LOG NO:	DEC	04	1991	RD.	
ACTION:			┉┛┶┵╺ <u>┙╶</u> ╋┈╴		
FILE NO:		<u> </u>	— _ , <u>,,,,,,</u>		_

REPORT OF MAPPING AND PROSPECTING ON THE BOULEAU PROPERTY Vernon Mining Division N.T.S. 82L-4E, 5E Latitude: 50°15'N, Longitude: 119°36'W OWNER: Chevron Minerals Ltd. OPERATOR: Inco Limited

Mark Slauenwhite, Geologist Inco Exploration and Technical Services Inc. November 1991

TABLE OF CONTENTS

		·	<u>Page</u>
1.0	SUMMA	RY	1
2.0	INTRO	DUCTION	2
3.0	PROPE	RTY	3
	3.1	Location and Access	3
	3.2	Physiography and Vegetation	3
	3.3	Claims Status	3
4.0	HISTO	RY	4
	4.1	1987	4
	4.2	1988	4
	4.3	1989	5
	4.4	1990	5
5.0	1991	EXPLORATION PROGRAM	6
6.0	GEOLC	GY AND MINERALIZATION	7
	6.1	Regional Geology	7
	6.2	Property Geology	7
	6.3	Mineralization	7
7.0	CONCI	LUSIONS AND RECOMMENDATIONS	9
8.0	STATE	EMENT OF EXPENDITURES	10
9.0	STATE	EMENT OF QUALIFICATIONS	11

*

LIST OF APPENDICES

Appendix A	Rock Sample Analysis	At Rear
------------	----------------------	---------

LIST OF FIGURES

			Page
Figure	1	Location Map	3a
Figure	2	Property Map	4a
Figure	3	Geology Compilation, Soil Geochem- istry and Sample Location Map Index	Pocket
Figure	4	Sample Location, Rock Geochemistry and Detailed Geology Map Index (North)	Pocket
Figure	5	Sample Location and Rock Geochemistry (South)	Pocket
Figure	6	Detailed Geology and Sample Location Zone 1	At Rear
Figure	7	Detailed Geology and Sample Location Zone 1a	At Rear
Figure	8	Detailed Geology and Sample Location Zone 1b	At Rear
Figure	9	Detailed Geology and Sample Location Zone 1c	At Rear
Figure	10	Detailed Geology and Sample Location Zone 2	At Rear
Figure	11	Detailed Geology and Sample Location Zone 3	At Rear
Figure	12	Detailed Geology and Sample Location Zone 4	At Rear
Figure	13	Detailed Geology and Sample Location Zone 5	At Rear
Figure	14	Detailed Geology and Sample Location Zone 6	At Rear
Figure	15	Detailed Geology and Sample Location Zone 7	At Rear

.

. 1 - 1 .

1.0 SUMMARY

Exploration for epithermal gold mineralization similar to that discovered at the Brett Property was carried out on the Bouleau Claims by Inco Exploration and Technical Services Inc. Exploration consisted of mapping and prospecting, which focused on areas with gold and/or silver soil anomalies defined from 1988 to 1990. The mineralization at the Brett, which is a few kilometers southeast of the Bouleau property occurs in association with silicification and argillic alteration hosted by high angle shear zones that crosscut Eocene pyroclastics and flows.

Two types of quartz veins with anomalous gold and silver were identified on the Bouleau Property. An older vein type, generally with less than 500 ppb gold, is typified by a medium- to coarse-grained crustiform texture. A younger "higher grade" vein type which contains up to 34 g/t gold and 286 g/t silver is typified by a very fine-grained saccharoidal texture, local weak millimeter-scale chalcedonic colloform and pseudomorphs remnant from weathered banding, out carbonate. Both vein types are hosted by granodiorite of the Okanagan Batholith and often occur within joint features and more rarely within small high-level fault structures. Little or no wall rock alteration occurs with the "high grade" saccharoidal-type veins. However, limited argillic alteration with associated hematite staining is commonly associated with the earlier crustiform veins.

Detailed sampling adjacent to the highly anomalous veins and some of the weakly anomalous veins indicates that the wall rocks are barren. From the bedrock exposure (which is in the order of 40% in the areas of the gold soil anomalies) and from several hand dug trenches it was determined that the veins are small and generally less than 40 cm wide and 15 m long. The low grade crustiform veins occasionally form small stockworks. The high grade veins on the other hand occur less frequently and invariably as lone entities. No further work on the property is recommended.

2.0 INTRODUCTION

ę – -

Several drainages with anomalous gold were defined in 1987 by heavy mineral sampling the tributaries of Bouleau Creek. Most of the anomalous tributaries drain a highland area located to the southwest of Bouleau Creek. Soil sampling carried out during 1988 and 1990 on the Bouleau Claims, which are staked over the headwaters of the anomalous drainages, identified numerous areas with anomalous gold. Subsequently Inco Limited optioned the property from Chevron Minerals Limited.

3.0 PROPERTY

3.1 Location and Access

The property is located 25 km west of Vernon on the Thompson Plateau of south-central British Columbia (Figure 1). The claims are situated between Bouleau and Whiteman Creeks. The approximate center of the property is at 50°15' North Latitude and 119°36' West Longitude on NTS maps 82L-4E and 5E.

Primary access to the property is via the Whiteman Main Road, which is a logging road entered approximately 9 km to the east of the property off of the West Side Road. The Whiteman Main Road provides access to the southern part of the claim block whereas access to the north and east parts of the claim block is provided by the Bouleau Main and Maw Main roads. These roads are spur roads off of the Whiteman Main road and are well-maintained.

Relief on the southern part of the property is relatively low. Toward the northwest however, it is in the order of 200 m. Bedrock exposure on the flanks and top of the hill is approximately 40% whereas to the southeast outcrops are rare as this area is covered by till (transport was from northwest to southeast). Bedrock exposure approaches 10% along the southwest and northeast margins of the property, in the deeply incised valleys of Whiteman and Bouleau Creeks. Drainages in the central part of the property are typically immature with poorly-defined water courses and minimal down-cutting.

Forest cover in the area is typically thick and consists mainly of conifers. Portions of the southeastern part of the property have been clear-cut.

3.3 Claims Status

The Bouleau property consists of 73 units which are contained within 12 claims as one group (Bouleau). The property is registered in the Vernon Mining Division of British Columbia.

The claims were originally staked between November 9, 1987 and September 30, 1988. They are owned by Chevron Minerals Ltd. and are under option by Inco Limited. The following table lists the information pertinent to the claims.

CLAIM NAME	RECORD NUMBER	# UNITS	EXPIRY DATE
Boul 1	259382	18	Nov 12, 1995*
Boul 2	259383	12	Nov 12, 1994*
Boul 3	259384	20	Nov 12, 1994*
Boul 4	259458	6	June 17, 2001
Boul 5	259462	10	June 20, 2001
Boul 1 Fr	259445	1	June 16, 2001
Boul 2 Fr	259446	1	June 16, 2001
Boul 3 Fr	259447	1	June 16, 2001
Boul 4 Fr	259460	1	June 20, 2001
Mess Fr	259461	1	June 20, 2001
Boul 5 Fr	259638	1	Sept 28, 1993
More Boul Fr	259664	1	Sept 30, 1993

• • •

* Pending acceptance of this report.

4.0 HISTORY

4.1 1987

Discovery Consultants carried out heavy mineral sampling on the tributaries of Bouleau Creek for Chevron Minerals Limited. Several anomalies grading up to 57 ppm gold were returned from tributaries draining a highland region to the south and southwest of Bouleau Creek. Claims comprising the Bouleau Property were staked over some of the highland area and the anomalous tributaries.

4.2 1988

Discovery Consultants conducted soil sampling and geophysics on the claims. Separate reports were filed for northwest and southeast halves of the property, hence these areas will be discussed separately.

Boul

The Boul claims (Boul 1, Boul 2, Boul 5, Boul 1 Fr, Boul 5 fr, Mess Fr and More Boul fr) are located on the northwest side of Exploration work on the Boul consisted of the property. reconnaissance soil geochemistry. A total of 563 "B" horizon soil samples were collected. Sampling was conducted every 100 m along 100 m spaced east-west orientated lines. A few samples were also collected along three lines parallel to topographic contours on the upper slopes of Bouleau Creek. All samples were analyzed for 30 elements by Bondar-Clegg & Company Ltd. in North Vancouver. Gold analyses were performed by wet extraction which involves digestion by aqua regia, extraction by MIBK (organic extraction) followed by atomic The other 29 elements were analysed for by an absorption. Inductively Coupled Plasma technique.

Several gold anomalies were returned from the survey. The highest gold values occur in two discrete anomalies. One of these anomalies extends north-south for over a distance of 1500 m along the east margin of Boul 1. The other anomaly occurs in the south central part of Boul 1 and measures 700 m by 300 m. Gold values as high as 398 ppb were returned from the anomalies. The average gold value for all of the samples is 41 ppb. Both anomalies extend to the edge of the surveyed area.

White Boul

The White Boul (claims Boul 2 and 3) comprises the southwest half of the property. Exploration on the White Boul consisted of both reconnaissance soil geochemistry and VLF-EM surveys. A total of 182 soil samples were collected. Samples were taken every 100 m along 100 m spaced, east-west oriented lines.

Four soil anomalies were defined. The largest, measuring up to 200 m wide and 700 m long, is located in the center of Boul 3 and is oriented north-south. The highest gold value returned from any of the four anomalies was 90 ppb.

The VLF-EM survey was conducted on the same grid as the soil survey. A few northeasterly trending conductors (possibly related to faults) were identified near the center of the grid.

4.3 1989

Discovery Consultants performed limited mapping and prospecting on the property. A total of 12 rock samples were collected. No significant values were returned.

4.4 1990

The 1990 exploration program carried out by Discovery Consultants consisted of a soil geochemical survey. Sampling was conducted every 100 m on 100 m spaced, east-west oriented lines on claims Boul 4 and 5 and on the previously untested parts of Boul 3 and 2. This survey essentially expanded the reconnaissance surveys carried out in 1988. Detailed soil surveys were also carried out over the gold soil anomalies defined in 1988. The sampling in these areas was on 25 x 25, 25 x 50, and 50 x 50 m grids. The samples were analyzed by ACME Laboratories Ltd. in Vancouver. All of the samples were analyzed for 30 elements including gold and silver.

A few scattered gold anomalies were defined on claim Boul 3. The majority of these consist of less than five samples that generally grade less than 100 ppb gold. At the north edge of Boul 3, however, 2 larger and stronger anomalies were defined on the steep banks of Bouleau Creek. The westernmost of these two anomalies is elongated northeast-southwest and is roughly parallel to a tributary of Bouleau Creek. This anomaly extends some 400 m and has values up to 1100 ppb gold. The second anomaly, located to the east of the above, has a similar configuration but its values are significantly lower with a high of 120 ppb gold. Both of these anomalies are likely influenced by the steep slope of Bouleau Creek. An anomaly similar in size and tenor to the westernmost anomaly on Boul 3 was defined on the north edge of Boul 4.

÷ ·

Detailed soil sampling over the soil anomalies defined in 1988 more clearly defined the shape of the anomalies but did not expand on their sizes. Values as high as 1290 ppb gold were returned from the detailed soil sampling.

Several small anomalies typically including 3 or fewer samples were returned along a northwesterly trend at the northwest corner of claim Boul I. The highest gold value returned from any of these anomalies was 390 ppb gold.

5.0 1991 EXPLORATION PROGRAM

Inco Exploration and Technical Services Inc. carried out reconnaissance mapping and prospecting on the Bouleau Property in May and June 1991. Mapping was conducted on 1:5000 (Figure 5) and 1:2500 (Figure 4) scales and at 1:100 and 1:50 (Figures 6-12) scales where detailed sampling was carried out. Aerial photographs, topographic maps and the soil geochemistry grid provided control for the mapping and prospecting. This program focused on areas with anomalous gold in the soil defined in 1988 and 1990. During 1991, a total of 272 rock samples were collected. These were analyzed by ACME analytical in Vancouver by the following manner: each sample was pulverized to -150 mesh after which a 0.5 g split of the sample was digested in 3 ml of 3:1:2 HCl - HNO3 - H2O solvent at 95°c for one hour and then diluted to 10 ml with water. The digested sample was analyzed for 30 elements by the inductively coupled argon plasma method (ICP). The acid leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, and Al. Flameless atomic absorption was utilized for Hg analysis. Gold analysis was by acid leach and atomic absorption on a 20 g sample.

6.0 GEOLOGY AND MINERALIZATION

6.1 Regional Geology

The region west of the north end of Okanogan Lake is underlain by the Upper Paleozoic to Upper Triassic Nicola Group. The metavolcanic and metasedimentary rocks of the Nicola group in this area are tightly folded and highly metamorphosed as well as intruded by granodiorite of the Jurassic/Cretaceous Okanagan Batholith. The batholith in turn is overlain by interbedded sediments, pyroclastics and volcanics of the Eocene Kamloops Group. Both the batholith and the Kamloops Group are intruded by the Whiteman Creek Stock. It is suspected that the synite/quartz monzonite of the stock is coeval to the Eocene volcanics.

All of the various intrusions and groups underlying the property belong to the Quesnellia Terrane which is part of the Intermontane Belt.

6.2 Property Geology

Except for the northwestern portion of the claim block, the claims are mainly underlain by granodiorite of the Okanogan The contact between the granodiorite and the Batholith. overlaying Eocene volcanics and pyroclastics is largely obscured by overburden but is suspected to trend roughly north-northeast. The volcanic rocks consist predominantly of andesite with lesser basalt and dacite. Lapilli tuff and feldspar porphyry flows are also minor constituents of this volcanic assemblage. Dykes with mafic/intermediate compositions suspected to be "feeders" to the volcanics locally crosscut the Okanogan Batholith. The batholith is typically homogeneous and consists primarily of course-grained leucocratic to mesocratic granodiorite. Rare porphyritic and fine grained aplitic dyke phases of the intrusive occur locally.

6.3 Mineralization

Two types of quartz veins with anomalous gold and silver were identified on the Bouleau Property. An older vein type, generally with less than 500 ppb gold, is typified by a medium- to coarse-grained crustiform texture. A younger "higher grade" vein type which contains up to 34 g/t gold and 286 g/t silver is typified by a very fine-grained saccharoidal texture, local weak millimeter scale chalcedonic colloform and pseudomorphs remnant from weathered out banding, carbonate. Both vein types are hosted by granodiorite of the Okanagan Batholith. Two distinctive vein orientations were recognized. The average strike of one vein set is 30° and the other is 120°. Both vein sets dip vertically. It is theorized that the veins are hosted by joints. In rare instances veins are contained within small, high-level faults. Little or no wall-rock alteration occurs with the "high grade" saccharoidal-type veins. However, limited argillic alteration with associated hematite staining is commonly associated with the earlier crustiform veins.

Detailed sampling adjacent to the highly anomalous veins (>5 g/t gold) and some of the weakly anomalous veins (Figures 6 - 16) indicates that the wall rocks are virtually barren. From the bedrock exposure, which is in the order of 40% in the areas of the gold soil anomalies, and from several hand dug trenches it was determined that the veins are small and generally less than 40 cm wide and 15 m long. The low grade crustiform veins occasionally form small stockworks. The high grade veins occur less frequently and invariably as lone entities.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Outcrop exposure in the areas of the soil anomalies (Boul 1 and 4) is approximately 40%. Highly concentrated rock sampling carried out over these areas indicates that quartz, occurring as veins, is the only lithology on the property that carries significant amounts of gold and or silver. Wall rock adjacent to the veins is barren of gold and silver mineralization. Veins that sometimes form small stockworks contain less than 5 g/t gold. Veins that occasionally host more than 5 g/t gold invariably occur as lone entities. Like the low grade veins they are typically small, measuring less than 40 cm wide and 15 m long. Despite the high number of anomalous veins (>100 ppb gold) it is concluded that the veins are subeconomic and are not worthy of follow-up.

The source of the gold in the soil (at least on the northwest half of the property) is explained by the anomalous quartz veins which invariably occur nearby. The soil anomalies on the southeast half of the claim block are likely related to glacial transport in which the till that blankets this part of the property was derived from the northwest.

No further work on the Bouleau Property is recommended.

8.0 STATEMENT OF EXPENDITURES

Personnel

• • •

M. Slauenwhite Project Geologist	41 days @ \$230/day May - June 1991	\$9430
D. Bohme Project Geologist	15 days @ \$230/day May - June 1991	3450
P. Ziebart Prospector	17 days @ \$185/day May - June 1991	\$3145
E. Hunter	1 day @ \$300/day May 1991	\$300

....

Geochemical Analysis

272 Rock Samples	@ \$13/sample	\$3536
Transportation (Truck Ren	ntal includes fuel costs)
Jimmy 4x4 4x4 Pick-up	36 days @ \$120/day 8 days @ \$60/day	\$4320 \$480
Accommodations	36 days @ \$50/day	\$1800
Meals	72 man days @ \$30/day	\$1800
Field Supplies		\$760
Freight		\$530
Communications		\$230
Report Writing and Draft	ing	<u>\$4390</u>
	TOTAL	\$34171

9.0 STATEMENT OF QUALIFICATIONS

• ·

I, David Mark Slauenwhite, of the City of Vancouver, in the Province of British Columbia, do certify that:

- 1. I reside at 7830 Yukon Street, Vancouver, British Columbia, V5X 2Y5.
- 2. I am a graduate of Acadia University in Wolfville, Nova Scotia, with a Bachelor of Science Degree and a major in geology.
- 3. I have been employed in minerals exploration as a geologist with Acadia Minerals Venture Ltd. during 1984 and with Inco from 1985 to 1991.
- 4. I personally carried out and supervised the work described in this report.
- 5. I am a geologist employed by Inco Exploration and Technical Services Inc. at 2690-666 Burrard St., Vancouver B.C., V6C 2X8.

the band

:

Appendix A

A

852 F HASTINGS ST. VANCOUVER B.C. V6A 1R6

GLOCHEMICAL ANALYSIS CERTIFICATE

Inco Expl. & Tech. Services File # 91-1578 Page 1 2690 - 666 Burrard St., Vancouver BC V6C 2X8 Submitted by: DENNIS BOHME

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	M Au*	** >b
RX 039749 RX 039750 RX 039751 RX 039752 RX 039753	15 3 3 3 10	7 9 7 15 12	31 26 9 8 26	17 90 47 37 13	5.2 .7 .3 .5 7.4	6 8 7 6 8	1 5 3 2 1	119 603 494 168 79	1.60 2.77 2.27 2.81 1.09	14 12 12 7 8	6 5 5 5 5	ND ND ND ND	4 6 7 4	37 12 9 18 25	.2 .4 .2 .2 .2	3 2 2 2 2	2 2 2 2 2 2	8 21 14 13 4	.05 .17 .14 .11 .03	.036 .058 .046 .051 .014	14 9 6 8 7	9 12 11 9 8	.06 .36 .25 .12 .03	41 32 49 18 33	.01 .01 .01 .03 .01	2 2 2 3 2	.28 .98 .84 .71 .18	.02 .03 .03 .03 .01	.15 .17 .19 .15 .18	1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3	10 12 12 12 13 14
RX 039754 RX 039755 RX 039756 RX 039757 RX 039758	9 3 10 3 3	20 5 5 10 5	28 8 18 36 8	26 45 60 47 56	4.4 1.0 4.9 5.8 1.1	8 9 6 5 8	3 3 2 3	394 1011 587 324 522	2.67 1.76 2.16 2.12 1.80	9 20 14 15 6	5 5 5 5 5	ND ND ND ND	44645	11 12 84 12 29	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 3 2 2	7 13 27 13 20	.08 .12 .49 .09 .27	.042 .041 .054 .038 .048	10 10 8 6 8	8 9 10 12 10	.10 .14 .36 .22 .28	18 55 26 11 23	.01 .01 .13 .01 .01	2 2 2 2 2	.38 .44 .94 .48 .75	.01 .02 .03 .01 .03	.14 .12 .09 .10 .14	1 20 1 3 1 2 1 3 1	19 18 26 51 2
RX 039759 RX 039760 RX 039761 RX 039762 RX 039763	17 3 2 7 3	11 11 4 3 5	9 61 2 11 2	19 61 14 38 14	1.7 4.1 .5 2.6 4.0	6 8 5 7 10	1 2 3 1	177 174 231 327 234	1.98 .85 .71 1.36 .61	7 6 2 8 3	5 5 5 5	ND ND ND ND 2	6 1 1 3 1	46 3 17 31 7	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	16 5 5 19 6	.12 .01 .13 .25 .10	.035 .005 .009 .029 .009	10 3 2 5 3	9 7 9 12 9	.15 .03 .08 .55 .07	20 7 5 10 8	.01 .01 .01 .01 .01	2 2 2 2 2	.52 .13 .26 .76 .19	.03 .01 .01 .01 .01	.12 .06 .05 .07 .03	1 1 1 539 2 8 1 1 1 380	1 77 18 0
RX 039764 RX 039765 RX 039766 RX 039767 RX 039768	2 2 7 6 2	2 13 4 4 8	8 34 53 9 7	23 73 53 18 16	.3 .4 3.9 1.4 1.0	7 15 6 7	2 4 1 1	301 657 218 118 111	1.11 1.47 2.00 1.32 1.31	4 5 10 5 9	5 5 5 5 5	ND ND ND ND ND	4 2 4 4	65 29 17 16 18	,2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	16 21 16 12 11	.46 .26 .10 .09 .06	.036 .037 .044 .022 .019	6 7 7 4 7	9 28 9 8 8	.26 .55 .19 .08 .08	10 12 12 13 18	.01 .04 .03 .01 .01	2 2 5 2	.72 .78 .51 .36 .27	.01 .01 .01 .01 .02	.07 .06 .10 .08 .09	1 1 17 1 3 1 3 1 1	2 4 0 3 3
RX 039769 RX 039770 RX 039771 RX 039772 RX 039773	2 11 6 2 3	7 11 4 4 39	13 26 9 2 25	61 25 25 4 19	2.4 3.9 1.3 4.9 5.6	6 6 7 8 9	5 1 2 1 2	494 66 181 558 485	2.84 1.65 1.79 .32 .67	16 12 6 3 2	5 5 5 5 5	ND ND ND ND	5 5 6 1	46 24 35 184 6	.3 .2 .2 .3 .2	2 2 2 2 2	2 2 2 2 2	17 6 15 1 5 4	.28 .04 .26 5.78 .08	.039 .036 .048 .005 .012	7 10 8 2 5	6 5 9 6 9	.25 .03 .13 .01 .08	122 41 21 10 9	.03 .01 .14 .01 .01	5 2 2 2 2	.90 .20 .45 .15 .20	.01 .02 .01 .01 .01	.15 .17 .14 .01 .03	1 4 1 4 1 1 1 35 1 84	0 5 2 4 7
RX 039774 RX 039775 RX 039776 RX 039777 RX 039778	2 7 15 7 2	12 50 57 8 27	96 32 42 21 18	11 10 29 38 9	6.5 1.2 3.6 1.7 2.9	7 8 11 6 6	2 1 2 2 1	172 48 146 149 104	1.04 1.04 1.56 2.33 .52	5 6 9 12 4	5 5 5 5 5	ND ND ND ND ND	4 2 3 6 1	25 3 3 9 2	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	6 3 5 11 3	.21 .02 .03 .03 .02	.033 .008 .011 .046 .005	5 2 3 7 2	8 7 7 10 10	.06 .02 .03 .10 .01	22 10 9 15 4	.01 .01 .01 .01 .01	4 2 2 2 2	.43 .24 .23 .45 .12	.01 .01 .01 .01 .01	.18 .20 .14 .12 .06	1 264 1 56 1 15! 1 1 2 28	4 6 5 5 5
RX 039779 RX 039780 RX 039781 RX 039782 RX 039783	4 3 2 6	5 8 9 12 7	16 2 10 7 8	36 5 18 43 40	2.5 1.8 .2 .3 3.0	5 11 13 5 6	2 1 2 3 3	329 57 304 420 384	1.76 .51 .69 1.81 1.97	13 3 4 6 14	5 5 5 5	ND ND ND ND ND	5 1 1 6 4	11 3 3 44 46	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	17 1 5 23 23	.09 .01 .04 .37 .44	.039 .004 .012 .048 .074	6 2 3 9 8	10 9 11 11 9	.25 .01 .07 .30 .26	26 4 8 27 34	.01 .01 .01 .11 .01	2 2 2 2 2	.64 .07 .25 .90 .89	.01 .01 .01 .03 .01	.10 .04 .05 .07 .15	1 23 1 27 1 83 1 3 1 3	3 7 3 2 8
RX 039784 STANDARD C/AU-R	3 19	6 59	4 38	2 133	.1 7.0	10 71	1 32 1	132 044	.42	3 39	5 18	ND 8	1 38	1 52 18	.2 8.4	2 16	2 19	1 57	.01 .49	.003 .091	2 38	9 58	.01 .88	7 180	.01	2 33 1	.09 .89	.01 .06	.05 .15	1 (11 48)	5 9
		ICP - THIS - SAM	.500 LEACH IPLE 1	D GRAN H IS N TYPE:	M SAMF PARTIA ROCK	PLE IS AL FOR	SDIGE MNF U**A	STED E SR NALY	WITH CAP SISB1	3ML 3 LA CR (FA\I	G-1-2 MG B CP FR	HCL-H A TI OM 10	INO3-H BWA GMS	20 AT ND LIN AMPLE	95 D MITED •	EG.C FOR	FOR NAK	ONE H	iour P.	AND IS AU DET	DILU ECTIO	TED T N LIM	O 10 IIT BY	ML W ICP	ITH WA IS 3	TER. PPM.					
DATE RECE	IVEL): .	JUN 4	1991	DA	TE F	REPO	RT N	AIL	ED:	Yu	ine.	6/9	4.	SIG	NED	ву.	· · · ·	~~~~	·	D.TOY	E, C.	LEONG	, J.W	JANG;	CERTI	FIED	B.C.	ASSAY	ERS	

ACME ANALYTICAL LABORATORIES LTD.

852 F HASTINGS ST. VANCOUVER B.C. V6A 1R6

GLOCHEMICAL ANALYSIS CERTIFIC.TE

Inco Expl. & Tech. Services File # 91-1591

_						-					
269	Ō	- 666	Burra	rd St.,	Vancouver	BC	V6C 2X8	Submitted	by:	DENNIS	BOHME

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	8	AL	Na	ĸ	¥	Au**
	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ррт	X	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	×	ppm	*	ppm	*	*	*	ppm	ppb
			400																	~~~	,						45		40		
RX 039785	26	- 54	188	12	2.9	8	1	55	1.30	5	2	ND	1	14	.2	2	4	2	.07	.047	4	8	.02	27	.01	3	. 15	.01	.10		YY
RX 039786	11	- 34	81	14	1.8	- 4	1	60	1.21		5	ND	1	9	.2	2	2	- 3	.09	.030	- 3	- 4	.04	25	.01	2	. 15	.01	.09	1	48
RX 039787	5	7	49	12	1.8	5	1	42	1.07	8	7	ND	6	21	.2	2	2	5	.04	.019	8	6	.03	39	.01	6	.17	.01	.18	1	23 ·
RX 039788	3	10	14	49	1	6	3	461	1.60	4	5	ND	9	36	.2	2	2	21	.31	.040	8	11	.33	28	.07	3	.75	.03	.08	1	· 1
RX 039789	6	72	16	73	3.7	8	1	71	.87	7	5	ND	2	3	.2	2	2	4	.03	.005	2	7	.01	9	.01	5	.17	.01	.15	1	74
		_			1101	_							-							김 영											
RX 039790	1	8	11	15	.3	4	1	813	.86	2	5	ND	1	28	.2	2	2	2	.68	.009	4	3	.09	32	.01	7	.25	.01	.09	1	9
RX 039791	1	7	12	62	.4	6	5	1432	2.25	2	5	ND	5	21	.7	2	2	9	.49	.037	9	8	.32	58	.01	5	.86	.01	. 19	1	15
RX 039792	1	7	7	44	.1	5	4	713	1.61	2	5	ND	6	32	.2	2	2	6	.33	.046	9	6	.26	37	.01	8	.87	.01	.23	1	27
RX 039793	1	8	5	50	.1	7	4	631	1.62	2	5	ND	4	33	.2	2	2	6	.36	_045	8	9	.26	39	.01	3	.89	.01	.24	1	10
RX 039794	1	9	11	63	.2	4	5	1048	1.98	4	5	ND	6	49	.5	2	2	7	.67	.067	13	6	.43	37	.01	5 1	1.09	.01	.24	1	27
RX 039795	3	19	23	46	2.2	5	2	221	1.61	3	5	ND	6	20	.2	2	2	8	.11	.038	7	8	.11	34	.01	5	.50	.01	.23	1	61
RX 039796	2	9	2	66	.3	7	6	571	3.36	4	5	ND	1	31	.6	2	2	9	.14	.013	3	10	.43	43	.01	6 1	1.25	.01	.11	1	41
RX 039797	4	23	30	42	2.3	7	1	102	1.00	12	5	ND	3	6	.2	2	2	3	.03	.007	3	6	.03	23	.01	3	.26	.01	.19	1	41
RX 039798	1	5	5	6	9.5	3	1	188	.44	2	5	2	1	1	.3	2	2	1	.01	.001	2	3	.01	9	.01	2	.05	.01	.02	1 :	2057
STANDARD C/AU-R	18	58	38	130	6.9	70	32	1044	3.90	39	20	6	37	52	18.3	16	19	55	.46	.089	38	57	.87	174	.09	37 1	.85	.06	. 15	11	466

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA\ICP FROM 10 GM SAMPLE. AU** PT** PD** RH** BY FIRE ASSAY & ANALYSIS BY ICP/GRAPHITE FURNACE. ρ

DATE RECEIVED: JUN 5 1991 DATE REPORT MAILED: JUNL 7/91.

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P 2	La ppm	Cr ppm	Mg %	Ва ррл	Ti %	B ppm	AL X	Na %	K %	W ppm	i i
039799	42	22		39	.4	6	2	282	2.39	7	5	ND	8	7	.2	2	2	19	.04	.052	4	6	.21	14	.01	4	.56	.04	.08	1	Ì
039800	12	1	6	26	1	2	2	665	1.10	5	6	ND	24	6	.2	2	2	12	.07	.020	10	2	.16	37	.05	3	.45	.04	.25	1	1
049943	4	16	9	67	.2	6	5	699	2.13	8	5	ND	6	49	.2	2	2	19	.45	.067	11	8	.50	26	.08	21	.09	.04	.10	1	Ē.,
049944	2	8	9	31	.2	3	2	381	2.14	3	6	ND	12	34	.2	2	2	15	. 19	.058	12	6	. 19	51	.01	2	.65	.04	.21	1	
49945	52	2	11	46	.5	6	3	435	2.77	8	5	ND	8	12	.2	2	2	17	.07	.053	6	5	.35	30	.01	2	.68	.04	.11	1	
49946	32	8	17	59	1.1	6	4	639	2.95	45	5	ND	8	18	.2	2	2	16	. 18	.091	11	16	.42	25	.01	3	.72	.04	.13	1	
49947	2	4	11	72	1	8	6	572	2.09	3	5	ND	5	107	.2	2	2	20	.77	.110	10	18	1.17	37	.12	21	.38	.03	.12	2	
49948	2	12	11	63	.9	4	5	847	2.13	3	5	ND	8	24	.2	2	2	23	.26	.048	6	8	.51	15	.01	4	.75	.03	.08	1	
49949	5	26	16	70	1.4	9	4	782	1.91	3	5	ND	8	21	.2	2	2	18	.26	.049	11	7	.47	14	.01	3	.76	.03	.10	1	
49950	1	13	4	70	.2	4	5	805	2.01	2	5	ND	7	66	.2	2	2	24	.86	.061	11	6	.56	26	.07	3	.95	.04	.07	1	
9951	25	5	14	48	.5	7	4	629	2.36	16	5	ND	9	26	.2	2	2	11	.17	.056	6	5	.28	39	.01	4	.70	.02	.20	1	
49952	2	7	7	66	1.1	5	5	846	2.08	3	5	ND	8	50	.2	2	2	24	.60	.053	15	7	.48	44	.01	31	.00	.03	.09	1	
49953	2	36	10	9	1.5	7	1	217	.56	2	7	ND	· 1	6	.2	2	3	2	.05	.003	2	6	.08	22	.01	4	.24	.01	.11	1	
9954	2	16	10	76	.1	3	5	864	2.09	6	5	ND	3	76	.2	2	2	10	.63	.041	5	6	.59	28	-05	51	. 19	.01	.15	1	
9955	2	1	10	27	.2	3	1	254	.44	2	5	ND	5	25	.2	2	2	3	.30	.019	15	3	.13	29	.02	7	.48	.05	.14	1	
9956	1	9	36	77	123.0	4	1	1247	.47	2	5	44	1	18	.2	2	2	4	1.01	.009	2	6	.03	50	.01	2	. 19	.01	.03	. 1.	2
9957	2	10	6	60	.1	7	5	811	2.43	3	5	ND	9	18	.2	2	2	26	.53	.049	15	7	.47	17	.01	4	.82	.03	.10	- 1 t	
49958	1	12	10	38	.3	1	3	776	1.57	2	5	ND	5	89	.3	2	2	64	4.10	.054	15	1	.23	29	.01	5	.73	.01	.22	21	
49959	1	9	5	68	.7	8	5	948	2.38	3	5	ND	6	39	.2	2	2	31	.96	.060	12	8	.48	30	.08	4	. 78	.05	.08	1	
9960	1	9	6	47	2.4	6	- 3	550	1.47	2	5	ND	4	53	.2	2	4	17	.47	.041	7	6	.30	14	.09	3	.69	.03	.07	1	
9961	2	11	9	79	2.8	7	6	939	2.64	3	5	ND	6	48	.2	2	2	20	.55	.053	9	7	.74	41	.06	61	.24	.02	.13	1	
49962	1	16	14	17	196.0	1	1	406	.55	2	5	4	1	4	.2	2	2	3	.05	.008	2	2	.05	12	.01	5	. 18	.01	.04	1	3
49963	1	12	5	76	.4	6	5	664	2.64	7	5	ND	9	35	.2	2	2	25	.38	.064	8	8	.65	14	.12	21	.21	.04	.10	1	
49964	1	13	5	56	1.2	6	4	717	1.89	2	5	ND	5	29	.2	2	2	23	.40	.050	9	8	.33	23	.08	6	.63	.04	.07	1	
49965	3	6	2	15	.4	6	1	244	.68	2	5	ND	1	13	.2	2	2	4	.10	.011	2	7	.08	8	-02	3	.21	.01	.04	1	
9966	1	7	7	48	3.6	2	3	518	2.23	3	5	ND	7	40	.2	2	2	19	.32	.051	7	4	.34	15	.01	4	.86	.03	.08	1	
9967	3	14	31	13	37.5	5	1	247	.48	2	5	ND	1	4	.2	2	2	2	.04	.013	2	6	.02	14	.01	5	.11	.01	.04	1	1
9971	8	ġ	7	49	5	4	3	532	2.10	10	5	ND	7	48	.2	2	2	20	.30	.048	8	6	.32	14	.04	5	.92	.03	.10	1	
9972	4	7	6	46	7	6	3	550	2.12	4	5	ND	7	54	.2	2	2	20	.34	.050	9	7	.36	17	.03	2	.88	.03	.08	1	
9973	Ż	13	7	57	.9	4	4	648	2.05	3	5	ND	7	48	.2	Ž	2	16	.32	.039	7	5	.32	13	-03	2	. 84	.02	.10	1	
9974	2	13	3	50	13	6	4	621	2.08	4	5	ND	6	50	.2	2	2	20	.38	.048	8	8	.42	19	.02	21	.05	.03	.11	1	
9975	5	17	40	85	8	7	4	668	2.29	4	6	ND	7	32	.2	ž	2	23	.25	.050	10	8	.38	21	.03	2	.91	.02	.12	1	
9976	5	15	13	53	11	7	4	498	2.13	4	5	ND	8	47	.7	2	2	17	.31	.050	10	8	.21	23	.03	7	.81	.03	.12	1	
9977	2	11	13	50		ż	Ĩ.	530	2.25	2	5	ND	6	42	.2	2	2	20	.31	.043	7	- Ā	.27	16	.01	3	.82	.02	.11	ŧ.	
9978	ī	8	4	77	2.9	6	5	856	2.17	Ž	5	ND	9	56	.3	ž	2	23	.47	.053	10	7	.50	46	-03	6 1	.03	.04	.10	1	
9979 ARD C/AU-R	1 18	9 57	22 39	22 132	145.9 7.0	6 71	1 32	258 1026	.49 3.90	2 37	5 15	8 7	1 38	5 53 1	.2 8.5	2 15	2 21	3 55	.07 .47	.008 .090	2 37	12 58	.05 .88	13 171	.01 .09	4 38 1	. 17 . 87	.01 .06	.04 .15	2 12	9

Inco Expl. & Tech. Services FILE # 91-1798

Page 2

ACHE ANALYTICAL																														CHE ANAL	LYTICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	AL %	Na %	K X	W ppm	Au** ppb	_
RX 049980	1	14	9	82	3.2	5	5	987	2.24	4	5	ND	9	63	.2	2	2	20	.51	.062	11	7	.59	37	.02	3 1	1.11	.03	.10	1	62	
RX 049981	1	15	22	40	76.8	2	2	295	.75	3	5	13	2	7	.2	2	2	5	. 13	.011	2	3	.06	14	.01	3	.29	.01	.06	3	16267	
RX 049982	1	11	7	57	.6	3	5	751	2.11	4	5	ND	8	53	.2	2	2	20	.51	-055	9	5	.47	23	.01	51	1.19	.03	.11	2	105	
RX 049983		40	13	61	3.7	2	4	619	1.91	3	5	ND	6	14	.2	2	2	19 27	.21	.042	2	2	.30	25	.01	2	./2	.05	.11	2	080	
RX U49984	2	17	8	28	.4	У	4	202	2.79	4.	5	NU	0	49		2	٤	23	. 30	, UOJ	0	0	.41	21		2	.07	.05	.10		'	
RX 049985	1	16	59	82	13.1	4	2	510	1.28	6	5	ND	2	7	.2	2	2	7	.08	.012	4	4	.10	17	.01	2	.30	.01	.06	2	672	
RX 049986	2	9	6	55	1.7	6	3	569	1.96	5	5	ND	5	51	.2	2	2	21	.23	.039	87	7	.51	25	.01	2	./3	-02	.08	2 5	1/ 86	
RX 049987	2	14	14	22	3.0	2	2	101	1.31	2	2	ND	د ۲	77	. 4	2	2	15	.04	.014	5	4	- 1 1	22	01	2	.20	.01	.07	2	77	
RX U49988 DV 040980	2	10	10	75	4.0	2	2	245	1 20	2 6	5	ND	3	- 2	.2	2	2	5	.03	.040	3	3	.05	11	-01	3	.20	.01	.09	3	71	
KA 047707	2	10	17	50	T.U	-		245									_	-													500	
STANDARD C/AU-R	19	65	41	141	7.4			1110	4.02		17	7	39	52	18.7	15	21	56	.52	.094	39	59	.88	186	_10	39 1	.96	.06	.15	11	500	_
· .																																

ACME ANALY	TICA	l la	BOR	ATOF	IES	LTD		8	52 F	H/	ASTI	NGS	ST.	VAN	COU	VER	B.C.	v	6×]]	LR6		PHON	IE (6	04)2	53-3	158	FA	X (60)4)2	53-1	716
									G	POC!	HEM:	ICA	LA	NAL	YSI	B C	ERT	IFI	C.nf	E										Ă I	
AA									T]		r m		_		•	_		* 1 -	Ä	~ 1	103	.								A	
							2690	- 6	66 Bur	rard	<u>x 1</u> St.,	Vanco	ouver	BC V6		S SL	r bmitt	ed by	/: "MA	BT-	TOD	Z ITE								L	L
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W A	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ррп	%	X	ppm	ppm	*	ppm	*	ppm	X	%	*	ppm	ppb
RX 049990	1	17	4	76	.3	4	5	848	2.17	7	5	ND	7	68	.2	2	2	28	.59	.050	13	11	.54	30	.04	6	.94	.04	.07	1	6
RX 049991	1	31	2	78	.4	5	6	984	2.42	3	5	ND	8	52	.2	2	2	32	.50	.052	15	13	.54	36	.03	2	.96	.04	.09	1	38
RX 049992	1	80	4	64	.4	3	6	876	2.45	5	5	ND	8	23	.2	2	2	27	.27	.053	10	9	.55	23	.01	2	.94	.03	.08	1	138
RX 049993	1	54	2	79	.5	4	6	950	2.06	2	5	ND	7	51	.2	2	2	21	.46	.049	9	10	.54	53	.05	2	1.01	.04	.10	1	7
RX 049994	1	13	6	73	.5	6	6	878	2.01	2	5	ND	9	67	.2	2	2	22	.46	.049	10	10	.50	34	.04	5	.96	.03	.08	1	8
PX 040005	3	9	6	23	23.4	8	2	463	.60	2	5	2	1	9	2	2	2	5	. 12	.006	2	8	.09	19	.01	5	.26	.01	.03	1 3	099
RX 049996	1	14	ŭ	82	2.2	ž	6	1200	2.23	2	5	ND	8	66	.2	2	ž	26	.60	.053	10	9	.52	65	.05	4	.95	.03	.08	1 T	54
RX 049997	1	15	4	66	1.5	5	5	899	1.95	2	10	ND	7	42	.2	2	2	24	.34	.043	10	11	.44	42	.01	6	.89	.03	.10		45
RX 049998	1	8	ż	61	.2	5	4	953	1.75	3	5	ND	5	99	.2	2	2	24	.61	.044	9	10	.46	25	.01	2	.96	.03	.07	1	35
RX 050301	1	10	- 4	77	.4	4	5	770	2.12	2	5	ND	8	38	.2	2	2	23	.41	.048	9	9	.46	40	.07	5	.95	.03	.10	1	10
	í															_					_										
RX 050302	1	13	8	33	13.2	, 2	3	341	1.23	2	5	ND	5	21	.2	2	4	11	.17	.021	5	6	.17	13	.02	4	.49	.02	.06	11	519
RX 050303	2	13	- 3	40	48.6	5	4	504	1.30	2	5	ND	5	33	.2	2	3	14	.27	.025	8	9	.25	17	.01	5	.65	.02	.05	1	508
RX 050304	2	17	8	78	.8	6	8	697	2.48	4	5	ND	9	57	.2	2	2	37	.59	.076	13	13	.77	37	. 12	21	.40	.04	.11	1	20
RX 050305	2	21	27	79	.7	6	5	810	1.86	2	5	ND	6	31	.3	2	3	20	.28	.037	8	10	.50	26	.05	2	.94	.02	.07	1	23
RX 050324	1	3	6	48	5.3	4	4	975	1.72	3	12	ND	6	23	.2	2	2	31	.32	.038	16	7	.31	68	.01	7	.70	.02	.08	1	18
RX 050325	1	14	173	130	5.4	2	1 (9726	.57	2	5	ND	1	39	.3	2	2	5	.03	.006	4	2	.02	88	.01	3	.17	.01	.11	2	822
RX 050326	1	5	41	145	1.8	55	18	2647	3.86	2	7	ND	2	36	.2	2	2	75	.62	.135	30	137 2	2.25	89	.01	5 2	.37	.01	.11	1	74
RX 050327	3	26	2	19	.7	7	2	215	1.15	3	7	ND	3	5	.2	2	2	8	.05	.009	3	9	.10	12	.01	9	.32	.01	.14	1 3	225
RX 050328	1	29	27	55	5.1	2	3	1090	1.79	3	5	ND	4	45	.2	2	2	31	.40	.024	10	6	.32	37	.01	2	.81	.01	.11	1	45
RX 050329	2	37	13	33	4.4	15	4	586	.85	2	5	2	2	12	.2	2	2	12	.17	.014	4	32	.31	8	.01	6	.42	.01	.01	1 2	786
									;		_		_			_	-				_					_			• •	1	
RX 050330	2	25	11	71	1.6	6	4	842	2.51	2	5	ND	2	35	.2	2	2	27	.29	.031	5	10	.44	31	.01	31	.07	.01	.16	1	1
RX 050331	2	11	2	7	.6	7	1	105	.50	2	10	ND	2	2	.2	2	2	3	.02	.005	3	6	.03	5	.01	8	.11	.01	.04	1	70
RX 050332	1	17	14	34	5.1	2	3 2	2204	1.18	2	14	2	5	15	.2	2	2	14	.13	.019	9	4	. 18	25	.01	8	.37	.02	.06	1 40	688
RX 050333	1	11	19	20	3.7	6	1 1	1265	.42	2	5	ND	1	8	.2	2	2	3	.07	.007	2	8	.01	21	.01	2	.08	.01	.04	1	56
RX 050334	1	2	9	15	.6	5	1 1	1064	.27	2	5	ND	1	38	.2	2	2	2 2	2.61	.005	2	2	.02	25	.01	3	.08	.01	.02	1 4	401
STANDARD C/AU-R	19	60	40	139	7.3	76	31 1	101	4.00	39	24	6	41	53 1	18.6	14	19	58	.51	.094	41	58	.88	183	.09	38 1	.93	.07	.16	11 4	468

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

DATE RECEIVED: JUN 18 1991 DATE REPORT MAILED: June 21/91. SIGNED BY.

•• • -_

✓ ASSAY RECOMMENDED

Inco Expl. & Tech. Services FILE # 91-1578

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	bbw bbw	Sb ppm	Bi ppm	V mqq	Ca X	PL Xpp	a Cr n ppm	Mg %	Ba ppr	a Ti n %	B ppm	Al X	Na %	к %	W Mqq	Au** ppb
RX 049645 RX 049646 RX 049647 RX 049648 RX 049649	16 21 3 1 12	9 4 10 43 15	12 13 8 8 13	84 35 53 62 55	.7 3.6 .4 .2 5.5	5 4 9 7 6	5 2 5 5 6	689 98 594 634 513	2.47 1.81 1.98 2.34 2.39	10 20 2 2 11	5 5 5 5 5	ND ND ND ND 13	7 5 4 8 6	15 7 11 10 15	.3 .2 .3 .3 .5	2 2 2 2 2 2	2 2 2 2 2	28 11 20 11 15	.20 .05 .05 .02 .17 .04 .22 .06 .21 .05	2 14 9 5 4 6 9	4 14 7 5 8 14 9 10 3 9	.47 .04 .39 .42 .26	37 15 29 34 37	7 .01 5 .01 9 .01 9 .01 9 .01 7 .01	6 6 7 4 5	.86 .29 .79 .96 .74	.02 .01 .03 .02 .02	.13 .18 .15 .21 .17	1 1 1 1 1	26 1533 24 1 3653
RX 049650 RX 049651 RX 049652 RX 049653 RX 049654	1 2 3 2 7	11 15 8 12 11	2 10 9 8 5	43 31 18 33 49	.1 .5 1.0 3.8 .5	5 6 10 9 7	4 2 3 5	608 593 227 386 427	1.62 1.77 .83 1.55 2.31	2 2 2 10 44	5 5 5 5 5	ND ND ND ND ND	4 6 1 3 6	21 14 9 9 9	.2 .2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	19 9 6 12 17	.42 .03 .20 .04 .32 .01 .16 .04 .17 .04	6 10 6 10 0 0 7 0	0 12 5 6 5 12 7 10 5 10	.24 .10 .10 .14 .24	19 47 14 18 24	.01 .01 .01 .01 .01 .01	4 6 5 2	.48 .52 .27 .49 .71	.03 .02 .01 .02 .01	.06 .21 .09 .14 .18		9 1603 3 367 53
RX 049655 RX 049656 RX 049657 RX 049658 RX 049659	2 7 3 14 25	7 6 5 7 6	8 11 11 29 18	62 15 39 8 6	.1 4.4 6.4 19.5 17.2	8 13 7 8 9	5 3 4 1 1	672 394 283 49 39	2.29 1.64 3.02 1.36 1.14	2 13 20 6 6	5 5 5 5 5	ND ND ND ND ND	7 2 5 1	18 14 25 15 31	.2 .2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2	27 11 24 3 3	.29 .05 .09 .01 .11 .03 .02 .01 .02 .01	9 7 5 5 4 4 8 5	13 11 11 10 7	.42 .03 .23 .01 .01	23 31 54 26 25	.09 .01 .01 .01 .01	7 3 4 3 3	.85 .21 .63 .15 .15	.03 .01 .02 .01 .01	.14 .10 .12 .11 .15	1 1 1 2 1	58 39 304 54 81
RX 049660 RX 049661 RX 049662 RX 049663 RX 049663 RX 049664	11 2 1 2 3	15 11 9 16 7	29 4 4 2 3	4 59 57 58 25	6.9 .1 1.0 .7 2.2	11 8 5 6 13	1 5 5 3	50 781 782 741 852	1.41 2.34 2.19 2.17 1.54	4 2 7 2 3	5 5 5 5 5	nd Nd Nd Nd Nd	5 7 5 7 2	40 18 19 11 36	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	5 25 18 23 25	.02 .01 .25 .056 .51 .057 .18 .053 .10 .019	7 13 5 10 2 14 5 10 9 8	8 14 13 13 8	.02 .40 .53 .41 .02	43 23 20 26 71	.01 .01 .01 .01 .01	6 2 5 4 2	.24 .86 .92 .81 .22	.01 .04 .02 .03 .01	.23 .11 .14 .14 .10	1 1 1 1	34 67 131 115 655
RX 049665 RX 049666 RX 049667 RX 049668 RX 049668 RX 049669	3 1 2 4 6	12 11 8 11 6	2 6 25 16 14	23 34 27 21 11	.4 1.2 97.0 140.0 .4	11 8 6 11 13	2 3 1 1	442 239 691 144 85	1.00 2.05 .32 .57 1.09	2 2 2 2 2 9	5 5 5 8	ND ND 4 26 ND	2 6 1 1	30 10 93 3 10	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	11 12 1 0 4 10	.61 .010 .16 .058 5.13 .002 .07 .005 .01 .012) 5 3 6 2 2 3 2 5 2 61	11 10 5 10 11	.14 .19 .01 .03 .02	22 35 14 8 15	.01 .01 .01 .01 .01	3 4 3 2 5	.38 .73 .07 .15 .17	.02 .02 .01 .01 .01	.04 .20 .01 .04 .11	1 1 1 1 1 1	83 457 6775 24824 95
RX 049670 RX 049671 RX 049672 RX 049673 RX 049674	2 2 10 3 2	18 10 22 11 13	24 15 21 8 7	12 26 163 71 29	8.5 2.0 9.0 .2 .1	6 6 8 10 8	2 4 4 4	220 293 662 797 214	.72 1.58 1.76 2.25 1.64	4 9 5 2 5	5 5 5 5 5	6 2 ND ND ND	1 4 3 6 3	195 10 18 18 56	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	53 11 14 25 10	5.14 .009 .14 .034 .55 .030 .32 .044 .27 .040) 3 4 8 11 5	6 9 11 15 7	.05 .07 .25 .44 .11	8 18 22 29 41	.01 .01 .01 .01 .01	5 2 3 4 4	.15 .36 .51 .78 .63	.01 .02 .02 .03 .01	.05 .13 .09 .10 .22	1 1 1 1	4575 3474 615 28 152
RX 049675 RX 049676 RX 049677 RX 049678 RX 049679	24 3 3 1	7 16 15 7 9	10 40 39 5 6	16 99 75 39 79	.9 .7 .4 10.1 1.6	3 20 18 15 39	2 7 6 5 15 1	130 751 620 686 252	2.51 2.10 1.76 1.38 3.84	14 5 4 2 2	5 5 5 5 5	ND ND ND 12 ND	6 2 1 2 2	35 17 12 15 52	.2 .2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	11 28 23 21 65 1	.11 .070 .60 .114 .43 .092 .32 .039 .40 .122	9 11 11 7 23	5 57 63 32 138	.06 .70 .60 .30 2.13	55 28 28 26 46	.01 .01 .01 .01 .01	6 4 2 6 3 2	.56 .86 .78 .61 .22	.02 .01 .01 .01 .01	.27 .07 .05 .06 .06	1 1 1 1 1 1 1	22 108 361 0441 1426
RX 04968D STANDARD C/AU-R	8 18	6 56	9 40	39 130	.5 6.7	7 71	2 31 1	395 025	2.03	3 37	5 18	ND 6	7 36	21 53 1	.2 18.9	2 15	2 19	19 56	.14 .043	5 37	11 58	.25 .87	20 177	.04 .09	6 32 1	.73 .86	.03	.14 .15	1 11	22 466

STANDARD C/AU-R

Inco Expl. & Tech. Services FILE # 91-1578

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Τi	B	Al	Na	ĸ	W	Au**
	ppii	ppii	ppin	ppn	ppn	ppia	ppin	ppiii		ppn	ppiii	ppii	ppii	ppii	ppin	ppiii	ppin	ppii			ppii	ppm		ppm	10	ppiii	~		<u>^ </u>	ppii	ppo
RX 049681	1	2	4	85	.2	12	12	743	4.47	4	5	ND	4	195	.2	5	2	119	2.43	.206	29	16	1.45	104	.05	5	2.30	.23	.09	1	11
RX 049682	2	11	11	81	.5	5	6	1033	2.25	2	5	ND	8	9	.2	2	2	15	.17	.056	9	12	.49	27	.01	6	1.26	.02	. 18	1	41
RX 049683	1	11	6	74	.1	7	5	833	2.55	2	5	ND	7	35	.2	2	2	33	.44	.060	11	15	.54	25	.06	4	.94	.05	.08	1	10
RX 049684	2	11	10	67	.2	10	5	900	2.23	4	5	ND	6	60	.2	2	2	32	.37	.052	8	17	.49	23	.01	3	.94	.04	.08	1	661
RX 049685	1	6	5	55	.7	7	4	587	1.92	4	5	ND	6	52	.2	2	2	19	.41	.053	9	12	.37	29	.09	5	.95	.04	.09	1	27
RX 049686	1	12	2	61	.2	5	4	501	2.05	3	5	ND	7	51	.2	2	2	21	.41	.058	8	12	.46	15	.05	4	.99	.04	.09	1	8
RX 049687	1	8	2	56	.1	6	5	613	1.66	2	5	ND	6	51	.2	2	2	17	.37	.040	7	12	.40	21	.01	3	.90	.03	.09	1	17
RX 049688	1	9	9	51	3.6	6	4	785	1.58	2	5	ND	4	34	.2	2	2	17	.45	.036	8	11	.32	22	.01	5	.72	.03	.09	1	185
RX 049689	2	9	19	25	104.5	10	1	176	.64	2	5	30	2	9	.2	2	2	4	.09	.012	2	9	.06	12	.01	5	.26	.01	.08	1 2	23171 - 1
RX 049690	2	6	5	57	.7	7	5	642	2.04	3	5	ND	6	63	.2	2	2	22	.43	.054	7	13	.45	21	.08	6	.91	.04	.09	1	153
																															1
RX 049691	1	5	2	69	.1	5	5	735	2.36	2	5	ND	7	24	.2	2	2	33	.32	.056	10	12	.49	16	.04	4	.85	.03	.08	1	23
RX 049692	1	8	5	51	.2	4	4	675	1.88	2	5	ND	5	34	.2	2	2	30	.72	.041	8	12	.39	14	.06	5	.63	.03	.07	1	55
RX 049693	1	10	4	68	.2	6	5	891	2.35	2	5	ND	8	28	.2	2	2	34	.41	.055	10	13	.49	25	.03	5	.81	.04	.09	1	63
RX 049694	1	7	3	51	.1	7	4	662	1.66	2	5	ND	4	17	.2	2	2	18	.24	.040	10	12	.40	16	.01	2	.67	.03	.10	1	76
RX 049695	2	7	16	18	.1	7	1	175	.62	2	5	ND	1	3	.2	2	2	5	.05	.012	2	9	.08	5	.01	2	.17	.01	.03	1	11
RX 049696	1	7	4	16	.1	6	1	217	.86	2	5	ND	1	10	.2	2	2	15	.08	.013	2	12	.09	7	.01	2	.29	.01	.04	2	94
RX 049697	3	14	17	17 2	283.6	10	1	174	.42	2	5	10	1	3	.2	2	2	3	.03	.004	2	12	.04	8	.01	3	.12	.01	.02	1 3	2959
RX 049698	3	24	9	44	1.2	8	3	566	1.67	2	5	ND	4	14	.2	2	2	18	.15	.034	7	13	.28	25	.01	2	.62	.03	.10	1	219
RX 049699	1	6	3	28	.3	6	2	495	1.04	2	5	ND	3	8	.2	2	2	13	.10	.018	5	10	.20	19	.01	6	.41	.02	.07	i 1.	21
RX 049700	1	5	4	19	.4	4	1	300	.93	2	5	ND	2	4	.2	2	2	16	.06	.014	4	10	.12	11	.01	3	.30	.01	.07	2	39
	1																														1

Page 3

ASSAY RECOMMENDED for the 230 ppm.

18 58 37 132 7.0 70 32 1046 4.00 40 20 6 38 52 18.4 15 21 55 .48 .089 39 58 .88 176 .09 34 1.89 .06 .15 11 470

44

852 F HASTINGS ST. VANCOUVER B.C. V6^p 1R6

GEOCHEMICAL ANALYSIS CERTIFIC... fe

Inco Expl. & Tech. Services 2690 - 666 Burrard St., Vancouver BC V6C 2X8 File # 91-1603 Page 1 Submitted by: MARK SLAUERWHITE

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As	U	Au	Th	Sr	Cď	Sb	Bi	V	Ca %	P	La	Cr	Mg	Ba	Ti	B	Al %	Na %	K %	W	Au**
RX 049901 RX 049902 RX 049903 RX 049904 RX 049904 RX 049905	μ 1 2 2 2 1	6 11 6 15 24	12 15 13 12 28	50 40 23 22 42	.9 7.6 34.9↓ 105.5↓ 242.0↓	4 6 10 2	9011 4 2 1 2 1	526 571 372 198 449	1.82 1.00 .44 .71 .59	8 5 2 3 2	8 5 5 5 5 5	ND ND 7 25 13	4 1 1 1 1	74 29 7 23 20	.2 .2 .2 .2 .2	2 2 2 2 2 2 2	2 2 2 2 2 2	19 13 4 9 4	.45 .43 .07 .13 .69	.048 .024 .005 .012 .006	8 6 2 2 2	16 13 13 19 9	.33 .18 .07 .21 .12	32 40 12 19 39	.03 .01 .01 .01 .01	2 2 3 2 3	1.03 .52 .20 .46 .29	.07 .06 .01 .03 .02	.37 .14 .03 .10 .07	1 1 3 1 1	287 1469 5247 19436 20151
RX 049906 RX 049907 RX 049908 RX 049909 RX 049909 RX 049910	2 2 1 2	10 10 23 13 4	19 8 9 17 7	47 55 51 39 12	80.5 V 12.6 37.4 V 11.3 6.6	7 7 8 4 7	2 4 3 2 1	807 924 570 575 518	.96 1.56 1.36 1.25 .36	2 4 5 6 2	5 5 5 5 5	3 ND ND ND ND	3 2 2 2 1	42 61 58 16 7	.2 .2 .3 .2	2 2 2 2 2	2 2 2 2 2	11 18 15 13 1	.97 .64 .38 .16 .33	.021 .038 .031 .024 .004	4 5 6 4 2	12 16 15 8 11	.22 .42 .34 .12 .01	50 49 35 29 20	.02 .06 .03 .01 .01	10 4 2 2 2	.47 .89 .74 .43 .10	.05 .09 .05 .02 .01	.08 .17 .17 .19 .03	1 2 1 1	4652 1506 1195 1598 362
RX 049911 RX 049912 RX 049913 RX 049914 RX 049915	1 3 1 2 1	4 10 8 15 16	6 12 21 4 7	54 36 74 71 76	1.2 29.2 .3 .3 .2	4 6 7 5	4 3 5 5	586 748 1009 837 807	1.55 1.06 2.08 2.21 2.11	6 2 5 2 2	5 5 11 5 5	ND ND ND ND ND	5 1 6 8 10	69 56 112 72 64	.2 .2 .2 .2 .2	2 2 3 2 2	2 2 2 2 2	17 11 18 27 25	.60 1.38 .80 .50 .42	.053 .023 .047 .054 .052	9 5 11 9 9	19 11 15 22 18	.35 .19 .44 .53 .57	37 46 51 83 51	.08 .01 .08 .11 .08	3 3 10 4 2	1.52 .54 1.75 1.49 1.36	.14 .04 .06 .19 .16	.33 .09 .32 .29 .24	1 1 1 1	2 1641 1 2 12
RX 049916 RX 049917 RX 049918 RX 049919 RX 049920	6 2 4 7 2	21 12 7 29 21	52 20 19 87 13	35 77 69 31 43	2.2 2.2 3.2 6.0 6.4	7 4 8 6	2 5 2 3	297 848 686 222 957	1.24 2.48 2.41 1.61 1.49	4 7 3 5	5 5 6 5	2 ND ND ND 3	1 5 6 1 3	7 46 19 17 14	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	10 23 22 8 18	.05 .76 .16 .08 .12	.013 .052 .053 .031 .029	4 12 9 3 3	13 12 17 13 14	.09 .42 .45 .07 .25	18 57 41 31 27	.01 .01 .01 .01 .01	3 2 2 2 8	.52 1.03 1.02 .56 .79	.02 .06 .02 .02 .05	.18 .23 .37 .23 .14	1 1 1 1	99 15 55 191 447
RX 049921 RX 049922 RX 049923 RX 049924 RX 049925	1 1 2 5	11 6 5 14 20	13 13 7 7 22	32 24 13 24 12	53.7√ 70.0√ 18.1 37.7√ 1.9	, 2 5 6 8 3	1 1 1 1	617 678 720 510 116 1	.79 .31 .42 .85 .05	2 2 2 4	5 6 5 7 5	5 5 ND 20 ND	1 1 1 3	30 9 28 11 4	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	8 2 1 7 5	.59 .37 1.13 .13 .03	.011 .004 .006 .012 .009	2 2 3 2	7 7 9 10 7	.15 .03 .03 .11 .04	28 27 21 22 14	.01 .01 .01 .01 .01	4 6 5 3 5	.35 .11 .10 .29 .44	.02 .01 .01 .02 .01	.07 .02 .02 .07 .22	1 1 1 1 1	1360 6879 2316 4759 39
RX 049926 RX 049927 RX 049928 RX 049929 RX 049930	3 1 2 1 2	5 20 18 17 14	6 5 18 8 28	25 44 23 27 73	7.3 .5 43.4/ 7.8 9.6	7 7 8 2 6	1 3 2 2 1	324 670 1 364 281 1 532	- 89 - 49 - 94 - 17 - 84	4 4 3 2	5 5 9 5 5	ND ND ND ND 3	1 3 2 1 1	13 35 9 10 23	.2 .2 .2 .2 .3	2 2 2 2 2	2 2 2 2 2	8 20 8 14 9	.14 .33 .16 .10 .34	.021 .033 .013 .025 .021	4 6 3 3	11 14 10 7 12	.11 .33 .12 .19 .19	16 33 21 18 16	.01 .01 .01 .01 .03	2 2 6 2 3	.40 .87 .38 .52 .42	.02 .06 .02 .04 .04	.10 .14 .14 .14 .08	1 1 1 1	672 38 2975 157 1663
RX 049931 RX 049932 RX 049933 RX 049934 RX 049935	19 7 1 7 5	10 20 13 29 11	21 13 13 10 17	24 14 45 40 51	3.3 2.9 2.1 2.2 10.6	6 8 3 9 7	2 1 2 3 3	372 1 210 434 1 535 1 539 1	.16 .96 .59 .56 .56	4 2 4 5 3	5 5 5 5	nd Nd Nd Nd Nd	1 4 3 2	7 4 10 11 28	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 4	11 6 18 13 18	.05 .03 .06 .07 .25	.010 .009 .030 .022 .032	4 2 5 8 5	14 12 10 13 16	.27 .07 .39 .21 .29	17 10 20 23 22	.01 .01 .01 .01 .01	2 2 7 2	.56 .37 .80 .70 .68	.01 .01 .04 .04 .05	.20 .14 .17 .20 .13	1 1 1 1	45 60 11 26 433
RX 049936 STANDARD C/AU-R	3 18	22 59	23 40	32 132	.8 6.7	14 69	3 33 1	354 1 050 3	.24 .94	4 38	5 18	ND 6	1 40	7 52 1	.2 8.4	2 15	2 19	11 56	.07 .48	.026 .089	2 39	24 58	.29 .88	21 176	.01 .09	2 39 1	.61 .87	.01 .06	. 15 . 15	1 11	17 493
^н ,		ICP This - Sa	50 LEAC MPLE	0 GRA H IS TYPE:	M SAMP PARTIA ROCK	LE IS L FOR	DIGE MNF	STED E SR NALYS	WITH CAP ISBY	3ML 3 LA CR FA/I	-1-2 MG B	HCL-H A TI OM 10	NO3-H B W A GM S	20 AT ND LI AMPLE	95 D Mited	EG. C FOR	FOR NAK	one h and a	iour p.	AND IS AU DET	DILU ECTIO	TED T N LIM	O 10 IT BY	ML WI ICP	TH WA IS 3	TER. PPM.					
DATE RECI	EIVE	D:	JUN 6	1991	DA:	re f	EPOI	RT M	AILE	D:	Uu	m	14	91	SIG	NED	BY.	<i>!</i>	<u>.</u>	····	D.TOY	E, C.I	LEONG	, J.W	ANG;	CERTII	IED E	3.C. /	ASSAYI	ERS	

ASSAY RECOMMENDED

· -_

Inco Expl. & Tech. Services FILE # 91-1603

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	ν	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	Au**	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	%	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	_
RX 049937	2	20	15	18	29	2	2	201	1.11	3	5	ND	2	5	.2	2	2	8	. 06	.015	3	6	. 10	12	.01	2	.33	.01	. 10	1	34	
RX 049938	2	19	14	12	36.5	6	1	229	.54	2	5	ND	ž	5	.2	2	2	3	.08	.006	2	7	.03	18	.01	5	.13	.01	.04	1	834	
RX 049939	1	8	7	60	.4	7	5	679	1.64	4	5	ND	2	64	.2	2	2	11	.49	.025	4	12	.42	32	.03	2	.96	.01	.11	1	8	
RX 049940	3	7	2	9	1.1	8	1	183	.58	2	5	ND	2	3	.2	2	2	4	.03	.005	2	8	.05	10	.01	7	. 13	.01	.03	1	290	
RX 049941	2	6	9	25	1.1	3	3	239	1.83	2	5	ND	5	22	.2	2	2	17	.20	.043	4	6	.15	16	.01	2	.53	.01	.10	1	8	
RX 049942	5	11	20	61	1.1	7	4	605	2.28	5	5	ND	7	36	.2	2	2	20	.29	.064	9	12	.40	28	.02	2 1	.01	.03	. 18	1	12	

Page 2

						Tne	o F	vn]	و	പാC നമ	HEM cb	ICA So	L A rvi	nal Cog	Y 8I(S C Fi	ERT:	IFI # a	∖1 1 = 1	'E 798		Dard	_ 1							A	A
						1110	269) - 6	66 Bu	rrard	<u>St.,</u>	Vanco	ouver	BC Vé	c 2x8	T I Su	ubmitt	ed by	/: MA	RK SLA	UENWH	ITE	e 1							L	L
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppmi	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	Al X	Na %	К %	W ppm	Au** ppb
RX 039799	42	22	9	39	.4	6	2	282	2.39	7	5	ND	8	7	.2	2	2	19	.04	.052	4	6	.21	14	.01	4	.56	.04	.08	1	32
RX 039800	12	1	6	26	- 1	2	2	665	1.10	5	6	ND	24	6	.2	2	2	12	.07	.020	10	2	. 16	37	.05	3	.45	.04	.25		1
RX 049943	4	16	9	67	.2	6	5	699	2.13	8	5	ND	6	49	.2	2	2	19	.45	.067	11	8	.50	26	.08	2 '	1.09	.04	.10	8 1 .	3
RX 049944	2	8	9	31	.2	3	2	381	2.14	3	6	ND	12	34	.2	2	2	15	. 19	.058	12	6	. 19	51	.01	2	.65	.04	.21	- 1	1
RX 049945	52	2	11	46	.5	6	3	435	2.77	8	5	ND	8	12	.2	2	2	17	.07	-053	6	5	.35	30	.01	2	.68	.04	.11		15
RX 049946	32	8	17	59	1.1	6	4	639	2.95	45	5	ND	8	18	.2	2	2	16	. 18	.091	11	16	.42	25	.01	3	.72	.04	.13	1	17
RX 049947	2	- 4	11	72	.1	8	6	572	2.09	3	5	ND	5	107	.2	2	2	20	.77	.110	10	18	1.17	37	.12	2 1	1.38	.03	.12	2	1
RX 049948	2	12	11	63	.9	4	5	847	2.13	3	5	ND	8	24	.2	2	2	23	.26	.048	6	8	.51	15	.01	4	.75	.03	.08	1	67
RX 049949	5	26	16	70	1.4	9	4	782	1.91	3	5	ND	8	21	.2	2	2	18	.26	.049	11	7	.47	14	.01	3	.76	.03	.10	1	1
RX 049950	1	13	4	70	.2	4	5	805	2.01	2	5	ND	7	66	.2	2	2	24	.86	.061	11	6	.56	26	.07	3	.95	.04	.07	1	3
RX 049951	25	5	14	48	.5	7	4	629	2.36	16	5	ND	9	26	.2	2	2	11	. 17	.056	6	5	.28	39	.01	4	.70	.02	.20	1	9
RX 049952	2	7	7	66	1.1	5	5	846	2.08	3	5	ND	8	50	.2	2	2	24	.60	.053	15	7	.48	44	.01	3 1	.00	.03	.09	1	1
RX 049953	2	36	10	9	1.5	7	1	217	.56	2	7	ND	1	6	.2	2	3	2	.05	.003	2	6	.08	22	.01	4	.24	.01	.11	. 1 -	1
RX 049954	2	16	10	76	.1	3	5	864	2.09	6	5	ND	3	76	.2	2	2	10	.63	.041	5	6	.59	28	.05	51	.19	.01	.15	1	1
RX 049955	2	1	10	27	.2	3	1	254	.44	2	5	ND	5	25	.2	2	2	3	.30	.019	15	3	.13	29	.02	7	.48	.05	.14	1	1
RX 049956	1	9	36	77	123.0	4	1	1247	.47	2	5	44	1	18	.2	2	2	4	1.01	.009	2	6	.03	50	.01	2	. 19	.01	.03	1 2	26801
RX 049957	2	10	6	60	.1	7	5	811	2.43	3	5	ND	9	18	.2	2	2	26	.53	.049	15	7	.47	17	.01	4	.82	.03	.10	1	97
RX 049958	1	12	10	38	.3	1	3	776	1.57	2	5	ND	5	89	.3	2	2	6	4.10	.054	15	1	.23	29	.01	5	.73	.01	.22	1	7
RX 049959	1	9	5	68	.7	8	5	948	2.38	3	5	ND	6	39	.2	2	2	31	.96	.060	12	8	.48	30	.08	4	.78	.05	.08	1	17
RX 049960	1	9	6	47	2.4	6	3	550	1.47	2	5	ND	4	53	.2	2	4	17	.47	-041	7	6	.30	14	-09	3	.69	.03	.07	1	359
RX 049961	2	11	9	79	2.8	7	6	939	2.64	3	5	ND	6	48	.2	2	2	20	.55	.053	9	7	.74	41	.06	61	.24	.02	.13	1	744
RX 049962	1	16	14	17	196.0	1	1	406	.55	2	5	4	1	4	.2	2	2	3	.05	.008	2	2	.05	12	.01	5	.18	.01	.04	1	3155
RX 049963	1	12	5	76	.4	6	5	664	2.64	7	5	ND	9	35	.2	2	2	25	.38	.064	8	8	.65	14	.12	21	.21	.04	.10	1	12
RX 049964	1	13	5	56	1.2	6	4	717	1.89	2	5	ND	5	29	.2	2	2	23	.40	.050	9	8	.33	23	.08	6	.63	.04	.07	· 1	243
RX 049965	3	6	2	15	.4	6	1	244	.68	2	5	ND	1	13	.2	2	2	4	.10	.011	2	7	.08	8	-02	3	.21	.01	.04	- 1	289
X 049966	1	7	7	48	3.6	2	3	518	2.23	3	5	ND	7	40	.2	2	2	19	.32	.051	7	4	.34	15	.01	4	.86	.03	.08	1	19
X 049967	3	14	31	13	37.5	5	1	247	.48	2	5	ND	1	4	.2	2	2	2	.04	.013	2	6	.02	14	.01	5	.11	.01	.04	1	1233
X 049971	8	9	7	49	.5	4	3	532	2.10	10	5	ND	7	48	.2	2	2	20	.30	.048	8	6	.32	14	.04	5	.92	.03	.10	1	52
X 049972	4	7	6	46	.7	6	3	550	2.12	- 4	5	ND	7	54	.2	2	2	20	.34	.050	9	7	.36	17	.03	2	.88	.03	.08	1	8
X 049973	2	13	7	57	.9	4	4	648	2.05	3	5	ND	7	48	.2	2	2	16	.32	.039	7	5	.32	13	.03	2	.84	.02	.10	1	22
X 049974	2	13	3	59	1.3	6	4	621	2.08	4	5	ND	6	50	.2	2	2	20	.38	.048	8	8	.42	19	.02	21	.05	.03	.11	1	32
X 049975	5	17	40	85	.8	7	4	668	2.29	4	6	ND	7	32	.2	Ž	2	23	.25	.050	10	8	.38	21	.03	2	.91	.02	.12	1	16
X 049976	5	15	13	53	1.1	7	4	498	2.13	4	5	ND	8	47	.7	2	2	17	.31	.050	10	8	.21	23	.03	7	.81	.03	.12	1	6
X 049977	2	11	13	50	.6	3	4	530	2.25	2	5	ND	6	42	.2	2	2	20	.31	.043	7	4	.27	16	.01	3	.82	.02	.11	1	14
X 049978	1	8	4	77	2.9	6	5	856	2.17	2	5	ND	9	56	.3	2	2	23	.47	.053	10	7	.50	46	_03	61	.03	.04	.10	1	18
x 049979	1	9	22	22 1	45.9	6	1	258	.49	2	5	8	1	5	.2	2	2	3	.07	.008	2	12	.05	13	.01	4	. 17	.01	.04	2	9712
TANDARD C/AU-R	18	57	39	132	7.0	71	32	1026	3.90	37	15	7	38	53 1	8 5	15	21	55	47	non	37	58	88	171	00	38 1	87	06	15	12	489

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. γ

DATE RECEIVED: JUN 17 1991 DATE REPORT MAILED: Juni 20 4/ SIGNED BY. C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL	LABO	DRA	ror	IES	L)	TD.		8	52 E	. H	I	NG	5 51	r. 1	VAN	COUV	ER	B.(3.	V6A	1R6		1	PHO	NE (604) 25	3-31	158	F	AX (604)2	53-1716
									GI	soci	IEM	IC	al.	AN	aly	818	3 C	ER	TIF	ric:	ATE.												AA
TT						Į	(<u>nc</u> 690	:0 - 66	Exp] 6 Bur	L. I rard	<u>§ T</u> st.,	<u>ec)</u> Van	<u>h.</u> couvi	Se: er Bi	<u>rvi</u> : v60	. Ces : 2x8	<u>-</u> s	ubmi	Fil tted	le by:	∦ 9] MARK	1 slaui	831 Enwh	L ITE									TT
SAMPLE#	Ma ppr	o Ci n ppi	J P n pp	b Zr n ppr	า ท	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v ppm	Ca X	P 3 X	La ppm	Cr ppm	Mg X	Ba ppm	TI X	B ppm	Al X	Na X	K X	W ppm	Au** ppb	
RX 049968		29	2 1	7 30) 17	79.7	.6	1	932	.54	4	5	14	1	74	.2	2	2	3	6.06	.002	2	7	.17	19	.01	2	.06	.01	.01	1	15902	
RX 049969		288	3 5	5 110) 21	11.8	4	1	434	.50	9	5	8	1	9	.2	2	2	2	.40	.002	2	3	.04	19	.01	2	.09	.01	.02	1	10543	
RX 049970	1	2	5 1	0 46	5 1	11.1	5	3	625	1.22	19	5	ND	4	96	.2	2	2	16	1.87	.028	8	10	.35	27	.01	5	.61	.05	.08	1	307	
RX 050316		2 14		B 72	2	2.4	9	4	540	1.74	2	5	ND	5	50	.2	2	2	15	.39	.043	8	13	.35	25	.01	2	.88	.03	.12	1	155	
RX 050317	1	20	5 4	7 51	3	57.6√	9	1	23743	.59	3	5	2	1	63	.2	2	2	6	.46	.007	2	4	.08	115	.01	2	. 16	.01	.09	1	1701	
RX 050318		10) 12	2 29)	4.5	3	1	1591	.51	3	5	2	1	5	.2	2	2	3	.03	.004	2	3	.04	65	.01	2	.12	.01	.03	1	1213	
RX 050319		22	2 174	74		6.2	6	1	689	.72	5	5	ND	2	6	.2	2	2	7	.07	.014	4	8	.03	34	.01	3	.30	.01	.15	1	738	
RX 050320		15	5 6	5 19		1.6	9	1	218	.59	3	5	ND	1	3	.2	2	2	5	.03	.008	3	9	.08	10	.01	3	. 19	.01	.05	1	68	
RX 050321		21		27	,	1.1	8	Ż	562	.91	3	5	ND	2	5	.2	2	2	10	.08	.015	4	9	.12	19	.01	5	.34	.01	.06	1	21	
RX 050322		12	2 13	5 24		.5	3	2	924	.77	2	5	ND	2	5	.2	2	2	8	.09	.012	2	5	.09	22	.01	2	.38	.01	.04	1	172	
RX 050323	i e	29) 1	5 46	, (19)	8.4	13	4	537	1.69	3	5	ND	1	41	.2	2	2	22	.27	.015	5	21	.32	16	.01	2	.67	.01	.08	1	174	
STANDARD C/AU	-R 18	59	4	134		7.2	71	33	1057	3.98	38	19	7	37	52	18.6	14	23	56	.48	.092	39	60	.90	177	.09	32	1.89	.07	.15	11	476	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

ASSAY RECOMMENDED

ACME ANALY	TICA	L L/	ABOR	ATOP	RIES	LTD).	8	52	e. H	ASTI	NGS	ST.	VAN	COU	/ER	B.C.	. V	6 a 1	L R6		PHON	IE (6	04)2	53-:	3158	FA	X (6)	04)2	53-1	L/10
									G	n 3	HEM	ICA	l a	NAL	YSI	3 C	ERT	IFI	C .	e											A
							<u>In</u> 2690	<u>CO</u>) - 60	Exp 66 Bu	1. rrard	<u>& T</u> st.,	<u>ech</u> Vanco	<u> </u>	erv BC V	1 Ce 6C 2X8	<u>3</u> Si	F. Jonitt	ile ed by	# /: Mai	91– RK SL/	188. 188.	7 11E								L	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Со ррп	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	W ppm	Au** ppb
RX 050307 RX 050308 RX 050335 RX 050336 RX 050337	1 3 4 4 5	23 49 15 9 10	20 21 23 15 19	49 46 56 61 36	.9 2.5 .6 .9 .6	1 10 9 6 8	3 2 5 4 3	555 336 537 640 251	1.25 .74 1.92 2.02 1.71	2 2 14 4 4	5 5 5 5 5	ND ND ND ND	9 1 2 7 7	11 9 67 11 11	.2 .2 .2 .2 .2	3 2 2 2 3	2 2 2 5	13 8 14 19 12	. 12 . 12 . 39 . 14 . 10	.026 .023 .021 .044 .040	5 4 7 7 7	5 9 11 6 7	.24 .09 .36 .32 .16	25 15 26 22 25	.01 .01 .01 .01 .01	2 5 6 4 6	.48 .25 .86 .73 .56	.03 .01 .01 .02 .01	.08 .05 .11 .13 .21	1 1 1 1 1	23 662 26 22 40
RX 050338 RX 050339 RX 050340 RX 050341 RX 050342	28 1 4 2	2 9 30 13 16	24 11 14 20 32	3 58 56 29 41	.9 .4 .8 3.9 2.6	5 1 8 9 6	1 6 4 1	51 718 469 335 3452	.78 1.99 1.70 .68 .48	253 8 5 9 2	5 5 5 5 5	nd Nd Nd Nd Nd	14 6 5 3 1	31 7 4 5 25	.2 .2 .2 .3 .6	8 2 2 2 2	2 2 4 2	7 22 11 5 3	.05 .09 .08 .04 .04	.083 .036 .034 .013 .007	56 7 5 4 3	7 6 9 8 8	.01 .32 .22 .08 .02	41 21 19 14 50	.01 .01 .01 .01 .01	3 2 4 5 2	. 15 . 76 . 56 . 20 . 13	.02 .02 .01 .01 .01	.19 .10 .15 .05 .07	1 1 1 1 2	497 28 111 71 185
STANDARD C/AU-R	19	60	40	132	7.1	70	32	1057	3.95	37	19	6	39	53	18.6	19	20	57	.48	.093	40	57	.87	181	.09	37	1.88	.07	.15	13	454
DATE RECE	21VED	- SAI	JUN 2	TYPE:	ROCK	ATE	REP	ORT	MAI	BY FA/	JI	ROM 1	о ⁻ бй 27/	91.	E.	GNEI	D BY	C	ĥ	·····	р ^{о.тс}	DYE, C	C.LEON	IG, J.	WANG;	; CERT	JFJEC) B.C.	. ASSA	YERS	
••• • ••• - _																															
· ,																															

ACME ANAL	YTIC	al I	ABO	RATC	RIES	LTI).	8	52 1	e. P	- STI	NGS	ST.	VAN	ICOU	VER	B.C	V	6 a 1	LP6		PHO	NE (6	04)25	3-3	158	FA	X (6 0	04)2	53-1	1716
£ £				:	<u>Inco</u>	Ex	<u>pl.</u> 269	&) - 64	G <u>Tec</u> 56 Bu	EOC h. rrard	EM <u>Ser</u> St.,	ICA <u>Vic</u> Vanco	LA <u>es</u> ouver	NAL PRO BC V	YSI JEC 60 2X8	8 C T B 3 SI	ERT C 9 ubmit	IFI <u>1-0</u> ed by	CAT <u>1</u> y: Mai	Fi RK SL/	le NUENWI	# 9 11te	1-2	149						Å /	A
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppin		<u> </u>	ppm	ppm	*	ppn	•	ppm			•	ppn	ppb
RX 050309	3	9	31	96	.9	9	6	1023	1.79	12	5	ND	4	43	.7	2	2	16	.39	.049	9	11	.38	20	.02	2	.66	.01	.11	1	8
RX 050350	1 Ĩ	10	4	79	.1	16	9	1136	2.96	3	5	ND	8	31	.2	2	2	37	.33	.066	10	16	.65	46	.01	2 1	.35	.03	.08	i i	6
RX 050351	1	7	3	60	1.6	23	10	1011	2.30	6	5	ND	2	24	.2	2	2	37	.67	.069	11	59	.57	32	01	4 1	.05	.01	.07	1	2930
RX 050352	Ż	13	7	75	1	20	10	1104	2.84	6	5	ND	9	36	.4	2	2	35	.34	.071	10	20	.62	42	01	3 1.	.36	.03	.10	2	14
RX 050353	1	14	8	67	.5	34	14	1124	3.29	9	5	ND	5	71	.4	2	2	55	1.16	.093	17	69	.95	34	01	6 1.	.64	.02	.10	1	530
																									4						
RX 050354	1	8	8	97	.1	44	22	1426	4.51	5	5	ND	5	53	.5	2	2	78	1.58	.153	29	135	1.83	50	01	22.	.45	.02	.08	1	8
RX 050355	Ż	8	5	73	.1	7	7	894	2.56	6	5	ND	7	26	.2	2	4	30	.46	.061	12	10	.53	25 .	01	2.	.91	.04	.10	1	28
RX 050356	5	13	44	50	105.0	/ 16	4	656	1.02	4	5	8	1	8	.5	2	2	7	.34	.018	2	15	.06	14	01	2.	.44	.01	.05	<u></u>	11500
RX 050357	2	11	56	68	3.9	7	7	729	2.27	3	6	ND	6	14	.6	2	2	23	.25	.057	8	8	.36	22 .	01	3.	.81	.03	.13	1	410
RX 050358	1	15	17	87	5.5	5	8	698	2.75	2	5	ND	8	17	.4	2	2	19	.29	.069	9	6	.53	32 .	01	51.	.28	.03	.21	1	50
						,																							2		
RX 050359	1	15	65	57	96.0	4	2	1159	.59	3	5	18	1	6	.5	2	2	6	.08	.009	2	5	.06	36.	01	2.	.31	.01	.03	11	16600
RX 050360	1	13	89	91	19.5	3	7	976	2.47	6	5	ND	8	40	.3	2	3	30	.52	.059	14	6	.54	36 .	01	3.	.98	.03	.09	§ 1	410
RX 050361	2	9	6	83	1.7	8	7	929	2.63	3	5	ND	7	35	.3	2	2	32	.38	.060	11	10	.59	32	01	21.	.06	.04	.08	୍ରୀ 👘	510
RX 050362	1	7	339	119	1.0	4	9	1481	3.14	3	7	ND	7	64	.6	2	2	35	.63	.071	14	7	.71	78	02	21.	.17	.04	.09	1	10
STANDARD C/AU-R	19	56	42	132	7.0	68	31	1031	3.92	39	23	7	39	52	18.5	14	19	54	.47	.089	39	58	.88	176	09	33 1.	.88	.06	.15	13	460

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

DATE RECEIVED: JUN 28 1991 DATE REPORT MAILED:

✓ ASSAY RECOMMENDED

Detailed Geology Maps

FIGURE

overburden

LEGEND

JURASSIC/CRETACEOUS OKANAGAN BATHOLITH

GRANODIORITE

SYMBOLS

Quartz Vein

Limit of Bedrock Exposure

Hematite/Argillic Alteration

Chip Sample (ppm Au, ppm Ag)

INCO EXPLORATION AND TECHNICAL SERVICES INC. DETAILED GEOLOGY AND SAMPLE LOCATION MAP ZONE 2

Quartz hosts 50% wall inclusions. Rx-049983 (0.69,3.7)

LEGEND

JURASSIC/CRETACEOUS OKANAGAN BATHOLITH

GRANODIORITE

SYMBOLS

Quartz Vein

Limit of Bedrock Exposure

Hematite/Argillic Alteration

Chip Sample (ppm Au, ppm Ag)

INCO EXPLORATION AND TECHNICAL SERVICES INC. DETAILED GEOLOGY AND SAMPLE LOCATION MAP ZONE 4

FIGURE 12

* * *				
3 .		,		
. •				
		•		
c granodiori	te.			
Outcrop, Fl	oat (***		,	
	L.			
				300
			No.	A C A
)	
	N.	No. of Concession, Name		FRA
	10	No.		e Z
1000	1500	Contraction of the second s		- 22
N AND	<u>. </u>			
CES IN	[C.			-
Area: Westba	nk, Verno	п м.D. В.	· · · · · · · · · · · · · · · · · · ·	-
GEOCI ATION M	HEMI AP IN	DEX		
sidy /5	Survey Date dr Nov 19, Figure:	date: May/Ju awn: Revi /91 1 3	une 91 sed: Nov 25/9	BOLOOTA

