ARIS SUMMARY SHEET

istrict (Geologist, Kamloops	Off Confidenti	al: 92.08.28
ASSESSMENT	REPORT 21855 MINING DIVISION: Re	velstoke	
CLAIM(S): OPERATOR(S) UTHOR(S) EPORT YEA KEYWORDS:	Rain LAT 51 26 00 LONG 118 07 00 UTM 11 5698388 422374 NTS 082M08E Rain 1,Rain 3,Deer 3 S): Bethlehem Res. Campbell, I. AR: 1991, 75 Pages Hadrynian,Horsethief Creek Group,Ham Quartzites,Dolomites,Marbles,Phyllit	iill Group,Larde	eau Group
DONE:	Geochemical,Geophysical EMGR 17.0 km;VLF Map(s) - 3; Scale(s) - 1:5000 MAGG 17.0 km Map(s) - 2; Scale(s) - 1:2500,1:5000 SOIL 502 sample(s) ;ME Map(s) - 5; Scale(s) - 1:2500		

Ì

LÜĞ	NO:	NOV	28	1991	RD.
ACTI	ON:				

FILE NO:

REPORT OF EXPLORATION ON MURDER CREEK PROJECT, RAIN PROPERTY

Revelstoke Mining Division

NTS 82M/8E 51⁰26'N, 118⁰07'W

For

Bethlehem Resources Corp. Suite 806, 808 W. Hastings St., Vancouver, B.C. V6C 2X4

SUB-RECORDER RECEIVED	- Annal
NOV 5 5 1991	and the second se
VANCOUVER, B.C.	.

7

1

Ian Campbell, Consulting Geologist OreQuest Consultants Ltd.

October 25, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY

The Murder Creek Project on the Rain property represents an exploration target for stratabound copper-zinc massive sulphide deposits. The property is located approximately 60 kilometres north of Revelstoke, B.C. and consists of 18 claims totalling 216 units. The property was staked in 1989-90 and is owned by Bethlehem Resources Corp. (100%).

The 1991 exploration program focused on locating stratabound copper-zinc massive sulphide mineralization in the Murder Creek area of the property. The program was based on recommendations drawn from the 1990 exploration program (Wild, 1990) which indicated the Murder Creek area to be underlain by Paleozoic-metasedimentary and metavolcanic rocks of the Lardeau Group host stratigraphy to Goldstream copper-zinc massive sulphide mine, 20 kilometres to the north.

The 1991 program consisted of the establishment of a flagged grid utilized for control of soil geochemistry (B horizon) sampling, ground magnetometer/VLF-EM geophysics, geological mapping and prospecting.

The geochemical survey has indicated 2 anomalous areas both of which lie along strike from banded pyrite mineralization discovered by Wild, 1990. The first area occurs in the northern part of the Murder Creek grid where a strong multi-element copper-zinc-leadsilver anomaly coincides with five subparallel VLF-EM conductors. The geochemical anomaly has a strike length of 500 m within which values up to 2066 ppm copper, 9229 ppm zinc, 157 ppm lead and 1.5 ppm silver were detected. Banded to massive pyrite and pyrrhotite mineralization anomalous in copper and zinc was discovered in float downslope of the anomaly. Andalusite, tan coloured biotite, tourmaline and amphibole indicative of hydrothermal alteration, was noted in outcrop in what would represent the stratigraphic footwall based on the location of the geochemical anomaly.

The second area occurs 1 kilometre to the south along Murder Creek where an area of elevated copper, zinc and lead in soils was detected with values up to 577 ppm copper, 1084 ppm zinc and 104 ppm lead. The anomaly remains open to the west and south where it trends off the existing grid. This area is underlain by dark banded phyllite.

Massive galena mineralization was also discovered in limestone float along the north side of Downie Creek, assaying 49% lead, 1.81% zinc and 0.35% copper.

Trenching followed by diamond drilling is recommended to test the northern geochemical anomaly. Additional grid work is recommended on the south and west part of the Murder Creek grid to locate the source of the anomalous copper in soils response. Lardeau stratigraphy to the north and south should be explored. Reconnaissance work should also be completed on the upper Standard Creek drainage, over a panel of Lardeau stratigraphy.

TABLE OF CONTENTS

Summary	
Introduction	1
Location and Access	2
Topography, Physiography and Vegetation	2
Claim Status	4
Property History	5.
Regional Geology	7
Field Procedures	9
Property Geology	9
Geochemistry	11
Geophysics	13
Discussion of Results	15
Conclusions and Recommendations	18
Statement of Qualifications	
Ian Campbell, F.G.A.C.	

Bibliography

1 :

 $\left[\right]$

LIST OF FIGURES

Figure	1	Location Map	Fo	llowing	Summa	ary
Figure	2	Claim Map	Fo	llowing	Page	4
Figure	3	Regional Tectonic Map	Fo	llowing	Page	6
Figure	4	Geology	Fo	llowing	Page	10
Figure	5	Zinc Geochemistry	In	Pocket		
Figure	6	Copper Geochemistry	In	Pocket		
Figure	7	Lead Geochemistry	In	Pocket		
Figure	8	Silver Geochemistry	In	Pocket		
Figure	9	Manganese Geochemistry	In	Pocket		
Figure	10	Magnetic Survey	In	Pocket		
Figure	11	VLF-EM Survey Profiles - Hawaii				
		(NPM 23.4 kHz)	In	Pocket		
Figure	11a	VLF-EM Survey Profiles - Seattle				
		(NLK 24.8 kHz)	In	Pocket		
Figure	12	VLF-EM Fraser Filtered Data-Hawaii	In	Pocket		
Figure	13	Compilation Map	In	Pocket		

LIST OF TABLES

Table 1Claim InformationPage 4

LIST OF APPENDICES

Appendix IAnalytical ProceduresAppendix IIAnalytical ResultsAppendix IIIThin Section ReportAppendix IVRock Sample Descriptions

INTRODUCTION

The Murder Creek Project, within the Rain property, represents a target for stratabound copper-zinc massive sulphide deposits similar to the Goldstream mine. The property, held 100% by Bethlehem Resources Corp. is located approximately 60 kilometres north of Revelstoke, British Columbia and is underlain by rocks of the Proterozoic Horsethief Creek Group, Proterozoic to Lower Paleozoic Hamill Group, Paleozoic Badshot Formation and Lardeau Group. The Lardeau and Badshot rocks are known to host several massive sulphide deposits in the region.

A ground exploration program consisting of geological mapping, prospecting, soil geochemical sampling (B horizon) and VLF-EM and ground magnetometer geophysics was carried out over a portion of the property on the Rain 1 claim in the vicinity of Murder Creek. The purpose of the work program was to evaluate in detail the potential for stratabound copper-lead-zinc-silver mineralization. The work program was based on results from the 1990 program which outlined a section of stratigraphy exposed in Murder Creek which is "identical to the ore hosting sequence at the Goldstream Mine" (Wild, 1990).

This report describes and presents results from a 2 phase ground exploration program completed between August 4 and October 10, 1991. The first phase consisted of grid establishment over which the surveys were completed. The second phase involved follow up work on results from the first phase.

The author wishes to acknowledge the important contribution of Tim McGowen, Linda Lewis and George Cavey of OreQuest, Chris Wild and Pat McAndless of Bethlehem Resources Corp., and Gordon Gibson, Independent Consultant.

LOCATION AND ACCESS

The Rain property is located approximately 80 road kilometres north of Revelstoke within the northern Selkirk Mountains of southeastern B.C. (Figure 1). The property straddles the Downie Creek valley from approximately 1 kilometre north of the Sorcerer Creek confluence, southward for approximately 15 kilometres, and a portion of the property area covers the headwaters of Standard Creek. The property is centred at $51^{o}26'N$ latitude and $118^{o}07'W$ longitude, NTS map sheet 82M/8E.

Access to the lower elevations of the property areas is gained by travelling 67 kilometres north from Revelstoke on Route 23 (Nakusp-Mica Creek Highway) then eastward along the Downie Creek logging road. The property lies between kilometre 15 and 29 along the Downie Creek logging road from which several branch roads to logged areas provide access to the lower elevations. The alpine portions of the property must be accessed by helicopter.

TOPOGRAPHY, VEGETATION AND PHYSIOGRAPHY

The Murder Creek Project area is centred along Downie Creek, a large U-shaped drainage in the northern Selkirk Mountains. Elevations over the whole property range from 670 m ASL on the valley floor to 2530 m ASL. Valley walls are steep with ridges and peaks being very sharp. Small glaciers cover portions of the southwestern portion of the claim group.

Vegetation consists of mature stands of cedar, hemlock and spruce with extensive ground cover consisting of dense underbrush, slide alder and devils club. Active logging continues in the Downie Creek valley and along the heavily wooded slopes.

Outcrop exposure is very limited in the lower valley being restricted to road cuts, creek exposure and scattered cliffs. Cliffs are more prevalent along the east side of the Downie Creek valley. Exposure in the alpine areas ranges from 80 to 100 per cent. Exposure on the Murder Creek grid was limited to Murder Creek, Cooler Creek and scattered outcrops of marble at the western end of northern lines.

Thick glacial till is evident from road cuts over portions of the lower valley areas. In the area of Murder Creek the soil profile consisted of a thin humus layer underlain by a 5-20 cm thick intermixed glacial till, clay layer, followed by a thin grey leached layer. Good B horizon red brown soil was located underneath the leached layer. Soil pits dug on some of the upslope portions of Murder Creek grid revealed an overburden depth of 1 to 2 m. Overburden depth increased on the eastern portions of the grid as

evidenced from road cuts, where the topography lessens and benches out.

The Downie Creek area lies within the interior rain belt with precipitation averaging 1.15 m annually. Temperatures range between -30° C and $+35^{\circ}$ C.

CLAIM STATUS

The Rain property consists of 18 mineral claims totalling 216 units (Figure 3) registered within the Revelstoke Mining Division, B.C. Pertinent claim information is listed in Table 1, and includes the application of assessment credits earned during the current work program.

CLAIM	RECORD	UNITS	AREA (ha)	LOCATION DATE	EXPIRY DATE
RAIN 1 RAIN 2 RAIN 3 RAIN 4 DROP 1 DROP 2 DROP 3 DROP 4 DROP 5 DROP 6 DROP 7 DROP 8 DROP 9 DROP 10 DEER 1 DEER 2 DEER 3 MIT	2798 2799 2800 2801 2943 2944 2945 2946 2945 2946 2947 2948 2950 2950 2950 2951 2952 2951 2952 2969 2970 2971 302917	15 20 9 12 18 15 16 10 12 6 16 20 10 15 8 6 4 4	375 500 225 300 450 375 450 250 300 150 400 500 250 375 200 150 100 100	OCT 18/89 OCT 18/89 OCT 18/89 OCT 18/89 OCT 18/89 SEP 24/90 SEP 24/90 SEP 24/90 SEP 24/90 SEP 24/90 SEP 24/90 SEP 24/90 SEP 24/90 SEP 25/90 SEP 25/90 DEC 06/90 DEC 05/90 DEC 06/90 AUG 08/91	OCT 18/92 OCT 18/92 OCT 18/92 OCT 18/92 OCT 18/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 24/92 SEP 25/92 SEP 25/92 SEP 25/92 DEC 06/92 DEC 06/92 AUG 08/92
		210	5450		

TABLE 1: CLAIM INFORMATION

PROPERTY HISTORY

Regionally, the area has a long history of mining exploration dating back to the 1860's. Interest in hardrock mining intensified with the discovery of the Montgomery copper-zinc-silver massive sulphide showing in 1896, approximately 12 kilometres to the northwest of the Rain property. Work on the Montgomery property has continued sporadically with the most recent work consisting of a short diamond drill program completed in September 1990 by joint venture partners Goldnev Resources Inc. and Bethlehem Resources Corp.

The Standard property located approximately 8 kilometres southwest of the Rain 10 claim was also discovered in 1896. This copper-zinc-silver massive sulphide occurrence has also been worked intermittently, the last serious work completed in 1976 by Noranda Exploration Co.

The area currently has one producing mine, the Goldstream copperzinc massive sulphide deposit which lies approximately 20 kilometres northwest of the Rain property. Goldstream was discovered in 1974 by two prospectors, Bried and King, who optioned the property to Noranda Exploration Co. Ltd. By late 1975, a deposit containing 3.175 million tonnes grading 4.49% copper and 3.14% zinc had been outlined. The mine operated for seven months in 1983 before closing due to prevailing metal prices. Joint ventures partners, Bethlehem Resources Corp. and Goldnev Resources Inc., purchased the mine and mill complex in 1989. The Goldstream Mine is currently producing at a rate of

approximately 1100 tonnes per day, at an average grade of 4.31% copper and 2.96% zinc. Current mineable reserves are 1.86 million tonnes grading 4.81% copper and 3.06% zinc (Northern Miner, July 22, 1991). Diamond drilling in 1991 on the down plunge extension of the ore body has increased the possible reserves by approximately 30% with the deposit remaining open at depth (Campbell, 1990).

Approximately 20 kilometres to the south of the Rain property Cheni Gold Mines Inc. is currently doing a feasibility study on the J and L polymetallic massive sulphide property. Current proven, probable and possible reserves in the Main Zone stand at 4.77 million tonnes grading 7.2 g/ton gold, 72.0 g/ton silver, 2.7% lead and 4.3% zinc, while the Yellowjacket Zone hosts possible reserves of 910,000 tonnes grading 7.4% zinc, 2.6% lead, 55 g/tonne silver (Cheni Gold Mines, July 1991). The deposits are hosted in "Hamill Group metasedimentary and metavolcanic rocks interlayered or in fault contact with Early Cambrian Mohican and Badshot formations, and the Lower and Upper Index Formations of the Cambrian and younger Lardeau Group" (Meyers, R.E. et al, 1989).

Portions of the Rain property were previously held by Noranda Exploration Co. Ltd. in the late 1970's in order to evaluate a coppertungsten showing immediately north of the Sorcerer Creek-Downie Creek confluence. Geological mapping, B horizon geochemistry and ground magnetometer and VLF-EM geophysics were completed over a control grid. The Sorcerer Creek showing was interpreted to be skarn mineralization

related to a Cretaceous aged intrusive to the north. Follow up work was recommended on a zinc-lead-copper-silver geochemical anomaly detected on the southern portion of the grid. No further work was recorded.

In 1989, Bethlehem Resources Corp staked the Rain property based on a re-evaluation of the Goldstream Mine stratigraphy which suggested the Rain property may be underlain by similar host rocks. Geological work by Bethlehem in 1990 (Wild, 1990) confirmed portions of the property to be underlain by the Palaeozoic Lardeau Group host to several other copper-lead-zinc massive sulphide deposits in the region, including Goldstream. Further work was recommended for the Murder Creek area.

REGIONAL GEOLOGY

The regional geology of the Goldstream River-Downie Creek area has been described in detail by several authors: Gunning (1928) and Wheeler (1965), Gibson (1978-86), Hoy et al (1977, 1984-85) and Read and Brown (1981-89). The regional geology consists of metasedimentary and lesser amounts of metavolcanic rocks of early paleozoic age deposited along the western margin of Cratonic North America. These rocks lie within the Selkirk Allochthon, a composite terrain comprised of at least four major fault bounded complexly deformed tectonic slices. The Rain property lies within the Goldstream slice which also hosts the Goldstream copper-zinc deposit, the Montgomery and Standard copper-zinc, lead-zinc massive sulphide occurrences. Rocks comprising the Selkirk Allochthon were transported from west to east over the core and mantling gneisses of the Monashee Complex during Middle Mesozoic to Eocene times an have also been intruded by granite stocks of probable Cretaceous age (Hoy et at, 1985). The Monashee decollement marks the contact between the Monashee Complex and the Shuswap Metamorphic Complex to the north and west. To the east, the east dipping Columbia River Fault separates the Selkirk Allochthon from the underlying Monashee Complex.

Rocks within the Selkirk Allochthon have under gone at least three phases of deformation. Phase 1 is believed to have inverted much of the Goldstream slice possibly as the underlimb of a major recumbent nappe. Large tight isoclinal to recumbent folds with strong axial planar foliation and northwest trending fold axes define Phase 2 folding. A third phase of deformation is evidenced by kink folds, crenulation cleavages and broad, upright, open folds.

Massive sulphide occurrences in the region are hosted in chloritic schists, sericite schist and dark banded graphitic calcareous phyllite associated with basic volcanism. Stratigraphy that hosts the Standard deposit has been correlated with the Lower Paleozoic Index formation while lead isotope data from the Goldstream Mine gives a Devonian age.

FIELD PROCEDURES

A flagged control grid totalling 17 kilometres was established by compass and hipchain methods. The grid consists of a base line 2.15 kilometres in length trending 165°, 1550 m north and 600 m south of Murder Creek. Crosslines were established at 100 m intervals, except in the northern 300 m of the grid where infill crosslines were established at 50 m intervals. The lines generally extend 250 m east of the baseline, with crosslines of variable length west of the baseline intended to give coverage across the interpreted dark banded phyllite/marble contact. During the course of the program, several old tags depicting line and station locations from Noranda's control grid in 1981 were noted, allowing for good control when compiling and correlating pre-existing data.

PROPERTY GEOLOGY

The Rain property is underlain by rocks of the Proterozoic Horsethief Creek Group, Proterozoic to Lower Paleozoic Hamill Group and Paleozoic Badshot Formation and Lardeau Group.

Structurally these units trend northwest with moderate east to northeast dips. Second phase isoclinal folding and a dominant axial planar foliation are the dominant structural elements. Fold axes plunge gently to the southeast and northeast end of Keystone Peak. East of Downie Creek, plunges are moderate to the northeast, steepening northward toward Downie Peak. Broad, open third phase folds warp the foliation and original layering kink folds and

GEOLOGY LEGEND for Figure 4

Lardeau Group - Paleozoic

- 4F Quartz- Chlorite Sericite Schist, minor Marble, Quartzite
- 4 E Marble
- 4D Sulphide Layer
- 4C "Garnet Zone" cherty and graphitic schist
- 4B Quartz Graphite Biotite Schist, strongly calcareous
- 4A Talc Schist

Badshot Formation - Paleozoic

- 3B Marble
- 3A Calc Schist
 - Hamill Group
- 2B Quartzite
- 2A Quartz Biotite Muscovite Schist, Quartzite
 - Horsethief Creek Proterozoic
- **1B** Dolomite, Micaceous Quartzite, Chlorite Schist
- 1 A Marble
- I Intrusive Rocks Cretaceous
 - Traverse Station

Attitude of Bedding (S0), Primary Foliation (S2), and Crenulation Cleavage (S3)

Direction/Plunge of Minor Fold Axis (F2 and F3) and Lineations (L2 and L3); vergence as viewed down plunge.

Geological Contact - defined, assumed, interred

Major Antiform - defined, assumed

Major Synform - defined, assumed

unununun

G

Mineral Occurrence

Fault - defined, assumed

Gossan

Extent of Outcrop

Legal Corner Post, location from claim map

- 2 Post Claimpost
- ======= Logging Road
 - Claim Boundary

crenulation cleavage are the dominant third phase structures showing near vertical axial planar cleavage and gentle east-west plunges (Wild, 1990).

Chloritic and calcareous metasediments dominate from Downie Creek westward to Standard Creek. These rocks tend to become more chloritic to the south and west, eventually becoming metavolcanic greenstones near Standard Peak. To the north, graphitic dark banded phyllites are more common. These metasediments are overlain to the east by older Badshot Marble and Hamill quartzites indicating the entire section to be overturned.

The Murder Creek project area (Figure 4, 13) is underlain by graphitic dark banded phyllite, sericite to quartz sericite schist, siliceous siltstones and marble. Outcrop is restricted to creek vallevs and road cuts, making geological contacts somewhat speculative. The dark banded phyllite exposed in Murder Creek and just north of Cooler Creek consists of siliceous chloritic to quartzitic phyllite with calcareous and graphitic interbeds. This unit is very similar, if not identical, to the enclosing strata of the Goldstream ore body. The unit trends north-south to south-southwest with dips ranging from 40° to 65° east. The marble contact in the west portion of the grid not noted in outcrop, is based on geophysical interpretation from the field magnetics, the presence of 2 small marble outcrops on the west end of Line 2+00S, and the strike extension of the contact in Murder Creek at the Murder Creek showing (Wild, 1990).

The dark banded phyllite is overlain by sericite to quartz sericitic siliceous schists and siliceous siltstones, mapped along the lower road. Interbedded marble units were noted within the dark banded phyllite, and the sericitic schists.

GEOCHEMISTRY

Geochemical B horizon soil sampling was conducted at 25 m intervals on the northern portions of the grid widening to 50 m spacings to the south. In most cases, a brown to reddish-brown B horizon was developed at a depth between 10 to 50 cm. Overburden depth on the upslope portions of the grid ranged from 1 to 2 m where tested. A total of 502 soil samples, 2 silt samples and 50 rock samples were collected during the course of the program. The samples were analyzed using a 25 element scan by ICP methods by Vangeochem Labs in Vancouver (Appendix I).

Geochemical analytical results are found in Appendix II. Detailed plots of soil sample results for copper, zinc, lead, silver and manganese are found in pocket (Figures 5-9). Brief descriptions of rock samples are found in Appendix IV.

The copper, zinc and lead maps show contoured areas of anomalous results. Areas of anomalous concentrations of copper and zinc are

also shown in the compilation map, Figure 13. Modal values for copper, zinc and lead in soils is 34 ppm, 180 ppm, 21 ppm while the threshold for an anomalous value is taken at 75 ppm, 350 ppm and 50 ppb respectively. Anomalous levels were determined by adding twice the standard deviation to the arithmetic mean determined after eliminating the top 5 percentile of the sample population.

A broad multi-element copper-zinc-lead anomalous area exists in the northern portion of the Murder Creek grid. The anomaly occurs along an east sloping ridge on the west side of Downie Creek and can be separated into a copper dominant phase and a zinc dominant phase based on a copper-zinc product plot.

The copper phase occurs upslope, on Lines 0+00 to 5+00S between 1+00W ad 2+00W, defining a north-south linear trend. Values up to 510 ppm copper and 994 ppm zinc were yielded from the initial geochemical survey. Follow up test pits dug within the anomaly returned much higher copper values. A copper value of 2066 ppm was obtained at a 1.3 m depth at the base of the B horizon along the rubble interface at station 1+57W, Line 2+00S. A similar sample taken 7.0 m downslope yielded 896 ppm copper. Zinc values also showed some increase with depth at the sample locations.

The zinc dominated phase (Figure 5) occurs 100 to 150 m down slope, on Lines 0+00 to 3+00S. The strongest part of the anomaly occurs on Lines 2+00S to 3+00S where several samples yielded over 2000

ppm zinc, the highest being 8992 ppm. Lead is also anomalous (Figure 7) with values ranging between 56 and 156 ppm. Several single to multi-station copper highs (Figure 6) also occur in the portion of the anomaly with the highest being 105 ppm.

Silver, manganese, nickel, strontium and cadmium are also strongly anomalous in the northern part of the Murder Creek grid.

A second geochemical anomalous area occurs on the western ends of Lines 14+00S to 21+00S with values up to 577 ppm copper, 1084 ppm zinc and 104 ppm lead. Exposure along Murder Creek indicates the anomalous area to be underlain by dark banded phyllite, however the anomaly does trend upslope off the grid to the west.

GEOPHYSICS

Very low frequency electromagnetic (VLF-EM) and magnetic geophysical surveys were conducted on part of the grid from line 0 to line 1500S. The survey utilized an EDA OMNI PLUS combined magnetometer and VLF receiver with a second OMNI PLUS as a base station to record magnetic diurnals. The VLF transmitters at Seattle (NLK at 24.8 kHz) and Hawaii (NPM at 23.4 kHz) were used. The Seattle coverage was incomplete on 3 lines because of the scheduled Thursday transmitter maintenance shut down. However, Hawaii, in essentially the same direction as Seattle from the survey area, provides backup coverage. The results of the magnetic survey are presented in contoured format on Figure 10. Figures 11 and 11a show the VLF-EM results in profile and Figure 12 shows the in-phase Fraser Filtered results for Hawaii. The Seattle, in-phase was not Fraser Filtered because of the 3-line gap in the results.

The VLF-EM survey outlined a number of anomalies as shown on Figure 11 which would appear to define the conductors as indicated. Anomalies are not indicated on the Seattle results but a comparison between Seattle and Hawaii shows that they are almost identical.

The causes of the conductors are unknown at this time. At the Goldstream area conductors emanate primarily from graphite in the dark banded phyllite and at the deposit itself the massive sulphides cannot be electromagnetically distinguished from the enclosing graphitic horizons. Interbedded graphitic horizons within the dark banded phyllite evident in outrcop in Cooler Creek is the most likely cause for the VLF-EM conductor located on Lines 0+00, 1+25E to Line 4+00S, 0+75E. The remaining conductors are all obscured by overburden.

The conductor that appears to trend obliquely across the grid is probably a fault with an apparent shallow westerly dip. The out of phase anomalies for this feature have opposite signs to the in-phase responses to indicate a good conductor.

The frequency and quality of the anomalies appear to diminish abruptly to the south of this fault.

The magnetic field varies from a high of 58,300 nT to a low of 57,700 nT. The results outline a belt of generally small, isolated closures which more or less defines the interpreted extent of the dark banded phyllite. This character of magnetic response also occur in the Goldstream area. Lows adjacent to the highs are probably induction effects although intense lows like the one on L1100S at 200W are also evident around the Goldstream deposit where they haven't been adequately explained.

The magnetic response along the edges of the grid are generally subtle with a minimal relief consistent with the interpreted limestone lithologies.

Some of the magnetic anomalies occasionally correlate with portions of the conductors. However, the correlation is not consistent as if the magnetic and conductive responses arise from unrelated sources.

DISCUSSION OF RESULTS

The geochemical copper-zinc soil anomaly on lines 0+00 to 5+00S between 1+00W and 2+00W could reflect a local bedrock source. A follow up soil pit excavated where initial sampling had yielded 257 ppm copper, yielded strongly elevated copper concentrations up to 2066 ppm, copper (L2+00W, 1+57W) and 869 ppm copper (L2+00S, 1+50W). The samples were taken from the B horizon at the soil/rubble interface at a depth of 1.3 m. This illustrates rapidly improving concentrations of copper with depth. Zinc also exhibits increased concentrations with depth (Figure 5).

The zinc anomaly east of the baseline on Lines 0+00 to 3+00S may be transported, a result of downslope dispersion and ground water Evidence includes the presence of tufa in the upper soil seepage. profile and calcrete deposits along the creek bed. Several of the highest zinc results are also strongly enriched in calcium. Follow up soil pits at some of the highest results showed declining zinc concentrations with depth (Figure 5). The presence of the coincident lead anomaly cannot adequately be explained in consideration that lead is much less mobile than zinc. The VLF-EM conductor coincident with this portion of the anomaly can be explained by graphitic horizons in the dark banded phyllite, seen in exposure along Cooler Creek. The other VLF-EM conductors upslope to the west are all interpreted to have bedrock sources and to be underlain by dark banded phyllite.

The two geochemically anomalous areas discussed above are also anomalous in cadmium, silver, strontium, manganese and nickel, a geochemical signature very similar to the Goldstream ore body. Although skarn mineralization in outcrop occurs 0.6 kilometre to the northeast adjacent to a Cretaceous aged pluton, the absence of

anomalous tungsten, tin and only weak molybdenum, casts doubt on this as a possible source.

When exploring for stratabound copper-zinc massive sulphide deposits several characterics of the enclosing strata evident at the should be considered. Goldstream Mine At Goldstream, the stratigraphic footwall dark banded phyllite is not anomalous in copper or zinc until 5 m directly below the deposit. Intense shearing and complex folding has either obliterated and/or transported any preexisting stringer zone, although, Besshi type deposits, which Goldstream resembles, are not known to contain large stringer zone mineralization. It is worth noting that several samples of dark banded phyllite in the area of Cooler Creek yielded anomalous copper concentrations (Figure 13) ranging from 377 ppm (sample #29101) to 1414 ppm (sample #19671). In the Goldstream open pit 10 m below the ore body large amphibole crystals in altered phyllite, flattened in the plane of the foliation occur. A similar occurrence was found in outcrop just north of Cooler Creek at 1+75S, 0+67E. Thin section analyses (Appendix III, sample #3) of this rock revealed the presence of tan coloured biotite, tourmaline and andalusite. These minerals indicate hydrothermal alteration, the source of which could be the emplacement of the granodiorite pluton to the north, or, solutions related to the deposition of sulphides. At Goldstream, tan coloured biotite (hydrous) within the stratigraphic footwall dark banded phyllite represented the only macroscopic evidence (drill core) of possible hydrothermal alteration related to the emplacement of the

ore body, at appreciable distances stratigraphically below the ore body.

Thin section analysis of a massive sulphide float boulder showed traces of chalcopyrite and sphalerite mineralization.

The anomalous area of copper, lead and zinc in soils on the southwestern portion of the grid is underlain by dark band phyllite. The anomaly trends upslope off the existing grid. Although good exposure occurs along Murder Creek, no explanation for this anomaly is apparent at this time.

Massive galena mineralization was found in a layer of limestone float boulder on the north side of Downie Creek by prospecting following up on a lead-zinc soil anomaly detected by Noranda (Mathieson, 1980). The mineralization occurs within a conformable, 0.75 m wide seam in the limestone boulder. The sample yielded assays of 49.0% lead, 0.35% copper and 1.81% zinc. No upslope source was located, however, minimal time was spent in the area.

CONCLUSIONS. AND RECOMMENDATIONS

The Murder Creek Project area is underlain by Lardeau stratigraphy very similar to the immediate host strata of the Goldstream ore body. Orientation geochemical and geophysical surveys over a portion of this stratigraphy has outlined two geochemical anomalous zones requiring follow up work.

The strongest anomaly lies in the north portion of the Murder Creek grid where a multi-element geochemical anomaly exists within which occurs five subparallel VLF-EM conductors. The area is geochemically anomalous in copper, lead, zinc, manganese, cadmium, silver, strontium and nickel. This geochemical signature is similar to the Goldstream massive sulphide ore body. The VLF-EM conductors reflect bedrock sources, some of which are graphitic horizons within the dark banded phyllite. One or more may reflect massive sulphide mineralization. Thin section analysis of a massive pyritic float boulders downslope of the geochemical anomaly revealed anomalous concentration of chalcopyrite and sphalerite, in what was termed a Thin section analysis from a sample of sulphide chert boulder. phyllite contained andalusite, tourmaline and tan biotite, indicative of hydrothermal alteration. This sample would be within footwall dark banded phyllite, in consideration that the geochemical anomalies are upslope and the entire section is overturned.

The second geochemical anomaly lies in the central portion of the grid along Murder Creek where soil sampling outline a wide area of anomalous copper in soils with attendant zinc and lead anomalous concentrations. The anomaly is open to the west and south where it trends upslope off the existing grid. Bedrock underlying this area based on good exposure in Murder Creek is dark banded phyllite.

It is recommended the northern anomalous area be drilled by a fence of holes to test the dark banded phyllite along strike and

downdip. Additional test pitting and gridwork should be completed prior to drilling in order to help pinpoint drill targets.

The grid should be extended to the west and southwest in the Murder Creek area, to ensure complete coverage of the dark banded phyllite, limestone contact from the Murder Creek showing to the existing 1991 grid. This should be followed by detailed geochemical sampling, geophysics and prospecting in order to locate the source of anomalous copper in soils detected to date.

Additional areas underlain by Lardeau stratigraphy to the north and south, and along the headwaters of Standard Creek should be subjected to reconnaissance style sampling, prospecting and mapping, as outlined by Wild, 1990. 21

|

STATEMENT OF COSTS

Office Costs/Repor	rt		Ş	9,621.68
Camp Costs	· · · ·			1,064.33
Mob/Demob				3,947.90
Communication				201.68
Geological Survey/ Campbell, I. McGowen, T. Cavey, G. Lewis, L.	Prospecti 11.5 days 4.0 days 5.0 days 2.0 days	ng: @ \$375/day @ \$250/day @ \$460/day @ \$250/day		4,312.50 1,000.00 2,300.00 500.00
Geophysical Survey LeBel, L. McGowen, T.	7: 22 hrs. @ 2 days @	\$62.50/hr \$250/day		1,375.00 500.00
Geochemical Survey McGowen, T. Campbell, I. Lewis, T. LeBel, L.	7: 11 days @ 4 days @ 7 days @ 15 hrs @	\$250/day \$375/day \$250/day \$62.50/hr		2,750.00 1,500.00 1,750.00 937.50
Linecutting				500.00
Drilling				500.00
Analyses				4,985.60
Equipment Rental Total Stateme	ent of Cos	ts	<u>\$</u> :	<u>2,070.00</u> 39,816.19

CERTIFICATE of QUALIFICATIONS

I, Ian James Campbell of 19312 Davison Road, Pitt Meadows, British Columbia, hereby certify:

- I am a graduate of Lakehead University (1982) and hold a BSc. (Geology) degree.
- 2. I am presently employed as a project geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed as an exploration geologist on a full time basis since 1982, prior to that as a geological assistant for four field seasons.
- 4. I am a Fellow of the Geological Association of Canada and I am a member in good standing with the Prospectors and Developers Association.
- 5. The information contained in this report was obtained from exploration work conducted on the subject property by OreQuest Consultants Ltd. that I carried out and directly supervised.
- 6. I own no direct, indirect or expect to receive any contingent interests in the subject property or shares or securities of Bethlehem Resources Corporation.
- 7. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

a Sus Cyben

Ian James Campbell, F.G.A.C. Geologist

DATED at Vancouver, B.C. this 25th day of October, 1991.

BIBLIOGRAPHY

- BROWN, R.L., LANE, L.S., PSUTKA, J.F., AND READ, P.B.
- 1983: Stratigraphy and Structure of the Western Margin of the Northern Selkirk Mountain: Downie Creek Map Area, British Columbia; in Current Research, Part A; Geol. Surv. Can., Paper 83-1A.
- BROWN, R.L., TOPPETT, C.R., AND LANE, L.S.
- 1977: Stratigraphy, Facies Changes, and Correlations in the Northern Selkirk Mountain, Southern Canadian Cordillera; Can. Jour. Earth Sci., Vol. 15, pp. 1129-1140.
- CHENI GOLD MINES
- 1991: July 30, 1991 Press Release.

DEVLIN, W.J.

- 1988: Stratigraphy and Sedimentology of the Hamill Group in the Northern Selkirk Mountains, B.C.: Evidence for latest Proterozoic-Early Cambrian Extensional Tectonism; Can. Jour. Earth Sci., Vol 26, pp. 515-533 (1989).
- GIBSON, G., HUGHES, B.B., AND BRADISH, L.B.
 1977: Geological, Geochemical and Geophysical Survey, Mars 1 to 4, Key 3 to 5, 9, 16, 17, 20, 21, Standard 1 to 4, and Kelly 1; B.C. Min. En. Min. Pet. Res., Assessment Report 6187.

HOY, T.

1989: Geology of the Goldstream Area; B.C. Min. en. Min. Pet. Res., Bulletin 71.

HOY, T., GIBSON, G., AND BERG, N.W.

1984: Copper-Zinc Deposits Associated with Basic Volcanism, Goldstream Area, Southeastern British Columbia; Econ. Geol., Vol 79, pp. 789-814.

LANE, L.S.

1977: Structure and Stratigraphy, Goldstream River-Downie Creek Area, Selkirk Mountains, B.C.; Unpublished M.Sc. Thesis, Carleton University, Ottawa, Ontario.

MATHIESON, G.A., AND LEWIS, T.

1980: Geological, Geophysical and Geochemical Report on the Soc 1 and 2 Mineral Claims, Revelstoke Mining Division; B.C. Min. En. Min. Pet. Res., Assessment Report.

READ, P.B., AND BROWN, R.L.,

1981: Columbia River Fault Zone: Southeastern Margin of the Shuswap and Monashee Complexes, Southern B.C.; Can. Jour. Earth Sci., Vol 18, pp. 1127-1145.

WHEELER, J.O. 1965: Big Bend Map Area, B.C.; Geol. Surv. Can., Paper 64-32. WILD, C.J.

1990: Geological and Geochemical Report on the Rain 1-17 Mineral Claims. Assessment Report.

WILD, C.J. AND ADAMSON, R.S.

1990: Drilling Report on the Keystone Property, Revelstoke Mining Division; B.C. Min. En. Min. Pet. Res., Assessment Report.

APPENDIX I

Į.

].

-

.

| | .

ANALYTICAL PROCEDURES
NO.208 P004/007

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VSL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 24, 1991

то:

2

- Mr. Ian Campbell OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6

VGC

- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HNO3:H2O in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

NO. 208 PØ

P005/007

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5856 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

11 1

-2-

3. <u>Method of Analyses</u>

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

VGC

NO. 208 P006

PØØ6/ØØ7

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 24, 1991

TO: Mr. Ian Campbell OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5

FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure used to determine Cu, Pb and Zn assay samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.

2. Method of Digestion

- (a) 0.200 gram portions of the minus 100 mesh samples were used. Samples were weighed out by using an analytical balance.
- (b) Samples were digested in multi acids in volumetric flasks.

VGC

NO.208 P007/007

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

Method of Analyses 3.

Cu, Pb and Zn concentrations were determined using a Techtron Atomic Absorption Spectrophotometer Model AA5 with their respective hollow cathode lamps. The digested samples were directly aspirated into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing them to a set of standards used to calibrate the atomic absorption units.

4. Analysts

Į.

The analyses were supervised or determined by Mr. Conway -Chun or Mr. Raymond Chan and their laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

10/24/91 11:55

55 VGC

NO.208 F

P002/007

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 24, 1991

TO:

- Mr. Ian Campbell OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

10/24/91	11:56	VGC

NO.208 P003/007

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.

3. Method of Detection

- (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

APPENDIX II

ANALYTICAL RESULTS

Ì.

ſ

ļ

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

 CLIENT: OREQUEST CONSULTANTS LTD.
 DATE: AUG 23 1991

 ADDRESS: 306 - 595 Howe St.
 : Vancouver, BC
 REPORT#: 910196 GA

 : V6C 2T5
 JOB#: 910196

PROJECT#: RAIN CLAIMS SAMPLES ARRIVED: AUG 21 1991 REPORT COMPLETED: AUG 23 1991 ANALYSED FOR: AU (FA/AAS) ICP INVOICE#: 910196 NA TOTAL SAMPLES: 22 SAMPLE TYPE: 22 ROCK REJECTS: SAVED

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: Raymond Chan

Budh SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. GEORGE CAVEY @ 688-9727. INVOICE & RESULTS SENT TO OREQUEST CONSULTANTS LTD. ĺ.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 261-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

PAGE 1 OF 1

REPORT HUNBER: 910196 GA	JOB NUN9ER; 910196	OREQUEST CONSULTANTS LTD.
SAMPLE #	Au	
	đợq	
29101	40	
29102	10	
29103	10	
29104	nđ	
29105	20	
29106	nď	
29107	nđ	
29108	20	
29109	80	
29110	50	. ·
291 11	110	
29112	10	
29113	. 140	
29114	140	
29115	20	
29116	20	
29117	30	
29118	40	
29119	nđ	
29120	nđ	
29121	20	
29122	nđ	

DETECTION LIMIT ad = none detected

S -- = not analysed

is = insufficient sample

-

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HHUDa to HgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Ma, Ma, P, Sn, Sr and M. .

ANALYST: 17-16	ANALYST:	Myth
----------------	----------	------

REPORT 8: 910196 PA	OR	eduest ci	ONSUL TAN	TS LTD.			PROJE	CT: RAIN	CLAINS			BATE	IN: AUG	UST 21 1	991 DATE	E OUT: A	UGUST 26	1991 A	I TENTION	: MR. 6ED	RSE CAVE	Y			PAGE	OF 1	N.
Sample Name	Ag	A1	As	±Áu	Ba	Đi	Ca	Cd	Co	Cr	Cu	Fe	K	Ng	Ke	No	Ha	Ri	P	Pb	S 5	Sn	Sr	U	¥	2n	ß
	ppe	I	op a	քքն	ppa	ppe	1	ppa	pos	9D B	ppa	2	I	I	pps	pp	I,	ppe	I	ppe	pp#	pp=	ppe	ppm	pps	ppe	
29101	1.4	0.94	(3	40	4	(3	0.34	- (0,1	34	<1	377	9,99	{0,01	0.05	1158	57	<0.01	71	0.02	49	<2	<2	37	(5	(3	39	
29102	1.0	0.66	<3	10	69	5	>10	0.5	11	(1	112	2.33	{0.01	0.09	1901	(1	(0.01	4	0.04	115	< <u>2</u>	<2	396	<5	(3	49	~
29103	0.5	1.74	<3	10	61	(3	0.52	0.6	7	<1	121	2.92	{0,01	0.30	126	<1	0.03	<1	0.02	<2	<2	<2	29	<5	(3	94	្រ្តិ
29104	0.2	0.78	{3	<5	108	(3)10	0,4	3	(1	21	1.30	{0.01	\$.14	680	4	KO.0 1	1>	0.01	4	<2	<2	475	(5	(3	34	C
29105	(0.1	0.05	<3	20	12	(3	0,61	0.5	4	(1	9	0.67	(0.01	(0.01	305	đ	0.01	()	0.04	3	{ 2	.(2	46	(5	(3	10	
29106	0.5	0.21	(3	(5	Π	(3	>10	(0.1	4	4	11	8.13	(0.01	0.05	2895	(1	<0.01	4	0.01	8	<2	(2	77	(5	(3	54	
29107	1.8	0.20	(3	્ (5	(1	(3	0.46	<0.1	158	0	1538	>10	{0.01	{0.01	250	23	(0.01	394	0.01	17	(2	{2	8	<5	(3	83	
29108	2.4	1.23	(3	20	(1	(3	1.75	KQ.1	8	<1	941	>10	(0.01	0.15	2287	(1	(0.01	253	0.10	35	<2	{2	20	< 5	(3	49	
29109	3.0	1.22	(3	89	· (1	(3	0,73	3.0	14	<1	733	>10	(0.01	0.06	1188	19	<0.01	265	0.06	49	(2	(2	40	(5	(3	282	
29110	1.0	0.17	18	50	(1	(3	0.17	1.7	5	(1	58	>10	(0.01	<0.01	133	<1	<0.01	(1	0.02	36	(2	(2	4	{ 5	(3	484	
25111	3.7	0.76	(3	110	4	(3	0.45	3.4	27	(1	850)18	(0.01	0.02	758	14	<0.01	371	0.05	71	(2	(2	11	{5	(3	598	
29112	1.7	0.24	(3	10	(1	(3	0.24	(0.1	150	(1	2067	>10	<0.01	<0.01	287	38	<0.01	390	0.01	21	(2	(2	5	{5	(3	139	
29113	0.9	0.95	(3	140	(1	(3	0.54	<0.1	134	4	696	>10	<0.01	0.05	79	(1	<0.01	148	0.01	23	(2	(2	32	<5	(3	67	
29114	0.8	1.28	(3	140	(1	(3	1.00	(0.1	94	1	528	>10	<0.01	0.06	100		0.01	82	0.01	13	<2	(2	49	(5	<3	76	
29115	0.7	7.70	(3	20	36	(3	2.56	<0.1	30	(1	122	4.68	<0.01	0.60	563	D.	0.28	A	0.04	<2	<2	(2	157	(5	<3	183	
29116	0.5	2.33	(3	20	240	3	0,13	(0.1	21	a	124	5.35	<0.01	0.22	395	a	0.01	a	0.01	<2	(2	\$2	11	(5	<3	127	
29117	1.6	1.49	<3	30	. 1	<3	0.67	(O, I	31		474	.)10	<0.01	0.04	10303 -	CI	<0.01	157	0.05	48	(2	(2	24	(5	<3	215	
29118	1.1	2.54	276	40	(1	<3	1.20	{0.1	85		992	>10	(0.01	0.09	4526	(1	(0.01	161	0.11	7	<2	(2	33	{5	<3	218	
25119	0.4	5.79	(3	<5	134	(3	0.65	{0.1	10	12	72	>10	CO. 01	0.15	1675	(1	0.01	(1	0.03	(2	(2	(2	54	(5	(3	198	
29120	0.2	1.95	<3	{5	231	(3	0.11	{0.1	13	0	62	4.12	<0.01	0.09	1149	a	0.05	4	0.01	3	{2	(2	14	(5	(3	241	
29121	0,6	6.82	(3	20	56	° '(3	2.87	(0.1	26	(1	132	4,09	(0.01	0.43	572	(1	0.37	1	0.05	(2	{2	<2	155	(5	<3	172	7
23122	0.3	9.18	<3	<5	262	(3	2.73	(0.1	25	a	9	4.57	(0.01	0.29	695	(1	0.47	4	0.01	(2	. (2	(2	145	(5	(3	93	Ö
Miniaum Detection	0.1	0.01	- 3	5	· 1	3	0.01	0.1	i	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1	12
Maxiaum Detection	50.0	10,00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10,00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
< - Less Than Ninioua	} - (Greater	Than Nax	iste	is - Ins	afficie	nt Sampl	e as	- No Sau	ple	fAu Ana	lysis Do	ae I y Fi	re Assay	/ Concentr	ation /	MAS Fia	ish.									

09/17/91

L)	V	A	_5E	L	ЭE	í) I #	زز	L.	LI	T.	 (·
					_		: :		-	<u>ina</u>	: :		

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HN0g to Hg0 at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

	1 1/-
ANALYST:	Month

REPORT #: 910197 PA	OREQUEST C	ONSULTANT	'S LTD.			PROJE	CT: RAIN	CLAINS			DATE	IN: AUG	JST 21 19	991 DATE	OUT: AI	JGUST 26	1991 AT	TENTION	MR. GEO	RGE CAVE	Y			PAGE 1	OF 11
Sample Name	Ag ppes	Al %	Ás ppm	Ba ppn	Bi pps	Ca X	'Cd ppe	Co pps	Cr ppm	Cu ppa	Fe ۲	K 2	Mg X	Ķn ppa	Mo pps	Na %	Ni ppm	P X	Pb	Sb opa	Sn ppe	Sr ppe	ប្រ ធព្វផ្	W ppa	Zn ppe
L0+00 0+25E	0.7	2.43	- (3 -	113	<3 /2	0.52	<0.1 29.5	13		25 43	3.17	<0.01	0.13	1773		<0.01 <0.01	<1 (1	0.02	9 14	<2 <2	(2 (2	18 21	<5 <5	<3 <3	161 9229
L0+00 0+75E	0.4	1.61	(3	35	<3	0.03	1.8	B		55	3.20	(0.01	0.04	435	<1	<0.01	<1	0.01	16	<2	6	6	<5	<3	320
L0+00 1+00E	0.9	3.23	<3	148	<3	0.28	<0.1	15	<1	105	6.77	(0.01	0.11	3029	1	<0.01	<1	0.03	20	<2	<2	29	<5	<3	182
L0+00 1+25E	0.6	3.00	<3	236	<3	0.73	<0.1	17	<1	32	3.82	<0.01	0.14	1747	(1	0.01	(1	0.02	22	<2	<2	30	<5	<3	210
L0+00 1+50E	0.6	1,80	<3	82	<3	0.11	2.6	13	(1	52	3.19	<0.01	0.06	972	<1	0.01	<1	0.01	14	< <2	5	9	<5	(3	103
L0+00 1+75E	0.5	5.06	<3 (3	132	<3	0.43	<0.1	34	<1	59	4.37	<0.01	0.24	2637	<1	(0.01	(1	0.03	<2	<2	(2	25	< D / S	<3 /2	244
L0+00 0+00W	0,/	3,94	{ 3	140	(3	0.30	(0.1	18		45	4.08	(0:01	0.19	840		(0.01	<u>(1</u> .	0.01	8	12	(2	10	(5	10	233
L0+00 0+25W L0+09 0+50W	0,8 0.6	6.46 2.50	<3 (3	212	(3 (3	4.11	0.1	12		23 23	2.53 3.27	<0.01 <0.01	0.08	2427		0.01	<1 (1	0.23	18	<2 <2	<2 <2	27	(5	<3 <3	187
L0+00 0+75W	0.6	3.96	<3	162	{3	1.19	0,6	14	(1	24	3.11	<0.0 1	0.12	1638	<1	<0.01	<1	0.04	8	<2	<2	31	<5	<3	237
L0+00 1+00W	0.6	4.77	<3	224	- (3	0.55	(0.1	29	<1	67	4,20	<0.01	0.23	1430	<1	0.01	{1	0.03	19	<2	<2	50	<5	<3	314
L0+00 1+25W	0.8	7.00	<3	65	<3	0.57	1.4	12	<1	14	2.45	<0.0i	0,04	325	<1	0.02	<1	0.02	2 ر	4	<2	23	<5	<3	113
L0+00 1+50W	0.8	5.09	<3	131	<3	0.32	<0.1	15	<1	25	3.21	(0.01	0.07	2887	<1	(0.01	(1)	0.02	<2	<2 (2	(2	14	<5 /5	<3 /2	233
LV+V0 I+/3W	1.3	4,92	3	194	3	0.62	0.1	18	1	728	1.30	(0.01	0.12	38/1	1	(0,01	29	0.04	14		12	21	73	10	101
L0+00 2+00W	0.9	4.01	(3	161	<3	0.54	<0.1	31	<1	125	5,19	<0.01	0,24	3146	<1	<0.01	<1	0.03	4	₹2	(2	25	<s< td=""><td>(3</td><td>285</td></s<>	(3	285
L0+00 2+25W	1,9	7.11	<3	146	<3	0.27	(0.1	14	<1	32	5.52	<0.01	0.05	1086	(1	<0.01		0.02	<2	<2	<2	18	< 5 (5	(3	129
10+00 2+50W 11+005 0+25F	0.9	5.43	(3	114	(3	0.20	(0.1	19		38	4.28	<0.01	0.11	927		(0.01		0.02	<2 15	(2	(2	13 16	(3) (5)	(3)	204
L1+00S 0+50E	0.9	5.28	<3	164	<3	0.31	0.4	24	<1	52	4.67	<0.01	0.20	1551	<1	<0.01	<1	0.02	20	<2	(2	20	<5	<3	281
L1+00S 0+75E	1.0	4.45	(3	202	<3	0.17	<0.1	16	<1	34	3.73	<0.01	0,12	2194	<1	<0.01	<1	0.04	İ	<2	<2	13	<5	<3	215
L1+00S 1+00E	0.3	1.77	<3	38	<3	0.02	0.4	10	<1	32	3.72	<0.01	0.04	335	<1	0.02	<1	0.01	14	<2	<2	5	<5	<3	87
L1+005 1+25E	0,5	2.99	(3	155	<3	0.47	<0.1	22	(1	39	4.65	<0.01	0.15	5082	(1	<0.01	<1	0.02	45	<2	<2	24	<5	<3	186
L1+005 1+50E	0.5	2.11	(3	183	<3 /2	0.74	(0.1	18	(1	20	4.17	(0.01	0.09	1924		(0.01		0.01	32	(2	(2	32	(5)	(3 /2	207
	0.7	1.11	13	300	10	V./G	10.1	13	11	17	3,03	10.01	0.10	034	1	0.01	11	0.02	12	12	12	20	13	10	140
L1+00S 2+00E	0.7	3.58	<3	104	(3	2.18	0.5	17	<1	58	3.77	<0.01	0.20	2277	(1	0.02	<1	0.02	31	<2	<2	110	<5 (5	(3	465
L1+005 2+25E · · ·	. V.6	2,99	(3	95	(3	0.14	(0.1	23		18	5.18	(0.01	0.07	1/4/		0.01		0.01	46	(2	(2	15	<5 /5	(3	192
11+005 0+250	1.0	3,33	(3)	100	(3)	0,92 A 39	(0.1	23	71	6V 57	4.V/ 5.55	20.01	0,20	1367		20.00	- 17	0.02	10	(2	(2	31 22	(J (5	(3	211
L1+00S 0+50W	0.7	3.85	(3	129	(3	9.27	(0.1	27	<1 <1	120	5.35	(0.01	0.21	1692	<1	0.02	86	0.03	24	(2	<2	22	(5	(3	254
																			-				(F	(1)	050
L14005 U4/ON	1.0	3.21	(3	185	(3	0.33	(0,1	23	12	59	4,83	(0.01	0.12	2912		(0,01	<1 252	0.03	y /2	(2	(2	24	() ()	(3	200
11+005 1+250	1.0	4 21	13	120	(3	0.31	70.1	39	>1000	. TO	4.02	X0.01	V,10 0 17	2057	1 21	20.01	33Z 204	0.04	7	(2	12	21	\J 25	(3	214
L1+00S 1+50W	0. B	4 94	(3	88	(3	0.73	0 4	13	21000	45	3 29	(0.01	0.09	1880	<1 (1	0.01	204	0.03	()	(7	(2	19	<5 (5	(3 (3	150
L1+00S 1+75W	1.0	5,68	(3	103	(3	0.15	<0.1	17	<1	43	3,13	(0.01	0.12	632	<1 <1	0.01	<1	0.02	<2	<2	<2	12	< 5	(3	173
L1+005 2+00W	0.9	5.37	<3	115	<3	0.14	(0.1	16	₹1	68	3.61	(0,01	0.11	795	(1	0.02	(1	0.02	<2	<2	<2	13	(5	<3	178
L1+005 2+25W	0.5	5.35	<3	101	(3	0.13	<0.1	17	{1	50	4.99	<0.01	0.21	631	(1	0.01	<1	0.12	9	<2	<2	16	<5	<3	175
L1+005 2+50W	0.6	4.88	<3	198	<3	0.14	0.3	21	<1	. 60	3.78	<0.01	0.23	1669	<1	<0.01	<1	0.03	<2	<2	<2	15	<5	<3	268
L2+005 0+00E	1.1	5,29	<3	185	<3	1.24	1.0	18	(1	42	3,93	<0.01	0.10	689	<1	<0.01	<1	0.03	3	<2	<2	29	<5	<3	409
Minique Detection Maximum Detection	0.1 50.0	0.01	3 2000	1 1000	3	0.01	0.1 1000.0	1	1000	1 20000	0.01	0.01	0.01 10.00	1 20000	1 1000	0.01	20000	0.01	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

V4... ЭE

1630 Pandora Street, Vancouver, B.C. V5L 1L6

- Phi (604)251-5656 Faxi (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

.....

ANALYST: Marth

REPORT 1: 910197 PA	OREQUEST CO	DNSULTANI	IS LTD.			PROJE	CT: RAIN	CLAIMS			DATE	IN: AUG	JST 21 1	991 DATI	E OUT: A	UGUST 26	1991 A	TTENTION	: MR. GEO	RGE CAVE	Y			PAGE 2	OF 11
Sample Name	Ag ppm	Al X	As ppe	Ba pp∎	Bi ppm	Ca Z	ⁱ Cd pp∎	Co pps	Cr ppa	Cu ppm	Fe ۲	K X	Hg %	Mn ppm	Но ррв	Na X	Ni ppa	P X	Pb pp a	Sb ppe	Sn ppes	Sr ppn	U mqq	ម ព្រុ	Zn ppo
L2+005 0+25E	1.2	4.85	<3	- 208	< 3	0.91	7.6	23	<1	. 44	5.21	<0.01	0.13	1293	<1	<0.01	6	0.02	87	<2	<2	33	<5	<3	3715
L2+005 0+50E	0.5	5.38	<3	137	<3	0.59	0.7	26	(1	75	4.89	<0.01	0.34	970	<1	<0.01	(1	0.02	30	<2	<2	35	<5	<3	1478
L2+005 0+75E	0.6	1.36	<3	97	<3	>10	12.9	9	<1	31	2.10	<0.01	0.13	831	<1	<0.01	<1	0.02	73	<2	<2	287	(5	<3	2991
L2+005 1+00E	0.7	2.02	(3	143	<3	>10	10.1	14	(1	42	3.47	(0.01	0.15	1300	(1	(0.01	<1	0.02	81	<2	<2	235	<5	<3	2511
L2+005 1+25E	1.0	3.46	<3	167	<3	2.47	5.7	12	<1	62	3,02	<0.01	0.12	911	<1	<0.01	5	0.03	95	<2	<2	83	<5	<3	2329
L2+00S 1+50E	0.2	0,78	∢ 3	65	<3	>10	10.5	3	(1	11	0.88	<0.01	0.07	570	<1	<0.01	×1	0,01	17	. <2	<2	299	<5	(3	1442
L2+005 1+75E	0,B	3.80	<3	158	<3	2.66	6.4	15	<1	36	4.05	<0.01	0.09	853	<1	<0.01	<1	0.01	67	<2	(2	. 4B	<5	<3	2418
L2+005 2+00E	0.6	6,48	<3	166	(3	4.80	21.5	22	0	54	4.56	<0.01	0.14	1493	<1	<0.01	54	0.01	120	<2	<2	70	<5	<3	3587
L2+00S 2+25E	0.5	6.39	(3	107	{3	9.59	4.3	14	(1	19	2.86	(0.01	0.08	625	<1	(0.01	<1	0.01	22	· <2	<2	121	<5	<3	1692
L2+005 2+50E	0.9	2.82	<3	139	<3	>10	8.0	13	(1	31	3.06	<0.01	0.15	1939	(1	(0.01	(1	0.03	32	<2	<2	162	<5	₹ 3	2244
L3+005 0+00E	· 0,4	2.09	<3	62	(3	0.45	1.8	8	<1	11	2.79	<0.01	0.07	336	<1	0.03	<1	0.01	10	<2	<2	16	۲5	<3	145
L3+00S 0+25E	1.5	7.46	<3	198	<3	0.58	0,6	23	<1	76	4.09	<0.01	0.32	1567	<1	0.01	<1	0.04	<2	<2	<2	77	<5	<3	364
L3+005 0+50E	0.B	5.10	<3	195	<3	0.54	<0.1	35	{ 1	103	5.39	<0.01	0,39	2441	<1	0.01	<1	0.04	3	<2	<2	41	<5	<3	325
L3+00S 0+75E	0.7	5,90	(3	140	(3	0.26	(0.1	22	<1	92	4.84	<0.01	0,20	3957	<1	<0.01	<1	0.02	(2	<2	(2	18	<5	(3	226
L3+005 1+00E	0.7	4.29	(3	90	(3	0.54	(0.1	17	{1	19	4.05	(0.01	0.09	2112	<1	0.03	(1	0.02	39	<2	<2	25	<5	<3	211
L3+005 1+25E	0.4	5,49	(3	199	<3	0.09	(0.1	20	(1	29	5.58	<0.01	0,15	921	<1	<0.01	1	0.01	56	<2	<2	9	<5	<3	2002
L3+005 1+50E	0.7	5.35	<3	260	<3	0.39	<0.1	34	<1	26	7.10	<0.01	0.12	4788	<1	<0.01	{1	0.02	57	<2	<2	22	<5	<3	1096
L3+00S 1+75E	1.0	7.49	(3	238	(3	0.41	1.3	24	<1	37	5.19	<0.01	0.09	6554	<1	<0.01	{1	0.07	40	<2	<2	20	<5	<3	1875
L3+005 2+00E	0.4	3.79	<3	129	<3	0,53	<0.1	20	(1	17	3.87	<0.01	0.10	1688	<1	0.02	<1	0.02	50	<2	<2	30	<5	<3	267
L4+00S 0+00E	1.1	2.99	<3	213	⟨3	0.73	<0.1	20	{ 1	34	4.55	(0.01	0.14	3386	<1	0.01	(1	0.03	25	<2	{2	41	<5	<3	231
L4+005 0+25E	0.9	4.54	<3	139	⟨ 3	0,49	<0.1	13	(1	22	3.10	<0.01	0,08	2456	<1	0.02	<1	0.02	5	<2	<2	24	<5	∢3	203
L4+00S 0+50E	0.3	1.60	<3	105	<3	0.10	<0.1	13	<1	21	4.05	<0.01	0,08	643	<1	0.04	<1	0.01	20	<2	<2	10	<5	<3	143
L4+00S 0+75E	0.6	6.70	<3	261	<3	0.48	0.3	28	<1	75	5.79	<0.01	0.15	4605	<1	<0.01	<1	0.03	<2	<2	<2	39	<5	<3	564
L4+005 1+00E	0.3	2.04	<3	103	{3	0.36	(0.1	15	(1	14	4.14	<0.01	0.09	1407	(1	0.03	<1	0.01	25	<2	<2	18	{5	(3	204
L4+005 1+25E	0,4	6.33	<3	124	<3	0.53	(0.1	34	<1	35	4.35	<0.01	0,16	2507	. (1	0.05	(1)	0.05	56	<2	<2	20	<5	<3	277
L4+005 1+50E	0.6	1,88	(3	158	<3	0,68	(0.1	15	<u> </u>	20	3.65	(0.01	0.05	2833	<1	0.04	<1	0.02	37	₹2	٢2	30	{5	<3	137
L4+00S 1+75E	0.4	2.63	<3	44	<3	0.18	<0.1	10	(1	12	3.31	<0.01	0.02	900	< 1	0.04	<1	0.01	10	<2	<2	11	<5	<3	53
L4+00S 2+00E	0.4	1.89	<3	61	<3	0.06	<0.1	13	<1	11	4.70	<0.01	0.05	1105	<1	0.03	<1	0.01	31	<2	<2	9	<5	<3	94
L4+005 2+25E	0.4	3.95	<3	96	<3	0.11	<0.1	11	<1	8	3.87	<0.01	0.05	327	<1	0.04	<1	0.01	18	<2	<2	11	<5	<3	75
L4+00S 2+50E	0.4	5.53	<3	68	<3	0,05	(0.1	10	(Ì	5	3.46	<0.01	0.03	312	{1	0.03	<1	0.01	3	<2	<2	6	<5	{3	76
L5+005 0+00E	0.3	2.59	<3	57	<3	0.05	(0,1	14	<1	15	3.68	<0.01	0.07	570	<1	0.04	(1	0.01	9	<2	<2	8	<5	<3	95
L5+00S 0+25E	0.6	2.13	<3	130	<3	0.18	<0.1	16	<1	15	3.76	(0.01	0.07	1889	<1	0.02	<1	0.02	14	<2	<2	13	<5	<3	153
L5+005 0+50E	0.5	1.34	<3	73	<3	0.19	(0.)	8	{1	10	4.97	(0.01	0.03	425	(1	0.04	(1	0.01	32	<2	<2	15	<5	<3	87
L5+00S 0+75E	0.3	1.76	<3	73	<3	0,04	(0.1	13	(1	24	4.27	<0.01	0.10	336	<1	0.05	<1	0.01	18	<2	<2	9	(5	(3	102
L5+00S 1+00E	0.9	6,50	<3	432	<3	1.03	1.8	22	<1	134	2.96	<0.01	0,09	8594	<1	<0.01	<1	0.04	<2	<2	<2	49	<5	⟨3	341
L5+005 1+25E	0.9	6,29	<3	412	<3	1,65	4.2	17	(1	50	3.09	(0,01	0.10	7009	<1	0.02	<1	0.04	<2	<2	<2	72	<5	<3	174
L5+00S 1+50E	0.5	4.99	<3	89	$\langle 2 \rangle$	v.24	<0.1	. 17	(1	12	4.43	<0.01	0.10	815	<1	0.01	<1	0.02	32	<2	<2	18	<5	\3	192
L5+00S 1+75E	0.5	6.81	<3	208	(3	0.42	(0.1	17	<1	35	4.10	<0.01	0.12	1343	<1	0.01	<1	0.02	2	<2	<2	22	<5	<3	258
L5+00S 2+00E	0.4	2.83	<3	89	<3	0.06	<0.1	10	<1	10	4.86	<0.01	0.05	481	<1	0.03	{ 1	0.01	33	<2	<2	. 9	<5	<3	91
Minimum Detection Maximum Detection	0.1 50.0	0.01 10.00	3 2000	1 100 0	3 1000	0,01 10,00	0.1 1000.0	1 20000	1000	1 20000	0.01	0.01	0.01 10.00	1 20000	1 1000	0.01	1 20000	0.01	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

TI

HE

VE

......

ΤĒ

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNOg to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: My ft-

REPORT #: 910197 PA	OREQUEST	CONSULTAN	ITS LTD.			PROJE	CT: RAIN	CLAINS			DATE	IN: AUG	UST 21 1	991 DAT	E OUT: /	UGUST 26	5 1991 A	TTENTION	: MR. 6E0	DRGE CAVE	Ϋ́			PAGE 3	OF 11
Sample Name	Ag	A1 2	As nns	Ba	Bi	Ca Y	i Cd	Co	Cr	Cu	Fe Y	K	Mg	Mn nn#	Ho	Na 7	Ni	P	Pb	Sb	Sn	Sr	U	H	Zn
L5+00S 2+25E	0.4	4.02	(3	129	<3	0.21	0.4	18	{1	35	3,40	(0.01	0.16	1388	µµ∎ {}	0.03	µµ∎ {1	0.02	23	(2	<pre> <2</pre>	18	(5	(3	163
L6+005 0+00E	0.4	1.85	(3	89	(3	0.08	0.1	11	(1	9	2.96	(0.01	0.06	609	ä	0.03	(I	0.01	26	<2	<2 <2	8	<5	(3	89
L6+00S 0+50E	0.3	1.14	<3	43	(3	0.02	(0.1	12	(1	5	3.83	(0.01	0.02	705	<1	0.04	(1	0.01	34	(2	(2	6	(5	(3	64
L6+00S 1+00E	0.4	2.21	(3	95	• (3	0.29	(0.1	14	(1	2	3 24	(0.01	30.0	1368	<1 K	0 02	(1	0.01	21	(2	(2	19	(5	(2)	99
L6+005 1+50E	0.4	3.25	(3	103	₹3	0.10	<0.1	14	<1	ŝ	3.21	<0.01	0.06	1752	<1	0.02	<1	0.01	26	<2	<2	9	<5	(3	132
L6+005 2+00E	0.5	2.72	<3	59	<3	0.33	<0.1	9	(1	. 4	3.39	<0,01	0.04	871	<1	0.02	<1	0.01	15	. (2	<2	17	<5	(3	72
L6+00S 2+50E	0.2	3.42	<3	71	<3	0.04	<0.1	13	<1	9	3.86	<0.01	0.04	798	<1	0.02	<1	0.02	27	<2	<2	7	<5	<3	99
L7+005 0+00E	0.3	2,95	<3	144	<3	0.29	<0.1	18	(1	18	3,48	(0,01	0.13	1777	<1	0.02	<1	0.02	63	<2	<2	19	<5	(3	154
L7+00S 0+50E	0.4	2.45	<3	121	<3	0.17	<0.1	13	(1	11	4.10	(0.01	0.10	337	(1	0.03	(1	0.01	19	(2	(2	13	(5	(3	120
L7+00S 1+00E	0.4	4.95	<3	112	<3	0.10	<0.1	16	(1	19	5.30	(0.01	0.14	529	<1	0.03	<1	0.02	26	<2	<2	10	۲5	<3	168
L7+00S 1+50E	0.3	3.21	<3	142	<3	0.26	<0.1	20	(1	25	4.07	<0.01	0.18	2238	(1	<0.01	<1	0.04	34	<2	<2	19	<5	<3	359
L7+005 2+00E	0.3	2.08	<3	114	<3	0.07	<0.1	19	<1	24	4.43	(0.01	0.14	1908	· (1	0.02	<1	0.01	41	<2	<2	9	<5	<3	154
L7+005 2+50E	0.3	1.65	<3	63	<3	0.20	<0.1	22	<1	32	4.32	(0.01	0.11	502	< 1	0,04	<1	0.02	. 59	<2	<2	16	{5	<3	136
L9+00S 0+00E	. 0.3	1.88	<3	68	<3	0.50	<0.1	8	<1	11	2,91	(0.01	0.05	286	<1	0.03	<1	0.01	20	<2	<2	19	<5	<3	109
L9+005 0+50E	0.3	6.25	<3	79	<3	0.14	<0.1	16	<1	- 15	3,48	<0.01	0.09	504	<1	0.02	<1	0.01	19	<2	<2	11	<5	<3	230
19+005 1+005	Λ d	2 92	13	170	12	0 10	20.1	22	71	27	4 40	(0.01	0.14	1105		0.04	/1	A 61	40	10	(2	17	15	10	107
19+005 1+50E	0.7 0 3	3 32	/2	100	10	1 40	0.1	20		27	4,40	(0.01	0.14	1195	(1	0.04	(1	0.01	48	(2	12	13	() ()	\J (D	127
10+005 0+00F	0.0	2 15	/2	-04	10	0.07	70.1	14		22	2.02	(0.01	0.10	1193		0.03	1	0.02	13	(2	(2	43 00	(0	13	134
110+005 0+50F	0.3	2,13	10	34	10	0.07	(0.1	14		20	2,30	(0.01	0.09	9/0		0:04		0.01	29	<2	(2	32	()	3	100
L10+005 1+00E	0.2	3.08	(3	71	. (3	0.05	<0.1	14	<1	· 8	3.22	<0.01	0.03	372	(1	0.03	<1	0.01 (0.01	13 30	3 (2	<2 <2	7	<5 <5	<3 (3	97
L10+005 0+25W	0.5	4.44	<3	180	<3	1.54	0.4	17	(1	40	3, 31	(0.01	0.13	3389	(1	0.07	{1	0.03	24	()	(2	55	15	(3	245
L10+005 0+50W	0.3	3.38	<3	105	<3	0.42	(0.1	24	(I	43	4.64	(0.01	0.15	1243	(i	0.04	(1	0.02	79	(7	(2	24	(5	(3	220
L10+005 0+75W	0.4	4.23	(3	100	(3	0.37	0.4	16	(1	25	3.25	(0.01	0.11	1276	(1	0.03	<1 (1	0 03	22	(2	. (2	21	25	23	168
L10+00S 1+00W	0.4	2,62	(3	81	(3	0.12	(0.1	13	(1	24	5.41	(0.01	0 10	523	<1 (1	0 04	<1 (1	0.02	39	12	(2	13	(5	/2	100
L10+005 1+25¥	0.3	1.64	<3	68	<3	0.04	<0.1	9	<1	10	3.98	<0.01	0.07	539	(1	0.03	(1	0.01	27	<2	<2	8	<5	<3	119
L10+005 1+50W	0.4	1,23	{3	136	<3	0,60	(0,1	10	(1	7	2.56	<0.01	0.06	1292	(1	0.03	{1	0.01	22	(2	(2	23	(5	(3	95
L10+005 1+75W	0.4	4.49	<3	61	<3	0.04	(0.1	12	(1	9	3.25	(0.01	0.04	644	(1	0.03	(1	0.01	12	0	(2	7	<5	(3 (3	101
L10+005 2+00W	0.3	1,71	<3	68	(3	0.07	0.2	9	(İ	7	2.65	(0.01	0.04	595	(1	0.02	< 1 (1	0 01	17	(2	(2	7	(5	(3	110
L10+005 2+25W	0.5	2.52	(3	B4	<3	0.21	(0.1	13	(1	20	6.07	(0.01	0.10	1205	(1	0.03	<1 (1	0.03	42	12	(2	14	25	/2	145
L10+005 2+50W	0.4	2.10	<3	64	(3	0.14	(0.1	H	<1	11	4.39	(0.01	0.09	619	<1	0.02	<1	0.03	30	<2	(2	11	(5	<3	143
L10+005 2+75W	0.4	2.31	<3	51	<3	0.12	0.1	12	<1	10	4.29	(0.01	0.07	75.2	(1	0.02	. (1	0.02	26	()	()	q	(5	(۲	102
L10+005 3+00W	0.3	1.42	{3	118	(3	0.22	(0.1	10	()	9	3.83	(0.01	0.04	933	₹1	0.02	(1	0 04	29	12	()	15	(5	/2	96
L10+005 3+25W	0.2	0.93	(3	71	(3	0.09	(0.1	11	(1	4	2.84	(0.01	0.03	360	71	0.03	21	0.01	22	12	(2	D	/5	/3	70
L10+00S 3+50W	0.3	3.72	(3	225	(3	31.0	(0.1	. 15	(1	20	4 76	(0.01	0.10	1200	/1	0.00	(1	0.00	22	/2	/2	10	15	(3	100
L10+005 3+75W	0.4	2.77	(3	79	<3	0.25	<0.1	15	<1	. 15	3,49	(0.01	0.13	791	<1	0.03	<1	0.02	20	<2	<2	20	(5	(3 (3	132
L10+005 4+00W	0.4	1.43	(3	103	(3	0.34	(0.1	14		(1	2 22	70.05	0 10	1059	71	0 00 ·	1+	6 62	22	12	10	۲ ۱	/5	12	(54
L11+005 0+00E	0.4	3.23	(3	106	(3	0.69	(0,)	17	ä	12	3,43	(0.01	0.10	1171	(1)	0.02	(1 (1	0.01	40 20	(2	(2	55	NJ 25	\3 (2	201
L11+00S 0+25E	0.5	6,04	(3	227	(3	1.95	(0.1	14	(1	83	2.35	(0.01	0.07	4900	(1)	0.02	(1	0.05	20 5	×4 2	(2	80	75	(J) 75	201
L11+00S 0+50E	0.3	9.01	<3	141	(3	1.74	(0.1	19	<1	18	3.59	<0.01	0.0B	2115	<1	0.02	<1	0.02	B	7	<2	69	₹5	<3	263
Ninisua Detection	0.1	0.01	3.	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	. 1	5	3	t
Maximum Detection	50.0	10,00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< − Less Than Miniaue) - Grastar	Than Max	i	ic's In	-ufficia-	4 C		P		10001101							-	*****	20000	****	****	10000	144	1000	

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

. . . .

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Mn, Wa, P, Sn, Sr and W.

ANALYST: My

REPORT #: 910197 PA	OREQUEST C	ONSULTAN	TS LTD.			PROJE	CT: RAIN	CLAINS			DATE	IN;. AUG	UST 21 1	991 DATE	E OUT: A	UGUST 27	1991 A	TTENTION	: MR. 6E0	IRGE CAVE	Y			PAGE 4	OF 11
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	fe	K	Mg	Mn	fio	Na 7	Ni	P	Pb	Sb	Sn	Sr	U	¥ nn=	Zn
111+005 0+755	ավգ Ն Ն	2 70	.µµ⊯ ∕⊅	μμ≊ 01	μμα 2.5	۸ ۸ 5 f		µµw 1C	µµա ∕1	рµњ 50	2 46	20.01	0.07	1201 1201	րրա։ /1	^ ^?	د ۳۴۹	A 02	18	μμei (2)	µµa (י)	24	γρ (5	<u>۲</u> ۲ (۲	164
	0,4	3.70	10	21	10	0.00	(0.1	10			3.44	70.01	0.07	1001	71	0.02	1	0,02	22	12	(2	47	/5	/5	373
	0.3	3.84	() ()	73	(3	0.08	<v.1< td=""><td>10</td><td></td><td>21</td><td>3.00</td><td>(0.01</td><td>0.08</td><td>10/9</td><td></td><td>0.01</td><td>×1 74</td><td>0.01</td><td>20</td><td>12</td><td>12</td><td>0 7</td><td>/5</td><td>/5</td><td>4/4</td></v.1<>	10		21	3.00	(0.01	0.08	10/9		0.01	×1 74	0.01	20	12	12	0 7	/5	/5	4/4
L11+005 1+23E	(0.1	1.42	(3	55	(3	0.06	<q.1< td=""><td>14</td><td></td><td>10</td><td>2.44</td><td>(0.01</td><td>0.03</td><td>398</td><td></td><td>0.02</td><td></td><td>0.01</td><td>18</td><td><<u><</u></td><td>3</td><td>1</td><td>()</td><td>(3)</td><td>10</td></q.1<>	14		10	2.44	(0.01	0.03	398		0.02		0.01	18	< <u><</u>	3	1	()	(3)	10
L11+005 1+50E	0.3	4.84	(3	114	<3	0.84	{0.1	16	<1	87	2.53	(0.01	0.05	2017	(1	0.02	(1	0.02		(2	<2	35	(0)	< 3 (D	100
L11+00S 1+75E	0.3	2.48	<3	85	<3	0.17	. (0.1	17	<1	26	6.56	<0.01	0.07	12B0	<1	0,01		0.02	42	(2	<2	14	(5	(3	140
L11+005 2+00E	0.3	3.87	⟨ 3	99	<3	0.09	(0.1	18	<1	17	5.89	(0.01	0.08	699	<1	0.02	<1	0.01	40	<2	<2	7	<5	<3	143
L11+005 2+25E	0.1	2.47	(3	85	<3	0,19	(0.1	21	<1	34	4.74	<0.01	0.12	912	<1	0.03	<1	0.02	44	<2	<2	14	<5	<3	142
L11+005 2+50E	0.1	1.86	<3	65	(3	0.09	(0.1	.13	<1	20	4.22	(0.01	0.07	1264	(1	0.03	(1	0.01	36	<2	<2	9	<5	<3	97
L11+00S 0+25W	0.3	9.87	(3	86	(3	1.29	(0,1	17	(1	20	2.97	(0.01	0.05	B32	(1	0.01	(i	0.02	<2	(2	<2	64	<5	(3	135
L11+00S 0+50W	0.7	4.65	(3	252	(3	1.66	(0.1	20	<1	86	4.25	(0.01	0.09	5110	(1	0.02	<1	0.03	53	<2	<2	74	<5	<3	256
1114000 04750	A 1	C 53	/1	(47	15	A 94		20		04	4 74	10.01		707				A 49	77	10	12		/5	/3	120
L111000 07/0W	0.1	0.03	(3	10/	(3	0.24	(0.1	22	1	20	4./1	(0.01	0.09	180	11	0.02		0.02	21	(2	12	10	10 75	13	100
L11+005 1+00W	0.1	9.18	(3	1/1	(3	0.42	(0.1	20		21	4.73	(0.01	0.12	2314	<u>(1</u>	0.01		0.05	43	52	12	30	\J (5	13	225
L11+005 J+Z3W	0.1	2.94	(3	113	(3	0.13	(0.1	19	(1	41	4.81	(0.01	0.15	2144	(1	0.01		0.02	28	< <u>2</u>	(2	12	(0	<u></u> (এ	151
L11+005 1+50W	0.1	3.72	(3	93	(3	0.50	(0.1	1/	(1	21	5.15	(0.01	0.08	1109	<1	0,03	(1	0.02	28	<2	<2	23	(5	(3	11/
CI1+002 1+73#	(0,1	2.63	<3	113	(3	0.74	(0.1	15	(1	- 25	4.81	(0.01	0.07	819	0	0.04	{1	0.02	35	(2	{2	35	(5	(3	145
111+005 2+00₩	0.1	5 46	13	178	13	1 93	(0.1	12	<i>4</i> 1	74	2 91	(0.01	0.09	2422	71	0 02	71	0.05	5	(2	12	86	(5	(3	200
111+005 2+254	0.2	5 15	/2	206	/2	1.33	20.1	10	71	70 20	2.31	/0.01	0.01	3732	/1	/0.02	71	0.05	10	12	12	40	/5	/2	300
111+005 2+500	/0.1	2.12	/5	110	10	V.03	20.1	10	1	30	5.50	70.01	0.12	1520	21	0.01	71	0.00	1.5 CO	/2	/2	10	/5	/0	171
111+002 2+350	(0,1	2.20	10	105	(3	0.00	(0.1	17	1	20	1.00	10.01	V.12	1033	1	0.01		0.02	04	12	12	10	10	10	1/1
1111000 2:75#	\Vi1	2.30	10	101	13	0.35	(0,1	11		10	4.00	(0.01	0.13	. 10/3		0.02		0.03	27	14	12	23	10	10	193
CI11003 3100W	V.1	2143	(5	37	(3	0.31		12	XI.	10	4.00	10.01	0.08	8/9	11	0.04	1	0.02	. 31	14	12	17	13	10	141
L11+005 3+25W	<0.1	1.98	<3	106	<3	0.39	(0.1	19	<1	27	4,05	<0.01	0.14	1179	1>	0.02	22	0.02	29	<2	<2	21	<5	<3	141
L11+005 3+50W	(0.1	2.60	<3	107	(3	0.31	(0.1	12	(1	8	3.24	(0.01	0.05	534	(1	0.04	(1	0.01	23	<2	(2	17	<5	<3	102
L11+005 3+75W	0.2	4.77	<3	199	<3	0.53	(0.1	16	<1	15	3.63	(0.01	0.10	3747	<1	0.02	(1	0.02	18	<2	(2	26	5	(3	142
L11+00S 4+00W	0.2	5.07	(3	202	<3	0.31	(0.1	19	(1	20	3.88	(0.01	0.10	1161	G	0.04	(1	0.62	23	(2	(2	21	(5	(3	134
L12+005 0+25E	(0.1	3.30	(3	96	<3	0.06	(0.1	13	<1	24	5.30	(0.01	0.06	692	ä	0.02	(1	0.02	35	<2	<2	7	<5	<3	108
112+005 0+506	(0.1	4 116	/3	07	/3	A 1A	70.1	10	11	nc -	5 40	70.01	A 11	1101	/1	0.01	/1	0 00	97	10	12	٥	/5	15	150
(12:000 0:300	(0.1	7.90	\J (1)	117	13	0.10	(0.1	10	11	لن ۲۵	J.43 5 54	(0.01	0.11	1131	~ ~ ~	0.01	1	0.02	3/ 50	14	12	7	10	10	100
1121000 11005	\V.1	2.92	10	107	10	V. 20	(0.1	23	1	51	2.31	(0.01	V.14	1960		0.02	11	0.03	23	\ <u>\</u>	12	23	(3	10	102
110,000 1100	0.1	2.17	()	113	13	2.02	(0.1	20		44	4,49	(0.01	0.35	1785	(1	0.03	(1	0.02	42	< Z		35	(5	(3	145
L12+005 1+23E	0.2	1.97	<u>ر</u> ک د ا	/9	(3	0.16	(0.1	14	<1	21	4.31	(0.01	0.13	321	Ω	0.03	(1	0.01	20	<2	<2	11	(5	<3	111
L12+005 1+005	0.3	3.84	(3.	228	<3	0.23	(0.1	14	<1	14	4.59	(0.01	0.07	415	(1	0.02	<1	0.01	18	<2	<2	21	<5	<3	172
L12+005_1+75E	0.4	4.14	<3	97	<3	0.05	(0.1	12	<1	25	7.42	<0.01	0.08	278	(1	0.01	(1	0.01	22	<2	<2	8	<5	<3	130
L12+005 2+00E	0,4	3.74	(3	93	(3	0.73	(0.1	12	- (1	15	5.62	(0.0)	0.10	347	(1	0.02	(1	0.01	32	(2	(2	38	(5	(3	143
1.12+005 2+25F	0.7	1.99	(3	59	(3	0.22	(0.1	12	(1	19	3 73	(0.01	0 11	£15 °	11	δ D2	/1	0.01	17	12	12	14	25	12	115
112+005 2+50F	0.3	1.85	/3	74	. (3	0 14	(0.1	14	21	20	5 67	70.01	0.00	570	21	0.02	71	0.01	42	/2	12	12	/5	/.0	05
L12+005 0+00W	0.3	1,50	<3	65	<3	0.17	<0.1	11	<1	15	4,18	<0.01	0.05	1149	4	0.01	(1	0.01	- 28	(2	(2	11	<5	<3 <3	91
								-																	
L12+00S 0+25¥	ŷ.:	2.10	<3	92	<3	0.06	<0.i	15	<1	25	6.23	<0.0i	0.10	591	<1	0.01	<1	0.01	35	<2	<2	9	<5	<3	195
L12+005 0+50W	0.5	4,28	(3	73	<3	0.07	<0.1	16	<1	30	4.85	<0.01	0.07	818	<1	0.01	<1	0.02	28	<2	<2	8	<5	<3	143
L12+00S 0+75W	0.6	2.15	<3	70	<3	4.53	(0.1	8	<1	40	2.47	<0.01	0.13	3102	<1	(0.01	<1	0.05	18	<2	<2	37	<5	(3	255
L12+005 1+00W	0.5	2,92	<3	151	<3	0.91	(0.1	18	$\langle 1 \rangle$	37	4.20	<0.01	0.15	3084	(1	0.01	<1	0.02	28	〈2	<2	34	<5	<3	205
Ninious Detection	Ø. 1	0.01	3	1	2	6.01	0.1	1	1	1	0.01	0.01	0.01	1	5	0.01	1	0.01	,	2	2	1	5	3	1
Maximum Detection	50,0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	1 44444

1630 Pandora Street, Vancouver, B.C. V5L 1L6

TI

ل با ا س ا

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

VATBERTHE

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNDa to HaD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: REPORT #: 910197 PA OREQUEST CONSULTANTS LTD. PROJECT: RAIN CLAIMS DATE IN: AUGUST 21 1991 DATE OUT: AUGUST 27 1991 ATTENTION: MR. GEORGE CAVEY PAGE 5 OF 11 Sample Name ÂQ A1 Ás Ba Bi Ca i Cd Co Cr Cu Fe K Ħа Mn Ho Na Ni 008 ž Pb Sb Sn 000 S۲ H L Zn ppe ž .ppa 001 ppe 004 008 7 7 7 L12+005 1+251 DOM ppa ž 0.3 ppe 7 009 3.22 .<3 ppa ppe 156 pp≞ 73 0.65 **DD** ppe. (0.1 24 004 ^{ľ 55 5.31 ~<0.01 L12+005 1+50k 0.17 1973 71 0.02 21 0.02 41 <2 <2 0.3 26 2.71 ·{3 221 <3 <5 <3 181 0.45 (0.1 21 <1 45 5.10 <0.01 0.16 2646 L12+005 1+75 ۲1 0.01 2 0.02 34 <2 0.3 4.09 <3 <2 26 <5 <3 81 (3 0.07 173 (0.1 14 <1 21 3.57 <0.01 L12+005 2+00# 0.08 1644 <1 0.01 <1 0.01 13 <2 0.1 <2 6.78 <3 -74 (3 8 <5 <3 133 0.14 (0.1 18 <1 33 3.00 <0.01 0.07 L12+005 2+25W 947 <1 0.03 0.3 5,28 <1 0.01 <2 ٢2 <3 <2 13 <5 <3 134 <3 0.71 147 <0.1 13 <1 27 3.24 <0.01 0.08 2992 (1 0.02 <1 0.04 9 (2 <2 39 <5 <3 186 L12+005 2+50W 0.1 1.13 `(3 56 ζ3 0.13 (0.1 10 -{1 13 2,45 <0.01 L12+005 2+75¥ 0.03 422 (1 0.04 <1 0.02 0.2 17 1.14 · (2 <2 <3 12 (5 108 <3 <3 71 0.14 <0.1 10 <1 15 3.23 <0.01 0.05 L12+00S 3+00# 830 (1 0.03 {1 0.01 0.4 6.23 <3 20 <2 3 91 <3 10 <5 <3 0.30 106 (0.1 15 <1 18 3.94 <0.01 0.10 L12+005 3+25W 1205 (1 0.01 0.5 4.63 <1 0.02 12 <3 <2 99 <3 <2 15 <5 0.38 <0.1 <3 202 12 <1 14 L12+00S 3+50W 2.91 <0.01 0.02 991 <1 0.03 0.2 (1 4.25 <3 133 0.02 9 <2 <2 27 <3 (5 <3 0.29 <0.1 15 86 <1 22 3.79 <0.01 0.09 3203 <1 0.01 9 0.03 14 (2 <2 20 <5 <3 199 L12+005 3+75# 0.1 3.64 ∵∢3 83 <3 0.48 (0.1 11 (1 L12+005 18 2.88 (0.01 4+00¥ 0.07 1207 {1 0.2 3.72 <3 0.03 <1 0.02 203 {3 В <2 <2 36 0.59 <5 (0.1 18 <3 144 <1 27 4.15 L13+005 0+25E <0.01 0.13 193B (1 0.02 0.3 2.37 <3 <1 0.02 104 24 <3 0.58 <2 <2 41 <5 <0.1 12 <3 173 <1 L13+005 0+50E 30 4,29 <0.01 0.11 770 0.2 ł١ 0.02 1.47 <3 <1 0.02 54 20 <2 <3 <2 0.07 28 <5 (0.1 14 <3 182 L13+005 0+75E <1 24 5.25 <0.01 0.05 1065 0.3 3.33 <t 0.02 <3 77 <1 0.01 36 <3 0.14 (0.1 <2 <2 9 <5 14 <1 <3 98 18 4.59 <0.01 0.09 963 <1 0.01 (1 0.02 26 <2 <2 14 <5 L13+005 1+00F <3 169 0.1 1.46 ~~ <3 41 <3 0.05 (0.1 ~9 L13+005 1+25E <1 14 4.54 (0.01 0.05 0.2 2.74 <3 237 <1 0.02 51 (3 0.07 <1 0.01 (0.1 22 <2 <2 13 ۲) 10 <5 L13+005 1+50F 18 4.80 <3 133 <0.01 0.2 3.18 0.0B 450 ۲) <3 0.01 130 <1 (3 0.22 0.01 25 <2 <0.1 17 <2 R <5 L13+005 1+75E <1 27 (3 120 4,19 <0.01 0.1 0.12 2195 4.24 <1 <3 0.02 61 <3 0.05 <0.1 {1 0.02 28 <2 L13+005 2+00E 7 <2 22 <5 <1 11 3.58 <0.01 <3 189 0.2 0.03 1.95 <3 206 (1 73 <3 0.02 <1 0.01 0.06 <0.1 13 <2 16 {1 27 (2 13 <5 <3 63 4.04 <0.01 0.14 870 **(**1 0.02 (1 0.01 L13+005 2+25E 20 <2 <2 8 <5 <3 103 0.3 2,85 <3 177 <3 0.29 <0.1 L13+005 2+50E 15 · (1 25 5.56 (0.01 0.2 2.56 (3 0.08 1254 110 <3 <1 0.01 0.42 12 0.01 L13+005 0+00W (0.1 19 34 <2 <1 <2 30 4.40 22 <5 <3 <0.01 1.0 3.04 0.13 167 <3 212 1354 **<**1 <3 1.20 0.03 <1 L13+00S 0+50W 4.3 16 0.02 54 <2 <2 <1 3.31 21 30 (5 0.2 0.49 (0.01 0.07 <3 171 (3 7104 126 <1 <0.01 <3 4.78 <1 0.03 <0.1 L13+005 1+00M 20 <2 3 <1 16 <2 43 <5 0.4 3.65 0.58 <0.01 <3 327 (3 0.08 1535 153 <3 <1 0.25 0.01 {1 3.4 0.02 19 19 <2 <1 28 8 97 4.62 <5 <0.01 <3 94 0.14 4836 <1 <0.01 L13+005 1+50k **{1** 0.02 18 <2 <2 0.3 12 <5 6.68 <3 <3 210 74 <3 0.03 L13+005 2+00W (0.1 9 <1 7 3.20 0.2 4.74 (0.01 <3 0.03 111 (3 356 <1 L13+005 2+50W 0.15 <0.1 0.03 <1 13 0.01 <2 <2 <1 23 0.3 2.92 4.18 <0.01 <2 6 (5 <3 0.11 535 (3 50 116 <3 0.23 <1 0.01 L13+005 3+00W 2.8 <1 0.02 19 30 <1 55 <2 <2 0.3 5.61 11 1.70 <0.01 <5 <3 88 0.13 1275 <3 152 <3 <1 0.01 0.67 L13+005 3+50W <0.1 9 0.03 11 17 19 <2 38 <2 0.3 2.57 3.94 <0.01 13 {5 <3 <3 192 0.15 397 172 <3 0.71 <1 0.01 3.5 23 40 0.03 26 71 10 (2 <2 4,95 (0.01 29 <5 0,19 <3 3491 177 (1 L13+005 4+00W 0.01 25 0.03 33 <2 <2 0.1 2.81 25 ۲5 (3 <3 217 111 L13+005 4+50W <3 0.13 (0.1 22 <1 51 0.2 4.89 5.93 <0.01 <3 201 0.11 979 <3 **{**1 0.95 0.01 L14+00S 0+25E 2.8 21 (1 1 0.02 35 <2 44 (2 4.35 0.3 1.63 (3 <0.01 12 <5 0.14 1497 <3 84 136 <3 L14+00S 0+50E 5,97 **(**1 0.03 2.0 10 0.02 14 {1 17 32 <2 {2 0.4 1.82 3.30 48 (3 (0.01 <5 0.22 <3 106 1144 243 <3 ۲) >10 0.02 L14+005 0+75E (0.1 $\langle 1 \rangle$ 13 0.02 136 22 <2 33 0.4 2.55 2.98 (2 159 <3 <0.01 0.20 <5 <3 125 1472 137 <3 <1 1.16 3.1 <0.01 31 0.02 21 <1 20 (2 45 4.46 (2 <0.01 246 <5 0.14 .(3 2458 {1 152 L14+005 1+00E 0.01 <1 0.82 39 <2 <2 0.3 3.82 72 <3 (5 (3 144 <3 173 L14+005 1+25E 1.12 2.0 17 <1 0.2 40 4.20 2.02 (3 <0.01 111 0,22 1476 L14+005 1+50E (3 0.50 {1 0.02 <0.1 22 3 (1 0.02 21 33 0.2 4.77 <2 (2 3,10 <3 <0.01 0.14 33 <5 <3 87 2826 188 <3 0.09 $\langle 1 \rangle$ 0.02 L14+00S 1+75E <0.1 <1 24 0.02 72 <2 <1 28 0.2 3.87 6.61 <2 37 <3 <0.01 (5 0.10 80 1768 <3 <3 162 0.19 $\langle 1 \rangle$ 0.02 2.1 12 $\langle 1 \rangle$ 0.01 <1 47 <2 29 5,87 <2 <0.01 11 0.11 {5 <3 588 165 Minimum Detection $\langle 1 \rangle$ 0.03 15 0.02 48 <2 0.1 0.01 <2 23 <5 -3 <3 150 Maximum Detection 1 - 3 0.01 0.1 50.0 1 0.01 10.00 1 2000 0.01 1000 1000 0.01 1 < - Less Than Miniaum</p> 10.00 1 0.01 1000.0 > - Greater Than Maximum 20000 1 0.01 1000 20000 2 2 10.00 2 is - Insufficient Sample 10.00 10.00 1 -5 20000 - 3 1000 10.00 ns - No Sample 20000 10.00 ANOMALOUS RESULTS - Further Analyses By Alternate 20000 2000 1000 10000 100 1000 20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5556 Faxi(604)254-5717

' r

TTE

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HND, to H_D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: 12

REPORT #: 910197 PA	01	REQUEST C	ONSULTANT	IS LTD.			PROJE	CT: RAIN	CLAIMS			DATE	IN: AUG	JST 21 19	991 DATE	E QUT: A	1GUST 27	1991 AT	TENTION	MR. GEO	RGE CAVE	Y			PAGE 6 (JF 11
Sample Name		Ag Do g	Al Z	Ás Oca	Ba	Bi	Ca X	Cd	Co	Cr DD G	· Cu	Fe Z	K Z	Mg X	Mn DDe	Ho nomi	Na X	Ni	₽ ĭ	Pb	Sb DO D	Sn DDa	Sr Opm	U Oda	¥ DO∎	Zភ ០០៩
L14+005 2+00E	1.11	0.4	3.61	(3	75	(3	0.11	(0.1	ៈ "អ្ន	11	12	3.41	X0.01	0.03	355	· · · · · · · · · · · · · · · · · · ·	0.02	1	0.01	11	· (2	(7	11	(5	3	68
114+005 2+25E		0.2	2.05	(3	100	. 4	0.13	(0.1	22	(1	29	4 71	(0.01	0.11	761		0.03	Å	0.01	40	(2	(2	11	(5	(3	150
1144000 24500		0.2	2 00	/5	105	/0	0.14	5 4	25		27	4 07	70.01	A 10	1700		0.03	7	0.01	50	/2	12	11	. 72	12	169
		0.0	3.00	10	100	10	V.14	2.4	25	1	33 00	4.3/	10.01	0.10	1700	1	0.03	5	0.01	30	10	12	11	10	10	100
L14+005 U+00W		0.3	1.88	(3	83	8	1.32	K0.1	15		29	3.3/	(0.01	0.13	1440		0.03	3	0.02	29	(7	32	80	(0	13	144
L14+005 0+50W		0.2	1.63	<3	83	<3	4.21	(0.1	15	. (1	35	3.43	<0.01	0.24	1318	(1	0.01	5	0.02	29	<2	<2	118	3	(3	144
L14+005 1+00W		0.3	2.79	₹3	111	<3	0.86	3.1	33	>1000	43	4.38	(0.01	0.15	1305	(1	0.03	588	0.02	27	· <2	<2	34	<5	<3	172
L14+005 1+50W		0.5	1.98	<3	105	(3	0.58	2.3	19	36	36	4.14	<0.01	0.11	1780	<1	0.03	22	0.02	34	<2	<2	20	<5	<3	182
L14+005 2+00W		0.3	1.88	<3	95	<3	0.27	2.1	15	124	20	5,08	<0.01	0.07	1039	<1	0.02	16	0.02	35	<2	<2	17	(5	<3	131
L14+005 2+50W		0.5	3.04	<3	159	(3	0.12	3.1	14	47	27	4.07	(0.01	0.09	1919	(1	0.02	(1	0.02	23	<2	(2	9	<5	<3	197
L14+005 3+00W		0.8	3.33	<3	84	<3	0.20	2.9	20	(1	38	5.10	<0.01	0.09	2664	<1	0.02	2	0.05	94	<2	<2	12	<5	(3	178
114+005 3+504		0.6	1 12	/1	. 94	/2	0 10	20.1	10	Ä	21	0 70	ZA A1	0 02	2405		0 02	71	0.01	10	12	12	14	/5	12	82
114+000 4+000		0.0 A 4	2 01	10	100	10	0.20	20.1	24	11	£1 51	7 40	/0.01	0.00	1001		0.03	20	0.02	12 61	(2	12	20	/5	10	201
L141000 41000		V.4 A 7	3.31	13	100	10	0.23	10.1			31	7.47	10.01	0.10	1701	~ ~ ~	0.02	20.	0.03	01	12	12	20	10	10	201
L141000 51000		V./	3.30	(3	103	(3	0.18	(0.1	21	<u>(</u>	84	6.38	(0.01	0.15	2892	<u> </u>	0.01	14	0.04	30	\$ <u>7</u>	14	11	10	\ŭ /0	234
L14+005 3+00W		1.0	2.28	(3	30	(3	0.25	3.4	20		/6	5.92	(0.01	0.11	40/8	(1	(0:01	9	0.04	29	(2	(2	18	(3	3	203
L15+005 0+00E		0.2	1,18	<3	60	<3	9,95	(0.1	16	(1	21	2.87	<0.01	0.35	989	(I	0,02	(1	0.01	42	<2	<2	253	(5	3	111
115+00S 0+25F		0.1	1.40	(3	88	12	0.28	(0.1	18	71	27	2 29	(0.0)	0.09	2006	71	0.01	71	0.01	112	12	(2	14	(5	(3	193
1154005 0450E		0.5	1 91	/2	110	/2	2 62	20.1	21	21	195	5.03	/0.01	0.00	2000	71	0.01	52	0.04	47	/2	12	00	/5	/2	256
115+000 0+350		0.0	2 02	/0	110	10	1 00	0.1	20		100	0.4Z	70.01	0.20	1754		0.00	32	0.04	11	12	12	44	10	/0	220
[15+000 (+00C		0.2	1 00	10	110	(3	1.00	(0.1	30		117	5.00	(0.01	V.20	1034	11	0.02	93	0.03	41	(2	12	44	\J /E	10	220
LIST003 11005		V.2	1.70	13	123	(3	1.01	10.1	30		104	3./3	(0.01	0.20	1844	<u>(</u>	0.01	45	0.03	41	(2	14	40	(3	10	231
L13+005 1+23E		0.4	1.03	13	123	3	1,12	(0.1	30	- 1	84	8,08	(0.01	0.18	3299		(0.01	29	0.03	24	<2	32	44	(0	3	217
L15+00S 1+50E		0.5	2.00	<3	154	(3	0.74	<0.1	34	(1	106	6.59	<0.01	0.21	2273	41	0.02	58	0.04	48	(2	<2	36	(5	(3	249
L15+005 1+75E		0.2	2.31	(3	177	(3	0.25	(0.1	27	(İ	67	6.32	(0.01	0.21	1595	ä	0.02	24	0.02	40	12	(2	16	(5	(3	231
L15+005 2+00E .		0.5	1.53	<3	96	(3	3,80	(0.1	26	d d	98	5.52	(0.01	0.25	1449	(1)	0.02	27	0.03	36	(2	()	111	(5)	(3	197
L15+005 2+25E		0.3	1.71	(3	93	a	4.70	(0.1	.24	- A	93	5 28	(0.01	0 74	1671	(1)	(0 01	25	0 03	27	22	22	175	(5	(3	197
L15+00S 2+50E		0.4	4.68	(3	191	3	0.58	3.1	2B		51	5.43	(0.01	0.14	1991	<1 (1	0.01	18	0.03	20	{2	(2	200	(5	(3	229
															1,551								~'			221
L15+005 0+00W		0.1	1,97	<3	134	<3	1.59	2.9	18	<1	24	3,90	<0.01	0.23	1577	<1	0.03	<1	0.02	67	<2	<2	45	<5	<3	139
L15+005 0+50W		(0.1	1.21	<3	36	<3	0.16	<0.1	7	(1	14	2.47	<0.01	0.04	183	1>	0.03	<1	<0.01	9	<2	<2	10	(5	(3	62
L15+005 1+00¥		(0.1	0.14	16	70	8	3,96	0.4	<1	<1	10	0.17	<0.01	0.04	1042	<1	0.02	<1	0.02	19	<2	15	151	<5	<3	128
L15+005 1+50W		<0.1	1.81	<3	91	<3	3.34	<0,1	10	<1	22	2.07	<0.01	0.10	1816	<1	0.02	<1	0.03	13	<2	<2	203	<5	<3	112
L15+005 2+00W		0.5	2.11	⟨3	82	<3	0.33	<0.1	14	<1	24	5.82	<0.01	0.11	439	<1	0,02	{ 1	0.03	23	<2	<2	27	<5	<3	132
L15+005 2+50W		(0.1	2.25	<3	102	(3	0.12	(0.1	16	di	26	5.03	(0 .01	0,12	1735	71	0.02	71	0.03	37	12	12	12	(5	73	173
115+005 3+004		(0 1	2 43	12	130	/2	0.00	2 1	17	21	20	1 61	/0.01	0 17	700	74	0.02		0.00	51	10	/5	17		/5	144
115+005 3+500		0.2	2 00	/5	100	10	0,20	2.1	17	24	20	7,01	10.01	V.1/	111		0.02		9.92	01	14	12	17	\J /E	10	199
115+005 4+000		0.1	1 14	10	120	10	V.14 A 44	10.1	10	11	33 10	0.00	10.01	0,10	330	CI (CI	0.02	<u></u>	0.02	28	14	\$4	12	(0)	\s (3	164
LIJ1003 4100W		0.1	1,04	13	53	(3	V.14	10.1	6	(1	19	J.11	<0.01	0.05	190	(1	0.04		0.03	25	<2	<2	11	(5	(3	68
LI3+005 4+30W		0.3	2.21	<3	140	(3	0.64	(0,1	29	(1	79	5.78	<0.01	0.20	2325	{1	0.03	25	0.04	45	<2	<2	31	5	<3	225
L15+005 5+00W		0.2	1.73	(3	100	5	4,23	(0.1	23	(۱	85	5.04	<0.01	0.27	1369	۲۱	0.02	36	0.03	35	<2	<2	127	۲)	(3	197
115+005 5+50¥		0.1	3.60	<3	143	<3	0.22	<0.1	18	<1	42	6.77	(0.01	0.15	36B	(1	0.03	10	0.01	23	<2	<2	18	<5	<3	135
L15+00S 6+00W		0.5	1.79	<3	107	(3	0.08	(0.1	13	<u>(1</u>	37	4.78	(0.01	0.07	601	(1	0.03	(1	0.01	23	(2	(2	7	(5	(3	118
L16+00S BL000		0.1	2.33	(3	106	<3	0.10	(0.1	14	<1	44	5.23	<0.01	0.10	384	(1	0.03	{1	0.02	23	<2	<2	В	<5	3	125
Ninimus Detection		A 1	0.01	2	1	2	ስ ስ1	0.1	1	1	4	0 01	A A1	0.01	1		0 01	1	0.01	n	•	^	1	Ę	2	1
Mavieue Antection		50.0	10 00	0000	1000	1000	10.00	1000 0	1	1000	00000	V.VI	10.00	10.00	1	1	10.00	1	10.01	2	4	1000	1	ل د ۸ ۵	ن ۲۸۸۸	
Z ILL THE WE I			10100	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	Andm	OURI	111, 111	2011011	*** ***	200 miles						

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

AP

Ind TED

VAndE

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: 16

REPORT #: 910197 PA	OREQUEST C	ONSULTAN	TS LTD.			PROJE	CT: RAIN	CLAIMS			DATE	IN: AUG	SUST 21 1	991 DAT	E OUT: A	UGUST 27	1991 A	TTENTION	MR. GEO	RGE CAVE	Y			PAGE 7	OF 11
Sample Name	Ag	Al X	As nnø	Ba	Bi	Ca Z	Ċd	Co	Ĉr 604	Cu	Fe %	K Z	Hg Z	fa one	. No	Na Z	Ni DDB	P X	Pb Doe	Sb	Sn DGA	Sr	U Domi	W ODm	Zn ope
L15+00S 0+50E	0.2	6.95	(3	102	(3	0.16	(0.1	16	(1	19	3.41	(0.01	~0.04	652	<1	0.02	{1	0.01	11	- K2		- <u> </u>	- 	(3	101
L16+00S 1+00E	0.1	3.67	(3	71	(3	0.10	1.4	19	(1	27	4.52	(0.01	0.08	1275	(1	0.02	(1	0.02	34	(2	(2	9	(5	(3	136
L16+005 1+50E	(0.1	2.56	(3	69	(3	0.34	1.5	13	ä	26	4,97	(0.01	0.10	804	(1	0.02	(1	0.02	39	<2	(2	22	<5	<3	106
115+005 2+005	0.2	2.25	(3	128	(3	0.39	(0.1	18	(1	18	5.38	(0.01	0.09	1675	(1	0.02	(1	0.03	40	(2	(2	28	(5	(3	140
L16+005 2+50E	0.2	4.17	<3	120	<3	0.60	1.4	21	<1	47	4.25	<0.01	0.11	3706	(1	0.01	<1	0.04	30	<2	<2	39	<5	<3	209
L17+00S 0+00E	(0.1	1.02	(3	38	(3	0.04	<0.1	10	{1	13	3.76	(0.01	0.03	465	<1	0.04	<1	0.01	24	· <2	<2	8	<5	<3	63
L17+005 0+50E	0.3	0.98	<3	49	<3	0.06	<0.1	12	<1	13	2.86	<0.01	0.01	229	7	0.04	46	0.01	18	<2	(2	8	<5	<3	46
L17+005 1+00E	0.2	1,98	(3	56	<3	0.11	(0.1	20	(1	39	3.92	(0.01	0.09	1152	(1	0.03	(1	0.02	29	<2	<2	11	(5	(3	120
L17+00S 1+50E	0.3	0.99	(3	114	(3	0.48	(0.1	10	(1	23	4.45	(0.01	0.05	896	(1	0.03	(†	0.04	40	(2	(2	41	<5	(3	80
L17+005 2+00E	0.1	0.79	<3	40	<3	0.04	<0.1	5	<1	16	2.27	<0.01	0.02	114	<1	0.03	<1	0.02	10	<2	<2	.6	(5	(3	45
L17+005 0+50W	0.3	5.07	<3	100	(3	0.09	1.7	18	(1	24	4.35	<0.01	0.09	1158	{1	<0.01	(1	0.02	23	<2	{2	9	{5	(3	124
L17+005 1+00W	0.2	2.57	<3	103	ζ3	0.07	(0.1	13	<1	25	5.97	<0.01	0.08	354	(1	0.03	(1	0,01	22	<2	<2	8	<5	<3	110
L17+005 1+50W	0.2	1.96	<3	115	<3	0.43	1.2	17	<1	. 26	4.47	<0.01	0.12	863	- (1	0.03	1>	0.02	34	<2	<2	16	<5	<3	130
L18+005 0+00	0.4	3.41	<3	54	<3	0.26	(0.1	13	<1	28	4.39	(0.01	0.08	1013	{1	0.02	<1	0.07	27	<2	<2	19	<5	<3	96
L18+005 0+50E	0.2	0,75	<3	33	<3	0.2B	<0.1	10	<1	22	4.30	<0,01	0.02	429	1>	0.05	<1	0.04	31	٢2	<2	23	<5	<3	70
L18+005 1+00E	0.1	1.20	<3	20	(3	0.08	1.0	10	<1	27	5.73	<0.01	0.05	373	<1	0.05	<1	0.04	31	<2	<2	11	{5	<3	91
L18+005 1+50E	0.2	0.36	<3	20	√3	0.05	(0.1	5	<1	9	1.57	<0.01	0.01	93	<1	0.04	(1	0.01	7	<2	<2	В	<5	<3	36
L18+00S 2+00E	0.1	2.33	<3	58	<3	0,60	<0.1	19	<1	21	6.42	<0.01	0.06	1166	<1	0.02	<1	0.01	49	<2	<2	57	<5	<3	101
L18+005 0+50W	0.1	0.89	<3	35	ζ3	0.03	<0.1	7	<1	19	4.41	<0.01	0.02	240	<1	0.04	<1	0.02	28	<2	<2	7	<5	<3	51
L18+005 1+00W	0.2	0.87	<3	34	<3	0.10	<0.1	8	<1	19	3.95	<0.01	0.04	310	<1	0.03	<1	0.04	22	<2	<2	11	<5	<3	63
L18+005 1+50W	0.2	2.29	<3	93	<3	0.09	1.1	11	(1	24	4.77	<0.01	0.11	424	(1	0.03	<1	0.01	22	<2	<2	9	<5	<3	105
L18+005 2+00W	0.3	3.18	<3	91	<3	0,23	(0.1	34	<1	62	6.15	(0.01	0.18	2647	(1	0.03	19	0.03	57	(2	<2	21	<5	<3	172
L18+005 2+50W	0.4	2.57	<3	267	<3	0.53	(0.1	29	<1	76	7.06	<0.01	0.20	2082	<1	0.02	1	0.03	57	<2	<2	40	<5	<3	234
L18+005 3+00W	0.6	2.10	(3	104	<3	1.86	<0.1	31	<1	151	7.16	<0.01	0.21	3079	<1	(0.01	25	0.04	54	<2	<2	76	<5	<3	300
L18+00S 3+50W	0.6	4.48	<3	70	<3	2.20	5.5	111	<1	577	>10	<0.01	0,1B	>20000	<1	<0,01	334	0.04	24	<2	<2	168	<5	<3	1084
L18+005 4+00W	2.4	2.51	97	122	<3	0.57	<0.1	26	<1	516	>10	(0.01	0.12	11528	{ 1	<0.01	89	0.07	104	<2	<2	45	<5	<3	547
L18+00S 4+50W	0.6	1.95	<3	192	<3	0.45	<0.1	19	(1	196	6.89	(0.01	0.16	1598	<1	0.01	3	0.05	50	<2	<2	30	<5	<3	315
L18+00S 5+00W	0.5	2.50	(3	203	<3	0.62	<0.1	27	<1	131	6.86	(0.01	0.17	5136	<1	<0.01	7	0.05	63	<2	<2	34	<5	<3	288
L18+005 5+50W	0.8	2.29	<3	319	<3	0.24	<0.1	33	<1	71	6.51	(0.01	0.15	2692	<1	0.01	<1	0.04	67	<2	<2	17	<5	(3	229
L19+005 0+50E	0.2	1.76	<3	105	<3	0.90	<0.1	16	<1	18	5.53	<0,01	0.08	1796	<1	0.02	<1	0.03	38	<2	<2	42	<5	<3	145
L19+005 1+00E	0.2	1.65	<3	78	<3	0.34	1,2	19	(1	23	4.56	<0.01	0.09	943	<1	0.03	<1	0.02	31	<2	·<2	22	<5	<3	117
L19+00S (+50E	0.3	0.80	<3	24	<3	0.03	(0,1	3	12	8	1.92	(0.01	0.02	148	<1	0.03	<1	<0.01	9	<2	<2	6	<5	<3	44
L19+005 2+00E	0.2	2.48	<3	110	<3	0.13	<0.i	17	<1	20	4.47	<0.01	0.15	609	(1	0.02	<1	0.01	32	<2	<2	12	<5	<3	115
L13+00S 2+50E	0.3	2.30	<3	82	(3	0.11	(0.1	13	(1	26	5.88	(0.01	0.09	374	<1	0.02	<1	0.01	26	<2	<2	9	<5	<3	102
L19+005 0+00W	0,1	1.12	<3	33	<3	0,05	<0.1	7	$\langle 1 \rangle$	9	3.76	<0.01	0.04	332	1 1	0.04	<1	0.01	19	<2	<2	7	<5	<3	65
L19+005 0+50W	0,2	1.33	⟨3	42	<3	0.06	<0.1	8	<1	21	3.73	<0.01	0.04	354	(1	0.03	(1	0.01	17	<2	(2	7	<5	<3	72
L19+00S 1+00W	0.1	1.30	<3	35	<3	0.03	1.5	12	<1	17	5.91	<0.01	0.06	797	<1	0,02	(1	0.02	38	<2	<2	7	<5	{3	119
L19+00S 1+50W	0.4	1.45	<3	117	(3	0.30	1.4	15	<1	24	4.08	<0.01	0.09	1751	<1	0.02	<1	0.02	39	$\langle 2$	<2	19	<5	(3	125
L19+005 2+00W	0.2	2.51	<3	135	(3	0.31	2.0	13	<1	26	5,04	<0.01	0.18	633	(1	0.03	(1	0.01	28	(2	<2	25	(5	<3	139
Minisum Detection	0.i	0.01	3	1	3	0.01	0.1	1	1	. 1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maxiaum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

AB.

1

VANGEOCHEM

IMITED

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: 19-16

REPORT #: 910197 PA	OREQUEST	CONSULT	ANTS LTD.			PROJE	CT: RAIN	CLAINS			DATE	IN: AUG	UST 21 1	991 DATU	E DUT: A	UGUST 27	1991 A	TTENTION	: MR. GEC	RGE CAVE	ΞY			PAGE 8	OF 11
Sample Name	Ag) A	L As	Ba	Bi	Ca X	Ċd	Co nom	Cr DOM	Cu aos	Fe %	K X	Ħg X	, Ma DCM	No	Na Z	Ni DD a	Р Х	Pb Dom	Sb bpa	Sn ppe	Sr DDM	U ppa	¥ pç≊	Zn pp⊆
119+005 2+504	(0.1	2.1	5 0	271	(3	0.75	2.6	23	1	36	4.87	<0.01	0.12	5664	(1	<0.01	(1	0.02	39	(2	(2	49		(3	181
1191000 21000	0	1 01	5 11	40	/2	4 00	/0.1	25	71	0	0.21	20.01	0.02	2001	21	(0.01	(1	0.01	29	(2	23	160	<5	(3	135
1104000 04500	0.4		5 /5	125	/2	1 00	/0 1	22	. /1	117	2 22	70 01	0.02	200	/1	20.01	/1	0.04	44	(2	(2	54	(5	(3	311
	0.0		J· \(120	10	1.00	(01)	32	1	117	0.33	10.01	V. 2V	2707		10.01		0,07	7 T 4 I	/2	/5	27	25	/2	222
L19+005 3+/3W	0	5 L./	2	101	(3	0.65	(0.1	32	<u></u>	100	2.3/	(0.01	0.21	1243	ن ن	10.01	0/	0.03	91	14	14	, ,	10	10	104
L20+005 0+30E	0	5 1.8	J ()	49	(3	0.08	<0.1	. a	{1	32	5.28	(0.01	0.04	330	(1	0.02	(1	0.02	24	12	12	/	79	10	104
L20+005 1+00E	0.3	3 3.6	6 ··	111	<3	0.37	<0.1	17	(1	19	6.58	(0.01	0.10	2389	ζ1	<0.01	<1	0,02	99	· <2	<2	20	(5	<3	139
L20+005 1+50E	0.1	1 2.0	5 (3	53	<3	0.06	<0.1	14	<1	32	4,20	<0.01	0.05	589	<1	0.01	(1	0.03	17	<2	<2	- 7	<5	<3	90
20+00S 2+00E	0.	1.6	7 (140	(3	0.32	1.2	18	(1	28	4.77	(0.01	0.10	1372	(1	0.02	(1	0,01	29	<2	· <2	20	<5	<3	113
120+005 2+50F	(0)	20	R (1	62	(3	0.30	(0.1	12	11	21	5 37	(0.01	0.08	590	(1	0.02	(1	0.01	35	<2	<2	15	<5	(3	128
L20+005 0+00W	<0.	0.9	7 (69	<3	0.03	<0.1	3	<1	11	2.79	(0.01	0.02	274	<1	0.02	<1	0.01	6	<2	(2	5	<5	(3	62
100.000 0.500	10		· · ·				/				5 67	10 04	0 07	E 7.0		A A2	11	0.00	10	/2	10	10	/5	12	79
201005 01300	(0.	1.1.0	L \;) <u>0</u> ((3	0.10	(0.1	0		13	3.0/	(0.01	0.07	1000	11	0.02	11	0.02	10	10	/2	10	15	/2	167
L20+005 1+00W	0.	2 2,7	0 (5 91	(3	0.55	(0,1	28	0	22	5.26	(0.01	0.14	1980	<u>(</u>	0.02	1	0.02	3/	\2	14	44	\J /=	10	103
L20+005 1+50W	0.	1.3	9 (;	55	(3	0.05	(0.1	11	<1	1/	5.31	<0.01	0.05	799	(1	0.02	{1	0.02	41	12	(2	1	()	10	00
L20+00S 2+00W	0,	2 1.9	1 (46	<3	0.08	<0.1	10	(1	15	4,93	{0.01	0.05	509	<1	0.03	<1	0.02	27		<2	а	(0	(3	90
L20+005 2+50W	0.:	2 0.8	5 (3	8 28	<3	0.11	{0.1	10	<1	19	3.92	(0.01	0.04	371	<1	0.03	1	0.01	20	<2	<2	8	<5	(3	94
L20+005 3+00W	0.	1 0.5	5 (18	(3	0.05	<0.1	9	<1	12	1.80	<0.01	0.01	122	. 4	0.03	<1	0.01	<2	{2	<2	6	(5	<3	57
120+005 3+508	0.1	2 0.7	3 (38	(3	0.05	(0.1	6	(I	14	2.08	(0.01	0.01	233	(1	0.03	(1	0.01	9	<2	3	4	<5	(3	57
120+005 4+004	<0 (0	1 1 4	6 ('	2 77	(3	0.45	1 3	17	(1	27	4 37	(0.01	0.13	2411	1	(0.01	(1	0.02	37	(2	(2	25	(5	(3	169
121+005 0+00	0.1	, ,,	a (*	2 55	/2	0 08	20.1	17	1	27	5 57	20.01	0.05	1074	(1	0.02	(1	0 03	22	(2	(2	10	(5	(3	121
L21+00S 0+50E	0.	1 1.8	5 <3	36	₹3	0.12	(0.1	22	<1	32	6.96	<0.01	0.09	1045	<1	0.01	(1	0.01	51	<2	<2	9	(5	3	114
1.214000 14000	0.1	 			/0	A 10	/			51	E EA	10 01	A 17	ICAE	/1	A A1	/1	0.01		/1	12	D	/5	12	145
	V			23	(3	0.12	(0.1	40	11	16	5.30	10.01	V.17	1623	11	0.01		0.01	40 00	12	- 14 79	10	/5	/5	100
	υ,	2 1.d	y (,	5 69	(3	0.15	(0.1	23		33	5.70	(0.01	0.19	1293		0.01		0.01	32	12	12	12	\J /E	(3)	132
L21+005 2+00E	U	2.3 D	3 (. - //	5 124	. (3	0.03	(0.1	11	(1	<u>ن</u>	5.92	(0.01	0.10	310	<u>, (</u>	-0.02	<u>(1</u>	0.01	32	(2	12	J 10	13	10	00
L21+005 0+50W	. 0,	3 2.0	5 ()	53	(3	0.05	(0.1	10	<1	26	5.44	<0.01	0.08	/29	(1	0.02	<1	0.04	32	<2	(2	13	(5	(3	30
L21+005 1+00W	0.3	3 1.1	8 (;	50	<3	0.03	<0.1	7	(1	7	2.B2	<0,01	0.03	208	(1	0.02	<1	0.01	18	<2	(2	5	(5	13	48
L21+00S 1+50W	0.	2 1.6	8 <3	3 70	<3	0.10	1.2	17	· (1	22	4.80	(0.01	0.12	922	{ 1	0.01	(1	0.01	37	<2	{2	10	<5	<3	100
L21+005 2+00W	0,	4.0	2 <:	6 í	<3	0.08	(0.1	11	<1	19	3,38	<0.01	0.05	330	<1	0.02	(1	0.01	15	<2	<2	10	{5	<3	67
L21+005 2+50W	0.	1 3.7	2 (3	8 85	∢ 3	0.13	(0.1	24	(1	32	5.23	(0.01	0.08	619	- (1	0.02	(1	0.02	26	<2	<2	17	<5	<3	123
L21+005 3+00W	0.1	5 3.2	0 20:	131	(3	1.54	(0.1	27	- A	350	>10	<0.01	0.11	4445	(1	<0.01	9	0.21	48	(2	<2	115	<5	<3	333
L21+005 3+50W	0.1	4 1.4	7 (45	<3	0.08	<0.1	7	<1	29	5.91	(0,01	0.02	259	<1	0.03	<1	0.02	30	<2	<2	12	<5	3\	75
1.21.1000 41000	A 1		- - //) or	/1	A 5A	70.1	20	14	77	5 50	70.01	0.00	2005	/1	0.01	. 71	0.02	7 0	75	13	20	<u>ر ج</u>	/2	127
121T003 4T00W	0	ວ 2.ປ ກ	2 Si 6) BD	ل) مر	0.50	10.1	. 23	1		لائ. J. ن	10.01	0.03	3323		0.01	\1 24	V.VZ	32 25	14	14	3V 10	\J /E	(J / 5	71 171
LZ1+005 4+50¥	0,	5 2.4	v (;	3 93	(3	0.17	(0.1	15	(1	23	9,42	(0.01	0.04	760	<1	0.01		0.02	<u>4</u> 3	(2	(2	13	(3	ن) د ا	30
L21+005 5+00W	0	9 1.9	9 (:	55	(3	0.04	(0.1	7	<1	20	6.3!	<0.01	0105	455	(1	0.01	<1	0,01	26	<2	<2	6	(5	< 3 7 -	80
L21+005 5+50W	0.	5 2.3	2 <:	3 94	(3	0.38	(0.1	41	<1	88	5.40	<0,01	0.24	1477	. <1	0.01	<1	0.03	78	<2	<2	29	(5	<3	261
9R L200S 0+25₩	6.1	3 5.1	9 (327	<3	0.92	<0.i	28	(1	137	6.45	<0.01	0.33	5406	<1	<0.01	(1	0.06	32	<2	<2	47	(5	<3	428
BR L2005 0+50W	0.	5 4.1	9 (1	597	(2	0.92	(0,1	28	\1	67	5.79	(0.01	0.29	3122	<1	0.01	44	0.05	75	<2	<2	58	<5	(3	307
BR 12005 0+75W	й. А.	1 2 3	q /	125	10	0.29	1 7	16	(1	31	3.41	(0.01	0.10	1197		0.03	(1	0.02	11	<2	(2	24	(5	<3	129
DD 10000 14000	0 · ·	: J.J : 5.0	2 \\ 0 /*	, 150) 150	10	V120 A 97	0.2	24	21	120	6.30	20.01	0.30	2466	21	(0.01	31	0 05	15	12	(2	86	(5	(3	452
DN L2000 1100W	U, .	J J.U N 5 F	u (. 5 //	100	10	0.05	20.4	דיט ספ	\1. 907	161	0,00	20.01	0.30	2700	74	20.01	154	0.00	10 75	10	(2	20	(5	(3	403
5% L2005 1+23W	υ.) J.6	Ζ (,	5 190	13	0.30	\ 0. 1	30	28/	101	5.JZ	10.01	V.43	70Z	11	10.01	194	0,03	20	×4	12		10	14	202
Minimum Detection	0.	1 0.0	1 :	3 1	3	0.01	0,1	1	1	- 1	0,01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50,4	0 10.0	0 2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

=== 1-----1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

.

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for A1, Ba, Ca, Cr, Fe, K, Mg, Mn, Wa, P, Sn, Sr and W.

ANALYST:

REPORT #: 910197 PA	OREQUEST CO	INSULTANT	IS LTD.			PROJEC	CT: RAIN	CLAINS			DATE	IN: AUG	JST 21 1	991 DATE	E OUT: A	ugust 28	1991 AT	TENTION:	MR. GEO	RGE CAVE	Ŷ			PAGE 9	OF 11
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Kg	Mn	No	Na 7	Ni	P. ۲	Pb	Sb	Sn	Sr	Ŭ 000	W Dom	Zn DDe
DD 1 2006 14500	γμ∎ Ω ζ	2 02	µy≡ ∡o	170	20 / 2	6 24	μμ= /Δ 1	40 to	pp∎ ∕1	µµ∎ 257	5 17	/A 01	A 14	9409 9409	µµ≡ ∕1	20.01	µµ∎ ⊿1	0 02	994 14	/2	29 20	26	25	73	263
DR 12003 1+300	0.0	4 55	10	173	(3)	V. 34	(0.1	10		101	3.01	(0.01	0.17	2403		10.01	11) 00	0.02	14 7	12	/2	10	75	/2	202
DK L2003 17733	0.2	4.00	10	130	13 .	0.20	(0.1	24		11	3.90	10.01	0.29	930	<u></u>	0.02	43	0.02		12	12	12	10	(3	175
BK L2005 2+25W	0.3	J.4Z	(3		(3	0.50	(0.1	14	Ω	30	3.35	(0.01	0.14	321	(I	0.03	Ω	0.01	(2	(2	(2	22	()	(3	163
BR L2005 2+50W	0.4	3.24	<3	117	(3 ·	0.30	0.2	18	<1	38	3.87	<0.01	0.15	810	<1	0.02	<1	0.02	9	{ 2	<2	17	(5	(3	13/
BR L2005 2+70W	0.3	3.49	(3.	97	(3	0.49	<0.1	16	<1	48	3.11	<0.01	0.21	1706	<1	0.03	(1	0.03	2	<2	<2	24	<5	<3	171
BR L3005 0+25W	0.5	2.21	<3	153	(3	0.23	(0.1	13	N (1	31	2,75	<0.01	0.14	2774	(1	0.01	K 1	0.02	10	<2	<2	18	<5	<3	143
BR L3005 0+50W	0.3	5.24	(3	111	<3	0.12	<0.1	11	<1	15	2.05	(0.01	0.07	470	(1	0.02	(1	0.02	<2	<2	<2	11	<5	<3	153
BR 13005 0+75W	0.2	4.37	(3	112	(3	0.32	(0.1	13		9	2.10	(0.01	0.06	480	(1	0.03	<1	0.01	<2	<2	<2	18	<5	<3	90
BR 13005 1400H	0.3	4.22	(3	138	(3	0.25	(0.1	19	4	51	3 08	20.01	0.24	497		0.03	1	0.02	12	17	()	19	(5	(3	150
DD 1 2006 11250	0.7	4 20	/3	100	/2	A 45	۸ ۳	17	/1	54	3 17	/0.01	0.21	1702	71	A 02		0 02	/0	/2	12	24	/5	/2	205
BK C3005 1720W	V./	4.30	13	100	19	V.4J	0.3	17	VI.	14	3.17	10.01	V. 21	1/03	, XI	V. VZ	~	0.03	12	12	12	32	13	10	200
BR L3005 1+50W	0.5	4.16	<3	230	<3	0.38	0.1	21	(1	77	3.73	<0.01	0.24	604	<1	0.03	<1	0.04	10	<2	<2	36	<5	<3	254
BR L3005 1+75W	0.2	6.46	(3	112	<3	0.51	(0.1	24	<1	80	4.00	<0.01	0.27	555	<1	(0.01	<1	0.06	3	{2	<2	21	<5	<3	232
BR L3005 2+25W	0.7	4.13	(3	101	<3	1.30	0.9	10	(1	25	1.65	<0.01	0.05	1801	(1	0.04	<1	0.02	<2	<2	<2	52	<5	<3	90
BR 13005 2+50W	0.4	3.67	(3	132	(3	1.49	1.9	10	á	58	1.93	(0.01	0.08	2590	0	0.04	(I	0.04	(2	(2	(2	57	<5	(3	137
BR L4005 BL000	0.3	2.07	(3	66	(3	0.33	<0.1	19	a di	38	3.84	<0.01	0.13	1348	. (1	0.05	<1	0.02	42	<2	<2	20	<5	<3	137
DD 1 4000 010011		0.75			/ 8	A 60					A 77								-			10	/5		007
BR L4005 0+23M	0.4	3.80	(3	168	(3	0.33	0.4	16	(1	21	2.17	(0.01	0.08	2/05	(I	0.02	(1	0.02	3	(2	(2	19	()	(3	20/
BK 14005 0+30W	- 0.4	4.28	(3	103	< 3	0.14	(0,1	15	<1	30	3.41	<0.01	0.13	583	(1	0.01	<1	0.02	<2	<2	(2	13	(5	(3	188
BR L4005 0+75W	0.5	3.79	<3	187	<3	0.15	<0.1	17	(1	47	3.42	(0.01	0.11	2028	<1	0.04	(1	0.02	4	<2	<2	14	<5	<3	174
BR L4005 1+00W	0.5	3.26	{3	312	<3	0.35	(0.1	20	<1	27	3.43	<0.01	0.11	2749	(1	0.01	<1	0.04	2	<2	<2	28	<5	<3	236
8R L400S 1+25W	0.3	3.42	<3	145	<3	0.24	{0.1	16	۲)	29	3.11	<0.01	0.14	3475	(1	(0.01	(۱	0.02	15	<2	<2	19	<5	<3	171
BR L4005 1+50W	0.4	4.62	<3	229	<3	0.43	(0.1	21	(1	80	3.43	(0.01	0.31	1417	(1	0.01	(1	0.03	(2	<2	<2	31	۲5	∢ 3	241
BR L4005 1+75W	0.4	6.28	(3	123	(3	0.61	(0.1	23	(1	122	4.78	(0.01	0.26	1353	- di	(0.01	- A	0.03	(2	0	(2	29	(5	(3	235
BR 14005 2+008	0.1	2.32	(3	60	(3	0.05	. (0.1	12		19	2 92	20.01	0 09	225		0 04		0.01	11	17	(2	g	<5	12	98
88 14005 2+254	0.2	2.77	/3	51	(3	0.14	/0 1	15	71	24	A 67	70.01	0.15	\$70		0.05	/1	0.02	15	12	/2	12	/5	/2	101
DD 14000 2+504	0.2	3 40	13	50	10	0.00	10.1	10		24	4.07	(0.01	V. LJ	3/0		0.00		0.02	10	12	12	14	(J /5	10	110
DK 14003 2430W	v.1	2.90	13	ev.	13	0.00	10.1	. 12	X1 .	22	9,62	(0.01	0.11	404	A.	0.05		0.02	13	(2	(2	10	()	(3	115
BR L4005 2+75W	0.3	2.95	(3	67	(3	0.03	<0.1	10	<1	18	3.49	(0.01	0.04	1301	<۱	0.01	<1	0.15	10	<2	<2	8	(5	<3	96
BR L4005 3+00W	0.2	2.50	<3	113	(3	0.07	<0.1	16	<1	21	3.98	(0.01	0.09	1587	(1	0.04	<1	0.03	23	<2	<2	10	(5	<3	130
BR L5005 0+25W	0.4	7.72	(3	240	(3	0.48	(0.1	20	(1	48	3.28	(0.01	0.16	1901	(1	0.02	(1	0.03	(2	(2	12	29	(5	(3	206
BR L5005 0+50W	0.4	5.23	(3	95	(3	0.34	(0.1	12	(1	24	2.60	(0.01	0.05	1665	ä	0.07	(1	0.03	0	0	0	(7	(5	(3	123
BR 15005 0+75W	0.4	2.58	(3	68	<3	0.08	(0.1	20	97	15	3.31	<0,01	0.05	875	9	0.02	64	0.02	12	<2	(2	9	(5	<3	118
DD 1 5000 14000	۸ م	9 60	/5	100	12	0.51	// 4		54F	~	1 50	/A A1		1005			100				/6		/=		
BR LOOS ITOON	0.3	2:00	13	103	(3	0.31	(0.1	24	310	62	3.39	{0.01	0.24	1325	(1	0.03	122	0.02	П	(2	(2	22	(0	(3	121
BK 10005 1+20M	0.2	3.02	(3	121	(3	0.18	(0.1	20	<1	32	3.54	(0.01	0.13	671	<1	0.05	(1	0.02	19	<2	(2	14	<5	<3	161
BR L5005 1+50W	0.1	2.50	<3	114	<3	0.21	<0.1	28	304	58	4,85	<0.01	0.16	1033	5	0.05	112	0.03	24	<2	<2	19	(5	<3	162
8R L5005 1+75W	0.9	4.78	<3	428	<3	0.45	0.4	26	<1	127	5.82	<0.01	0.33	6261	{1	(0.01	28	0.04	14	<2	(2	67	(5	(3	360
BR L500S 2+00W	0.8	5.15	<3	136	<3	0.30	0.4	14	<1	30	2.90	<0.01	0.07	2625	<1	0.0i	(1	0.03	<2	<2	<2	20	<5	<3	161
BR L5005 2+25W	0.2	5.33	(3	208	(3	0.36	(0.1	18	(1	36	3.61	(0 0 1	() t <i>a</i>	5597	71	10.65	71	0.03	19	19	12	15	(5	12	391
BR 15005 2+50H	0.2	5,99	(2	6.4	(2	0.19	20.1	, R	21	20	2.01	70 01	Λ 1Λ	541	21	0 02	21	0.00	/5	10	/2	15	/5	/0	91
88 15005 2+75H	N 7	2 22	/5	100	/3	0 11	/0 1	16	24	20	5 41	10.01	0.10	571 671	· · ·	0.02	11	0.02	14	14	11	11	\J /c	10	174
BR L5005 3+00W	0.4	2.46	(3	97	(3	\$.33	0.6	10 9		ડા 15	3.89	(0.01	0.04	371 875	<1 (1	0.03	ษ ∢1	0.02	13 16	<2 (2	(2	19 25	(5) (5)	<3 (3	161 78
								•			_,		- / • •	2.0	••		••		••			**			
minimum Detection	0,1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Hantaum Detection	30.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less than Miniaua) - Greater	ihan Maxi	eus	is - In	sufficien	t Sampla	e As	- No Sam	ple	ANONALOL	IS RESUL	TS - Fur	ther Anal	lyses By	Alterna	te Hetho	ds Sugges	sted.							

VA 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNQ5 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Myth

REPORT #: 910197 PA	OREQUEST C	ONSULTANT	S LTD.			PROJEC	T: RAIN	CLAINS			DATE	IN: AUG	UST 21 1	991 DATE	E OUT: A	UGUST 28	1991 A	TTENTION	: MR. 6EO	RGE CAVE	Ŷ			PAGE 10	OF 11
Sample Name	Ag	A1	As	Ba	Bí	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Kg	Kn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
BR L600S 0+50W BR L600S 0+75W BR L600S 1+00W BR L600S 1+25W BR L600S 1+50W	ppm 6.5 <0.1 <0.1 0.3 0.1	7 3.70 1.92 4.62 2.26 2.84	pp# (3 (3 (3 (3 (3	ppm 105 79 169 129 131	рря (3 (3 (3 (3 (3	2 0.11 0.11 0.36 0.08 0.26	pp# 0.1 <0.1 <0.1 <0.1 <0.1	ррш 10 11 16 16 19	ppm	рра 15 19 15 20 40	2.53 3.02 3.25 3.89 3.49	2 <0.01 <0.01 <0.01 <0.01 <0.01	2 0.05 0.09 0.08 0.10 0.17	917 506 911 597 1736	ρρπ <1 <1 <1 <1	2 0.05 0.08 0.06 0.07 0.06	ppm	1 0.01 0.02 0.02 0.02	ppm <2 11 5 17 15	ppm <2 <2 <2 <2 <2 <2 <2	рри {2 {2 {2 {2 {2 {2} {2} {2} {2} {2} {2}	10 10 20 12 20	ррм {5 {5 {5 {5 {5 {5 {5	pp = <3 <3 <3 <3 <3 <3	ppm 110 94 131 131 175
BR L600S 1+75W BR L600S 2+00W BR L600S 2+25W BR L600S 2+55W BR L600S 2+75W	0.3 0.3 0.1 <0.1 <0.1	2.15 1.92 2.03 2.24 2.68	(3) (3) (3) (3) (3)	81 105 88 67 120	<pre><3 <3 <3 <3 <3 <3</pre>	0.14 0.17 0.12 0.19 0.27	<0.1 0.5 <0.1 <0.1 <0.1	15 7 12 11 20	(1) (1) (1) (1) (1) (1)	35 14 31 15 24	3,98 2,24 3,34 3,53 3,98	<0.01 <0.01 <0.01 <0.01 <0.01	0.12 0.03 0.11 0.03 0.09	1340 820 351 363 2973	<1 (1 (1 (1 (1	0.05 0.05 0.07 0.06 0.04	<1 <1 <1 <1 <1	0.03 0.01 0.02 0.06 0.04	19 7 9 15 29	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 3 <2	12 15 12 16 19	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	169 81 96 80 205
BR L5005 3+00W BR L6005 3+25W BR L6005 3+50W BR L7005 0+50W BR L7005 0+75W	0.1 <0.1 0.5 0.2 0.1	1.70 0.98 5.17 2.25 4.48	(3 (3 (3 (3 (3	83 60 89 169 157	<3 <3 <3 <3 <3	0.13 0.08 0.21 1.00 0.23	<0.1 <0.1 <0.1 0.5 <0.1	14 11 16 20 18	<1 <1 <1 <1	22 16 36 37 40	4.27 2.33 3.10 3.33 3.57	<0.01 <0.01 <0.01 <0.01 <0.01	0.07 0.06 0.08 0.18 0.18	1348 461 1272 1329 849	(1 (1 (1 (1 (1	0.05 0.08 0.05 0.07 0.06	<1 <1 <1 <1 <1	0.03 0.01 0.04 0.02 0.02	32 12 <2 111 16	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	13 10 16 40 16	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	103 77 152 192 175
BR L700S 1+00W BR L700S 1+25W BR L700S 1+50W BR L700S 1+75W BR L700S 2+00W	<0.1 0.2 0.1 <0.1 0.1	2.36 2.50 3.30 2.50 2.75	(3) (3) (3)	269 169 125 85 114	<3 <3 <3 <3 <3	0.15 0.48 0.37 0.21 0.71	<0.1 <0.1 <0.1 <0.1 <0.1	14 15 24 21 16	(1 (1 (1 (1	13 24 35 32 28	2.99 2.81 4.20 4.14 3.05	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.07 0.10 0.15 0.15 0.16	2307 1205 933 905 1108	<1 <1 <1 <1 <1	0.06 0.08 0.08 0.09 0.08	(1 (1 (1 (1	0.01 0.02 0.03 0.02 0.02	15 21 40 20 10	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	13 25 26 15 22	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	133 134 184 135 125
BR L7005 2+25W BR L7005 2+50W BR L7005 2+75W BR L7005 3+00W BR L7005 3+25W	<0.1 0.1 <0.1 <0.1 <0.1	2.56 2.14 2.78 1.75 2.38	<3 (3 (3 (3 (3 (3	169 113 97 101 63	<3 <3 <3 <3 <3	0.28 0.28 0.05 0.12 0.06	<0.1 <0.1 <0.1 <0.1 <0.1	17 16 9 20 12	<1 <1 <1 <1 <1	32 20 13 20 17	3.62 3.60 3.60 3.46 3.05	<0.01 <0.01 <0.01 <0.01 <0.01	0.14 0.12 0.10 0.15 0.07	2373 1197 291 558 714	<1 <1 <1 <1 <1	0.05 0.07 0.07 0.09 0.07	<1 <1 <1 <1 <1	0.02 0.02 0.01 0.01 0.01	25 18 5 8 14	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	17 17 8 13 8	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	200 138 96 108 93
BR L7005 3+50W BR L8005 BL000 BR L8005 0+25W BR L8005 0+50W BR L8005 0+75W	0.2 0.1 0.2 0.1 0.1	2.66 2.98 2.31 1.92 3.65	<3 <3 <3 <3 <3	109 137 105 69 71	<pre><3 <3 <3 <3 <3 <3 </pre>	0.17 0.20 0.25 0.25 0.11	<0.1 <0.1 <0.3 <0.1	22 15 12 12 13	<1 <1 <1 <1 <1	26 20 16 17 16	3.87 3.25 2.64 2.70 3.55	<0.01 <0.01 <0.01 <0.01 <0.01	0.11 0.09 0.08 0.11 0.07	1932 575 1213 840 718	<1 <1 <1 <1 <1	0.07 0.05 0.05 0.05 0.04	<1 (1 (1 (1) (1)	0.02 0.01 0.02 0.02 0.01	40 14 16 42 6	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	12 15 16 18 10	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	163 187 128 131 112
BR L8005 1+00W BR L8005 1+25W BR L8005 1+50W BR L8005 1+75W BL L8005 2+25W	0.1 0.1 0.2 0.1 0.2	1.53 4.88 2.81 3.69 4.71	<3 <3 <3 <3 <3	89 146 100 189 123	<pre><3 <3 <3 <3 <3 <3</pre>	0.28 0.35 0.21 0.94 0.38	0.1 <0.1 <0.1 <0.1 <0.1	12 16 19 18 20	<1 <1 <1 <1 <1	23 15 27 22 28	3.94 3.22 3.67 3.36 4.02	<0.01 <0.01 <0.01 <0.01 <0.01	0.06 0.08 0.12 0.11 0.12	421 1649 773 2358 888	<1 <1 <1 , <1 <1	0.07 0.05 0.07 0.05 0.07	<1 <1 <1 <1 <1 <1	0.02 0.02 0.03 0.02 0.02	24 3 22 16 16	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	19 19 16 30 20	<5 <5 <5 <5 <5	<3 <3 <3 <3 :<3	113 214 153 217 159
BL L800S 2+50W BL L800S 2+75W BL L800S 3+00W BL L800S 3+25W	0.4 0.2 0.1 <0.1	3.38 5.53 2.62 2.93	<3 <3 <3 <3	204 92 83 131	<pre><3 <3 <3 <3 <3</pre>	1.30 0.40 0.10 0.32	1.6 (0.1 (0.1 (0.1	16 14 10 18	<1 <1 <1 <1	72 23 14 27	3.32 3.54 3.76 3.44	<0.01 <0.01 <0.01 <0.01	0.11 0.0B 0.06 0.11	5504 2095 525 1115	<1 <1 <1 <1	0.05 0.04 0.05 0.03	<1 <1 <1 <1	0.03 0.03 0.01 0.02	14 B 14 21	<2 <2 <2 <2 <2	(2 (2 (2 (2	60 18 10 21	<5 <5 <5 <5	<3 <3 <3 <3	198 256 99 137
Miniaum Detection Maximum Detection ≺ - Less Than Minimum	0.1 50.0 > - Greater	0.01 10.00 Than Maxi	3 2000	1 1000 is - Ins	3 1000 ufficien	0.01 10.00 t Sample	0.1 1000.0	1 20000 - No Saa	1 1000 ple	L 20000 Anomalol	0.01 10.00 IS RESUL	0.01 10.00 TS - Fur	0.01 10.00 ther Anal	l 20000 Lyses By	1 1000 Alternal	0.01 10.00 te Netho	1 20000 ds Sunne	0.01 10.00 sted.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	ا 20000

1630 Pandora Btreet, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Myth

REPORT #: 910197 PA	OREQUEST C	ONSULTAN	TS LTD.			PROJE	CT: RAIN	CLAINS			DATE	IN: AUG	UST 21 1	991 DATE	OUT: A	UGUST 28	1991 A	TTENTION	: MR. 6EC	RGE CAVE	Y			PAGE 11	, OF 11
Sample Name	Ag	Al	As	Ba	Bi	Ca	Ċď	Co	Cr	Cu	Fe	K	Kg	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
	ppe	۲. ۲	pp∎	ppe	ppe	ĩ	ppe	ppe	<u>pp∎</u>	ppe	X	ĩ	Z	ppa	ppa	X	ppe	ĩ	ppe	ppa	ppm	ppe	ppe	ppa	ppa
BL L800S 3+50W	0.1	2.21	<3	139	<3	0.13	<0.1	- 14	- <1	21	3.01	<0.01	0.09	1447	<1	0.07	<1	0.02	20	<2	<2	12	<5	<3	136
BL L8+00S 0+50E	<0.1	4.57	<3	104	<3	0.15	<0.1	16 .	<1	19	3.90	<0.01	0.09	411	<1	0.08	<1	0.01	13	<2	<2	12	<5	<3	131
BL L8+005 1+00E	0.2	3.13	<3	92	<3	0.48	<0.1	17	<1	27	3.76	<0.01	0.12	807	<1	0.05	<1	0.02	50	<2	<2	24	(5	<3	156
BL L8+00S 1+50E	0.4	6.81	<3	67	<3	0.02	<0.1	10	{i	15	2.03	(0.01	0.02	2237	- (1	0.04	<1	0.01	<2	<2	<2	5	<5	<3	100
BL L8+005 _2+00E	0.2	3.81	<3	65	<3	0.12	<0.1	12	<1	10	2.76	<0.01	0.03	536	<1	0.05	₹1	0.01	4	<2	<2	9	<5	<3	91
DO 1 9100C 01350	A 2	2 42	12	02	12	A 25	70.1	10			3 17	70.01	A 12	1770	71	0.07	/1	0 02	25	12	12	19	/5	17	194
DD 101000 01200	V.Z	1 47	10	00	10	V12J	1011	17		32	3.17	10.01	V.12	050		0.07		0.03	23	12	12	10	/5	/2	105
	0.3	1.40	10	03	(3	0.27	(0.1	13	<u>, (</u>	1/	3.32	(0.01	0.07	600		0.07		0.02	21	12	12	17	10	10	103
DK L3TVV3 V7/3W	(0.1	1.38	(3	119	1 3	0,35	(0.1	11	(1	15	3.02	(0.01	0.03	636		0.05		0.01	. 20	(2	12	17	\J /E	(3)	105
8K L9+005 1+00W	0.1	J.62	(3	139	(3	0.94	(0.1	15		22	2.91	(0.01	0.07	2010	0	0.04		0.03	(2	< <u>2</u>	(2	30	()	(3	190
BK LYTUVS ITOW	0.1	2.79	(3	127	(3	0.98	(0.1	14	(1	21	2.91	(0.01	0.10	3033	(1	0.05	-31	0.02	21	(2	32	33	(3	(3	240
BR L9+005 1+75W	0.1	3.48	(3	150	<3	0.80	(0.1	17	(1	22	3.30	<0.01	0.14	1271	<1	0.07	(1	0.02	19	<2	<2	28	<5	<3	173
BR L9+005 2+00W	0.2	3.81	<3	160	<3	0.48	<0.1	17	<1	18	3.92	(0.01	0.09	1047	{ 1	0.06	<1	0.02	19	(2	<2	15	(5	<3	189
BR L9+005 2+25W	0.2	4.37	<3	117	<3	0.12	<0.1	14	<1	19	3.51	<0.01	0.09	629	(1	0.05	(1	0.01	2	<2	<2	10	<5	<3	169
BR L9+005 2+50W	<0.1	2.51	<3	102	<3	0.12	(0.1	14	<1	36	3.93	<0.01	0.16	538	(1	0.07	<1	0.01	14	<2	<2	9	<5	<3	181
BR L9+005 2+75W	0.1	6.05	<3	106	₹ 3	0.62	<0.1	21	(1	26	3.56	<0.01	0.13	1004	<1	0.06	<1	0.04	6	<2	<2	15	<5	<3	239
BR 19+005 3+004	0.2	3 97	13	129	(7	0.20	(0.1	18	4	27	2 19	70.01	0 13	651	11	0.09	a	0 02	12	17	(2	16	(5	12	158
BR L9+005 3+25W	0.2	4.63	(3	192	(3	0.25	(0.1	15		31	3.03	(0.01	0.13	896		0.05	(1	0.02	2	0	17	18	(5	(3	204
BR 19+005 3+50W	0.1	1:92	ä	185	(3	0.26	(0.1	16		21	3 03	(0.01	0 10	2664	ä	0 07	, i	0.02	18	0	17	17	(5	(3	153
RAIN SILT BL 15+255	0.2	1.15	<3	62	<3	5.18	<0.1	22		85	3.79	<0.01	0.18	1365	<1	0.04	<1	0.03	26	<2	<2	152	(5	(3	164
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	I	0.01	0.01	0.01	t	1	0.01	1	0.01	2	2	2	1	5	3	i
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
<- Less Than Minimum) - Greater	Than Maxi	ieun	is - Ins	sufficien	it Sampl	e ns	- No Sam	ple	ANDHALO	US RESUL	TS - Fur	ther Ana	lyses By	Alterna	te Metho	ds Sugge	sted.	10000	2000					2

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HHOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT 4: 910253 PA	OREQUEST C	DNSULTANT	IS LTD.			PROJE	CT: 8-\$				DATE	IN: OCT	03 1991	DAT	E OUT: 0	CT 09 199	1 14	TTENTION	NR. 6E0	RGE CAVE	¥			PASE 1	OF 3	
Sample Name	Ag	A1	As	Ba	₿i	Ca	Cď	Co	Cr	Cu	fe	K	Kg	Ma	No	Ka	Ni	P	fb	Sb	Sn	Sr	ម	¥	Zn	
	00 M	1	9 04	ppz	99 4	1	99 4	ppa.	\$ 7 \$	pp#	ĩ	L	ž	pp a	pps:	ľ	ppa	Ľ	ppe	ppa	ppn	ppm	ppm	ppa	ppe	
LO+00 1+75W B	<0.1	2.69	60	125	(3	5.33	2.4	29	37	162	4.89	2,52	2.14	2141	3	0.11	134	0.02	24	(2	10	109	(5	{3	255	
L0+00 2+00W B	{0.1	5.29	22	159	(3	1.39	3.7	44	74	271	7.37	2.36	2.07	1562	3	0.15	117	0.06	21	<2	21	106	<5	(3	296	
LOHOON OH45E B	(0.1	1.20	5	104	(3	>10	<0.1	14	12	34	2,29	2.99	1.05	751	(1)	0.05	27	0.01	15	(2	<2	222	(5	(3	85	
LOTON OTASE T	(0,1	3.45	- 44	167	(3	1.04	1.0	32	48	77	5.25	1.74	1.25	2129	4	0.04	51	0.03	46	(2	13	40	(5	<3	183	
LOHOON OHSOE B	<0.1	3.05	29	184	{3	1.06	0.4	26	42	112	4.51	1.65	1.21	3140	<1	0.15	58	0.03	35	<2	10	78	<5	(3)	210	
· · · · · · · · · · · · · · · · · · ·											•															
LOTON OFSOE H	<0.1	1.44	3	100	(3	0.42	1.5	20	21	34	3.02	1.00	0.80	899	a	0.07	33	0.02	28	(2	5	25	(5	(3	104	
LOHOON OFSOE I	(0.1	4.02	34	157	(3	0.57	24.2	21	25	34	3.41	1.11	0.65	2369	0	<0.01	27	0.02	8	<2	19	20	<5	(3	8617	
L2+00% 2+00E B	<0,1	0.68	9	76	(3	>10	4.4	4	<1	19	0,83	5,17	0.42	405	(1	(0,01	31	(0.01	14	<2	<2	538	(5	(3	1242	
12+008 1+50W B	(0.1	3,11	361	252	(3	3,04	2.1	28	70	896	>10	3,85	0.56	6143	15	(0.01	156	0.05	19	(2	9	13	(5	(3	411	
1 L2+VVR 1+3/4 B	(0.1	3.92	217	233	(3	8,25	1.2	79	48	2066	210	3.28	0.51	\$20000	17	(0.01	843	0.65		(2	y	11	(5	(3	210	
1.2+00H 1+57H T	{0.1	2_82	114	141	(3	6.25	6.6	26	36	279	6.25	1 57	6.91	2055	4	20.01	113	0.03	76	0	· • •	21	65	(3	259	
13+008 1+25E B	(0.1	2.26	12	180	13	Sin	0.8	25	26	53	4.37	3 07	4.12	2063	ंस	0.13	50	0.01	76	17	v v	138	(5	(3	331	
L3+00N 1+25E N	(0.1	4.11	45	239	(3	0.46	2.4	32	55	57	5.99	1.77	5_21	1799	ä	6_01	160	0.01	75	(7	,	20	(5	(3	1706	
L3+008 1+25E T	(0.1	6.70	74	129	(3	0.10	0.5	12	21	19	3.50	0.95	6.35	402	1	(0.01	45	0.01	0	ō	21	9	ćs	(3	761	
L3+00# 1+75E B	(0.1	2.55	43	189	(3	1.40	2.5	34	39	64	5.84	2.07	1.14	2691	a d	0.14	64	0.03	107	ä	$\overline{\alpha}$	77	(5	(3	302	
											••••						•••		•••							
L3+00N 1+75E N	(0.1	3.67	25	175	(3	0.18	1.4	19	21	18	3,48	1.05	0.46	1153	(1	0.03	41	0.01	28	<2	3	15	<5	(3	601	
L3+00N 1+75E T	(0.1	2.64	27	262	(3	0.15	2.8	22	27	22	4.18	1.22	0.70	6320	<1	0.02	41	0.01	65	<2	<2	12	<5	(3	462	
NIT LO+50K 0+00	<0.1	3.86	46	141	(3	0.38	1.3	19	37	41	3.44	1,13	1.01	2570	(1	0.02	26	0.02	8	<2	20	19	<5	(3	160	
NIT LO+SON 0+25E	(0.1	2.80	37	104	(3	0.34	(0.1	20	30	- 23	3,59	1.09	0.59	1180	đ	0.02	27	0.01	22	<2	13	17	(5	(3	162	
NIT LO+SON 0+SOE	<0.1	6.85	53	51	(3	0.12	(0.1	12	5	7	2.75	0.75	Q. 17	897	2	0.02	8	0.02	(2	<2	21	6	<5	(3	161	
1 1 NTT 1.03500 04780	<i>/</i> A A				~										_						-		-		***	
HIT LATON VILC	(V.1 /A 1	3.13 9 47	23	211	(3	Q.//	1.0	20	31	37	3.70	1.2/	V.61	3/31	4	V. U.S	- 64	0.03	C).			/0 20	(a) /F	(3	235	
NTT LASAN 14255	70.1	£177	- LV - 24	102	(3	V, JV	9.2	23	47	33	5.07	1.02	V.UI	2273		6.63	41	0.02	8V	12	18	12	10	(3	277	
" NIT LOSON 14505	(6.1	4 76	30	60	(3	V.V0	1.0	21	10	10	2,14 A 45	U.30	9.21	1020		4.4Z	41	0.02	12		13	10	13 /5	(3) (3)	110	
HIT LO+SON 1+75F	(0.1	5.73	27	157	79	0.07	A 1	18	23	17	9.67	1.10	የ- ቤግ ለ ፈሳ	1715		A 64	74	0.03	12	12	ŝ	90 95	\J /5	(3	1/1	
					13	VIUL	v.1	34	40	10	2.07	1.21	V174	1/13		V. V4	47	V. V1	12	14	3	2,3	19	10	100	
NIT LO+SON 0+254	<0.1	6.21	38	161	(3	0.58	1.0	25	51	78	4.46	1.43	1.30	1045	1	4.05	49	0.02	5	(2	12	32	(5	(3	269	
NIT LO+SON 0+SON	(0.1	\$.56	52	193	(3	1.47	<0.1	17	30	33	3.07	1.34	4.75	736	ĩ	0.04	28	4.02	(2	ä	23	35	(5	(3	177	
NIT LO+50N 0+75N	(0.1	5.85	48	111	(3	0.85	0.4	22	58	61	4.37	1.47	1.21	445	(1	0.02	44	9.02	5	(2	27	22	(5	(3	178	
NIT LO+SON 1+00W	(0,1	9.35	70	32	(3	0.39	0.2	12	2	7	2.29	0.97	0.12	169	1	0.04	13	0.05	(2	(2	27	7	{5	(3	94	
MIT LO+50N 1+25W	<0.1	7.08	50	136	(3	1.65	1.5	24	35	25	3.37	1.56	0.45	2039	1	0.05	69	0.02	(2	(2	19	47	(5	(3	285	
1																		-								
HIT LO+SON 1+SON	<0.1	4.86	29	235	(3	1.13	1.0	- 24	60	74	3.95	1.56	1.64	1597	2	0.05	56	0.03	10	<2	12	47	(5	(3	207	
NIT LO+50N 1+75W	(0,1	5.02	38	121	(3	0.41	0.1	22	21	24	3.33	1.18	0.39	94 8	<1	0.04	36	0.02	<2	<2	21	18	(5	<3	153	
NIT LOTSON 2+000	(0.1	5.11	44	136	(3	¢. 55	1.0	20	17	19	3.09	1.16	0.29	3101	-1	0.03	40	0.03	(2	<2	12	28	<5	<3	226	
MIT LO+SON 2+254	(0.1	3.50	40	87	(3	0.37	0.1	24	42	26	3.79	1.24	0.68	1000	4	0.04	53	0.01	(2	<2	12	19	۲5	<3	172	
NIT LO+50N 2+50W	<0.1	4.36	71	107	(3	0.14	0.8	31	65	104	7.75	1.94	0.66	611	2	0.01	108	0.02	(2	<2	6	13	<5	<3	323	
1 1 5150 16.550 4.44							<i>.</i> -								_				_							
I KAIR LUTJUS UTUU	(0.1	4.8Z	49	264	(3	1.14	2.7	28	46 -	90	6.24	2.05	1.05	2355	1	0.02	73	0.05	23	<2	12	49	(5	(3	467	
- RAIR LUTJUD UTZDE	(0.1	3.45	5/	111	(3	0.33	0.6	27	62	63	5.00	1.53	1.23	897	a	0.04	64	0.02	13	<2	21	19	(5	(3	204	
* ARLE LUTING UTDUE	çų.1	3.36	4/	162	(3	9,49	0.7	22	50	46	4.62	1.54	Q. 86	2429	1	0.04	49	0.03	22	(2	13	13	(5)	3	200	
I RAIK LUTUUJ VTIJE	(0.1	3. 20	41	58	(3	Q.22	U.Z	22	38	31	4.34	1.2/	V./1	1/22	a	V. 02	41	Q. 0Z	44	Q	3	11	0	(3	200	
Ninimum Detection	0.1	0.01	3	1	3	0.01	6.1	1	1	1	0.01	0.01	0.61	1	1	6.61	t	0.01	2	,	2	1	5	3	1	
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	70000	10.00	10.00	10.00	20000	1800	10,00	70000	10.00	70000	2000	1000	10000	100	1000	20000	
/ . Inc. Then Minimum	1 - Creater 1	76		in . Inm				AT 8												****						

11:57

ANALYST: 15-16

10/09/91

g

NO, 165

P002/004

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (504)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml + f 3:1:2 HCL to HNOs to H_O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is ; artial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W.

						11	is leach	is ₁ art	iai for	Al, Ba,	Ca, Cr,	Fe, K, 1	1g, Mn, I	ita, P, Sn	ı, 5r an	d W.					ANALY	'st: _	K	<u>~</u>	<u>[[</u>
REPORT #: 910253 PA	OREQUEST C	ONSULTAN	IS LTD.			PROJE	11: B-R				DATE	IN: OCT	03 1991	DATE	E QUT: O	CT 09 199	1 4	TTENTION:	KR. GEO	IRGE CAVE	Y			PAGE 2	of 3
Sample Name	Ag	Al	Å5	Ba	Bi	Ca	Cđ	10	Cr	Cu	fe	ĸ	Mg	ňa	No	Na	Ni	P	Pb	Sb	Sn	Sr	Ü	¥	In
	pp±	X.	ppe	gøæ	bb #	Z	ppa	pi: 🖷	ppe	spe	1	z	1	ppe	ppa	L	ppe	1	ppa	ppe	pps	ppe	60a	ppa	ppe
RAIN L0+505 1+00E	(0.1	3.93	36	183	(3	0.69	1.9	: 2	105	90	5,47	1.53	1.52	3425	1	0.04	73	0.03	69	(2	24	36	(5	<3	264
RAIN LO+SOS 1+25E	(0.1	3.08	36	120	(3	9.21	(0.1	4	40	57	4.57	1.12	0.86	2398	(1	0.02	47	0.02	41	{2	8	17	0	(3	173
RAIN LO+505 1+50E	(0.1	4.24	33	89	(3	0.23	(0.i	7	30	20	3.96	0.97	0.44	1214	(1	Q. 03	26	0.02	12	{2	16	13	(5	(3	136
RAIN LO+SOS 1+75E	(0.1	3,92	13	56	(3	0.10	(0.1	5	25	37	3.50	¢. 88	0.37	725	(1	0.03	24	0.02	18	₹2	17	8	(5	₹3	114
RAIN LO+505 2+00E	(0.1	2,53	28	69	<3	0,13	0.2	8	32	23	4.13	0.98	0.53	1049	D .	0.03	37	0.01	17	(2	24	10	(5	<3	135
RAIN LO+505 0+250	(0.1	3.60	26	146	<3	0.38	0.5	:0	39	45	3.70	1.04	1.03	1671	(1	0.02	51	0.02	12	(2	15	22	. (5	(3	261
RAIN LO+505 0+50W	(0.1	3,96	27	144	G	0.42	0.5	9	41	46	3.77	1.05	1.00	1231	<1	0.02	50	0.02	10	<2	16	25	(5	(3	323
RAIN LO+505 0+75N	(0.1	3.78	29	133	<3	0.35	(0.1	:1	45	66	3.81	1.03	1.06	1520		0.03	55	0.03	6	(2	21	27	(5	(3	209
RAIN L0+505 1+00W	<0.1	5,54	40	233	<3	Q. 64	0.1	. 5	58	63	4,32	1.20	1.54	954	3	0.01	61	0.04	<2	(2	26	50	(5	(3	293
RAIN LO+505 1+25W	<0.1	4.79	64	136	<3	0.33	(0.1	- 15	48	109	5.61	1.35	1.24	2330	- 1	(0.01	73	0.04	23	(2	14	33	. (5	{3	290
RAIN LO+505 1+508	1.7	4.40	148	361	<3	0.59	4.9	- 10	69	510	>10	3.67	0.54	14925	19	(0.01	260	0.06	107	(2	6	67	(5	<3	994
RAIN LO+505 1+750	(0.1	5.09	44	113	3	0.17	0.1	8	28	47	3.26	6.90	6.56	1959		6.03	35	0.03	(2	ö	16	14	(5	(3	170
RATE 10+505 2+00#	(0.1	3.60	51	159	12	0.42	70.1	ຫ	58	127	5 09	1 70	1 10	1512		0 07	90	0.03	10	0	15	23	65	(3	705
RAIN 10+505 2+254	(0.1	4.87	37	142	(3	1.74	(0.1	2	24	35	4 75	1.30	1.10	583		0.02	25	Å Å3	.,	17	31	45	is	(3	142
RAIN L0+505 2+504	(0.1	4.70	2B	207	(3	0.73	(0.1	8	27	24	3.37	1.04	0.66	2854	4	0.02	35	0.04	(2	(2	8	38	Ğ	(3	247
RAIN L1+505 0+00	(0.1	4.57	33	178	(3	0.34	0.7	10	65	58	5, 12	1.33	1.15	812	(1	0.01	79	0.02	24	(2	15	21	(5	- (3	470
RAIN L1+505 0+25E	(0.1	5.31	62	126	(3	0.42	(0.1	2	50	43	4.57	i.23	0.93	1048	(1	0.02	48	0.03	87	(2	15	22	(5	<3	408
RAIN LI+50S 0+50E	(0.1	6.81	64	129	<3	0.74	(0.1	16	62	64	4.14	1.28	1.32	892	D.	0.07	65	0.02	(2	(2	26	45	(5	(3	279
RAIN L1+505 0+75E	<0.1	4.74	72	141	(3	0.44	0.2	2	57	45	4.20	1.22	0.91	1878	a	0.04	58	0.02	8	(2	15	26	(5	<3	415
RAIN L1+505 1+00E	· CQ. 1	5.48	86	256	(3	0.72	2.5	- 11	76	98	6.55	1.89	1.34	4008	ä	0.01	103	0.02	69	(2	18	50	(5	(3	1235
RAIN L1+505 1+25E	<0.1	2.44	27	103	<3	0.65	(0.1	.8	40	26	4. 84	1.29	0.52	1074	<1	0.02	63	0.01	50	(2	15	35	(5	(3	300
RAIN LI+505 1+50E	<0.1	3.71	44	102	(3	0.74	(0.1	20	28	20	4.05	1.19	0.30	876	4	0.04	43	0.01	14	(2	21	38	<5	(3	184
RAIN L1+506 1+75E	<0.1	3.54	40	134	<3	0.39	0.4	:3	48	24	6.20	1.46	0.52	938	2	0,05	44	0.01	45	(2	9	20	<5	(3	260
RAIN L1+505 2+00E	<0.1	6.88	51	130	<3	0.15	(0.1	!2	40	26	4.66	l.27	0.54	3802	<1	0.02	51	0.01	20	{2	15	12	(5	<3	475
RAIN L1+505 2+25E	<0.1	5.38	40	192	<3	8.31	4.8	13	91	122	5.25	3.06	2.67	1789	a	0.21	91	0.05	40	(2	5	272	(5	<3	956
RAIN LI+505 0+25W	<0.1	5.43	35	198	(3	Q.76	0.4	:0	52	40	4.84	1.48	0.75	1091	(1	0.04	57	0.03	33	(2	15	36	(5	<3	454
RAIN L1+505 0+504	<0.1	5.32	40	236	<3	0.60	(0.1	14	47	34	4.59	1.43	0.85	2125	1	0.05	58	0.03	31	(2	9	27	-(5	<3	341
RAIN L1+505 0+75W	(0.1	4.25	48	191	(3	0.50	KQ. 1	17	62	68	5.70	1.57	1.19	1869		0.05	73	0.05	38	(2	6	31	<5	(3	239
RAIN L1+50S 1+00W	0.4	5.27	45	219	(3	0,27	0.5	!7	54	-62	5.57	1.43	1.00	2755	3	0.02	53	0.04	6	(2	24	38	(5	<3	353
RAIN L1+505 1+25%	0.2	5.95	63	164	<3	0.20	0.9	10	65	67	4.95	1.29	i.12	1667	2	0.02	80	0.04	(2	(2	23	28	(5	(3	437
RAIN L1+505 1+508	<0.1	7.60	109	160	٢3	0.40	(0, 1	!4	77	107	6.16	1.59	1.55	1073	(1)	0.02	66	0.05	(2	(2	28	32	<5	≺ 3	407
RAIN L1+505 1+75W	<0.1	5.57	81	200	<3	0.41	0.8	35	69	181	6.65	1.78	2.13	1207	3	0.02	. 114	0.03	31	<2	15	38	(5	<3	419
RAIN L1+505 2+00¥	<0.1	4.B0	38	171	<3	0.49	(0.1	32	91	22	4.97	1.43	0.99	2142	(1	0.03	52	0.02	21	(2	27	26	(5	(3	329
RAIN L1+505 2+250	(0.1	4.44	26	145	{3	0.27	(0.1	.2	48	56	4.05	1.12	0.77	2014	(i	0.03	43	0.03	10	(2	23	17	<5	(3	202
RAIN 11+505 2+508	1.3	4.79	167	185	<3	0.53	(0.1	. 14	73	457	>10	2.73	0.31	6811	11	(0.01	123	0.07	<2	<2	8	34	(5	<3	226
RAIN 12+505 0+00	(0.1	4.94	67	282	3	0.16	3.5	25	61	71	7.58	1.96	0.89	1943	4	(0.01	103	0.02	79	(2	7	16	<5	<3	2927
RAIN L2+505 0+25E	<0.1	2.87	89	202	4	>10	36.1	. !5	47	71	5.61	3.80	1.01	2225	(1	(0.01	146	0.03	157	(2	5	218	<5	(3	8992
RAIN 12+505 0+50E	(0.1	5.17	60	209	(3	4.15	11.0	18	29	33	3.88	7.04	0.55	1176	- (1	(0.01	79	0.01	78	(2	15	68	(5	(3	3442

RAIN L2+505 0+75E 0.4 2.80 **(**5 173 (3 >10 27.1 .7 37 36 3.99 3.B2 0.69 1359 (1 (0.01 B4 0.02 118 (2 8 22£ (5 Minimum Detection 0.1 0.01 3 3 0.01 2 5 1 ° 0.1 1 0.01 0.01 2 2 1 0.01 0.01 0.01 1 1 1 1 1 50.0 10.00 2000 Maximum Detection 1000 10.00 1000.0 1000 200 10 1000 20000 10.00 10.00 10.00 20000 100 1000 10.00 20000 10.00 20000 2000 1000 10000 K - Less Than Hinimum > - Greater Than Haxique is - Insufficient Sample ns - No Sample ANDKALCUS RESULTS - Further Analyses By Alternate Nethods Suggested,

NO. 165

10/09/91

11:58

ନ୍ଥି

P003/004

(3

3

1000

4953

20000

1

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₅ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fm, K, Mg, Ma, P, Sn, Sr and W.

REPORT #: 910253 PA	OREQUEST C	ONSUL TAN	TS LTD.			PROJE	CT: B-R.				DATE	EN: OCT	03 1991	DATE	OUT: O	CT 09 199	I A'	I TENT ION	: MR. 6EC	RGE CAVE	Y			PAGE 3	0F 3	
Sample Name	ĥą	AL	As	Ba	Bì	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ħg	Na	ño.	Na	Ni	P	Pb	55	Śn	Sr	U	¥	Zn	
	pps	ĭ	ppe	ppm	<u>ppa</u>	1	pp#	рре	ppa	pp#	1	ĩ	Z	D D 4	CDE	ĩ	pps	1	pp.	ppe	p p a	pp a	pps	ope.	00 Ø	
RAIN L2+505 1+00E	. (0.1	5.50	82	143	(3	0.86	5.5	21	36	44	4.86	1.28	0.51	1197	1	<0.01	68	0.01	· 86	<2	10	31	<5	(3	1884	
RAIN L2+505 1+25E	<0.1	4.89	54	197	(3	1.69	3.9	32	57	38	7.91	2.13	1.08	2495		0.01	81	0.02	85	<2	13	49	(5	(3	1490	
RAIN L2+505 1+50E	(0.1	4.23	33	156	(3	4.68	3.1	19	28	26	4.15	1.87	0.93	1598	. (1	0.02	55	0.02	43	<2	6	91	<5	(3	1445	
RAIN L2+505 1+75E	(0.1	2.72	50	125	. 8	0.71	0.9	44	36	57	7.46	1.79	0.84	2187	<1	0.07	66	0.02	135	<2	(2	41	<5	₹3	463	
RAIN 12+505 2+00E	(0. 1	9.78	85	129	(3	0.34	Q.B	30	33	19	4.17	1.19	0.43	762	{1	0.05	30	0.02	6	₹2	9	- 19	(5	(3	413	
RAIN L2+505 0+250	1.1	8.70	73	413	(3	0.49	0.2	33	67	68	6.38	1,52	1.43	1385	(1	0.03	66	0.04	16	<2	23	46	(5	(3	558	
RAIN 12+505 0+50W	(0.1	5.45	46	343	(3	0.95	0.4	30	63	59	5.43	1.44	1.41	1264	(1	0.02	51	0.04	<2	<2	22	76	<5	(3	284	
RAIN L2+505 0+75W	<0.1	5.51	46	417	(3	Q.82	1.6	31	63	117	4.98	1.35	1.92	2675	{1	0.09	87	0.04	<2	<2	22	87	(5	(3	259	
RAIN L2+505 1+00H	(0.1	4.29	34	237	(3	0.17	1.6	28	49	37	5.17	1.22	0.99	1121	(1	0.05	45	0.02	22	(2	20	23	(5	(3	256	
RAIN L2+505 1+25W	<0.1	4,38	37	191	<3	0.18	9.4	25	58	40	5.26	1.19	1.11	882	(1	0.04	50	0.03	12	<2	23	20	<\$	(3	229	
RAIN L2+505 1+508	(0.1	3.70	39	544	(3	0.56	1.6	29	48	60	4.52	1.35	1.17	6363	1	0.03	59	0.05	19	{ 2	16	57	<5	(3	386	
RAIN L2+505 1+758	(0.1	3.83	16	237	(3	0.29	1.1	21	43	73	4.33	1.08	1.43	1041	(1	0.03	53	0.08	14	(2	12	30	<5	<3	225	
RAIN L2+505 2+000	(0.1	3.85	33	177	(3	0.45	0.9	32	53	130	5.52	1.38	1.80	986	4	6.02	98	0.03	20	(2	12	35	< 5	(3	305	
RAIN L2+SOS 2+25W	(0.1	3.91	27	221	(3	0.25	0.3	20	21	19	3.76	0.96	0.65	2051	(1	0.05	22	0.02	17	<2	22	22	8	(3	193	
RAIN 12+505 2+50W	<0.1	8.32	57	149	(3	0.53	<0.1	25	47	55	4.37	i.13	1.37	610	3	0.03	34	0.03	<2	(2	31	40	<5	(3	215	
RS 001	(0.1	5.29	40	211	(3	7.64	7.8	27	93	121	5.28	3.01	2.68	1718	(1	0.19	88	0.05	37	{2	7	275	(5	(3	1080	
R5 002	<0.1	3.67	42	202	(3	4. Bi	1.0	22	68	97	3.99	2,13	2.28	1349	(1	0.12	68	0.05	76	<2	8	219	(5	(3	\$28	
Minimum Detection	. 0.1	9. 01	3	1	Э	0.01	0.1	1	1	1	0.01	0,01	0.01	1	1	0.01	1	0.01	2	2	2	ı	5	3	t	
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10,00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
C - Less Than Miniaum) - Greater	Than Kax	ieve	is - Ins	afficie	st Sampl	e as	- No Sam	ple	ANOMALDI	us Result	ls - Fur	ther Anal	yses By	Alterna	te Nethod	s Sugae	steá.								

ND, 165 P004/004

ଜ୍ଞ

ANALYST: 19-14

10/09/91

	EOCHEM LAB L	MAIN OFFIC 1630 PANDORA ST VANCOUVER, B VSAL 1L6 TEL (604) 251-5 FAX (604) 254-5	E BRANCH OFFIC REET BATHURST, N.B I.C. RENO, NEVADA, U. 656 717
RBPORT NUMBER: 910197 AL	JOB NUMBER: 910197	OREQUEST CONSULTANTS LTD.	PAGE 1 OF 1
SAMPLE #	Zn %		
L2+005 0+25E	0.34		
L2+005 0+50E	0.12		
L2+005 0+75E	0.25	. · · ·	
L2+005 1+00E	0.20		
L2+00S 1+25E	0.23		
L2+00S 1+50E	0.14		
L2+005 1+75E	0.24		
L2+005 2+00E	0.34		
L2+005 2+25E	0.16		
L2+005 2+50E	0.19		

Γ

DETECTION LIMIT 1 Troy oz/short ton = 34.28 pp O.O1 1 ppm = 0.0001 % ppm = parts per million < = less than

My.

signed:

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

~ANGEOCr

ICAP GEOCHEMICAL ANALYSIS

AF

IPTE

ſΕ

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNOm to H=D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Marth

REPORT #: 910252 PA	OREQUEST C	ONSULTAN	TS LTO.			PROJE	CT: B-R				DATE	IN: OCT	03 1991	DAT	E OUT: O	CT 08 199	h A	TTENTION	: MR. GEC	IRGE CAVE	Y			PAGE 1	OFI
Sample Name	Ag	Al	As	. Ba	Bi	Ca	Ċď	Co	Cr	Cu	Fe	ĸ	Kg	Ka	Ho	Na	Ni	P	Pb	Sb	Sn	Sr	U	w	Zn
	ppa	۲.	ppe	ppe	ppe	X	ppa	<u>ope</u>	ppe	ppe	ĩ.	X	ï.	ppa.	ppe	X,	ppe	ĩ.	pp#	pp#	ppe	pp e	ppm	ppa	ព្ភគ
L0+00 0+50E RX-1 .	0.8	0.94	<3	114	16	0.83	3.0	11	225	181	>10	0.73	0.28	4673	14	0.18	79	0.13	105	<2	11	55	<5	<3	200
L0+00 0+50E RX-2	<0.1	0.72	<3	68	28	<0.01	3.7	7	77	199	>10	1.16	0.11	595	<1	0.18	24	0,08	50	<2	13	19	<5	<3	361
L0+00 1+75 RX-1	<0.1	0.71	<3	46	39	2.55	0.6	12	247	688	4.36	0.60	0.21	3041	<1	0.16	75	0.03	39	2	5	22	<5	<3	189
L0+00 1+75W RX-2	<0.1	1.25	<3	72	<3	2.57	1.7	6	206	372	>10	0.90	0.35	5204	1	0.14	23	0.08	22	<2	7	41	(5	<3	162
10+00 2+00W RX	(0,1	2.78	<3	135	<3	3,26	0.B	21	189	86	4,66	0.76	1,57	1440	2	0.19	36	0.05	<2	<2	11	147	<5	<3	138
L2+00N 1+50W RX	<0.1	2.05	60	304	23	0.80	2.1	19	246	295	· >10	0.70	0.49	15831	(1	0.11	138	0.06	<2	<2	4	38	<5	<3	328
L2+00N 1+57W RX	0.7	1.23	167	221	30	0.66	0.5	13	202	365	>10	0.72	0.20	4751	22	0.18	95	0.07	28	<2	<2	43	<5	<3	212
L2+00N 2+00E RX	0.2	0.10	<3	41	17	>10	4.8	2	<1	14	0.65	2.40	0.26	294	<1	0.04	<1	<0.01	29	<2	<2	408	<5	<3	231
L2+50N 0+50E RX	0.3	0.10	<3	35	<3	>10	4.2	<1	1>	(1	0.29	2.33	0.22	104	(I	0.08	<1	<0.01	19	<2	<2	375	< 5	<3	852
Miniaua Detection	0.1	0.01	3	1	3	0.01	0.1	1	i i	1	0,01	0,01	0.01	1	1	0.01	1	0.01	2	2	2	i	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater	Than Nax	inun	is - Ia	sufficie	nt Sampl	e ns	- No Sar	ıple	ANONALO	US RESUL	TS - Fur	ther Ana	lyses By	Alterna	te Nethod	ls Sugge	sted.							

VANGEOC L., ____ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with waler. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:	R	Ĺ
	in the second se	

REPORT #: 910263 PA	OREQUEST (ONSULTAN	IS LTD.			PROJE	CT: B-R				DATE	IN: OCT	10 1991	DATE	E OUT: C	CT 15 19	91 A	TTENTION	I: MR. IA	N CAMPBEL	L & MR.	GEORGE C	AVEY	PAGE 1	OF 1
Sample Name	Ág	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	β	Ръ	Sb	Sn	Sr	U	٠¥	Zn
	ទុក្ខ	X	рра	00 m	ppa	ï.	DDD	004	008	006	Z	ï	y.	ិភ្នំព	660	Z	0.00	ž	ពកត	ពលផ	006	008	0.04	សាក	556
19660	0.5	1.61	30	32	(3	0.71	4.4	35	44	508	R. 42	2.36	1.07	1295	R	(0.01	73	0.03	2	49 ()		21	/5	/2 /2	221
19661	<0.1	0.34	82	40	10	2.20	1.5	14		69	1 79	1 25	ñ 74	6749	71	(0.01	12	0.01	22	12	12	46	/5	/2	121
19662	1.0	4.12	58	28	(3	2.09	2.9	28	65	196	2 49	3 00	1.74	1042	18	0 41	80	0.02	11	12	20	124	25	/5	101
19663	0.2	1.68	4	49	(3	0.94	19	12	20	150	2 11	1 20	0.50	2012	21	0.00	15	6 61	11	14	1.1	124	10	()	103
19664	1.0	0.81	16	319	<3	0.22	1.3	4	128	105	2.01	1.17	0.33	248	12	0.08	13 {1	0.01	241	<2	(4 (2	27	\0 {5	<3	200 76
19665	1.1	1.51	54	57	<3	1.62	10.5	17	56	498	>10	5.01	0.39	3442	20	(0.01	236	0.08	. 52	(2	25	50	(5	(3	1016
19666	9.7	1.42	(3	26	<3	0,72	12.1	30	99	480	>10	5.43	0.28	1818	35	(0.01	407	0.05	3201	12	14	24	/5	/2	910
19667	3.8	0.81	23	20	(3	0.71	3 4	78	24	. 1012	>10	5 96	0 10	750	26	70.01	547	0.05	10201	/2	27	27	/5	10	220
19668	0.1	2.80	<r> </r>	64	(3	1 45	2.7	42	217	271	7 65	2.20	0110	100	20	0.01	120	0.00	430	12	23	20	\J /E	10	220
19669	<0.1	1.59	(3	209	(3	0.46	0.8	28	52	57	2,19	1.54	0.50	420 209	<1	0.13	4i	0.01	93 56	3	15 (2	21	<5	(3 (3	91 44
19670	0.4	0.45	<3	267	(3	6,90	1.4	58	۲۱	2625	3 AR	2 41	0 47	472	11	0.02	22	0.01	20	12	E	97	/5	12	AĠ
19671	3.3	0.58	54	50	(3	1.17	3.0	23	44	1414	510	5 27	0 19	649	20	10 01	461	0.02	00	/2	29	44	/5	. /2	207
19672	0.2	0.16	(3	18	(3	0.24	1.2	229	394	470	8 47	2 14	0.06	100	71	/0.01	240	0.01	27	/0 .	12	0	10	10	51
19673	0.3	3.79	32	291	(2	1 60	0.2	10	76	212	4.25	2.17	1 47	100	1	10.01	240	0.01	21	14	17	70	۲J ۲	10	11
19674	4.5	4.44	<3-	250	<3	2.11	2.1	28	99	199	3,58	3.30	2.04	506	15	0.23	38 38	0.02	1920	<2	29	111	<5	(3	191
19675	1.5	3.97	. (3	158	(3	4.37	1.2	20	84	140	3.62	2.88	2.10	533	4	ñ 14	37	0.05	772	(2	14	290	(5	13	149
19676	2.6	2.77	52	52	(3	2,20	1.8	21	115	319	>10	4.51	0.54	3318	28	(0.01	186	0 08	686	(7	23	7R	(5	(3	-290
19677	0.6	5.15	29	148	(3	1.01	1.5	38	80	193	7.83	3.27	1.72	928	(1	0 11	64	0.02	14R	()	19	56	25	/3	182
19679	0.6	0.82	(3	96	(3	>10	0.9	8	(1	268	1.54	3.32	3.36	1053	(1	0.03	3	(0.01	134	12	10	138	25	(3	47
19680	3.1	0.26	<3	26	<3	2.01	0.6	326	<1	1098	>10	5.23	0.43	196	<1	<0.01	960	(0.01	1371	<2	6	23	(5	<3	53
19681	0.3	1.49	<3	23	<3	>10	1,9	17	(1	84	1.89	4.21	0.29	4 98	2	0.07	174	0.01	77	(2	<2	314	(5	(3	. 69
72651	2.0	1.39	459	22	<3	5.06	2.9	22	243	449	>10	4.79	0.41	3889	24	0.01	273	0.09	70	(2	17	93	(5	(3	403
72651A (NO. TAG)	2.0	1.39	467	17	<3	2.41	2.8	23	317	474	>10	4.59	0.43	3115	27	<0.01	342	0.10	62	(2	23	82	(5	(3	553
72652	1.2	0.82	53	17	(3	2.13	1.6	40	55	613	>10	4.05	0.24	1177	9	(0.01	253	0.08	33	(2	14	67	(5	(3	129
72653	1.2	0.83	5	9	<3	2.10	1.3	26	20	454	8,94	2,98	0.12	7394	4	0.01	177	0.10	20	<2	6	32	<5	(3	58
72654	2.8	1.30	158	8	<3	0.52	14.3	28	47	543	>10	8.31	0.18	2042	76	<0.01	564	0.03	76	(2	33	19	(5	(3	1404
72656	10.2	1.19	471	25	<3	0.81	22.7	325	271	>20000	7.55	2.62	0.54	628	251	(0.01	140	0.02	4R	12	(2	41	(5	(3	3888
72660	0.3	1.87	76	. 90	<3	0.18	4.2	62	39	3926	4,26	1.65	1.35	244	28	(0.01	31	0.01	3	(2	(2	11	(5	(3	702
72551	2.3	1.6B	178	54	<3	6,13	5.9	23	102	1284	>10	6.24	0.97	7925	21	<0.01	24B	0.05	158	<2	17	103	<5	(3	769
Ninimum Detection	0.1	0.01	3	· 1	3	0.01	0.1	1	i	i	0.01	0.01	0.01	. i	1	0.01	. 1	0.01	2	2	2	i	5	3	í
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
K - Less Than Minimum	> - Greater	Than Maxi	6UA	is - Ins	sufficie	nt Sampl	e ns	- No Sam	ple	ANOMALO	IS RESULT	IS - Fur	ther Anal	yses By	Alternal	te Nethod	ls Sugge	sted.	20000	2000		10000	100	1000.	****

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

 CLIENT: OREQUEBT CONSULTANTS LTD.
 DATE: OCT 16 1991

 ADDRESS: 306 - 595 Howe st.
 : Vancouver, BC
 REPORT#: 910263 AA

 : V6C 2T5
 JOB#: 910263

PROJECT#: B-R SAMPLES ARRIVED: OCT 10 1991 REPORT COMPLETED: OCT 16 1991 ANALYSED FOR: Cu INVOICE#: 910263 NA TOTAL SAMPLES: 1 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 1 ROCK

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. IAN CAMPBELL & MR. GEORGE CAVEY

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO OREQUEST CONSULTANTS LTD. @ 688-9727

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910263 AA	JOB NUMBER: 910263	OREQUEST CONSULTANTS L	TD.	PAGE 1 OF 1
SAMPLE #	Cu *			
	•			
72656	2.23			
•		· ·		
:	•	•		
			•	
	•			
				•
			•	
	•			
				·
·			· ·	
				•
				·
DETECTION LIMIT	0.01	•		
1 Troy oz/short ton = 34	.28 ppm 1 ppm = 0.0001 %	ppm = parts per million	< = less than	
sig	ned: K	1 [
			,	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: OREQUEST CONSULTANTS LTD. ADDRESS: 306 - 595 Howe St. : Vancouver, BC : V6C 2T5

PROJECT#: B-R SAMPLES ARRIVED: OCT 10 1991 REPORT COMPLETED: OCT 15 1991 ANALYSED FOR: Cu Pb Zn Ag INVOICE#: 910264 NA TOTAL SAMPLES: 1 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 1 ROCK

DATE: OCT 15 1991

REPORT#: 910264 AA

JOB#: 910264

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. IAN CAMPBELL & MR. GEORGE CAVEY

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: RESULTS FAXED TO OREQUEST CONSULTANTS LTD. @ 688-9727

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910264 AA	JOB NUMBER: 910264	910264 OREQUEST CONSULTANTS LTD.		PAGE 1 OF 1	
SAMPLE #	Cu %	Pb %	Zn %	Ag oz/st	
19678	0.35	49.00	1.81	28.58	

 DETECTION LIMIT
 0.01
 0.01
 0.01

 1 Troy oz/short ton = 34.28 ppm
 1 ppm = 0.0001 %
 ppm = parts per million
 < = less than</td>

15m

0.01

signed:

APPENDIX III THIN SECTION REPORT

{

MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6

TELEPHONE (604) 929-5867

Report for: Ian Campbell, Orequest Consultants Ltd., 306 - 595 Howe St., Vancouver, B.C V6C 2T5

Job 91-58

September 20th, 1991

SAMPLES:

4 rock samples, numbered 1-4, for sectioning and petrographic examination. Corresponding slide numbers are 91-218 through 91-221.

SUMMARY:

Samples 2, 3 and 4 are of phyllitic character, consisting essentially of fine-grained quartz and a meta-argillitic component (sericite or biotite). In Samples 2 and 3 these occur intimately interleaved in varve-like fashion, and show folding, microcrenulation and cleavage development. Sample 2 is strongly pervaded by limonite. Sample 3 shows incipient and alusite porphyroblast development.

Sample 4 is distinctive for its high content of graphite and pyrrhotite, and for a clumpy distribution of granular quartz. It may represent a recrystallized sulfidic carbonaceous chert.

Sample 1 resembles Sample 4 in containing substantial pyrrhotite, but is of distinctive mineralogy. It consists of laminar alternations of calc-silicate (calcite-actinolite), quartzose and coarsely garnet-rich assemblages. It lacks the phyllitic fabric of the other samples. The pyrrhotite occurs as intimate permeations and intergranular networks.

Individual petrographic descriptions are attached.

J.F. Harris Ph.D.

SAMPLE 1 (Slide 91-218) BANDED SULFIDIC CALC-SILICATE ROCK

Garnet zone; Goldstream footwall

Estimated mode

15 Quartz 37 Garnet Calcite 18 Actinolite 21 8 Pyrrhotite Chalcopyrite trace Hematite trace Graphite 1

This is a banded rock, showing sharply-defined, laminar mineralogical differentiation.

It consists essentially of alternations of 3 main components: intimate intergrowths of fine-grained carbonate and fibrous/acicular actinolite; polygonal mosaics of quartz; and close-packed aggregates of subhedral garnets.

The calcite-actinolite assemblage is typically of grain size 30 - 100 microns, with local segregations of coarser sheaf-like actinolite grains to 0. 3mm in length. The grain fabric is of random orientation and granoblastic aspect.

The quartz laminae are aggregates of sub-polygonal, unstrained grains, 0.05 - 0.5mm in size. Minor carbonate/actinolite occurs as included streaks and intergranular networks.

The garnet bands are composed of homogenous, subhedral grains, 0.1 - 2.0mm in size. Calc silicates and sulfides form a partial intergranular cement. Scattered, individual garnet clumps are developed in some of the carbonate-actinolite bands.

Sulfides consist essentially of pyrrhotite, with rare traces of chalcopyrite, as grains 10 - 50 microns in size, intergrown with, or peripheral to, the pyrrhotite.

The pyrrhotite forms intimate, intergranular networks in all three components (least abundantly in the quartz), concentrating as streaks and trains paralleling the laminar structure.

The rock also includes micron-sized graphitic material, as pervasive disseminations and sinuous schlieren and lenses, particularly in the fine-grained calcite-actinolite component. Graphitic dust is also seen incorporated within, or as intimate intermixtures with, the pyrrhotite. QUARTZ PHYLLITE

Murder Creek showing-footwall

Estimated mode

Quartz	52
Sericite	43
Limonite	5
Tourmaline	trace
<pre>Pyrite(?)</pre>	trace

This is a finely laminated rock of simple composition, consisting of fine alternations of microgranular quartz and schlieren of sericite. The whole package shows folding, with development of micro-scale crenulation and incipient axial plane cleavage.

The quartz is in the form of blocky, equigranular, polygonal aggregates, of grain size 30 - 100 microns. Local grain flattening, and rare development of somewhat coarser lenses are observed.

The sericite occurs as flakes of similar size to the quartz, typically aggregated as contorted, partially disrupted wisps and compact schlieren, to 1 or 2mm in thickness. Rare, tiny, prismatic grains of tourmaline are associated.

The rock (especially the sericitic component) is extensively pervaded by diffuse limonite staining. Limonite also concentrates as a few vuggy/crustified fracture/cleavage fillings.

Rare remnant grains of disseminated pyrite survive.

The rock is of phyllitic character, and is clearly a product of recrystallization and deformation of an original argillaceous siltstone or quartzite.

PHYLLITE

Cooler Creek: 1+75s,0+70E

Estimated mode

Quartz 38 Biotite 46 Sericite 10 Tourmaline trace Andalusite 2 Opaque dust 3 Opaques) 1 Limonite)

Macroscopic observation (see off-cut) shows that this is a minutely fine-grained, foliated, dark rock. The thin section reveals a strongly developed planar structure (cleavage?) oblique to the laminar compositional variations. However, folding (as in Sample 2) appears absent. The rock is of simple composition, and is texturally homogenous, consisting of sharply defined, varve-like alternations of biotite and quartz, on a scale of 20 - 50 microns.

The quartzose varves show more or less strong grain flattening, indicative of strong compaction between the thin, individual, sinuous to crenulate foliae of biotite. Some sets of biotitic varves are more or less contiguous (virtually lacking siliceous interlayers).

The biotite is a very pale brown in colour, with scattered, darker brown (coarser) flakes. Locally the micaceous varves appear to be composed of sericite rather than biotite. Rare traces of tourmaline are associated, as minute euhedra.

The foliation is locally emphasized by micron-sized, opaque (carbonaceous?) dust, which also tends to concentrate in the oblique cleavage. This is the cause of the overall dark colour of the rock in hand specimen.

Individual grains of opaques, 50 - 200 microns in size and commonly of elongate form, paralleling the foliation, occur sparsely scattered throughout. There are a few vuggy, limonitic partings.

The faint ovoid patches distinguishable in the off-cut are embryonic porphyroblasts of andalusite, occasionally recognizable in thin section as diffuse, irregular clusters of micron-sized, high-relief, low birefringent material, superimposed on the phyllitic fabric.
SAMPLE 4 (Slide 91-221) SULFIDIC CARBONACEOUS CHERT/ARGILLITE

Cooler Creek at upper road; float

Estimated mode

Quartz 38 Biotite 7 Graphite 9 Pyrrhotite 45 Chalcopyrite 0.5 Sphalerite trace

This is a dark, fine-grained rock. It shows a lensy/laminar, contorted foliation, and has a high concentration of intimately intergrown pyrrhotite.

In thin section it is found to consist of microgranular quartz, and lesser proportions of a minutely fine-grained, siltstone-like component of quartz and biotite. These occur in intimate, interlaminated and crypto-fragmental intergrowth with opaque material.

Vari-granular anhedral quartz, commonly showing parallel/curvate, elongate grain shapes, forms discrete, fragment-like, ovoid/ lenticular clumps in the opaque matrix. Finer-grained quartz, with oriented biotite flecks and wisps, occurs as thin, varve-like laminae alternating with contorted coalescent foliae of opaques. This fabric looks like the result of strong deformation of a carbonaceous/sulfidic chert/ siltstone protolith.

Reflected light examination reveals that the opaques consist partly of micron-sized, compact, graphitic material - interleaved with the wisps of biotitic silt - and partly of pyrrhotite, as intimate network impregnations of the silicate host, and as irregular lenses and pods, incorporating and cementing the quartzose clumps (recrystallized chert?).

The pyrrhotite shows more or less extensive development of striated/ diffuse, brownish alteration which emphasizes its fine-grained mosaic granularity.

Chalcopyrite is a minor accessory, as sporadic intergrown pockets, 0.05 - 0.5mm in size, in the pyrrhotite. Traces of sphalerite are sometimes associated.

The off-cut and slice show a vuggy porosity. This may be a primary feature which has subsequently been partly infilled by remobilized silica (to form the cherty blobs), or is the result of partial plucking of the latter from the soft sulfidic matrix during preparation.

APPENDIX IV

ROCK SAMPLE DESCRIPTIONS

APPENDIX IV

ROCK SAMPLE DESCRIPTIONS

SAMPLE	LOCATION	FLOAT	<u>/OUTCROP</u>	DESCRIPTION							
29101	50 m N of Cooler (on upper road	2k	Float	4b; 5-10% laminated pyrite							
29102	15+00S; 5+40W		Outcrop	4b; quartz-biotite- chlorite schist							
29103	19+00S; 3+80W		Outcrop	Quartz mica schist, 4b; 3% pyrite							
29104	19+00S; 2+02W		Outcrop	Quartz vein in quartz mica schist: 4b							
29105	20+00S: 0+20E		Float	Ouartz-sericite vein							
29106	20+00S: 1+30E		Outcrop	Chlorite schist: 4b							
29107	$8+155 \cdot 2+45E \cdot alon$	road	Float	Massive sulphide-pyrite:							
23107	01100, 21400, 4100	y rouu	11040	trace cov. mo.							
20100	1+956. 2+258		Float	$4b \cdot 5 - 10$ pyrite in bands							
20100	Tust S of Coolor (0 k	Float :	Graphitic schist: 8% pyrite							
29109	on upper read	~A.	rivat	trace cov							
20110	Coolor Ck upper	road	Float	Graphitic chert sulphide.							
29110	CODIEL CK., upper	LUau	Fillar	60% purito							
20111	W aido unnon mood	a +	Float	Craphitic culphide.							
29111	W. Side upper road	al	FIUAL	sobistoso. 209 purito. thin							
	CODIEL CK.			soution							
00110			Rleat	Section Magging gulphido puritor							
29112	8+155; 2+45E; alon	j road	Float	Massive suiphide-pyrice;							
00110	1.000		77] +	trace cpy, mo.							
29113	1+805; 1+40E		Float	4D; quartz sweats; 3-5%							
00114	1.060. 1.250		Outomon	Ab. graphitics 2% purito							
29114	1+805; 1+35E		Bleat	4D; graphicit; 55 pyrice							
29115	1+905; 0+75E		Float	4D; 2-36 pyrice							
29116	Murder CK. snowing		Outcorp	phyllite; 5% pyrite							
29117	Murder Ck. showing		Float	4b; 20% laminated euhedral pyrite							
29118	Murder Ck. showing		Outcrop	4b; 25% laminated euhedral							
			-	pyrite							
29119	1+60S; 1+65E		Outcrop	4b							
29120	5+00S; 2+00W		Float	4b; 3% pyrite							
29121	2+00S; 0+65E		Float	4b; quartz sweats with 3%							
				pyrite							
29122	2+00S; 2+10W		Float	4b; bitotie							
19660	1+90S; 0+55E		Float	4b; 2% euhedral pyrite							
19661	1+90S; 0+50E		Float	Chert; siliceous siltstone							
19662	2+00S, 0+50E	,	Outcrop	4b; cherty							
19663	95+50N; 97+00E (No.	rex)	Float	4b; 4e							
19664	0+50N; 0+05W		Float	4b; crenulated; 1% pyrite							
19665	0+00; 1+75W	Float	z, angular	4b; crenulated, contorted; siliceous laminae							
19666	0+00; 1+75W	Float	, angular	4b; sulphidic chert; 50%							
19667	Cooler Ck at uppe	r	Float	Granhitic culnhido. 60							
1,001	road	L .	TTOAL	70% fine grained pyrite							

SAMPLE	LOCATION FLOA	T/OUTCROP	DESCRIPTION
19668	100+00N; Downie Ck	Outcrop	Skarn; 10% pyrrhotite
19669	106+00N; 102+00E (Nores	() Float	Sericite schist; 1% pyrite
19670	105+60N; 105+00E (Nores	c)	Skarn; wollastonite,
	· · · · · ·		malachite stain
19671	Cooler Ck; between road	ls Float	Massive sulphide; 60%
	- · · · · · · ·		pyrite; graphitic
19672	15+20S; 0+50W, Murder (k Float	Quartz vein; massive
			euhedral pyrite - 30%
19673	0+00; 0+50E	Float	Siliceous siltstone
19674	1+75S; 0+25E	Outcrop	4b; siliceous laminae; 2%
		. –	pyrite laminae
19675	1+80S; 0+32E	Outcrop	4b; strong biotite
19676	1+85S; 0+63E	Outcrop	4b; graphitic; 3% pyritic
		_	laminae
19677	1+95S; 0+73E	Outcrop	4b; siliceous siltstone;
		_	crenulated
19678	NE side Downie Ck	Float	Massive galena in limestone
		· · · ·	host; trace chalcopyrite
19679	NE corner Mit claim	Outcrop	Skarn; marble; 5% red
		_	garnet; 1% pyrrhotite
19680	Lower road, 17 km	Float	Quartz boulders with 1%
			pyrite
19681	0+50N; 1+50W	Float	Hornfels
72651	Upper road; Cooler Ck	Float	4b; graphitic
72651a	Upper road; Cooler Ck	Float	Sulphide chert; siltstone
72652	100+00N; 101+00E	Outcrop	Skarn; 20% garnet
72653	100+50N; 101+10E	Outcrop	Skarn; garnets; tr cpy
72654	2+00S; 0+75E	Float	Banded pyrrhotite, graphite
			chert
72656	100+50N; 101+50E (Norea	() Outcrop	Skarn; 3-5% chalcopyrite
72660	18+00S; 3+50W	Float	4b; 3% euhedral pyrite
	· .		along foliation
72661	Cooler Ck, Downie Ck	Outcrop	4b; 30% banded pyrrhotite; calcareous

	L 7+00 S —		163 93 108 96 1 1 1 1 1	B 200 125 135 184 134 133 175 192	154 120 168 359 154 1. 1. 1. 1. 1. 1.	136
	L 8+00 S	·	136 137 99 256 19 + + + + + + + + + + + + + + + + + + +	8 159 217 153 214 113 112 131 128	187 131 156 100 91	·
	L 9+00 S		153 204 158 239 18 + + + + +	1 169 189 173 248 195 97 105 184	109 230 127 134	
	L 10+00 S —		124 132 180 78 96 102 14 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3 145 110 101 95; 119 126 168 220 245	150 77 97 1 1 1 1	
	L11+00S —		134 142 102 141 141 155 17 +	1 300 200 145 117 161 225 166 256 135	201 225 263 164 273 95 156 140 143 14	42 97 1
•	L 12+00 S ——		173 144 199 86 202 106 7 1	186 147 133 173 181 205 255 143 195	91 108 158 189 149 111 172 130 143 1 ⁻	11 95 HH
	L 13+00 S —	24 3	136 217 177 17 1 1 1	152 50 210 94	327 182 98 169 133 120 189 63 103 16	57 171 ⊨+
		, 253 - 254				

144 137 152 173 188 162 165 150 201 -**19**7 -131

		· · ·		
L 6+00 W L 5+00 W L 4+00 W L 1+00 N	L 3+00 W L 2+00 W L 1+00 W	BL 0+00 L 1+00 E L 2+00 E	L 3+00 E	
		33 78 41 23 7 37 33 18 27 17 T (0.30) 34 M (0.60) 34		•
L 0+00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
L 1+00 S —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·	
	457 56 22 181 107 67 62 68 T (0.60) 278 B (1 20) 2066	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · ·	
L 2+00 S —	48 38 30 77 257 161 120 31 B (0.75) 896 56 10 120 72 (0 10 07) 117	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 +	
L 3+00 S	$58 25 \qquad 80 77 54 51 9$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	۰ •	
		T (0.30) 19 T (0.30) 22 M (0.60) 52 M (0.60) 18 B (1.20) 53 B (1.00) 64	1	
L 4+00 S —	21 18 22 24 18 122 80 29 27 47	30 21 34 22 21 75 14 35 20 12 11 8 5	5	
L 5+00 S´	15 31 20 36 30 127 58 32 62 15	24 48 15 15 10 24 134 50 12 35 10 35	· · · ·	
- ·			, ,	
L 6+00 S —	36 16 22 24 15 31 14 35 40 20 15 19	15 9 5 2 8 4 9	•	

· 3* _ 4

•		
L 6+00 W L 5+00 W L 4+00 L 1+00 N	D0 W L 3+00 W L 2+00 W L 1+00 W BL 0+00 L 1+00 E L 2+00 E L 3+00 E I I I I I I I I	
	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	· · ·
L 0+00		A
L 1+00 S —		
L 2+00 S —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Į I
L 3+00 S —		
L 4+00 [°] S —		مېنى ئېچىنى بىرى مەربىيە يىرىمى ئېچىنى ئېچىنى ئېچىنى بىرىم
L 5+00 S —		
L 6+00 S		

 L 7+00 S						.2	.0 .	0.0 + +	.1	.0	.1	.0	.1	.2	.0	.1	.2		.3		.4	.4		.3		.3		.3 +
-									•																			
· L 8+00 S —						.1	.0	1.2	.4	.2		.1 +	.2	.1	.1	.1	.1	.2	 .1 		.0	.2	<u>)</u>	.4		.2		
L 9+00 S						.1 +	.2 .1	2.1	.0. 	.2	.2	.1	.1		.1	.0	.3	.2	 .3 		.3	.4	-	.3				-
																												•
L 10+00 S				.4 +	.4	.3	.2 .1	3.4 + +	.4	.5	.3	.4	.4	.3 +	.4	.4 +	.3 +	.5	.3		.3 +	.2						
									-, -	alere in a material and a																		• • • • •
L 11+00 S				.2 +	.2	.0	.0 .	1 .0 ++	.0	.2	.1	.0	.1	.1	.1	.1	.7	.3	.4 .	6.	.3	4.3 + +	.0	.3	.3	.3	.1	.1
L 12+00 S				.2 +	.1	.2 +	.5 .4	4.2 + +	.1	.3	.1	.3	.3	.3	.5	.6	.5	.1	.3 .	0. +	.0	0.1 + +	.2	.3	.4	.4	.2	.3 -+
																												ı
L 13+00 S —		-	.2 +	.1		.3		3	.3		.2		.3		.4		.2		1.0 .	3. +	.2 .	3.1 + +	.2	.2	.1	.2	.3	.2 -+
	,														-										,			
		1 0	7	٨		6		8	Ę		C		£		2		0			о О	4	4	0	0	0		0	2

د •

.

·]

GEOLOGICAL BRANCH ASSESSMENT REPORT

L 6+00 \ I	N L 5+00 W	L 4+00 W	L 3+00 W	L 2+00 W	L 1+00 W	BL 0+00 .	É 1+00 E	L 2+00 E 	L 3+00 E		
L 1+00 N	'	-		۰, ۲							
			611 +-	1000 3101 948 1597	7 2039 169 445 7	736 1045 2570 1180	897 3731 2275 789 1220) 1715 t			
L 0+00 —			927 +	7 1086 3146 3871 288 - 1 1 1 1	7 325 1430 1638 2	1427 2227 540 1773	1450 435 2979 1747 972 + + + + +	2 1637		A	
	-		285 +	i4 583 1513 1959 492 t t t t t	15 2330 954 1520 1 - t - t - t	231 1671 2355 897	2429 1755 3425 2398 121 + - + - + - + - + - + - +	4 725 1049 +	i.		
L 1+00 S			166 +	59 631 795 632 188	10 3057 919 2912 - 	1692 2562 1369 1353 -+ -+ +	1551 2194 336 5082 192 + + + + + + + + +	4 834 2277 1747			
	, ,	x	68 +	11 2014 2142 1207 107 	73 1667 2756 1869	2125 1091 812 1048	892 1878 4008 1074 87 t t t t t 1 17	6 938 3802 1789 + + + +			
L 2+00 S 🔶			1706 81 ++	10 321 438 24 	09 952 2466 1197 	3122 5406 689 1293 1349	970 831 1300 911 57	10 853 1493 625 193 - + + + + + + + + + + + + + + + + + + +	9.		
,			61 -	10 2051 986 1041 63 1	63 882 1121 2676	+	1176 1359 1197 2495 15	98 2187 762 			
L 3+00 S	· ·		25	590 1801 555 60 I I	04 1763 482 480 1 1 1 1	470 2774 336 1567	2441 3957 2112 921 47	88 6554 1688 1			
				:							
L 4+00 S —	1		1587 1301 4	164 578 325 1353 14	417 3475 2749 2028	583 2705 3386 2456	643 4605 1407 2507 2 + + + + + + + + + + + + + + + + + + +	333 900 1105 327 3 t t t t	2 - · · · · · · · · · · · · · · · · · · ·		×
, ·							· · ·				
L 5+00 S . —-	·		875 571 1 1 - 1	541 5587 2625 6261 1 1 1 1 1	033 671 1325 875 + +- +- +- +-	1665 1901 570 1889 1 + + +	425 336 8594 7009 i	315 1343 481 1388 +			
	۰.,										

609

1752

136**8**

705

871

.

· · ·

.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Figure 9 RAIN PROPERTY MURDER CREEK PROJECT SOIL GEOCHEMISTRY (B - HORIZON) MANGANESE PPM

L 300 S ____

L 400 S ____

L 500 S ____

- ,

L 600 S _____

___L 200 S ___L 300 S

· · · · · ____L 400 S

___L 500 S

L 600 S GEOLOGICAL BRANCH ASSESSMENT REPORT

. -.

۰.

.

.

