LOG NO	nec	0.4	1991	RD.	
ACTION:	Barrier Barrier			Oliv - CANADA (m. Bransmann) and provides aprovides	Ter Agentylung (d
<u></u>	The say have been a second			 	
FILE NO			The state of the s	NAVADOLIANOS ANTONIO POR INCIDENCIA DE LA CONTRACTORIO DE LA CONTRACTO	innt

DRILLING PROGRAM

on the MOUNT SIDNEY WILLIAMS PROPERTY OMINECA M. D.

N.T.S. 93-K-14W

Lat.: 54° 54'N Long.: 125° 24'N

INOV 2 9 1991

MR.# \$ by

VANCOUNTER B.C. U. Mowat, B. Sc.

for

MINNOVA INC.

Third Floor, 311 Water Street Vancouver, B.C. V6B 1B8

November, 1991

EOLOGICAL BRANCH SSESSMENT REPORT

TABLE OF CONTENTS

		page
1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1 .
3.0	CLAIM DATA	3
4.0	HISTORY	4
5.0	REGIONAL GEOLOGY	5
6.0	PROPERTY GEOLOGY	7
7.0	MINERALIZATION	8
8.0	ALTERATION	9
9.0	DRILLING	11
10.0	CONCLUSIONS	14
11.0	RECOMMENDATIONS	16
12.0	REFERENCES	20
STATE	EMENT OF QUALIFICATIONS	21
STATE	EMENT OF COSTS	22

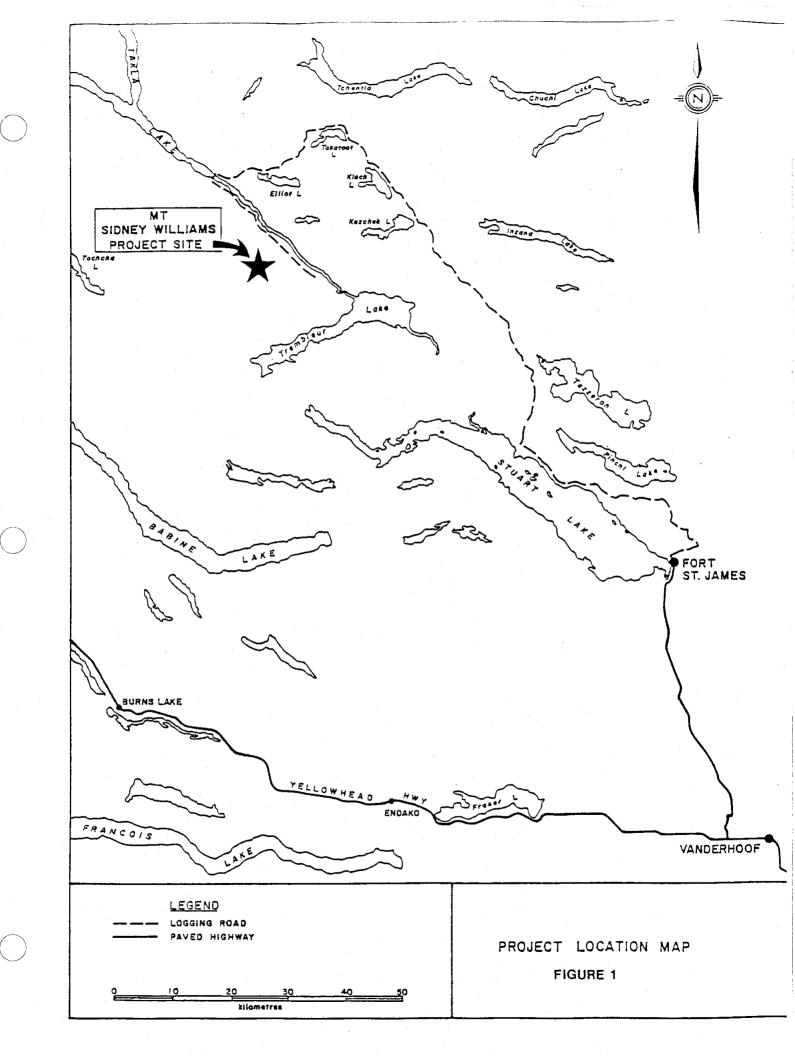
APPENDIX I - DRILL LOGS

APPENDIX II - ANALYTICAL RESULTS

MAPS AND FIGURES

	page
FIGURE 1 - PROJECT LOCATION MAP	2
FIGURE 2 - RESISTIVITY	17
FIGURE 3 - CHARGEABILITY	18
FIGURE 4 - MAGNETIC AND ARSENIC ANOMALIES	19
MAP B - GRID MAP AND LISTWANITE ZONES AND	
DRILL HOLES	pocket
SECTION DRILL HOLE 91-1	pocket
SECTION DRILL HOLE 91-2	pocket
SECTION DRILL HOLE 91-3	pocket
SECTION DRILL HOLE 91-4	pocket
SECTION DRILL HOLE 91-5	pocket

1.0 INTRODUCTION


A drill program consisting of 511.4 meters (1677') of thinwall BQ (BQTK) was conducted on the Mount Sidney Williams property from August 13 to August 23, 1991. A total of 5 holes were drilled. All core was split and analysed for Ag, As, Cu, Mo, Ni, Pb, Sb, Ti, Zn and Cr by ICP. Samples were also analysed for Au by geochem fire assay. Gold values over 1000 ppb were re-analysed by fire assaying.

All core is stored at the camp site on Tear Drop Lake.

2.0 LOCATION AND ACCESS

Mount Sidney Williams lies 87 kilometers due northwest of the town of Fort St. James and is located at co-ordinates 54° 54' N/125 $^{\circ}$ 24' W on map sheet 93-K-14W.

Access to the property is at present by helicopter.

3.0 CLAIM DATA

The Mount Sidney Williams property consists of the following claims:

Claim Name	Record Number	Number of Units	Record Date
Mid	8108	20	Dec. 22/86
Van 1	8127	20	Jan. 15/87
Van 2	8128	20	Jan. 9/87
Klone 1	8593	9	July 28/87
Klone 2	8977	9	Sept. 16/87
Klone 3	9181	20	Nov. 13/87
Klone 4	9182	20	Nov. 13/87
Klone 5	9183	20	Nov. 13/87
Klone 6	9184	20	Nov. 13/87
Klone 7	9185	20	Nov. 13/87
Klone 8	9186	20	Nov. 13/87
One-Eye 1	9070	18	Oct. 30/87
Terannoursus	9642	3	Aug. 9/88
Money	12177	4	July 1/90

There are a total of 223 units. The property is 100% owned by U. Mowat.

4.0 HISTORY

The first known geologic record of the Mount Sidney Williams area was made in 1937 following a brief reconnaissance of the Fort St. James area by J. E. Armstrong of the Geologic Survey of Canada. In 1942, nine chromite deposits were located in the Middle River Range by the G.S.C., plus several asbestos showings of varying quality in the area of Mount Sidney Williams.

Prospectors working in the region reported gold values in carbonate-quartz-mariposite and carbonate-talc rocks in shear zones in altered Trembleur Intrusions (Armstrong, J. E., Fort St. James Map Area, Cassiar and Coast Districts, B. C., G.S.C. Memoir 252, p. 181). One sample of carbonate-quartz-mariposite rock high in quartz (75%) taken on Baptiste Creek contained 0.036 oz/t Au, 0.07 oz/t Aq.

During the late 1930s a small placer operation was located on Van Decar Creek for a brief period. The operation was located below serpentinized peridotite and nuggets values at \$0.50 to \$2.00 were found (1935 prices).

Old flagging and numerous camp sites would indicate that Mount Sidney Williams has been examined in the past

for its chrome, nickel and asbestos potential. No mention is made of any exploration, however, until 1962 (MMAR) when the main asbestos showing is described. Blasting caps found at this location indicate an attempt to trench the showing.

Since 1975, various groups have examined the Mount Sidney Williams area for chrome, platinum and gold.

To date (1991), the following work has been completed on the Mount Sidney Williams property:

- 1) silt sampling 161 samples including 9 heavy mineral samples
- 2) rock sampling 1127 samples
- 3) flagged grid 105,790 meters
- 4) soil sampling 3217 samples
- 5) trenching 52 meters
- 6) magnetometer survey 26,150 meters
- 7) IP survey 11,450 meters
- 8) drilling 12 holes totalling 816.7 meters (2678')

5.0 REGIONAL GEOLOGY

The area of Mount Sidney Williams is underlain by a 15 km wide belt of northwesterly-trending Pennsylvanian and Permian Cache Creek Group rocks consisting of ribbon chert, argillaceous quartzite, argillite, slate, green-

stone, limestone with minor conglomerate and greywacke. The Cache Creek Group has been intruded by Upper Jurassic or Lower Cretaceous Omineca Intrusions consisting of granodiorite, quartz diorite, diorite with minor granite, syenite, gabbro and pyroxenite. As well, Post-Middle Permian, Pre-Upper Triassic Trembleur Intrusions consisting of peridotite, dunite, minor pyroxenite and gabbro with serpentinized and steatized equivalents intrude the Cache Creek Belt.

The northwesterly-trending belt of Cache Creek rocks is bordered on the east by the Pinchi Fault and Upper Triassic Takla Group andesites, basaltic flows, tuffs, breccias and agglomerates with interbedded conglomerate, shale, greywacke and limestone. On the west, the belt is bounded by the Takla Fault, an east-dipping zone, up to 5 km wide which contains a melange of serpentine and greenstone. The melange is adjacent to Triassic metamorphosed pyroclastic rocks, basalt, rhyolite, greywacke and argillite of the Sitlika assemblage.

Between the Pinchi Fault and the Takla Fault, the predominant units of the Cache Creek Group of chert, phyllite, carbonaceous phyllite and argillite with minor greywacke and limestone, are highly deformed. Three deformational periods have been recognized in the Cache Creek Group which has been metamorphosed to lower greenschist facies with local glauco-

phane. The oldest structures are a prominent foliation that parallels compositional layering and trends east-west, marking the axial planes of isoclinal folds. A later structure consists of chevron folds which trend north-south with axial planes dipping moderately westwards. The youngest structures are warps and kinks, probably related to late faulting.

6.0 PROPERTY GEOLOGY

The Mount Sidney Williams property is divided into two separate geological domains by Van Decar Creek, a fault zone with a postulated 1,000 meter horizontal displacement. On the west side of Van Decar Creek, the rock types consist of argillite and andesitic volcanics of the Cache Creek Group. A minor amount of ultramafic rocks have been "intruded" into the Cache Creek and their presence is indicated by serpentine and listwanite. The Cache Creek has also been intruded by felsic dykes and recent volcanics of basaltic and dacitic(?) nature.

Reconnaissance prospecting indicates that the andesitic volcanics are, at least in part, thrust over the argillites. In the vicinity of thrusts, the argillites have been serpentinized and/or silicified.

On the east side of Van Decar Creek, the dominant rock type is harzburgite with lesser amounts of dunite, nodular harzburgite and altered equivalents of the harzburgite. The ultramafic massif has been intruded by both norite and plugs of what appears to be a very young, glassy, vuggy volcanic.

A minor amount of argillite and black basalt has been seen on the east side of Van Decar Creek.

7.0 MINERALIZATION

Sulphide mineralization of economic importance consists of acicular arsenopyrite and pyrite which are found in both listwanite and the intensely altered phases of the norite intrusives. Gold values occur with the acicular arsenopyrite and as native gold in highly altered fault zones.

The auriferous arsenopyrite, pyrite and the listwanites of economic importance have a spatial and probably
a genetic relationship to the norite intrusives.
Additional evidence indicates that there is a genetic
relationship of the gold to volcanism. The epithermal
imprint is manifested by chalcedonic veining, the replacement of brecciated listwanites by cryptocrystalline silica
and the geochemical response of some of the listwanites

which are anomalous in gold, silver, arsenic and antimony.

Of lesser importance is the minor occurrence of chalcopyrite in the norite, andesitic volcanics and basalt.

Stibnite, which occurs as coarse-grained blades in vuggy quartz veinlets and in some of the listwanites has also been noted.

8.0 ALTERATION

The most significant alteration on the Mount Sidney Williams property is listwanite which weathers to a vivid red-orange and is composed of variable amounts of carbonate, quartz, mariposite and occasionally pyrite and arsenopyrite. Carbonate, which is usually ankerite or ferro-dolomite forms the major component of the listwanite. Quartz occurs as veinlets, chalcedony but most importantly as a pervasive replacement of the carbonate. Mariposite is seen in both the carbonate and the pervasively silicified sections and is generally very fine grained imparting a pale green hue to both rock types.

The listwanite alteration appears to form a halo, which is both vertically and horizontally zoned, around

the norite intrusives. The zonation has been categorized as follows:

- Type 7 Quartz-carbonate listwanite. This alteration is the most intense, generally closest to the norite and consists of more than 50% quartz. Some of the higher gold values are associated with this alteration package.
- Type 6 Carbonate-quartz. This alteration package contains less than 50% quartz.
- Type 5 Carbonate listwanite. This alteration package contains 90% carbonate, usually ankerite or ferrodolomite. Type 5 is not known to be particularly auriferous.
- Type 4 Talc-carbonate alteration. This alteration package contains at least 25% talc. No gold values have been obtained from this alteration assemblage.
- Type 3 Carbonate-serpentine alteration. This alteration assemblage contains more than 10% but less than 90% carbonate. This assemblage is also non-auriferous.
- Type 2 Serpentinite. This alteration contains 90% serpentine and has no primary intrusive textures remaining.

 This alteration assemblage is slightly auriferous.

 This unit is also, generally the furthest away from the norite.

Type 1 - Unaltered ultramafic.

To date, 17 listwanite zones have been discovered on the Mount Sidney Williams property.

In addition to the listwanite alteration surrounding the norite, carbonate alteration of Type 5, usually ankerite, has been found to replace the norite itself. The alteration is occasionally so intense as to make it difficult to distinguish between the intrusive and the listwanite halo.

Other forms of significant alteration include the cryptocrystalling replacement of brecciated listwanite and the alteration of andesitic volcanics to tremolite, epidote, jasper with minor garnet.

9.0 DRILLING

From August 13 to August 23, 1991, 511.4 meters of thinwall BQ (BQTK) were cored. A total of 5 holes were drilled and were located on the Stibnite Zone, Upper Zone and the northeast Stibnite zone projection. All core was split and analysed for Ag, As, Cu, Mo, Ni, Pb, Sb, Ti, Zn and Cr by ICP. Samples were also analysed for Au by geochem fire assay. Gold values over 1000 ppb were

re-analysed by fire assay.

HOLE 91-1

Purpose: Hole 91-1 was drilled to test the depth of known arsenopyrite and pyrite mineralization of the Stibnite Zone.

Bearing: 150°
Angle: -45°

Depth: 91.4 meters

Results: Hole 91-1 failed to encounter significant quartz-carbonate listwanite hosting the arsenopyrite and pyrite on surface. The best gold values were found to be in a norite adjacent to the quartz-carbonate listwanite. The drill hole fails to explain the IP anomalies (resistivity high and chargeability high).

HOLE 91-2

Purpose: Hole 91-2 was drilled to test beneath the surface mineralization of the Stibnite Zone and is located downslope of Hole 91-1.

Bearing: 098^O
Angle: -45^O

Depth: 121.9 meters

Results: Hole 91-2 encountered 6 meters of quartz-carbonate listwanite with minor arsenopyrite. Only low gold values were obtained from this section. Once again Hole 91-2 fails to explain the geophysical anomalies, in particular the magnetic low. The hole does not reach significant resistivity highs or chargeability highs in excess of 50 millivolts/volt.

HOLE 91-3

Purpose: Hole 91-3 was drilled to test the quartz-carbonate

listwanite core of the east portion of the Upper

Zone and was drilled from the same location as Hole

90-7.

0980 Bearing:

-45° Angle:

81.4 meters Depth:

Results: Hole 91-3 encountered 21.9 meters of significant

> alteration including a minor amount of norite. Gold values were significant for 12 of the 21.9 meters and particularly near the norite. Unfortunately, due to severe magnetism in this location, Hole 91-3 is actually approximately 20° off from the desired The result of this deviation was that the

hole failed to reach the heart of the quartz-carbonate alteration and quickly passed out of the Upper

Zone.

HOLE 91-4

Purpose: Hole 91-4 was drilled to test the western portion of

the Upper Zone which is covered by overburden.

2990 Bearing:

-45⁰ Angle:

109.7 meters Depth:

Hole 91-4 encountered quartz-carbonate listwanite Results:

at a depth of 81.0 meters. Part of this alteration

zone which contained significant gold values is a

section of brecciated listwanite, pervasively

replaced by cryptocrystalline quartz. This unit is

identical to the upper portion of Hole 90-7 which

is located immediately down slope from Hole 91-4.

It would appear that the Upper Zone has been some-

what dislocated, probably from a northwesterly-

trending fault in the vicinity of Pit 12. Pit 12 contains a large amount of norite rubble. Hole 91-4 contains 12.4 meters of significant gold values.

HOLE 91-5

Purpose: Hole 91-5 was drilled to attempt to test a fairly strong arsenic geochemical anomaly of over 300 ppm, a magnetic low, and a coincident resistivity high and chargeability high.

Bearing: 135^o
Angle: -45^o

Depth: 106.6 meters

Results: Although Hole 91-5 intersected 3.4 meters of Type 4 listwanite, it did not crosscut the arsenic anomaly. Hole 91-5 passed close to both the magnetic low and the resistivity high but did not intersect either one. The hole was stopped short before reaching the chargeability high in excess of 50 millivolts/volt.

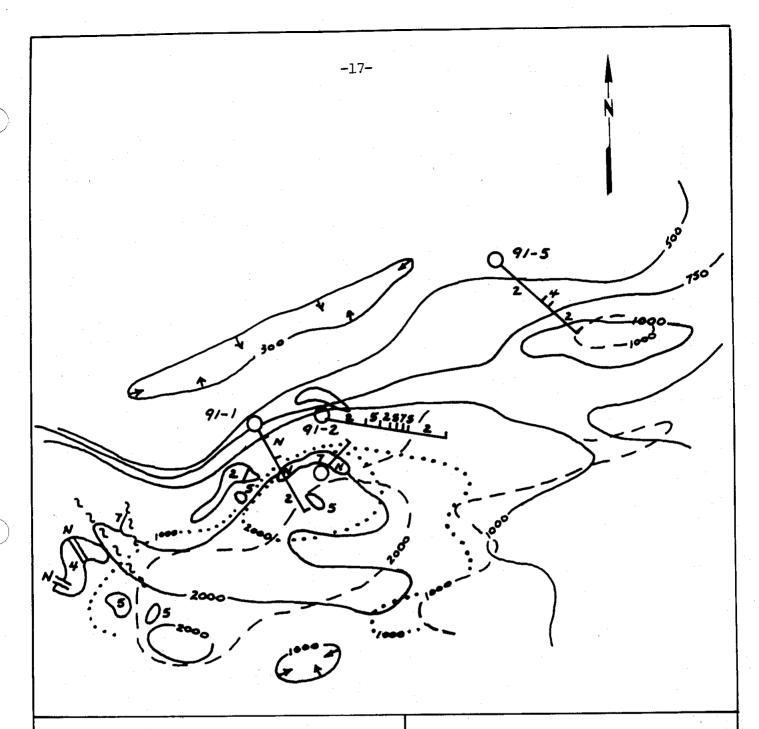
10.0 CONCLUSIONS

Drill results from the 1991 season were somewhat disappointing. Most drill holes failed their objectives or to prove or disprove the continuation of mineralization with depth. More importantly, the drilling has not indicated whether or not the zones are vertical nor established significant trends for the mineralized norites and the quartz-carbonate listwanite.

In the case of 91-1, the main mineralized zone runs approximately east west parallel to a norite dyke. Drill hole 91-1 intersected a cross-cutting quartz-carbonate zone running N 20° E. The mineralization adjacent to the norite is believed to dip steeply to the north.

Hole 91-2, which appears to be on a down-dropped fault block runs parallel to the norite dyke. The alteration encountered in the hole is more than likely a cross-cutting feature that trends N 40° E.

Hole 91-3 missed the intended target as severe magnetic influences in this particular area resulted in the hole being aimed approximately 20° from its intended course. It would appear that the Upper Zone trends approximately 290° and dips moderately to the northwest.


Hole 91-4 showed that the Upper Zone is dislocated by faulting and the magnetic survey shows remarkably good correspondence to outcrop, drill core and gold-arsenic geochemistry.

Hole 91-5 was generally a waste of money in that no geochemical or geophysical targets were reached. The only significant result was a small intersection of a cross-cutting structure and the revelation that the serpentines carry elevated gold

values. It is believed that native gold is the source of the values.

11.0 RECOMMENDATIONS

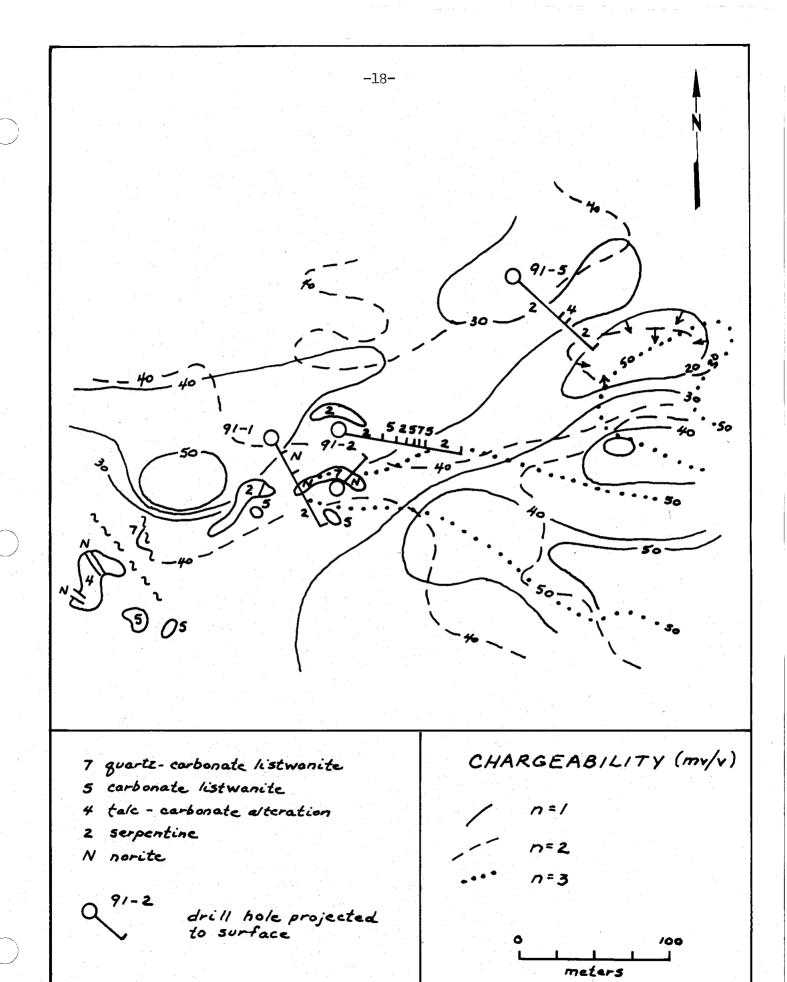
The norites being very recessive and rarely exposed on surface and also being associated with the best gold values are the primary exploration target. Therefore, a drill program to establish the trend of the norites is highly recommended. In addition, numerous geochemical and geophysical anomalies require testing.

- 7 guartz-carbonate listwanite
- 5 carbonale listwanite
- 4 tale carbonate alteration
- 2 serpentine
- N norite

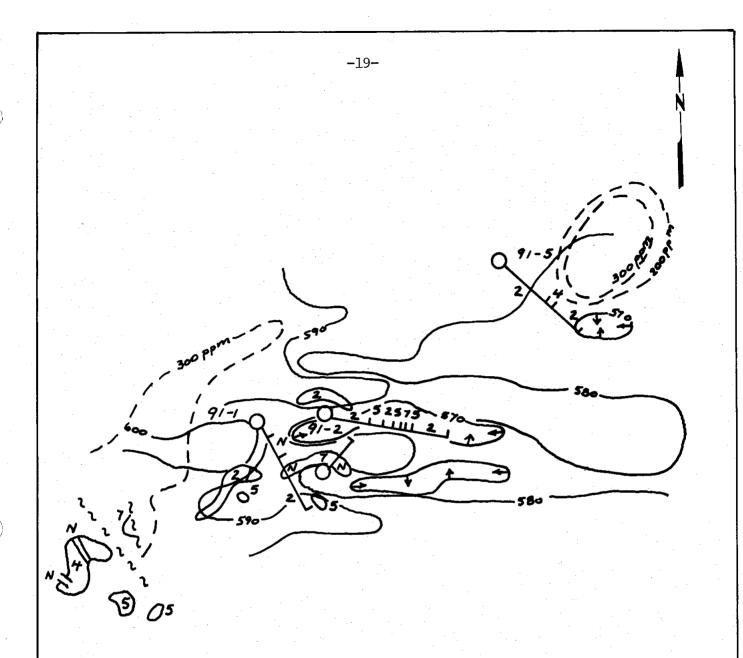
Q 9/-2

drill hole projected to surface

RESISTIVITY (ohm-m)


/ n=/

- n=2


... n=3

o 100 meters

Figure 2

Eigure

7 quartz-carbonate list wanite

5 carbonate listwanite

4 tale - carbonate alteration

2 serpentine

N norite

0 91-2

drill hale projected to surface

MAGNETIC and ARSENIC ANOMALIES

magnetic contours in gammas x 1000

Figure 4

12.0 REFERENCES

- Paper 37-13, West Half of the Fort Fraser Map-Area, B.C., by J. E. Armstrong, 1937.
- Paper 38-10, Northwest Quarter of the Fort Fraser Map-Area, B.C., by J. E. Armstrong, 1938.
- Paper 78-19, Jade in Canada, by S. F. Leaming.
- Paper 74-1, Part B, Geology of the Cache Creek Group and Mesozoic Rocks at the Northern End of the Stuart Lake Belt, Central B.C., by Ian A. Paterson, 1975.
- Memoir 252, Fort St. James Map-Area, Cassiar and Coast Districts, B.C., by J. E. Armstrong, 1949.
- Assessment Report 5648, Rock Sampling and Prospecting on the Pauline Claims, by D. Stelling, 1975.
- Assessment Report 8135, Prospecting Report on the CR Claims, by V. Guinet, 1980.
- Assessment Report 10286, Geophysical Report on the CR 1 6 Claims, by T. Pizzot, 1982.
- Assessment Report 11879, Geochemical Survey on the BAP Claims, by R. R. Culbert, 1984.
- Assessment Report 17173, Geochemical Sampling on the Van Group, Klone Group, Mid Claim, by U. Mowat, 1988.
- Assessment Report 18089, Geochemical Sampling, Prospecting and Mapping on the Van Group, Klone Group and Mid Claim, by U. Mowat, 1988.
- Assessment Report 20541, Mapping and Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1990.

STATEMENT OF QUALIFICATIONS

- I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- I have practiced my profession since 1969 in mineral exploration, oil and gas exploration and coal exploration.
- 3. I have a direct interest in the Mount Sidney Williams property.

Ursula S. mowat
Ursula G. Mowat

DATED THIS 29th DAY OF hovember, 1991 AT VANCOUVER, B.C.

STATEMENT OF COSTS

Drilling Costs	
511.4 meters at \$54.70/meter mobilization/demobilization costs 4 rods at \$100.50/rod 1 shoe at \$160.00 GST	\$27,973.58 3,900.00 402.00 160.00 2,378.03 34,813.61
Analysis	
235 samples analysed for Ag, As, Cu, Mo, Ni, Pb, Sb, Ti, Zn and Cr by ICP and Au by geochem fire assay at \$11.00/sample preparation charges for 235 samples at \$3.75/ sample	2,585.00 881.25 3,466.25
Wages	
<pre>1 man for 14 days at \$350.00/day 1 man for 14 days at \$250.00/day 2 men for 14 days at \$150.00/day 1 man for 14 days at \$125.00/day 1 man for 14 days at \$100.00/day</pre>	6,000.00 3,500.00 4,200.00 1,750.00 1,400.00
Food	
14 days at \$50.00/day/person for 6 people 7 days at \$50.00/day/person for 4 people	4,200.00 1,400.00 5,600.00
<u>Vehicle</u>	
2 vehicles at \$690.00/month for 14 days	690.00
Gas	200.00
Telephone	100.00
Expediting	100.00
Camp demobilization costs	500.00

Helicopter

35.3 hours at \$595.00/hour	20,825.00
4024.2 liters of fuel at \$0.75/liter	3,018.15
35.3 hours at \$2.00/hour for oil	70.60
	23,913.75

TOTAL

\$86,233.61

Appendix A

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE	N.	91-1	
	110.		

	DIP TEST			
Angle				
Footage	Reading Corre			
	 			
	†			
	***************************************	,		

Hole No. 91-	1 She	eet No1
Section		
Date Begun	ug. 15	, 1991
Date Finished_	Aug.	16, 1991
Date Logged		16, 1991

Lat. 533W/315S

Dep. ______

Bearing 150°

Elev. Collar 1534 • 0 m

Angle -45°

Total Depth 91.4 meters
Logged By A. Hill
Claim Klone 1
Core Size BQTK

FROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
0	4.3		About 0.8 meters of pebbles recovered. Mixed						C.L.	
			rock types including in decreasing order of							
			abundance: harzburgite, serpentinite, pink			-				
			granite and basalt. Alteration consists of							
			minor limonite on fractures and minor carbonate							
			veinlets in some ultramafic pebbles							
4.3	10.7		Harzburgite - dark green with 15-20% light green	98101	4.3	5.6	1.3 m	10	1	
			"nodules" with darker unaltered cores. Cut by	98102	5.6	6.3	0.7 m	31	149	
			hairline fracture set at 15-30° to core axis	98103	6.3	9.2	2.9 m	16	1	· · · · · · · · · · · · · · · · · · ·
			containing limonite and thin ankerite stringers.	98104	9.2	10.7	1.5 m	3	1	 -
			Core is broken from 5.9 - 6.25 meters. Serpen-							
			tinization is moderate to intense. Carbonate						.14	
			stringers have no altered envelopes, except from	<u> </u>						
			5.6-6.4 m where pale green and yellow bleaching	<u>.</u>						
			has occurred with minor talc and fuchsite							
			developed. Only trace very fine grey pyrite							
			developed in a few patches at 6.2 m. Moderately							
			magnetic throughout due to accessory magnetite.			-				
10.7	13.9		Serpentinite - dark green to dark grey green.	98105	10.7	12.4	1.7 m	7	1	
			Gradational contact with nodules becoming faint	98106	12.4	13.9	1.5 m	11	1	
			and disappearing for the most part. Serpentine							

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-1

DIP TEST Angle				
Footage	Reading Corre			
· · · · · · · · · · · · · · · · · · ·				

Hole No. 91-1 Sheet No. 2	Lat,	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar.	Core Size
Date Logged		

FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	uA daa	As pom		
10.7	13.9	,	comprises 90-95% of the rock. Pervasive serpen-								
(cont	:'d)		tine with greener material on fractures. Magnetit	е							
			is throughout especially at 12.8-12.9 m where								
			there is 5% disseminated magnetite. No visible		·			÷	:	-	
			sulphides.					, ď			
13.9	14.2		Contact Zone - bleached to light green and grey	98107	13.9	14.2	0.3 m	3	1		
			and badly broken, friable core. Faint angles of								
			foliation, breccia at 15-30 degrees.								
14.2	35.2		Norite - distinctive "salt and pepper" textured,	98108	14.2	15.2	1.0 m	1	1		
	,	· .	medium grained, grey, massive intrusive. Slight-	98109	15.2	18.2	3.0 m	12	1	*	
_			ly bleached and fractured up to 15 m then fairly	98110	18.2	21.2	3.0 m	6	1		
			monotonous. Slight grain size increase from about	98111	21.2	24.2	3.0 m	2	1		
			0.5-0.7mm to 1.5-2 mm at 17 m (chilled margin?).	98112	24.2	27.2	3.0 m	67	1		
			Mineralogy consists of dark green pyroxene	98113	27.2	30.2	3.0 m	7	1		
			(possibly some amphibolitized) and white plagio-	98114	30.2	33.2	3.0 m	4	27		
		· · · · · · · · · · · · · · · · · · ·	clase in a diabasic texture. Becomes fine grain-	98115	33.2	35.2	2.0 m	10	11		
			ed again at 34.1 m. Lower contact at 25°.								
			Contact is sharp. Fairly fresh. Only minor carb-						A		
			onate and chlorite on rare fractures. Massive		ļ						
	·		unit but fairly soft. After staining the norite						•		
			appears to be ubiquitously altered pervasively by						•		

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-1

	DIP TEST	
	An	gle
Footag e	Reading	Corrected
<u> </u>		
	 	
		<u> </u>

		· · · · · · · · · · · · · · · · · · ·
Hole No Sheet No3	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Barta Barta B		

FROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE No. FROM TO		то	WIDTH OF SAMPLE	Au ppb	As ppm		
14.2	35.2		ankerite (moderate). No visible sulphides or					LL			
(con	t'd)		oxides. Weakly magnetic throughout.								
35.2	38.0		Contact Zone - core is only moderately broken but	98116	35.2	36.5	1.3 m	7	1		
			rock is brecciated "chilled margin" norite, cut	98117	36.5	38.0	1.5 m	. 3	1		
			by irregular white carbonate stringers. Veinlets							<u> </u>	
			and fractures at all orientations but most								
			commonly at 30°. Patchy bleached and serpentini-								
			zation (possibly wallrock fragments). Weak								
	·		carbonatization associated with veinlets of	l							
			ankerite. No sulphides.								
38.0	43.1		Talc-Altered Serpentine - sharp contact (broken)	98118	38.0	40.0	2.0 m	1	1		
			with dark green serpentine cut by white, branch-	98119	40.0	42.0	2.0 m	2	1		
			ing hairline fracture system containing talc.	98120	42.0	43.1	1.1 m	2	1		
			Weak spotted relict texture suggests harzburgite						·		
			protolith. Last 20 cm contains trace mariposite							·	
			with 30% white quartz-carbonate veinlets.							-	
			Serpentine varies from glassy to sugary textures.								
			From 41.2-41.9 m limonite staining along fractures	5					-		
			and resembles the top of this hole. Talc in-								
			creases from 10% at top to 30% at end of interval.								
			No sulphies. Magnetite in "spots" up to 5 mm.	· .						÷	

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE	No.	91-1	

		DIP TEST		
		Ап	gle	
	Footag e	Reading	Corrected	Hole No
-	 	<u> </u>		Section
F				Date Begur
				Date Finisi
- Ł		1		Date Logge

Hole No Sheet No4	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size

0.5	DEPTH DESCRIPTION		r	· · · · · ·	1 .		 	1		
FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
38.0	43.1	٠.	Overall 2-3%. Very magnetic.		ļ					
43.1	52.2		Norite - sharp, hackly contact with chilled fine	98121	43.1	44.0	0.9 m	21	11	
			grained norite. Contact is at 40°. Rock is	98122	44.0	44.	5 0.35m	186	914	
		·	bleached light green to flesh tone around planar	98123	44.35	45.5	1.15m	10	1	
<u> </u>			quartz-ankerite veinlets 1mm to 1 cm thick and	98124	45.5	47.0	1.5 m	6	1	
			"cockscomb texture from open filling with pyrite	98125	47.0	49.0	2.0 m	3	1	
			and very fine arsenopyrite in selvages. Veinlets	98126	49.0	49.3	0.3 m	5	1	
		23111805	are unfortunately few and restricted to 43.3-43.4	98127	50.0	50.5	0.5 m	232	225	
			and 44.0-44.35 m. From 44.35 m downhole to 50 m	98128	50.5	51.0	0.5 m	67	- 58	
			the norite is typical fine to medium grained and		51.0	51.8	0.8 m	30	914	
			dark green-grey in colour. From 50 m down the	98130	51.8	52.2	0.4 m	3070	16452	
			norite is again bleached to a light "fleshtone"							
			and is cut by 5-10 mm quartz-ankerite veinlets							
			often at 35°. A faint foliation is visible in							
			relict noritic texture. Weak to moderate perva-							
			sive ankeritization throughout, with increase to	*98149*	49.3	50.0	0.7 m	23	68	
			strong bleaching ankeritization around veinlets of						· .	
			quartz-ankerite. Staining shows strong pervasive							
			ankeritization. Bleached, carbonated norite from							
			50.0-52.2 m. Weakly magnetic due to accessory							
			magnetite. No visible sulphides except in vein					, ,,		

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-1	

	DIP TEST								
	An	igle		.=	· ·				
Footage	Reading	Corrected	Hole No.	Sheet No5	Lat	Total Depth			
h			Section		Dep	Logged By			
			Date Begun		Bearing	Claim			
			Date Finished		Elev. Collar	Core Size			
			Date Logged	·					

DE!	PTH TO	RECOVERY	ERY DESCRIPTION		FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	i
43.1	52.2		margins at 43.3-43.4 (3% pyrite, tr. arsenopyrite)					·		
(con	t'd)		49.0-49.1 m (3% pyrite), 50.0-50.5 m (5% pyrite),							
			51.8-52.2 m (0.7% pyrite, 4% arsenopyrite as fine							
			needles with pyrite in vein selvages and altered							
			patches 1-2 cm wide). Acicular arsenopyrite							
			"nests" up to 1 cm across. Pyrite is relatively							
			coarse grained (0.5-1.5mm)							
52.2	54.0		Quartz-carbonate listwanite - sharp contact	98131	52.2	53.0	0.8 m	851	3386	 1.0
			(ground) with highly silicified, light grey to	98132	53.0	54.0	1.0 m	6	565	
			limonitic listwanite. Spotty mariposite							
			(pseudomorphs of nodules?) is minor (<3%).							
``			Relict, ghosted nodular harzburgite textures							
			recognizable. Pervasive silicification, rock is				>			
			also cut by a network of quartz-ankerite string-							
			ers at all angles to core axis. First 15cm is a							
			well-healed breccia of quartz vein clasts (5mm-2							
			cm) in a grey arsenopyrite-rich matrix. Dense,	·						
			very fine grained arsenopyrite common in matrix.							1.
			From 52.2-53.0 m - 0.10% arsenopyrite and from							
	-		53.0-54.0 m - 0.3 to 5% finely disseminated							
			pyrite throughout. Type 7 listwanite.						• •	

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE	N.	91-1

	DIP TEST		•			
	Ang	jie		· _		
Footage -	Reading	Corrected	Hole No	Sheet No6	Lat	Total Depth
		·	Section		Dep	Logged By
			Date Begun	·	_ Bearing	Claim
			Date Finished		_ Elev. Collar	Core Size
			Date Logged		_	

FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
52.2	54.0		Arsenopyrite is amorphous, very very fine grained							
(cont	'd)		grey mass in matrix.							·
54.0	77.3		Harzburgite - gradational contact marked by	98133	54.0	55.2	1.2 m	11_	1	
	-	· · · · · · · · · · · · · · · · · · ·	decrease in silica, disappearance of mariposite,	98134	55.2	56.9	1.7 m	4	1	
			and appearance of trace hematite staining of			59.9		2	1	
			nodules (3-10mm). Rock is light green, talc-	98136	59.9	62.9	3.0 m	2	1	
			serpentine with black magnetite spots (5-10%).	98137	62.9	63.9	1.0 m	, · 8	1	
			Patchy, very minor mariposite associated with	98138	63.9	65.1	1.2 m	59	91	
-			bleaching around widely spaced quartz-carbonate	98139	65.1	67.1	2.0 m	6	1	
			veinlets. Fracture pattern at 73.2-74.0 m at 45°.	98140	67.1	70.0	2.9 m	2	1	<u> </u>
			Serpentinized with moderate talc on fractures and	98141	70.0	71.0	1.0 m	1	1	
		·	in patches. From 52.2-56.9 m limonite and carb-	98142	71.0	74,1	3.0 m	27	125	 . 3
			onate are present in minor amounts. Staining	98143	74.1	77.1	3.0 m	4	1	
			reveals weak pervasive ankerite throughout inter-	98144	77.1	80.1	3.0 m	2	1	
			val. From 63.9-65.1 m an increase in carbonate	98145	80.1	83.1	3.0 m	3	1	
			with silicification (type 6 and 7) with patchy	98146	83.1	86.1	3.0 m	3	1	
			listwanite related to widely spaced veinlets at	98147	86.1	89.1	3.0 m	8	1	
			25° to core axis. Again at 70.5-70.8 m minor	98148	89.1	91.4	2.3 m	4	1	
			quartz-carbonate listwanite associated with quartz	<u> </u>						
			carbonate veinlets 1-3 cm at 65° to core axis.					1.		
			Minor mariposite and bleaching only. Accessory							

PROPERTY_	TUUOM	SIDNEY	WILLIAMS	
 				

HOLE No.	91-1	

	DIP TEST					
	Ar	ngle				
Footage	Reading	Corrected	Hole No Sheet No	7 Lat	Total Depth	· · · · · · · · · · · · · · · · · · ·
<u> </u>	1	<u> </u>	Section	Dep	Logged By	
		-	Date Begun	Bearing	Claim	·
			Date Finished	Elev. Collar	Core Size	·
		<u>. </u>	Date Logged	·		

DEF FROM	TH	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	2	
54.0	77.1		pyrite only (< 1%). Very magnetic with 5-10%					,			
(cont	:'d)		magnetite.							·	
77.1	91.4		Serpentine - gradtional contact, rock is dark								
ļ			green with light spots (relict nodules?) and		i						
			virtually 95% serpentine. Bright yellow-green on		ļ						
			fractures, mostly 40°. Serpentine, white spots						ı		
			possibly anorthite and/or brucite?. Minor talc								
			on some fractures. Nodules from 5mm to 1.5 cm.								
			Very magnetic with 3-5% magnetite and disseminat-							•	
			ed accessory pyrite (< 1%).								
					·						
		·									
	-										
					L						
							,				

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-2

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	_				
	 				

Hole No. 91-2 Sheet No. 1	Lat. 490W/311
Section	Dep
Date Begun Aug. 16, 1991	Bearing 098 ⁰
Date Finished Aug. 17, 1991	Elev. Collar 1521
Date Logged Aug. 17, 1991	Angle -45°

Lat. 490W/311S Bearing 098⁰ Elev. Collar 1521.0 m Total Depth 121.9 meters Logged By A.Hill Claim Klone 1 Core Size BOTK

DEF	TH	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	TO	WIDTH OF SAMPLE	Au	As	
			Casing, overburden - about 50 cm of ground serp-	JAMIN EE 110.	111011	10	OF SAMPLE	ddd	ppm	
0.0	3.9									
	У		entinite pebbles and one limonitic carbonate-		<u> </u>				<u> </u>	
			serpentine cobble.		<u> </u>					
3.9	47.8		Harzburgite - dark green to almost black, 80%	98150	3.9	6.1	2.2 m	2	1	
			serpentine rock, with white rounded nodules	98151	6.1	9.1	3.0 m	12	1	
			(3mm-lcm) of anorthite (?). Carbonate stain is	98152	9.1	12.1	3.0 m	3	1	
		3	negative. Some nodules have green or brown cores	98153	12.1	<u>15.1</u>	3.0 m	3	1	1
			probably pyroxene (1%). Weak foliation and	98154	15.1	18.1	3.0 m	2	1	
	· ·		widely spaced white hairline fractures at 50-60°.	98155	18.1	21.1	3.0 m	6	1	
			Minor talc and carbonate on fractures along with	98156	21.1	24.1	3.0 m	1	1	
			olive serpentine. Almost complete serpentiniza-	98157	24.1	27.1	3.0 m	4	1	
			tion of harzburgite and/or dunite. Highly magne-	98158	27.1	30.1	3.0 m	2	1	
			tic with 2-3% disseminated magnetite. A few tiny	98159	30.1	33.1	3.0 m	2	1	
			isolated grains of accessory pyrite (<< 1%).	98160	33.1	36.1	3.0 m	3	1	
			Resembles the lithology at the end of 91-1	98161	36.1	39.1	3.0 m	2	1	
47.8	64.9		Talc-carbonate altered Harzburgite - light green	98162	39.1	42.1	3.0 m	1	1_	
			with dark spots. Gradational contact expressed	98163	42.1	45.1	3.0 m	2	1	 _
			by a bleaching of the groundmass and hematite-	98164	45.1	47.8	2.7 m	28	1	
			staining of the nodules. Fracturing has increas-	98165	47.8	50.8	3.0 m	3	1	
			ed to about ever 7 cm at all orientations but	98166	50.8	53.8	3.0 m	2	1	
			most commonly at 45°. From 60.0-60.2 m there are	98167	53.8	56.8	3.0 m	1	1	 ,

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-2

	DIP TEST	ata		
·	An	gle		
Footag e	Reading	Corrected		

Hole NoSheet No2	Lat.	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Data Laurad		

FROM	TH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	p∯b	a <u>A</u> s Maga		
47.8	64.	•	a few flakes of mariposite pseudomorphing	98168	56.8	59.8	3.0 m	53	1		
(cor	t'd		nodules, but no sulphides, enveloping	98169	59.8	60.3	0.5 m	17	34		
<u> </u>			quartz-carbonate veinlets. Also at 63.2-	98170	60.3	61.8	1.5 m	12	1		
			63.3 m. These zones have minor pervasive	98171	61.8	62.8	1.0 m	4	11_		,
			silicification for a few cm either side	98172	62.8	63.5	0.7 m	2	55		
			of these 1 cm veinlets at 40-550. Carb-	98173	63.5	64.9	1.4 m	1	1		
			onate staining was negative except for	98174	64.9	67.9	3.0 m	4	1		
			fracture fillings. Bleaching attributed	~ .						٠.	
			to talc alteration of groundmass with								
			very weak carbonatization. Dark nodules			<u> </u>	·				
			still magnetic. No pyrite observed.								
			Type 4 listwanite.								
64.	70.	3	Serpentinized harzburgite-Dunite -	98175	67.9	70.3	2.4 m	3	1		
			Gradational contact with return of dark								
			green serpentine as matrix to grey and	·							
ļ			hematite-stained nodules. Also fine		ļ						
			sugary textured 10-20cm dunite layers								
			from 67.0-70.3 m. Minor relict cumulate	·							
·			olivine textures and "immiscible liquids"								· [
			textures also present throughout this								
			interval. Intense serpentinization (90%)								

PROPERTY	MOUNT	SIDNEY	WILLIAMS
----------	-------	--------	----------

	DIP TEST Angle				
Footage	Reading	Corrected			
	·				
	1				

Hole No. Sheet No. 3	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM	TH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
64.9	70.3		with minor talc on fractures. No sulphides.								
(con	-'d)		Very magnetic.								
70.3	76.0		Talc-carbonate harzburgite - gradational contact	98176	70.3	74.0	3.7 m	10	1		
			marked by bleaching of groundmass to light green	98177	74.0	76.0	2.0 m	1	1		
			(limonitic from 70.3-71.3 m) as above. Minor								
			hematite staining of nodules. Pervasive talc-							-	
			carbonate alteration weak to moderate increasing								·.
	٠.,		downhole. No sulphides. Moderately magnetic.								-
			Type 4 listwanite.					t			·
76.0	82.2		Quartz-carbonate listwanite - fairly rapid grada-	98178	76.0	77.0	1.0 m	20	355	* .	
			tion over 10 cm to hard, pervasively silicified,	98179	77.0	77.4	0.4 m	22	568		
	*.		light grey to light green rock. Relict nodular	98180	77.4	77.8	0.4 m	40	1211		
			harzburgite textures still intact. Also first	98181	77.8	78.8	1.0 m	21	849		
			appearance of mariposite marks the extent of	98182	78.8	80.3	1.5 m	71	1072		٠
			silicification. From 77.4-77.8 m silicified	98183	80.3	82.2	1.9 m	334	2024		
			breccia with sharp contacts at 40°, grey arseni-								
			cal matrix and angular quartz clasts up to 1 cm.								
			From 79.0-82.2 m there are widely spaced (10-20			ļ .					
			cm) white quartz-carbonate veinlets at 550.			ļ					
			Pervasive silicification and fracture controlled								
			quartz-ankerite veinlets at all orientations.								

PROPERTY MOUNT SIDNEY WILLIAM	PROPERTY	TUUOM	SIDNEY	WILLIAMS
-------------------------------	----------	-------	--------	----------

		91-2	
HOLE	N-		

F	And	ala l							
F		ðia i			A				
Footage	Reading	Corrected	Hole No.	Sheet No	4	Lat	 Total Depth.		
			Section	·		Dep	 Logged By_		
			Date Begun	·		Bearing	 Claim	·	
			Date Finished	· · · · · · · · · · · · · · · · · · ·		Elev. Collar	 Core Size	<u> </u>	
			Date Logged						

DEF FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
76.0	82.2		Mariposite specks replace nodules commonly through	-						
(cont	.'d)_		out interval decreasing outwards from the fault.							
			Minor limonite staining on some fractures. Very							
			fine disseminated pyrite and/or arsenopyrite in grey patches throughout interval (1-2% total).							
			Best interval 77.4-77.8 m with 0.3% arsenopyrite		<u> </u>					
			and pyrite. Alteration is apparently centered							
			around the fault at 77.4-77.8 m. Type 7							
			listwanite.					 .		
82.2	90.8		Talc-carbonate harzburgite - contact marked by	98184	82.2	85.2	3.0 m	76	243	
			rapid decrease in silica content, disappearance	98185	85.2	88.2	3.0 m	1	1	
			of mariposite, and reappearance of dark and hema-	98186	88.2	90.8	2.6 m	1	1	
			tite stained nodules. A few specks of mariposite	98187	90.8	93.8	3.0 m	3	1	_
			occur in bleached envelopes of quartz veinlets at	98188	93.8	96.8	3.0 m	1	1	
			83.3, 83.6 and 84.0 m. Veinlets are distinctly	98189	96.8	99.8	3.0 m	2	1	
			planar and "cockscomb" but contain no sulphides.							
			Moderate to weak carbonatization (pervasive) and							
			fracture-controlled talc decreasing downhole. A		ļ .					
,			few suspect grey patches but only trace pyrite							
			and arsenopyrite.							

PROPERTY_	TUUOM	SIDNEY	WILLIAMS

HOLE N	91	L-2	

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	<u> </u>	
		
	 	

Hole No.	Sheet No	5	Lat	Total Depth
Section			Dep	Logged By
Date Begun			Bearing	Claim
Date Finished		· · · · · ·	Elev. Collar	Core Size
Date Logged				

DE! FROM	TH TO	RECOVERY	DESCRIPTION		FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
90.8	121.	9	Harzburgite - gradational return of dark green	98190	99.8	102.8	3.0 m	1	1.		
		·	serpentine matrix and white to green nodules.	98191	102.8	105.8	3.0 m	1	1		
			Talc occupies fractures only. From 92,2-92,9 m	98192	105.8	108.	3.0 m	7	1		
			fault breccia with badly broken core, still serp-	98193	108.8	111.5	3.0 m	3	1		
			entine with minor limonite staining. Brittle	98194	111.8	114.	3.0 m	42	1.		·
			fault at unknown angle. Serpentine becomes	98195	114.8	117.	3.0 m	1	1		
			darker downhole with fewer fractures with olive	98196	117.8	119.	2.0 m	1	1		
		3	green serpentine envelopes. Near complete serp-	98197	119.8	121.	2.1 m	1	1		
			entinization of harzburgite. No sulphides. Very								
ļ			magnetic.								
ļ											
										*	
										-	
								-			
						,			ļ		
					ļ						
											<u> </u>

PROPERTY.	TUUOM	SIDNEY	WILLIAMS

HOLE No. 91-3

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	<u> </u>					

Hole No. 91-3 Sheet No. 1	Lat. 102E/213S
Section	Dep
Date Begun Aug. 17, 1991	Bearing 0980
Date Finished Aug. 18, 1991	Elev. Collar 1493.0 m
Date Logged Aug. 19, 1991	

Total Depth 81.4 meters
Logged By A. Hill
Claim Klone 1
Core Size BQTK

DE!	DEPTH RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
0.0	3.0		Casing and overburden								
3.0	3.5		Silicified harzburgite - light buff to orange-	98198	3.0	3.5	0.5 m	2	11		
			coloured matrix with 15% rusty brown spots (5 mm-	98199	3.5	6.7	3.2 m	1	1		
ļ			1 cm). Spots also hematitic and definitely relict								
			nodules from harzburgite. Core very hard to						,		
			scratch. Pervasive silicification although it								
			contains no veinlets. Only trace mariposite				· .				
			colouring at 3.4 m. Possible overprinting of								
			silica on carbonate listwanite. Very magnetic				· · · · · · · · · · · · · · · · · · ·			-	
			spots only. Trace rusty pyrite in spots.								
3.5	6.7		Carbonate-talc alteration - light to dark green								
			matrix with white to hematite-stained spots (5 mm-			4					
			1.5 cm). Patchy and fracture-controlled limonite					1 .			
			also. Pervasive serpentine mostly altered to talc								
			and carbonate. Trace pyrite in uncommon dark								
			spots. Weakly magnetic.							-	
6.7	16.0		Silicified-carbonate listwanite - strong silicif-	98200	6.7	7.6	0.9 m	23	63		_
		1-20141	ied listwanite interspersed with patchy carbonate-	98201	7.6	9.1	1.5 m	63	227		
			quartz and carbonate-talc alteration. From 6.7-	98202	9.1	10.2		18	24		
			9.1 m silicified carbonate listwanite with 5%	98203	10.2	12.0	1.8 m	11	_1		
			mariposite and grey patches. Estimate 3% pyrite,	98204	12.0	13.0	1.0 m	161	215		

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No.	91-3

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	I	<u> </u>					

Hole No.	Sheet No	2	Lat	Total Depth
Section		• .	Dep	Logged By
Date Begun			Bearing	Claim
Date Finished		· · · · · · · · · · · · · · · · · · ·	Elev. Collar	Core Size
Date Logged				

DE!	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
6.7	16.0		1% arsenopyrite, mostly over first meter. Relict	98205	13.0	14.6	1.6 m	192	254	·
(00)	nt'd)	· ·	nodules are bleached, mariposite green or orange.	98206	14.6	15.5	0.9 m	400	816	
			From 9.1-12.0 m predominantly light green matrix	98207	15.5	16.0	0.5 m	4910	2791	
			with white nodules, talc-carbonate listwanite with							
			hematite-stained nodules. Short 2-3 cm intervals							
			of silicification enveloping fractures at 25°.							
			From 12.0-16.0 m mostly silicified listwanite							
			but with talc-carbonate-limonite on fractures	7					."	
		-	that cause core to be badly broken. Mariposite						<u> </u>	
			common, light ghosted nodules. Best sulphides at							
			15.5-16.0 m (0.3% pyrite, 1% arsenopyrite with							
			minor acicular needles. Silicification, carbona-							
			tization and talc alteration of serpentinized							
			harzburgite (in decreasing order of abundance)	,						
			related to anastomising structure expressed as a	× · ·						
			fracture set at about 25° to core axis. Minor	1 T 1 T						
			sulphides restricted to most silicified portions.							
			Type 7 listwanite with minor type 4 and 6.							
16.0	16.7		Silicified Fault Breccia - sharp contact at 25°	98208	16.0	16.7	0.7 m	341	175	
			Angular clasts of Type 7 listwanite and quartz	·	·					
			from .1 mm to 7 mm in a milled up matrix almost	_						

PROPERTY MOUNT SIDNEY WILLIAMS

	DIP TEST							
	Angle							
Footage	Reading	Corrected						
	<u> </u>							
	ļ <u> </u>							
	J ·							

Hole No Sheet No3	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged	7.	

	DEPTH FROM TO RECOVE		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
16.0	16.7		mylonitic. Lower contact is broken. Pervasive								
(con	.'d)		silicification. Core is an orange colour through-			٠					
			out. Trace disseminated pyrite only.								
16.7	17.6		Altered norite - upper contact broken, lower con-	98209	16.7	17.6	0.9 m	145	94		
			tact at 20 ⁰ although slightly irregular. Very	1.			·			. 2	
			well disquised by limonite staining, broken core,								
		· · · · · · · · · · · · · · · · · · ·	pervasive carbonatization and even patchy silici-								
			fication. Aphanitic chill margin from 17.4-17.6 m					· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	is stained olive to rust coloured. Remainder is				•				
			bleached and stained with relict fine to medium		*.						
			diabasic texture. Pervasive carbonatization and					-			
			patchy silicification and limonite stained								
	· .		throughout. "Spider-web" fracture filling fine					-			
			pyrite over first 15 cm (3% pyrite). Only trace								
			disseminated pyrite afterwards. Not magnetic.								
17.6	20.0		Carbonate-talc alteration with silicified harz-	98210	17.6	18.1	0.5 m	11	1		
			burgite - predominantly light green carbonate-	98211	18.1	19.2	1.1 m	350	332		
			talc matrix with light to dark grey nodules.	98212	19.2	20.0	0.8 m	286	248		
			Limonite stained from 18.6-20.0m. Pervasive		<u> </u>			! :			
			carbonate-talc with thin enveloping silicifica-								
			tion around fractures at 20°. Trace mariposite.					L			

PROPERTY_	_MOUNT	SIDNEY	WILLIAMS
-----------	--------	--------	----------

	DIP TEST	
	An	gle
Footag e	Reading	Corrected
	<u> </u>	
	-	
		*

Hole No. Sheet No. 4	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged	<u>_</u>	

FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	ТО	WIDTH OF SAMPLE	uA daa	As mag	
17.6	20.0		Disseminated pyrite (1%) mostly in "spots". A							
			few grey patches in unaltered areas with possible							
		· · · · · · · · · · · · · · · · · · ·	trace very fine-grained arsenopyrite. Type 4	,						
		· · · · · · · · · · · · · · · · · · ·	listwanite with minor type 6.							
20.0	21.9		Talc-carbonate listwanite - orange, rust-stained	98213	20.0	20.8	0.8 m	482	281	
		·	with intense "hairlike" talc, wavy at about 25°	98214	20.8	21.9	1.1 m	420	127	
			occupying fractures. Matrix is pervasively carb-							
ļ			onatized. Igneous harzburgite(?) textures all							
-			but destroyed with rare mariposite pseudomorphing							-
			nodules. Type 4 listwanite. Trace disseminated	·						
			pyrite now oxidized.							
21.9	27.3		Weakly carbonated nodular harzburgite - gradation-	98215	21.9	23.4	1.5 m	6	1	
			al weakening of above alteration enables recogni-	98216	23.4	24.9	1.5 m	3	11	
			tion of nodular immiscibility textures (all	98217	24.9	26.1	1.2 m	1.2	<u> </u>	
			stained orange) in an orange carbonate-talc to	98218	26.1	27.3	1.2 m	2]	
			serpentine matrix. Patchy talc-carbonate altera-					- -		
			tion weakening downhole. Black to dark green							
			serpentine proportion increases to 60% by end of							
			hole. Trace accessory pyrite and possible pyrrho-							
			tite. Moderately magnetic.							
										-

PROPERTY MOUNT SIDNEY WILLIAMS

An	gle						
Reading	Corrected						
ļ ·							
	<u> </u>						
	DIP TEST An Reading						

Hole NoSheet No5	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE!	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
27.3	81.4		Harzburgite – nodular harzburgite with a black	98219	27 . 3	29.3	2.0 m	15	1		
			serpentine matrix down to about 47.0 m. Nodules	98220	29.3	32 . 3	3.0 m	1	1		
			are rounded 'immiscibility' features, light grey	98221	32.3	35.1	2.8 m	2	1		
			to patchy orange (up to 29 m). From 29.0 m down-	98222	35.1	38.3	3.2 m	20	1		
			hole the nodules are more crystal-like and a few	98223	38.3	41.4	3.1 m	19	1		
			pyroxene cores are preserved. Serpentine is	98224	41.4	44.3	2.9 m	1	1		
			strong but associated with fractures mainly to	98225	44.3	45.8	1.5 m	1	1		,
			end of hole. Crude mantle layering at 35-55°.	98226	45.8	48.4	2.6 m	1	1		
			Strong serpentine weakening to moderate fracture	98227	48.4	51.8	3.4 m	1	1		
			controlled from about 50 m to end of hole. Minor	98228	51.8	53.8	2.0 m	4	1	•	
			dunite bands about 30 cm thick are now sugary	98229	53.8	56.8	3.0 m	3	. 1	· .	
		-	serpentine with 5-10 mm magnetite patches.	98230	56.8	59.8	3.0 m	1	1		
			Gradational layering expressed by cumulates and	98231	59.8	62.8	3.0 m	7	1		
			concentrations of nodules (5-15 mm), Trace	98232	62 . 8	65.8	3.0 m	1	1		·
			accessory pyrite and minor pyrrhotite and magne-	98233	65.8	68.8	3.0 m	7	1		
		·	tite. Very magnetic interval. Fault breccia at	98234	68 . 8	71.8	3.0 m	13	7		
			32.6-33.5 and 45.7-48.8 m.	98235	71.8	74.8	3.0 m	12	1		
				98236	74.8	77.8	3.0 m	2	1		
				98237	77.8	79.6	1.8 m	1	1		
							1.8 m	21	1		

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-4

	DIP TEST								
	An	gle							
Footage	Reading	Corrected							
		. <u>.</u>							
	J								

Hole No. 91-4	_ Sheet No1	Lat. 125E/225S				
Section		Dep				
Date Beaun Aug.	18, 1991	Bearing 2990				
		Eley Collar 1497.0 m				
Date Logged_ Aug		Angle -45°				

Total Depth 109.7 meters
Logged By A. Hill
Claim Klone 1
Core Size BQTK

DE F		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
0.0	3.0	. '	Casing and overburden. 10 cm of serpentine					1			
			pebbles recovered.								
3.0	32.9		Harzburgite - black and grey. Hole begins in	98239	3.0	5.5	2.5 m	27	11_	-	
			very rubbly, serpentinized harzburgite with poor	98240	5.5	9.1	3.6 m	. 3	1		
			recovery down to 9.1 m (drilling subparallel to	98241	9.1	12.1	3.0 m	1	1		
			bedrock surface). Lithology comprised of black	98242	12.1	15.1	3.0 m	19	1		
			serpentine matrix with 40-60% light grey porphy-	98243	15.1	18.1	3.0 m	17	1		
			roblasts of pyroxene. Some have brown cores and	98244	18.1	21.1	3.0 m	3	1		
			may be bronzite (?). Some light green serpentine	98245	21.1	24.1	3.0 m	7	1		
			on fractures at all orientations. Weak to moder-	98246	24.1	27.1	3.0 m	1	1		
			ate serpentinization, restricted mainly to matrix	98247	27.1	30.1	3.0 m	19	1		
			and fracture controlled. Very fine grained	98248	30.1	32.9	2.8 m	21	1		
			disseminated magnetite and possibly ilmenite.		-						
			Very magnetic interval.					٠,			
32.9	39.4		Carbonate-talc altered harzburgite - sudden	98249	32.9	35.9	3.0 m	3	1		
			appearance of orange carbonate and talc on hair-	98250	35.9	38.3	2.4 m	18	1		
			line fractures at all orientation. Otherwise	98251	38.3	39.4	1.1 m	3	1		
			harzburgite is similar to that described above.								
			Weak fracture filling carbonate and talc which								
			does not permeate the host rock. Reaches weak to				:				
			moderate level from 38.3-39.3 m. Trace pyrite								1

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE		91-4
MOLE	No.	

	DIP TEST				
	An	gie	en e		
Footage	Reading	Corrected	Hole No Sheet No2	Lat	Total Depth
		<u> </u>	Section	Dep	Logged By
· · · · · · · · · · · · · · · · · · ·			Date Begun	Bearing	Claim
	.		Date Finished	Elev. Collar	Core Size
	<u> </u>	i	Date Logged		

DEF FROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au dqq	As mag		
32.9	39.4	(cont'd)	and magnetite only. Alteration not strong enough								
			to be termed a listwanite.								
39.4	43.6		Serpentinite - gradational disappearance of carb-	98252	39.4	41.1	1.7 m	3	1		
<u> </u>			onate and talc on fractures and strengthening of	98253	41.1	42.3	1.2 m	18	1	-	
		<u> </u>	pervasive serpentine alteration to strong levels	98254	42.3	43.6	1.3 m	3	1		
			increasing downhole. Ghosted, pale porphyroblasts								
			faintly visible until 41.1 m then virtually								
			massive dark green serpentine cut by uncommon					- w			
			thin white fractures. Intense serpentinization								
			increasing slight downhole.								
43.6	49.7		Norite - very sharp, planar contact with only a	98255	43.6	45.2	1.6 m	5	1		
			2 cm chilled margin at 35°. Pale green, fine	98256	45.2	48.2	3.0 m	5	1		1
			grained diabasic norite, with a slight grain size	98257	48.2	50.2	2.0 m	3_	1		
			increase towards the centre to about 2-3 mm.								
			Pyroxene-feldspar intrusive rock is bleached								
			throughout and cut by a gently warped, ribboned							·	
			calcite-ankerite veinlet, o.5-2 cm wide which								
		:	runs down the core axis from 45.2-49.6 m.								
			(Stains mauve and blue). Lower contact broken								
			and ground up by drill. Pervasive ankeritization								
			is strong and core stains dark blue. No sulphides								·

PROPERTY MOUNT SIDNEY WILLIAMS

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	<u> </u>				
· · · · · · · · · · · · · · · · · · ·					
	<u> </u>				
	1				

		* · ·
Hole No Sheet No3	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM	ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
	52.0		Serpentinite - upper contact expressed by 12 cm		 -	!	1.5 m	1	1		<u> </u>
			of strong talc alteration. Remainder of interval		1		1.5 m	1	1		
			is near massive dark green serpentine, cut by	70233	3167	33.2	1. • • • • • • • • • • • • • • • • • • •				
			spaced, hairline white fractures that stain								
			violet (calcite) along with trace talc. Grada-								
			tional contacts. Pervasive intense serpentiniza-							1	
			tion. Minor fracture filling Fe-calcite and								-
			talc. Trace very fine grained accessory pyrite.								
			Trace magnetite. Weakly magnetic.								
52.0	53.2		Talc/Norite - predominantly intense pale green					,			·
			talc alteration after serpentine and harzburgite.								
			At 52.25 m and 52.5-52.7 m there are fine grained								
			dykelets of norite at 45° to core axis.						-		
53.2	60.9		Harzburgite - fairly fresh, dense dark green and	98260	53.2	56.2	3.0 m	1	1	,*	
			dark grey rock with minor brown (bronzite?)				3.0 m	1	1		
			porphyroblasts . At about 59.2 m the amount of	98262	59.2	60.9	1.7 m	1	1		
			nodules increases rapidly up to about 40%.						-		
		1.	Moderate serpentinization, fracture controlled,								·
			and incomplete with "cores" between fractures			-		**************************************			
I			apparently fresh. Only trace accessory pyrite					200			
			and possibly pyrrhotite. Very magnetic.								

PROPERTY MOUNT SIDNEY WILLIAMS

	DIP TEST	٠					
	Angle						
Footage	Reading	Corrected					
·	ļ <u>· · · · · · · · · · · · · · · · · · ·</u>						
	†						

Hole No Sheet No4	Lat	Total Depth
Section		Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE FROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
60.9	81.0		Carbonate-talc altered harzburgite - gradational	98263	60.9	63.9	3.0 m	3	1		
			contact with first the rounded "nodules" and then	98264	63.9	66.9	3.0 m	1	1		
			the matrix becoming bleached by carbonatization	98265	66.9	68.6	1.7 m	1	1		
			and talc. General bleaching increasing downhole	98266	68.6	70.6	2.0 m	<u> </u>	1		
			along with the intensity of hairline talc filling	98267	70.6	71.6	1.0 m	1	1		
			fractures. Carbonate-talc alteration increasing	98268	71.6	72.7	1.1 m	33	82		
			downhole. Hematite-stained nodules at 70.0-80.0m	98269	72.7	73.7	1.0 m	40	131		
			in patches. Only trace to 1% disseminated pyrite.	98270	73.7	75.8	2.1 m	5	1		
			From 71.6-72.7 m silicified listwanite with 2%	98271	75.8	77.7	1.9 m	10	1		
			pyrite, trace arsenopyrite with minor mariposite	98272	77.7	80.0	2.3 m	5	11		
	,		and seemingly overprints the talc-carbonate	98273	80.0	81.0	1.0 m	1	11	·	
			textures with pervasive silicification. Minor	i.							
			quartz-carbonate veinlets at 30° in both direc-								
			tions. Host rock is ubiquitously a porphyritic								*.
	<i>'</i>		harzburgite as relict textures abound.					-			
81.0	94.9		Quartz-carbonate listwanite - contact is an	98274	81.0	82.5	1.5 m	138	220		
			irregular alteration front of pervasive silicifi-	98275	82.5	83.5	1.0 m	1260	2054		
			cation and the appearance of disseminated marip-	98276	83.5	84.8	1.3 m	313	977		
			osite, mostly replacing all or part of relict	98277	84.8	85.8	1.0 m	1060	1210		
			harzburgite porphyroblasts. At 82.5 m, 0.5-1 cm	98278	85.8	87.1	1.3 m	195	1254		
			quartz veinlets with vugs cut the core at 20-30°.	98279	87.1	88.1	1.0 m	1810	3769		

PROPERTY MOUNT SIDNEY WILLIAMS

	DIP TEST					
	An	gle		_		
Footage	Reading	Corrected	Hole No	Sheet No5	Lat.	Total Depth
*			Section		Dep	Logged By
			Date Begun		Bearing	Claim
			Date Finished		Elev. Collar	Core Size
	<u> </u>	JJ	Date Logged			

FROM	TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
81.0	94.9	(cont'd)	The veins are clearly open space filling with	98280	88.1	89.1	1. 0 m	1280	805	·	
			"cockscomb" interval quartz crystalline growths.	98281	89.1	90.1	1.0 m	1105	2329		
			Thin hydrobreccia zones (5 cm wide) exist with	98282	90.1	91.1	1.0 m	722	1810		
			branching chalcedony veinlets at 85.0 m and 85.7m	98283	91.1	92.1	1.0 m	427	1358		
			with clear quartz matrix and shards of light grey	98284	92.1	93.1	1.0 m	535	1420	·	
			and mariposite green listwanite. Hair-like talc		93.1	94.0	0.9 m	1000	1643	·	
			is common throughout the zone but appears to have		94.0	94.9	0.9 m	1020	1607		
			been overprinted by silicification. A large								
			breccia (tectonic?) occurs at 88.1-89.1 m with								
			angular clasts up to 2 cm supported in a grey	· .	ļ						
	<u> </u>		quartz matrix. Good contacts at 30°. General								
			foliation and preferred veinlet direction at 30°.								
			Pervasive silicification is dominant alteration		<u> </u>	ļ					
			of pale to bright green (mariposite) altered			<u> </u>					
			harzburgite. Relict talc-carbonate textures exist								
		·	but are apparently overprinted. Generally a very								
			low sulphide system with only minor grey patches								
			(1-10cm) revealing the presence of very fine		<u> </u>			-		,	
			needle-like arsenopyrite and amorphous pyrite.						-		
			From 81.0-94.9 - 0.1% pyrite, < 1% arsenopyrite.			<u> </u>					
			Also a black opaque mineral, possibly ilmenite,							·	

PROPERTY MOUNT SIDNEY WILLIAMS

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
		·				
	 					
	<u> </u>					

Hole No Sheet No6	Lat	Total Depth
Section	Dep	Logged By
Date Begun	. Bearing	Claim
Date Finished	Elev. Collar	Core Size
Data Lagged		

FROM	TH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
81.0	94.9	(cont'd)	forms trains parallel to foliation locally through	-							
			out interval. Grain size < 1 mm and overall very					-			
		· .	low trace amounts. From 88.1-89.1 m breccia at			•					
			30°. Type 7 listwanite.						·		
94.9	105	3	Carbonate-talc alteration - rather sharp contact	98287	94.9	96.3	1.4 m	: 6	1		
			parallel to the relict layering in the host	98288	96.3	97.6	1.3 m	1	1		·
			harzburgite at 40°. Patchy serpentine and bleach-	98289	97.6	99.4	1.8 m	42	46	,	
			ed carbonate-talc alteration with nodules either	98290	99.4	100.	1.0 m	1	1		
		· · · · · · · · · · · · · · · · · · ·	white or hematite-stained. A short interval at	98291	100.4	102.4	2.0 m	1	1		
			7.6-99.4 m of silicified listwanite is overprint-	98292	102.4	104.	1.7 m	2.	1		
			ed like the main zone described above. Below this	98293	104.1	105.	1.7 m	1	1		
			the alteration gradually weakens with the matrix		·.						
			becoming dark green serpentine. Pervasive carbon-								
			atization with associated talc and fracture-fill-								
			ing talc. Hematite stained nodules common. Stain								
			reveals carbonate is Fe-dolomite to ankerite in					<u> </u>		• .	
			composition. No sulphides visible except for the								
			silicified zone from 97.6-99.4 m which has trace								
			pyrite, minor arsenopyrite in 1-2 cm grey								
			siliceous patches.								

PROPERTY_	MOUNT	SIDNEY	WILLIAMS

HOLE		91-4
HOLE	No.	

	DIP TEST						
·	Ал	gle		-			
Footage	Reading	Corrected	Hole No.	Sheet No/	Lat	Total D	epth
			Section		_ Dep	Logged	Ву
			Date Begun		_ Bearing	Claim_	
······································			Date Finished		Elev. Collar	Core S	ze
			Date Logged		en e		

DEF	TH	RECOVERY	DESCRIPTION	S4451 F 11			WIDTH OF SAMPLE	Au	As	<u> </u>	
FROM	то			SAMPLE No.	FROM	10	OF SAMPLE	ppb	ppm		
105.8	3109.	7	Harzburgite - typical moderately serpentinized	98294	105.8	107.	3 1.5 m	4	1		
			harzburgite with faint "mantle cumulate" layering	98295	107.3	108.	9 1.6 m	1	1		
			in pyroxenes and olivine rich bands at 50°. At	98296	108.9	109.	7 0.8 m	3	1		
			108.9 m relatively unaltered grey pyroxene					· ·	<u> </u>		
						 		,	1		
			comprises roughly 50% of the core to the end of								
			the hole.								
	·						1.				
					ļ						
 						<u> </u>					
		· · · · · · · · · · · · · · · · · · ·									· · ·
											"
								•			
		···									
						<u> </u>		*	<u> </u>		
_				, ,							
				<u> </u>							
Ţ	Ī										
		1		<u> </u>							

PROPERTY MOUNT SIDNEY WILLIAMS

HOLE No. 91-5

	DIP TEST	
	Ап	gle
Footage	Reading	Corrected
		
	······································	

Hole No. 91-5 Sheet No. 1	Lat. 362W/200S
Section	Dep
Date Begun Aug. 19, 1991	Bearing 1350
	Elev. Collar
Date Logged Aug. 22, 1991	^

Total Depth 106.6 meters
Logged By A. Hill
Claim Klone 1
Core Size BQTK

DE!	ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	As ppm		
0.0	7.1		Casing and overburden; no recovery					1,1,1,	1,1,,,,,		
7.1	14.3		Rubbly Serpentinized Harzburgite - does not appear	98297	7.0	9.1	2.1 m	3	1	· · · · · · · · · · · · · · · · · · ·	
			to be a fault zone, rather just rubble serpentin-	98298	9.1	12.1	3.0 m	2	1		
			ized harzburgite that has been ground by the drill	98299	12.1	15.1	3.0 m	6	1		
			into balls and crescent-shaped core. Moderate						_	,	
			serpentinization similar to unit below.	· 			·				
14.3	61.0		Harzburgite - dark grey to dark green porphyro-	98300	15.1	18.1	3.0 m	2	1	-	
			blastic (5-8 mm) moderately serpentinized harz-	98301	18.1	21.1	3.0 m	4	1		
			burgite peridotite. White, talcose fractures are	98302	21.1	23.1	2.0 m	3	1		
			widely spaced and thin. Rock has faint foliation	98303	23.1	27.1	4.0 m	3	1 _		
			at 30° and there is no preferred orientation of	98304	27.1	30.1	3.0 m	2	1		
			fractures. Matrix is ubiquitously altered to	98305	30.1	33.1	3:0 m	9	1		
			serpentine, while porphyroblastic pyroxene has	98306	33.1	36.1	3.0 m	6	1		
			common brown crystalline core of bronzite. Over-	98307	36.1	39.1	3.0 m	4	1		
			all about 40% porphyroblasts. Only very fine	98308	39.1	42.1	3.0 m	2	1		1.
		· .	grained accessory pyrite (trace) and magnetite.	98309	42.1	45.1	3.0 m	3	1		
			Rock is magnetic throughout.	98310	45.1	48.1	3.0 m	. 5	1		
61.0	63.7		Carbonate-serpentine alteration - rather sharp	98311	48.1	51.1	3.0 m	8	1		
			colour change to olive brown and grey. Relict	98312	51.1	54.1	3.0 m	5	1		
			harzburgite textures still visible. Porphyro-	98313	54.1	57 . 1	3.0 m	2	1		
	*.		blasts incompletely bleached. Weak carbonate	98314	57.1	60.0	2.9 m	3	1		

PROPERTY MOUNT SIDNEY WILLIAMS

HOL	E No.	91-5

· ·	DIP TEST						
	Angle						
Footage	Reading	Corrected					
	I						
		100					

Hole No Shee	et No. 2 Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished		Core Size
Date Logged		

DE!	TO TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
61.0	63.7	(cont'd)	alteration mostly of porphyroblasts but patchy in	98315	60.0	61.0		2	1		
			in the matrix also. Serpentine colour change to	98316	61.0	62.7	1.7 m	4	1		
			olive green-brown. Trace disseminated pyrite now	98317	62.7	63.7	1.0 m	2	1		
			rusty. Still magnetic. Type 3 alteration.								
63.7	67.1		Talc-carbonate alteration - gradational bleaching	98318	63.7	64.7	1.0 m	6	1		
			to pale green talc. Interval is cut by numerous	98319	64.7	65.7	1.0 m	2	1		
			wavy ankerite veinlets commonly at 25-300. There	98320	65.7	66.7	1.0 m	65	714		
		- · · · · · · · · · · · · · · · · · · ·	does not seem to be a clearcut structure but	98321	66.7	67.7	1.0 m	13	308		
			rather a weak fracture (veinlet) system centered								
			around 65.7 m. Strong, pervasive talc alteration								
		·	and veinlet controlled ankerite. There is no	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
			mariposite development. No visible sulphides but								
			trace very fine grained black specks possible								
			oxidized pyrite. Type 4 alteration.							:	
67.1	106.6	<u>, </u>	Harzburgite - dark green to dark grey, porphyro-	98322	67.7	68.7	1.0 m	21		· .	
			blastic harzburgite as in the top of the hole.	98323	68.7	71.7	1.0 m	14	1		
			Very faint "mantle" layering of core, expressed by	98324	71.7	74.7	3.0 m	1_	_11		
			concentrations of porphyroblasts at 85.0 m. Weak	98325	74.7	77.7	3.0 m	38	1		
			to moderate, incomplete serpentinization. White	98326	77.7	80.7	3.0 m	2	1		
			talc, and minor bright olive green serpentine on	98327	80.7	83.7	3.0 m	9.	1		
			fractures, especially from 101.0-106.6 m,	98328	83.7	86.7	3.0 m	116	1		

DDADEDTY	THE STATE OF	CTINITIES	ひきせん アストイプ
PROPERTY_	MOONT	OTDNEX	WITTITAMS

· · · · · · · · · · · · · · · · · · ·	DIP TEST						
	Ап	gie					
Footage	Reading	Corrected	Hole No.	Sheet No3	Lat	Total Depth	<u> </u>
			Section		Dep	Logged By	
			Date Begun		Bearing	Claim	
			Date Finished		Elev. Collar	Core Size	
	<u> </u>		Date Logged				

DE	EPTH RECOVERY		DESCRIPTION				WIDTH	Au	As	I ·	
FROM	то			SAMPLE No.	FROM	то	WIDTH OF SAMPLE	ppb	ppm		
57.1	106.	(cont'd)	increasing downhole. Trace accessory pyrite and	98329	86.7	89.	3.0 m	122	1		
			magnetite.	98330	89.7	92.	3.0 m	64	1		
	·			98331	92.7	95.	3.0 m	57	1		
				98332	Ĭ	98.	1	5	1		
				98333		101.		38	1		
	·				101.7	I		23	1 1	·	
					04.7		1	76	1		
				70333	104.7	100.0	J.0 m	70			
								-			
	-					<u> </u>		-			
						-			·		
	-							-			
					·						
										·	
						ļ					
	+					ļ					
								-			

Appendix B

PHONE: (604) 980-5814 (604) 988-4524

TELEX: VIA USA 7601067

FAX: (604) 980-9621:

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR 31 ELEMENT TRACE ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni P, Pb, Sb, Sr, Th, Ti, V, Zn Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

PHONE: (604) 980-5814 (604) 988-4524

TELEX: VIA USA 7601067

FAX: (604) 980-9621

GOLD ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 15 mesh. The whole sample is then riffled on a Jones Riffle down to a statistically representative 500 gram sub-sample (in accordance with Gy's statistical rules.) This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

The top 10% of all assays per page are rechecked and reported in duplicate along with the standard and blank.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK

PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B.C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment Samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer or ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

PHONE: (604) 980-5814 (604) 988-4524

TELEX: VIA USA 7601067

FAX: (604) 980-9621

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:
PROCEDURE FOR AG, CU, PB, ZN, NI, CO OR CD GEOCHEM

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analysed on atomic absorption spectrometers using the appropriate standard sets. A background correction can be applied to Ag, Pb, and Cd if requested.

MINERAL ENVIRONMENTS **LABORATORIES** (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD 3176 TATLOW ROAD 3176 TATLOW ROAD 3176 TATLOW ROAD TELEPHONE (604) 847-3004 FAX (604) 847-3005

Gertificate ASSAY

1V-0945-RA1

Company:

MINNOVA INC.

671

Projecti Attne

D. HEBERLEIN/U. MOWAT

Date: AUG-30-91

Copy 1. MINNOVA INC., VANCBUVER, B.C.

He hereby certify the following Assay of 8 CORE samples

submitted AUG-28-91 by U. MOWAT.

Sample Number	Q/tonne	AU oz/ton	
A98207	5.48	. 160	
A98275	1.40	.041	: !
A98277	1,21	<u>. 035</u>	
A98279	2.01	. 059	
A98280	1.97	. 057	
A98281	1,36	040	
A98285	, 99	. 02 9	
A98286	1.08	" 0 32	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1V-0889-RA1

Company:

MINNOVA INC.

Date: AUG-29-91

Project:

671

Copy 1. MINNOVA INC., VANCOUVER, B.C.

Attn:

D. HEBERLEIN / U. MOWAT

2. MINNOVA INC., FORT ST. JAMES, B.C.

We hereby certify the following Assay of 1 CORE samples submitted AUG-21-91 by U. MOWAT.

Sample

ΑU

- ΔI I

Number

g/tonne

oz/ton

A98130

3.11

.091

EE 9 1991

Certified by

COMP: MINNOVA INC.

ATTN: D.HEBERLEIN/U.MOWAT

PROJ: 671

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0889-RJ1+2

DATE: 91/08/29

* CORE * (ACT:F31)

SAMPLE NUMBER		AG PPM	AS PPM	CU PPM	MO PPM	NI PPM	PB PPM	SB PPM	T I PPM	ZN PPM	CR PPM	AU-FIRE PPB
A98101 A98102 A98103	91-1	.6 1.0 .9	1 149 1	15 20 11	1 1 1	800 894 1096	10 10 3	1 1 1	116 23 50	32 18 27	1031 785 1248	10 31 16
A98104 A98105	· · · · · · · · · · · · · · · · · · ·	.8 .8	1	9 21	1	1543 1641	3	1 1	52 32	28 24	1203 835	3 7
A98106 A98107 A98108 A98109		.6 2.3 3.3 3.2	1 1 1	36 50 39 73	1 1 1 1	1493 78 1 1	3 3 11 6	1 1 1	26 4773 7159 7867	25 56 68 79	741 94 60 63	11 3 1 12
A98110 A98111		3.0 3.1	1	59 65	1	1	14	1	7004	62 55	49 54	2
A98112 A98113 A98114 A98115		3.1 3.1 2.2 2.9	1 1 27 1	53 62 45 47	1 1 1	1 1 1 3	16 12 19 9	1 1 1	6147 7054 4678 6938	42 62 41 67	50 43 39 34	67 7 4 10
A98116 A98117		2.1	1	59	1	220	13	' 1 1	3556 3669	48 54	189 195	. 7
A98118 A98119 A98120		5.1 .8 1.0 1.2	1 1 1	164 54 61 10	1 1	217 1067 855 1026	15 5 6 3	1 1 1	137 49 13	18 16 21	588 583 751	1 2 2
A98121 A98122 A98123 A98124		1.3 .2 2.4 1.8	1 914 1 1	10 9 50 44	1 1 1	3 20 113 224	13 21 13 17	1 1 1 1	3880 51 5130 4028	77 80 60 64	36 30 73 108	21 186 10 6
A98125 A98126 A98127 A98128		2.4 2.0 .4 .2	1 1 225 58	58 21 86 86	1 1 1	15 1 1 1	13 16 27 27	1 1 31 11	5095 4671 45 297	53 60 53 69	37 42 25 24	5 232 67
A98129 A98130		.2 .2	914 16452	59 53	1	1 1	24 24	37 49	54 21	82 39	20 31	30 3070
A98131 A98132 A98133 A98149		.7 .9 .7 2.2	3386 565 1 68	18 11 19 86	1 1	892 1168 868 1	21 4 2 17	5941 223 14 1	16 20 30 5698	6 7 12 51	428 592 916 44	851 6 11 23
						· .	· · · · · · · · · · · · · · · · · · ·	<u>`</u>	<u>.</u>			
											. '	
	<u> </u>			<u> </u>				·				-
						-			<u>.</u> .			
				:			•		· · · · · · · · · · · · · · · · · · ·			
					. 						-	

COMP: MINNOVA INC.

ATTN: D.HEBERLEIN/U.MOWAT

PROJ: 671

A98190

A98191

A98192

A98193

A98194

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0901-RD1+2 DATE: 91/08/29

* ROCK * (ACT:F31)

1	SAMPLE NUMBER		AG PPM	AS PPM	CU PPM	MO PPM	NI MPP	PB PPM	SB PPM	TI PPM	ZN PPM	CR PPM	AU-FIRE PPB
	A98134 A98135 A98136 A98137 A98138	91-1	.5 .5 .5 .5	1 1 1 1 91	10 5 7 11 17	1 1 1 1	664 426 530 660 1048	19 11 17 16 20	1 1 1 1	51 47 36 30 18	26 22 22 21 19	1182 1038 1005 1069 807	4 2 2 8 59
	A98139 A98140 A98141 A98142 A98143		.6 .6 .9 .6	1 1 1 125 1	15 13 37 12 19	1 1 1 1	439 451 553 771 464	17 11 13 18 13	1 1 1 1	21 23 19 15 15	18 17 15 15	758 838 703 697 604	6 2 1 27 4
	A98144 A98145 A98146 A98147 A98148		.7 .6 .5 .5	1 1 1 1	6 10 5 9 7	1 1 1 1	1501 1671 1765 1624 1498	29 26 30 29 25	1 1 1 1	51 59 32 45 38	25 27 26 25 23	1054 1201 1129 1010 962	2 3 3 8 4
	A98150 A98151 A98152 A98153 A98154	71-2	.7 .6 .5 .6	1 1 1 1	15 13 12 10 9	1 1 1 1	1694 1698 1687 1667 1510	26 26 25 28 27	1 1 1 1	52 56 52 46 44	31 34 38 31 30	1297 1410 1508 1179 1376	2 12 3 3 2
	A98155 A98156 A98157 A98158 A98159		.7 .8 .7 .6	1 1 1 1	10 8 13 10 11	1 1 1 1	1600 1543 1597 1531 1582	27 23 21 23 26	1 1 1 1 1	41 49 42 35 53	26 25 24 24 30	1124 1035 893 883 1264	6 1 4 2 2
į	A98160 A98161 A98162 A98163 A98164		.7 .7 .7 .6	1 1 1 1	15 12 14 13 14	1 1 1 1	1438 1369 1241 1110 1106	23 27 23 18 22	1 1 1 1	62 73 51 51 45	31 33 31 28 27	1404 1537 1397 1330 1248	3 2 1 2 28
	A98165 A98166 A98167 A98168 A98169		.3 .4 .4 .4	1 1 1 1 34	15 14 14 18 12	1 1 1 1	427 495 426 399 864	14 15 14 18 16	1 1 1 1 1	14 22 21 16 11	23 24 23 23 23	978 1184 1085 1133 1156	3 2 1 53 17
	A98170 A98171 A98172 A98173 A98174		.4 .3 .4 .5	1 1 55 1	12 10 11 12 17	1 1 1 1	494 473 797 456 1029	14 16 20 16 22	1 1 1 1	11 14 17 10 12	21 25 25 24 22	1103 1286 1143 966 799	12 4 2 1 4
	A98175 A98176 A98177 A98178 A98179		.4 .3 .5 .8 1.1	1 1 1 355 568	14 14 11 12 21	1 1 1 1	1181 638 454 1265 1253	20 18 19 21 27	1 1 1 43 63	18 27 24 14 14	24 31 24 17	993 1297 1052 582 528	3 10 1 20 22
	A98180 A98181 A98182 A98183 A98184		.8 .8 1.0 .8 .7	1211 849 1072 2024 243	15 12 13 12 11	1 1 1 1	1208 1281 1329 1424 832	18 18 22 23 18	29 23 30 44 1	4 5 9 14 25	13 16 15 17 22	347 390 459 671 946	40 21 71 334 76
	A98185 A98186 A98187 A98188 A98189		.5 .4 .6 .6	1 1 1 1	22 6 11 14 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	394 418 928 1384	14 11 17 25 21	1 1 1 1	28 24 26 45 47	23 22 27 29 29	1035 862 976 1321 1287	1 1 3 1 2

Ansid

.4

.6

1069 25 1490 24 1677 28 1472 1991 21

32

COMP: MINNOVA INC. PROJ: 671

ATTN: D.HEBERLEIN/U.MOWAT

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0901-RJ3

DATE: 91/08/29

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	NI PPM	PB PPM	SB PPM	TI PPM	ZN PPM	CR PPM	AU-FIRE PPE
A98195 9/-2 A98196 A98197	.5 .5 .6	1 1 1	10 10 10	1 1 1	1620 1483 1594	12 12 16	1 1 1	69 66 63	35 35 35	1480 1500 1490	<u>1</u>
A98198 9/-3	.4	1	14 3	1	1189 715	16 22	2 1	11 14	24 25	960 1190	1
A98200 A98201	.3 .4	63 227	16 12	1	1074 1390	12 15	7 18	11 9	20 17	897 664	23 63
	·					-:					
		1 -	·					s			
									- ·		
	<u>. '-</u> .			· · · · · · · · · · · · · · · · · · ·					* * * * * * * * * * * * * * * * * * *		
	·	· · · · · · · · · · · · · · · · · · ·			•					-	
											٠
		4) 4									
		•	: :	· <u>·</u>		<u>.</u>					
								·		· · · · · · · · · · · · · · · · · · ·	

COMP: MINNOVA INC. PROJ: 671

ATTN: D.HEBERLEIN/U.MOWAT

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0945-RJ1+2 DATE: 91/09/04

* CORE * (ACT:F31)

) [SAMPLE NUMBER	A(CU PPM	MO PPM	NI MPM	PB PPM	SB PPM	TI MPM	ZN PPM	CR PPM	AU-FIRE PPB
	A98202 A98203 A98204 A98205 A98206		4 1 4 215 3 254	8 9 5 19 8	1 1 1 1	1064 862 1271 1452 1344	3 3 6 7 10	1 1 16 19 45	13 13 10 9 8	19 20 17 15 15	676 733 705 674 551	18 11 161 192 400
	A98207 A98208 A98209 A98210 A98211	1.9	5 2791 7 175 9 94 7 1	12 5 12 9	1 7 1 1	1310 265 73 861 1403	7 1 1 1 9	28 10 4 1 21	7 4 3293 56 21	16 6 23 25 14	484 288 173 704 669	4910 341 145 1 350
	A98212 A98213 A98214 A98215 A98216	.8	3 248 3 281 7 127 3 1	9 11 12 10 14	1 1 1 1	1406 1445 1205 386 699	8 7 7 3 7	21 47 23 1	44 23 26 13 21	22 15 22 22 22 25	957 762 1030 943 1137	286 482 420 6 3
	A98217 A98218 A98219 A98220 A98221	.4	4 1 5 1 5 1 7 1	10 12 13 10 13	1 1 1 1	1290 655 675 1583 1857	11 6 7 12 15	1 1 1 1	27 23 24 29 32	34 29 28 34 39	1393 1364 1297 1338 1383	12 2 15 1
	A98222 A98223 A98224 A98225 A98226	.4	3 1 4 1	13 10 11 15 18	1 1 1 1	1894 1940 1874 1875 2072	17 16 17 12 12	1 1 1 1	29 30 26 24 32	31 30 33 38 40	1065 1080 1154 1185 1449	20 19 1 1 1
	A98227 A98228 A98229 A98230 A98231		5 1 7 1 5 1	13 12 14 15 13	1 1 1 1	1731 1632 1760 1850 1666	14 13 17 18 15	1 1 1 1	30 33 46 63 22	33 35 36 33 31	1287 1344 1480 1357 1162	1 4 3 1 7
-	A98232 A98233 A98234 A98235 A98236	.5	1 5 1 4 1	16 13 13 13 13	1 1 1 1	1756 1585 1670 1647 1606	13 9 17 8 11	1 1 1 1	21 19 28 24 25	29 27 32 27 27	1009 1031 1243 912 980	1 7 13 12 2
	A98237 A98238 A98239 A98240 A98241	.5 .6 .2	5 1 2 1 I 1	13 13 13 17 12	1 1 1 1	1538 1652 1677 1703 1485	12 13 1 2 8	1 1 1 1	19 17 30 28 32	27 28 27 27 25	1063 1095 1134 1197 1014	1 21 27 3
	A98242 A98243 A98244 A98245 A98246	.6	5 1 7 1 5 1 7 1	12 10 9 9	1 1 1 1	1582 1639 1577 1589 1515	9 14 10 13 8	1 1 1 1 1	30 33 33 37 65	28 32 33 32 26	1096 1208 1196 1235 837	19 17 3 7 1
	A98247 A98248 A98249 A98250 A98251	.6 .7 .6	7 1 5 1	9 13 9 10 9	1 1 1 1	1700 1709 1646 1730 1049	13 15 10 15 16	1 1 1 1	27 31 33 41 76	31 31 32 38 30	1067 1141 1376 1437 1215	19 21 3 18 3
	A98252 A98253 A98254 A98255 A98256	.3 .6 .7 1.8 1.8	5 1 7 1 3 1	11 12 11 107 71	1 1 1 1 1	976 1030 1073 63 67	9 3 9 1 1	1 1 1 1	38 27 44 4376 4017	30 29 35 57 58	1197 1118 1428 133 181	3 18 3 5 5
	A98257 A98258 A98259 A98260 A98261	2.0 .7 1.2 .7	7 1 2 1 7 1	150 8 17 9 15	1 1 1 1 1	278 1467 833 1215 1285	1 11 1 7 8	1 1 1 1	4445 131 1136 49 52	52 39 35 27 27	306 1780 870 1070 1081	3 1 1 1

COMP: MINNOVA INC.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJ: 671 ATTN: D.HEBERLEIN/U.MOWAT

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0945-RJ3+4 DATE: 91/09/04

* CORE • (ACT:F31)

SAMPLE NUMBER		AG PPM	AS PPM	CU PPM	MO PPM	NI PPM	PB PPM	SB PPM	TI PPM	ZN PPM	CR PPM	AU-FIRE PPB
A98262 A98263	91-4	.2	1	16 15	1 1	1277 529	20 10	1	35 27	31 25	1192 1141	1 3
A98264	·	.6	1	7	. 1	386	11	- 1	22	26	1195	1
A98265		.6	. 1	9	. 1	433	15	1	15	24	1079	1
A98266	. '	.6	- 1	5	1	545	11	11	21	27	1246	. 1
A98267		.6	1 82	9	1	725 1165	11 19	1 4	22 13	27 21	1374 981	1 33
A98268 A98269		.5 .8	131	13	1	979	15	2	14	20	800	40
A98270		.8	1	11	i	532	10	1	16	20	972	5
A98271		.5	1	11	1	477	9	1	24	27	1243	10
A98272		.6	1	161	1	451	34	1	39	72	1103	5
A98273		.5	1 220	6	1	515 1105	14	1 11	14	24 18	904 709	1 138
A98274		.6	220 2054	13 11	1	1195 1277	18 18	39	. 10 . 9	15	601	1260
A98275 A98276	•	.8	2034 977	12	· 1	1306	11	16	. 11	16	531	313
		.8	1210	9	1	918	9	10	8	13	426	1060
A98277 A98278		.8	1254	10	1	1452	14	39	. 9	15	576	195
A98279		.9	3769	12	1	1447	18	42	10	17	693	1810
A98280		1.0	805	6	i	704	1	13	6	9	382	1280
A98281		.8	2329	. 10	1	1409	18	55	8	14	571	1105
A98282		.9	1810	15	1	1331	17	36	8	15	606	722
A98283		1.3	1358	15	1	1465	23	36	10	16	576	427
A98284		1.1	1420	16	1	1290	16	29	7	15	562	5 35
A98285		1.2	1643	12	1	1187	. 18	31	9	14	505	1000
A98286		1,1	1607	13	1	1314	17	36	10	16	580	1020
A98287		.6	1	6	1	632	13	1	16	23	975	6
A98288		.7	1	12	1	828	10	1	21 14	26 22	1355 1000	1 42
A98289	4 4	.8 .7	46 1	10 5	1	1141 562	14 10	1	18	22	1083	1
A98290 A98291		.7	1	9.	1.	371	8	1	16	22	1030	i
A98292		.1	<u>'</u>	11	1	426	7	<u> </u>	20	26	942	2
A98293		.2	1	12	1	590	16	i	25	32	1226	1
A98294	N.	.3	1	13	1	752	21	i	35	30	1233	4
A98295		.4	1	14	1	1294	25	1	37	36	1402	1
A98296		.2	1	11	1	1541	22	- 1	37	35	1236	3
A98297	91-5	.5	1	21	1	1711	28	1	389	46	1427	.3
A98298		.4	1	20		1970	22	1	109	39	1420	2
A98299		.3	1	15	1	1893	29	1	50	42	1510	6
A98300 A98301	."	.2	1	15 13	1	1729 1555	23 19	1	42 50	37 36	1328 1394	2 4
A98302	·	.4	1	14	· · · · · ·	1633	21	1	49	37	1343	3
A98303		.3	. 1	17	1	1932	22	i	50	35	1285	3
A98304		.4	i	16	1	2017	20	i	46	35	1214	2
A98305		.3	1	17	1	2045	25	1	41	36	1297	9
A98306		.4	1	13	1	1647	24	1	50	38	1469	6
A98307		.3	1	15	1	1630	19	1	54	36	1300	4
A98308		-4	1	19	1	1752	24	1	51	38	1323	2
A98309 A98310	;	.4 .4	1	17 18	1	1742 1676	22 23] 1	48 61	37 39	1453 1649	3 5
A98311		.4	1	19	1	1763	23	1	53	37	1579	8
A98312		.3	1	17	1	1813	21	1	38	35	1242	5
A98313		.5	1	18	1	1716	26	i	51	38	1443	2
A98314		.5	1	15	i	1656	22	i	60	38	1520	3
A98315		.5	i	16	1	1701	26	1	64	37	1460	2
A98316		.4	111	21	1	1713	24	1	56	36	1550	4
A98317		-4	1	17	1	1752	26	1	54	39	1693	2
A98318		.3	1	20	1	1312	. 14	1	56	34	1395	6
A98319		.4	_ 1	17	1	792	13	1	35	30	1345	2
A98320		.5	714	12	1	1312	6	22	19	19	973	65 17
A98321		-4	308	14	1	1060	9	3	25	24	1191	13

COMP: MINNOVA INC.

PROJ: 671

MIN-EN LABS - ICP REPORT

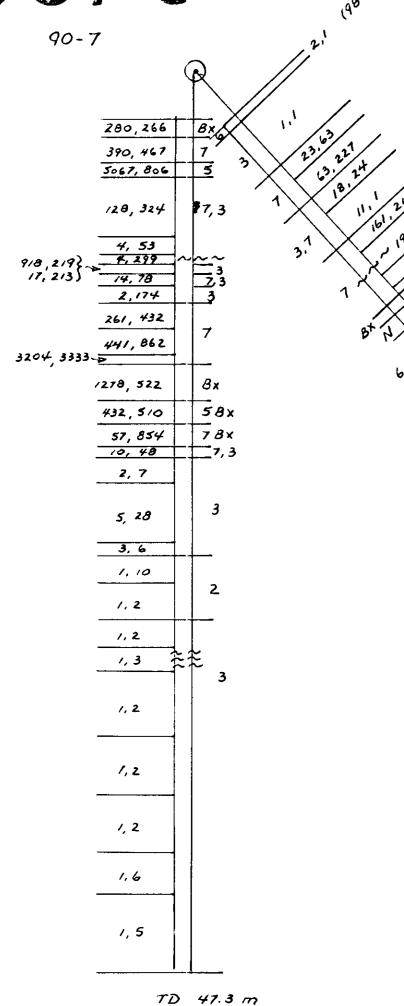
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)988-4524

FILE NO: 1V-0945-RJ5 DATE: 91/09/04

* CORE * (ACT:F31)

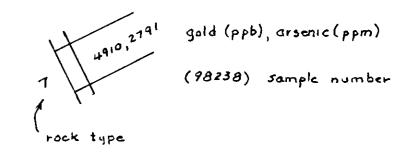
TTN:	D.HEBERLEIN/U.MOWAT	(604)980-5814	OR	(
	Delice Little Control	(001),200 001,2		•

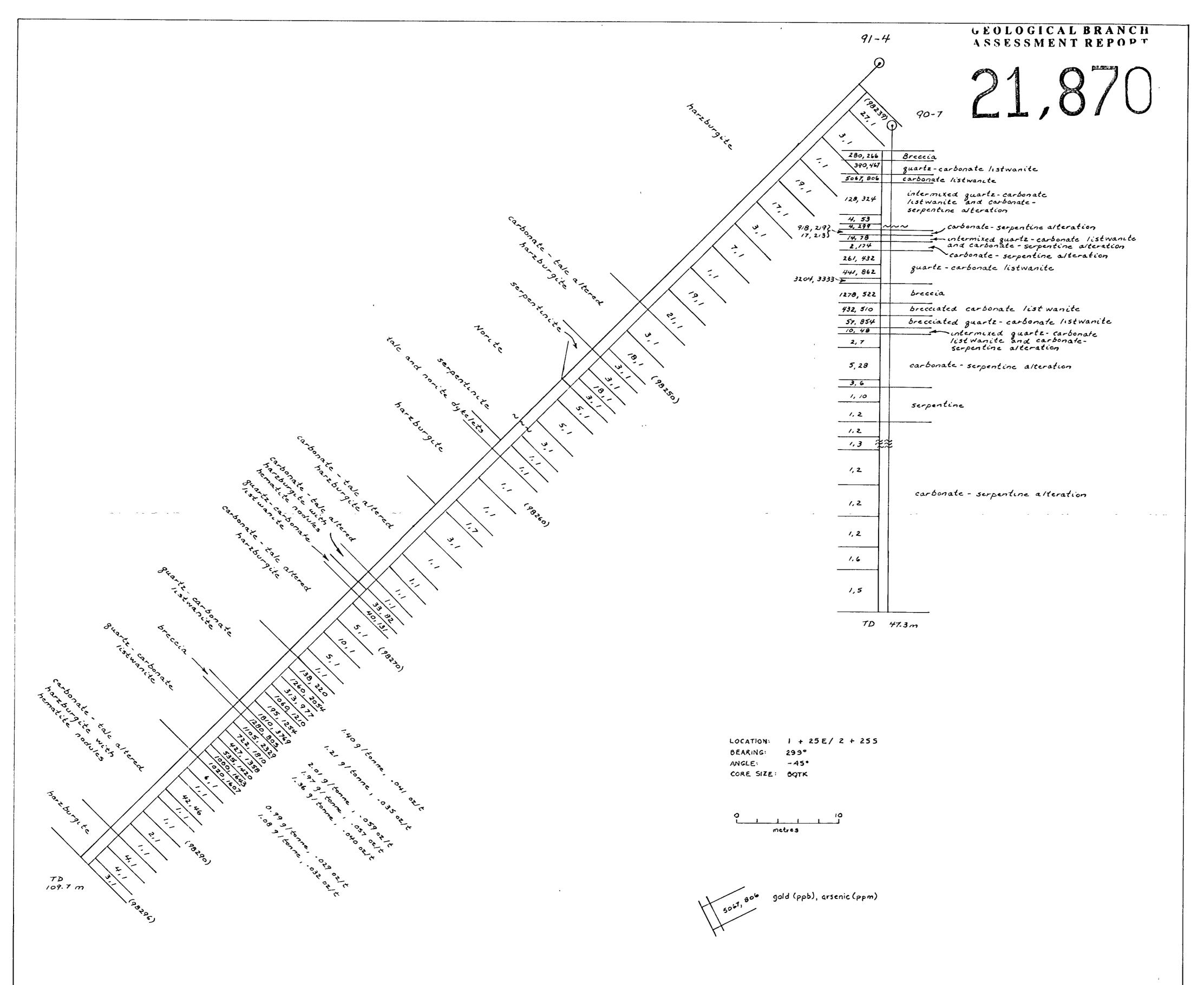

TD 91.4 m.

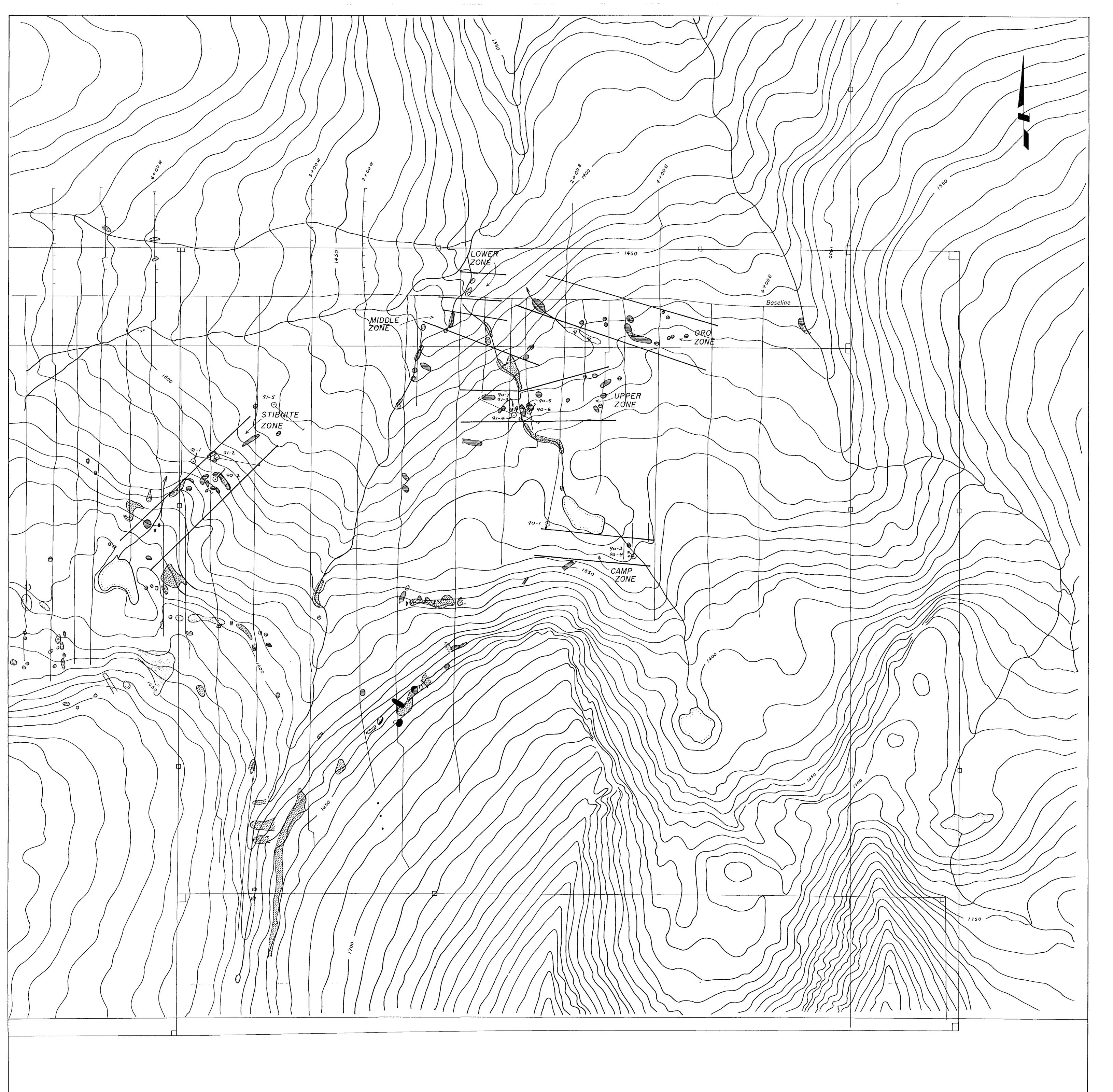
metres 10

gold (ppb), arsenic (ppm) +/- silver (ppm)

(98101) sample number




- 7 Quartz-carbonate listwanite
- 6 Carbonate quartz listwanite
- 5 Carbonate listwanite
- 4 Tale carbonate alteration
- 3 Carbonate serpentine alteration
- 2 Serpentinite
- 1 Unaltered
- Bx Breccia
- Hz Harzburgite
- N Norite


LOCATION: 1 + 02E/ 2 + 135

BEARING: ANGLE: CORE SIZE BOTK

metres

LEGEND

listwanite outcrop

serpentine / talc outcrop

volcanics, argillite, limestone

norite

grid line

L claim post

0 200 meters

MAP

GEOLOGICAL BRANCH ASSESSMENT REPORT

GRID MAP AND

LISTWANITE ZONES AND DRILL HOLES