ARIS SUMMARY SHEET

District Geologist, Smithers

Off Confidential: 92.09.06

ASSESSMENT REPORT 21878

MINING DIVISION: Liard

PROPERTY:

Hoodoo

LOCATION:

131 18 00 LONG LAT 56 48 00

09 6297269 359541 UTM

104B14W NTS

CLAIM(S):

Hoodoo 1-5

OPERATOR(S): Minnova

Wells, G.S.

AUTHOR(S): REPORT YEAR:

1991, 19 Pages

COMMODITIES

SEARCHED FOR: Copper, Zinc, Silver, Gold

KEYWORDS:

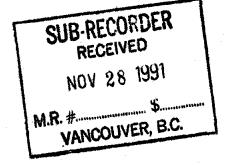
Triassic, Stuhini Group, Andesites, Gossans, Argillites, Shear zones

WORK

DONE:

Geochemical, Geological

GEOL 1500.0 ha


Map(s) - 1; Scale(s) - 1:5000

62 sample(s);ME ROCK

RELATED

11331,12614,20441 REPORTS:

104B 127,104B 283,104B 284 MINFILE:

Report on
Lithogeochemical Sampling
Hoodoo Property

Liard Mining Division NTS 104B/14W

Latitude 56° 48' N Longitude 131° 18' W

Owner: Kerr Addison Mines Ltd.
Operator: Minnova Inc.

<u>Claims</u>

Hoodoo 1-5 incl.

Minnova Inc. Vancouver, B.C.

GEOLOGICAL BRANCH. Wells

Table of Contents

			<u>Page</u>
1.	Introducti	ion	1
Τ•		cion and Access	1
		cal Rights	3
			3
	c. Histo	or A	3
2.	Work Done		3
3.	Geology		5
4.	Results of	f Lithogeochemical Sampling Program	6
5.	Conclusion	ns	8
6.	Itemized (Cost Statement	9
7.	References	5	10
8.	Author's (Qualifications	11
		<u>List of Appendices</u>	
Appe	ndix I	Analytical Procedures	
Appe	ndix II	Analytical Certificates	
		<u>List of Figures</u>	
Figu	re 1:	Location Map	2
Figu	re 2:	Claim Map	4
Figu	re 3:	Geology, Lithogeochemical Sample Locations and Results (1:5000) in	pocket
		<u>List of Tables</u>	
Tabl	e 1:	Lithogeochemical Sampling - Hoodoo Claims	7

Report on Lithogeochemical Sampling Hoodoo Property

1. Introduction

Kerr Addison acquired the Hoodoo claims in August 1982 and Minnova inherited the claims when the two companies amalgamated their exploration divisions in 1989. Since 1982, there has been an extensive amount of exploration activity in the Iskut River area which has resulted in a number of new discoveries. In 1990, Prime Resources discovered the Rock and Roll massive sulphide zone which is hosted in argillites and mafic volcanics of the Triassic-aged Stuhini Group. These units are also exposed on the Hoodoo claims and the present lithogeochemical sampling program was undertaken to assess the massive sulphide potential of the property. This report describes the results of this work.

a. Location, Access and Physiography

The Hoodoo claims are located 20 km northwest of the Bronson Creek airstrip and are readily accessible by helicopter (Figure 1). The property covers a north-south trending strip of land which is bounded to the east by the Twin glacier and to the west by the Hoodoo glacier. Topographic relief is moderate with elevations ranging between 600 and 1350 meters above sea level. All parts of the property are accessible by foot. Most of the claims are above treeline but some stands of stunted spruce occur at the lower elevations.

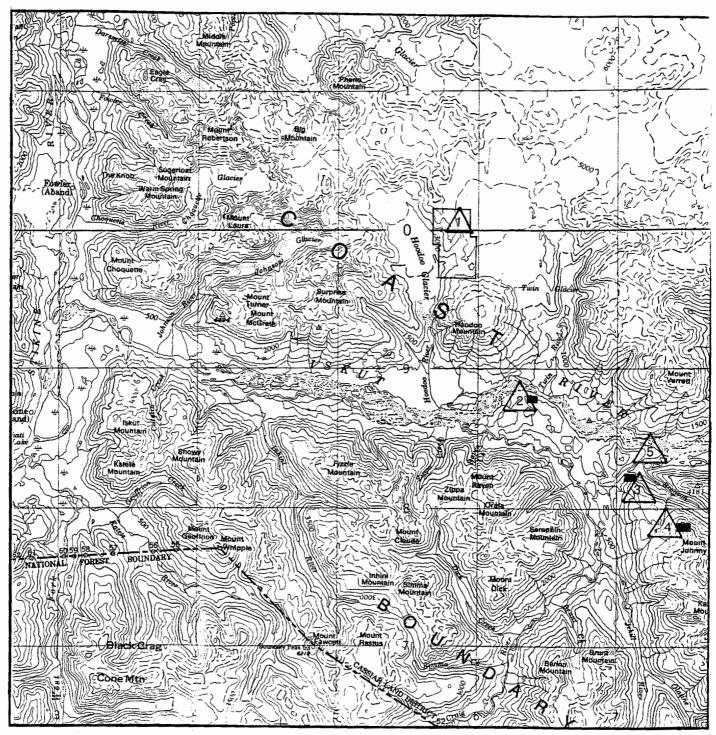
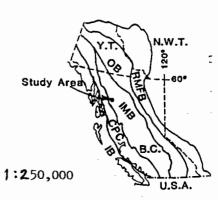



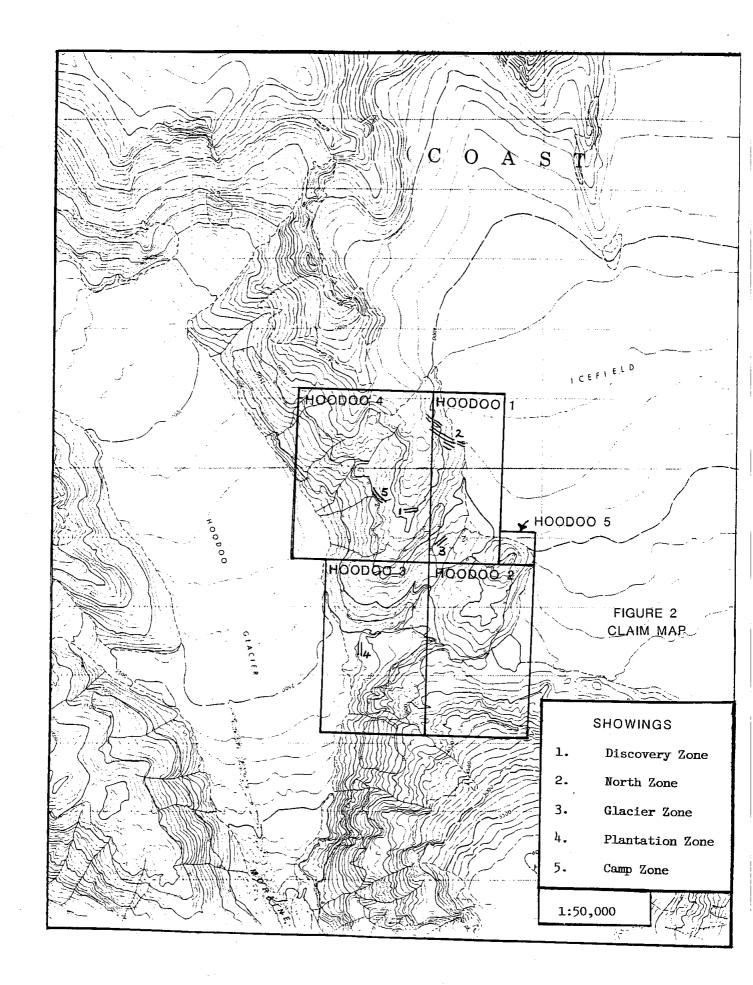
FIGURE 1 LOCATION MAP

- 1 Hoodoo 1-5 Claims, Kerr Addison
- 2 Rock & Roll Property, Eurus/Thios, Black Dog Zone
- 3 Snip, Cominco/Prime
- 4 Johnny Mountain, Skyline
- 5 BRONSON AIR STRIP

b. Mineral Rights

The sampling program was carried out on the Hoodoo 1, 3 and 4 claims which are included in the Hoodoo group (Figure 2). The claim status is as follows:

Hoodoo Group


Claim	<u>Units</u>	Record No.	Month of Record
Hoodoo 1	10	22189	September
Hoodoo 2	6	22190	September
Hoodoo 3	6	22191	September
Hoodoo 4	20	22192	September
Hoodoo 5	1	22193	September
Total	$\overline{43}$ units		•

C. History

After staking the claims in 1982, Kerr Addison conducted a number of surface surveys which included geology, trenching, rock and soil sampling and geophysics (DEEPEM, IP, Mag). This work was directed at evaluating the precious metal content of several gossanous zones exposed on the property. This work is documented in assessment reports prepared by Holbek (1982, 1983) and Fraser (1984).

2. Work Done

Argillite units exposed on the Hoodoo claims were systematically panel and chip sampled to assess their potential for hosting a volcanogenic massive sulphide zone. The field work was carried out by Pamicon Development personnel under the

direction of a Minnova geologist during the period August 20th to 26th, 1991. Fifty-seven samples of argillite and five other mineralized samples were collected. These samples were shipped to Min-En Laboratories in Smithers and North Vancouver and analyzed for Ag, As, Ba, Cu, Pb, Sb and Zn using standard ICP techniques. Gold was analyzed using an atomic absorption finish on a fire assay bead. Details of the analytical procedures are give in Appendix I.

Geology

The Hoodoo claims are underlain by Upper Triassic volcanics and sediments of the Stuhini Group (Figure 3). The volcanic rocks are comprised primarily of unaltered, dark green mafic tuffs, lapilli-tuffs and block breccias. Felsic volcanics are exposed in the central and northern parts of the claim group. They are pyroclastic in character and consist of cherty tuffs, lapilli and block breccias. Several argillite horizons are interlayered with the volcanic stratigraphy. These units appear to have a limited strike extent which can be attributed to poor exposure, faulting (Figure 3) or rugged paleotopography.

Five gossanous areas have been identified on the Hoodoo claims and most of the previous work has focused on evaluating their precious metal content (Figure 3). The best silver grades have been obtained from the Discovery Zone (43.2 g/T Ag over 7.4 m) and the North Zone (164 g/T Ag - grab). The high Ag values appear to associated with a fine grained sooty pyrite that occurs in fractures and as disseminations.

There is extensive faulting on the Hoodoo claims which is evident from air photo lineaments and the truncation of many of the argillite horizons (Figure 3). Holbek (1982) attributed this brittle deformation to the collapse of the magma chamber which fed the recent Hoodoo volcanics exposed in the southern part of the claims.

4. Results of the Lithogeochemical Sampling Program

Sample descriptions and results are included in Table 1 and sample locations and results are plotted in Figure 3. Although the database is too small to be property evaluated on a statistical basis, means, ranges and standard deviations for each element have been calculated and are presented below:

<u>Element</u>	<u>Range</u>	<u>Mean</u>	Standard Deviation
Cu	11-313 ppm	51.6 pp	m 14.2 ppm
Pb	13-39 ppm	24.0 pp	6.1 ppm
Zn	43-142 ppm	85.7 pp	m 21.5 ppm
Ag	0.1-2.4 ppm	0.75 pp	m 0.6 ppm
Au	1-31 ppb	2.6 pp	b 1.6 ppb
Ва	30-1212 ppm	127.2 pp	m 50.8 ppm
As	1-39 ppm	18.4 pp	m 8.7 ppm
Sb	1-8 ppm	1.4 pp	m 1.2 ppm

In general, the argillites have low metal values. Only 3 or 4 samples have anomalous Ba, Cu, Zn or Au values and there is no correlation between anomalous samples. The high copper samples are located in the northeastern part of the claim group and the high zinc samples are located in the vicinity of the North showing.

During the sampling of the argillites, five rusty or mineralized outcrops were also sampled (Table 1). No significant mineralization was discovered although one sample has high copper (47591 ppm).

SAMPLE	ROCK TYPE	WIDTH / AREA	MINERALIZATION	Cu	РЬ	Zn	Ag	Au	As	Ba	Sb
				ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm
									10	136	
461651	Argillite	20 sq. m	tr py	57	28 22	83 43	0.5 1.0	2	18 16	107	
461652 461653	Argillite	10 sq. m	tr py	26 40	27	76	1.0	2	26	115	
461654	Argillite	10 sq. m	tr py	35	23	66	1.2	1	21	133	
461655	Argillite Argillite	10 sq. m 2 sq.m	tr py tr py	65	28	93	0.3	3	19	1212	
461656	Argillite	20 sq. m	tr py	11.	23	140	2.2	2	33	56	-
461657	Argillite	10 sq. m	p.y	196	35	67	2.4	2	31	114	
461658	Argillite	15 m		142	25	83	0.8	1	12	118	
461659	Argillite	5 sq. m	tr py	136	16	57	1.4	2	24	64	,
461660	Argillite	2 m	(7)	313	26	78	1.5	6	25	133	;
461661	Argillite	15 m		91	26	80	1.2	3	17	71	
461662	Argillite	5 m		77	28	108	0.2	4	20	141	
461663	Argillite	10 m		89	28	133	0,1	1	16	206	
461664	Argillite	15 m		40	24	. 71	0.8	-2	24	149	
461665	Argillite	10 m		59	30	117	0.1	2	21	197	
461666	Argillite	10 m		61	26	87	0.2	3	19	155	
461667	Argillite	10 m		56	27	128	0.5	2	16	143	'
461668	Argillite	10 m		50	36	124	0.8	1	23	409	
461669	Argillite	10 m		58	37	110	0.1	1	20	139	
461670	Argillite	5 m		62	36	119	0.2	2	27	193	
461671	Argillite	5 m		55	20	88	0.3	31	16	205	
461672	Argillite	2 m		59	23	70	0.3	5	24	288	
461673	Argillite	3 m		67	30	91	1.0	2	17	153	
461674	Argillite	3 m		53 60	19 28	81 92	2.4 0.3	4	4 26	82 157	
461675	Argillite	2 m		47	23	120	0.3	1	33	132	
461676 461677	Argillite Argillite	5 m x 20 m		64	29	95	0.1	2	26	177	
461677	Argillite	5 m x 20 m		59	31	79	0.2	2	24	183	
461679	Argillite	5 m 5 m		63	16	91	2.0	1	2	80	
461702	Argillite	0.7 m	1% py	46	27	142	1.1	3	37	30	
461703	Argillite	8 sq. m	.,,,,	50	25	78	0.1	7	19	106	
461704	Argillite	8 sq. m		44	26	82	0.1	4	11	132	
461705	Argillite	15 sq. m		57	27	95	0.1	12	18	133	
461706	Argillite	2 sq. m		41	25	71	0.3	2	30	407	
461707	Argillite	24 sq. m		51	24	86	0.1	1	17	94	
461708	Argillite	7 sq. m		61	13	84	1.1	4	6	94	
461709	Argillite	4 sq. m		39	39	50	1.3	9	21	46	
461710	Argillite	5 sq. m		35	21	73	0.7	2	16	59	
461711	Argillite	5 sq. m		55	22	91	0.4	2	9	86	
461712	Argillite	. 8 m		41	20	77	0.5	6	22	76	
461713	Argillite	10 m		58	21	69	0.6	3	17	108	
461714	Argillite	10 m		45	13	71	1.6	2	1	92	
461715	Argillite	10 m		44	17	74	0.1	2	6	147	
461716	Argillite	20 m	1% py	48	21	81	0.1	1	15	173	
461717	Argillite	5 sq. m	1% py	23	25	50	0.7	1	19	209	
461718	Argillite	3 sq. m		49	. 18	84	1.2	2	3	167	
461719	Argillite	2 m x 5 m		45 45	17 19	82 69	1.6 1.2	2	10 8	158 117	
461720 461721	Argillite Argillite	3 m 5 m		45	19	72	1.6	2	5	82	
461721	Argillite	2 m		53	18	73	1.0	2	12	62	
461723	Argillite	15 m		52	18	89	0.1	3	23	70	
461724	Argillite	5 m		33	20	74	0.8	2	9	73	
461725	Argillite	5 m		45	14	62	1.1	2	8	72	
461727	Argillite	3 m		56	20	76	0.8	2	15	179	
461729	Argillite	10 m x 5 m		66	29	85	0.2	19	25	175	
461730	Argillite	10 m		59	22	97	0.1	5	39	156	
461731	Argillite	10 m		49	24	79	0.4	3	26	149	
461701	Py Shear	grab	5% py	39	84	12	10.4	167	392	90	1
461726	rusty mafic	15 m x 5 m	1 – 2% py	22	7	57	1.2	1	1	114	
461728	rusty shear	grab	,,,	60	8	36	2.0	8	31	108	
461732	qtz-cp vein	grab	15% py-cp	47591	115	89	23.7	158	17	30	
461733	Discovery	grab	20% py	642	24	46	5.5	2	122	474	1

5. Conclusions

Lithogeochemical sampling of the argillites on the Hoodoo property was done to determine if these horizons are associated with volcanogenic massive sulphide mineralization similar to that exposed at Prime Resources' Rock and Roll prospect located 15 km to the southeast. Metal content of the argillites on the Hoodoo claims is low and Cu, Zn and Ba values are at least an order of magnitude lower than what would be expected in a prospective massive sulphide environment. The few slightly anomalous samples occur in the vicinity of shear related mineralization. In light of this survey, it appears that the potential for discovering a volcanogenic massive sulphide zone on the Hoodoo property is low.

Day Vells

6. <u>Itemized Cost Statement</u>

filed for \$14,600

Hoodoo Group

-work on Hoodoo 1, 3, 4

-Salaries

G. S. Wells M. Stammers A. Montgomery J. Anderson	3 days 5.5 days 6.5 days 1 day	\$375/day\$375/day\$225/day\$225/day	1,125.00 2,062.50 1,462.50 225.00
-Helicopter			4,393.86
-Accommodation/food			
14 man days @ \$100/	day		1,400.00
-Air fares			
(GSW, MS, AM: retu	rn Vancouver	r - Bronson Strip)	1,629.25
-Air freight (sample	es, equipmen	it)	891.31
-Analyses			
62 samples @ \$15.50	/sample		961.00
	Subtot	al	\$14,150.42
	Pac wi	thdrawal	\$449.58
	Total		\$14,600

7. References

- Fraser, R. J. (1984) Report on Geology, Geophysics, Rock Trenching and Sampling, Hoodoo Claim Group.
- Holbek, P. (1982): Report on Geology and Geochemistry of the Hoodoo Claim Group.
- Holbek, P. (1983): Report on Geology and Geochemistry of the Hoodoo Claim Group.

Statement of Qualifications 8.

- I, Gary S. Wells, hereby certify that:
- I hold an Honours Bachelor of Science degree in combined 1. geology and chemistry (1975) from Carleton University, Ottawa, Ontario and a Ph.D degree in geology (1980) from Queen's University, Kingston, Ontario.
- 2. I am an associate member of the Geological Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.
- 3. I have practised my profession in exploration continuously since graduation in 1980.

Date: November 21, 1991

Appendix I

Analytical Procedures

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR 31 ELEMENT TRACE ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni P, Pb, Sb, Sr, Th, Ti, V, Zn Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR FIRE GOLD GEOCHEM:

Geochemical samples for Fire Gold processed by Min-En Laboratories., at 705 West 15th Street, North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assayed preconcentrated.

After pretreatments the samples are digested with aqua regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

Appendix II

Analytical Certificates

COMP: MINNOVA INC. PROJ: HOODOO PN 668 ATTN: GARY WELLS

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 15-0579-RJ1+2 DATE: 91/09/02

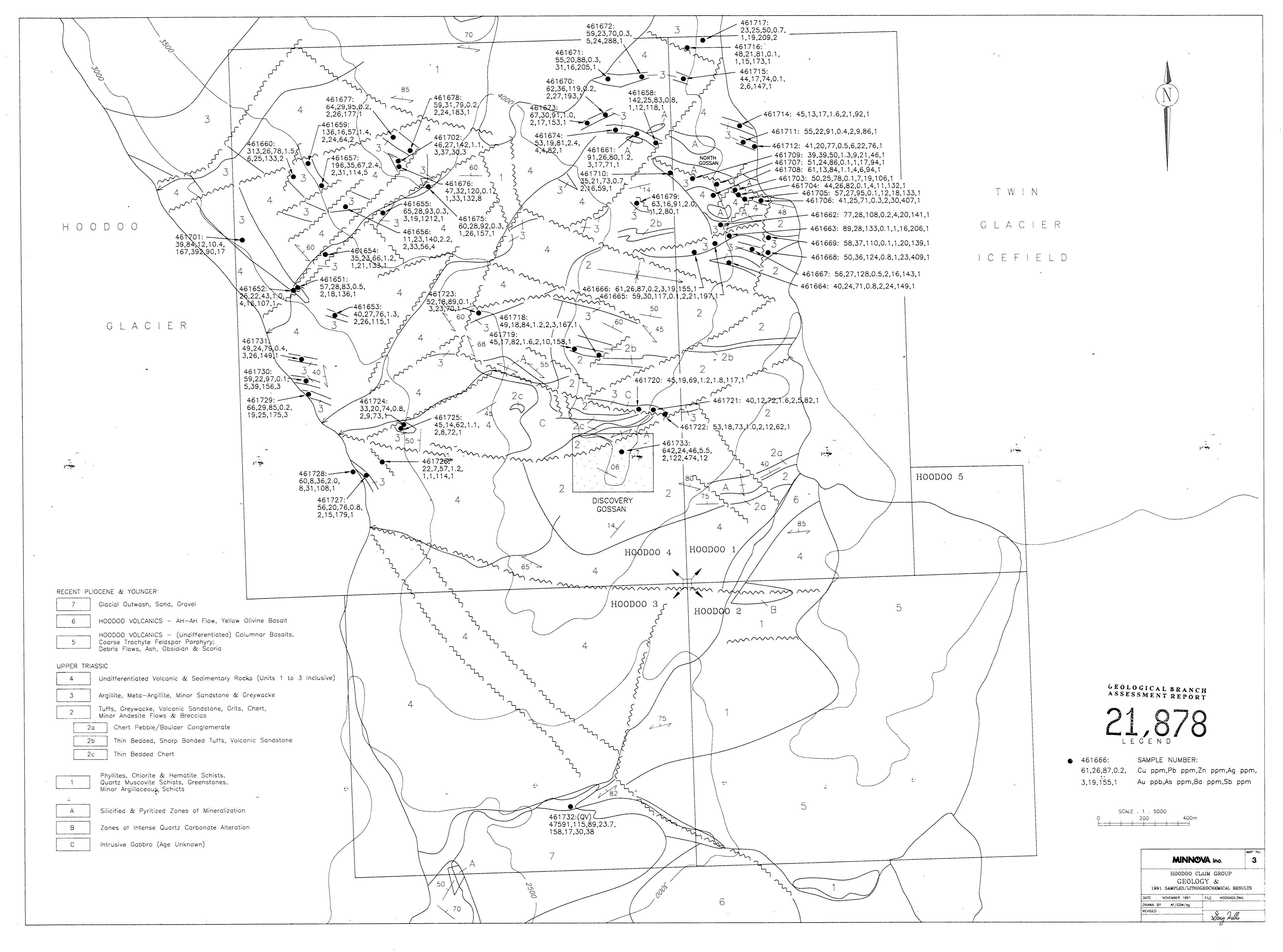
* ROCK * (ACT:F31)

2	SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-FIRE PPB	a 1991
	461651 461652 461653 461654 461655	.5 1.0 1.3 1.2	18 16 26 21 19	136 107 115 133 1212	57 26 40 35 65	28 22 27 23 28	1 1 1 1	83 \ 43 76 66 93	2 2 1 3 3 3	6 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	461656 461657 461658 461659 461660	2.2 2.4 .8 1.4 1.5	33 31 12 24 25	56 114 118 64 133	11 196 142 136 313	23 35 25 16 26	4 5 1 2 2	140 67 83 57 78	2 1 2 6	
	461661 461662 461663 461664 461665	1.2 .2 .1 .8	17 20 16 24 21	71 141 206 149 197	91 77 89 40 59	26 28 28 24 30	1 1 1 1	80 108 133 71 117	3 4 1 2 2	
	461666 461667 461668 461669 461670	.2 .5 .8 .1	19 16 23 20 27	155 143 409 139 193	61 56 50 58 62	26 27 36 37 36	1 1 1 1	87 128 124 110 119	3 2 1 1 2	
	461671 461672 461673 461674 461675	.3 .3 1.0 2.4 .3	16 24 17 4 26	205 288 153 82 157	55 59 67 53 60	20 23 30 19 28	1 1 1 1	88 70 91 81 92	31 5 2 4 1	
)	461676 461677 461678 461679 461701	.1 .2 .2 2.0 10.4	33 26 24 2 392	132 177 183 80 90	47 64 59 63 39	23 29 31 16 84	8 1 1 1	120 95 79 91 12	1 2 2 1 167	
	461702 461703 461704 461705 461706	1.1 .1 .1 .1	37 19 11 18 30	30 106 132 133 407	46 50 44 57 41	27 25 26 27 25	3 1 1 1	142 78 82 95 71	3 7 4 12 2	
	461707 461708 461709 461710 461711	.1 1.1 1.3 .7	17 6 21 16 9	94 94 46 59 86	51 61 39 35 55	24 13 39 21 22	1 1 1 1 1	86 84 50 73 91	1 4 9 2 2	
	461712 461713 461714 461715 461716	.5 .6 1.6 .1	22 17 1 6 15	76 108 92 147 173	41 58 45 44 48	20 21 13 17 21	1 1 1 1	77 69 71 74 81	6 3 2 2 1	
	461717 461718 461719 461720 461721	.7 1.2 1.6 1.2	19 3 10 8 5	209 167 158 117 82	23 49 45 45 40	25 18 17 19 12	2 1 1 1	50 84 82 69 72	1 2 2 1 2	
	461722 461723 461724 461725 461726	1.0 .1 .8 1.1 1.2	12 23 9 8 1	62 70 73 72 114	53 52 33 45 22	18 18 20 14 7	1 1 1 1	73 89 74 62 57	2 3 2 2 1	
١.	461727 461728 461729 461730 461731	.8 2.0 .2 .1	15 31 25 39 26	179 108 175 156 149	56 60 66 59 49	20 8 29 22 24	1 1 3 3	76 36 85 97 79	2 8 19 5 3	

COMP: MINNOVA INC. PROJ: HOODOO PN 668

ATTN: GARY WELLS

MIN-EN LABS — ICP REPORT


705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1S-0579-RJ3 DATE: 91/09/02

* ROCK * (ACT:F31)

SAMPLE IUMBER	AG PPM	AS PPM	BA PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-FIRE PPB		
661732 661733	23.7 5.5	17 122	30 474	47591 642	115 24	38 12	89 46	158	 	·
			,						 	
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				_
										_

