348 Palmerston Avenue West Vancouver, B.C. V7V 2W1

October, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

INTRODUC	FION	•	•••	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	1
PROPERTY	DEFI	NIT	ION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
LOCATION	AND	ACC	ESS	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	1
TOPOGRAPH	HY AN	D V	EGEJ	ra 1	IC	N	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	3
REGIONAL	GEOL	OGY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
PROPERTY	GEOL	OGY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
DISCUSSIO	ON OF	19	91 F	FIE	LD	WC	RK	ζ.	•	•	•	•	٠	•	•	•	•	•	•	•	•	8
CONCLUSIO	DN .	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
RECOMMENI	OITAC	NS	• •	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	8
BIBLIOGR	АРНҮ	•		•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	9

•

LIST OF FIGURES

General Location Map	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Claim Location Map .	•	•	•	•	٠	٠	٠	•	•	•	٠	•	•	•	4
Regional Geology	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Sample Location Map .			•	•	•	•			•	•	•	•	•		In Pocket

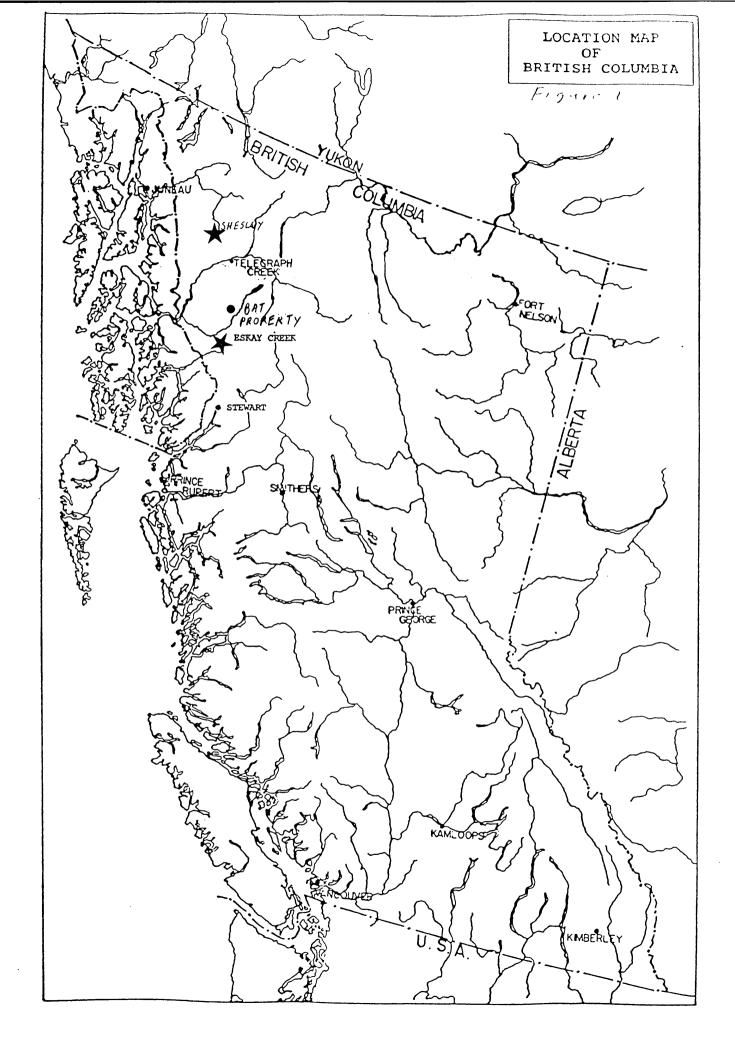
LIST OF APPENDICES

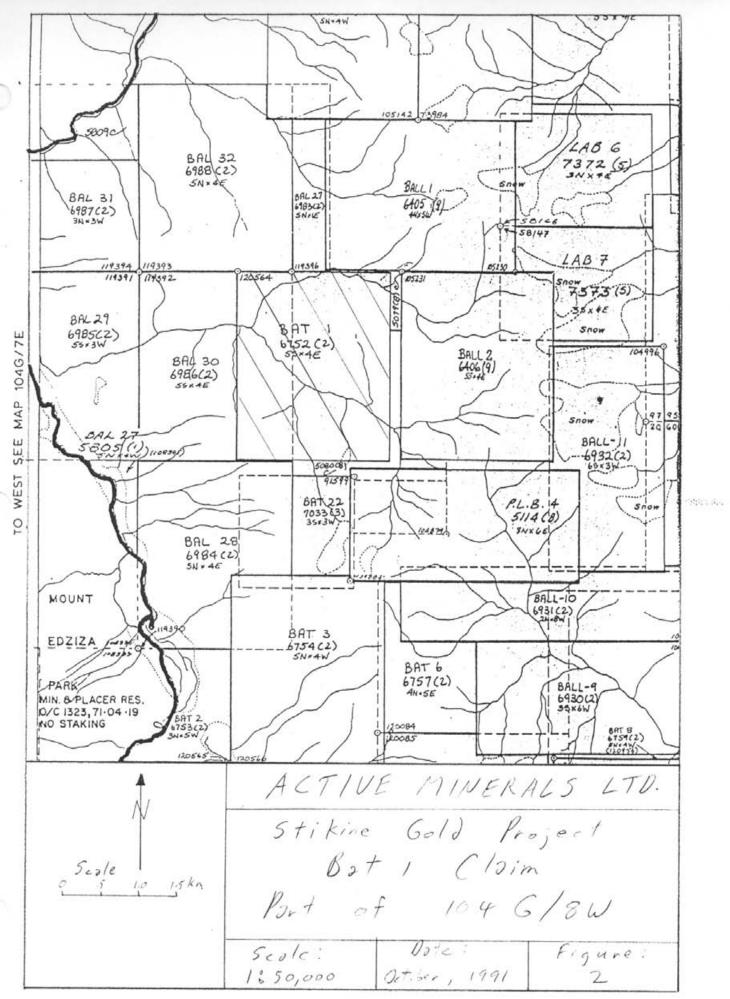
Appendix	Α	٠	•	·	•	•	•	•	•	•	•	•	٠	٠	٠	•	Assay Certificates
Appendix	В		•	•	•	•	•	•	•	•	•	•	•	•	•		Sampling Methodology
Appendix	С	•	•	•	•	•	•	•	•	•	•	•	St	ta	tei	me	ent of Qualifications
Appendix	D	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Statement of Costs
Appendix	Ε	•		•	•	•	•		•	•	•	•	•				Analytical Methods

INTRODUCTION

A one day geochemical program was carried out by a two person crew on August 26, 1991 on the Bat 1 claim. The objects of this program were to confirm six samples anomalous in zinc (365 ppm - 717 ppm) taken in 1990 (Waskett-Myers, 1990) and to attempt to locate the source of these anomalies. Three rock, ten pan concentrate and ten silt samples were taken.

The Bat 1 claim was staked to cover part of a Jurassic Belt of rocks thought to be co-eval with the "Eskay Creek Facies". The "Eskay Creek Facies" hosts the Eskay Creek deposit, a polymetallic massive sulphide ore body located approximately 70 km south of the Bat 1 claim.


Noranda is presently exploring a large block of claims immediately east of the Bat 1 claim.


PROPERTY DEFINITION

The Bat 1 claim is a located mineral claim consisting of 20 units with a record number of 6752. The claim is owned by Chris Graf and has an expiry date of February 21, 1992.

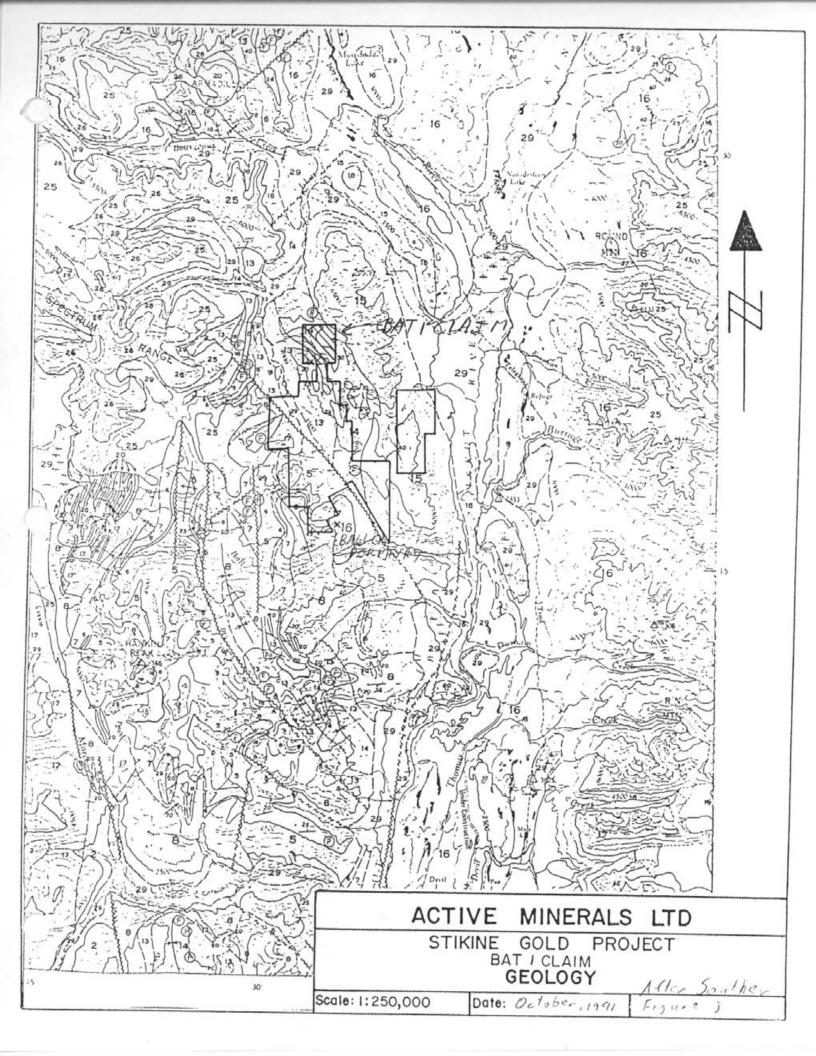
LOCATION AND ACCESS

The Bat 1 claim is located 21 km southwest of the south end of Kiniskan lake in the Iskut River watershed of northwestern B.C. (See Figures 1 & 2). Access was achieved by helicopter set out from Bob Quinn Lake on Highway 37 approximately 50 km southeast of the property.

TOPOGRAPHY AND VEGETATION

Topography on the Bat 1 claim is moderate with elevations ranging from 1300 m elevation on the north western claim boundary to 1740 m elevation on the southern claim boundary.

Ninety percent of the claim is above treeline with the remainder covered by sub-alpine spruce.


REGIONAL GEOLOGY

The Bat 1 claim lies in the Intermontane Tectonic Belt approximately 20 km east of its boundary with the Coast Plutonic complex. The claim covers part of a Jurassic volcano-sedimentary package dominated by shale and pillow basalt. A minor but economically significant member of this package are rhyolite pyroclastics. This sequence is thought to be co-eval with the "Eskay Creek Facies", the host of a major ore body located approximately 70 km south of the Bat 1 claim. The bedded sequence generally strikes north westerly and dips shallowly east.

PROPERTY GEOLOGY

Most of the Bat 1 claim is underlain by a Lower and Middle Jurassic shale unit. This unit is conformably overlain by Middle Jurassic basalt and related volcaniclastic rocks in the northeast quadrant of the claim. The basalt unit hosts a number of prominent gossans on and over the eastern and northern claim boundaries.

These bedded rocks trend north north west and dip shallowly to moderately east.

LEGEND

	QUATERNARY PLEISTOCENE AND RECENT
	29 Fluviatile gravel; sand, silt; glacial outwash, till, alpine moraine and colluvium
	28 Hot-spring deposit, tufa, aragonite
ZOIC	Olivine basalt, related pyroclastic rocks and loose tephra; younger than some of 29
CENOZOIC	TERTIARY AND QUATERNARY
	UPPER TERTIARY AND PLEISTOCENE Rhyolite and dacite flows, lava domes, pyroclastic rocks and related sub- volcanic intrusions; minor basalt
	Basalt, olivine basalt, daoite, related pyroclastic rocks and subvolcanic intrusions; minor rhyolite; in part younger than some 26
	CRETACEOUS AND TERTIARY UPPER CRETACEOUS AND LOWER TERTIARY SLOKO GROUP
	24 Light green, purple and white rhyolite, trachyte and dacite flows, pyroclastic rocks and derived sediments
	22 23 22. Biotite leucogranite, subvolcanic stocks, dykes and sills 23. Porphyritic biotite andesite, lava domes, flows and (?) sills
	SUSTUT GROUP Chert-pebble conglomerate, granite-boulder conglomerate, quartzose sandstone, arkose, siltstone, carbonaceous shale and minor coal
	20 Felsite, quartz-feldspar porphyry, pyritiferous felsite, orbicular rhyolite; in part equivalent to 22
1	19 Medium-to coarse-grained, pink biotite-hornblende quartz monzonite
	JURASSIC AND/OR CRETACEOUS POST-UPPER TRIASSIC PRE-TERTIARY
	18 Hornblende diorite
	17 Granodiorite, quartz diorite; minor diorite, leucogranite and migmatite
	JURASSIC MIDDLE (?) AND UPPER JURASSIC
	BOWSER GROUP Chert-pebble conglomerate, grit, greywacke, subgreywacke, siltstone and shale; may include some 13
	MIDDLE JURASSIC Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related subvolcanic intrusions
	LOWER AND MIDDLE JURASSIC Shale, minor siltstone, siliceous and calcareous siltstone, greywacke and ironstone
	LOWER JURASSIC Conglomerate, polymictic conglomerate; granite-boulder conglomerate, grit, greywacke, siltstone; basaltic and andesitic volcanic rocks, peperites, pillow-breccia and derived volcaniclastic rocks
•	

.

	TRIASSIC AND JURASSIC POST-UPPER TRIASSIC PRE-LOWER JURASSIC
	12 Syenite, orthoclase porphyry, monzonite, pyroxenite
MESOZOIC	HICKMAN BATHOLITH 10 11 10. Hornblende granodiorite, minor hornblende-quartz diorite 11. Hornblende, quartz diorite, hornblende-pyroxene diorite, amphibolite and pyroxene-bearing amphibolite
2	TRIASSIC UPPER TRIASSIC
	9 Undifferentiated volcanic and sedimentary rocks (units 5 to 8 inclusive)
	8 Augite-andesite flows, pyroclastic rocks, derived volcaniclastic rocks and related subvolcanic intrusions; minor greywacke, siltstone and polymictic conglomerate
	Siltstone, thin-bedded siliceous siltstone, ribbon chert, calcareous and dolomictic siltstone, greywacke, volcanic conglomerate, and minor limestone
	6 Limestone, fetid argillaceous limestone, calcareous shale and reefold limestone; may be in part younger than some 7 and 8
	5 Greywacke, siltstone, shale; minor conglomerate, tuff and volcanic sandstone
	MIDDLE TRIASSIC
l	4 Shale, concretionary black shale; minor calcareous shale and siitstone
D	PERMIAN MIDDLE AND UPPER PERMIAN Limestone, thick-bedded mainly bioclastic limestone; minor siltstone, chert and tuff
PALEOZOIC	PERMIAN AND OLDER Phyllite, argillaceous quartzite, quartz-sericite schist, chlorite schist, greenstone, minor chert, schistose tuff and limestone
	MISSISSIPPIAN Limestone, crinoidal limestone, ferruginous limestone; maroon tuff, chert and phyllite
	B Amphibolite, amphibolite gneiss; age unknown probably pre-Upper Jurassic
	Ultramafic rocks; peridotite, dunite, serpentinite; age unknown, probably pre-Lower Jurassic
	Geological boundary (defined and approximate, assumed)
	Bedding (horizontal, inclined, vertical, overturned)
	Anticline
	Syncline
	Fault (defined and approximate, assumed)
	Thrust fault, teeth on hanging-wall side (defined and approximate, assumed).
	Fossil locality (F
	Mineral property
	Glacier

INDEX TO MINERAL PROPERTIES

.

DISCUSSION OF 1991 FIELDWORK

Not enough samples were taken to determine anomalous levels by statistical means. Anomalous levels were determined from past work in the area and discussion with other geoscientists familiar with the region.

Ten pan concentrate, ten silt samples and three rock samples were taken. The three rock samples did not return any values anomalous in base or precious metals. The stream sediments returned values ranging from 143 ppm zinc to 749 ppm zinc. These values are similar to the values returned in the 1990 program. Zinc values in this range are quite common in samples taken from creeks draining shale units.

CONCLUSION

Zinc values in the hundreds of ppm range probably represent high background zinc levels in the black shale unit which underlies the bulk of the property. No other base or precious metals anomalies were detected.

RECOMMENDATIONS

No further work is recommended on this property at this time.

Respectfully, submitted by: St. Geo. 8

BIBLIOGRAPHY

- Gabrielse, H. et al, 1971, Department of Energy, Mines and Resources, O.F. 707
- Gabrielse, H., Souther, J.G., 1962, Geological Survey of Canada, Map 29-1962 and Descriptive Notes

Souther, J.G., 1971, Telegraph Creek Map Area Paper 71-44

Waskett-Myers., Graf, C., 1990, Geological Report on Stikine Gold Project APPENDIX "A"

1

ASSAY CERTIFICATES

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Geochemical Analysis Certificate</u>

SPECIALISTS IN MINERAL ENVIRONMENTE

1V-0964-RG1

Company: ACTIVE MINERALS LTD.

(DIVISION OF ASSAYERS CORP.)

MIN

EN

Project: STIKINE GOLD SYNDICATE BAT-1 Attn: DAVID DUNN

LABORATORIES

Date: SEP-06-91 Copy 1. ACTIVE MINERALS, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 3 ROCK samples submitted AUG-30-91 by DAVID DUNN.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	PB PPM	ZN PPM	
1-00126	1	0 . 1	17	11	13	
1-00270	2	1.3	10	17	94	
1-00275	1	1.7	22	20	89	

Certified by

COMP:	ACTIVE	MINERALS	I TD.

PROJ: STIKINE GOLD SYNDICATE BAT-1

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

DATE: 91/09/06 * SILT * (ACT:F31)

ATTN: C.GRAF/D.DUNN

SAMPLE NUMBER

(604)980-5814 OR (604)988-4524 4 (040 8 1 18 52 3(520 3700 0 (020 1228 0 (30 31 1170 21 1 23 1 313 40 (510 1 1 1 1 1

NUMBER	PPM PPM	PPM PP	N PPM P	PM PPM	PPM PF		PPM PPM PP	M_PPM		M PPM PPM	FFM F	PM PPM	rrm					PM PF	TI FFF		PPB
1-00115	.5 17110 .3 13100 .3 11780 .1 20630 .1 18930	12 <u>3</u> 11 2	3 161 1 2 333 1 1 1035 3 549 1 1 606 1	.4 4	4960 8. 4980 1. 7520 6.	1 18	52 34520 370 36 29980 319 56 32730 289 60 51510 376 53 41220 381	0 9	4920 122	8 9 430	31 11 15 10 63 8 8 13 17 11	70 21 20 22 80 27 60 23 50 21	1	23 37 27 37 34	1 313	69.4	510	1	1 1	11	2
1-00117	.3 13100	11 1	2 333 1	0 3	4980 1.	5 10 6 9	56 29980 319	0 12	4390 58	2 27 /50	15 10	20 22	1 3	5/	1 214	106.8	525	1	1	10	1
1-00119 1-00121	.1 20630	1 3	549 1	$\frac{1}{2}$ 5	11410	1 18	60 51510 376	0 24	6440 82	3 1 360	8 13	60 23	1	37	1 356	62.6	143	ł	i ·	ğ	11
1-00123	.1 18930	1 1	3 549 1 1 606 1	.1 4 .9 3 .2 5 .2 4	4980 1. 7520 6. 11410 9570	1 18 1 14	53 41220 381	0 24 0 18	4390 58 3530 75 6440 82 5740 75	7 4 340	· 17 11	50 21	1	34	1 225	58.7 106.8 62.6 66.6	260	i	1 '	9	11 20
1-00125	/ 20020	1 1	1 212	.7 11	8960 8830 3. 13540 11300 10070	1 17 1 23 1 35 1 24 1 22	40 48920 310 58 59360 289 28 81240 229 51 70320 217 47 62030 180	0 11	9000 100 10680 149 19510 200 15710 117 13070 111	3 5 510 1 14 550	20 11 39 13 1 11 23 13 18 13	60 16 80 23 90 4 90 15	1	22	1 1844 1 1722 1 6043 1 3384 1 2780	137.2	433	1	2	2 12 2 12 3 6 3 11	3 21 5 2 10
1-00272 1-00274 1-00278 1-00279	.5 23240 .9 31740 .4 25150 .5 21340	1 1	1 178	.9 12	8830 3.	1 23	58 59360 289	0 10	10680 149	1 14 550	39 13	80 23	1	22 23 25 23 20	1 1722	175.0	741	1	1	2 12 2 12 3 6 3 11 3 10	21
1-00274	.9 31740	1 1	1 129	.1 31	13540 .	1 .35	28 81240 229	0 13	19510 200	6 1 140	1 11	90 4	1	25	1 6043	226.4	149	1	4	5 6	5
1-00270	5 21340	1 1	1 152	.4 18 .5 17	10070	1 24 1 22	47 62030 180	0 13	13070 111	6 1 140 1 9 420 9 8 540	23 13	20 18	1	20	1 2780	167 6	511	ł	3 2	3 10	10
	10 21010						47 02030 100	• • • • •	13070 11	/ 0 /40		20 10	· ·		1 2100			•			
							·····														
																					1
]
	<u> </u>				-w·								·		,						
<u>├</u>																					
		~																			
		r						_		- 1 2											
L																			_		

FILE NO: 1V-0964-LJ1

I: C.GRAF/D		NDICAT	LDAI	- ('	05 W				ORTH V. 14 OR				V/M	1172								A DA	N CO	исели		DATE:	
MPLE	AG	AL	AS	В	BA	BE	81	CA	CD	CO	CU		E K			MN			N 1	 P	PB	SB	SR	TH	TI	1						U-FIRE	
JMBER	PPM		PPM					PPM					1 PPM		PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM I	PPM P	PM	PPM	PPI	1 PPM		PPM			PPE	_
-00114 -00116		16820 14220	2	4	1489 1230	1.2	8 4	5550 4150	5.9	´14 9	49 34	46870) 2960) 3640	11	6380 4970	654 406	3	470 450	15 14	1270 880	15 16	1 1	35 39 38	11	290	95.2 61.1	2 546 7 308) 1 1	1		14 11	6	5 31.3 4 33.4
-00118	.4	11540	2	1	2117	.7	11	4150 6830	2.8	14	45	50860	3640 2770	8	4300	631	21	140	40	910	17	1	38	11	699	103.2	2 651	่า	ż	1	10	3	3 35. 4 33.
-00120 -00122		22010 21200	1	1	441 766	1.5	- (13460 10680	.1	23	63 50	- 75960) 3780) 4090	27	4970 4300 7780 7030	857	1	120	11	1300 1170	20 19	1	40 37	1	731 449	84.1 79.3	1 303 1 260	5 1 1 1	1	1	10 1 1	14	4 33. 8 47.
00124	1.2	20470	1	1					.1	23				13	12900	863	3						22	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		201.0				3	13		5 32.
00271	1.4	24280	1	1	512 342	.1	39	10890 10930	.1	23 38	51	70900 113800	1820	14	12900 18130	1502	Ŝ	170 170	13	1250 1300	4	1	20	17	7641	267 7	6 639	> 1	3		24	4	4 17.
00273	1.5	33240 23850	1	1	86 236	.1	42	14900 11020	.1	37	51	106230 91300) 1220	14	26840 17680	1529	1	110 130	12	1290 1320	1	1	15 20	18	3255	317.8	3 148 7 536	5 1 5 1		5			320. 337.
00277	.5	22620	i	i	347	ż	24	10890	.i	25	43	77760	1280	14	16230	1017	4	130	10	1320		1	20	14	215	209.0	6 460	í 1	- 4		12	-	7 47.
																								• • • • • •									-
			•• •• ••																														
																																	
· · · · · · · · · · · · · · · · · · ·						-						1. <u></u> -					<u> </u>																
																				·													
						•- <u>.</u>									,	· •													_,				

SAMPLING METHODOLOGY

.

APPENDIX "B"

SAMPLING METHODOLOGY

ROCK SAMPLES

Approximately 5 kg of rock chips were placed in a 6 mil plastic bag with a sample tag; the bag was marked with the tag number and the samples shipped to Min-En Laboratories in North Vancouver.

SILT SAMPLES

Approximately 0.5 kg of fine sediment was collected from the active stream channel, placed in a standard kraft bag with a sample tag and the tag number written on the bag. The sample was then dried and shipped to Min-En Laboratories in North Vancouver.

SOIL SAMPLES

Approximately 0.5 kg of B horizon soil was collected from 10 cm to 25 cm depth, put in a standard kraft bag with a sample tag and the tag number written on the bag. The sample was then dried and shipped to Min-En Laboratories in North Vancouver.

PAN CONCENTRATE SAMPLES

Two pans of material were collected from the active stream channel, sieved to -1.25 cm and panned to a black sand concentrate. One pan of moss was washed with the resulting residue panned to a black sand concentrate. These concentrates were combined and placed in a 6 mil plastic bag with a sample tag. The bag was labelled with the tag number and shipped to Min-En Laboratories in North Vancouver.

STATEMENT OF QUALIFICATIONS

7

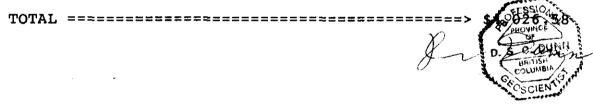
•

APPENDIX "C"

STATEMENT OF QUALIFICATIONS

I, David St. Clair Dunn, with a business address of 2348 Palmerston Avenue, West Vancouver, B.C. declare that:

- I am a Professional Geoscientist registered under the Professional Engineers and Geoscientists Act of the Province of British Columbia.
- 2. I am a Fellow of the Geological Association of Canada.
- 3. I am an affiliate member of the Association of Exploration Geochemists.
- I have practised my profession as a prospector and geologist in Canada, U.S.A. and Australia for over 20 years.
- 5. I personally supervised the work on the Bat claims.
- I do not hold any interest in the Bat claims nor do I expect to receive any.


P. Geo.

STATEMENT OF COSTS

APPENDIX "D"

STATEMENT OF COSTS

	,	FESSION
Report preparation		600.00
360.50		360.50
Analytical charges: 3 rocks 55.50 10 silts 145.00 10 pan con 160.00		
Truck Rental		189.11
Helicopter	1	467.83
Room and Board		216.70
B. Goad 1.5 days @ \$150/day + GST (August 24 & 26, 1991)		240.75
Wages: D. Dunn 1.5 days @ \$250/day + GST (August 24 & 26, 1991) D. Goard 1 5 days @ \$150/day + GST		401.25
Project Expenses:		
Mob Demob		463.21
Project Preparation	\$	87.23

APPENDIX "E"

ANALYTICAL METHODS

•

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK

PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B.C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment Samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer or ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with agua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

Division of Assayers Corp. Ltd.

<u>ᡶᠣᠴᠵ᠄᠕ᢣᠵ᠕ᡔᠬᠧ᠋ᡃᡄᠴᡃ᠅᠆᠃ᡎᠧᡵ᠋᠋᠋᠘᠈᠆ᠽ᠘ᢂᡔᠧᡁ᠆᠆ᡬᡘᡘ᠊ᡳᡅ᠕᠂᠇ᡒᡄ᠋ᡘᠼᢛ᠇᠅ᡇᡢ᠇ᡘ᠘ᢃᡐ</u>

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR AG, CU, PB, ZN, NI, CO OR CD GEOCHEM

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analysed on atomic absorption spectrometers using the appropriate standard sets. A background correction can be applied to Ag, Pb, and Cd if requested.

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR 31 ELEMENT TRACE ICP _____


> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni P, Pb, Sb, Sr, Th, Ti, V, Zn Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vanccuver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

