ARIS SUMMARY SHEET

ASSESSMENT REPORT 21908 MINING DIVISION: Atlin ROPERTY: A LOCATION: LAT 58 36 00 LONG 132 36 00 UTM 08 6497797 639468 NTS 104K10E LAIM(S): A 1-8 OPERATOR(S): Omega Gold UTHOR(S): Chapman, J. EPORT YEAR: 1991, 85 Pages KEYWORDS: Jurassic-Cretaceous, Takwahoni Formation, Sloko Group, Conglomerates Greywackes, Quartz monzonites ORK DONE: Prospecting PROS 1000.0 ha Map(s) - 1; Scale(s) - 1:10 000 INFILE: 104K 073,104K 114	istrict Geol	ogist, Smithers		Off Confident	ial: 92.09.27
LOCATION: LAT 58 36 00 LONG 132 36 00 UTM 08 6497797 639468 NTS 104K10E CLAIM(S): A 1-8 OPERATOR(S): Omega Gold UTHOR(S): Chapman, J. EPORT YEAR: 1991, 85 Pages KEYWORDS: Jurassic-Cretaceous, Takwahoni Formation, Sloko Group, Conglomerates Greywackes, Quartz monzonites ORK ONE: Prospecting PROS 1000.0 ha Map(s) - 1; Scale(s) - 1:10 000	ASSESSMENT RE	PORT 21908	MINING DIVISION:	Atlin	
ORK DONE: Prospecting PROS 1000.0 ha Map(s) - 1; Scale(s) - 1:10 000	LOCATION: CLAIM(S): OPERATOR(S): UTHOR(S): EPORT YEAR:	LAT 58 36 00 UTM 08 6497797 NTS 104K10E A 1-8 Omega Gold Chapman, J. 1991, 85 Pages Jurassic-Cretaced	7 639468 Dus,Takwahoni Form		p,Conglomerates
	DONE: Pro PRO	specting S 1000.0 ha Map(s) - 1; Scale	e(s) - 1:10 000		

LOG NO:	NEC	11	1991	RD.	
ACTION:	DEO			•	
FILE NO:					

ASSESSMENT REPORT ON THE TULSEQUAH A PROJECT FOR OMEGA GOLD CORPORATION

SUB-RECORDER RECEIVED DEC 6 - 1991	TLIN MINING DIVISION NTS 104K
M.R. #\$ VANCOUVER, B.C.	

OREQUEST

GEOLOGICAL BRANCH

908

ASSESSMENT REPORT

OREQUEST CONSULTANTS LTD. 306-595 Howe Street, Vancouver, B.C., Canada, V6C 2T5 Telephone: (604) 688-6788 Fax: (604) 688-9727

J. Chapman, F.G.A.C., P.Geol.

September 30, 1991

SUMMARY

The Tulsequah A Project consists of 8 claims totalling 144 units within the Atlin Mining Division. The claims are wholly owned by Omega Gold Corporation and were staked in October of 1990.

A Phase I exploration program consisting of prospecting, reconnaissance mapping and sampling was undertaken from July 5, 1991 to July 25, 1991. The work was carried out by personnel from OreQuest Consultants Ltd. and Gold Fields Canadian Mining Ltd. on behalf of Omega Gold Corporation.

Field work was based out of a camp located on Trapper Lake using a Bell 206 helicopter provided by Trans North Turbo Air to access the property.

Reconnaissance mapping and sampling were carried out along traverse lines designed to evaluate results of a photogeological study previously completed and to examine known showings within the property area. Rock, soil and silt samples collected during this work were shipped to Vangeochem Labs in Vancouver and/or TSL Laboratories Ltd. in Saskatoon to be analyzed for gold and a 32 element ICP package.

TABLE OF CONTENTS

Summary	
Introduction	1
Location and Access	1
Physiography and Vegetation	1
Claim Status	2
History and Previous Work	2
Regional Geology	8
Property Geology	9
Geochemistry	11
Statement of Expenditures	13
Statement of Qualifications	

J. Chapman, F.G.A.C.

Bibliography

ſ

LIST OF FIGURES

Figure 1	Location Map	Following Page	1
Figure 2	Claim Map	Following Page	2
Figure 3	Regional Geology	Following Page	8
Figure 4	Property Geology, Sample	In Pocket	
	Locations and Gold Results		

LIST OF TABLES

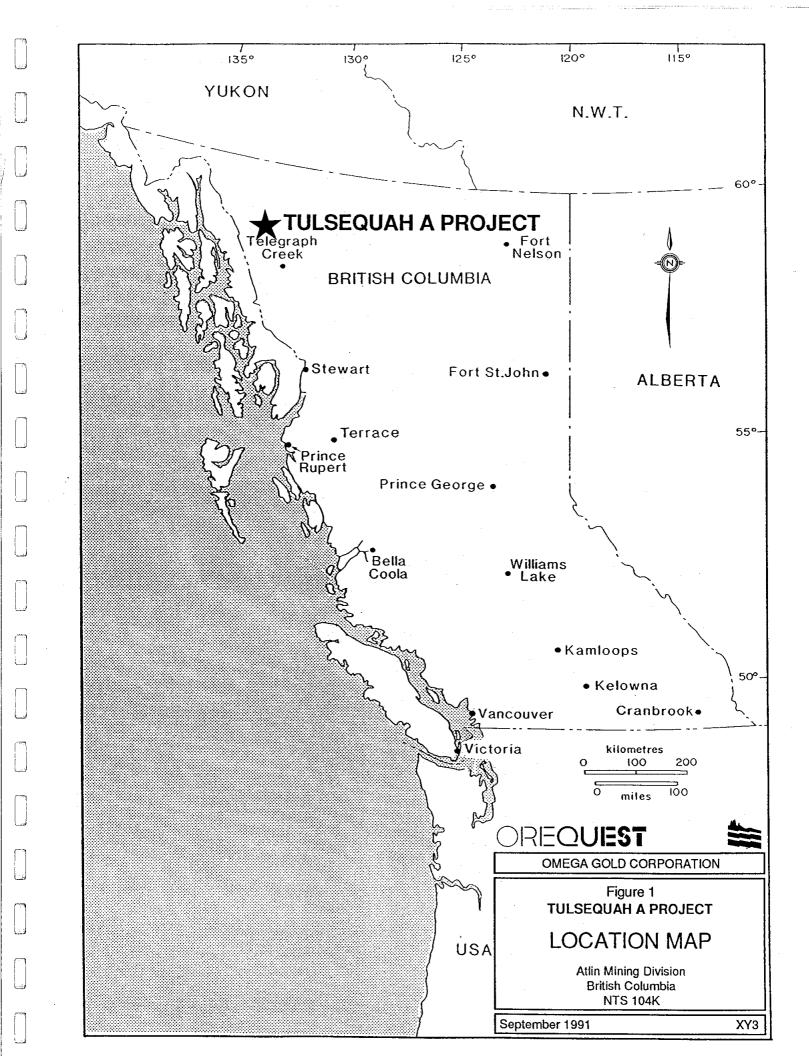
Table 1	Claim Information	Page	2
Table 2	Mineral Occurrences (MinFile)	Page	3

LIST OF APPENDICES

 Appendix A Photogeological Interpretation of "A" Group of Claims Livgard Consultants Ltd., December 4, 1990
 Appendix B Analytical Procedures and Assay Reports
 Appendix C Rock Sample Description Sheets

INTRODUCTION

This report, prepared by OreQuest Consultants Ltd., on behalf of Omega Gold Corporation, presents the results of the 1991 exploration program on the Tulsequah A Project.


LOCATION AND ACCESS

The Tulsequah A property is situated in northwestern British Columbia (Figure 1), on NTS mapsheet 104K/10. Reference coordinates for the project area are $58^{o}37$ 'N latitude and $132^{o}35$ 'W longitude.

The towns of Atlin and Dease Lake, from which charter float planes transported supplies and personnel to the field camp on Trapper Lake, southwest of the project area, are situated 150 km north and 150 km east respectively. The Golden Bear Mine, which is located 45 km to the southeast, is accessible by an all weather road, however final access to Trapper Lake and the project area would have to be by helicopter. The Polaris-Taku and Tulsequah Chief Mines, both former producers, are situated approximately 60 km west of the property.

PHYSIOGRAPHY AND VEGETATION

The Tulsequah A Project lies just east of the Sutlahine River which is flanked by moderate to steep slopes of the Coast Mountains. Elevations on the property range from approximately 740 m above sea level in the northwest corner to 1460 m in the southeast. Treeline occurs variably between 1000 and 1200 m, below which mixed fir,

spruce, cedar and cottonwoods, with some undergrowth, are found. The summer field season extends from mid June to late October.

CLAIM STATUS

The Tulsequah A Project consists of 8 modified gird mineral claims, totalling 144 units, all within the Atlin Mining Division (Figure 2). These claims are wholly owned by Omega Gold Corporation. Pertinent claim information is summarized in the following table:


TABLE 1: CLAIM INFORMATION

GROUP	MAP SHEET	CLAIM NAME	NO. OF UNITS	RECORD NO.	EXPIRY DATE*
A	104K/10E	A1	20	4373	October 1, 1991
	104K/10E	A2	20	4374	October 1, 1991
	104K/10E	A3	20	4375	October 1, 1991
	104K/10E	A4	20	4376	October 1, 1991
	104K/10E	A5	20	4377	October 1, 1991
	104K/10E	A6	20	4378	October 1, 1991
	104K/10E	A7	12	4379	October 2, 1991
	104K/10E	A8	12	4380	October 2, 1991

*This does not reflect the current work which when accepted will extend the expiry date.

HISTORY AND PREVIOUS WORK

The Tulsequah area of northwestern B.C. is an area that is currently being reevaluated by a number of companies for both base and precious metal occurrences. At the Tulsequah Chief Mine, a former producer approximately 35 km west of the Tulsequah Project, Redfern Resources and Cominco Ltd. are currently developing additional reserves, which now stand at 8.0 million tons grading 1.55% copper, 1.23% lead, 6.81% zinc, 0.08 oz/ton gold and 2.19 oz/ton silver. At

the Polaris-Taku Mine, also located approximately 35 km west of the properties, Suntac Minerals upon completion of the 1991 drill program have announced reserves of 1,600,000 tons grading 0.45 oz/ton gold in the "Y" vein and "C" veins (GCNL, Sept. 9, 1991). Both the Tulsequah-Chief and the Polaris-Taku projects will receive additional work in 1992.

The only operating mine in the region is the Golden Bear Mine, located approximately 40 km southeast of the general Tulsequah area. This mine, a joint venture between Chevron Minerals and North American Metals, a division of Homestake Mining, began production in late 1989. Initial reserves stood at 300,830 tonnes grading 16.37 g/t gold amenable to open pit mining and an additional 296,235 tonnes grading 20.97 g/t to be mined by underground methods. The mine is currently operating at a rate of 315 tonnes per day. The property contains a number of important exploration targets that will be tested by the joint venture partners as a part of ongoing property development.

The numerous mineral occurrences in the general area of the project are summarized in Table 2 and located on Figure 3.

TABLE 2: MINERAL OCCURRENCES (MINFILE)

MinFile #	Name	Commodity	Description
11	Barb	Cu, Ag, Zn, Au Pb, Sb	Skarn mineralization in limestone with chalcopyrite, sphalerite, pyrrhotite, stibnite, pyrite and magnetite

18	Thorn (INK)		Mo, Ba			Fault zone in rhyolite and breccia with pyrite and galena
26	LC 2, Peter	Mo				Quartz veins in sheared quartz diorite with molybdenite
27	LC 2	Cu,	Pb,	Zn,	Ag	-
29	BS-J	Cu,	Мо			Fault zones in quartz monzonite with chalcopyrite and molybdenite
30	Кау	Cu,	Мо			Chalcopyrite and molybdenite in syenite intruding diorite
31	Thorn (INK3-6)	Cu,	Ag			Quartz veins in rhyolite breccias with chalcopyrite, pyrite and galena
37	Tot 2	Cu,	Ag,	Sb,	Ba	Chalcopyrite veins, stibnite and barite veins in a chlorite schist
40	Val 1	Cu,	Ag,	Мо,	Au	Quartz vein in quartz monzonite with bornite, chalcocite and molybdenite
41	MB	Cu				Silicified volcanics and sediments with chalcocite and pyrite
63	Tun	Cu,	Mo			Shear zones in pegmatites intruding quartz monzonites with chalcopyrite, molybdenite and bornite
70	Kowatua Creek	Lst				Limestone
73	Griz		Pb,	Zn,	Ag	Crosscutting quartz veins in porphyry dykes which intrudes sediments, with galena
78 83	Inlaw Outlaw	Pb, Au, Cu	Au, Ag,	Ag, Pb,	Cu Zn	Quartz veins in rhyolite Quartz veins in rhyolite dykes; stockwork zone in contact hornfels zone; pyrite veins sphalerite, pyrite, arsenopyrite, galena, stibnite, pyrrhotite and chalcopyrite
106	Val 3	Mo,	Cu			Pyritized, altered quartz monzonite with chalcopyrite and molybdenite
107	Barb	Au,	Sb,	Ag		Skarn mineralization along major thrust fault, contains magnetite, chalcopyrite, galena and pyrite
112	Tardis	Sb,	Ηg,	Fl		Silicification, clay alteration, carbonatization and fluoridization along major fault system at intersection of small faults

4

- 7674 - 16-21

(100) (100)

	MinI
	113
	114
	11!
	Cu=o
	Fl=: Tc=
	worl
	con
	0.3
	Com
	are
	rec
	sam
	ear
1.169	exp

MinFile #	Name	Commodity	Description
113	Rod	Au, Ag, Sh Cu, Pb	o, Zn Silicification and quartz veins in basalts containing massive arsenopyrite
114	Griz 3	Ag, Pb, Zı	h, Cu Crosscutting quartz veins in porphyry dykes which intrude sediments, containing galena, sphalerite, arsenopyrite and pyrite
115	Emu	Sb, Cu	n, Au Crosscutting quartz veins in dykes which intrude quartz monzonite, containing galena, sphalerite and pyrite
	Metla	Au, Ag, Zı Cu	h, Pb Crosscutting breccia bodies in volcanics and sediments, which contain pyrite, sphalerite, chalcopyrite and galena

Cu=copper, Ag=silver, Au=gold, Zn=zinc, Sb=antimony, Pb=lead, Fl=fluorite, Ba=barium, Asb=asbestos, Lst=limestone, Mo=molybdenum, Tc=talc

General interest in the area increased as a result of the recent work by Cominco on their Metla property. The Metla property was first discovered in 1957 by Cominco prospectors. The original discovery consisted of a sample taken at the edge of a glacier which contained 0.32 oz/ton gold, 1.46 oz/ton silver, 1% copper and 1.0% zinc. Cominco returned to the property in 1988 and discovered an extensive area of mineralized float that was now exposed as a result of the ice receding. During 1989 and 1990, Cominco collected numerous rock samples, of which the 155 that were assayed from six target areas averaged 0.28 oz/ton gold. Galico Resources Inc. has an option to earn a 50% interest in the property and conducted an extensive exploration program on this property in 1991. Results of the drilling

program carried out were disappointing with no assays approaching the grade of the float samples.

The project area was previously covered by four claims: the Griz 1-3, owned by Newex Syndicate; and the EMU claim, owned by Chevron. Both companies staked the ground in 1981, work was carried out on the Griz 1-3 in 1981 and on the EMU in 1982. Both companies carried out prospecting and preliminary geological mapping and Newex completed some soil sampling and trenching.

In 1981, the Newex Syndicate discovered galena and sphalerite mineralization close to a major northwest-southeast trending fault structure. In the southwest corner of claim A4 lies the old Griz 3 occurrence (MinFile #114). Newex discovered six mineralized quartz veins zones within relatively unaltered feldspar porphyry. The veins, where sampled, varied from 30-90 cm in width and up to 28 m in length where visible. The best results from the six zones were as follows:

ZONE	WIDTH (Cm)	Au oz/ton	Ag oz/ton	Pb%	Zn¥
1	90	.01	5.98	3.46	4.19
2	60	.194	1.46	.54	1.22
3	60	.004	1.93	.87	4.43
4	40	.118	.18	.91	.26
5	low values				
6	60	.044	1.72	.31	1.00
	30	.016	16.97	8.29	6.72

These zones are not large enough to be economic but because of their proximity to the major fault were thought to be indicative of

a much larger mineralized system. One soil sample 200 m west of these vein zones contained 80 ppb gold, 42 ppm silver, >1000 ppm arsenic, 3000 ppm lead and 1900 ppm Zn. Nothing was observed that would explain this result.

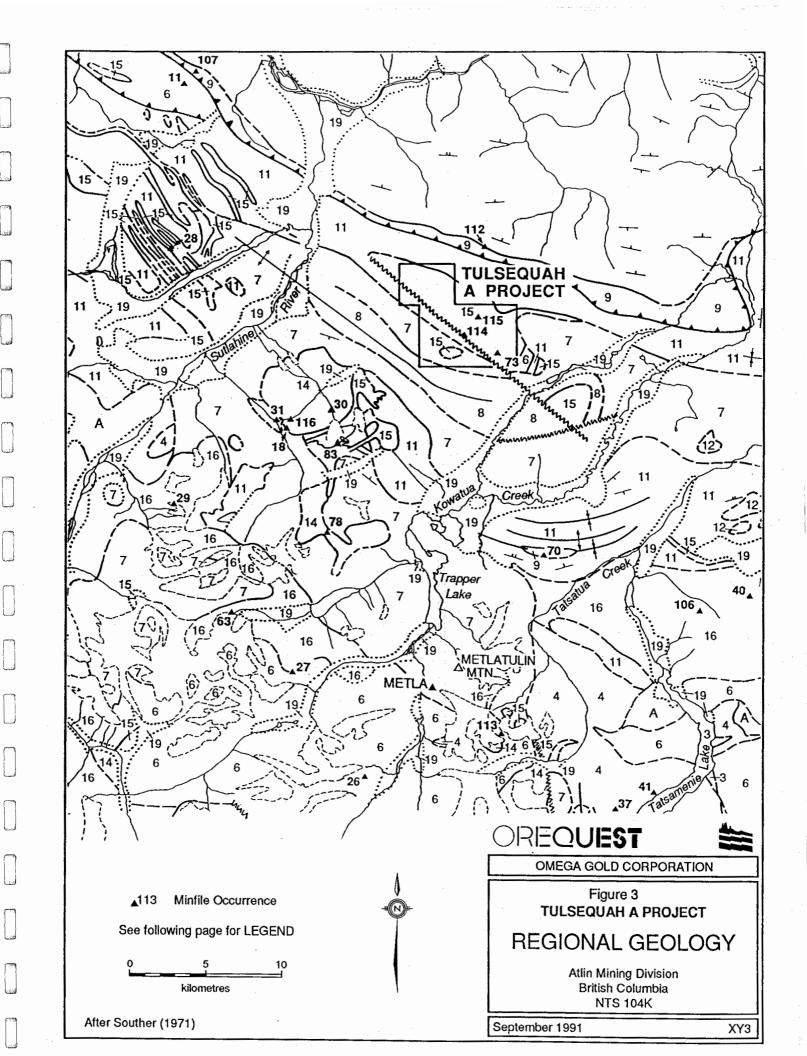
On the Griz showing (MinFile #73) Newex trenched four locations of silica replacement veins, containing disseminated pyrite, galena and sphalerite.

The best results from those trenches were:

TRENCH	WIDTH (Cm)	Au oz/ton	Ag oz/ton	Pb%	Znዩ
1 2	30 50	.138	2.23	1.78	3.05
3 4	low values 30		3.38	.48	.77

This trenched area is surrounded by many anomalous soil samples. Newex took 99 samples, of which 35 ranged from 135-1100 ppm zinc, 5 ranged from 100-350 ppm arsenic and 18 ranged from 100-1450 ppm lead. The individual veins again are too small to be economic but may be important in their relationship to the large fault. Newex also located two areas of galena, sphalerite and quartz rich breccias in the southeast portion of claim A8.

The EMU showing was examined by Chevron in 1982, and twelve rock samples were taken, all within claim A4. Two samples returned anomalous results from narrow quartz veins, MT-138 contained 17 ppm


silver, >1000 ppm arsenic, 675 ppb gold and 2600 ppm lead while sample MT-135 contained 4.6 ppm silver. Sample MT-138 lies along a fault as detected by Livgard in his airphoto evaluation (Appendix A).

In 1987 the BC Government, in conjunction with the Geological Survey of Canada, carried out a regional geochemical silt survey over an extensive area which covered mapsheet 104K and included the Tulsequah A Project area.

The government RGS survey collected seven silt samples from creeks which may have been influenced by geology and mineralization within the A Project boundaries. Three samples were anomalous in several elements: #873262 contains zinc (530 ppm), molybdenum (11 ppm), silver (.6 ppm), arsenic (160 ppm) and mercury (270 ppm) values; #873263 was anomalous in zinc (200 ppm), lead (44 ppm), silver (.4 ppm) and mercury (275 ppm); and, #873264 was anomalous in zinc (180 ppm) and mercury (1300 ppm). Other samples which returned single element anomalies were #873265 (.2 ppm silver) and #873260 (240 ppm mercury). Some of the known mineral occurrences may have influenced the RGS results.

REGIONAL GEOLOGY

The most recent regional geological mapping available for this area dates back to Souther (1971) who conducted his fieldwork during 1958-1960. The Tulsequah map area, a portion of which is reproduced in Figure 3, features the rocks originally defined as Stikine Arch and

now referred to by the terrane assemblage term "Stikinia". Stikinia includes four tectonostratigraphic assemblages, namely the Paleozoicaged Stikine assemblage, several Triassic to Jurassic volcanicplutonic arc complexes, the middle to late Jurassic Bowser overlap assemblage and the Tertiary Coast Plutonic Complex. All are well represented in the Tulsequah map area except for the Bowser assemblage, which is may be represented by an equivalent unit called the Laberge Group.

The significance of Stikinia lies in the fact that it hosts mines and mineral deposits throughout northwestern British Columbia including the Premier and Big Missouri gold deposits and the Granduc copper massive sulphide deposits (Stewart area), the Johnny Mountain and Snip gold mines and the Eskay Creek gold-rich polymetallic massive sulphide deposits (Iskut River and Unuk River areas), and bulk tonnage copper-gold deposits (Galore Creek area). Closer to the project area are the Golden Bear Mine (gold) and former producers Polaris Taku (gold), Tulsequah Chief and Big Bull Mines (copper).

PROPERTY GEOLOGY

The property lies immediately south of the King Salmon Thrust Fault, a major 200 km long northwest-southeast structure that separates the main Coast Range - Stikine Arch from the Jurassic and younger aged Taku Plateau. The property is bisected by a younger subparallel fault that separates a narrow band of Takwahoni Formation (Laberge Group) sediments from Sloko Group equivalent felsite

porphyries and Stuhini volcanics and sediments. Jurassic aged Laberge Group sediments overlie the north and northeast corner of the property. Small inlyers of the Laberge sediments in the Sloko porphyries were observed in the north part of claim A4. A small quartz feldspar porphyry intrudes the Triassic Stuhini Group volcanics in the south central portion (Figure 4) of the property.

The porphyry unit which occupies the bulk of the property area consists of feldspar and quartz-feldspar variations, with the feldspar porphyry being the most extensive. Typically this a grey-white to grey-green, massive, medium to coarse grained rock with euhedral to anhedral feldspar, and locally quartz, phenocrysts up to 1 cm in diameter. These phenocrysts locally comprise up to 35% of the rock with up to 15% fine grained mafic minerals (hornblende and/or biotite). A fine grained probably feldspathic groundmass makes up the remainder of the rock.

Alteration of the porphyry includes a fairly pervasive carbonate facies along with more localized silicified zones. Weak chloritic alteration is evident in the pale green coloration of the groundmass in some areas.

Localized breccia zones, the Griz 1, Griz 3 and Emu showings, are present within the porphyry unit which are generally silicified and contain abundant manganese and/or limonite staining. These breccia zones are up to 3 m wide, however they do not appear to exhibit any

significant strike length and are irregular in shape. No direct relationship is present between the breccia's and any of the known fault zones however all of the showings occur within close proximity to the northwesterly trending structural breaks.

Mineralization within the breccia zones consists of fine grained disseminated and vein hosted pyrite, chalcopyrite, galena and sphalerite with minor magnetite and pyrrhotite.

The Takwahoni Formation sediments consist predominantly of conglomerates and greywackes with lesser sandstone, siltstone and shales. No showings were located within this unit.

Stuhini group volcanics make up the oldest units on the property and consist of andesitic to basaltic flows and tuffs. These are greygreen to green-black in colour and occupy the southwest corner of the project area. Lesser volcanic breccias, pillow lavas and agglomerates are also present along with minor volcanic sandstones.

Structurally the property is dominated by a northwest trending fault which generally separates the feldspar and quartz-feldspar porphyry from the older Takwahoni and Stuhini sediments and volcanics.

Geochemistry

The geochemical sampling program consisted of 79 rock samples, 47 soil samples and 7 silts. The rocks were collected predominantly

from areas of known showings in an attempt to delineate the grade and extent of the mineralization. Two soil lines were established, with one oriented to test the downslope extent of the Griz #1 showing. The other line was laid out perpendicular to the structural trend on the property to evaluate the geological contacts and the major northwest trending fault zone. Soil samples were collected from the B horizon where present at an average depth of 10-25 cm. Silt samples were collected from any prospective drainages encountered during traverses.

In the area of the Griz #1 showing a maximum value of 0.037 oz/ton gold was received from rock sample #10376. This consisted of a sheared, brecciated and silicified feldspar porphyry with iron carbonate alteration and containing 5% pyrite. Other anomalous samples in this area returned 660, 750 and 360 ppb gold in samples #10377, #79071 and #10378 respectively. These also consisted of sheared and altered feldspar porphyry. A maximum value of 20 ppb gold was returned from the soil sampling in the area of the Griz #1 showing possibly indicating a restricted lateral extent to the showing.

At the Griz #3 showing samples were collected of the fractured and brecciated porphyry which returned a maximum value of 200 ppb gold in sample #10253. This sample consisted of a 1 m chip across sheared and fractured feldspar porphyry with strong manganese staining, 3-5% disseminated galena and traces of sphalerite. All other samples in this area returned only background values.

In the area of the Emu showing sample #10299 returned 280 ppb gold from a gossanous float boulder, containing 10-20% pyrite as disseminations and stringers, what was probably a guartz feldspar

disseminations and stringers, what was probably a quartz feldspar porphyry. The sample was extensively oxidized and altered rendering the identification difficult.

The soil test line across the structural fabric of the property returned a maximum value of 30 ppb gold from an area thought to be undelain by Stuhini volcanics.

No anomalous results were generated by the stream sediment sampling survey.

STATEMENT OF EXPENDITURES

Mob/Demob (prorated from Tulsequah Project)	\$ 1,027.45
Labour G. Cavey J. Chapman D. Cameron D. Burridge S. Martin S. Bescherer D. Terry 4.5 days @ \$225/day days @ \$225/day days @ \$225/day b. Subscherer Cameron Camer	262.50 1,425.00 1,050.00 1,280.00 675.00
Support Costs (prorated from Tulsequah Project)	5,800.60
Transportation and Communication	260.42
Helicopter	4,908.55
Analyses	2,640.00
Livgard Photogeological Study	16,172.20
Report Costs Total	<u>1,000.00</u> \$36,501.72

STATEMENT OF QUALIFICATIONS

I, Jim Chapman, of Route 1, Box L15, Bowen Island, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1976) and hold a B.Sc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia, V6C 2T5.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. Professional Geologist with the Association of am а Т Professional Engineers, Geologists and Geophysicists of Alberta.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report was obtained from a review of data listed in the bibliography, knowledge of the area and on site supervison of the program described.
- 7. I have no interest, direct or indirect or in the securities of Omega Gold Corporation or of the subject property.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectars, Statement of Material Facts or other public document.

Jim Chapman FELLOW Consulting Geologist, F.G.A.C.

DATED at Vancouver, British Columbia the 30th day of September, 1991.

BIBLIOGRAPHY

BLACKWELL, J.D. 1991: Galico Resources Inc. Qualifying Report on the Metla Property, Atlin Mining Division, B.C., March 21, 1991.

DALIDOWITZ, F., ESTABROOKS, E.M. 1981: Geological Drilling and Geophysical Report on Jony Claim Group. Mafeking Minerals, January, 1981, EMPR Assessment Report #9578.

CAVEY, G., DEWONCK, B. 1991: Report on the Metlatulin Project for Galico Resources Inc., April 27.

1991: Report on the Trapper Lake Project for Adrian Resources Ltd. May 6.

DEWONCK, B., CAVEY, G. 1991: Geological, Geochemical and Geophysical Report on Suntac Minerals Corporation, Polaris-Taku Project, 1990 Surface Exploration Program - OreQuest Consultants Ltd., March 19, 1991.

GALICO RESOURCES INC. 1991: News Release, March 15, 1991.

GEORGE CROSS NEWS LETTER 1991: No. 61 (March 27, 1991) Redfern Resources Inc.

GSC

1.

1988: Open File 1647, MEMPR, B.C. Regional Geochemical Survey #20, National Geochemical Reconnaissance.

KIKAUKA, A. 1989: Geological Report of the Daisy 8 Claim for Gulf International Minerals Ltd., August 15, 1989. EMPR Assessment Report #19310.

LIVGARD, E. 1990: Report on the "A" Group of Claims Located in the Tulsequah Area, Atlin Mining Division, for Omega Gold Corporation, December 4, 1990.

MAWER, A.B. 1989: Geological - Trenching Report, Metla Property, Atlin Mining District, Trapper Lake Area, Owner/Operator Cominco Ltd. EMPR Assessment Report #19226.

MEMPR

: Minfile

NORTHERN MINER MAGAZINE 1989: Breaking New Ground, January 1989, Vol. 4, No. 1. PAUTLER, J.M. 1981: Geological and Geochemical Report on the Griz 1 and 2 Mineral Claim. EMPR Assessment Report #9824, Part 1.

1981: Geological and Geochemical Report on the Griz 3 Mineral Claim. EMPR Assessment Report #9824, Part 2.

SOUTHER, J.G. 1971: Geology and Mineral Deposits of the Tulsequah Map Area B.C., GSC Memoir 362, Map 1262A.

THICKE, M. SHANNON, K. 1982: Geological and Geochemical Survey on Emu Claims for Chevron Minerals, EMPR Assessment Report #11,108.

1984: Geological and Geochemical Surveys, Barb Claims 1, 3, 4 for Chevron Minerals, EMPR Assessment Report #11508.

1987: Tats Project, Tatsamenie Lake, B.C. for Chevron Minerals, EMPR Assessment Report #16726.

WOODCOCK, J.R. 1987: Drilling Report, the Thorn Property, For Inland Recovery Group Ltd. and American Reserve Mining Corp., EMPR Assessment Report #15897.

APPENDIX A

PHOTOGEOLOGICAL INTERPRETATION OF "A" GROUP OF CLAIMS

LIVGARD CONSULTANTS LTD., DECEMBER 4, 1990

REPORT ON THE

'A' GROUP

OF CLAIMS

LOCATED IN THE TULSEQUAH AREA

ATLIN M.D.

FOR

OMEGA GOLD CORPORATION

Egil Livgard, P.Eng. Livgard Consultants Ltd. Vancouver, B.C.

December 4, 1990

li asi

89 8 8

> LIVGARD CONSULTANTS LTD. 230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

INDEX

Introduction	1	
Summary		
Conclusions		
Recommendations		
Estimate Cost of Recommendations		
Geography		
Property	6	
Location and Access	6	
General Physiography	6	
Property Topography	8	
Climate	8	
History	9	
Geology		
Regional Geology		
Property Geology		
Rock Types	13	
Structure	13	
Alteration	14	
Mineralization	14	
BCDM Stream Silt Sampling		
Aerial Photo Interpretation		

Following Page

Page

Location Map; 1:8,000,000, Figure 15Claim Map; 1:50,000, Figure 25Regional Geology Map; 1:250,000, Figure 310Property Geology and Airphoto Interpretation Map; 1:10,000pocket

APPENDIX

MAPS

BCDM Stream Silt Results (3 pages) Minfiles 104K #073, #114, #115 (8 pages) Claim Forms (8) References Certificate

LIVGARD CONSULTANTS LTD. 230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

INTRODUCTION

- 1 -

Omega Gold Corporation acquired the claim group which is the subject of this report, after extensive geological study and airphoto interpretation. Three (Minfile) mineral showings are found within the claim group. The writer was asked by Jarl Aa. Whist, President of the company, to prepare a report on the property, summarizing all the available information. This report is based on the references as listed in the Appendix. The writer has not examined the property on the ground.

The writer is a Director of, and owns shares in, Omega Gold Corporation.

LIVGARD CONSULTANTS LTD.

230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

SUMMARY

- 2 -

The Tulsequah area has seen active mining from 1937 up to 1957. Almost 2 million tons of ore was mined. Some of this was gold ore and some gold, silver, copper, lead and zinc ore. Several deposits in the area have been drilled and developed and may become producing mines. The 'A' Group of claims owned by Omega Gold Corp. consists of eight claims totalling 144 units.

The property is located in the Atlin Mining Division on Mineral Claim Map 104K/10E, and the Tulsequah Geology Map. The property covers a northwest trending ridge which lies on the Taku Plateau near the Boundary Range. The area is considered to be the northern edge of the Stikine Arch.

The claim ridge is mainly quartz-feldspar porphyry of Late Cretaceous – Early Tertiary age in contact with the Takwahoni Formation of sedimentary rocks on the northeast and the southwest, and the Stuhini Group of volcanic rocks on the east.

The main structure on the property is the southwest contact which lies along a main fault striking northwest. Other faults split off this main fault or lie parallel to it. There are breccia zone and densely fractured areas. A possible shear zone lies at the east claim boundary.

Mineralization has been found on the property. It consists of values in gold, silver, lead and zinc. The minerals are found in silicified zones, fracture zones, breccias and fault zones. Values up to 0.19 oz/t gold and 18.0 oz/ton silver have been obtained.

Government stream silt samples and aerial photo study suggests that known mineralization may be more extensive than previously known and that new, previously unknown mineralized zones may exist.

LIVGARD CONSULTANTS LTD. 230-470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

CONCLUSIONS

- 3 -

The 'A' Group of claims cover a body of quartz-feldspar porphyry intrusive in contact with sedimentary and volcanic rocks which, in the Tulsequah area, have been shown to be very favourable for mineral deposition. Gold and silver in association with pyrite, galena and sphalerite is found on the property in many types of deposition and over extensive areas. The airphoto study indicates that several favourable exploration targets-in addition to known mineralization can be found on the property. The writer concludes that an extensive exploration program is warranted on the claims.

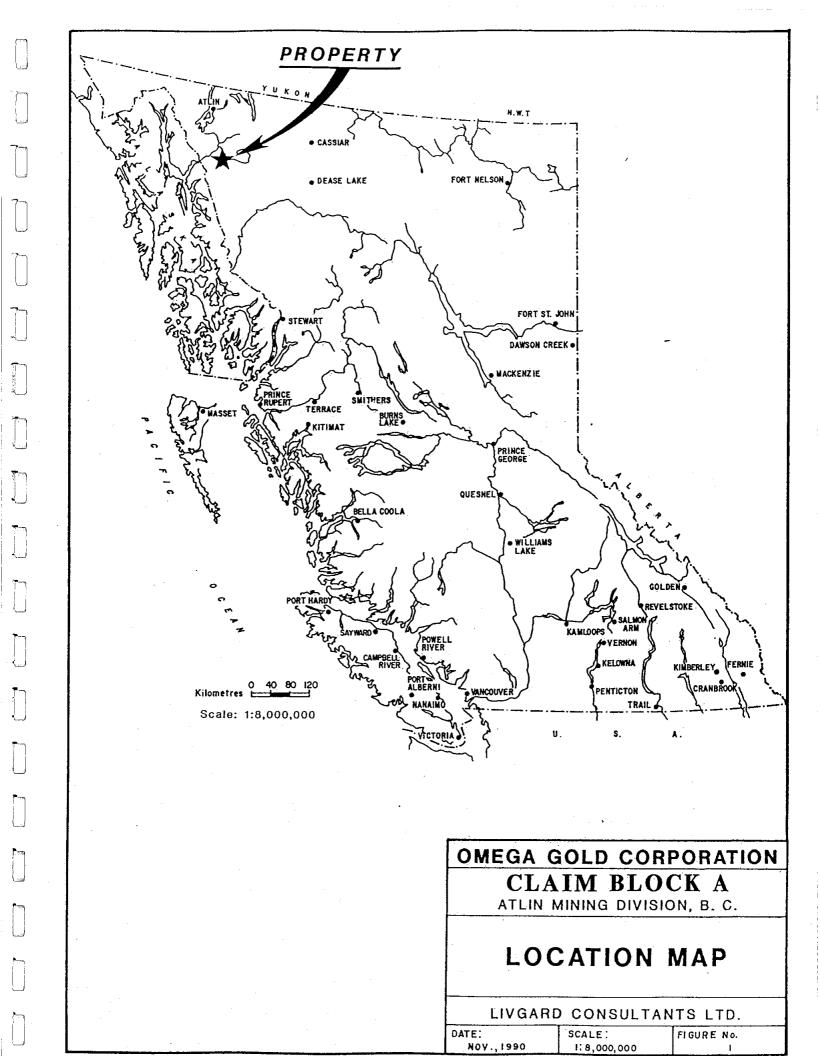
RECOMMENDATIONS

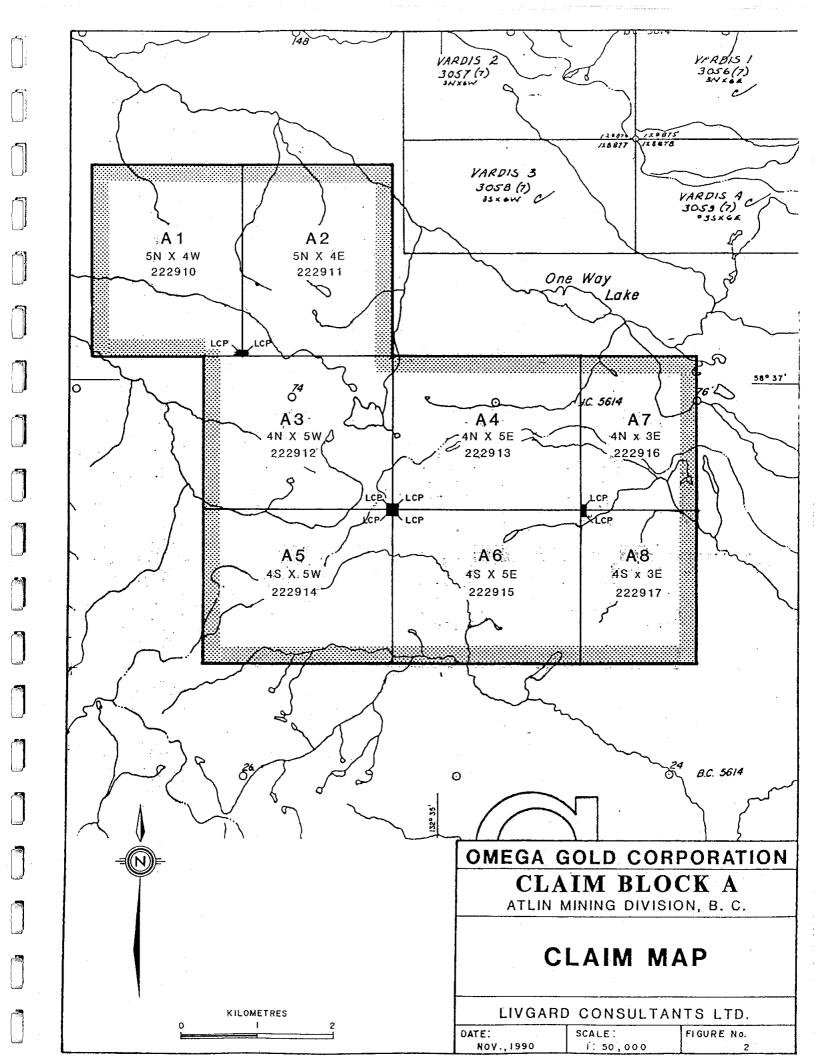
- 4 -

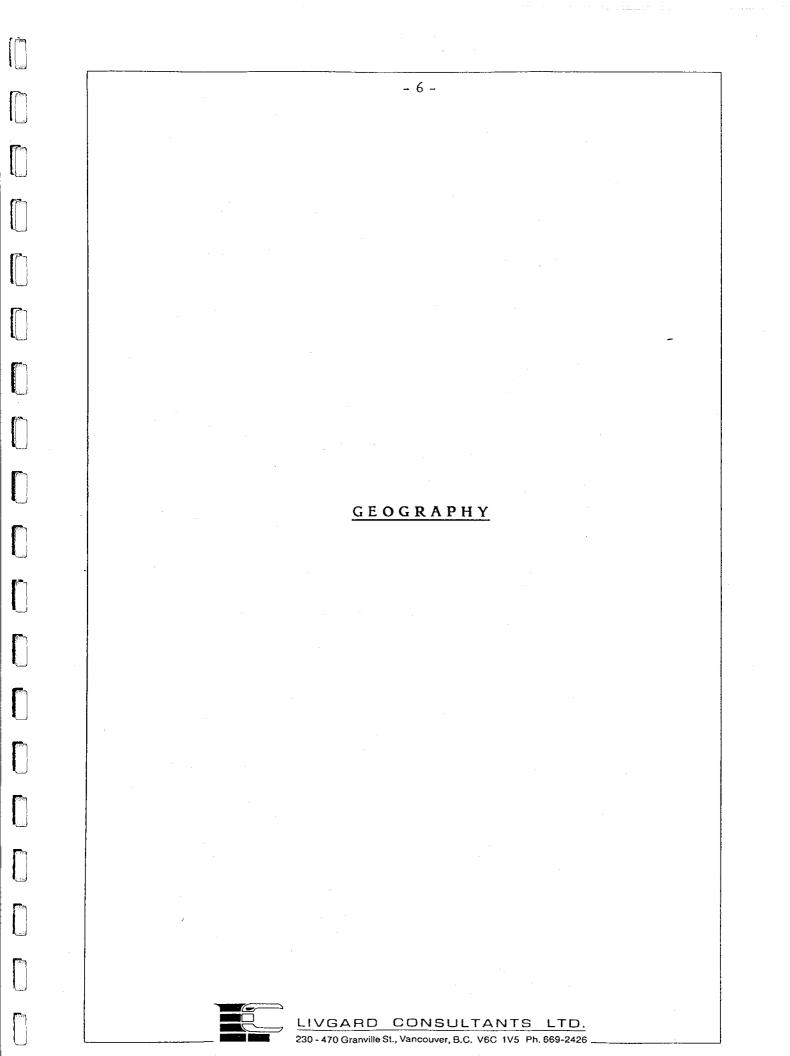
There are four types of targets on the property: breccia zones, large zones of dense fracturing, veins and possibly a shear zone. The first step in exploration should be a remote sensing study for structural feature, vegetation anomalies, iron rich zones and clay zones. The next step should be prospecting the claim ground looking for mineralization, oxide and manganese staining, silicification and carbonatization with particular emphasis on remote sensing anomalies. Prospecting is almost a lost art and it will be difficult to find people for the above work. At the same time the property is being prospected, silt sampling should be carried out followingup anomalous samples and also every creek draining the property.

Following the results from the above work, some favourable areas will be indicated. These should be further explored by either dense soil or rock chip sampling on a grid, depending on the nature of the terrain. The geology should be mapped and any mineralization channel sampled.

ESTIMATED COST OF RECOMMENDATIONS


Remote Sensing Digital Information \$1,800 x 1/6 (6 properties) Interpretation	\$	\$ 2,300	
Prospecting Prospector - \$300/day x 15 days Helper/Sampler - \$150/day x 15 days	4,500 2,250	- 6,750	
Stream Silt Sampling 2 Samplers – \$150/day x 15 days		4,500	
Grid, Soil or Rock Chip Sampling (assume 5 areas - 400 x 300 m, 25 sample spacing - 1,100 samples) 3 Samplers - \$150/day x 15 days 1 Geologist - \$300/day x 15 days	6,750 4,500	11,250	
Mobilization - Demobilization (includes travel, wage)		10,000	
Assaying 1,400 samples at \$12		16,800	
Supervision		10,000	
Camp 420 mandays at \$40		4,800	
		66,400	
Contingency at 20% (approximately)		13,600	
TOTAL		\$ 80,000	




LIVGARD CONSULTANTS LTD.

230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426 _

- 5 -

PROPERTY

- 7 -

The property consists of eight modified grid claims with a total of 144 units. The claims are named A1 to A8 and have Record Numbers 4373 to inclusive.

The claims were staked on October 1 and 2, 1990, and assessment work is thus due by October 1 and 2, 1991. The claims are wholly-owned by Omega Gold Corporation.

LOCATION AND ACCESS

The property lies at approximately 58° 36' North and 132° 35' West. It is found on Map Sheet 104K/10E in the Atlin Mining Division, in the Tulsequah area. The property can best be reached by fixed wing pontoon aircraft; from Atlin, 130 km to the northwest, or from Telegraph Creek, 120 km to the southeast, and to One Way Lake which lies on the north boundary of the claim group.

GENERAL PHYSIOGRAPHY

The property is located on the Taku Plateau near the Boundary Range of the Coast Mountains. The plateau has elevations between 800 and 1,500 metres above sea level (asl). It is generally flat table land or rolling and broken ground. The Mountain Range may have summit elevations from 2,500 to 3,200 metres asl.

Glaciers and ice fields are extensive in the range. Glacier-fed tributary streams discharge great volumes of sand-gravel and other debris into the river valleys which cut the range. These valleys are broad and the rivers frequently show extensive braiding.

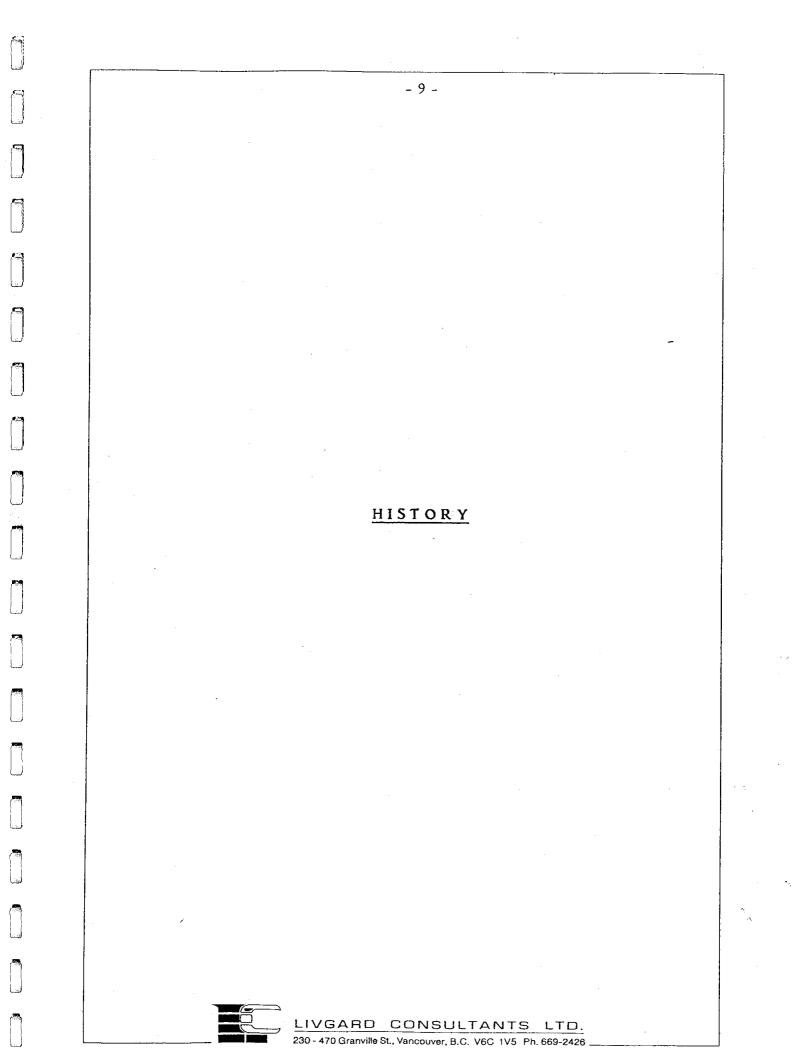
LIVGARD CONSULTANTS LTD. 230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

PROPERTY TOPOGRAPHY

- 8 -

The claims cover a range of hills extending northwest-southeast and reaching heights of 1,500 m asl. Most of the claim ground lies above 1,200 m and is quite barren. One Way Lake lies on the north boundary of the claims at 800 m elevation. The hillsides facing north down to One Way Lake and into the creek are steep and occasionally precipitous. The rest of the claims cover rolling and broken ground.

CLIMATE


As may be expected in a northern latitude, the winters are long and cold and the summers are pleasant but brief.

The average temperature is below 0° C for six months of the year and only three or four months of the year average over 10° C.

The western mountains receive substantial precipitation which increases with altitude and frequently exceeds 100 cm annually. The plateau receives about 40 to 50 cm annually.

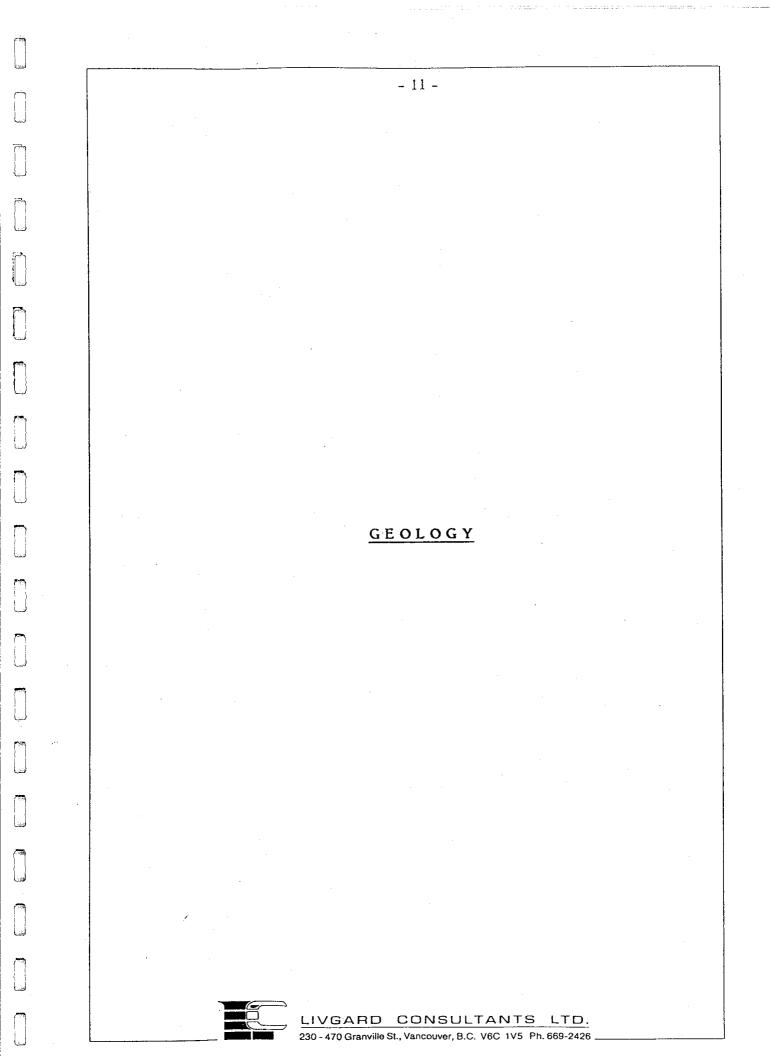
The exploration season with snow free ground varies very much with elevation, but may extend from June-July to the first part of the October.

HISTORY

- 10 -

The search for gold was responsible for the initial development of the northwest. Placer gold was found on the Stikine River in 1861 near the present Telegraph Creek. In 1873 a gold rush took place at Dease Creek. In 1875 gold was located on the Taku River, and in 1898 the first placer claims were staked on the placer deposits near Atlin. The Atlin placer production has continued to the present day.

Underground mining was started at the Engineer Mine on Tagish Lake in 1913 and it produced intermittently until 1952. The most important mines in the area have been those at the Tulsequah River. The Whitewater (Polaris Taku) Mine operated from 1937 to 1951 and produced 719,000 tons of gold ore. The nearby Big Bull and Tulsequah Chief were opened in 1951 and continued until 1957 and produced 1 million tons grading .094 oz Au/ton, 3.4 oz Ag/ton, 1.3% copper, 1.3% lead and 6.2% zinc (recovered). Total production amounted to some 40 million dollars from these mines. In the 1970's, the exploration effort was focused on porphyry copper and molybdenum. A number of deposits were located and some significant deposits were drilled. The 1980's saw renewed interest in base metals, gold and silver. Several deposits were drilled and reserves developed, particularly significant are the Muddy Lake or Golden Bear deposits which contain (1987) 1,200,000 measured geological tonnes grading 12.0 g gold per tonne. The Apex-Badger or Eriksen-Ashby which has (1987) 900,000 tonnes indicated ore grading 215 g silver, 17 g gold per tonne, 2.33% lead and 3.79% zinc, and the Big Bull or Tulsequah Chief which has (1986) 714,000 tones inferred ore grading 99.32 g silver, 3.08% gold per tonne and 1.6% lead and 8.0% zinc.


Large gossans first attracted attention to the One Way Lake area and work took place in 1981 and 1982. The work consisted of geological mapping, soil sampling and rock chip sampling around the three known showings.

(2997) (2997)

> LIVGARD CONSULTANTS LTD. 230-470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

!		TRA R TO AND
	19-76	PLATE LA TRANS
	The second se	RER
		A CONTRACTOR OF THE OWNER OWNER OF THE OWNER O
	LEGEND 19 Rocont gravel	
	CRETACEOUS AND TERTIARY 16 Quariz monzonite 15 Felsite - porphyry	
U	14 Bloke Group	19-52
	JURASSIC - CRETACEOUS	
	11 Takwahoni Formation	A CONTRACT OF A
	10 Inklin Formation TRIA8\$IC	ic a
	9 Sinwa Formation	
	8/7 Stuhini Group 6 Diorite	
	4 Sediments	
	A Diorite - amphibolite	
	Geological boundary (delined, approximate, assumed) Bedding, tops known (horizontal, inclined, vertical, overturned)	
P -,	Venical, Ownuned) Bedding, tops unknown (inclined) Primary flow structures in Igneous rocks (inclined, vertical)	
	Schistosity, gneissosity (Inclined, vertical)	
P	Trend of complexity folded beds	OMEGA GOLD CORPORATION
	Thrust fault (defined, assumed)	CLAIM BLOCK A
	Syncline	ATLIN MINING DIVISION, B. C.
	and pyrilization	
قفت	Landslide scar	REGIONAL GEOLOGY
اهر ا	Mineral property	
الانتا	KILOMETRES 0 5 IO	LIVGARD CONSULTANTS LTD.
		DATE: SCALE: FIGURE No. Nov.,1990 1;250,000 3

GEOLOGY

Regional

The property lies at the northern edge of the Stikine Arch in the Mesozoic sedimentary trough also called the Taku Embayment. To the northeast lies the Atlin Horst bounded by the Nahli Fault, and to the southwest the Boundary Range of the Coast Mountains. Immediately north of the property lies the King Salmon Thrust Fault which extends over some 200 kilometres in an east-southeast direction. It dips 45° northeast. This boundary region between the main Coast Range to the southwest and the plateaus to the northeast shows numerous small intrusions of foliated diorite – quartz diorite possibly from the mid-Triassic (Tahltanian Orogeny), diorite-granodiorite from the Upper Jurassic Tectonic activity and felsite – quartz feldspar porphyry from the Late Cretaceous Early Tertiary Tectonic activity. These intrusive events all have associated mineralization.

The Late Cretaceous - Early Tertiary intrusive rocks associated to the Sloko Group appear to be the most promising for mineral exploration, particularly where they intrude rocks of the Upper Triassic Stuhini Group. Mineralization may be found as multi-metallic massive sulphides and gold, as replacement pods and lenses in shears, in fractures and faulting in the intrusive or in nearby country rock. The alteration consists of highly silicified and/or carbonatization and albitization with disseminated pyrite and associated barite, antimony and arsenic. Occasionally skarns with rhodonite (rhodocrosite) and magnetite are mineralized and/or associated with the mineralization.

Many deposits of porphyry copper - molybdenum are found generally to the southwest of the base metal - silver - gold deposits.

Property Geology

Rock Types

The claims cover largely a Late Cretaceous - Early Tertiary intrusion related to the Sloko Group. The intrusion is a quartz-feldspar porphyry of tracy andesitic composition, but extreme variations occur. It is mediumgrained to aphanitic with mainly plagioclase phenocryst. To the northeast and southwest, the intrusion is in contact with the Takwahoni Formation of the Labarge Group. It is Lower to Middle Jurassic in age and consists of granite-boulder and chert-pebble conglomerate, greywackes, sandstones, siltstones and shale. The southwest contact is a northwest striking major fault. To the southeast the intrusive is in contact with the Stuhini Group of Upper Triassic age. The group consists mainly of volcanic rocks including andesite and basalt flows, volcanic breccias and agglomerates, tuffs, volcanic sandstone, greywacke and siltstone.

The quartz - feldspar porphyry intrusive also contacts strongly foliated diorite and quartz diorite to the southeast. The diorite is of uncertain possibly Lower or Middle Triassic age. A smaller body of quartz-feldspar porphyry intrudes rocks of the Stuhini Group on the southern part of the claims.

Structure

A large fault striking northwesterly bisects the property. Parallel and splayed structures are associated with the fault. South of the property lies an anticline, the axis of which strikes sub-parallel to the fault. Two to three kilometres northeast of the property is found the King Salmon Thrust Fault. It strikes west-northwesterly sub-parallel to the property fault, and dips 45° northeasterly.

Dense fracturing and faulting obscure the northern intrusive-sedimentary contact. Within the intrusive occasional breccia, occasional dense fracturing and fault zones are found containing drusy quartz and mineralization.

Alteration

The intrusive is generally relatively fresh but exhibits some clay-chlorite alteration.

Brecciation and fractured and faulted zones show silicification, drusy quartz, calcite veins and carbonate alteration. Associated with the carbonate is extensive manganese staining.

Mineralization

Three Minfile showings lie within the claim ground (Minfile No. 104K, 13 #078, #114, #115, see Appendix). The mineralization consists of pyrite, galena, sphalerite and minor arsenopyrite and stibnite. Silver and gold values are associated with the mineralization and are of primary economic interest.

The mineralization is in brecciation, dense cross-cutting fracturing and several parallel vein fault zones. It is disseminated in streaks and blebs in cross-cutting stringers and in veins. It is associated with silicification, drusy quartz, chalcedony and carbonate stringers and veins and calcite sphalerite veins. The mineralization shows extensive limonite-manganese staining.

The best sample obtained in past work was a trench channel sample grading 0.194 oz/ton gold, 1.46 oz/ton silver, 0.5% lead and 1.22% zinc over 0.70 metres. Values of up to 18 oz/ton silver and 5 to 15% lead and zinc have also been obtained.

LIVGARD CONSULTANTS LTD.

230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

BCDM STREAM SILT SAMPLING (see Appendix)

Nine samples may be pertinent to the property. Those from creeks draining the intrusive are (partly) highly anomalous in zinc and lead, anomalous in mercury and (partly) slightly anomalous in manganese, arsenic, antimony and gold. The area is on the whole one of the more anomalous in the district.

Samples No. 3260 to 3266 run up to 530 ppm zinc, 95 ppm lead, 160 ppm arsenic, 1550 ppm manganese, 1300 ppm mercury and 27 ppb gold. The best values are found on the west part of the property which has not previously been explored.

There is also indications that the overburden covered valley on the east end of the claims may contain mineralization.

LIVGARD CONSULTANTS LTD. 230-470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

- 15 -

AIR PHOTO INTERPRETATION

- 16 -

The major northwesterly (Az. 305) striking fault which is mapped on the property as contact between the intrusive and the Takwahoni Formation - Stuhini Group contact on the photographs as is the Takwahoni Formation – Stuhini Group contact on the southwestern part of the claims. This may also be a fault contact. The northern and eastern mapped contact are not obvious, although a probable fault contact was noted. The Griz showing (D73) cannot be picked out but criss-crossing lineaments (fracture-carrying minerals) as noted in the Minfile write-up are obvious. Running through the probable locations of showings Griz 3 (114) and Emu (115) is an interpreted fault parallel to the main property fault. A probable fault splitting of from the main property fault has been interpreted. The area between the faults is densely fractured. Several circular features were noted on the photographs. These are not explained but are perhaps intrusive breccias (Assess. Rpt. #11108). They are marked with a question mark.

A large feature on the east side of the claims may be of interest. There appears to be a major arcuate shear zone running from the northeast corner of the "geology and photo lineament map" to the southeast corner of the map. Part of the way this possible shear forms the contact between Stuhini Group to the east and the quartz-feldspar porphyry intrusive to the west. This feature should be further explored on the ground, although it is, for the most part, heavily overburden covered.

Respectfully submitted, Livgard Consultants Ltd.

Egil Llvgard, P.Eng November 29, 1990

LIVGARD CONSULTANTS LTD. 230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

APPENDIX

LIVGARD CONSULTANTS LTD. 230-470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

ATTREAM SEDIMENT AND MATER BATE (BATER) ATTREAM SEDIMENT AND MATER BATE (BATER) ATTREAM SEDIMENT AND MATER BATE (BATER) ATTREAM SEDIMENT ATTREAM SEDIMENT ATTREAM SEDIMENT MAR TEREAM SEDIMENT MAR DEDIMENT MAR DEDIMENT MAR DEDIMENT MAR DEDIMENT DEDIMENT DEDIMENT ADAME SEDIMENT MAR DEDIMENT DEDIMENT ADAME SEDIMENT DEDIMENT DEDIMENT DEDIMENT ADAME SEDIMENT DEDIMENT DEDIMENT ADAME SEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT DEDIMENT <th colsp<="" th=""><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th>			
HACK G #D HA HA <th< th=""><th></th><th></th><th>4K - TULSEQUAH</th></th<>			4K - TULSEQUAH	
144006 871222 OTHE 56 00 22 6 1 2 2 0.1 140 5 1 0.80 5 0.2 9.2 70 77 0.3 0.2 2 1200 1 1 13 10.0 1 104K06 871222 OTHE 56 00 123 6 22 1 2 0.1 240 6 1 1.00 5 0.2 9.2 70 77 0.3 0.2 2 1200 1 1 13 10.0 1 104K06 871222 OTHE 56 00 123 6 22 1 2 0.1 240 6 1 1.00 5 0.2 9.2 70 77 0.2 3 970 5 1 1 1 10 110 1 10 10	ROCK G RP		Au L Au L	
104K16 871277 BSLT 34 00 65 23 3 570 33 0.1 460 3 1 3.45 25 2.5 0.8 180 59 0.1 0.2 3 450 3 4 10.0 1	MAP ID TYPE E ST Zn Cu 104K06 871224 QTMZ 56 00 23 6 104K06 871225 QTMZ 56 00 123 6 104K06 871228 QTMZ 56 00 58 5 104K06 871230 QTMZ 56 00 85 20 104K06 871231 QTMZ 56 00 85 20 104K06 871232 QTMZ 56 00 55 5 104K11 871233 QTMZ 56 00 90 18 104K11 871235 QTMZ 56 00 90 10 104K11 871236 QTMZ 56 00 140 21 104K11 871237 QTMZ 56 00 143 57 104K11 871242 CGLM 9 00 143 57 104K	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Au Au-R WT1 1 WT2 2 13 10.0 1	

.

A GROREP 18 V PAGE 38

_							······			<i></i>						~ ~				<i>c</i> –		a		<u>,</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· _	- in .
		<u>E</u>		Ŀ	<u>.</u>	ن		<u>,</u>	j.	L		Ł			Ĺ	E	3		امانی۔ مرد میں	 ۲۰۰۰ م	لمك. ملايد	a fili i i					
		4.5 M 1							de la casta da factoristi	10000000000	er fa Maria	ang nang Kabupatèn	717 - 1 1			n carla Na magazina		<u></u>	STATISTICS	7 59 E (7	and the second second	17 2 17 4 C 1					
	REG	IONAL S	STREAM	SED	IMENI	AND	WAT	ER DA			н с	OLUMB	IA 1											LSEQ	HAL		·
									•			ar e deserve	ليطور وليدينون		,		•										
		ROCI	A K GRP							S T	R E	AM S	ED	IME	NТ										. D		D
MA	b` II				Cu	РЪ	NÍ	Co A	g Mn	Ав	Мо	Fe	Hg	LOI	σ	F	v	Cđ	SЪ	W	Ba	Sn 2	Au Au-		u I 1 1		L 2
10	4K09 873	183 BSL	r 63 00	84	21	1	38	20 0.	1 725	2	·2	3.90	25	12.5	2.5	410 10	01 0).1 (0.2	4	5 0.0	1	2	10.	0 1		
		184 TRCH 185 TRCH			26	1	46 :	L8 0.	1 600	5	2	4.00	40	9.0	2.6	460	84 0		0.6		630 740	1 1	1	10. 10.			
		186 ANB			30 44	7 1		20 0. L8 0.		12	2	4.40		9.4 10.3	3.3 3.3				0.9 0.7		370	ì	2	10.			
		187 ANB 188 ANB			46	1	26	21 0.		. 8	2	3.40	80	9.5					0.8		900	1	4			10.0	l
		188 ANB			21 41	3 1	15 9 :	7 0. 18 0.		5 21	2	2.70 4.30	25 150	7.5 8.0	4.7				0.8		L00 L20	3 1	1	10. 10.			
		190 ANB		101	130	1		26 0.		15	ī	5.90	135	7.3			12 0).1 :	1.8	2 4	150	3	5	10.	0 1		
		191 CGL 192 CGL			51 16	9 6		L4 0.		14	3	3.30	70	6.2	3.6				1.9 6.5		960 750	1 2	9 3	4 10.		10.0	1
		193 CGL			55	1	15 40 :	8 0.1 12 0.1		55 21	2	2.45	95 30	5.0 1.9	9.2				1.1		380	î	6	10.			
		194 ANB			107	9	36 :	26 0.	2 1000	45	1	5.00	260	9.6	0.9	300 10			7.0		510	2	1	10.			_
		195 CGL 197 CGL			374 143	51 23		35 O. 21 O.	the second s	560 160	32	8.00		11.3 10.3_		530 12 410 8		0.630	0.0	$\frac{210}{610}$			39 5 13	50 10. 10.		10.0	1
10	4K09-873	198 DORI	C 51 00	75	42	3	13	8.0		11	1	2.15		14.5).4		3			.3		01		
		199 CGL 200 CGL			15 39	2	10	9.0.		5	ļ	2.60		9.5	3.1			• -	0.4		930 770	1	1 1	10. 10.			
		202 LMS			54	1 18		4 0.		20 30	1	3.25	210	10.0 5.1	1.5			• -	0.9 [°] 2.6	-	500	i ·	53			10.0	1
		203 CGL			40	1	18	5 0.3	1 820	18	ī	3.90		10.5	1.4	300 11	11 0	.4 1	1.3		520		LO	10.			
		204 CGL 205 ANB			54 64	1 4		L3 0.1		14 15	_1 _1	3.40 2.95	140	5.3 5.8	1.8				1.3 1.2	-	700 320	1	3 L4	10. 10.			
10	4K0,9 873	206 ANB1	45 20	103	73	6	-	7 0.		21	1	3.90	195	8.0	1.8				2.2	3	70		17	10.	0 1		
		207 ANB1 208 ANB1			41 92	· · 4 1		20-	بوجيدة بتعصي فالتاطي فك			-2.90							2.1		170	2	1		01 0 1		[.] *
		209 ANBI			63	3		17 0. 16 0.		9	1	4,80	95 180	7.6 6.2	1.2 2.1	210 19 380 7			2.0		90	1	3	10.			
		210 ANB			103	1	30 2	20 0.	2 1440	11	1.	4.50	110	6.9	1.4	280 15			0.6		40	1	8	7 10.			l
		211 ANB1 212 GRCF			63 71	1 1		3 0.3		87	1	4.40	140	7.8		210 16 190 14			0.8 0.4		520 190	1 2	24 9	10. 10.			
		214 GRCP		96	101	1	10 2	0 0.		14	2	5.15	100	7.9		280 10	68 0).I (0.4	з 1	40		5		0 1		1
		215 GRCP 216 GRCP			<u>44</u> 65	2		<u>1</u> 0. 50.		12	1	3.60	130		$\frac{1.9}{2.3}$				0.6		190 950	1	4	10.	0 1	<u> </u>	
		217 FLSF			104	50		5 0.3		<u>15</u> 70	12	<u>_3.60</u> 4.30	<u>130</u> 60	<u>6.6</u> 8.9	5.3				4.3	2 1		1 :	16	10.			
		218 CGL			71	66		6 0.		65	4	4.10	40	6.1	5.8				4.5	5 11		1	8	10.			-
		219 CGLM 220 CGLM			43. 46	7 21		1 0.1		41 42	1 2	3.25 3.65	.60 30	3.9 2.8					1.2 1.4	3.13			27] 19	LO 10. 10.		. 10.0	T
10	4K11 873	222 CGLN	49 00	56	35	4	10	6 0.3		19	ĩ	2.30	20	ĩ.5	3.0			-	0.4	4 12		2	1	6 10.	01	10.0	1
		223 CGLM 224 CGLM			1 <u>6</u> 70	5	4	5 0.3		10	1	1.50	15	0.7	3.7				0.2	3 12		1	1	10. 10.			
		225 CGLM			100	60 35		.6 0.1 8 0.2		65 16	6 9	3.70 2.70	30	16.7	4.3				1.5 1.0		920 950	3	6	10.			
		226 CGLM			46	19	38 1	1 0.2	2 265	14	6	3.10	100	8.3	3.4	600 5			1.6	2 10		1	4	10.			
		227 CGLM 228 CGLM		-	21 34		17 19 1	5 0.1 0 0.2		.6	1	1.80 2.70	50	9.6 13.6	2.7			0.1 (0.6		320 340	1	8 8	10. 10.	0 1 0 1	-	
10-	4K10 873	229 CGLM	1 49 00	108	52	10	29 2	0 0.3	L 890	33 .33	ĩ		110	8.4	3.8	620 5	55 0	i.3 1	1.4		760	2	1	10.	0 1		
		231 CGLM 232 CGLM			309			2 1.0		110		6.05	40	6.3	4.6	320 10					950				0 1 0 1	. 10.0	1
		232 CGLM 233 CGLM			76 53			3 0.4	650 	65 33		4.00				430 9 350 9		0 3).4 1		3 12	200 970 :		1 1			10.0	1
104	4K10 873	234 CGLM	49 20	126	51	7	33 1	4 0.1	755	29	1.	3,60.	. 180.	6 . 9.	.2.1	340 8	85 0).5]	1.2	2 9	970	1	8	10.	01		
		235 GRCK 236 GRCK			70. 34			4 0.2	2 500	15		2.70 2.40		13.9 2.9).6 1			360 950	1 1	4 3		0 1 0 1		
		237 GRCK				3		2 0.2	2 550	16	· 1	2.55	60	5.6	ī.5	320		0.2 (300	î	4		0 1		
									•		•																

. ...

.*

A GROUP

PAGE 47

104K09 873238 GRCK 49 00 10 64 6 46 19 0.2 635 48 3 3.70 60 3.9 1.2 340 20 0.4 4.4 3 700 1 6 104K09 873239 GRCK 49 00 105 63 8 41 17 0.2 635 24 2 3.40 85 4.4 1.3 400 77 0.2 1.2 3 850 1 1 104K09 873240 GRCK 49 00 106 59 10 47 16 0.1 625 19 1 3.10 105 5.1 1.4 410 4900 1 104K09 873242 GRCK 49 00 12 790 27 1 2.95 95 7.0 1.3 3100 16 400 1 400 1 400 1 400 1 400 1 400 55 7.0 1.3 310 10 1 <td< th=""><th>D D Au L Au L Au-R WTI 1 WT2 2 6 10.0 1 1 10.0 1 4 10.0 1</th><th>u L</th></td<>	D D Au L Au L Au-R WTI 1 WT2 2 6 10.0 1 1 10.0 1 4 10.0 1	u L
REGIONAL STREAM SEDIMENT AND WATER DATA, BRITISH COLUMBIA 1987, BC RGS 20, GSC OF 1647, NTS 104K - T A STREAM SEDIMENT AND WATER DATA, BRITISH COLUMBIA 1987, BC RGS 20, GSC OF 1647, NTS 104K - T NAP STREAM SEDIMENT NAP STREAM SEDIMENT NAP ID TYPE E ST Zn CU Pb N1 Co Ag Mn As Mo Fe Hg LOI U F V Cd SD N Ba Sn Au MAP ID TYPE E ST Zn CU Pb N1 CO Ag Mn As Mo FE Hg LOI U F A I 104K09 873238 GRCK 49 00 110 6 A I 104K09 873239 GRCK 49 00 1047<	D D Au L Au L Au-R WTI 1 WT2 2 6 10.0 1 1 10.0 1 4 10.0 1	u L
ROCK G RP MAP ID TYPE E ST Zn Cu Pb N1 Co Ag Mn As Mo Fe Hg LOI U F V Cd Sb W Ba Sn Au Au Au 104K09 873238 GRCK 49 00 110 64 6 46 19 0.2 635 48 3 3.70 60 3.9 1.2 340 20 0.4 4.4 3 700 1 6 104K09 873239 GRCK 49 00 105 63 8 41 17 0.2 635 24 2 3.40 85 4.4 1.3 400 77 0.2 1.2 3 850 1 1 104K09 873240 GRCK 49 00 10 47 16 0.1 625 19 1 3.10	Au L Au L Au Au R WT1 1 WT2 2 6 10.0 1 1 10.0 1 4 10.0 1	u L
104K09 873238 GRCK 49 00 10 64 6 46 19 0.2 635 48 3 3.70 60 3.9 1.2 340 20 0.4 4.4 3 700 1 6 104K09 873239 GRCK 49 00 105 63 8 41 17 0.2 635 24 2 3.40 85 4.4 1.3 400 77 0.2 1.2 3 850 1 1 104K09 873240 GRCK 49 00 106 59 10 47 16 0.1 625 19 1 3.10 105 5.1 1.4 410 4900 1 104K09 873242 GRCK 49 00 104 1 3.25 55 7.0 1.3 310 4900 1 104K09 873243 GRCK 49 00 83 41 1 3.25 55 7.0 1.3 310 56 0.2 1.0 3 </th <th>1 10.0 1 4 10.0 1</th> <th></th>	1 10.0 1 4 10.0 1	
104K09 973245 LMSN 45 00 88 32 4 23 10 0.1 550 24 1 2.75 110 5.7 2.2 430 64 0.3 0.8 4 880 3 .2 104K09 973245 LMSN 45 00 80 45 9 23 10 0.1 610 43 1 2.75 110 5.7 2.2 430 64 0.3 0.8 4 880 3 1 104K09 873248 LMSN 45 00 80 43 8 9 23 10 0.1 610 43 1 2.75 110 5.9 2.1 430 68 0.2 0.8 3 870 1 1 104K09 873245 LMSN 45 00 101 29 2 15 10 0.1 680 12 1 2.95 13.7 2.0 510 61 0.2 0.8 2 880 2 1 104K09 873245 LMSN 45 00 101 29 2 15 10 0.1 680 12 1 2.85 200 16.9 2.1 280 70 0.3 0.4 3 880 2 1 104K09 873253 CMSK 49 10 107 38 10 26 12 0.1 480 132 1 2.485 200 16.9 2.1 280 71 0.4 1.2 4 880 2 1 104K09 873253 CMSK 49 10 179 38 10 26 12 0.2 660 10 12 .2 85 200 16.9 2.1 280 71 4.3 380 7 104K09 873255 CMSK 49 10 0 19 38 10 26 12 0.2 660 10 19 1 2.85 200 16.9 2.1 280 10.1 0.8 2 990 1 1 6 104K09 873255 CMSK 49 00 81 39 8 27 14 0.1 670 21 1 3.00 100 4.1 1.4 320 49 0.1 0.9 3 1000 2 1 104K09 873255 CMSK 49 00 81 43 8 24 1.0 0.2 530 95 12 2.0 1.2 86 0.3 5.1 6.0 1.0 .0 8 3 1000 1 1 104K09 873255 CMSK 49 00 70 33 5 22 11 0.1 570 12 1 1 2.80 56 6 7.5 2.6 100 2.0 8 8 2 850 2 4 104K09 873255 CMSK 49 00 70 33 5 22 11 0.2 560 14 12.70 365 6 7.7 2.5 300 51 0.0 1.0 .9 3 1000 1 1 104K09 873255 CMSK 49 00 70 33 5 22 11 0.0 2 530 95 1 2.70 56 6 7.7 2.5 300 51 0.0 1.0 .9 3 1000 2 1 104K10 873256 CMSK 49 00 70 33 5 22 11 0.0 2 530 95 1 2.70 365 6 7.7 2.5 300 51 0.0 1.0 .1 3 1000 1 1 104K10 873265 CMSK 49 00 70 33 4 20 0.2 530 95 1 3.20 70 45 2.9 1.3 280 531 0.0 1.0 .7 2 1100 1 1 104K10 873265 CMSK 49 00 71 33 4 22 10 0.2 530 95 1 3.20 70 45 2.9 1.3 280 531 0.0 1.0 .7 2 1100 1 1 104K10 873266 CMSK 56 00 200 34 .44 13 2 0.4 146 51 2 2.9 1.5 200 54 5 1.0 0.4 1.4 3 1000 2 1 1.4 104K10 873266 CMSK 56 00 210 34 .44 3 12 0.4 126 51 2.2 13.0 51 0.5 4 0.2 1.6 0.2 1.4 0 1.4 1.4 100 10 1.2 1.0 0.0 1 2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

.

•

A GROUP PAGE 48 V

	RUN DATE: 10/22/90 RUN TIME: 13:32:03		GEOLOGICAL SURVEY E MINISTRY OF ENERG	MINFILE / pc MASTER REPORT BRANCH - MINERAL BY, MINES AND PE	RESOURCES DIVISION TROLEUM RESOURCES	PAGE: 14 REPORT: RGEN4000
	MINFILE NUMBER:	<u>104K 073</u>			NATIONAL MINERAL IN	IVENTORY:
h	NAME(S):	<u>GRIZ</u> , GRIZ 1-2				
	NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	58 35 01 132 32 25 1200 Metres Within 500M	rth side of Kowatus	Creek about 15	U	HVISION: Atlin HTM ZONE: 08 HORTHING: 6496100 EASTING: 643000
ور ا	COMMODITIES:	Gold	Lead	Zinc	Silver	
	MINERALS SIGNIFICANT: ASSOCIATED: ALTERATION: ALTERATION TYPE: MINERALIZATION AGE:	Quartz Silica Silicific'n	Sphalerite Calcite Pyrite Pyrite	Pyrite		- - -
	DEPOSIT CHARACTER: CLASSIFICATION:	Vein	Breccia Hydrothermal	Disseminated Porphyry		
	HOST ROCK DONINANT HOST ROCK:		HJUI OCHCI MOI	F01PH717		
8	STRATIGRAPHIC AGE	GROUP	FORNA	TION	I GNEOUS/MET	AMORPHIC/OTHER
لي	Jurassic Tertiary-Cretaceous	Laberge	Takwa	honi		known Informal
	LITHOLOGY:	Quartz Feldspar P Feldspar Porphyry Quartz Breccia	orphyry			
	HOST ROCK COMMENTS:	Feldspar porphyry (GSC Map 1262A).	correlative with T Takwahoni sediments	ertiary-Cretacec range Lower to	us Sloko Group Middle Jurassic.	
	GEOLOGICAL SETTING TECTONIC BELT: TERRANE:	Intermontane Stikinia	· · ·		PHYSIOGRAPHIC AREA:	Taku Plateau
\Box	RESERVES					
	ORE ZONE:		· .	VEAR		
	COMMENTS: Reference:	CATEGORY: Best As SAMPLE TYPE: Chip <u>COMMODITY</u> Silver Gold Chip sample from Assessment Report	GRAD 1 4 Trench 1 in silicif	E .0300 Grams per .7300 Grams per	tonne	
	CAPSULE GEOLOGY		·			
		intrudes Lower to The intrusives ar which are limited of the Coast Moun Both effusiv are present. The to medium-grained Minor disseminate	e and hypabyssal va rock varies from p , containing feldsp d pyrite is common.	berge Group, Tak ed to the Sloko nding belt along rieties of the f ink to green in ar phenocrysts c Small guartz v	Wahoni sediments. Group volcanics) the eastern edge colour, aphanitic of varying sizes. Yeins. commonly	
		drusy and up to 1	centimetre wide cu ut the porphyry. I	t the porphyry.	Larger guartz	MINFILE NUMBER: <u>104K_073</u>

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

CAPSULE GEOLOGY

the porphyry classified it as tracyandesitic in composition. A large north-northwest trending fault forms the southern contact between the porphyry and the Jurassic Takwahoni sedimentary unit. Several occurrences of galena and sphalerite are found within crosscutting quartz veins within the porphyry. On the southeast side of a main valley which cuts the claims, galena mineralization occurs in small blebs, ranging from 1 to 5 millimetres in size, within highly silicified feldspar porphyry host rock. The silica is almost black in the well mineralized areas. Rusty, calcite-sphalerite veins, quartz veinlets and manganese staining are also associated with the minera-lization. lization.

Veinlets of galena and sphalerite, up to 9 millimetres in width, were found on the northwest bank of the main valley. Abundant pyritic and silicified zones and calcite veins are associated with the mineralization.

In the southern part of the property pyritic quartz breccia and pyritic seams are found within the porphyry. In 1981, several chip samples were collected from trenches. Two chip samples from Trench 1 in silicified porphyry assayed 4.73 grams per tonne gold, 1.03 grams per tonne silver, and 1.3 grams per tonne gold, 1.71 grams per tonne silver, respectively (Assessment Report 9824 part 1)

goiu, 1./1 grams per tonne silver, respectively (Assessment Report 9824, part 1). Chip samples from galena-sphalerite-calcite veins and lenses in Trenches 2 and 4 assayed 0.1 grams per tonne gold, 76.46 grams per tonne silver, 1.78 per cent lead, 3.05 per cent zinc, and less than 0.1 grams per tonne gold, 115.88 grams per tonne silver, 0.48 per cent lead, 0.77 per cent zinc respectively (Assessment Report 9824, part 1). The gold values do not seems to ton.

The gold values do not appear to be associated with the galena-sphalerite mineralization but appear to be associated with the highly silicified feldspar-porphyry and with rusty breccia fragments of feldspar porphyry.

BIBLIOGRAPHY

EMPR EXPL 1981-128 EMPR ASS RPT *9824,Part 1 GSC MEM 362 GSC MAP 6-1960; *1262A

DATE CODED: 850724 DATE REVISED: 880530

CODED BY: GSB **REVISED BY: LLC** FIELD CHECK: N FIELD CHECK: N

RUN DATE: 10/22/90 RUN TIME: 13:32:03	Gi	EOLOGICAL SURVE MINISTRY OF ENG	MINFILE / pc MASTER REPORT Y BRANCH - MINERAL RES RGY, MINES AND PETROL	SOURCES DIVISION EUN RESOURCES	PAGE: 22 REPORT: RGEN4000
MINFILE NUMBER: NAME(S):	<u>104K 114</u> <u>GRIZ 3, G</u> RIZ		Nf	ATIONAL MINERAL INVENT	ORY:
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	Showing 104K10E 58 36 38 132 35 24 1480 Metres Within 500M	lometres north (073),	of Trapper Lake, part	NORTH EAST	ION: Atlin ONE: 08 ING: 6499000 ING: 640000
COMMODITIES:	Silver	Lead	Zinc	Gold	
MINERALS SIGNIFICANT: ASSOCIATED: ALTERATION: COMMENTS: ALTERATION TYPE: MINERALIZATION AGE:	Quartz Limonite Manganese staining. Silicific'n	Sphalerite Calcite Carbonate Carbonate	Arsenopyrite Chalcedony Pyrite Pyrite	Pyrite Silica Oxidation	
DEPOSIT CHARACTER: CLASSIFICATION:	Vein Epigenetic	Hydrothermal			
HOST ROCK DOMINANT HOST ROCK:	Plutonic				
STRATIGRAPHIC AGE Jurassic Tertiary-Cretaceous	<u>GROUP</u> Laberge		IATION Jahoni	IGNEOUS/METAMORI Unnamed/Unknown	
	Quartz Feldspar Porg Feldspar Porphyry	phyry			
HOST ROCK COMMENTS:	Feldspar porphyry i	ntrusions likely oni sediments ra	v related to Tertiary- ange Lower to Middle J	-Cretaceous Jurassic.	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: METAMORPHIC TYPE:	Intermontane Stikinia			/SIOGRAPHIC AREA: Taku ization GRADE:	Plateau
RESERVES			1004 #11010		
ORE ZONE:	GRIZ 3				
	CATEGORY: Best Assay SAMPLE TYPE: Chip <u>COMMODITY</u> Silver Gold Lead Zinc Chip sample taken ac feldspar porphyry. Assessment Report 98	GRA 58 cross galena-sph	YEAR: 19 MDE 11.8200 Grams per ton 0.5490 Grams per ton 8.2900 Per cent 6.7200 Per cent halerite vein in quart	ne	· · ·
CAPSULE GEOLOGY	-,				
	OF THE COAST HOUHLAS	115.	ertiary quartz-feldsp aberge Group Takwahon ited to the Sloko Grou ending belt along the underlain by the Uppe	r Cretaceous	IINFILE NUMBER: <u>104K 114</u>

Ŀ

RUN DATE: 10/22/90 RUN TIME: 13:32:03

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

CAPSULE GEOLOGY

to Late Tertiary quartz-feldspar porphyry body which is extremely variable in composition. It is fine-grained to aphanitic, porphyritic with mainly plagioclase phenocrysts and less commonly quartz pheno-crysts. It varies from pink to grey to green and hosts disseminated pyrite. A petrographic analysis in 1981 indicated the porphyry to be of trachyandesitic composition. Fine-grained diabase dykes cut the porphyry, sometimes hosting

pyrice. A petrographic analysis in 1981 indicated the porphyry to be of trachyandesitic composition. Fine-grained diabase dykes cut the porphyry, sometimes hosting minor pyrite. The southwest part of the intrusion is in fault contact with a chert pebble conglomerate and black shales of the Middle to Lower Jurassic Takwahoni Formation. This major fault trends northwest and truncates the southwestern edge of the porphyry intrusive. Six mineralized zones have been outlined that contain veins of galena-sphalerite mineralization. The zones are defined by altered, recessive areas containing mineralized veins, between relatively unaltered walls of quartz feldspar porphyry. The zones appear to be offset by a left-lateral fault. Each zone contains at least one larger vein on the hangingwall side and often another vein on the footwall side. Smaller veins and veinlets, ranging from a few millimetres to 10 centimetres, cut the very altered quartz-feldspar porphyry that lies in the centre of the zone. The galena-sphalerite mineralization occurs as bands and dis-seminations within the veins. Minor pyrite and arsenopyrite are also present, as well as barren calcite veinlets. The altered feldspar porphyry exhibits extensive manganese and limonite staining with carbonate alteration. The veins themselves, are silicified and host abundant limonite and carbonate. Several stages of deformation have occurred which include an early stage of brecciation and mylonitization followed by several periods of fract-uring and veining. A petrographic analysis outlined the following events: 1) early quartz veining and silicification with the introduc-tion of ore minerals; 2) calcite veinlets remobilized some of the ort minerals; 3) late chalcedony veinlets and some brecciation and fract-uring offset the stage 3 structures. In 1981, chip samples taken across sphalerite-galena vein minera-lization returned anomalous gold and silver values. One sample assayed 0.549 grams per tonne gold, 581,82 grams per tonne silver, 8.29 per cent lead,

BIBLIOGRAPHY

EMPR EXPL 1981-128 EMPR ASS RPT *9824, Part 2 GSC MEM 362 GSC MAP 8-1960; *1262A

DATE CODED: 880530 DATE REVISED:

CODED BY: LLC **REVISED BY:**

FIELD CHECK: N FIELD CHECK:

RUN DATE: 10/22/90 RUN TIME: 13:32:03	6	EOLOGICAL SURVEY MINISTRY OF ENER	MINFILE / pc MASTER REPORT BRANCH - MINERAL RI GY, MINES AND PETRI	ESOURCES DIVISION OLEUM RESOURCES	PAGE: 24 REPORT: RGEN4000
MINFILE NUMBER:	<u>104K 115</u>		:	NATIONAL MINERAL INV	ENTORY:
NAME(S):	EMU				
NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	58 36 54 132 34 52 1420 Metres	ometres south of ast of Trapper La	Oneway Lake or abo ke.	UTI Noi Ei	VISION: Atlin 1 ZONE: 08 RTHING: 6499500 ASTING: 640500
COMMODITIES:	Silver Copper	Lead Argillite	Zinc	Gold	Antimony
ALTERATION:	Quartz Quartz-chalcedony v Chlorite Iron-carbonate.	Sphalerite Chalcedony eins. Clay Silicific'n	Pyrite Pyrite Chloritic	Carbonate Argillic	- Oxidation
MINERALIZATION AGE: DEPOSIT CLASSIFICATION: SHAPE: MODIFIER: HOST ROCK	Unknown Vein Epigenetic Regular Faulted	Disseminated Hydrothermal	Igneous-contac		
DOMINANT HOST ROCK:					
<u>STRATIGRAPHIC AGE</u> Jurassic Tertiary-Cretaceous	<u>GROUP</u> Laberge	<u>Form</u> Takwi	A <u>TION</u> Bhoni	<u>IGNEOUS/META</u> Unnamed/Unkn	<u>MORPHIC/OTHER</u> own Informal
LITHOLOGY:	Quartz Monzonite Quartz Feldspar Por Siltstone Shale	phyry Dyke			
HOST ROCK COMMENTS:	Feldspar porphyry i Sloko Group. Tahwa	ntrusions likely honi sediments ra	related to Tertiar ange Lower to Middl	y-Cretaceous e Jurassic.	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:	Intermontane Stikinia		p	PHYSIOGRAPHIC AREA: T	aku Plateau
RESERVES					,
ORE ZONE:	EMU				
	CATEGORY: Best Assa SAMPLE TYPE: Grab COMMODITY Silver Gold Copper Lead Antimony	<u> </u>	YEAR: DE 7.0000 Grams per t 0.6750 Grams per t 0.0070 Per cent 0.2600 Per cent 0.0070 Per cent	onne	
	Zinc Grab sample from na 1.0 per cent arseni Asaessment Report 1	irrow quartz-chal	D.0680 Per cent	lgreater than	

MINFILE NUMBER: <u>104K 115</u>

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

CAPSULE GEOLOGY

RUN DATE: 10/22/90 RUN TIME: 13:32:03

The area is located south of the King Salmon thrust fault within Upper Cretaceous to Lower Tertiary quartz monzonite and quartz-feldspar porphyry intrusions, and Lower to Middle Jurassic Laberge Group sediments of the Takwahoni Formation. The intrusions are thought to be genetically related to the Sloko Group volcanics (GSC Map 1262A). The Jurassic Takwahoni sediments are situated to the north and south of a wedge of Tertiary felsic intrusive rocks. The Takwahoni shales and siltstones are confined to the northern part of the claim and are thinnly-bedded, fresh and brown in colour. Contacts between the intrusion and sediments are difficult to establish due to intensive fracturing and alteration. Contacts between these two units may be transitional along faults. Cretaceous-Tertiary quartz monzonite occurs throughout most of the claim area. It is generally fresh and often contains euhedral biotite and hornblende phenocrysts, and feldspar phenocrysts ranging up to 0.5 centimetre in length. A Cretaceous-Tertiary quartz-feldspar porphyry dyke cuts through the central claim area and is comprised of a dense, often quartz-carbonate altered rock hosting disseminated pyrite. The area is located south of the King Salmon thrust fault within

pyrite.

The quartz monzonite is slightly clay-chlorite altered. The strongest alteration is confined mainly to fault zones which show extensive iron-carbonate alteration and recessive weathering. Quartz-chalcedony and carbonate veins are mostly confined to fault zones. These veins occur irregularly and are up to 12 centimetres wide, crosscutting all rock types. Pyrite blebs and disseminations with traces of galena and sphalerite are common in some of the quartz veins

veins. Anomalous gold, silver, lead, and zinc values are restricted to guartz-chalcedony veins which host pyrite, sphalerite, and galena. The veins are found only in fault zones within or near the intrusion. In 1982, rock samples collected from mineralized quartz-chalce-dony veins assayed 0.675 grams per tonne gold, 17.0 grams per tonne silver, 0.26 per cent lead, 0.068 per cent zinc, 0.007 per cent anti-mony, 0.007 per cent copper, and greater than 1.0 per cent arsenic, and 0.001 grams per tonne gold, 0.2 grams per tonne silver, 0.0002 per cent lead, 0.034 per cent zinc, 0.002 per cent antimony, 0.006 per cent copper, and 0.015 per cent arsenic, respectively (Assessment Report 11108).

BIBLIOGRAPHY

EMPR EXPL *1982-396,397 EMPR ASS RPT *11108 GSC MEM 362 GSC MAP 6-1960; *1262A

DATE CODED: 880530 DATE REVISED:

CODED BY: LLC **REVISED BY:**

FIELD CHECK: N FIELD CHECK:

REFERENCES

G.S.C. Memoir 362 G.S.C. Map 1262A

Assessment Work Report 9824, Parts 1 & 2 - Geological and Geochemical Reports on the Griz 1, 2 and 3 Claims, by J.M. Pantler, October 1981.

Assessment Work Report 11108 - Geological and Geochemical Survey, EMU Claim, by Mike Thicke and Ken Shannon, Chevron Canada Ltd., September 1982.

The B.C. Source Book - 1966, University of Victoria.

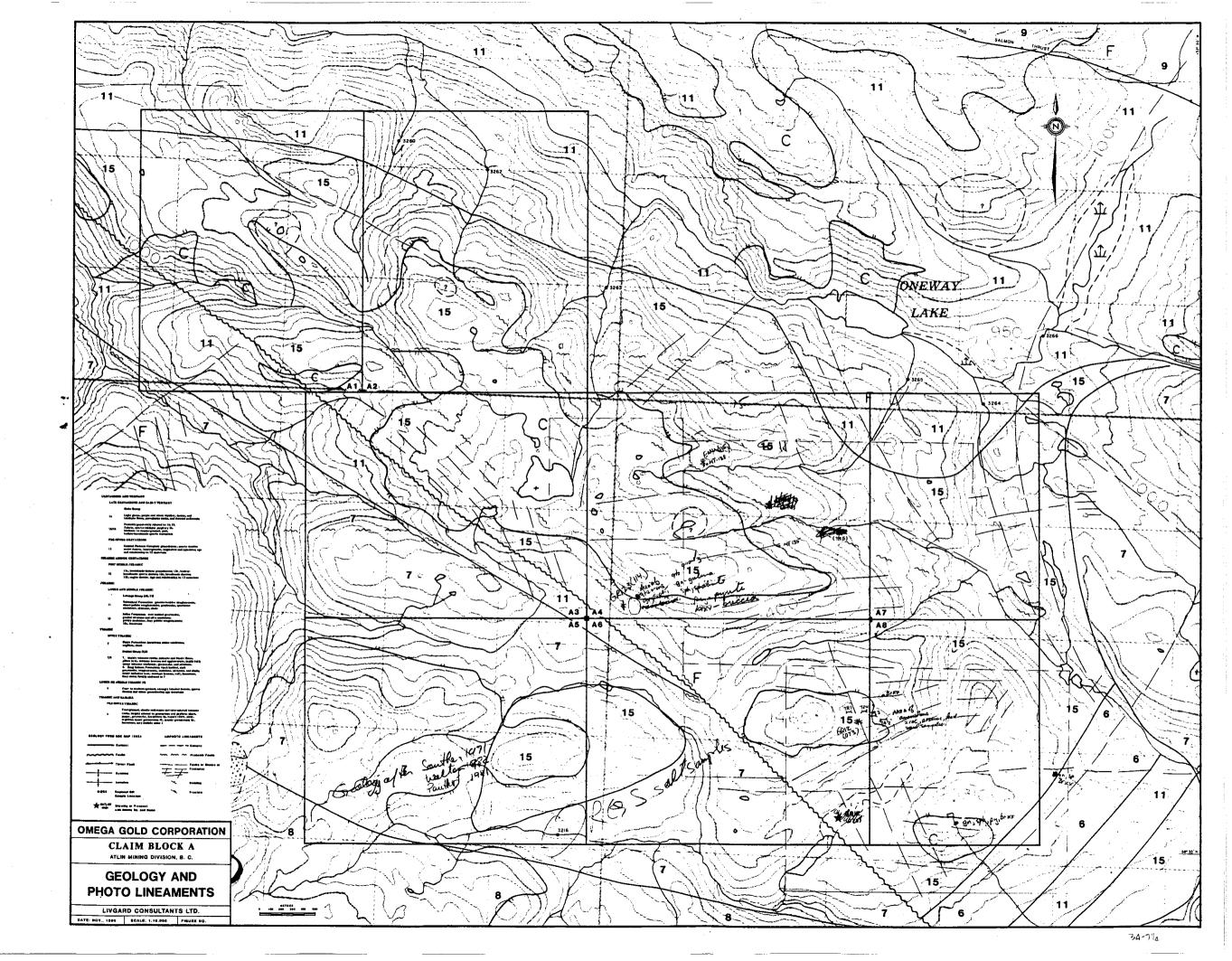
Aerial Photos: B.C. 5614 No. 024, 025, 073, 074, 075, 076, 146, 147, 148.

CERTIFICATE

I, EGIL LIVGARD, of 1990 King Albert Avenue, Coquitlam, B.C., DO HEREBY CERTIFY:

- I am a Consulting Geological Engineer, practicing from #635 470 Granville Street, Street, Vancouver, B.C.
- I am a graduate of the University of British Columbia, with a B.Sc., 1960 in Geological Sciences.
- 3. I am a registered member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. I have practised my profession for over 30 years.
- 5. I am a Director of Omega Gold Corporation and own shares in the Company.
- 6. This report dated December 4, 1990 is based on the references as listed in the Appendix. The writer has not examined the property on the ground.

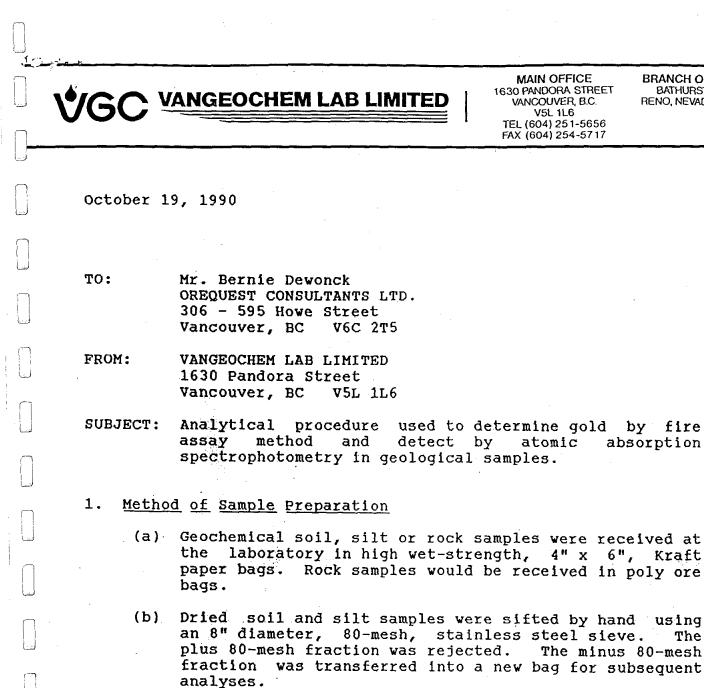
DATED AT VANCOUVER, BRITISH COLUMBIA THIS 4TH DAY OF DECEMBER, 1990.



LIVGARD CONSULTANTS LTD.

gil

Livgard, B.Sc., P,Eng.


230 - 470 Granville St., Vancouver, B.C. V6C 1V5 Ph. 669-2426

APPENDIX B

ļ

ANALYTICAL PROCEDURES AND ASSAY REPORTS

(C) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

BRANCH OFFICES

BATHURST, N.B.

RENO, NEVADA, U.S.A.

absorption

The

The minus 80-mesh

- 2. Method of Extraction
 - (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
 - (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

GC VANGEOCHEM LAB LIMITED

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.

3. Method of Detection

- (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Krith

Raymond Chan VANGEOCHEM LAB LIMITED

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 ☑ (306) 931-1033 FAX: (306) 242-4717

Jan.9/90 OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5 1 ---SAMPLE PREPARATION PROCEDURES Rock and Core - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh. Soils and Silts - Sample is dried and sieved to -80 mesh. 2 -FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption. Assay Gold (Au oz/ton) -A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance. 3 - Geochem Silver (Ag ppm) -A lg subsample is digested with 5mls of aqua rega for $1 \frac{1}{2}$ to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption. Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 15mls HCl plus 5mls HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCL. The solution is run on the Atomic Absorption. BASE METALS 4 Geochem -A 1g subsample is digested with 5mls of aqua rega for $1 \frac{1}{2}$ to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption. A 0.500g sample is taken to dryness with 15mls Assay HCl plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

(urison)

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Bernie Dunn BD/vh

VGC VANGEOCHEM LAB LIMITED

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910113 GA	JOB NUMBER: 910113	GOLD FIELD CANADIAN MINING LTD.	PAGE 1 OF
SAMPLE #	Au ppb		
RC 10251	nd		
RC 10252	nd		
RC 10253	200		
RC 10254 RC 10255	10 10		
RC 10233	10		
RC 10256	nd		
RC 10257	50		
RC 10258 RC 10259	nđ		
RC 10259 RC 10260	nd nd		
	na		
RC 10261	nd		
RC 10262	nd		
RC 10263 RC 10264	nd		
RC 10265	nd nd		
	1104		
RC 10266	nd		
RC 10267	nd		
RC 10268 RC 10269	nd		
RC 10209	nd 10		
20 10021			
RC 10271 RC 10272	nd nd		
RC 10273	nđ		
RC 10274	nd		
RC 10275	nd		
RC 10276	nđ		
RC 10277	nd		-
RC 10278	nd		
RC 10279	nd		
RC 10280	nd		
RC 10281	nd		
RC 10282	nd		
RC 10284	nd		
RC 10285 RC 10286	nd		
	nd		
RC 10287	nd		
RC 10288	nd		
RC 10297	nd		
RC 10298	nd		
DETECTION LIMIT	5		
nd = none detected		= insufficient sample	

VGC VANGEOCHEM LAB LIMITED

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

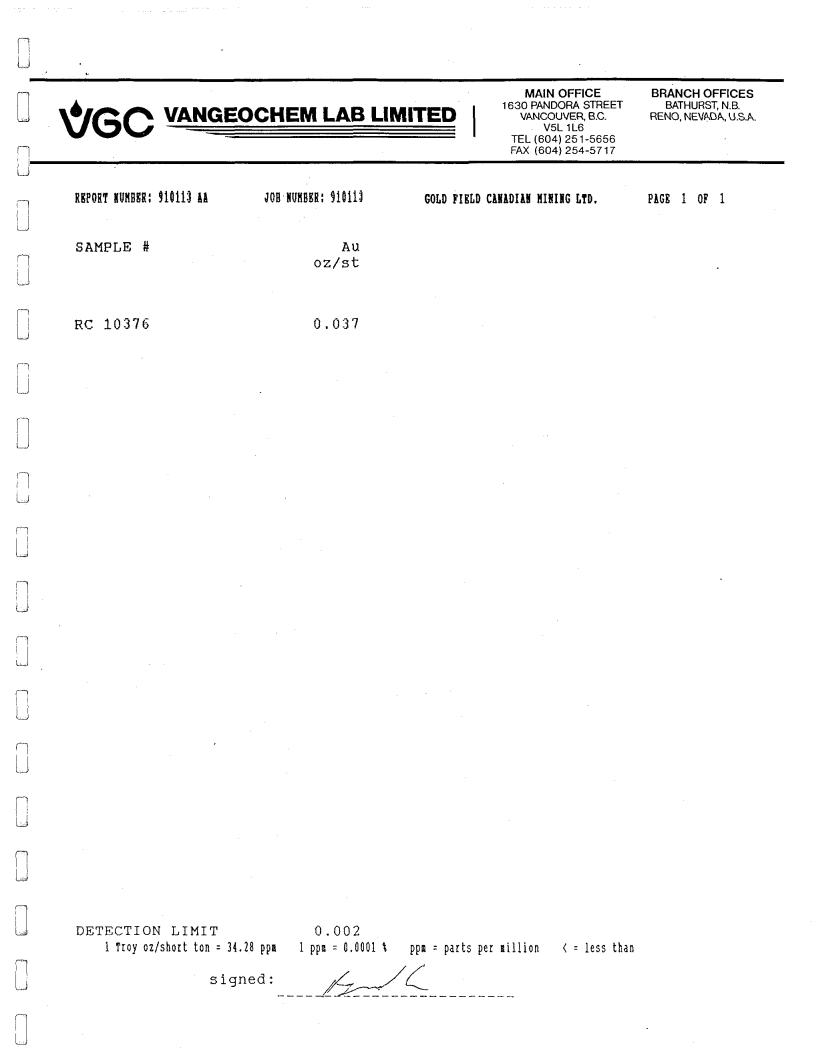
REFORT NUMBER:	910113	GA	JOB NUMBER:	910113	
SAMPLE # RC 10299 RC 10300 RC 10311 RC 10312 RC 10356			•	Au ppb 280 nd nd nd	
RC 10357 RC 10358 RC 10359 RC 10376 RC 10377				nd nd nd 1400 660	
RC 10378 RC 10379 RC 10380 RC 10876 RC 10877				360 20 20 20 20 20	
RC 10878 RC 10879 RC 10880 RC 10881 RC 10882				nd nd 20 nd	
RC 10886 RC 10887 RC 10889 RC 10890 RC 10891				nd nd nd nd	
RC 10892 RC 10893 RC 10894 RC 10895 79068				nd nd nd 20	
79069 79070 79071 79072 79073				80 10 750 nd nd	
79074 79075 79076 79077		•		nd nd nd nd	
DETECTION nd = no			= not analys	5 Ied	{g =

GOLD	FIELD	CANADIAN	MINING	LTD.

PAGE 2 OF 3

is = insufficient sample

GC VANGEOCHEM LAB LIMITED


MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910113 CA	JOB NUMBER: 910113	GOLD FIBLD CANADIAN MINING LTD.	PAGE 3 OF
SAMPLE #	Au		
79078	ppb nd		

.

DETECTION LIMIT nd = none detected

is = insufficient sample

SC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910113 AB	JOB NUMBER: 910113	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OP 1
SAMPLE #	Ag oz/st		•
RC 10253 79072	11.37 1.40		
			*
	• •		
	,		

ς.

DETECTION LIMIT 0.01 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001 \$ ppm = parts per million < = less than

signed:

VGC VANGEOCHEM LAB LIMITED

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910113 AC	JOB NUMBER: 910113	GOLD FIELDS CANADIAN MINING LTD.	PAGE 1 OF 1	
SAMPLE #	Cu %	Pb %	Zn %	
RC 10253	·	8.75	5.62	
RC 10254			6.61	
RC 10376	1.47	·· -		

 DETECTION LIMIT
 0.01
 0.01
 0.01

 1 Troy oz/short ton = 34.28 ppm
 1 ppm = 0.0001 t
 ppm = parts per million
 < = less than</td>

1.264

signed: - And

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Pht (604)251-5656 Faxt (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S ml of 3:1:2 HCL to HNO, to H=D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W.

ANALYST:

REPORT #1 910113 PA	GOLD FIELDS CANADIAN MINING PROJECT: RC - BC - 01						DATE	EN: JULY	25 199	L DATE	OUT: A	USUST 01	1991 AT	TENTION: GOLD FIELDS CANADIAN MINING					PAGE 1 OF 3							
Sample Name RC 10251 RC 10252 RC 10253 RC 10254 RC 10255	Ag ppm 0.2 0.3 >50 11.4 0.3	Al 1.26 0.27 0.41 0.22 0.32	As ppm (3 (3)2000 (3 603	₹Au ppb <5 200 10 10	Ba 361 124 33 17 480	Bi ppm 4 22 14 <3 23	Ca 2 3.69 >10 2.93 3.11 3.17	Cd pp= 2.9 3.2 429.4 479.4 30.3	Co ppn 8 3 13 4 6	Cr ppa 24 10 41 90 124	Cu 20 14 595 237 55	Fe 2 3.34 1.24 4.16 3.56 3.57	K X <0.01 <0.01 <0.01 <0.01 <0.01	Hg 1 0.16 0.03 0.07 0.13 0.10	Mn ppm 1292 2235 >20000 >20000 >20000	Ho ppm <1 <1 3 <1 <1	Na 2 0.05 (0.01 (0.01 (0.01 (0.01	Ni ppm 10 4 <1 <1 <1	P 2 0.02 0.01 0.01 (0.01 0.01	Pb ppe 2 245 >20000 16409 2321	Sb pp= <2 3 >2000 172 42	Sn 999 (2 (2 (2 (2 (2 (2	Sr ppn 176 973 115 94 148	U 990 (5 (5 (5 (5 (5		Zn ppm 66 32 >20000 >20000 5821
RC 10256 RC 10257 RC 10258 RC 10259 RC 10259	5.0 0.2 0.1 0.2 (0.1	1.22 0.64 0.97 0.70 1.11	<pre></pre>	<pre></pre>	828 472 573 428 508	3 (3 (3 (3 (3	3,86 0,96 9,26 2,24 2,09	3.2 20.2 5.1 1.9 2.1	11 10 8 11 13	20 32 (1 53 33	4 15 5 8 6	3.95 5.04 3.42 3.73 3.81	<0.01 <0.01 <0.01 <0.01 <0.01	0.20 0.04 0.11 0.15 0.18	3067 >20000 3871 1266 1356	<1 (1 (1 (1	0.01 <0.01 0.01 0.09 0.11	<1 <1 <1 <1 <1	0.02 0.01 0.02 0.02 0.02	135 800 66 18 25	6 19 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	138 266 790 194 174	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	443 3757 256 98 103
RC 10261 RC 10262 RC 10263 RC 10264 RC 10265	0.1 (0.1 (0.1 (0.1 (0.1	1.12 8.36 8.69 1.11 0.83	(3) (3) (3) (3) (3)	<5 <5 <5 <5	420 149 150 666 404	23 <3 18 6 12	2.55 2.93 1.54 0.40 0.05	0.6 1.6 3.2 2.9 1.3	9 34 37 11 (1	25 <1 <1 <1 <1	1 214 227 13 <1	3.25 9.29 9.78 3.09 0.88	<0.01 <0.01 <0.01 <0.01 <0.05	0.09 0.61 0.77 0.04 0.01	1306 1703 2198 1017 1329	<1 <1 <1 <1 7	0.06 3.53 3.43 0.16 0.04	<1 4 4 (1 (1	0.02 0.03 0.03 0.02 <0.01	10 <2 <2 31 36	<2 <2 <2 12 3	<2 <2 <2 <2 <2 <2 <2	189 118 58 266 21	(5) (5) (5) (5)	<3 (3 (3 (3 (3	87 165 168 59 82
RC 10266 RC 10267 RC 10268 RC 10269 RC 10270	<0.1 0.1 (0.1 0.1 (0.1	0.87 0.76 0.77 0.54 2.06	<3 <3 <3 <3 <3	<5 <5 <5 <5 10	132 762 700 379 783	18 (3 6 17 (3	0.04 0.85 0.72 0.41 3.10	1.3 1.0 1.3 1.9 1.0	<pre><1 11 5 2 30</pre>	<1 3 <1 31 <1	<1 9 <1 61 57	0.87 3.49 2.24 0.54 6.47	0.20 <0.01 <0.01 0.42 <0.01	0.01 0.02 0.04 0.02 0.09	811 1192 660 143 1898	9 <1 <1 <1 <1	0.03 0.08 0.09 0.08 0.18	<1 <1 <1 <1 11	<0.01 0.02 0.01 0.02 0.05	12 14 6 (2	2 <2 3 7 <2	<2 <2 <2 <2 <2 <2 <2	9 65 107 80 417	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	45 123 63 19 109
RC 10271 RC 10272 RC 10273 RC 10274 RC 10275	0.1 0.2 0.1 0.1 <0.1	0.29 2.47 3.00 1.13 1.12	<pre><3 <3 <3 <3 <3 <3 <3 </pre>	<5 <5 <5 <5	297 342 375 333 443	7 {3 6 15 {3	0.55 5.24 0.51 0.41 0.35	2.9 2.2 1.6 1.8 2.1	12 39 10 8 4	722 <1 <1 <1 <1 <1	31 49 10 13 <1	1.30 6.54 >10 1.31 2.31	<0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.25 0.16 0.01 0.05	531 987 7206 436 1249	2 <1 <1 <1 <1	0.10 0.30 0.04 0.10 0.08	427 18 <1 <1 <1	<0.01 0.04 0.03 0.02 0.02	20 <2 <2 18 <2	3 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	130 699 57 101 43	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	56 117 175 31 69
RC 10276 RC 10277 RC 10278 RC 10279 RC 10280	0.1 0.2 0.7 0.9	2.82 0.97 0.90 0.76 0.32	 <3 121 <3 252 34 	<5 <5 <5 <5 <5	996 531 415 918 761	6 8 10 20 25	4.38 0.24 3.05 3.15 >10	1.6 <0.1 3.2 0.8 2.6	39 4 20 12 5	45 <1 11 4 18	29 3 40 8 3	7.94 2.62 6.55 4.18 2.02	<0.01 <0.01 <0.01 <0.01 <0.01	0.60 0.03 0.10 0.08 0.03	1644 270 1285 18301 13044	<1 <1 <1 <1 <1	0.39 0.10 0.05 (0.01 (0.01	38 <1 5 <1 <1	0.05 0.01 0.02 0.02 0.01	<2 20 9 91 189	<2 6 <2 9 6	<2 <2 <2 <2 <2 <2 <2	553 64 188 245 545	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	116 45 113 225 50
RC 10281 RC 10282 RC 10284 RC 10285 RC 10286	0.1 0.1 0.1 0.1 0.2	5.65 6.47 0.95 0.86 1.08	<3 <3 168 126 17	<5 <5 <5 <5 <5	465 165 141 160 233	4 8 7 6 (3	4.77 3.49 0.18 0.05 0.09	1.4 2.6 (0.1 1.3 0.3	37 32 3 1 4	<1 <1 85 53 13	208 207 7 <1 1	9.24 9.63 2.61 1.13 3.14	<0.01 <0.01 <0.01 <0.01 <0.01	0.48 0.39 0.02 (0.01 (0.01	1792 1874 147 90 422	<1 <1 <1 <1 <1	2.61 3.24 0.14 0.03 0.02	<1 <1 <1 <1 <1 <1	0.02 0.02 0.01 0.01 0.02	<2 <2 23 5 10	<2 <2 14 13 4	<2 <2 <2 <2 <2 <2 <2	315 382 61 80 89	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	141 148 37 17 47
RC 10287 RC 10288 RC 10297 RC 10298	0.3 0.2 0.3 0.2	1.53 1.09 1.03 0.59	<3 <3 <3 <3	<5 <5 <5 <5	416 237 385 543	15 <3 <3 <3	2.02 2.17 2.42 2.13	1.6 1.6 1.9 2.2	12 12 17 10	<1 <1 <1 21	3 4 36 B	5.02 4.66 6.19 3.62	<0.01 <0.01 <0.01 <0.01	0.12 0.12 0.05 0.09	1698 1063 1109 1128	<1 <1 <1 <1	0.03 0.12 0.04 0.08	<1 <1 <1 <1	0.03 0.04 0.02 0.02	2 13 10 4	3 <2 <2 2	<2 <2 <2 <2 <2	108 132 85 134	<5 <5 <5 <5	<3 <3 <3 <3	77 112 121 71
Minimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 > ~ 6	0.01 10.00 reater T	3 2000 Than Maxi	5 10000 inua	1 1000 is - Insu	3 1000 ufficien		0.1 1000.0 ns	1 20000 - No Samp	i 1000 1e	1 20000 #Au Anal	0.01 10.00 ysis Don	0.01 10.00 Ne By Fir	0.01 10.00 e Assay	1 20000 Concentra	1 1000 ation /	0.01 10.00 AAS Fini	1 20000 .sh.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

1630 Pandora Street, Vancouver, B.C. V3L 1L6 Ph: (504)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Rauth

REPORT #: 910113 PA	6	OLD FIEL	DS CANADI	IAN MINTI	16		20036	CI: 8C -	BC - 01			BATC	fW, TH	V 75 100									-	<i>f</i>	Jan Ulay	
Sample Name	Ag					ħ:				_			IN: JUL		L VAIL	UUIS A	06051 01	1991 A	TENTION	: 60LD Fi	(ELDS CAN	IADIAN NI	LNING		PAGE 2	OF 3
RC 10299 RC 10300 RC 10311 RC 10312 RC 10356	ng ppm 4.3 0.3 0.1 (0.1 (0.2	2 0.56 0.66 0.59 0.92	pp= 119 <3 <3	*Au ppb 280 <5 <5 <5 <5	Ba ppm 13 157 132 372 320	Bi ppm {3 {3 {3 {3 {3} {3} {3} {3}	Ca X 0.04 3.05 2.18 2.06 2.96	Cd ppa 0.3 1.0 0.3 (0.1 0.3	Со ррн 3 20 9 5 10	Cr ppm {1 {1 {1 {1} {1} {1} {1} {1} {1}	Cu ppm 757 41 21 5 13	fe X >10 8.21 3.82 3.30 3.70	K (0.01 (0.01 (0.01 (0.01 (0.01	Mg 2.0.01 0.26 0.04 0.07 0.08	Kn 9p n 3676 1660 898 958 1068	Ho ppm 25 {1 {1 {1 1 1	Na 1 0.04 0.04 0.04 0.08 0.05	Ni ppm {1 {1 {1 {1} {1} {1} {1} {1} {1} {1} {1	P 1 0.01 0.03 0.02 0.03 0.02	Pb ppa 152 9 5 5 14	Sb ppm 196 2 <2 <2 <2 <2	Sn pp# <2 <2 <2 <2 <2 <2 <2	Sr ppn 6 94 107 119 111	U {5 {5 {5 {5 {5 {5	W Ppm (3 (3 (3 (3 (3 (3)	Zn ppm 203 139 32 42 74
RC 10357 RC 10358 RC 10359 RC 10376 RC 10377	0.1 0.1 4.0 1.5	1.06 0.63 0.66 0.45 0.43	<3 <3 <3	<5 <5 (5 1400 660	254 >1000 282 71 190	<3 <3 <3 <3 <3	3.71 2.47 2.11 3.22 6.88	<0.1 <0.1 0.3 1.9 2.2	9 10 8 15 13	<1 <1 <1 84 64	13 10 11 16828 7325	3.67 3.60 3.73 4.57 4.40	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.09 0.08 0.01 0.07	1176 1278 1064 1430 2014	25 1 2 2 4	0.01 0.06 0.07 <0.01 <0.01	<1 (1 (1 (1 (1	0.02 0.02 0.02 0.01 0.01	9 5 5 58 55	<2 <2 <2 5 <2	<pre>{2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {</pre>	97 159 119 44 113	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3) (3) (3)	72 72 64 528 402
RC 10378 RC 10379 RC 10380 RC 10876 RC 10877	0.7 0.3 0.2 0.4 2.5	0.3B 0.77 1.20 0.70 0.68	<pre><3 <3 <3 108 418</pre>	360 20 20 20 20	54B 204 86 701 235	<3 (3 (3 (3 (3 (3	7.71 2.02 0.37 5.66 1.76	1.9 1.3 1.3 (0.1 0.6	10 15 9 9 9	43 <1 <1 <1 <1	3312 222 89 14 10	4.99 5.13 6.66 3.59 4.54	<0.01 <0.01 <0.01 <0.01 <0.01	0.05 0.07 0.13 0.16 0.07	3399 1450 557 15652 >20000	5 8 1 <1 <1	<0.01 0.06 0.07 <0.01 <0.01	<1 <1 <1 <1 <1	0.01 0.04 0.03 0.02 0.02	50 43 70 37 767	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	87 63 17 276 109	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	384 150 169 102 697
RC 10878 RC 10879 RC 10880 RC 10881 RC 10882	0.1 0.2 0.3 0.1	0.48 5.62 0.90 2.89 5.97	3 (3 (3 (3 (3	<5 <5 20 <5	151 690 298 58 ≻1000	<3 <3 <3 <3 <3	0.28 8.37 8.47 6.11 5.41	1.3 <0.1 <0.1 <0.1 0.3	4 32 29 27 35	26 93 24 (1 (1	9 158 136 124 191	1.82 B.24 5.50 >10 >10	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.44 0.19 0.25 0.68	2224 2459 1789 6198 3424	<1 <1 <1 <1 <1	0.05 1.89 0.07 <0.01 2.22	(1 (1 (1 (1	0.01 0.02 0.02 0.01 0.02	43 <2 9 <2 <2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	24 315 220 74 429	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	72 129 78 237 139
RC 10886 RC 10887 RC 10889 RC 10890 RC 10891	0.1 0.1 0.2 0.1 0.1	i.12 0.32 0.60 1.21 0.77	<3 <3 <3 <3 <3	<5 <5 <5 <5 <5	56 149 350 447 772	(3) (3) (3) (3) (3)	0.81 0.12 2.49 2.11 7.36	<0.1 2.9 <0.1 1.0 0.6	11 <1 7 11 10	<1 9 <1 (1 (1	20 4 9 11 7	2.38 0.93 3.26 3.84 3.25	<0.01 0.07 <0.01 <0.01 <0.01	0.09 0.01 0.04 0.21 0.10	434 733 1204 1318 1457	<1 <1 <1 <1	0.08 0.03 0.08 0.09 0.05	13 (1 (1 (1	0.01 <0.01 0.02 0.03 0.02	<2 15 16 2 9	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	46 12 145 168 503	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	34 102 88 82 57
RC 10892 RC 10893 RC 10894 RC 10895 79068	0.2 0.2 0.1 0.1 0.3	0.67 0.70 0.77 0.67 1.16	<pre><3 <3 <3 123 <3</pre>	<5 <5 <5 <5 20	399 321 860 >1000 206	<pre><3 <3 <3 <3 <3 <3 <3 <3 </pre>	2.94 4.28 3.78 0.17 0.75	<0.1 <0.1 0.6 <0.1 1.0	10 7 9 4 12	<1 <1 <1 4 14	10 5 10 5 79	3.86 3.15 3.54 2.13 3.14	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.14 0.20 0.04 0.01 0.18	1136 1030 1147 275 534	<1 <1 <1 <1 7	0.05 0.03 0.02 0.02 0.14	<1 <1 <1 <1	0.02 0.02 0.02 0.01 0.02	<2 4 8 5 12	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	242 357 205 45 81	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	72 66 73 34 83
79059 79070 79071 79072 79073	0.3 0.2 0.7 >50 1.8	1.72 1.43 0.69 0.61 0.29	<3 <3 <3 46 56	80 10 750 <5 <5	200 80 708 312 721	<pre><3 <3 <3 <3 <3 <3</pre>	0.51 0.37 0.11 0.11 0.58	<0.1 0.3 <0.1 0.6 <0.1	9 17 10 3 2	<1 <1 4 <1 14	143 23 49 53 9	>10 7.74 2.94 6.39 2.33	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.17 0.35 0.02 0.04 0.01	723 1099 1204 649 1282	3 <1 33 5 14	0.10 0.07 0.02 0.02 <0.01	<1 <1 <1 <1 <1	0.04 0.03 0.01 0.02 0.01	28 25 33 5342 578	<2 <2 <2 52 7	<2 <2 <2 <2 <2 <2 <2	49 19 17 46 38	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	126 157 55 322 331
79074 79075 79076 79077	0.3 0.4 0.3 0.2	0.42 0.98 1.02 0.68	20 <3 <3 240	<5 <5 <5 <5	>1000 410 240 226	<pre>(3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (</pre>	2,95 0,42 0,39 0,11	1.6 <0.1 <0.1 <0.1	5 6 8 8	19 <1 <1 76	4 8 40 17	2.46 3.76 4.98 4.44	<0.01 <0.01 <0.01 <0.01	0.02 0.03 0.01 <0.01	1329 666 465 753	7 5 <1 3	<0.01 0.04 0.05 0.03	<1 <1 <1 <1	0.01 0.02 0.02 0.02	57 84 30 20	<2 <2 <2 14	<2 <2 <2 <2 <2	66 29 25 13	<5 <5 <5 <5	<3 <3 <3 <3	189 143 82 181
Minimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 >-	0.01 10.00 Greater	3 2000 Than Maxi	5 10000 	1 1000 is - Ins	3 1000 sufficien		0.1 1000.0 ns	1 20000 - No Samp	1 1000 le	1 20000 #Au Analy	0.01 10.00 ysis Don	0.01 10.00 e By Fir	0.01 10.00 e Assay	1 20000 Concentra	1 1000 ation /	0.01 10.00 AAS Fini	1 20000 sh.	0.01 10.00	2 20000	2 2000	2 1000	i 10000	5 100	3 1000	1 20000

1630 Pandora Street, Vancouver, B.C. V5L 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Mn, Na, P, Sn, Sr and W.

ANALYST: _Kanth

REPURT #: 910113 PA	60	LD FIELD	IS CANADI	AN HININ	6		PROJE	CT: RC -	BC - 01			DATE	IN: JUL	Y 25 199	t DATE	E OUT: AI	UGUST 01	1991 A	TTENTION	: 60LD FI	IELDS CAN	IADIAN MI	IN ENG		PAGE 3	OF 3	
Sample Name 79078	Ag pp∎ 0.2	Al Z 0.52	As ppm (3	*Åu ppb <5	Ba ppm 590	Bi ppm <3	Ca Z 0.26	Cd ppm <0.1	Со ррж 18	Cr pp∎ √1	Сц ррв 1В	Fe 7 8.49	K Z <0.01	fig Z 0.01	Яп рря 1119	Ho ppn {i	Na 1 0.05	Ni ppm <1	P 1 0.02	РЬ рра 15	Sb ppa (2	Sn pp∎ ∢2	Sr ppe 57	U ppa (5	V ppe (2	Zn ppa 122	
Ninimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 > - (0.01 10.00 Greater	3 2000 Than Max	5 10000 imum	1 1000 is - Ins	3 1000 sufficier		0.1 1000.0 e ns	1 20000 - No Sam	1 1000 Iple	1 20000 *Au Ana	0.01 10.00 Lysis Dor	0.01 10.00 ne By Fi	0.01 10.00 re Assay	i 20000 Concentr	1 1000 ation /	0.01 10.00 AAS Fin	1 20000 ish.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	123 1 20000	

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

GOLD FIELDS CANADIAN MINING LTD.

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

PAGE 1 OF 1

REPORT NUMBER: 910129 GA	JOB NUMBER: 910129
SAMPLE #	Au
	ppb
RC 10384	15
RC 10385	. 20
RC 10386	10
RC 10387	20
RC 10388	20
RC 10389	5
RC 10390	nd
RC 10391	15
RC 10392	ĨŠ
RC 10393	20
KC 10393	20
RC 10394	5
RC 10395	10
RC 10396	10
RC 10397	nđ
RC 10398	5
RC 10399	5
RC 10400	10
RC 10473	15
	±-~

DETECTION LIMIT nd = none detected

ed -- = not analysed

1630 Pandora Street, Vancouver, B.C. V5L 116 Ph: (604)251-5655 Fax: (604)254-5717

TEI

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

									,				12) NJ		וומן ון טו	1 UI 491							YST:			
REPORT #: 910129 PA	601	D FIELD	S CDN MI	NING LTI).		PROJE	CT: #RC-	8C-01			DATE	IN: JUL	Y 25 199	1 DATE	OUT: A	J6UST_08	1991 A	TTENTION	: GOLD FI	ELDS CDN	MINING			PAGE 1	OF (
Sample Name	Ag	Al	As	¥Au	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	к	Mg	Ma	Ho	Na	Ni	P	Pb	Sb	รก	Sr	IJ		Zn
RC 10384	ppm 0,2	1,25	00m	ppb	pps off	ppm	7	ppa	ppa	ppn	p p na	7.	7.	7.	ppn	ppa	ĩ	pp#	X.	ppæ	¢p#	þçæ	pça	ppa	ppe	DOW
RC 10385			<3	15	256	10	0.47	1.9	23	<i< td=""><td>42</td><td>6.06</td><td><0.01</td><td>0.11</td><td>1820</td><td><1</td><td>0.03</td><td><1</td><td>0.02</td><td><2</td><td>8</td><td><2</td><td>50</td><td><5</td><td><3</td><td>172</td></i<>	42	6.06	<0.01	0.11	1820	<1	0.03	<1	0.02	<2	8	<2	50	<5	<3	172
RC 10386	0.1 0.2	0.93 1.00	<3 <3	20	516	5	0.67	0.9	19		44	5.95	<0.01	0.08	2425	<1	0.01	<1	0.03	<2	5	<2	61	<5	<3	233
RC 10387				10	520	<3	0.32	1.9	28	<1	45	7.83	<0.01	0.06	10466	15	<0.01	<1	0.04	41	<2	<2	42	<5	<3	272
RC 10388	0.2	1,23	<3	20	256	<3	0.16	(0.1	25	(1	85	7.97	<0.01	0.08	6284	13	<0.01	<1	0.04	<2	<2	<2	30	<5	<3	228
KC 10300	0.1	1.51	<3	20	169	9	0.30	0.6	37	1>	86	9.48	<0.01	0.09	4437	8	0.01	1 >	0.04	13	3	<2	47	<5	<3	185
RC 10389	0.1	1.29	<3	5	289	5	0.42	1.9	26	<1	44	7.66	<0.01	0.11	2932	<1	<0.01	(1	0.03	<2	(2	<2	50	<5	10	170
RC 10390	(0.1	1,05	3	< S	266	20	0.23	0.3	17	(j	37	5,6B	<0.01	0.05	2407	(1	0.04	<1	0.03	11	18				<3 (3	179
RC 10391	0.1	0.70	<3	15	139	6	0,24	0.9	18	<1	33	4.40	(0.01	0.11	1750	<1	0.01	(1	0.02	5	0	<2 <2	23 36	<pre><5 <5</pre>	<3 (3	154
RC 10392	0.6	0.96	<3	5	205	7	0.50	1.6	13	<1	47	4.63	<0.01	0.08	1933			<1			0				(3	127
RC 10393	4.4	1.25	34	20	141	14	0.25	(0,1	37		50	8.62	(0.01	0.00	4814	(1	(0.01	(1	0.04	34		<2	53	<5	<3	446
						••				``	50	0.92	10.01	0.03	4014	18	<0.01	(1	0.05	395	14	<2	55	<5	< 3	335
RC 10394	0.2	1.11	<3	5	216	10	0.85	0.3	29	<1	46	6,23	0.95	A 11	10.0		6 AC									
RC 10395	0.2	0.57	(3	10	478	5	1.54	<0.1	14		22			0.11	1849	1	0.05	<1	0.02	16	14	<2	76	<5	<3	132
RC 10395	0.3	0.51	<3	10	210	<3	0.20	<0.1	14	1) 1>	13	4.07	1.46	0.06	2401	<1	<0.01	(1	0.04	5	<2	<2	108	<5	<3	209
RC 10397	0.1	1,08	<3	(5	707		0.56					3,30	1.57	0.02	2224	1>	0.08	<1	0.02	58	5	<2	20	<5	<3	232
RC 10398	0.3	1.08	19	۰. ۲	380	11		<0.1	29	(1	25	7.96	(0.01	0.05	5566	<1	<0.01	<1	0.03	49	9	<2	47	<5	<3	370
			17	J.	307	11	0.42	<0.1	18	<1	- 23	6.41	<0.01	0.06	2542	<1	0.01	<1	0.02	41	3	<2	40	<5	<3	264
RC 10399	0.2	1.12	121	5	834	(3	0.40																			
RC 10400	0.4	1.05	<3	10			0.48	<0.1	26	12.	22	7.33	<0.01	0.05	6616	3	(0.01	<1	0.03	94	<2	<2	41	<5	< 3	522
RC 10473	0.1	0.79	(3	10	367	28	0.51	0.3	23	<1	25	6.56	<0.01	0.08	2035	<1	0.05	<1	0,02	32	-17	<2	46	<5	<3	222
NG 19175	0.1	V.73	13	15	203	20	1.24	1.3	18	<1	22	4.27	<0.01	0.09	1045	<1	0.10	<1	0.02	37	34	<2	133	<5	<3	192
Minimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	1			A A1														
Maximum Detection	50.0	10.00	2000	10000	1	9 1000			1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	i	5	3	1
4 - Less Than Minimum			2000 Than Maxi		1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
	2 - 0	(caiel)	nan Naxi	តែបត	is - Ins	utticien	t Sampi	e ns	- No Sam	ple	¥Au Anal	ysis Dor	ne By Aqu	ia Regia	Digestio	n / Solv	ent Exti	raction	/ AAS.							

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

	REPORT NUMBER: 910118 GA	JOB NUMBER: 910118	GOLD FIELDS CANADIAN MINING LTD. PAGE 1 0)F 1
لعن	SAMPLE #	Au ppb		
	RC 10401 RC 10402 RC 10403	5 10 5		
	RC 10404 RC 10405	10 10		
	RC 10406 RC 10407 RC 10408 RC 10409	10 15 20 10		
	RC 10410	10		
	RC 10476 RC 10477 RC 10478 RC 10479 RC 10480	10 nd 20 10 15		
	RC 10486 RC 10512 RC 10513 RC 10514 RC 10515 RC 10516	20 15 15 5 20		
	RC 10517 RC 10518 RC 10519 RC 10520 RC 10521	nd 10 5 10 10		
	RC 10522 RC 10523 RC 10524 RC 10525	30 10 5 5		

5

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Wa, P, Sn, Sr and W.

ANALYST: Rom

REPORT #: 910118 PA	60	LD FIEL	DS CANADI	IAN HININ	IG LTD.		PROJE	CT: #RC-	BC-01			DATE	IN: JUL	Y 25 199	I DATE	E OUT: AU	jeust og	1991 A	TTENTION	: 60L0 FI	ELDS CAN	ADIAN MI	NING LTD.		PAGE 1	OF 1
Sample Name	Ag	A1	As	+Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ng	Min	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
RC 10401	рр е 0.1	۲ 1.77	pp. (3	քքն 5	pp n 366	pp n	۲ ۵.40	pp a	ppm	ppe	ppm	ž	X	ž	ppe	pp#	X	ppe	7	ppm	ppe	ppm	pp.	ppm	ppe	ppe
RC 10402	0.2	1.77		-		(3	0.40	0.3	9	(1	28	5.37	<0.01	0.05	768	<1	0.05	<1	0.02	<2	<2	<2	29	<5	<3	84
RC 10403	0,1	1.84	<3 <3	10 5	474 284	<3	0.48	0.3	11	<1	. 24	3.84	<0.01	0.05	917	<1	0.04	<1	0.03	(2	<2	<2	64	<5	<3	89
RC 10404	0.1	1.87	85	10		<3	0.26	<0.1	14	(1	47	6.33	<0.01	0.08	1070	<1	0.05	<1	0.02	<2	2	<2	31	<5	<3	146
RC 10405	0.2	1.85	6J (3	10	332 345		0.33	<0.1	13	<1	28	5.25	<0.01	0.06	1120	<1	0.05	<1	0.02	14	5	<2	63	<5	<3	126
NO 10,100	V. 2	1:00	12	10	343	<3	0.25	<0.1	10	(1	28	6.26	<0.01	0.07	1386	<i>(</i> 1	0.04	(1	0.02	<2	5	<2	43	<5	<3	91
RC 10406	0.4	1.95	<3	10	291	<3	0.22	0.9	11	<1	34	5.40	(0.01	0.07	1625	(1	0.03	<1	0.03	<2	<2	<2	31	<5	· <3	119
RC 10407	0.7	1.02	294	15	>1000	3	1.16	<0.1	22	<1	35	5.74	<0.01	0.04	2166	1	0.09	<1	0.04	40	3	<2	79	<5	<3	106
RC 10408	0.2	1.66	<3	20	460	5	0.25	0.9	4	(1	28	4.98	<0.01	0.05	1089	<1	0.05	<1	0.03	<2	<2	(2	35	(5	(3	84
RC 10409	0.1	2.10	<3	10	313	<3	0.15	(0.1	10	(1	33	6.20	<0.01	0.08	1447	<1	0.06	<1	0.03	3	3	<2	28	(5	<3	134
RC 10410	0.2	0.79	<3	10	652	<3	1.31	<0.1	24	<1	51	8.54	<0.01	0.03	2168	<1	0.04	<1	0.02	14	<2	<2	73	(5	(3	153
											•••	ure.		0100	2100	``	VIVT	``	0,01	14	12	12	/3	15	13	100
RC 10476	0.1	3.16	<3	10	154	<3	0.12	<0.1	16	<1	97	>10	<0.01	0.09	1597	(1	0.04	<1	0.02	<2	<2	<2	15	<5	<3	131
RC 10477	0.1	3.53	<3	{5	202	<3	0,26	0.9	37	(1	155	>10	<0.01	0.21	5229	<1	0.06	<1	0.03	(2	<2	(2	40	(5	<3	204
RC 10478	0.1	2.61	<3	20	131	<3	0.15	1.3	13	<1	64	7.66	<0.01	0.10	1291	<1	0.03	(1	0.02	<2	(2	<2	24	(5	(3	113
RC 10479	0.1	3.07	. (3	10	239	<3	0.23	<0.1	21	(1	69	8.87	(0.01	0.14	1474	<1	0.03	(1	0.03	(2	(2	<2	36	(5	<3	159
RC 10480	0.2	3.10	<3	15	305	<3	0.35	0.5	27	<1	86	6.88	<0.01	0.16	2471	<1	0.05	(1	0.02	<2	6	(2	50	<5	<3	147
RC 10512	0.2	0.76	(3	20	316	6	0.63	1.9	14	<1	35	5,58	<0.01	0.03	2093	71	0,07	. / 1	0.04	25	22	10	40	/5	10	
RC 10513	0.3	1.37	(3	15	201	3	0.09	(0.1	6	<1	39	5.52	<0.01	0.04	2033			<1	0.04	25	22	<2	42	<5 (5	. <3	171
RC 10514	0.3	0.94	(3	15	449	(3	0.46	1.6	10	<1	53	5.50	(0.01	0.04	1574		0.04	<1	0.02	3	(2	<2	27	(5	<3	147
RC 10515	0.2	0.72	<3	5	552	(3	1.18	<0.j	11	<1	16	5.67	(0.01	0.02	1753	(1	0.02	<1	0.03	12	(2	<2	52	<5	<3	278
RC 10516	0.3	0.64	181	20	>1000	4	0.73	<0.1	38	<1	57					(1	0.05	<1	0.04	8	(2	<2	63	<5	<3	149
					/1000	т	V./J	10.1	30	NI.	37	8.64	<0.01	0.04	2971	(1	0.05	(1	0.03	26	<2	<2	108	(5	<3	195
RC 10517	0.2	0.39	192	<5	937	4	0.35	<0.1	7	<1	14	5.51	<0.01	0.02	862	(1	0.05	{1	0.01	10	6	<2	68	۲5	<3	56
RC 10518	0.2	0.44	177	10	763	<3	0,56	<0.1	21	<1	41	6.17	<0.01	0.01	2015	<1	0.02	<1	0.01	6	<2	<2	77	(5	(3	106
RC 10519	0.2	2.54	<3	5	311	<3	0.27	0.3	19	<1	78	6.64	<0.01	0.12	1723	<1	0.05	<1	0.02	<2	<2	<2	37	<5	<3	137
RC 10520	0.1	1.93	<3	10	139	<3	0.10	<0.1	7	<1	35	5.44	<0.01	0.07	961	<1	0.05	<1	0.02	<2	7	<2	22	<5	<3	87
RC 10521	0.1	2.66	<3	10	168	<3	0.08	<0.i	14	<1	57	7.05	<0.01	0.08	1189	<1	0.05	<1	0.02	<2	7	<2	19	<5	<3	122
RC 10522	0.2	2.32	<3	30	677	4	0.53	(0.1	1	<1	32	3.31	0.15	0.05	372	<1	0.04	(1	0.05	12	7	12	toF	/5	13	102
RC 10523	(0.1	1.82	<3	10	850	10	0.78	(0.1	6	<1	63	6,59	<0.01	0.03	508	(1	0.04	<1 (1	0.03	<2 <2	2	(2	105	(5 (5	<3 (3	102
RC 10524	(0.1	2,70	<3	5	205	<3	0.08	0.9	22	(1	172	9.51	(0.01	0.08	1950							<2	190	<5 (5	<3 (0	102
RC 10525	(0.1	2.02	(3	5	107	(3	0.04	<0.1	11		69	9.JI 8.90					0.04	(1	0.03	<2	<2	<2	14	<5	<3	147
				U	1.11	19	0.01	1011	11	NI	07	0.30	<0.01	0.08	817	<1	0.05	<1	0.03	<2	<2	<2	9	<5	<3	111
Ninimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	1	i	1	0.01	0.01	0.01	l	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	10000	1000	1000		1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - 6	ireater	Than Max	iaua	is - Ins	sufficien	t Sample	e ns	- No Samp	le	 ∗Au Anal	ysis Dor	ie By Aqu	ia Regia	Digestio									1.00		27000

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

|

GOLD FIELDS CANADIAN MINING LTD.

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

PAGE 1 OF 1

REPO	RY NUMBI	BR: 910119	GA	JOB	NUMBER:	910119	
SAN	1 PLE	#				Au	
						ppb	
RC	1028	33				5	
RC	1031	LO				5	
RC	1031	L3				5 5	
RC	1088	33				10	
RC	1088	34				15	
RC	1088	35				10	
-	1088					5	

DETECTION LIMIT nd = none detected

			\square	[
--	--	--	-----------	---

] AN നന് èm. AB m Ií)er(

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: 1216

REPORT #: 910119 PA	601	LD FIELD	S CON MII	NING LTD.			PROJE	CT: #RC-I	BC-01			DATE	IN: JUL	Y 25 199:	1 DATE	OUT: AL	JGUST 06	1991 A	TTENTION	: GOLD FI	ELDS HIN	ING LTD.			PAGE 1	OF 1
Sample Name	Ag	Al	As	+Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Kn	Ho	Na	Ni	₽	Pb	Sb	Sn	Sr	U	H	: Zn
· · · · · · ·	ppe	7	ppe	ppb	o p a	ppe	ĩ	ppa	por	ppm	pp.	X.	X.	X	ppm	ppa	ï,	ppm	X	ppe	ppe	pp∎	ppm	ip p a	00.	¢p.∎
RC 102B3	0.2	0.78	<3	5	701	6	1.15	2.2	15	<1	42	3.65	0.16	0.10	2320	(1	0.02	13	0,04	35	<2	(2	268	<5	(3	144
RC 10310	0.3	2.08	<3	5	237	<3	0,80	2.8	20	<1	48	4,20	<0.01	0.15	2191	<1	0.03	<1	0.02	16	<2	<2	101	<5	(3	269
RC 10313	0.1	1.55	<3	5	273	7	1.48	1.3	15	(1	52	4.08	0.46	0.13	900	(1	0.05	(1	0.02	(2	. (2	<2	209	<5	(3	115
RC 10883	0.1	2,35	<3	10	330	13	0.70	0.3	23	(1	104	6,80	<0.01	0.12	2380	(1	0.08	<1	0.02	. (2	<2	. (2	101	(5	<3	152
RC 10884	0.1	0.89	<3	15	476	10	0.90	0,9	22	<1	6B	5.75	<0.01	0.10	1443	<1	0.04	32	0.02	22	<2	<2	108	<5	< 3	179
RC 10885	0.2	1.26	96	10	357	8	1.16	1.4	12	<1	35	3.78	<0.01	0.08	1547	<1	0.03	<1	0.03	19	<2	<2	104	<5	<3	172
RC 10888	0.1	1.36	<3	5	511	(3	0.53	3.2	17	<1	49	4,58	0.2B	0.13	1376	(1	0.03	1	0.02	13	<2	<2	119	<5	<3	214
Minimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	i	. 1	i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection <- Less Than Minimum	50.0 > 6	10.00 Greater	2000 Than Maxi	10000 aua	1000 is - Ins	1000 ufficien	10.00 t Sample	1000.0 e ns	20000 - No Sam	1000 ple	20000 #Au Ana	10.00 Lysis Dor	10.00 ne By Aq	10.00 ua Regia	20000 Digestic	1000 n / Solv	10.00 vent Ext	20000 raction ,	10.00 / AAS.	20000	2000	1000	10000	100	1000	20000

APPENDIX C

ROCK SAMPLE DESCRIPTION SHEETS

8

 	-

TULSEQUAH	

Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
C 10251	7/8/91	GRIZ 3	Fs Porph	mossive, weak comb. fehl. att.		
10252	n	Ix	11	n		1
10253	n	<i>n</i>		In chip, sheared, brecented Fr Pough	7-5% ga, tr sph.	
10254	••	11	Fr Porph. Brecia	MO staining, gossanaus	2-5% ga \$ =ph	
10255	6			" silicified	1-22 sulphides (ga, sph, py)	
10256	F1	0	Fr Pouph	morsive, mod. froctured, comb alt.		
10257	11	• 1	h	mongonese and Feoride staining, weak bx	time o og.	
10258	11	11	11	mossine weak carb and Fe oxide a H.	-	-
10259	11	t i	b	•1		
10260	н	89	11	11		
10261	- 1		•1	15	······································	1
10262	41	T)	Intr. volc.	grean-brown, parph., chl alt		
10263	31	11	fi,	talus, showed fract, carb alt	······································	
10264	7/9/91		Fs Pouph.	freet. weakly limonitic		
10265			11	strongly fract, siliceous		
10266	n		5	<u> </u>		-
10267	11		•1	'1		······································
10268			11	" linouitie		
10269	<i>(</i>)		Porph. dyke	mossive, silicomes, 080/64.		
10270	11		Fr Porch	hast rock to 10269, limonitic shared cated		
10271	ч		Fr Porph	siliceous, work linomite	·	
10272			Prabose dyle	magnetic, 090, morsine		
10273	11		Fr. Porph. Bx.	Mn O staining gassonaus		
10274	11	· · · · · · · · · · · · · · · · · · ·	75. Pouph.	mode fractured, limanitic		1
10275	Ú.		11	£,		
10276	,,		Qrz. Fr. Proph.	mossive, linouitie		
10277	4		11	indensely foost limovitic silicous		
10278	11		13	11		
10279	7/10/91	GIRIZ 3	Fr. Pouph.	2.4 m chip, Ha Ostoining	tr. Py	
10280		• 1	11	O.Zn chip, ", gassonaus		

Dros

	\square					\square	\square				\square									
--	-----------	--	--	--	--	-----------	-----------	--	--	--	-----------	--	--	--	--	--	--	--	--	--

JULSEQUAN	H	PROJECT

Sample:		Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
C 10251	7/8/91	GRIZ 3	Fs Porph	mossive, weak comb. Fehl, att.		1, 4,00 (313:
10252	11	11	1 n	1 <i>n</i>		
10253	11		**	In chip, sheared, breceinted 75 Porph	7-5% gu, ++ sph.	
10254		1)	Fr Porph . Breccia	M.O. atimina association	2-5% ga & sph	
10255	1	11		HaO staining, gossanaus "silicified	1-22 sulplides (ga, sph, py)	
10256	11	15	Fr Poupl	morsive, mod. froctured, conbalt.	1-20 Suiphides (ga, sph, py)	
10257	11	41	11	mongonese and Fe oxide staining, weak bx		
10258	11		p	morgine, weak cost and fe oxide alt.	troca ga.	
10259	11	, L	b	mossive, wear corr and is skide alt.		
10260	п			11	-	
10261	11		*1	13		
10262	- ti	11	Intr. volc.	grean-brown, parph., chl alt		+
10263) .	11	11	talus, showed fract, carb alt		· · ·
10264	7/9/91		Fs Pouph.	froct. weakly limouitic		
10265			11			
10266	()		11	strongly fract, silicrows		
10267	11	<u>`</u>	11			<u> </u>
10268	11		1	in limouitie		
10269	11		Pough. dyke			
10270	· H		Torph. ayke	mossive, silicooms, 080/64		ļ
10271			Fr. Pooph	hast rock to 10269, linonitic shared catio		
10272				siliceous, work livouite		
10273	11		Plabore dyle	magnetic, 090, morsiu		
10274		······································	Fr. Porph. Bx.	HnO staming gossonals		
10275			Fr. Pouph.	mod. fractured, limonific		
				· · · · · · · · · · · · · · · · · · ·		
10276		······	QTE. Fr. Porph.	mossive, linonitie		
10277	11	· · · · · · · · · · · · · · · · · · ·	1,	intensaly foost. linovitic, silicous		1
102.78		<u> </u>		5.6		
10279	7/10/91	GRIZ 3	Fr. Pouph.	2.4 m chip, Ma Ostoining,	tr. Py	
10280		• \	- H	O.Zn chip, " gassonous		

Dreg.

THISEQUAN A PROJECT

3

ſ ______ 6

7

f

7-

£

÷

Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
RC 10281	7/10/41	GRIZ 3	Intr. volc tut	Strong shearing, wod carb att.		Fridigsis:
10282	11/11/81		h	Brecioted, combatt.		· · · · · · · · · · · · · · · · · · ·
10283	"			Stream Sed, in Somple		
10284	<u> </u>	Enu	Fs. Porph.	Str. S.l., locally Bx, linonitic	2-4 % due 04	· · · · · · · · · · · · · · · · · · ·
10285	0	U .	. I.		2-4% dission py 1-3% " & fract py	
10286	11	-1	1,	11	to an	
10287	10	1,	*1	4	topy	
10288	h	•1	Le .	14	(1)	
10297	7/12/91	ļi	QTZ. Fr. Porph.	Norsive, locally fract., corb att. limonitic		
10298		17	11	silicified, linouitic, mossine	3-5% Pg. fract. controlled.	
10 299	4	**	н	Gossonous bouldar	10-30 F Pi	
10 300	•,	١,	11	Massine.	10-20% Py + Py	
10356	11	11	4	strongly silicences, linouitic	4% diss py	
10357	1.	11	11	linonitic	4-5% diss py	
10358	a 1		21	silicitied, well fract,		
10359		53	- 14	", mossive to blocky	15 py, 2-3 to diss magnetite	-
10376	13	GRIZ 1	Fr Porph	sheared, silicified, becally bx, corbatt		
10377	1.	• •	• • •	in in the second by the second	5% py	
10378	,,	· • • • •		n 11 ti m	4 % Fy	
10379	21		71	norrow shear zome	3 76 py	
10380	11	در		weakly sheared	3 % 14	· · ·
10876	7/10/91	GRIZ 3	a l	MnO stain, limonistic, froctored O. 3m chip	3 % py tr sph ?	
10 877		11	11 Bx	Strong frost. Mr. O stoin "	The spin o	22.5
10878	11	ı t	QTZ.FS. PORPH	256 Fe Corb. att. Frost.		
10879			Andos. Lopilli Tut	Strong froat with corb. strugers & veins		
10880			F1	11 and lincaritic		
10881	4		ARGULITTE	Boulder, Silicified, front. locally bx		
10882	7/11/91		ANDESITE	Boulder, Bx, Fe coop and comb at	very fine grained dissen py	1
10888	14		QTZ FS PORPH	Fe Comb alt., linonitic, Mr. Oston	trpy	14日 14日 14日 14日
10887	11		. 11	in the state of the state		4

Drog.

-----}

TULSEQUAN A PROJECT

Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis;
20 10281	7/10/41	GRIZ 3	Intr. volc tut	Strong shearing, mod carb att.		
10282	7/11/81		h	Strong shearing, mod carb att. Breccioled, comb att.		
10283				Stream Seding Sample		
10284	11	EAU	Fs. Pouph.	Str. s.l., locally Bx, linonitic	2-4 % dission py 1-37 " & fract py	
10285	11	u.	<u>.</u>		1-37 " + fract Pu	
10286	11	*1			top	
10287	6		*1	-1		
10288	li	1	la .	n	13	
10297	7/12/91	. 8	QTE. Fr. Porph.	Mossive, locally fract, corb att. limonitic	······································	19
10298		17	11	silicified, linonitic, mossine	3-5% Pg. fract. controlled.	
10 299	*1	1,	મ	Gossonaes boulder	10-70 To Pu	
10 300	•,	t.,	17	Massive	10-20 % Py + Py	
10356				Strongly silicence, linonitic	47 diss Py	2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -
10357	•,)	limonitie	4-5% diss py	
10358	11	<u> </u>		silicitied well front,	17 0 1 1 1 1 1	
10359	t .	ь		", mossive to blocky	16 Py, 2-320 d.55 magnestide	
10376		GRIZ 1	Fr Porph	sheared, silicified, bocally bx, corbatt		
10377	<u>р</u>	.,		in the second se		
10378	3 1		į	N 11 11	<u>4 % gy</u>	
10379	u	71	23	norrow glear zone		
10380	11			weakly sheared	3 to py	
10876	7/10/91	GRIZ 3	11	MnO stain, lin onitic fractored 0.3 m chip	3 to py to sph ?	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
10 877		(1	11 Bx	Strong frost. Ma O stoin "	tr sph o	2425
10878	n	۰ <i>t</i>	QT3. FS. PORPH	25% Fe Corb. a.H. Frost.		
10879			Andos. Lopilli Tul	Strong frost with corb. strugers & veins		1
10880			11	11 and linenitic		
10881	41		ARGULITIE	Bouldier, Silicifie d, froat. locally bx		
10882	7/11/91		ANDESITE	Boulder, Bx, Fe corb and carb att	very fine grained dissen by	
10886	11		QTZ FS PORPH	Fe Comb alt., limmitic, Mn Ostan	tr Ry	
10887	11		11	11 I'monific, PinUston		

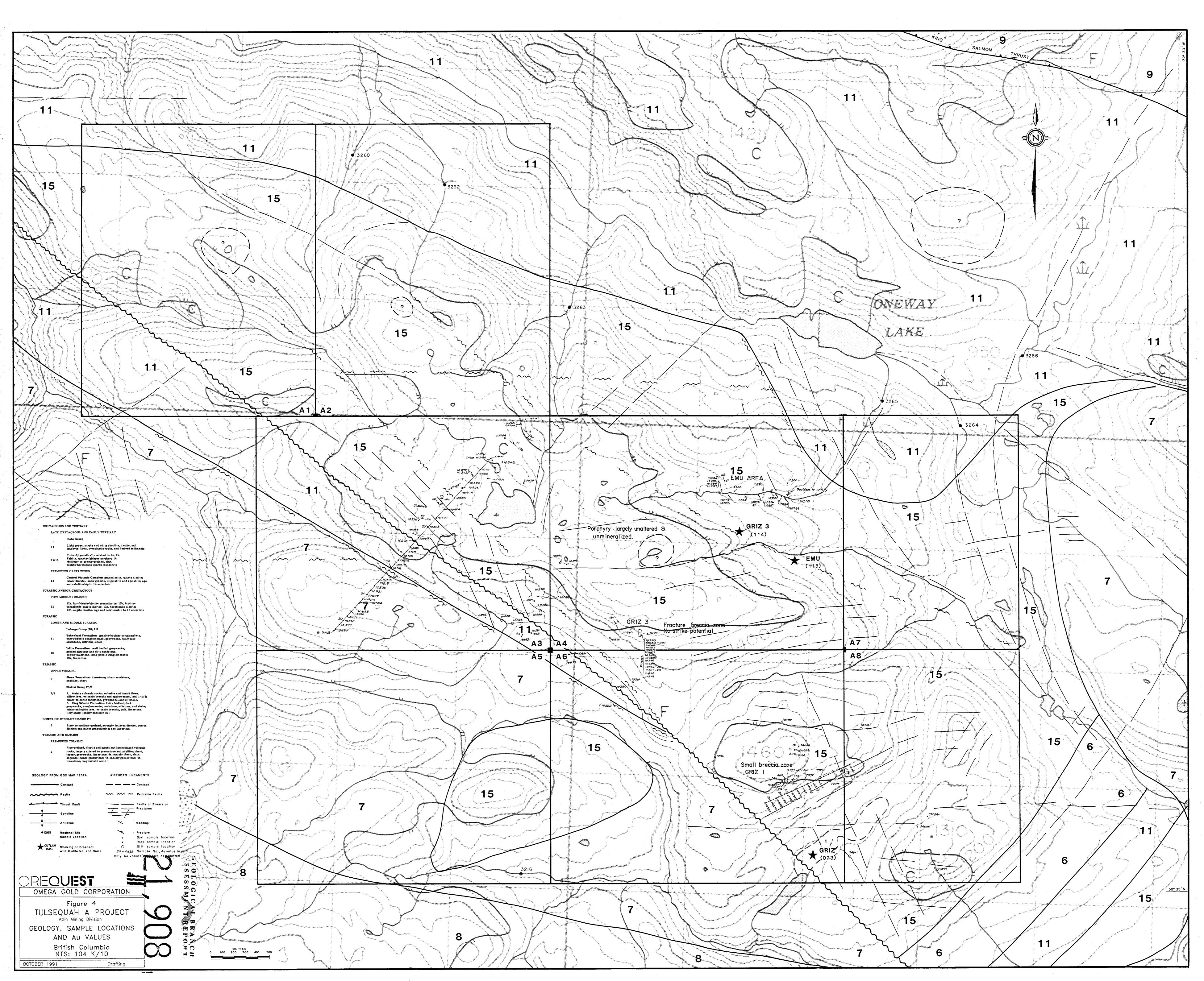
 \square

1.11

 \square

C

 \square


(

r	~ 					
TULSZANAH	H Pra	JECT				
Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis;
RC 10889	7/11/91		QTZ. FS. PORPH.	Silicified, Limonitic, Mr. Ostoin, Corb	· · · · · · · · · · · · · · · · · · ·	
10890	11		11	weak chlatt		+
10891	11		./1	limonific, Fe comb att.		
10892	'n	EMU	FE PORPH	limonity, silicified, comb att.	2-36 84	
10893	- 11	EMU	M	limonity, silicified, Fecombolt	2-32 py + py	
10894	+1	11	11	" strong fract		
10895	۰,	/ ;	л	Qtz usin 0.6 m. l'immitie bouwante	to au	
10311	7/14/41	GARIZI	١,	Combatt, cheaned, ong & limonitic	tr py.	
10312		11				
	<u> </u>	ļ				
	<u> </u>					
	<u> </u>					
			·			
		·				
	<u></u>					
	ļ		· · · · · · · · · · · · · · · · · · ·			
	ļ		L			
	ļ <u>.</u>	[<u> </u>			
	<u> </u>	·				
	<u> </u>					
	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
L	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>	

· •

Sample: Date Location: Likelogy: Remarks / Alteration / Stroctore: Mineralization Analysis: Re 1989 7/11/11 Repr. Stirified firsts / A Oplain Geb - 1989 1	TULSEQUAN	A PROJ	ect				
RC 10889 2/11/91 QTZ.FS. PORPH. Silicified, Limonitic, Mn Oxfain, Corb - 10890 11 11 weak chl att - 10891 11 11 limonitic, Fe comb att. - 10891 11 11 limonitic, Fe comb att. - 10892 11 11 limonitic, fe comb att. 2-376 py 10893 11 EMU 11 limonite, silicified, comb att. 2-376 py 10893 11 EMU 11 limonite, silicified, fe comb att. 2-376 py 10893 11 EMU 11 limonite, silicified, fe comb att. 2-376 py 10893 11 EMU 11 limonite, silicified, fe comb att. 2-376 py 10894 11 11 limonite, silicified, fe comb att. 14 py 10895 11 11 Rtz wain 0.6 m. limonitic bowwark 14 py 10311 7/14/41 Grazz 1 11 Corb att. charned, org & limonitic 11	Sample	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
10890 11 11 weak chlatt - 10891 11 11 limonistic, Fe comb att. - 10892 11 Fe Papper limonistic, fe comb att. 2-3 To py 10893 11 Fe Papper limonistic, silicified, comb att. 2-3 To py 10893 11 Fe Papper limonistic, silicified, fe comb att. 2-3 To py 10893 11 Imonistic, silicified, fe comb att. 2-3 To py 10894 11 Imonistic, silicified, fe comb att. 14 py 10895 11 11 Imonistic borowerk 14 py 10311 7/14/41 Granz 1 11 Comb att, shared, org of Imonistic 11	RC 10889	7/11/91			Silicified himonitic Mr. Onlein Corp		
10891 11 I imonitic, Fe corb att. 10892 11 Fe Parph I imonitic, silicified, corb att. 2-3% py 10893 11 Fe Parph I imonitic, silicified, fe combatt 2-3% py 10893 11 I imonitic, silicified, fe combatt 4+ py 10894 11 I imonitic, silicified, fe combatt 4+ py 10895 11 11 I imonitic, silicified, fee 10 10895 11 11 11 11 11 10895 11 11 11 11 11 10311 7/14/41 617.12 1 1 Corbatt, chaned, org & Imonitic 11	10890	1 ' '			weak chi alt		
10893 II EMU II Immite, silicified, Fecombolt trpy 10894 " " " strong fract 10895 " " Qtz vain 0.6m. limonitic bowwark tr py 10311 7/14/41 Grazz " Conbolt, chemed, org & limonitic	10891	11			limonific. Fe comb att.		
10893 II EMU II Immite, silicified, Fecombolt trpy 10894 " " " strong fract 10895 " " Qtz vain 0.6m. limonitic bowwark tr py 10311 7/14/41 Grazz " Conbolt, chemed, org & limonitic	10892		EMU	75 PORPH	limonide, silicified, contract.	2-36 84	
10894 """" strong fract 10895 """"""""""""""""""""""""""""""""""""	10893	5.44	EMU	11	limonite silicified Fecombolt	++ py	
10311 7/14/41 GARIZ 1 " Combalt sheared, org a limonitie -	10894	11	<i>i</i> j	11	" strong fract		
1031) 7/14/41 GARIZ 1 " Combalt sheared, org & limonitie -	10895	••		15	atz usin 0.6 m. limonitic bowwark	to py	
	10311	7/14/41	GARE 1	1.	combalt sherred, ong & limonitie		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Image: Solution of the second of the seco	10312	-		4			
Image: Section of the section of th		+		·			
Image: Section of the section of th							2
Image: Section of the section of th			·				
Image: Section of the section of th							
Image: Section of the section of th							
Image: Section of the section of th							
Image: Second							
Image: Source of the second							
					· · · · · · · · · · · · · · · · · · ·		······································
	_						
					·		
				· · · · ·			

71-

