HAROLD M. JONES & ASSOCIATES INC.

CONSULTING GEOLOGISTS

605 - 602 WEST HASTINGS STREET, VANCOUVER, B.C. V6B 1P2

22 13

TELEPHONE: (604) 689-5533

RD.

LOG NO: DEC 0 4 1991 ASSESSMENT REPORT ACTION: GEOCHEMICAL REPORT ON THE RED BLUFF CLAIM GROUP DAK RIVER, ALICE ARM AREA, B. SKEENA M.D.

FILE NO:

CO-ORDINATES 550 32' 30"

103 P 11 W

1290 26' 00"

OWNER OF CLAIMS

MICHAEL BOYLE 619 - 602 West Hastings Street Vancouver, B.C. V6B 1P2

OPERATOR

MICHAEL BOYLE

CONSULTANT

HAROLD M. JONES, P.Eng. HAROLD M. JONES & ASSOCIATES INC.

AUTHOR

HAROLD M. JONES, P.Eng.

November 13, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

-

Results

1 Summary 2 Introduction 2 Location and Access 3 Topography and Vegetation 3 Property and Title 4 History 5 Geology 5 General Geology 6 Local Geology 6 Field Program 8 10 Discussion 11

Conclusion 11 Recommendations 12 References Certificate 13 Appendix I Statement of Costs

Appendix II Assay Certificates and Frequency Distribution Graphs

List of Illustra	ations	Following Page						
Figure 1	Location Map	2						
Figure 2	Claim Map	2						
Figure 3(a)	General Geology	5						
Figure 3(b)	Legend for Figure (a)	5						
Figure 4	Sample Locations	8						
Figure 5	Soil Geochemistry - Au, Ag	8						
Figure 6	Soil Geochemistry - As, Cu	8						
Figure 7	Soil Geochemistry - Mo, Zn	8						

SUMMARY

The Red Bluff Group is located in coastal British Columbia at the head of Alice Arm, approximately 40 kilometres southeast of Stewart. The claims lie immediately north of the head of the inlet.

The claims are underlain by a package of Hazelton Group sediments and volcanics which encompass a large feldspar porphyry body. This intrusive/extrusive body is bleached, sericitized, carbonatized, and locally silicified and well mineralized with pyrite and pyrrhotite on fractures. It also hosts numerous quartz veinlets accompanied by minor pyrite, molybdenite, pyrrhotite and chalcopyrite.

No detailed exploration has been conducted on the property. Reconnaissance sampling by Amax (1980) and Noranda (1990) returned a number of silt, soil and rock samples anomalous in gold and copper. The 1991 soil sampling program returned anomalous assays in gold, arsenic, copper, molybdenum, zinc and lesser in silver, confirming that gold along with copper is present on the property. It was concluded that because of the above mineralization associated with an intrusive(?) in the Hazelton Group rocks that detailed exploration on the claims is both warranted and recommended.

INTRODUCTION

During the period August 12 - August 25, 1991, reconnaissance soil sampling was conducted on the Red Bluff Group which is located in the Alice Arm area, B.C. This work was part of a larger program recommended for the property by the writer, but which had to be curtailed due to limited finances. The purpose of this work was to examine an area which, from previous work by others (see History), identified a large area from which rock and soil samples returned anomalous values in gold and copper.

Field work was conducted by one prospector and one helper, operating out of a fly camp on Dak River. The writer did not visit the property but has conducted field work on the adjoining MB claims and prepared an assessment report on it (Jones, 1990).

Location and Access

550	32'	30")	to approximate centre
1290	26'	00")	of claims

The Red Bluff Group is located in coastal British Columbia at the head of Alice Arm, an inlet branching off the north end of Observation Inlet (Figure 1). It is approximately 40 kilometres southeast of Stewart and 90 kilometres northwest of Terrace.

Locally, the claims straddle the Dak River, lying on the southern slopes of Mt. McGuire and the northwestern slopes of Wilaux Mountain.

Direct access is by helicopter from Stewart or Terrace. By prior arrangement, one can drive a vehicle to Kitsault, located seven kilometres south of the property, then take a helicopter from here to the property. The recently completed program was mobilized from Kitsault.

A Cat road, constructed by Newmont Mining Corp. in the mid-1960's to service their Ajax molybdenum property, traverses the property following the Dak River. Its numerous bridges are now washed out, consequently it is not serviceable.

Topography and Vegetation

The property is characterized by very steep mountain slopes which are covered by mature conifers and thick undergrowth. Above approximately 1,050 metres elevation open grassy alpine terrain is common. Foot travel on the property is difficult and slow.

The Dak River flows through the property. Due to the heavy rainfall in this area, the level of the river fluctuates greatly, making safe crossing of the river dangerous to impossible.

Property and Title

4-

The Red Bluff Group consists of five claims and five reverted Crown grants totalling 80 units. They are:

Claim Na me	No. of <u>Units</u>	Record No.	New Record No.	Expiry Date*							
Devil's Club	1	5512	251507	September 19, 1997							
Red Bluff	1	5513	251508	September 19, 1997							
Albion	1	5514	251509	September 19, 1997							
Sunbeam	1	5515	251510	September 19, 1997							
Sub-Collector	1	8604	253809	March 22, 1998							
Star 3	15	5526	251519	September 26, 1992							
Star 4	10	5527	251520	September 26, 1992							
Dak 11	20	9090	254295	August 22, 1992							
Dak 13	10	8436	253641	March 1, 1993							
MB 2	20	5521	251516	September 26, 1992							

* Pending acceptance of assessment work filed on September 18, 1991

This claims are owned by Michael Boyle, 619 - 602 West Hastings Street, Vancouver, B.C. V6B 1P2.

History

The property is located within an area having a long mining history. The old copper mining and smelting town of Anyox is located on Observatory Inlet approximately 27 kilometres to the southwest; the Dolly Varden and Torbrit silver mines are located approximately 17 kilometres to the north-northwest; and Amax's open pit molybdenum mine is located 3 kilometres to the southeast of the property.

Numerous mineral occurrences are known within the general Red Bluff Group area but most were not explored in detail. Newmont's Ajax property, located 6 kilometres to the north, is an exception. Detailed exploration on this property indicated a large mineral inventory. Published reserves for it are 190 million tons grading 0.12% Mo.

Kennco Exploration and Amax explored the northern part of the Red Bluff Group in respectively 1968 and 1980. This area included the Red Bluff, a very large alteration zone which was explored for its porphyry copper potential (included within the reverted Crown grants). The southern end of Amax's geochemical grid covered what is now the northwest corner of MB 2 claim. In this area, they obtained two rock chip samples assaying respectively 140 and 220 ppb gold. Slightly west of these samples, one soil sample assayed 1700 ppb gold. To the north of Dak River they obtained similar anomalous assays from scattered locations.

Numerous old mineral occurrences are located on or in close proximity MB 2 claim. Their locations are shown on Figure 3 and their map location number follows their name, e.g. (83). The mining properties are: San Diego (83), Devlin Zone (84), Mac (Sunrise, Silver Band) (92), Standard (93), Kent and Maple Leaf (94), Highland (96), Billie Mac (97), Alamoza and Lone Star (101), Copper Creek (107), Silver Bell (108), Casy and Brown Bear (109), and Thru Mile (110). All have showings mineralized with sphalerite and lesser galena and silver.

Since acquiring the property, M. Boyle conducted several prospecting programs on the MB claims. These included locating a number of the old showings and opening them up by hand trenching, drilling and blasting. Some trenches, especially on the

old Standard Crown grant (L. 4270), exposed interesting sphalerite and galena mineralization

In 1990 Noranda Exploration Ltd. examined the northern end of the Red Bluff property, in the vicinity of the gossanous bluff of the same name. They ran several reconnaissance soil lines. Results from these returned some samples anomalous in gold and copper. They were sufficiently interested in the claims to make a tentative offer to option the property.

GEOLOGY

General Geology

The claims are underlain by north to northwest striking Lower to Middle Jurassic sediments and volcanics and include an intrusive complex and a large intrusive(?)/extrusive body. The eastern edge of the property is underlain primarily by black siltstone, argillite and shale. These sediments are in contact to the west with black argillaceous rocks intruded by a dyke swarm which is at least 300 metres wide. The dykes, primarily augite porphyry, also strike north to northnorthwest. This unit is bounded to the west by an intrusive(?)/extrusive feldspar porphyry, which is up to 1,500 metres wide. Middle to Upper Jurassic sediments lie to the west of the porphyry and underly the western claim boundary (Black, 1949).

The feldspar porphyry trends approximately through the centre of the property. In the northwestern part of the claim group it is strongly silicified, sericitized and pyritized over a large area. This alteration zone was the area of interest for both Kennco's and Amax's past exploration and for the current prospecting and reconnaissance soil sampling.

PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

OPEN FILE MAP 1986/2

GEOLOGY OF THE KITSAULT RIVER AREA NTS 103P

Geology by D. J. Alldrick, G. L. Dawson, J. A. Bosher, and I.C.L. Webster

Compliation and drafting by G. L. Dawson

LEGEND

INTRUSIVE ROCKS

TERTIARY EOCENE AND YOUNGER

 Te DYKES: diorite, wicrodiorite (a); lamprophyre (b); diorite, sill
 PN→ phase (c) phase (c)

EARLY TO MIDDLE EOCENE

• •	ALICE ARH	INTRUSIONS:	quartz monzonite	(a); biotit	e quartz
	monzonite	porphyry (b)	; sericite quartz	monzonite p	orphyry (c)

COAST RANGE BATHOLITH: quartz monzonite (a); granodiorite (b)

YOLCANIC AND SEDIMENTARY ROCKS

QUATERMARY PLEISTOCENE

7 MAFIC YOLCANICS: olivine basalt flows

JURASSIC

MIDDLE TO UPPER JURASSIC

- The UPPER SEDIMENTARY UNIT: basal fossiliferous wacke (a); siltstone, of shale, and minor sandstone (b); intraformational errol shale, and minor sandstone (b); intraformational conglomerate (c); limestone (d)
 - LOWER TO MIDDLE JURASSIC

EPICLASTIC AND FELSIC VOLCANIC UNIT: maroon and green volcanic conglomerate, breccia, and minor sandrense followers conglomerate, breccia, and minor sandstone (a); black siltstone, argillite, wacke, and limestone (b); greenish grey dacitic pyroclastic rocks and feldspar porphyritic flows (c)

INTERMEDIATE YOLCANIC UNIT: green and minor marcon andesite a th 4 d pyroclastic rocks (a); feldspar 1 hornblende andeste porphyry (b), black slitstone (c); maroon siltstone, sandstone, and conglomerate (d); limestone and fossiliferous limestone (e); • 1 chert (f)

MIDDLE SEDIMENTARY UNIT: black slitstone (a); limestone and $\begin{bmatrix} 3\\ -3 \end{bmatrix}$ fossiliferous limestone (b); near and much fossiliferous limestone (b); green and purple volcanic breccia with minor siltstone, sandstone, and conglomerate (c); interbedded slitstone, sandstone, wacke, and polymictic pebble conglomerate (d)

MAFIC YOLCANIC UNIT: Divine porphyry basalt flows (a); augite 2 d porphyry basalt flows and pillowed flows (b); basaltic pyroclastic rocks (c); basaltic conglomerate (d), black siltstone, sandstone, • wacke, and limestone (e)

LOWER SEDIMENTARY UNIT: black siltstone, argillite, shale (a); - 1 black wacke, sandstone, limestone (b)

ALTERATION

BIOTITE HORNFELS

SILICIFICATION-SERICITIZATION-PYRITIZATION

Abbreviations

Barite Ba	Lead Pb
Chalcopyrite cp	Holybdenum Ho
Chlorite chl	Nickel Ni
Cobalt	Pyrite Py
Copper Cu	Pyrrhotite po
Epidote ep	Stitca St
Galena gn	Silver Ag
Gold Au	Sphalerite
Iron Fe	Zinc In
Jasper	

SYMBOLS

Adit	<u>.</u>
Anticline (normal, overturned)	
Bedding, tops unknown (horizontal, inclined vertical)	X.
Bedding, tops known (inclined, overturned)	y ,
Contours (interval 500 feet)	~
Fault, arrows indicate sense of movement (defined, approximate)	
Fossil locality	ø
Geological contact [defined, approximate, assumed]	~
Height in fect above mean sea level	
Limit of alteration	
Hineral occurrence, trench, or pit	
Hinfile location: accurate within 500 metres	•
accurate within 1 kilometre	Ă.
Schistosity (horizontal, inclined, vertical)	XZ
Syncline (normal, overturned)	
K-Ar Date (Ma)	3 32.5

S

w NO. NAME

8) 84

85

86

96 97

SAN DIEGO DEVLIN ZONE

SILVER STAR

STANDARD KENT, MAPLE LEAF

PAY MASTER, ALICE BEAYER EXTENSION

LUNE AND LUNE AND BILLY MAC (SPERKZA ACADIA BILLY BARTON LUNE STAR, ALAMDZA UTOPIA, LYDN INGRAHAM'S WH F

HOLF SILVER LEAF

SILVER LEAF INDEPENDENT COPPER CREEK SILVER BELL CASEY, BROWN BEAR THREE HILE

BEAYER EXTENSION INON MAC, SURRISE, SILVER BAND ANNA MACK GOLDEN CREST HORSESHOE

	MINFILE
COMODITIES	ж.
Cu	155
Ag.In	
Ag	100
Au	137
Au.Ag	139
20	147
49	129
Cu .	136
Cu .	146
A9,P6	169
25	148
20	151
20	128
26	150
in to be be	149
Ay, Cu, Pb, 2h	126
Ag 25 10	127
70	123
In Ph la	151
An Ph	122
An An	134
ĂD	175
AQ.Pb.In	111
Pb	251
PD.In	154
Pb	132
Ag,≯b,Zn,Au	133

Local Geology

The Red Bluff Group encompasses a prominent gossan located on the ridge between Gumas and Washout Creeks. This area is covered by Star 3 and 4 claims and four reverted Crown grants - L.940, L.3187, L.3188, L.4259, and L.4260 (see Figure 2).

The Red Bluff area is underlain by an elongate feldspar porphyry body 4 kilometres long by 0.75 - 1.5 kilometres wide trending northwesterly. It is intrusive and/or extrusive in origin and is surrounded by a sedimentary unit consisting of argillite, siltstone, greywacke and minor conglomerate. The porphyry is bleached, sericitized, carbonatized, and locally silicified. It is well mineralized with pyrite and pyrrhotite on fractures as well as with numerous quartz veinlets accompanied by minor pyrite, molybdenite, pyrrhotite and chalcopyrite.

FIELD PROGRAM

Conducting field work on the Red Bluff Group was slow, difficult and time consuming. Access was the first problem - not only was time lost due to unflyable weather - helicopter mobilization from Kitsault - but helicopter lending sites were very limited. Due to steep terrain and heavy forest cover, landing sites were only available on gravel bars on the Dak River, elevation 150 metres, or above timber line in the alpine terrain elevation 915 metres. A camp site could not be located on the slope north of the Dak River, which would be the best location, so it was established on a gravel bar on the river, slightly downstream from the confluence of Gumas Creek. Because of this camp location, work was concentrated on the lower slopes both north and south of the river rather than entirely on the northern slopes.

Ground travel was slow due to the thick bush. A trail was cut from the camp for approximately 450 metres south along the west side of Dak River to a broader part of the river. At this point a crossing was made by falling several large trees across the river (river too fast and deep to be crossed on foot), then clearing the branches to form a crude bridge. This provided access to the east side of the river and

permitted soil sampling in the area. Prior to establishing this route, other crossing sites were examined north of the camp but were not suitable.

A second trail was cut for approximately 400 metres up-stream, also on the western side of the river. This provided access to the area to be sampled between Gumas and Washout Creeks.

On the east side of the river a trail-control line was brushed out for 700 metres to give access to and locate the site of two sample lines. The first sample line was run northeasterly on the approximate location of the 600 foot (183 metre) topographic contour line - Line 600S. It was flagged and soil sampled at 50 metre intervals for 1,450 metres, terminating near a major creek canyon. The second line - Line 1400S - was run in the same direction on the approximate location of the 1,500 foot (457 metre) topographic contour line for 600 metres, terminating in a deep gulley. It was also flagged and sampled at 50 metre intervals (Figure 4).

Survey control was maintained using Silva compass, pocket altimeter and a clinometer. Due to pressure changes during the day, elevations along the sample lines would vary. Line 1400S started near the 1,500 foot level, but appeared to terminate near 1,600 - 1,650 foot level.

The area between Gumas and Washout Creek was sampled in a similar manner to that described above. A trail-baseline was brushed out from the end of the access trail due north for approximately 1,200 metres. Using the altimeter, the approximate location of the 1,600, 1,400, and 1,200 foot (488, 427, and 366 metre) topographic contours were located on this baseline. Sample lines were then run along the contours, marking them with flagging and collecting a sample at each 50 metre station. Line 1200N (1,600 feet elevation) was sampled from 600W to 300E, line 1000W (1,400 feet elevation) from 600W to 250E, and line 800N (1,400 feet elevation) from 500W to 300E (Figure 4).

All samples were taken from the B horizon, using a mattock, and placed in a kraft paper envelope upon which was marked the coordinates of the sample site. Upon completion of the project, all samples were sent to Acme Analytical Laboratories, 852 East Hastings Street, Vancouver, B.C. for 30 element ICP analyses plus gold by acid leach - atomic absorption finish. Teck Exploration Ltd., on behalf of the property owner, paid approximately 80% of the assay costs. This was done to earn the first rights of refusal on the property.

A total of 98 soil samples were collected. Elements considered of interest were Au, Ag, As, Cu, Mo and Zn. The assay results for these elements are shown on Figures 5 to 7. The laboratory procedure is summarized on the assay certificates which accompany this report as Appendix I

RESULTS

Frequency distribution curves were drawn for each of the above elements (Appendix II). Curves for all elements except arsenic are skewed, and those for gold, copper and molybdenum are irregular, suggesting possible several sample populations. Since the two areas sampled are at least 700 metres apart and approximately half of the samples came from each area, there are not sufficient assays from each area to calculate a meaningful value for the various orders of anomalies. For this reason the following values were arbitrarily taken from the above plots.

Element	Background	Anomalous						
Gold Silver Arsenic Copper Molybdenum Zinc	0 - 80 ppb 0 - 2.5 ppm 0 - 60 ppm 0 - 250 ppm 0 - 18 ppm 0 - 325 ppm	 > 80 ppb > 2.5 ppm > 60 ppm > 250 ppm > 18 ppm > 325 ppm 						
Eine	o pro bbu	s ses ppin						

The assays are plotted on Figures 5 to 7. These figures illustrate that a number of sample sites are anomalous in one or more of the elements assayed. Some of the more significant areas of interest are:

- 8 -

Area East of Dak River

- 1) Line 600S:
 - From 1050E to 1300E four assays range from 115 to 260 ppb Au and one sample assayed 1030 ppb Au. Three of the samples are anomalous in copper - assays from 266-335 ppm Cu - and one anomalous in molybdenum 21 ppm Mo.
 - From 850E to 950E three samples were anomalous in arsenic assayed from 73 - 184 ppm As and included two also anomalous in copper - 263 and 306 ppm Cu.
 - From 550E to 750E four of five samples were anomalous in copper, assaying from 257 to 676 ppm Cu. Four samples were also anomalous in molybdenum, assaying from 20-47 ppm Mo and one was anomalous in gold 88 ppb Au.

This line is at the base of a steep westerly facing slope. The above significant assays suggest that the area on and above this line warrant further investigation.

2) Line 1400S:

From 300E to 500E four samples assayed 97 - 267 ppb Au and one 78 ppb Au. Two were anomalous in molybdenum - 29 & 30 ppm Mo, and all were elevated in copper with one being anomalous - 464 ppm Cu. This line is on the same steep slope but approximately 400 - 500 metres east of and 275 m (900 feet) higher in elevation than line 600S. The results indicate that this area also requires additional exploration.

Area Between Gumas and Washout Creeks

- 1) Lines 800N, 1000N, and 1200N:
 - A broad zone extending from approximately 50W to the east end of each line - 250E-350E - contains many samples sites anomalous arsenic - 18 out

of 24 samples assayed between 61 - 347 ppm As. Within this zone are scattering of samples anomalous in gold - 82 - 88 ppb Au; in copper - 383 - 1805 ppm Cu; and one each in molybdenum and zinc - 20 ppm Mo and 633 ppm Zn, respectively.

2) Lines 800N and 1000N:

A broad area extending from approximately 300W - 450W on line 1000N to 250W - 450W on line 800N contains a number of samples anomalous in one or more of the elements assayed. These include gold - 80 to 360 ppb Au; one silver - 7.1 ppm Ag; copper - 275 - 2011 ppm Cu; molybdenum - 19 to 92 ppm Mo; two zinc - 360 and 578 ppm Zn and one arsenic - 132 ppm As.

Lines 800N to 1200N are in terrain which slopes moderately to steeply southward, consequently there would be considerable migration, especially downslope, of the metallic ions in the soil. Additional sampling is required to define the limits of the anomalous areas.

DISCUSSION

The field work was planned to confirm and possibly expand on areas found by Amax Exploration Ltd. (1980) and Noranda Exploration Ltd. (1990) to be anomalous in gold, copper and molybdenum. The work described above confirms that significant geochemical values are present for gold, arsenic, copper, molybdenum, zinc and to a lesser degree silver. The 1991 program was a reconnaissance rather detailed program but it clearly indicates that significant mineralization may be present in the area and that additional exploration is warranted.

A literature research of the Red Bluff area indicated that no systematic, detailed exploration had been conducted on the property in the past. Since it offers the potential for hosting copper-gold mineralization related to an intrusive(?) body within Hazelton Group rocks, a detailed exploration program is warranted on the property.

CONCLUSION

It is concluded the results from the reconnaissance-type geochemical soil sampling program confirm the presence of possibly significant precious and base metal mineralization on the property related to a feldspar porphyry intrusive(?) in Hazelton Group rocks.

RECOMMENDATIONS

It is recommended that a detailed geological-geochemical program be conducted on the property followed by geophysical and drilling programs if warranted. Since access within the property is difficult, it is recommended that an experienced crew prepare several heliports throughout the claims so that camp sites may be established in the desired locations. This would enable field personnel to avoid long steep hikes to the working areas and the difficult and dangerous crossings on the Dak River.

Respectfully submitted,

Harold

REFERENCES

- Black, Jim (1949): Zinc Deposits on McGrath Mountain, in Minister of Mines Annual Report 1949, pp. A76-79.
- Hanson, G (1935): Portland Canal Area, British Columbia, Geol. Surv. Canada Memoir, 175.
- MMAR: 1916, p. 65; 1918, pp. 68-69; 1922, p. 62; 1923, p.61; 1925, p. 73; 1926, p. 78; 1927, p. 72; 1928, p. 89; 1929, p. 89; 1931, p. 39; 1949, p. 76-79; 1967, p. 43.
- Geology of the Kitsault River Area, NTS 103P, Open File 1986/2, Ministry of Energy, Mines and Petroleum Resources, 1986.
- Grove, E.W. (1986): Geology of the Mineral Deposits of the Unuk-Salmon River -Anyox Area, Ministry of Mines, Energy & Petroleum Resources, Bulletin 63.
- Jones, H.M. (1990): Diamond Drilling Report on MB Claim Group, Wilaux Mountain, Alice Arm Area, Skeena Mining Division, 103P11W, Assessment Report.
- Noranda Exploration Ltd. (1990): Reconnaissance Geochemical Survey Map, Red Bluff Area, private document.

Assessment Report 9295 - Amax Exploration Ltd. - 1980.

CERTIFICATE

I, Harold M. Jones, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a Consulting Geological Engineer with offices at 605 602 West Hastings Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia in Geological Engineering, 1956.
- 3. I have practised my profession as a Geological Engineer for over 30 years.
- 4. I am a member of the Association of Professional Engineers of British Columbia, Registration No. 4681.
- 5. I examined the MB claims, a part of which is included in the Red Bluff Group, on October 4, 1986, September 4, 1987 and September 19, 1988, and prepared an assessment report on them dated October 19, 1990. I reviewed the data on the recently completed geochemical program as well as reviewed the data listed under "References" in this report.
- 6. I have no interest in, nor do I expect to receive any, in the Red Bluff Group or any business ventures of the owner.

Dated at Vancouver, B.C. this 15th day of November, 1991.

- 13 -

APPENDIX I

STATEMENT OF COSTS

APPENDIX I

STATEMENT OF COSTS

Wages

-

ومخت

-

-

-

-

-

A. Pedersen, Prospector-Soil Sampler Travel time - by vehicle: Vancouver-Stewart-Kitsault return Aug 9-11, 26-28 - 6 days at \$100/day	\$ 600		
Field work - trail cutting, grid layout, soil sampling Aug 12-25, 1991 - 14 days at \$175/day	2,450		
R. Thomas, Soil Sampler-Field Assistant Travel time – by vehicle: Vancouver-Stewart-Kitsault return Aug 9–11, 26–28 – 6 days at \$100/day	600		
Field work – trail cutting, grid layout, soil sampling August 12–25 – 14 days at \$175/day	 2,450	\$	6,100
Room and Board Traveling – Vancouver – Kitsault and return by truck, 2 men at \$161/day, 6 days Field grocery costs – 14 days at \$22.50/man/day	 966 630		1,596
Truck Rental 4x4 pick-up at \$50/day + insurance + fuel			1,450
Assays 98 soil samples at \$10.50/sample ICP + Au			1,029
Helicopter Vancouver Island Helicopters – mob & demob			2,536
Report and Maps H.M. Jones, P.Eng report and maps			686
Total		<u>\$</u>	13,397

APPENDIX II

-

-

-

-

ASSAY CERTIFICATES AND FREQUENCY DISTRIBUTION GRAPHS

Assays

			•		•		
100	B N/2	TTY	CAL	LABOI	RATORI	ES L	TD

852 E. MASTINGS ST. VANCOUVER B.C. VOA 1R6 PHONE (604) 253-3158 FAL (604) 23-1110

GEOCHEMICAL ANALYSIS CERTIFICATE

File # 91-4626 Page 1 Teck Exploration Ltd.

111	()() · • ·	1199	- W. Ha	STINGS	S. Vark	couver.	BUNADE	CNJ.
et e Quint de Martin					87 . - T	1.000	es din 5 til	124

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As DOT 1	U Domi	Au	Th	Sr	Cd pom p	Sb pom p	Bi pom p	V	Ca %	Р Х	La ppm	Cr ppm	Mg %	8a ppm	.Ti ≭p	B pm	Al X	Na %	K X	. W opm	Au* ppb	
BL 1200N 600W BL 1200N 550W BL 1200N 500W BL 1200N 500W BL 1200N 450W BL 1200N 400W	36 13 14 5 4	164 401 88 93 159	10 15 5 16 29	58 53 42 73 90	1.2 .6 .1 .7 .6	5 3 3 5 5	10 11 14 9 13	245 265 226 265 265 503	10.70 6.88 7.03 9.00 10.45	25 25 9 26 22	5 5 5 5 5	ND ND ND ND ND ND	1 1 1 1 1	9 5 6 9 17	.2 .2 .2 .2 .2	2 2 2 2 3	2 1 2 2 2 1 2 1	161 77 17 180 131	.07 .04 .02 .03 .16	.100 .092 .128 .086 .669	5 8 5 6 5	22 9 8 14 21	.50 .62 .49 .16 .31	81 91 148 99 101	.06 .01 .01 .02 .03	2 3 2 3 6 1 2 3 2 5	5.82 5.24 1.67 5.63 5.92	.02 .02 .04 .01 .01	.06 .14 .25 .05 .34	1 1 1 1	39.3 46.5 14.4 36.4 42.4	
BL 1200N 350W BL 1200N 300W BL 1200N 250W BL 1200N 200W BL 1200N 150W	6 8 6 4	120 135 111 186 53	24 13 18 13 13	134 54 157 110 58	.6 1.1 .9 .3 1.6	16 2 16 6 5	11 16 15 11 6	444 972 372 487 142	8.98 13.94 7.98 5.95 3.59	23 53 24 19 15	5 5 5 5 5	ND ND ND ND	1 1 1 1	6 21 9 15 7	.2 .2 .6 .2 .2	2 5 2 3 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	113 198 113 104 114	.05 .08 .09 .17 .05	.070 .690 .046 .059 .060	7 5 11 5 6	34 13 28 12 9	.38 .21 .34 .96 .11	110 46 172 175 92	.02 .07 .02 .01 .02	250232	5.23 6.45 4.28 3.48 1.98	.01 .01 .01 .02 .01	.06 .04 .05 .09 .04	1 1 1 1	39.4 83.0 24.7 35.7 22.0	•
BL 1200N 100W BL 1200N 50W BL 1200N 0 BL 1200N 200E BL 1200N 250E	4 13 9 3 1	161 391 383 56 59	19 22 23 19 23	147 270 216 82 106	-4 .6 .9 .6 1.4	13 25 31 11 3	20 27 25 9 11	694 440 1902 418 375	9.63 7.48 7.22 8.27 10.56	27 253 150 299 25	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	4 54 23 4 3	.2 .8 1.6 .2 .2	5 4 7 11 7	2 2 2 2 2 2	101 128 92 149 112	.04 .85 .48 .06 .02	.271 .053 .100 .138 .115	8 20 23 11 9	26 27 31 28 11	.37 .29 .33 .16 .11	161 247 333 72 219	.02 .06 .01 .02 .01	21223	B.01 3.62 3.89 2.57 5.30	.02 .02 .01 .01 .01	.04 .05 .09 .08 .08	1	58.0 66.3 51.7 40.9 15.0	
BL 1200N 300E BL 1200N 350E BL 1000N 600W RE BL 1200N 200E BL 1000N 550W	4 4 16 3 1	234 423 <u>2762</u> 51 175	28 80 14 19 10	182 155 142 79 221	1.1 .9 .3 .7 .5	23 46 14 11 19	16 42 16 9 36	484 1578 671 389 2851	8.82 8.05 5.59 8.33 8.30	62 113 16 297 21	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	5 9 88 4 26	-4 -9 -8 -2 -2	7 6 2 9 8	2 2 6 2 2	71 70 70 149 75	.06 .12 2.14 .05 .60	.110 .090 .132 .136 .350	11 21 10 11 15	36 26 9 28 15	.43 .92 .51 .16 .81	107 289 395 69 309	.02 .02 .02 .02 .02	2 3 4 2 3	6.87 2.81 2.02 2.57 6.22	.01 .02 .02 .01 .02	.05 .11 .07 .08 .15		57.1 82.3 33.7 33.2 12.9	
BL 1000N 500W BL 1000N 450W BL 1000N 400W BL 1000N 350W BL 1000N 300W	2 82 65 19 20	36 <u>2011</u> 777 443 362	7 6 9 29 19	51 29 28 67 90	.5 1.0 .8 7.1 .8	7 8 3 7 10	10 35 11 13 11	274 551 245 277 231	1.97 13.12 10.05 8.04 8.58	27 36 17 132 26	5 5 5 5 5	nd Nd Nd Nd	1 2 1 1	7 5 7 4 4	.2 .4 .3 .2 .2	22222	2 4 2 2 2	67 47 141 86 117	.09 .05 .11 .02 .03	.051 .116 .376 .150 .033	6 18 7 8	10 7 12 13 22	.15 .31 .72 .52 .32	58 171 93 274 105	.01 .01 .02 .01 .02	4 4 2 2 2	1.27 2.27 1.98 3.64 3.45	.03 .01 .01 .01 .01	.07 .12 .33 .14 .04	- 1 - 1	45.0 <u>360.0</u> 28.7 79.6 43.7	
BL 1000N 250W BL 1000N 200W BL 1000N 150W BL 1000N 100W BL 1000N 50W	7 2 1 4 8	211 39 17 250 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	174 134 66 125 57	.2 .1 .8 .5 .7	23 1 2 18 2	16 1 2 19 1	355 65 253 1371 43	7.68 .47 .53 4.92 .12	21 3 21 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	14 14 11 35 145	.2 .3 .2 .5 1.0	5 2 2 2 2 2	2 2 2 2 2 2 2	87 7 12 86 3	.14 .21 .22 .48 2.73	.058 .037 .040 .098 .024	11 2 3 9 2	25 1 4 17 1	.51 .05 .07 1.33 .05	198 39 21 506 116	.01 .01 .01 .02 .01	2 2 10 5 5	4.66 .31 .19 2.40 .09	.01 .01 .02 .04 .01	.07 .04 .29 .16 .04	211111	22.8 16.4 17.6 41.2 11.8	
BL 1000N 0 BL 1000N 50E BL 1000N 100E BL 1000N 150E BL 1000N 200E	20 15 2 1	1805 195 168 122 236	5 21 5 18 3 13 2 29 5 15	633 264 266 144 163	2.3 1.8 .4 .3 .5	229 27 26 27 26	20 17 24 22 29	2605 5749 1030 1092 582	4.59 6.27 5.73 5.59 7.96	88 32 67 96 45	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	62 35 16 14 6	4.7 1.3 .4 .2 .2	7 6 3 3 3	6 3 2 2 2 2	41 76 76 77 78	1.20 .57 .19 .25 .05	.165 .129 .054 .096 .085	45 14 7 12 9	22 25 24 31 28	.54 .44 1.19 1.25 .83	224 306 214 143 174	-08 -08 -03 -02 -03	5 2 3 5 3	3.20 3.47 2.54 2.39 3.84	.04 .01 .03 .03	.10 .07 .14 .13 .06	3 1 2 1 1	58.1 41.4 47.0 36.9 54.1	
BL 1000N 250E Standard C/AU-S	18	48 3 58	3 16 3 37	6 83 7 132	1.0	12 70	10 31	423 1035	9.97 3.91	27 41	5 17	ND 7	1 36	17 51	.2 18.5	2 15	2 18	221 54	. 17 . 48	.140) 8) 36	32 58	.50	124 176	-08 -09	2 34	2.72	.02	.06	1 11	10.1 45.2	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AV AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

xpt 26/91.

DATE REPORT MAILED: DATE RECEIVED: SEP 20 1991

Teck Exploration Ltd. FILE # 91-4626

Page 2

ţ,

ACHE ANALYTICAL

	-															-	-	-	-		C -	•	1.0	Cr	Ma	Q e	Ti	R	A 1	Na	K	- ∛ V -	Au#	
S	AMPLE#	M	o m 1	Cu	Pb pom	Zn pom	Ag ppm	Nî ppm:	Co ppm	Mn ppm	Fe X	As ppm p	U pomi	Au ppm p	Th xom:p	Sr xpm	- Cd ppm	sp ppm p	xbuul R/I	v ppm	Ca X	x x	ppm (opin opin	%	ppm	*	ppm	×	X	x	ppm	ppb	
8 B B 8 8 8	L 800N 500W L 800N 450W L 800N 400W L 800N 350W R 800N 300W	1	6 7_1 5 4 3	143 7 <u>33</u> 236 100 275	20 15 21 4 13	250 179 578 135 177	2.5 .8 1.4 1.0 .7	30 24 29 7 19	28 23 25 14 14	3147 1794 1293 965 423	6.23 7.68 6.99 7.88 7.44	25 26 23 15 24	5 5 5 5 7	ND ND ND ND ND	1 1 1 2	46 27 44 8 10	1.5 1.5 2.2 .7 .6	2 2 2 2 2 2	2 2 2 2 2 2	60 86 70 121 102	.97 .46 .56 .09 .07	.105 .094 .088 .125 .055	23 14 20 8 9	33 27 38 25 31	.69 .54 .59 .22 .28	264 357 299 107 189	.05 .01 .03 .01 .02	3 2 2 2 2 2	3.29 4.17 3.82 4.31 4.35	.02 .01 .02 .01 .02	.07 .09 .09 .06 .07	1 1 1 1	26.0 93.7 24.1 23.4 37.0	
8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IL 800N 250V IL 800N 200V IL 800N 150V IL 800N 150V IL 800N 100V IL 800N 50V	1	6 3 7 5	5 <u>28</u> 236 195 155 267	18 13 7 5 6	360 188 37 154 112	1.0 .7 .6 1.0 1.2	23 28 3 9 82	19 14 9 15 21	948 634 140 218 916	9.29 6.65 5.50 9.56 7.80	26 24 18 22 347	5 5 5 5 11	ND ND ND ND ND	1 1 2 3	54 12 4 5 26	1.5 .6 .2 .4 .5	2 2 2 2 12	22222	105 91 87 113 97	.66 .14 .06 .06 .35	.080 .061 .105 .135 .165	14 9 2 6 10	48 32 4 36 73	.51 .74 .25 .13 1.79	369 204 65 107 120	.09 .02 .02 .03 .10	3 3 4 2 4	4.27 3.71 1.87 10.64 3.86	.02 .02 .01 .01 .06	.08 .11 .11 .04 .24	1 1 1 1 1	20.7 28.5 <u>115.1</u> 48.9 18.7	
5 5 5 8 8	31. 800N 0 31. 800N 50E 31. 800N 100E 31. 800N 150E 31. 800N 200E		4 3 5 3 3	127 102 130 188 208	14 18 14 7 37	238 95 144 127 264	.8 .7 1.1 .6 1.2	28 26 54 11 23	16 12 23 20 46	568 275 2609 896 2259	9.83 11.86 9.80 11.47 8.33	61 169 112 127 229	5 6 5 5 5	ND ND ND ND	1 4 1 1	7 5 6 5 30	.5 .8 .7 1.0 1.5	3 2 5 3 2	2 2 2 2 2 2 2	125 80 101 151 87	.06 .04 .15 .06 .36	.067 .117 .269 .123 .128	10 7 10 8 22	52 70 69 29 19	.37 .23 .29 .22 .93	194 95 171 171 921	.06 .02 .01 .03 .01	2 2 2 2 2 2 2	5.52 10.24 5.42 6.36 3.58	.02 .01 .01 .01 .02	.07 .05 .13 .06 .08	11121	39.9 40.4 54.8 65.5 87.7	
	BL 800N 250E BL 800N 300E BL 600S 0 BL 600S 50E BL 600S 100E		1 4 2 3 3	63 58 85 107 44	9 27 10 9 8	108 60 129 193 66	.9 1.4 .3 1.3	19 6 28 42 11	12 7 11 15 5	723 410 541 3027 365	5.63 8.28 5.90 4.22 4.74	29 86 19 19 17	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	13 4 10 45 8	.4 .5 .6 2.8 .2	22222	222222	97 144 113 66 129	.24 .03 .11 .69 .08	.064 .117 .122 .111 .043	7 7 9 20 10	31 17 37 37 24	1.10 .19 .80 .98 .33	122 112 148 243 65	.05 .01 .04 .03 .04	3 2 2 4 3	2.47 2.93 3.11 2.91 2.12	.04 .01 .02 .03 .03	-08 -10 -12 -12 -13		10.4 48.5 7.8 8.8 6.4	
Set ->	BL 600S 150E BL 600S 200E BL 600S 250E BL 600S 350E BL 600S 400E		3 1 2 5 2	68 107 78 310 167	10 7 8 5 9	106 138 173 72 141	-9 -5 -5 -1.1 2 -5 -4	23 30 33 8 36	8 14 13 13 13	370 936 984 728 718	5.84 5.57 5.72 5.02 4.71	29 19 19 27 17	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	6 17 10 33 19	.5 .9 .7 .8 .7	2 2 2 2 2 2	22222	99 81 81 78 75	.05 .20 .13 .42 .25	.046 .096 .087 .096 .086	8 8 10 7 10	40 40 44 8 41	.64 1.10 1.20 1.36 1.32	102 187 102 192 190	.02 .04 .05 .04	2 4 3 4 3	3.74 3.98 4.14 2.00 3.15	.02 .03 .02 .04	.0; .1; .1; .1;	7 1 5 1 6 1 6 1 7 1	10.3 6.1 9.5 65.8 9.6	
	BL 600S 450E BL 600S 500E RE BL 600S 350 BL 600S 550E BL 600S 600E	DE	4 5 25 - 24	57 104 303 .676 94	12 10 6 12 10	76 135 78 183	5 .8 5 .4 3 .5 5 .6 7 .6	8 36 11 51 21	5 16 14 28 11	346 826 762 1262 359	7.02 5.30 5.18 5.15 4.95	19 17 27 27 22 5 16	5 5 5 5 5	ND ND ND ND	1 1 1 1	6 14 34 20 21	.2 .7 .8 1.0 .7	2 2 2 2 2	2 2 2 2 2 2 2 2	141 81 83 80 96	.04 .17 .43 .33 .21	.081 .065 .101 .073 .061	7 11 7 9	32 38 11 48 30	.19 1.26 1.43 .76 .51	84 138 216 203 149	.02 3.04 5.04 5.04 3.03 7.03	24432	3.11 3.38 2.15 4.5 2.78	.01 3.02 5.05 5.05 1.02 3.02	i .0 5 .1 5 .1 2 .0 2 .1	5 1 4 1 7 1 9 1 3 1	5.6 9.9 88.0 21.6 5.8	
	BL 600S 650E BL 600S 700E BL 600S 750E BL 600S 800E BL 600S 850E		47 20 16 5 1	<u>598</u> 257 294 47 42	- 18 16 14 10	207 5 175 186 9 96 150	7 1.1 5 .6 6 1.7 6 1.2 0 1.0	i 23 5 34 7 49 5 17 0 6	23 25 24 83	2381 1063 1958 441 21884	7.38 6.84 5.61 4.90	3 35 41 1 30 0 18 7 73	5 5 5 5 5	nd Nd Nd Nd	1 1 1 2 1	29 10 38 9 10	1.5 1.0 1.3 1.0	2 2 2 3 2 3	22222	107 95 92 102 121	.63 .15 .37 .09 .37	.108 .084 .084 .084	3 13 5 14 3 15 5 10 3 9	41 55 42 28 9	.53 .71 1.04 .38 .80	218 151 385 385 385 385 385 385 385 385 385 385	3 .07 1 .06 5 .04 9 .05 2 .06	4 2 3 4 3	3.20 5.03 3.40 2.25 3.60	3 .00 5 .00 5 .00 5 .00 2 .00	2 .1 2 .1 4 .1 2 .0 2 .0	3 1 1 1 2 1 8 1 7 3	12.7 87.7 24.4 5.9 21.2	
	BL 600S 900E BL 600S 950E STANDARD C/AU	-s	5 6 18	306 263 62	18 18 37	3 10 3 9 7 13	0 1.0 7 1.0 1 7.2	5 8 0 8 2 71	11 27 32	1480 1112 1047	11.10 13.64 4.02	0 112 4 184 2 42	5 5 19	ND ND 7	1 2 38	8 4 52	1.2 .4 18.2	2 6 15 5 14	2 2 21	99 75 54) .13 5 .07 5 .50	. 16 .08 .09	5 7 5 10 5 39	21 12 59	1.0 .9(.8	93 0 77 3 170	3 .01 2 .01 8 .09	3 3 34	3.8 3.4 1.9	4.0 8.0 0.0	2 .1 2 .1 6 .1	1 21 3 1 5 1	135.0 62.0 48.7	

Samples beginning 'RE' are duplicate samples.

41			}	-	ţ		Tec	:k	г Exp	lora	r	.on	r Lt	d.	f.	ILE	;	91-	4626	ł		Ĩ			1		I Pa	age	: 3		
ACHE AMALYT	SAMPLE#	Mo	Çu pom	Pb	Zn	Ag	Ni ppm p	Co	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr Co ppm pp	d Sb m ppm	Bi ppm	V ppm	Ca P X X	La La	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al %	Na X	K X	ppm	Au* ppb	
See Poge 47	BL 600S 1050E BL 600S 1100E BL 600S 1250E BL 600S 1300E BL 600S 1350E	21 12 13 7 2	51 272 266 159 53	10 16 4 7 13	49 44 51 45 111	.3 .6 1.6 .4 1.5	13 10 7 7 22	34 30 14 12 9	766 592 238 381 383	14.68 7.73 8.28 6.21 5.21	31 13 20 13 20	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	10 7 5 5 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 4 2 2	113 102 127 99 104	.08 .297 .07 .127 .03 .199 .07 .102 .08 .032	4 7 7 6 6 2 6 2 7	57 21 13 15 37	.95 1.09 .26 1.15 .50	40 99 210 72 113	.05 .01 .01 .04 .03	3 1 3 3 2 3 3 2 2 3	52 5.12 5.36 2.81 5.25	.02 .03 .01 .02 .02	.05 .11 .04 .07 .11	1 1 2 1 1	130.0 1030.0 260.0 140.0 24.7	
	BL 600S 1400E RE BL 600S 1350E BL 600S 1450E STANDARD C/AU-S	1 2 18	80 54 89 55	17 11 21 39	165 113 152 132	.5 1.4 .8 6.8	47 22 45 71	19 9 24 32	650 374 1455 1043	4.11 5.20 4.96 3.98	17 19 18 40	5 5 5 17	nd Nd Nd 6	1 1 35	6 7 27 54 18.	4 2 2 2 8 2 7 16	2 2 2 18	68 104 68 57	.04 .029 .08 .03 .36 .11 .48 .09	9 7 1 7 7 13 0 38	44 35 39 58	.87 .50 .99 .88	130 112 193 179	.05 .03 .04 .09	3 2 4 34	2.90 3.26 2.61 1.88	.01 .02 .03 .07	.08 .11 .11 .15	1 1 1	7.1 23.3 18.5 49.5	

_

Samples beginning 'RE' are duplicate samples.

GEOCHEMICAL ANALYSIS CERTIFICATE

Mike Boyle File # 91-4125 Page 1 619 - 602 W. Hestings St., Vancouver BC V68 1P2

852 E. HASTINGS ST. VANCOUVER D.C.

																				<u></u>		000000	00000000			<u></u>	•••				
	CANDI E#		Ph	Zn Ag	NÍ	Со	Mn	Fe	AB	UA	u '	rh s	Sr 🐰	Cđ	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Т1	8	AL Y	NA Y	* * *		nob	
	SAMPLEM		nom D	om DOM	DOM	ppm	ppn	*	ppm p	pm pp	m p	om p	pm 💱	xpr∎ p	pm p	pm p	pm	X		ppm	ppm	*	ppm			~		<u> </u>	5.465 5.465	ppo	
		bbu bbu	PP P	20.00	8										_					•	40		170	01	2 7	K 67	01	.07 🖁	4	71.0	
	BI 1200N 50F	5 66	22 1	10 128	4	8	254	8.71	190	5 N	Ð	1	3 🎆	.2	5	3 1	30	.02	2065	ö	10	.22	179	01	2.	5 11	01	07		81.7	
	BL 1200N 100F	6 184	67 2	13 33	26	21	573	10.53	270	5 N	D	1	8 🐰	-5	7	4	82	.06	-002	0	31	. 24	246	****	5	7 27	01	05		60.7	
	BL 1200N 150E	3 84	46 3	14 1.0	31	17	602	10.42	98	5	(D	1	8 🛞		8	21	16	.07	-051		207		404	01	7	1 05	02	12		11.9	
	BL 12008 1902	2 120	14 1	52 2	51	20	1306	4.84	24	5)	D	1	39 🛞	.7	4	3	63	.56	121	12	37	1.20	101	201	2	5 27	01	42		3-0	
	BL 0003 000L	5 157	14	81 28	17	11	570	7.64	17	5)	ND D	1	17 🥘	-2	3	2	89	.08	- 420	(50	. 20	105		۴.		.01	• • • *		510	
	BL 0003 1000L		••	- 33	8															,		2/	4 77		,	1 77	61	n A	8 1 1	114.8	
-	PL 4000 11505	53 335	12	51 💹	6	11	225	9.17	18	5 1	D	1	6 🏽	.2	5	4 1	33	.03	-328	0	21	. 24		OZ	<u> </u>	4 71	-01	<u>.</u>		30.2	
	pt 4005 1200E	16 167	6	77	6 4	4	179	3.68	6	5 1	ND	1	32 🐰	.2	2	2	66	-15	-201	د	1		470	-05		1.02	01	201		2.7	÷
	BL 5003 12002	2 121	18 2	31 👹	47	31	869	7.89	15	5 1	ND	1	9 🕺	.3	5	21	19	.09	.191	16	49	.00	120	SUC:	- 2	7.05	01	<u>~</u>	÷.	6.1	
	BL 14003 0	2 89	11	87	39	8	316	5.86	15	5 1	ND	1	6	2	3	2 1	115	.03	,084	- 1	21	.43	10	40	່ ງ. . ງ	5.05	-01	05		3.5	
	BL 14005 30C	4 116	21 2	89	78	26	842	7.76	21	5 (ND	1	5 🕺	-2	2	4 1	108	.03	-110	7	84	- 70	149	- 10	2	2.12	.01	.05		2.2	
	BL 14005 100E				ŝ.								8		_							- ^^	70		,	7 2/	01	66	88	8.7	
	BI 1/000 150E	1 167	30 2	231 🎬	58	42	2262	7.65	18	5	ND	1	9 🕺	.9	7	21	105	.14	21/2	دد	10	2.00	472	40	2	5 01	01	00		27.5	
	BL 14005 1900	4 75	17	54 🚳	61	16	959	6.95	18	5	ND	1	34 🛞	.2	2	31	114	.11	-200	0	104	.00	160	20	2	2 15	25	05		29.7	
	BL 14003 2000	4 130	11	37 🖄	5 42	35	831	8.50	5	5	ND	1 2	211 🐰	.2	- 4	21	139 .	1.39	-1/2	10	39	1.07	120	030	5	4.72		.06		96.8	
	DI 14005 2000	8 209	17	66	4 18	8	370	8.58	41	6	ND	1	15 🕈	.2	6	5	94	.10	2585	,	20	.00	05	_00	2	2 07	02	.06		78.3	
	BL 14003 300C	5 113	40	53	2 11	6	232	14.33	35	5	ND	1	- 7 §	. 2	3	- 4 -	103	.05	- 3 2 4	•	20	- 20			•	2.71					
	BL 14003 3302			- W	<u> </u>										-	_					•	47	78	18	2	2 06	01	.04	7	266.6	•
	PL 14005 400F	30 464	33	59 🖉	2 4	17	1027	16.72	43	5	ND	1	4 8	-2	2	<u>7</u>	50	- 02	2000	2	70	4 9/	10	10	5	2 05	.74	05	- 100	39.9	
	BE BL 14005 250F	5 131	10	135 🐘	3 41	35	812	8.46	3	5	ND .	1 7	203 💡	-3	2	5	157	1.55	2170	212		1.04) (4 4) 171	101	5	3 37	02	06	200	167.8	•
	RE BE 14005 2502	29 219	15	119 🔍	6 30	35	777	11.39	26	5	ND	1	34 👔	.	4	3	62	.64		, y	21	- 10		Ĩ	5	4 01	.01	.04		111.1	
	BL 14005 400C	16 158	16	88	1 15	11	311	8.91	18	5	ND	1	11	.	2	2	118	.07	2100	6 4 5	22		80	ំរ័រ	5	2.84	.01	.04		64.3	
	BL 14005 550E	56 391	12	33 🖉	2 4	5	173	14.47	11	5	ND	1	12	.2	2	5	205	.12	+211	6 4	61		, 00		(*						
		1			÷.								_ 1			~		07) 	52	2	0 4 1	003	ैर	5.26	5 .01	.05		26.1	
	BI 14005 600F	5 155	16	59 1.	0 13	5	169	8.31	17	6	ND	1	7	Z	4	2	152	.03	004	כ ה דר ה	50	• C 81	176	ိဂ်ဝ	- 1	1.90	.06	.15	13	46.5	
	STANDARD C/AU-S	18 57	36	133 6.	9 71	- 33	1044	3.96	39	17	7	36	54	18.9	16	17	57	.48	2096	:) (.0	- 110								
	01/10/10 0/10 U																														

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 SOIL P2 ROCK P1 GEO/P2 ASSAY AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 4 1991 DATE REPORT MAILED: Sept 12/91.

LYTTON LABORATORTES LTD.

page 4