ARIS SUMMARY SHEET

		다니 것 이 가 가 물건을 가 물건을 가 들었다.
District Geolo	ogist, Nelson	Off Confidential: 92.09.16
ASSESSMENT REI	PORT 21916 MINING DIVISION:	Greenwood
PROPERTY: LOCATION: CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR: COMMODITIES SEARCHED FOR: KEYWORDS:	Inco Ltd. Bohme, D.M. 1991, 102 Pages Gold,Silver Tertiary,Cretaceous-Jurassic,Okana Quartz-feldspar porphyry,Felsites,	gan Batholith,Marron Group
WORK	Acanthite	
DONE: Dri DIAI PETH SAMI RE TED	Map(s) - 2; Scale(s) - 1:500	
REFORTS:	07160	

LOG NO: DEC 11 1991	RD.
LOG NO: DEC 11 1991	
FILE NO:	

DIAMOND DRILLING REPORT

ON THE

OUTBACK CLAIM GROUP (Outback, Outback 3-4, Outback 7-10)

Greenwood Mining Division N.T.S. 82E-9, 16 Latitude: 49°41'N; Longitude: 118°28'W OWNER: Canadian Nickel Company Limited OPERATOR: Inco Limited

	SUB-RECORDER	The second se
	DEC 4 - 1991	ì
	M.R. # \$	
1	er andre en	•

GEOLOGICAL BRANCH ASSESSMENT REPORT

Dennis M. Bohme, P.Eng. Inco Exploration and Technical Services Inc. Project Geologist December 4, 1991

TABLE OF CONTENTS

<u>Page</u>

1.0	SUMMARY	1
2.0	INTRODUCTION	2
	 2.1 Location, Access and Topography 2.2 Property Definition 2.3 Property History 2.4 Work Summary 	2 2 5 6
3.0	REGIONAL GEOLOGY AND STRUCTURE	7
4.0	PROPERTY GEOLOGY AND MINERALIZATION	7
5.0	DRILLING	10
	5.1 Program 5.2 Results and Discussion	10 11
6.0	CONCLUSIONS	14
7.0	RECOMMENDATIONS	15
8.0	REFERENCES	16
9.0	STATEMENT OF EXPENDITURES	17
10.0	STATEMENT OF QUALIFICATIONS	18

APPENDICES

Appendix I-Borehole logsAppendix II-Certificate of AnalysesAppendix III-Petrographic Report

LIST OF FIGURES

Figure	1	-	Location Map	3
Figure	2	-	Claim Location Map	4
Figure	3	-	Regional Geology	8
Figure	4	-	Property and Local Geology	9

LIST OF MAPS

Map 1	-	Geology and Borehole Locations	In Pocket
Map 2	-	West - East Cross Section (Au greater than 0.5 g/t plotted)	In Pocket
Map 3	-	Oblique Cross Section at 140° AZ (Au greater than 0.5 g/t plotted)	In Pocket

<u>Page</u>

1.0 SUMMARY

This report describes the results of the drilling program conducted on the Outback claim group during the period June 5, 1991 to August 2, 1991. The claim block covers part of the upper Granby River Valley and is located approximately 75 km north of Grand Forks, British Columbia. Access is via helicopter. The property is being explored for a porphyrystyle gold-silver deposit.

The local geology is dominated by Tertiary block-faulting with Cretaceous-Jurassic basement plutonic rocks unconformably overlain by narrow slices of Eocene Marron Group volcanic rocks and minor basal conglomeratic sediments. The Granby River Fault is a steep, west-dipping normal fault interpretated to be the northern strike extension of the Republic Graben fault system south of the International Boundary.

The 1991 drill program determined that erratic gold-silver mineralization occurs in weak to moderately developed quartzcarbonate stockworks and discrete veinlets hosted largely within a quartz-feldspar porphyry of probable Eocene age. Six holes totalling 807.1 m were drilled from one site.

Low to moderately anomalous gold values, accompanied by variable degrees of silicification, bleaching, argillization and pyritization, are crudely restricted to the lower portion of a quartz monzonite/cataclasite succession and the upper portion or margins of the feldspar porphyry. Grades of between 0.4 to 1.5 g/t Au are common for core intervals ranging from 0.5 to 4.5 m. One hole averages 0.83 g/t Au over 12.20 m. The best drill intercept was 3.02 g/t Au over 1.3 m including 6.51 g/t Au and 37.0 g/t Ag over 0.44 m. Very finegrained electrum and acanthite replacing pyrite were identified in thin section.

The feldspar porphyry is characterized by a high-background gold content. Dimensions of the silicic alteration and associated mineralization, as inferred by driling, are estimated to be a maximum 50 m thick, 110 m in the east-west direction and a minimum 40 m in the north-south direction. Overall, the extensional tectonic setting, the tenor of precious metal mineralization, the porphyry-style alteration/mineralization/zonation and associated geochemistry resemble porphyry gold deposits in the Andean Cordillera of Chile. An alteration study and detailed geological mapping is recommended for the Outback property in order to seek additional drill targets with the porphyry-gold model in mind.

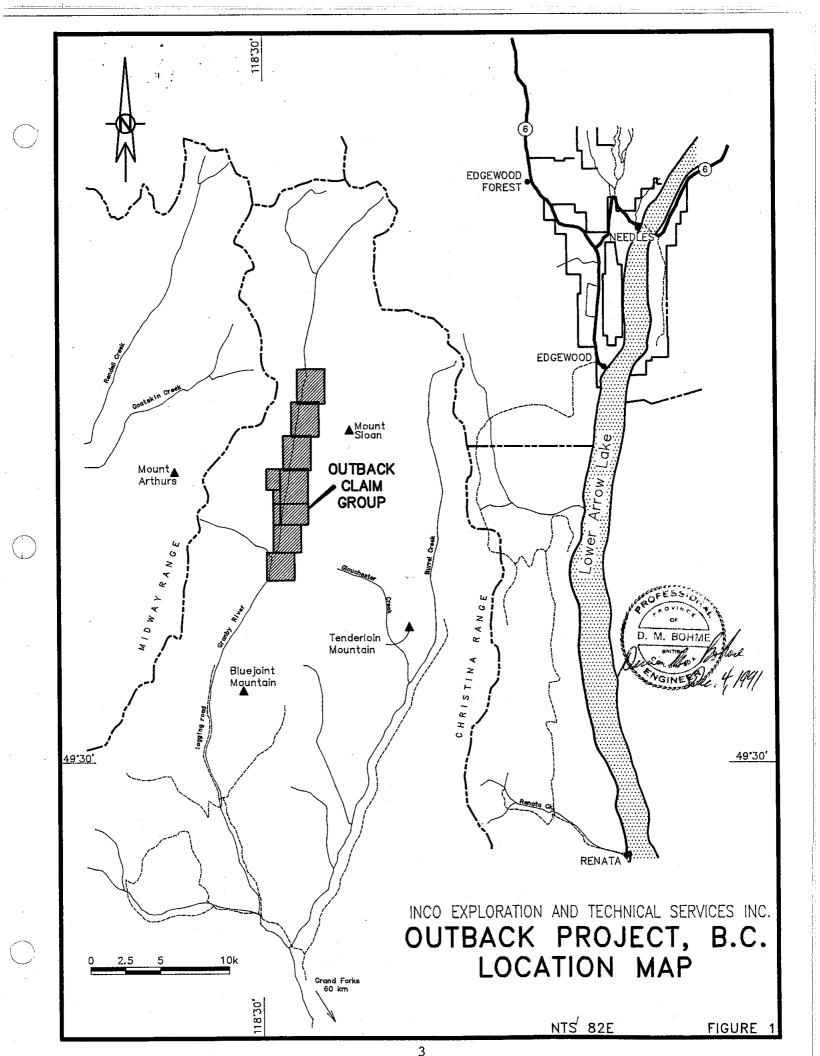
2.0 INTRODUCTION

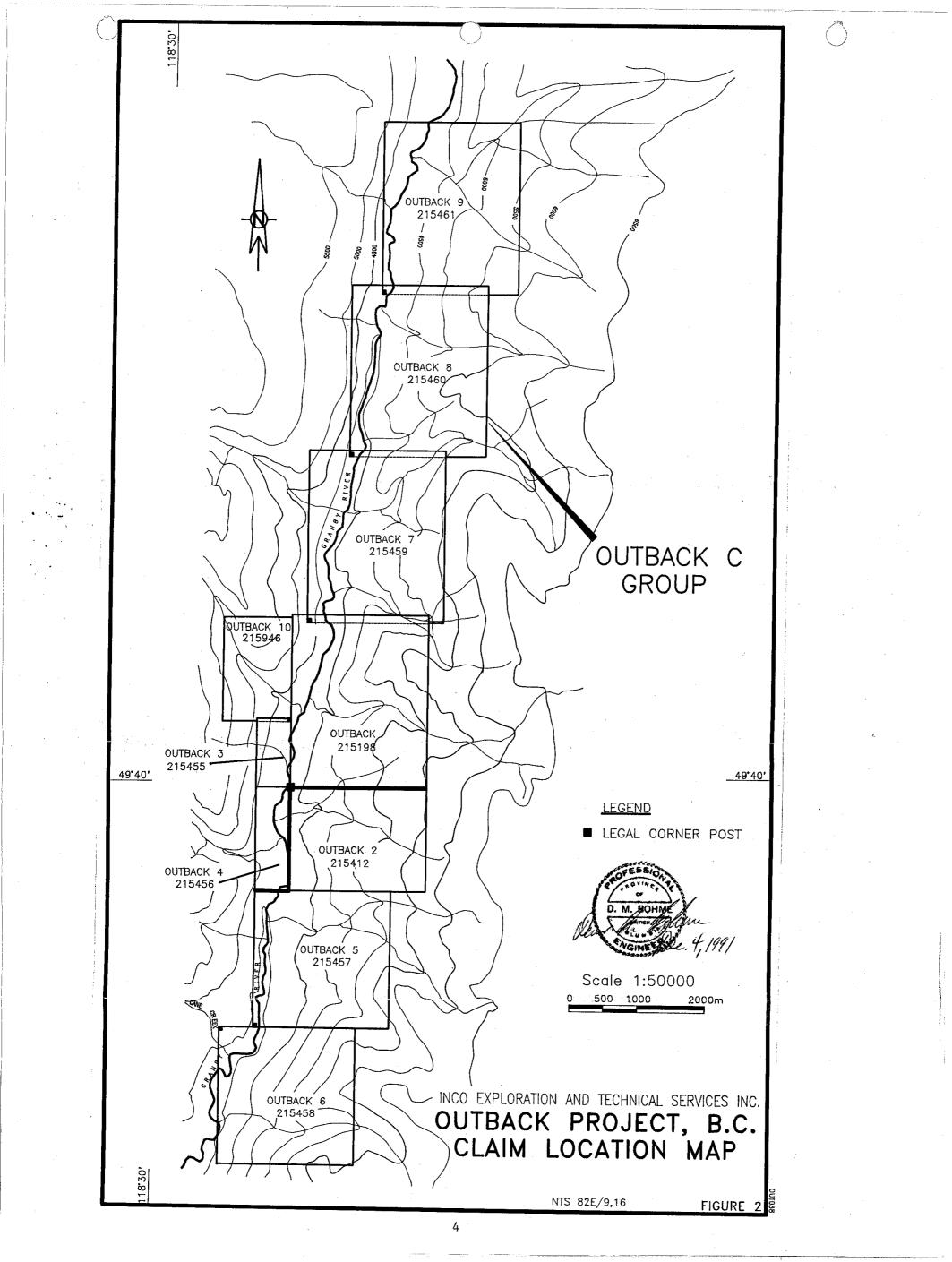
This report documents the drilling program conducted on the Outback claim group during the period June 5, 1991 to August 2, 1991. Six holes totalling 807.1 m were completed.

2.1 Location, Access and Topography

The Outback property is located within the Monashee Mountains of southern British Columbia, approximately 75 km north of the town of Grand Forks (Figure 1). The property lies in the upper Granby River Valley just north of Bluejoint Mountain and covers about 15 km of the valley in a north-south direction.

Access to the property is via helicopter. Flight time from either Grand Forks or Vernon is about 30 minutes. The main Granby River logging road comes to within 10 km of the southernmost claim boundary. Recent logging on the headwaters of Goatskin Creek may eventually lead to some road access to northern part of the property via the Rendell Creek road.


Topographic relief varies from flat valley benches to moderately steep terrain. Elevations range from 1036 metres (3400') in the Granby River Valley to over 1829 metres (6000') on some ridgetops.


The property lies within the Granby Forest District and is quite heavily treed by mostly mature and some immature stands of spruce, fir, alder and some cedar. A 25-year old burn is still evident over most of the Outback and Outback 2 claims.

Bedrock exposure is generally good. Large outcrops are found along steeply incised creek gullies, the Granby River, and on most ridgetops.

2.2 Property Definition

The Outback, Outback 3-4 and Outback 7-10 claims discussed in this report were recorded in the Greenwood Mining Division and comprise 91 claim units or 2275 hectares. In total, the Outback property includes 135 contiguous claim units or 3375 hectares. For assessment purposes the claims have been grouped under the group name Outback C (Figure 2). Pertinent details are as follows:

Group: Outback C

<u>Claim</u>	<u>Units</u>	Expiry Date	Tenure Number
	• •		015100
Outback	20	December 14, 2001*	215198
Outback 3	2	October 2, 2001*	215455
Outback 4	3	October 2, 2001*	215456
Outback 7	20	October 3, 2001*	215459
Outback 8	20	October 4, 2001*	215460
Outback 9	20	October 4, 2001*	215461
Outback 10	6	September 20, 2001*	215946

* Denotes pending acceptance of this report.

The following table lists the other contiguous claims not eligible for assessment credit under this report:

<u>Claim</u>		<u>Units</u>	<u>Expiry Date</u>	<u>Tenure Number</u>			
Outback	2	12	August 24, 1996	215412			
Outback	5	16	October 3, 1993	215457			
Outback	6	16	October 2, 1993	215458			

The Outback claims are owned by Canadian Nickel Company Limited which is a wholly owned subsidiary of Inco Limited.

2.3 Property History

Prior to 1988 the area saw very little work in the way of systematic mineral exploration.

H.W. Little of the Geological Survey of Canada mapped the north Grand Forks - Kettle River region between 1953 - 56 (Map 6-1957).

During the late 1970's, uranium and limited base metal exploration were conducted within the Okanagan - Valhalla Batholiths. Kelvin Energy Ltd. and Getty Minerals staked most of the Granby River Valley in 1977 - 78 in search of uranium in Tertiary sediments. Stream sediment and rock samples were analyzed for Cu, Pb, Zn, Ag, Mo and U. Tributaries on the Outback 2 and 9 claims showed weak anomalies in silver of up to 1.6 g/t. During 1988, Inco Exploration and Technical Services Inc. and Discovery Consultants of Vernon, B.C. conducted a limited program of soil sampling, geological mapping and rock sampling on the Outback and Outback 2 claims after examination of the heavy mineral stream sediment results indicated gold mineralization in the area. A total of 286 soil, 22 silt and 59 rock samples were collected. Results of this work were documented in the 1989 assessment report by D.M. Bohme.

In 1990, detailed grid soil sampling, prospecting, mapping at 1:5000 scale and extensive rock sampling led to the discovery of epithermal-style gold-silver mineralization. A total of 112 soil, 28 silt and 529 rock samples were collected. About 300 rock samples were collected within a 500 by 150 m area known as the Cliff Zone. Gold mineralization was found to be associated with weakly banded quartz-carbonate-adularia(?) veinlets and open-space drusy quartz replacement zones within a variably propylitic/argillic altered intrusive host. Gold content ranged from 0.4 to 28.2 g/t and up to 150 g/t Ag in grab samples. Chip sampling returned 14.5 g/t Au over 2.6 m, 1.2 g/t Au over 5.5 m and 6.42 g/t Au over 4 m including 1 m The bulk of this program was carried out of 18.1 g/t Au. between September 19 - October 2, 1990 and only work prior to August 24 was reported in the 1990 assessment report by D.M. Encouraging results, largely from the fall program, Bohme. upgraded the Cliff Zone area to a viable drill target.

2.4 Work Summary

An 807.1 m (2648') diamond drill program was carried out from June 22 to July 16, 1991 by Inco Limited and Roger's Drilling Services Inc. of Vancouver, B.C. A total of six BQTW holes were drilled from one site on the Outback claim. A seven-man camp was established about 150 m south of the drillsite.

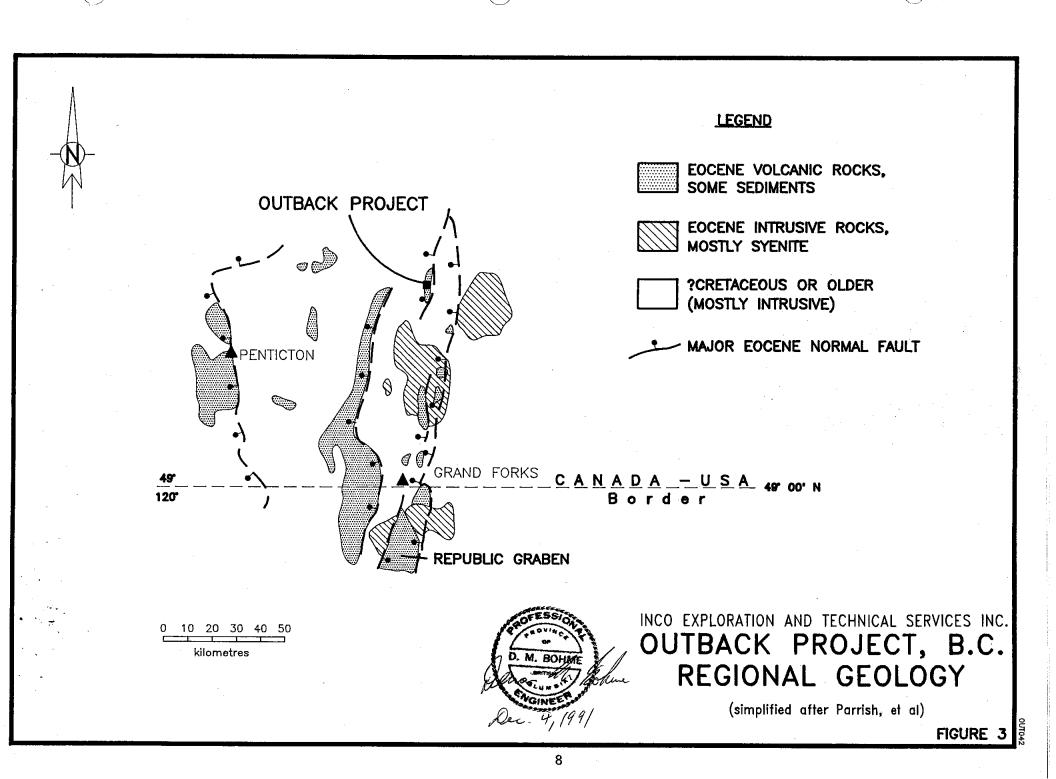
With the exception of a few metres, all drill core was split and 870 core samples were analyzed by Acme Analytical Laboratories Ltd. of Vancouver, B.C. Samples were analyzed by the ICP method for 30 elements and by atomic absorption from a 20 gram sample for gold.

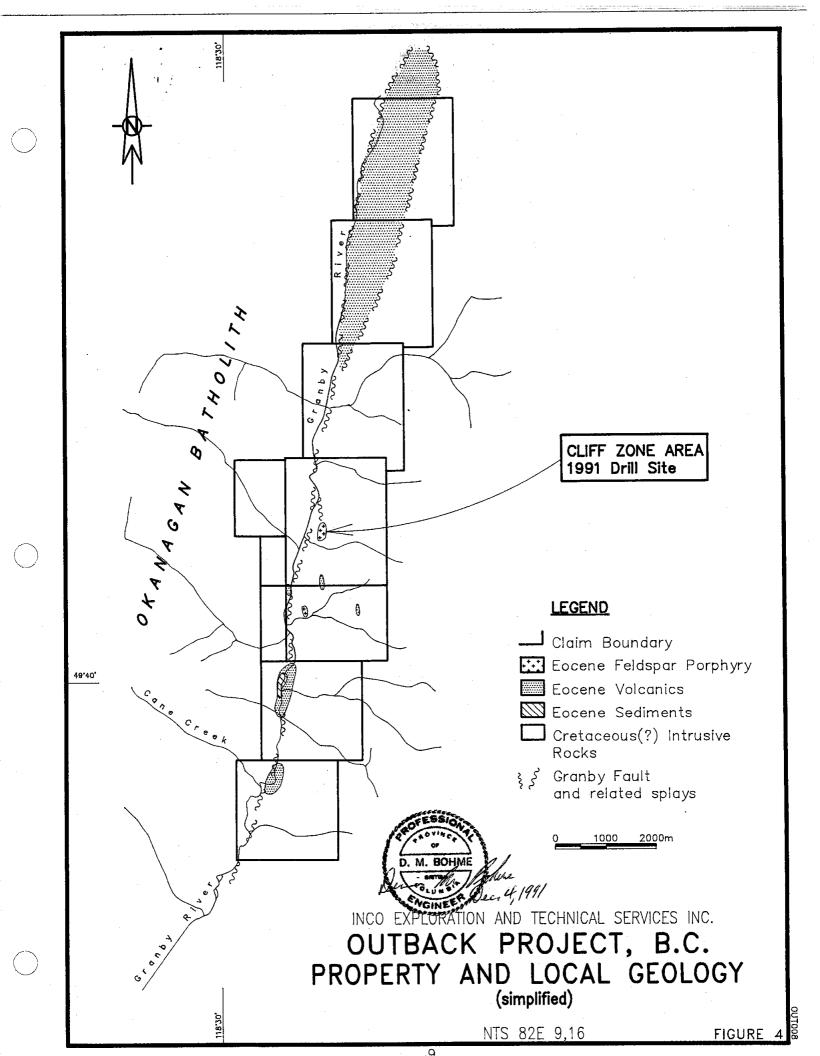
A petrographic/mineralogy report is included in Appendix III.

3.0 REGIONAL GEOLOGY AND STRUCTURE

The regional geology is dominated by Mesozoic granodiorite plutons mapped as part of the Okanagan Batholith complex and includes undifferentiated phases of the Nelson Batholith (GSC Open File 1969). Subordinate intrusive masses include the Middle Eocene Coryell Syenite. High-grade gneiss and Proterozic crystalline basement rocks occur to the north.

Within the Granby River Valley, the geology is locally dominated by Tertiary block faulting with Mesozoic basement plutonic rocks unconformably overlain by Eocene age Marron Group volcanic rocks and minor basal conglomeratic sediments. Flat-lying vesicular basalt flows of Miocene age were also seen in a few localities.


Government mapping denotes the Granby Fault as a west dipping high-level normal fault (Figure 3). The Granby River marks the western margin and the northern strike extension of the Republic Graben Fault system in Washington State. This important regional extensional feature forms a structural locus for numerous epithermal adularia-sericite vein deposits within the Republic District.


4.0 PROPERTY GEOLOGY AND MINERALIZATION

The Outback property is mostly underlain by Mesozoic plutonic rocks of granite to quartz monzonite composition; however, drilling also confirmed the presence of a distinct quartzfeldspar porphyry unit of probable Eocene age. This bleached "QFP" unit was originally thought to represent an argillic/ silicic alteration front related to a fault splay cutting the quartz monzonite. Drilling suggests that this NNW-trending fault splay is cut off by the porphyry (Figure 4).

Major rock types on the property include quartz monzonite to granodiorite plutonic rocks of the Okanagan Batholith complex, cataclastically deformed propylitized quartz monzonite, Marron Group andesitic flows, minor sedimentary lithologies and a few occurrences of Miocene basalt. The northernmost portion of the claim block contains a large segment of Marron volcanics that is preserved in a narrow graben.

A weakly developed stockwork of hairline to centimeter-size milky white, drusy chalcedonic quartz occurs over a 500 by 150 m area known as the Cliff Zone. The best gold-silver mineralization occurs in close proximity to the quartzfeldspar porphyry/quartz monzonite contact in quartz-veinlet stockworks. This contact zone is poorly exposed at surface but well-veined float samples can be seen. Open space, vuggy quartz-carbonate veinlets were also noted in the quartz monzonite and cataclasite units.

Detailed chip sampling in 1990 returned some encouraging results. Grab samples of residual rock fragments from two soil sites which ran 1.43 and 2.28 g/t Au returned assays of 11.52 and 24.64 g/t Au, respectively. Samples from an exposure nearby averaged 14.5 g/t Au over 2.6 m. Silver values are typically in the 1.0 to 50.0 g/t range. All indicator elements are very low. Overall, the geochemistry, alteration and vein textures were originally interpreted to represent the lower levels of an epithermal vein system.

5.0 DRILLING

The objective of the 1991 drill program was to test the size, grade and continuity of the epithermal-style precious metal mineralization of the Cliff Zone. Six holes were drilled from one site utilizing a JKS-Boyles Super 300 drill rig. Core recovery was excellent.

5.1 Program

Borehole logs and analytical results are included in Appendices I and II, respectively. The collar location was surveyed by chain and compass. Maximum casing depth for all holes was 1.5 meters.

All core is stored at the drill site on the Outback claim. Core boxes were stacked to a maximum height of 13 boxes and placed on a level platform of lumber slightly elevated above ground.

The drill program on the Outback claim is summarized by the following table:

BOREHOLE NUMBER	COLLAR LOCATION	ELEVATION (meters)	AZI- MUTH	INCLI- NATION	DEPTH (meters)
87001	-4246S/5785E	1371.5	270°	-55°	223.11
87002	-4246S/5785E	1371.5	320°	-60°	172.52
87003	-4245S/5785E	1371.5	340°	-65°	115.21
87004	-4245S/5785E		340°	-86°	124.36
87005	-4246S/5786E		105°	-45°	84.43
87006	-4246S/5786E		130°	-45°	87.47

The location of the holes and general geology are displayed on Map 1 at 1:1000 scale. Cross sections of the drilling are shown on Maps 2 and 3 at 1:500 scale. Only gold results greater than 0.5 g/t are plotted.

5.2 Results and Discussion

All drill holes were collared in the quartz monzonite/ cataclasite succession and, with the exception of BH 87001, were terminated in a distinct quartz-feldspar porphyry unit of probable Eocene age. Holes 87001 to 87004 were devised to undercut gold mineralization outlined from surface sampling whereas holes 87005 and 87006 were drilled to test the lateral extent of the mineralization/alteration easterly into the hillside. Relatively few faults were intersected.

Hole 87001 was drilled roughly parallel to the dip-slope and was designed to cut the entire package of propylitic, argillic and silicic alteration observed at surface. This hole intersected 99.4 meters of intercalated quartz monzonite/ cataclasite and 107 meters of bleached, massive, quartzfeldspar porphyry before ending in strongly foliated, chloritized intrusive rock. Contacts are usually sharp; however, in several localities the overlying quartz monzonite is weakly bleached by argillic alteration which tends to obscure the intrusive contact. The feldspar porphyry appears to be a tabular-shaped plug dipping roughly 20 to 35° to the west. A narrow felsite(?) dyke was noted near the bottom of BH 87001.

The whitish-buff coloured feldspar porphyry is typically fine to medium-grained and characterized by weak to intermediate argillization with very fine interstial pyrite generally throughout. Extremely fine sericite may also be present. Some sections are well silicified by milky white quartz. Fine fracture coatings and rusty zones of limonitic oxidation are not uncommon. Variable amounts of goethite, dark manganese, calcite, kaolinite and pitted zeolites were also noted in the core. Fine, glassy quartz phenocrysts are relatively scarce and probably comprise less than 10 volume percent of the porphyry.

Propylitization in the overlying intrusive block is characterized by strong epidote, carbonate, chlorite and pyrite alteration. Magnetite may also be abundant. The cataclasite unit typically shows fine cubic pyrite, strong chloritic alteration of mafic minerals and discontinuous calcite or quartz-carbonate veinlets. Some intervals were described as densely foliated or weakly mylonitic.

From the drilling, several observations can be made regarding the quartz veinlet stockworks, alteration and mineralization. They are summarized as follows:

- The upper contact area of the feldspar porphyry is characterized by a weak to moderate stockwork of milky white to light gray silica veinlets carrying only trace amounts of very fine sulphides (mainly pyrite).
- Quartz and/or quartz-carbonate-feldspar(?) veinlets typically form as fairly tight fracture fillings ranging from a few millimeters to 10 centimeters in width. Stockworking, braiding, irregular silicic flooding and veinlet brecciation are relatively common features over core lengths of several meters particularly within the upper portions of the feldspar porphyry unit.
- The porphyry-hosted stockwork zones typically carry grades of between 0.20 to 1.5 g/t Au. The gold content is not proportional to stockwork density.
- Silicic/argillic alteration accompanied by erratic 4) gold-silver mineralization tends to concentrate within roughly 20 to 25 m of either side of the monzonite/feldspar quartz porphyry contact. Anomalous gold values tend to correlate more with the upper portions of the feldspar porphyry. This is best exemplified in BH 87004 between 34.0 to 73.0 m. One section (55.8 - 68.0 m) averages 0.83 g/t Au over 12.20 m including 5.2 g/t Au and 61.0 q/t Aq over 0.45 m. The density of guartz veinlets is not particularly strong over this section.
 - The cataclasite often hosts a higher density of open-space quartz-carbonate veinlets (both conformable and cross-cutting foliation) than the more massive quartz monzonite. Grades rarely exceed 2 g/t Au and 21 g/t Ag for veinlets hosted by these two units.
 - Stockwork veinlets are comprised of drusy, granular gray-white quartz and milky white chalcedonic quartz. The higher gold-silver intercepts tend to occur where very fine pyrite and acanthite are present in the veinlets. Also, small scale brecciation and vaguely banded crustiform textures were noted for some auriferous quartz-carbonate veinlets.

2)

3)

6)

5)

12

Analytical results from boreholes 87002, 87003 and 87004 further demonstrate the erratic nature of significant gold intercepts (>2.5 g/t Au); however, 0.5 to 4.5 m wide core intervals averaging between 0.4 to 2.3 g/t Au are not unusual and should be regarded as highly anomalous for a porphyry. Also, significantly elevated gold grades do not occur below approximately the 90 m elevation relative to the borehole collars (consistently less than 0.20 g/t Au). This suggests some form of zonation of the porphyry-style mineralization.

The best drill intercept is 3.02 g/t Au over 1.3 m including 6.51 g/t Au and 37.0 g/t Ag over 0.44 m (BH 87003). A Scanning Electron Microscope probe from this section identified very fine-grained electrum and acanthite replacing fine pyrite.

The results of boreholes 87005 and 87006 drilled towards the east are disappointing in the sense that stockwork veining around the contact area is noticeably weaker and gold values are very low. However, both holes intersected a discordant hydrothermal breccia measuring about 1 m wide. The breccia contains highly silicified, rounded to subangular intrusive fragments cemented in a dark grayish-green, chloritized(?), chalcedonic quartz matrix. Finely disseminated pyrite is ubiquitous. Some sections are calcareous. In BH 87006, the breccia zone ran 3.65 g/t Au over 1.13 meters.

Some important observations can be made from the ICP data. Traditional indicator elements such as Mo, Ba, As and Sb are uniformily low with few exceptions. Lead however shows a marked increase ranging between 9 to 45 ppm within the porphyry. Petrographic work identified minute grains of galena with the gold-silver mineralization. Copper averages between 25 to 70 ppm in the quartz monzonite/cataclasite succession and less than 10 ppm within the feldspar porphyry.

The alteration types, fracturing, Au-Ag zonation, mode of silicification, lithogeochemistry, evidence of dyking and the breccia feature are interpretated to represent a weak(?) hydrothermal system evolving from the quartz-feldspar porphyry Several young porphyry-type gold deposits are intrusion. known in the Andean Cordillera of Chile and they bear some similarities to the Outback porphyry occurrence. In Chile, the Marte, Lobo and Refugio are gold-rich, quartz stockworks developed in dioritic to quartz dioritic porphyry stocks Gold, with or without anomalous copper, is (Vila, 1991). introduced with biotite-rich K silicate alteration which is commonly overprinted and destroyed by intermediate argillic assemblages (Vila, 1991). All three deposits are large tonnage, low grade (averaging 1.43, 1.6 and 0.95 g/t respectively) and ammenable to heap leaching by cyanidation.

6.0 CONCLUSIONS

Drilling on the Outback claim has determined that erratic Au-Ag mineralization occurs in weak- to moderately-developed quartz-carbonate stockworks and discrete veinlets hosted largely within a newly recognized quartz-feldspar porphyry. Low to moderately anomalous gold grades, accompanied by variable degrees of silicification, bleaching, argillization and pyritization, are crudely restricted to the lower portion of the quartz monzonite/cataclasite succession and the upper portion or margins of the feldspar porphyry intrusion. The alteration intensity (particularly the quartz veinlet density) displays a gradational but marked decrease with depth. The mineralization and hydrothermal alteration characteristic of the Cliff Zone is clearly porphyry-related rather than a midto high-level epithermal-type.

Although no economic gold intercepts were recorded, a high gold background is recognized for the porphyry. Grades of 0.20 to 1.5 g/t Au are common over widths of several meters. Associated silver grades are typically in the 1 to 16 g/t Ag range.

Dimensions of the underlying quartz-veinlet stockwork zone are estimated to be a maximum of 50 m thick, 110 m in the eastwest direction and a minimum 40 m in the north-south direction. No prominent structural controls on the alteration/mineralization were recognized in drill core and the lateral extent of the auriferous zone remains open, particularly in the north-south directions.

The drill program tested only a small portion of this goldenriched porphyry-type system and results should be viewed as encouraging based on similarities to pluton-related gold deposits of the Andean Cordillera. With the porphyry target in mind, the bulk tonnage gold potential should be explored for accordingly in future programs. However, structurally controlled breccia pipes carrying high-grade gold or plutonrelated vein deposits should not be ruled out for the area.

7.0 RECOMMENDATIONS

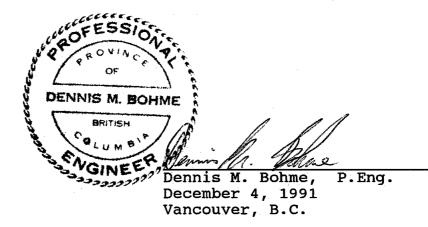
The geological information gained on this newly recognized porphyry-gold occurrence from the 1991 drill program is considerable. Further exploration is warranted for the Outback Property. Future exploration programs should encompass the following recommendations:

- 1) A lithogeochemistry and alteration study should be carried out on the core, pulps and selected specimens to further understand the porphyry-related hydrothermal alteration and mineralization.
- 2) Similar-looking, bleached feldspar porphyry rocks were noted elsewhere on the property both as float and as small subcroppings, particularly in the northwestern corner of the Outback 2 claim. Weakly anomalous gold values obtained in rock and soil samples from this area during the 1989 and 1990 programs warrant detailed geologic follow-up in light of this porphyry discovery. Grid line-spacings of 25 m are recommended for control.
- 3) Further geological work is warranted within the Cliff Zone area in order to generate new drill targets. Stepout drilling away from the mineralized zone may be justified in order to establish controls, continuity and tonnage potential of the low grade porphyry-gold occurrence. Also, a higher-grade core zone, breccia pipe or vein-type deposit for this geologic environment should not be ruled out at depth.
- 4) Contigent on the geochemical and geological vectors obtained from the above mentioned surveys, a modest drill program is recommended for the best new target area in order to test the model for its volume potential.

8.0 REFERENCES

- Bohme, D.M. (1989): Geological and Geochemical Report on the Outback, Outback 2 Claims, Greenwood Mining Division; B.C.M.E.M.P.R. Assessment Report 19441.
- Bohme, D.M. (1990): Geological and Geochemical Report on the Outback, Outback 2-9 Claims, Greenwood Mining Division; Assessment Report 21032.
- Garber, R.J., Louring, J.T., Lund, J.L. (1979): Geological Report on the Granby Project, Greenwood Mining Division; B.C.M.E.M.P.R. Assessment Report 7246.
- Little, H.W. (1957): Kettle River, East Half, B.C.; Geological Survey of Canada, Map 6-1957.
- Monger, J.W.H. (1968): Early Tertiary Stratified Rocks, Greenwood Map Area, B.C.; Geological Survey of Canada, Paper 67-42, 39 pages.
- Parrish, R.R., Carr, S.D. and Parkinson, D.L. (1987): Extensional Tectonics of the Southern Omineca Belt, B.C. and Washington; Tectonics, Volume 7.
- Templeman-Kluit, D.J. (1989): Geological Map, Penticton Map Area, NTS 82E, Southern British Columbia; Geological Survey of Canada, Open File 1969.
- Vila, T., and Sillitoe, R.H. (1991): Gold-Rich Porphyry Systems in the Maricunga Belt, Northern Chile; Economic Geology, Volume 86, p. 1238 - 1260.
- Vila, T., Sillitoe, R.H., Betzhold, J. (1991): The Porphyry Gold Deposit at Marte, Northern Chile; Economic Geology, Volume 86, p.1271 - 1286.

9.0 STATEMENT OF EXPENDITURES


<u>Personnel</u>

Project Geologist D. Bohme Core Splitter R. Soloman	June 5-August 2/91 52 days @ \$230/day June 17-July 19/91 30 days @ \$100/day	\$11,960 3,000	
Drilling			\$14,960
Roger's Drilling Services Inc. (6 holes, 807.1 m)	June 22-July 16/91 -includes meals		\$74,069
Assays			
Acme Labs	870 core samples @ \$15.50/sample		\$13,485
<u>Transportation</u>			
Helicopter 206B	66.6 hrs. @ \$750/hr including fuel	\$49,950	
4x4 Truck Rental	32 days @ \$100/day including fuel	3,200	
			\$53,150
<u>Miscellaneous</u>			
Accommodation Petrographic work Lumber, hardware, Communications, re Computer usage		\$ 416 385 2,590 1,029 500	
			\$4,920
	Total	:	\$160,584

10.0 STATEMENT OF QUALIFICATIONS

I, Dennis Martin Bohme, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

- 1. I reside at 57 East 40th Avenue, Vancouver, British Columbia, V5W 1L3.
- 2. I am a graduate of the British Columbia Institute of Technology with a diploma in Mining Technology, 1980.
- 3. I am a graduate of the Montana College of Mineral Science and Technology in Butte, Montana, with the degree of Bachelor of Science in Geological Engineering, 1985.
- 4. I have been employed in mining exploration as a technologist and a geological engineer with Newmont Exploration of Canada Limited from May 1980 until February 1989, except for 18 months when I was attending university.
- 5. I am a registered Professional Engineer in the Province of British Columbia.
- 6. I am a Fellow member of the Geological Association of Canada.
- 7. I am a member of the Society of Economic Geologists, Inc.
- 8. I am a Project Geologist with Inco Exploration and Technical Services Inc. with offices at 2690-666 Burrard Street, Vancouver, B.C., V6C 2X8.
- 9. I personally carried out and supervised most of the work described in this report.

APPENDIX I

PAGE 2 ** INCO ** **DRILL LOG**

FROM	1	TO	DESCRIPTION	FROM		LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m.		M		m	m	m		PPM	PPM	PPM	PPM	PPM
	metr	es, narrow	breccia zone with									
	irre	gular carb	onate rich fracture.									
	6	.00 12.2	0 Medium grained, propylitized									
	quar	tz monzoni	te with pinhead pyrite									
	-		ughout and millimetre									
		-	carbonate veinlets. At									
			tres, weak stockwork -									
	•		te vein breccia zones									
			or fine grained quartz.							-		
12.2		12.90 FAU	ch at 10.70 metres.									
12.2	-0		fractured along	12.20	12 00	0 70	FX 479265	0.008	0.100	16.	2.	4.
	core		videnced by pitted, cross	12.20	12.70	0.10	1/ 4/7200	0.000	0.100	10.	۲.	7.
			ous carbonate veinlet.									
		-	fracture slip plane									
		-	fault. Some core									
	miss	ing.										
12.9	20	25.75 QUA	RTZ MONZONITE									
		Poorly t	o moderately	12.90	14.40	1,50	FX 479266	0.002	0.100	37.	2.	2.
	foli	ated chlor	itic quartz monzonite	14.40	15.60	1.20	FX 479267	0.007	0.300	176.	1.	2.
	with	distinct	dark gray to black	15.60	17.10	1.50	FX 479268	0.001	0.100	44.	2.	2.
		•	netite rich bands	17.10	18.70			0.001	0.100	26.	2.	2.
			endicular to core axis.	18.70	20.20		FX 479270	0.003	0.100	27.	1.	2.
			s of pyrite, fine calcite	20.20	22.40		FX 479271	0.006	0.100	16.	1.	2.
			inor epidote common.	22.40	23.90		FX 479272	0.002	0.100	14.	1.	4.
			clasite bands up to 50	23.90	25.75	5 1.85	FX 479273	0.002	0.100	28.	2.	3.
			de but typically less									
			etres wide.									
			0 Intense fine grained, dark cataclasite zone at 85									
	•	ees to cor										
	-		5 Cross cutting calcite									
			degrees to core axis									

PAGE 3 ** INCO ** **DRILL LOG**

FROM	4	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m		m		m	m	m		PPM	PPM	PPM	PPM	PPM
			chlorite - pyrite bands									
	•	centimetre										
			Almost entirely propylitized									
			e porphyry with patchy									
		-	agioclase and green									
	•		alcite fractures,									
		ce pyrite.	ited to some broken core.									
25.7		28.50 CATA										
27.1			cically foliated to	25.75	74 E0	0.75	FX: 479274	0.008	0.400	186.	15.	5.
	hard		mylonitic - chloritic	26.50		1.35	FX 479274	0.001	0.300	106.	13.	2.
			ined interstitial pyrite	27.85		0.65	FX 479275	0.001	0.300	79.	2.	z. 3.
		-	cally as blebs to some	27.05	20.90	0.05	FA 417610	0.001	0.500	17.	٤.	у.
		- •	e streaks. Between 25.8									
	•••	•	some boudinaged quartz									
		-	s cutting quartz									
		onate veinl										
	27.	.50 27.90) Strongly foliated broken									
	core	. Chloriti	c throughout with									
	disco	ontinuous c	arbonate laminae.									
	27.	.90 28.50) Fine to medium grained									
	catad	clasite. P	Parallel milky white									
	quart	tz veinlets	at 26.60 metres with									
	fine	carbonate	selvages. Locally									
	magne	etic.										
28.5	50 4	40.20 QUAR	TZ MONZONITE									
		Gradation	al contact to	28.50	29.50	1.00	FX 479277	0.028	0.200	33.	1.	6.
			itized to potassic	29.50	31.00	1.50	FX 479278	0.008	0.100	30.	2.	2.
	alter	red intrusi	ve.	31.00	32.30	1.30	FX 479279	0.007	0.100	8.	1.	4.
			Very dense, siliceous -	32.30	34.80	2.50	FX 479280	0.009	0.200	50.	1.	2.
		-	 Weakly foliated, fine 	34.80	36.40		FX 479281	0.038	0.300	26.	2.	3.
			ite throughout. Locally	36.40	38.00		FX 479282	0.014	0.200	72.	2.	2.
	magne	etic.		38.00	40.20	2.20	FX 479283	0.010	0.200	17.	1.	2.

87001-0

87001-0

87001-0

PAGE 4 ** INCO ** **DRILL LOG**

FROM m	TO M	DESCRIPTION	FROM m	TO 1 M	LENGTH M	SAMPLE#	AU PPM	AG PPM	CU PPM	MO PPM	РВ РРМ
16	610			111	101		FFN	FFN	FFN	гги	FER
	At 34	.2, mostly fine to									
	_	ned chloritized quartz									
		A few thin calcite									
		ith minor quartz. Locally									
		k stockwork. Trace pyrite									
an 40.20	-	e alteration. CATACLASITE									
40.20		reous, dark green to	40.20	61 50	1.30	FX 479284	0.092	0.600	30.	1.	2.
Ы		neous, dank green to mr, variably foliated. Upper	40.20		1.85		0.730	2.000	46.	1.	2.
		10 degrees to core axis with	41.50	40.00		17 417203	01100	21000		••	
		weats. Fine pyrite									
		locally hematitic. Weakly									
		Lower contact marked by									
sm	all carbo	nate - chlorite matrix									
br	eccia zon	ie.									
43.35		QUARTZ MONZONITE									
		4.70 Weakly foliated, pinkish	43.35	45.00			0.055	0.200	17.	2.	2.
		conite with irregular calcite	45.00	46.20	1.20	FX 479287	0.041	0.200	22.	1.	2.
		oughout. Moderate									
•		alteration. At 45.30									
		wen to white coloured veinlet at 10 degrees to core									
		er contact gradational.									
46.20		CATACLASITE									
		dense, generally fine	46.20	47.90	1.70	FX 479288	0.029	0.500	46.	3.	5.
gr	ained chl	orite - biotite - magnetite	47.90	48.70	0.80	FX 479289	0.004	0.500	101.	6.	3.
ri	ch catacl	asite section. Foliation	48.70	50.00	1.30	FX 479290	0.017	1.200	695.	6.	3.
ре	erpendicul	ar to core axis. Dark black	50.00	50.90	0.90	FX 479291	0.014	0.400	30.	3.	2.
?	biotite r	ich zones carry wispy pyrite	50.90	52.20	1.30	FX 479292	0.470	2.200	30.	8.	2.
po	ds and cl	ots up to 1 centimetre									
ac	ross. At	: 48.10 and 48.65 metres,									
ir	regular m	nilky white quartz calcite									

irregular milky white quartz calcite veinlets almost perpendicular to core

PAGE 5 ** INCO ** **DRILL LOG**

FROM	TO m	DESCRIPTION	FROM m		LENGTH	SAMPLE#	AU PPM	AG PPM	CU PPM	MO PPM	PB PPM
m	n		EI F	m	m		PPM	FFM	ггм	FFM	FFN
	axis. Possi	ble fault gouge about 3									
	centimetres	wide at 49.95 metres.									
	50.60 52	.20 Moderate to massive									
	foliated, gr	een to black cataclasite									
	with fine py	rite streaks and coarse									
	magnetite po	ds. Disseminated pyrite up									
	to 1 - 2%.	Some drusy quartz carbonate									
•	veinlets.								·		
52.2	0 94.60 Q	UARTZ MONZONITE									
	Medium	grained, siliceous,	52.20	52.80	0.60	FX 479293	0.110	4.100	2.	1.	3.
	crowded - te	xtured quartz monzonite	52,80	54.00	1.20	FX: 479294	0.073	0.600	21.	1.	2.
	with occasio	nal tectonized cataclasite	54.00	55.50	1.50	FX 479295	0.091	0.300	15.	7.	4.
	section up t	o 20 centimetres wide.	55.50	56.70	1.20	FX 479296	0.078	0.300	13.	4.	2.
	52.20 54	.00 Several irregular quartz	56.70	58.10	1.40	FX 479297	0.100	0.200	20.	2.	2.
	carbonate ve	inlets, minor veinlet	58.10	59.50	1.40	FX 479298	0.008	0.200	26.	2.	2.
1	breccia.		59.50	60.30	0.80	FX 479299	0.025	0.400	39.	2.	2.
	55.50 60	.30 Propylitized intrusive cut	60.30	61.30	1.00	FX 479300	0.960	0.800	25.	3.	2.
I	by irregular	quartz and / or quartz	61.30	62.30	1.00	FX 479301	0.060	0.400	34.	2.	2.
	carbonate ve	inlets less than 0.05	62.30	63.58	1.28	FX 479302	1.460	6.500	52.	6.	3.
	centimetres	wide. Weak stockwork	63.58	64.20	0.62	FX 479303	0.270	0.300	17.	1.	4.
(developed in	places. Fine pyrite	64.20	65.20	1.00	FX 479304	0.097	0.500	26.	7.	2.
	locally alon	g veinlet selvages and	65.20	66.20	1.00	FX 479305	0.380	0.800	41.	3.	3.
	disseminated	generally throughout	66.20	67.20	1.00	FX 479306	0.018	0.300	26.	6.	2.
· · · · · · · · · · · · · · · · · · ·	porphyritic	matrix.	67.20	68.80	1.60	FX 479307	0.040	0.700	17.	2.	3.
	60.30 61	.30 Weak foliation developing	68.80	70.00		FX 479308	0.066	0.400	24.	4.	3.
· . 1	with some ca	rbonate veinlets.	70.00	71.00	1.00	FX 479309	0.030	0.300	24.	1.	2.
	61.30 66	.20 Weak to moderate	71.00	71.93		FX 479310	0.019	0.300	23.	2.	2.
	stockworking	of mostly white to brown	71.93	72.25		FX 479311	0.400	4.400	21.	1.	3.
. i	čarbonate ve	inlets with occasional	72.25	73.70	1.45	FX 479312	0.025	0.300	20.	2.	3.
. (quartz rich	veinlet. Cross cutting	73.70	74.50	0.80	FX 479313	0.052	0.600	48.	2.	5.
		80 degrees to core axis at	74.50	74.98		FX 479314	0.080	0.400	18.	2.	3.
		.80 metres (< 0.05 cm	74.98	75.20		FX 479315	0.330	1.600	42.	2.	3.
· 1	wide). At 6	5.40 metres, narrow	75.20	76.00	0.80	FX 479316	0.350	0.700	19.	2.	4.

87001-0

PAGE 6 ** INCO ** **DRILL LOG**

FRO	M TO	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	мо	PB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	carbonate	rich breccia noted.	76.00	77.05	5 1.05	FX 479317	0.210	0,500	34.	8.	2.
	66.20	71.93 Fairly massive quartz	77.05	78.05	5 1.00	FX 479318	0.061	0.900	33.	2.	2.
	monzonite	locally cut by	78.05	78.60	0.55	FX 479319	0.580	1.600	21.	2.	6.
	semi-cont	inuous carbonate rich quartz	78.60	79.10	0.50	FX 479320	0.130	1.100	41.	2.	4.
	veinlets.	Trace disseminated pyrite.	79.10	79.80	0.70	FX 479321	0.990	4.300	23.	2.	6.
	71.93	71.96 Quartz - calcite veinlet at	79.80	80.80	1.00	FX 479322	0.085	0.400	16.	2.	2.
	70 degree	s to core axis. Possible	80.80	81.6	0.80	FX 479323	0.680	3.000	30.	1.	3.
	bladed ca	lcite pseudomorphs after	81.60	82.10	0.50	FX 479324	2.050	8.400	19.	4.	3.
	silica re	placement.	82.10	82.9	0.80	FX 479325	0.540	0.600	25.	1.	4.
	71.96	87.10 Quartz monzonite distinctly	82.90	83.40	0.50	FX 479326	0.990	5.500	114.	92.	3.
	more shat	tered as evidenced by increase	83,40	84.12	2 0.72	FX 479327	1.080	3.000	48.	2.	4.
	in quartz	veining, vein brecciation and	84.12	85.0	0.88	FX 479328	0.380	0.600	13.	2.	4.
	weak to m	oderate stockworking.	85.00	86.0	0 1.00	FX 479329	0.410	0.600	10.	1.	5.
	87.10	87.95 Fairly massive looking	86.00	86.5	4 0.54	FX 479330	0.270	0.800	18.	3.	6.
	quartz mo	nzonite. Magnetic. A few	86.54	87.1	0.56	FX 479331	0.230	0.600	34.	1.	3.
	tiny cros	s cutting veinlets.	87.10	87.9	5 0.85	FX 479332	0.037	0.300	28.	2.	3.
	87.95	94.60 Variably veined quartz	87.95	88.8	0.85	FX 479333	0.200	0.400	19.	2.	10.
	monzonite	. Mostly thin calcite	88.80	89.4	0.60	FX 479334	0.270	0.600	31.	1.	7.
	veinlets.	At 92.40 metres, fine	89.40	90.0	0.60	FX 479335	0.180	0.400	57.	2.	3.
	grained b	oraided quartz veinlet at 40	90.00	90.8	0.80	FX 479336	0.460	0.400	40.	2.	4.
	degrees t	o core axis. Also between	90.80	91.8	5 1.05	FX 479337	0.160	0.900	45.	5.	4.
	93.00 - 9	3.50 metres, patchy pyrite -	91.85	92.6	5 0.80	FX 479338	0.340	1.900	24.	2.	3.
	magnetite	- epidote alteration cut by	92.65	93.6	0.95	FX 479339	2.650	1.500	28.	1.	2.
	anastomos	ing set of quartz carbonate	93.60	94.6	0 1.00	FX 479340	0.064	0.500	39.	3.	2.
	veinlets.	Minor veinlet brecciation.									
94.	60 99.36	CATACLASITE									
	Gra	dational contact into	94.60	96.0	0 1.40	FX 479341	0.076	0.400	34.	1.	2.
	fine to m	edium grained variably	96.00	97.0	0 1.00	FX 479342	0.110	0.300	24.	2.	2.
	tectonize	d cataclasite. Schistose,	97.00	97.9	2 0.92	FX 479343	0.790	1.700	90.	2.	2.
	strongly	chloritized with fabric	97.92	98.4	5 0.53	FX 479344	0.070	0.500	39.	1.	4.
	generally	trending 75 degrees to core	98.45	99.3	6 0.91	FX 479345	0.110	0.300	18.	1.	2.
	axis.										

Patchy epidote - pyrite -

87001-0

PAGE 7 ** INCO ** **DRILL LOG**

FROM m	TO m	DESCRIPTION	FROM m	TO M	LENGTH m	SAMPLE#	AU PPM	AG PPM	CU PPM	MO PPM	I
h	ematite al	teration locally cut by									
d	iscontinuo	ous quartz carbonate veinlets									
s	everal mi	llimetres wide. Between									
9	8.20 - 98.	.45 metres, white quartz vein									
. W	ith minor	brecciation, at 20 degrees									
t	o core ax ⁴	is. Some fine carbonate.									
В	etween 99.	.10 - 99.36 metres faint									

bleaching evident.

- 99.36 111.75 QUARTZ FELDSPAR PORPH Intrusive unit looks hydrothermally bleached. Appears to be a gradational contact from propylite.
 - Rock maintains a distinct white to buff beige colour with patchy green, clay altered saussuritized feldspars. Variable argillic to advanced argillic alteration throughout section. Limonite after pyrite common.

Between 99.36 - 104.00, bleached intrusive matrix cut by weak to moderate stockwork of barren milky white quartz carbonate veinlets. Locally some vein breccia and stringer silica replacement. Finely bladed carbonate usually as selvages. Unidentified fine grained black mineral noted in several localities towards margins of siliceous

replacement / veinlet zones. Traces of fine grained fresh pyrite. 104.00 109.47 Secondary silica replacement

less pervasive than section described

above

37001-0

87001-0

PB PPM

99.36	99.90	0.54	FX 479346	0.110	0.600	16.	1.	2.
99.90			FX 479347		1.900	33.	1.	2.
00.40	100.90	0.50	FX 479348	0.180	1.200	30.	1.	2.
00.90	101.40	0.50	FX 479349	0.210	0.600	19.	2.	6.
01.40	101.90	0.50	FX 479350	0.200	0.400	2.	1.	10.
01.90	102.41	0.51	FX 479351	0.210	0.300	4.	1.	16.
02.41	103.00	0.59	FX 479352	0.160	0.200	6.	3.	8.
03.00	103.50	0.50	FX 479353	0.260	0.900	1.	1.	5.
03.50	104.00	0.50	FX 479354	0.330	0.500	2.	1.	2.
04.00	104.60	0.60	FX 479355	0.110	0.400	3.	3.	6.
04.60	105.46	0.86	FX 479356	0.420	0.800	1.	1.	10.
05.46	106.00	0.54	FX 479357	0.081	0.400	2.	1.	7.
06.00	106.70	0.70	FX 479358	0.058	0.200	2.	2.	6.
06.70	107.40	0.70	FX 479359	0.069	0.100	1.	1.	11.
07.40	107.90	0,50	FX 479360	0.220	0.300	1.	1.	8.
07.90	108.51	0.61	FX 479361	0.200	0.400	3.	3.	4.
08.51	109.47	0.96	FX 479362	0.160	0.100	1.	1.	7.
09.47	110.00	0.53	FX 479363	0.220	0.400	6.	1.	9.
10.00	110.50	0.50	FX 479364	0.180	0.400	1.	2.	11.
10.50	111.00	0.50	FX 479365	0.140	0.300	1.	1.	8.
11.00	111.75	0.75	FX 479366	0.100	0.300	4.	1.	16.
	99.90 00.40 00.90 01.40 01.90 02.41 03.00 03.50 04.00 05.46 06.00 05.46 07.90 08.51 09.47 10.00 10.50	99.90 100.40 00.40 100.90 00.90 101.40 01.40 101.90 01.90 102.41 02.41 103.00 03.00 103.50 03.50 104.00 04.00 104.60 04.60 105.46 05.46 106.00 06.00 106.70 06.70 107.40 07.40 107.90 07.90 108.51 08.51 109.47 09.47 110.00 10.00 110.50 10.50 111.00	99.90 100.40 0.50 00.40 100.90 0.50 00.90 101.40 0.50 01.90 102.41 0.51 01.90 102.41 0.51 02.41 103.00 0.59 03.00 103.50 0.50 04.00 104.00 0.50 04.00 104.00 0.50 04.00 104.60 0.60 04.60 105.46 0.86 05.46 106.00 0.54 06.00 106.70 0.70 06.70 107.40 0.70 07.40 107.90 0.50 07.90 108.51 0.61 08.51 109.47 0.96 09.47 110.00 0.53 10.00 110.50 0.50	99.90100.400.50FX 47934700.40100.900.50FX 47934800.90101.400.50FX 47934901.40101.900.50FX 47935001.90102.410.51FX 47935102.41103.000.59FX 47935303.00103.500.50FX 47935303.50104.000.50FX 47935404.00104.600.60FX 47935504.60105.460.86FX 47935605.46106.000.54FX 47935806.70107.400.70FX 47935907.40107.900.50FX 47936108.51109.470.96FX 47936310.00110.000.50FX 47936410.50111.000.50FX 479364	99.90100.400.50FX4793470.59000.40100.900.50FX4793480.18000.90101.400.50FX4793490.21001.40101.900.50FX4793500.20001.90102.410.51FX4793510.21002.41103.000.59FX4793520.16003.00103.500.50FX4793530.26003.50104.000.50FX4793530.26004.00104.600.60FX4793550.11004.60105.460.86FX4793560.42005.46106.000.54FX4793580.05806.70107.400.70FX4793590.06907.40107.900.50FX4793600.22007.90108.510.61FX4793610.20008.51109.470.96FX4793630.22009.47110.000.53FX4793640.18010.50111.000.50FX4793650.140	99.90 100.40 0.50 FX 479347 0.590 1.900 00.40 100.90 0.50 FX 479348 0.180 1.200 00.90 101.40 0.50 FX 479348 0.180 1.200 00.90 101.40 0.50 FX 479349 0.210 0.600 01.40 101.90 0.50 FX 479350 0.200 0.400 01.90 102.41 0.51 FX 479351 0.210 0.300 02.41 103.00 0.59 FX 479352 0.160 0.200 03.00 103.50 0.50 FX 479353 0.260 0.900 03.50 104.00 0.50 FX 479353 0.260 0.900 03.50 104.00 0.50 FX 479353 0.260 0.900 03.50 104.00 0.50 FX 479355 0.110 0.400 04.60 106.60 FX 479355 0.110 0.400 05.46 106.00 0.54 FX 479357 0.081	99.90 100.40 0.50 FX 479347 0.590 1.900 33. 00.40 100.90 0.50 FX 479348 0.180 1.200 30. 00.90 101.40 0.50 FX 479348 0.210 0.600 19. 01.40 101.90 0.50 FX 479350 0.200 0.400 2. 01.40 101.90 0.50 FX 479351 0.210 0.300 4. 02.41 0.51 FX 479351 0.210 0.300 4. 02.41 103.00 0.59 FX 479352 0.160 0.200 6. 03.00 103.50 0.50 FX 479353 0.260 0.900 1. 03.50 104.00 0.50 FX 479353 0.260 0.900 1. 03.50 104.00 0.50 FX 479355 0.110 0.400 3. 04.00 104.60 0.60 FX 479355 0.110 0.400 3. 04.60 105.46 0.86 FX 479357 0.081 0.400 2. 06.00 106.70 <td>99.90 100.40 0.50 FX 479347 0.590 1.900 33. 1. 00.40 100.90 0.50 FX 479348 0.180 1.200 30. 1. 00.90 101.40 0.50 FX 479348 0.210 0.600 19. 2. 01.40 101.90 0.50 FX 479350 0.200 0.400 2. 1. 01.90 102.41 0.51 FX 479351 0.210 0.300 4. 1. 02.41 103.00 0.59 FX 479352 0.160 0.200 6. 3. 03.00 103.50 0.50 FX 479353 0.260 0.900 1. 1. 03.50 104.00 0.50 FX 479354 0.330 0.500 2. 1. 04.00 104.60 0.60 FX 479355 0.110 0.400 3. 3. 04.60 105.46 0.86 FX 479356 0.420 0.800 1. 1. 05.46 106.00 0.54 FX 479358 0.058 0.200 2. 2. <!--</td--></td>	99.90 100.40 0.50 FX 479347 0.590 1.900 33. 1. 00.40 100.90 0.50 FX 479348 0.180 1.200 30. 1. 00.90 101.40 0.50 FX 479348 0.210 0.600 19. 2. 01.40 101.90 0.50 FX 479350 0.200 0.400 2. 1. 01.90 102.41 0.51 FX 479351 0.210 0.300 4. 1. 02.41 103.00 0.59 FX 479352 0.160 0.200 6. 3. 03.00 103.50 0.50 FX 479353 0.260 0.900 1. 1. 03.50 104.00 0.50 FX 479354 0.330 0.500 2. 1. 04.00 104.60 0.60 FX 479355 0.110 0.400 3. 3. 04.60 105.46 0.86 FX 479356 0.420 0.800 1. 1. 05.46 106.00 0.54 FX 479358 0.058 0.200 2. 2. </td

87001-0 PAGE 7

Sec. 1

					-				
7001-0		x		PAGE 8					
			*	* INCO **					
			*	*DRILL LOG*	*				
FROM TO DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m m	m	m	m		PPM	PPM	PPM	PPM	PPM
109.47 111.75 Moderate creamy beige silica									
replacement throughout argillically									
bleached intrusive.									
111.75 113.00 QUARTZ VEIN									
Pervasive white to beige	111.75	112.25	5 0.50	FX 479367	0.110	0.100	5.	1.	8.
chalcedonic silica replacement - quartz	112.25	113.00	0.75	FX 479368	0.029	0.100	1.	1.	4.
vein zone. Grades progressively from									
silica matrix breccia to semi - massive									
white quartz vein with pitted,									
kaolinized intrusive fragments. Lower									
contact at 65 degrees to core axis.									
Some gray silica around brecciated									
clasts. Fine cubic pyrite in places.									
Trace carbonate. Some clasts exhibit									
multi - episodic silica replacement.									
13.00 143.96 QUARTZ FELDSPAR PORPH				۰.					
Bleached, argillically	113.00	113.60	0.60	FX 479369	0.068	0.100	9.	1.	15.
altered intrusive. Limonite streaks	113.60	114.10	0.50	FX 479370	0.095	0.100	6.	2.	11.
throughout. Fine pyrite locally.	114.10	114.6	0.50	FX 479371	0.067	0.200	2.	1.	13.
113.00 117.65 Veinlet density decreases to	114.60	115.19	0.59	FX 479372	0.059	0.200	3.	1.	.15.
1 per 10 to 25 centimetres. Up to 5	115.19	115.80	0.61	FX 479373	0.100	0.300	5.	2.	19.
centimetres wide.	115.80	116.5	5 0.75	FX 479374	0.120	0.200	4.	1.	13.
117.65 121.70 Bleached intrusive with	116.55	117.10	0.55	FX 479375	0.120	0.100	7.	1.	21.
irregular network of fractures usually	117.10	117.6	5 0.55	FX 479376	0.270	0.200	11.	2.	.16.
healed by drusy chalcedonic quartz and	117.65	118.20	0.55	FX 479377	0.900	0.400	9.	1.	14.
minor carbonate. At 121.30 metres,	118.20	119.00	0.80	FX 479378	0.075	0.200	3.	1.	11.
thin quartz veinlet with fine grained	119.00	120.10		FX 479379	0.047	0.200	7.	2.	11.
pyrite blebs at 40 degrees to core	120.10	121.20		FX 479380	0.092	0.200	4.	1.	13.
axis.	121.20		0.50	FX 479381	0.130	0.400	4.	1.	26.
Between 117.65 to 130.90	121.70	122.50		FX 479382	0.200	0.300	6.	2.	27.
metres, veinlet density increases	122.50	123.00	0.50	FX 479383	0.068	0.200	4.	1.	15.
slightly. Intense silicification /	123.00	123.7		FX 479384	0.079	0.200	4.	1.	15.
brecciation between 122.50 to 123.00	123.75	124.30	0.55	FX 479385	0.100	0.200	5.	3.	12.

87001-0 PAGE 8

PAGE 9 ** INCO ** **DRILL LOG**

FROM	и то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		m	m	m		РРМ	PPM	PPM	PPM	PPM
	metres.		124.30	125.00	0.70	FX 479386	0.053	0.100	8.	1.	12.
	130.90	136.15 Marked increase in veining	125.00	125.70	0.70	FX 479387	0.039	0.100	3.	2.	16.
	to 1 per	5 - 10 centimetres including	125.70	126.80) 1.10	FX 479388	0.054	0.100	3.	2.	13.
	braided	stockwork replacement zones	126.80	127.40	0.60	FX 479389	0.069	0.200	5.	1.	12.
	between	131.42 to 132.60 metres of	127.40	128.05	5 0.65	FX 479390	0.100	0.300	4.	2.	14.
	white ch	alcedonic. quartz. Some veins	128.05	128.50	0.45	FX 479391	0.065	0.100	5.	3.	13.
	pitted b	y friable white kaolinite,	128.50	129.00	0.50	FX 479392	0.061	0.200	4.	1.	13.
	limonite	and minor carbonate. Locally,	129.00	130.00	1.00	FX 479393	0.022	0.100	4.	1.	16.
	peculiar	reddish brown weathering	130.00	130.50	0.50	FX 479394	0.030	0.100	5.	3.	15.
	mineral	may be goethite - hematite	130.50	130.90	0.40	FX 479395	0.031	0.100	1.	1.	12.
	after fi	ne grained pyrite - magnetite.	130.90	131.42	2 0.52	FX 479396	0.039	0.100	4.	1.	15.
	Overall '	veins show random orientations.	131.42	132.10	0.68	EX 479397	0.043	0.100	7.	3.	16.
	At 132.	70, vuggy hexagonal quartz	132.10	132.6	0.50	FX 479398	0.046	0.100	5.	1.	15.
	crystals	towards centre of vein.	132.60	133.10	0.50	FX 479399	0.058	0.200	4.	1.	12.
	136.15	143.96 Veining decreasing with only	133.10	133.8	0.70	FX 479400	0.054	0.200	2.	2.	7.
	patchy b	eige silica flooding.	133.80	134.20	0.40	FX 479401	0.200	0.200	2.	1.	8.
	Exceptio	n between 138.40 to 139.00	134.20	134.7	0.50	FX 479402	0.110	0.400	2.	1.	8.
	metres w	here chalcedonic quartz veinlet	134.70	135.20	0.50	FX 479403	0.099	0.200	2.	2.	9.
	runs at	5 to 10 degrees to core axis	135.20	136.1	5 0.95	FX 479404	0.140	0.100	3.	1.	12.
	with ver	y fine white carbonate	136.15	137.0	0.85	FX 479405	0.092	0.500	3.	1.	17.
	selvages	. Rusty limonite streaks	137.00	138,5	1.50	FX 479406	0.057	0.300	3.	3.	25.
	througho	ut. At 139.52 metres, black	138.50	139.0	0.50	FX 479407	0.130	0.600	3.	2.	7.
	streaks	of very fine grained pyrite	139.00	139.7	0.70	FX 479408	0.130	0.400	2.	2.	15.
	noted in	siliceous matrix.	139.70	140.2	0.50	FX 479409	0.038	0.200	3.	1.	10.
			140.20	140.7	0.50	FX 479410	0.110	0.300	5.	3.	22.
			140.70	141.4	0.70	FX 479411	0.110	0.500	4.	2.	8.
			141.40	142.1	0.70	FX 479412	0.120	0.400	1.	2.	16.
			142.10	142.8	0.70	FX 479413	0.042	0.300	2.	1.	9.
			142.80	143.9	5 1.16	FX 479414	0.041	0.400	5.	3.	14.
143.9	96 146.5	0 FAULT									
	Ru	sty limonite along	143.96	145.0	8 1.12	FX 479415	0.088	0.400	3.	2.	11.
	fracture	running 5 to 10 degrees to	145.08	146.5	0 1.42	FX 479416	0.088	0.800	4.	2.	16.
l	coro avi	e Also frieble gouge -									

core axis. Also, friable gouge -

87001-0

FROM

то

DESCRIPTION

PAGE 10 ** INCO ** **DRILL LOG**

SAMPLE#

AU

PPM

AG

PPM

CU

PPM

MO

PPM

PB

PPM

FROM

TO LENGTH

m

 kaolinite clay material. Traces of irregular cross cutting veinlets. 146.50 197.55 QUARTZ FELDSPAR PORPH 146.50 154.00 Weak to moderate veining generally< 2 centimetres wide with 147.00 148.13 locally pronounced limonitic 148.13 148.80 microfracturing that cross cuts 148.80 149.95 veinlets. Braided veinlets carry 149.95 151.18 traces of carbonate, kaolinite 151.60 152.20 pyrite. Faint banding and vuggy quartz 152.85 153.22 154.00 173.32 Pronounced decrease in 154.00 154.70
146.50197.55QUARTZ FELDSPAR PORPH146.50154.00Weak to moderate veining146.50generally< 2 centimetres wide with
146.50154.00Weak to moderate veining146.50147.00generally< 2 centimetres wide with
generally< 2 centimetres wide with
locally pronounced limonitic148.13148.80microfracturing that cross cuts148.80149.95veinlets. Braided veinlets carry149.95151.18traces of carbonate, kaolinite151.18151.60alteration and very fine grained151.60152.20pyrite. Faint banding and vuggy quartz152.85153.22154.00173.32Pronounced decrease in153.22
microfracturing that cross cuts148.80149.95veinlets. Braided veinlets carry149.95151.18traces of carbonate, kaolinite151.18151.60alteration and very fine grained151.60152.20pyrite. Faint banding and vuggy quartz152.85152.85sometimes evident.152.85153.22154.00173.32Pronounced decrease in153.22
veinlets. Braided veinlets carry149.95151.18traces of carbonate, kaolinite151.18151.60alteration and very fine grained151.60152.20pyrite. Faint banding and vuggy quartz152.20152.85sometimes evident.152.85153.22154.00173.32Pronounced decrease in153.22
traces of carbonate, kaolinite151.18151.60alteration and very fine grained151.60152.20pyrite. Faint banding and vuggy quartz152.20152.85sometimes evident.152.85153.22154.00173.32Pronounced decrease in153.22154.00173.32Pronounced decrease in153.22
alteration and very fine grained151.60152.20pyrite. Faint banding and vuggy quartz152.20152.85sometimes evident.152.85153.22154.00173.32Pronounced decrease in153.22154.00153.22154.00
pyrite. Faint banding and vuggy quartz 152.20 152.85 sometimes evident. 152.85 153.22 154.00 173.32 Pronounced decrease in 153.22 154.00
sometimes evident. 152.85 153.22 154.00 173.32 Pronounced decrease in 153.22 154.00
154.00 173.32 Pronounced decrease in 153.22 154.00
veining and secondary silica 154.00 154.70
replacement. Argillic bleaching 154.70 155.40
predominates such that intrusive 155.40 156.20
texture barely recognizable. Only 156.20 157.05
traces of limonite evident. 157.05 158.00
Between 156.60 to 157.05 158.00 159.00
metres, cross cutting veinlets offset 159.00 160.00
by fine limonitic fractures. Very fine 160.00 161.00
clay alteration along margins, minor 161.00 162.00
carbonate. At 161.90 metres, 162.00 163.05
microfractured veinlet breccia zone 163.05 164.00
with traces of kaolinite plus carbonate 164.00 164.60
alteration. Also at 164.10 metres, 164.60 165.60
sharp fracture plane with clay 165.60 166.05

kaolinite clay material. Trace	s of								
irregular cross cutting veinlet									
.50 197.55 QUARTZ FELDSPAR PORP									
146.50 154.00 Weak to modera	te veining 146.50	147.00	0.50	FX 479417	0.056	0.600	1.	1.	17.
generally< 2 centimetres wide w		148.13	1.13	FX 479418	0.061	0.300	3.	3.	5.
locally pronounced limonitic	148.13	148.80	0.67	FX 479419	0.130	1.400	3.	1.	11.
microfracturing that cross cuts	148.80	149.95	1.15	FX 479420	0.037	0.400	4	2.	12.
veinlets. Braided veinlets car	гу 149.95	151.18	1.23	FX 479421	0.048	0.600	2.	1.	7.
traces of carbonate, kaolinite	151.18	151.60	0.42	FX 479422	0.093	0.600	9.	3.	13.
alteration and very fine graine	d 151.60	152.20	0.60	FX 479423	0.074	0.200	2.	1.	15.
pyrite. Faint banding and vugg	y quartz 152.20	152.85	0.65	FX 479424	0.080	0.200	4.	2.	8.
sometimes evident.	152.85	153.22	0.37	FX 479425	0.029	0.200	3.	1.	8.
154.00 173.32 Pronounced dec	rease in 153.22	154.00	0.78	FX 479426	0.130	0.600	4.	3.	24.
veining and secondary silica	154.00	154.70	0.70	FX 479427	0.017	0.200	6.	1.	8.
replacement. Argillic bleachin	g 154.70	155.40	0.70	FX 479428	0.039	0.400	4.	2.	9.
predominates such that intrusiv	e 155.40	156.20	0.80	FX 479429	0.049	0.300	4.	1.	7.
texture barely recognizable. O	nly 156.20	157.05	0.85	FX 479430	0.027	0.600	6.	3.	13.
traces of limonite evident.	157.05	158.00	0.95	FX 479431	0.049	0.300	2.	1.	14.
Between 156.60 to 157.05	158.00	159.00	1.00	FX 479432	0.020	0.300	1.	1.	27.
metres, cross cutting veinlets	offset 159.00	160.00	1.00	FX 479433	0.029	0.300	3.	1.	15.
by fine limonitic fractures. V	ery fine 160.00	161.00	1.00	FX 479434	0.062	0.200	2.	2.	13.
clay alteration along margins,	minor 161.00	162.00	1.00	FX 479435	0.068	0.400	2.	1.	14.
carbonate. At 161.90 metres,	162.00	163.05	1.05	FX 479436	0.087	0.500	5.	3.	8.
microfractured veinlet breccia	zone 163.05	164.00	0.95	FX 479437	0.019	0.400	5.	1.	8.
with traces of kaolinite plus c	arbonate 164.00	164.60	0.60	FX 479438	0.034	0.300	5.	3.	8.
alteration. Also at 164.10 met	res, 164.60	165.60	1.00	FX 479439	0.023	0.100	3.	1.	22.
sharp fracture plane with clay	165.60	166.05	0.45	FX 479440	0.097	0.400	2.	2.	9.
alteration at 20 degrees to cor	e axis. 166.05	167.51	1.46	FX 479441	0.019	0.200	3.	1.	17.
Weak stockwork at 165.70 metres	with 167.51	169.03	1.52	FX 479442	0.006	0.300	4.	2.	10.
fine spots of reddish hematite	locally 169.03	171.43	2.40	FX 479443	0.006	0.100	3.	2.	11.
within bleached intrusive matri	x. At 171.43	172.00	0.57	FX 479444	0.005	0.100	3.	2.	24.
170.90 to 171.10, broken core w	ith 172.00	173.32	1.32	FX 479445	0.080	0.500	1.	2.	11.
rusty limonite throughout. Som	e clay 173.32	174.00	0.68	FX 479446	0.074	0.300	2.	2.	27.
2									

87001-0

PAGE 11 ** INCO ** **DRILL LOG**

FRO	м то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB	
m	m		m	m.	m		PPM	PPM	PPM	PPM	PPM	
	alterat	tion.	174.00	175.0	0 1.00	FX 479447	0.078	2.300	4.	3.	9.	
	173.32	2 176.66 Moderate to strong, cro	eamy 175.00	175.5	6 0.56	FX 479448	0.086	0.600	5.	2.	7.	
	beige t	o dirty white silica replacement	175.56	176.1	5 0.59	FX 479449	0.200	0.200	7.	2.	11.	
	exhibit	ing good brecciation. Some	176.15	176.6	6 0.51	FX 479450	0.064	0.100	4.	3.	8.	
	clasts	appear to be re - silicified.	176.66	177.6	6 1.00	FX 479451	0.072	0.100	4.	2.	14.	
	Sharp b	ooundary between silica fronts	177.66	179.0	3 1.37	FX 479452	0.033	0.100	2.	2.	11.	
	noted a	at 175.90 metre interval. Traces	179.03	180.5	3 1.50	FX 479453	0.045	0.100	3.	2.	15.	
	of pyri	ite, limonite and white kaolinite	180.53	181.9	0 1.37	FX 479454	0.004	0.100	3.	2.	10.	
	alterat	tion.	181.90	183.7	0 1.80	FX 479455	0.007	0.200	6.	2.	8.	
	176.68	5 197.55 Whitish, bleached intro	usive 183.70	184.9	0 1.20	FX 479456	0.007	0.100	2.	4.	7.	
	shows i	intense but locally variable	184.90	186.3	5 1.45	FX 479457	0.008	0.200	5.	2.	12.	
	degrees	s of microfracturing and argillic	186.35	187.7	6 1.41	FX 479458	0.002	0.200	2.	2.	10.	
	alterat	ion but only trace amounts of	187.76	189.2	0 1.44	FX 479459	0.006	0.100	2.	2.	11.	
	veining	, limonite staining and silica	189.20	190.7	0 1.50	FX 479460	0.003	0.100	3.	1.	15.	
	floodir	ng. Fairly massive looking but	190.70	192.1	0 1.40	FX 479461	0.004	0.100	7.	3.	11.	
	general	ly shattered by fine	192.10	193.8	5 1.75	FX 479462	0.001	0.200	4.	2.	11.	
	microfr	acturing throughout. At 191.52	193.85	195.3	0 1.45	FX 479463	0.001	0.100	3.	2.	10.	
	metres,	coarse grained cataclasite	195.30	196.5	0 1.20	FX 479464	0.001	0.100	3.	1.	7.	
	breccia	a in dark black, semi - hard	196.50	197.5	5 1.05	FX 479465	0.001	0.100	5.	2.	5.	
	matrix.	Between 193.85 to 195.50										
	metres,	greenish hues around feldspars										
	possibl	y clay - sericite alteration.										
	Also, a	a few slickensided fractures with										
	black g	raphitic material at 60 degrees										
	to core	e axis.										
197.5	55 198.	00 FELSITE										
	c)live green colour,	197.55	198.0	0 0.45	FX 479466	0.001	0.200	5.	1.	6.	
	aphanit	ic, felsite dike at 45 degrees										
	•	axis. Some graphitic fracture										
	parting											
198.0	•	32 QUARTZ FELDSPAR PORPH										
	198.00	201.30 Some broken core.	198.00	199.0	0 1.00	FX 479467	0.001	0.100	4.	2.	12.	
	Essenti	ally intensely bleached quartz	199.00		5 0.95	FX 479468	0.018	0.100	4.	2.	9.	

87001-0

	PAGE	12
**	INCO	**
[RILL	LOG

FRO	M TO DESCRIP	TION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	МО	РВ	
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM	
	monzonite with several	rusty fractures	199.95	200.50	0.55	FX 479469	0.015	0.100	6.	2.	8.	
	cutting along core axis	. Gouge near	200.50	201.30	0.80	FX 479470	0.009	0.100	6.	2.	7.	
	contact with felsite.	Prominent	201.30	202.80	1.50	FX 479471	0.016	0.100	4.	2.	9.	
	limonite staining. Tra	ces of fine	202.80	203.20	0.40	FX 479472	0.032	0.500	3.	2.	5.	
	pyrite.		203.20	204.30	1.10	FX 479473	0.076	0.200	6.	2.	6.	
	201.30 202.80 White,	clay altered	204.30	205.50	1.20	FX 479474	0.037	0.500	4.	2.	10.	
	intrusive.		205.50	206.32	0.82	FX 479475	0.015	0.200	5.	2.	8.	
	202.80 203.20 Rusty	zone with gouge along										
	fracture shear plane at	: 30 degrees to										
	core axis.											
	203.20 206.32 Microf	racturing throughout.										
	Barely recognizable int	rusive rock with		-								
	some autobrecciation wi	thin siliceous										
	matrix. Sharp lower co	ntact with										
	cataclasite suggests qu	artz feldspar										
	porphyry unit may be a	large dike or										
	semi - concordant sill	type body.										
206.	32 223.11 CATACLASITE											
	Cataclastically c	leformed	206.32	206.90	0.58	FX 479476	0.008	0.900	265.	24.	2.	
	(foliated) chloritic ir	ntrusive of	206.90	206.91	0.01	FX 479477	0.032	0.800	235.	29.	5.	
	quartz monzonite compos	ition. Ragged	206.91	209.09	2.18	FX 479478	0.022	0.400	70.	23.	7.	
	contact with quartz fel	dspar porphyry	209.09	210.30	1.21	FX 479479	0.026	0.800	117.	44.	4.	
	at 60 degrees to core a	ixis. Marked by	210.30	218.24	7.94	NS						
	fine quartz - pyrite ve	inlets within 30	218.24	219.55	1.31	FX 479480	0.012	0.500	92.	14.	5.	
	centimetres of slightly	/ bleached	219.55	223.11	3.56	NS						
	contact. Broken core a	it 206.40 metres,										
	possible fault.											
	Crystalline rock	poorly to										
	moderately foliated wit	h frequent										
	calcite streaks. Fine	grained pyrite										
	generally throughout.	Broken core,										
	possible fault also at	214.70 metres.										
	At 218.85 metres, irreg	jular quartz										

87001-0				PAGE 13 ** INCO ** **DRILL LOG**							870				
FROM m	TO	DESCRIPTION	FROM	TO M	LENGTH	SAMPLE#	AU PPM	AG PPM	CU PPM	MO	PB PPM				

carbonate vein cross cutting strained, chloritized fabric.

PAGE 13

)							\square)
87002-0			PAGE 1								87002-0	
			** INCO **									
			**DRILL LOG*	*								
BOREHOLE :87002-0										PRINT DATE	:13-SEP-19	91 09:22
PROJECT : Outback												
PROPERTY NAME: Outback Claim Group												-
•	rture :	5785.00E		Elevati		: 1371				Hole length	: 172.5	2m
		M. Bohme		Assay r	req. :	: Au, 30	element	ICP		Level	:	• .
	-	ger's Drillir		Test Me		-	luoric a	cid		Dip	: -60	
		S-Boyles Supe		Started		: JUNE 2				BL azimuth	: 32000	
		Thin Kerf /	BTW (43 mm)	Complet		: JULY 1					: 32000	
Claim # : 5332 Sect	1on : 42	+50 S		Grid na	ame :	: Cliff	Zone			Heading	:	
0.00 320.00 -6 Comments : **** Left in H Same set	*****	22 320.00 - ***********************************	57.00 17. ************** 0.	•	.00 -57		depth	azm	dip		· · · · · · · · · · · · · · · · · · ·	
FROM TO DESCRIPTION	FROM	TO LENGTH			AG	CU	мо	PB	,			
m m	m	m m		PPM	PPM	PPN	PPM	PPM				
0.00 1.83 CASING												
Overburden	0.00	1.83 1.83	NS									
1.83 22.55 QUARTZ MONZONITE								·	-			
Variably fractured,	1.83	7.20 5.37				_		-				
propylitized quartz monzonite with very	7.20		FX 479481		0,100	8.	1.	2.				
finely disseminated pyrite generally	8.30		FX 479482		0.100	5.	1.	2.				
throughout.	9.10	10.00 0.90			0.300	41.	1.	2.				
1.83 7.20 Frequent broken core	10.00	11.20 1.20			0.200	10. o	1. 1.	2.				
sections. A few semi-continuous carbonate rich fractures.	11.20	12.00 0.80			0.100 0.100	9. 38	1.	2.				
7.20 12.20 Fairly massive quartz	12.00 12.60	12.60 0.60 13.70 1.10			0.100	38. 20.	1.	2. 3.				
monzonite cut by irregular quartz	12.80	14.95 1.25			0.100	20.	1.	2.				
. Holisofite out by friegutal quarts		17170 1160	1A 717740	41043 (FA.	••	L •	,			
87002-0											8	7002-0

1

87002-0 PAGE 1

PAGE 2 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	τοι	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m	m		m	, M	m		PPM	PPM	PPM	PPM	PPM
ca	rbonate vein	lets every 5 - 10	14.95	15.85	0.90	FX 479489	0.003	0.100	34.	1.	3.
cei	ntimetres and	d generally trending 30	15.85	16.50	0.65	FX 479490	0.001	0.100	12.	1.	5.
de	grees to cor	e axis. At 10.85 metres,	16.50	16.88	0.38	FX 479491	0.001	0.100	7.	1.	2.
ve	ry fine brow	nish chalcedony streak	16.88	17.70	0.82	FX 479492	0.260	0.100	26.	2.	2.
cal	rries pinhea	d pyrite disseminated	17.70	18.60	0.90	FX 479493	0.001	0.200	37.	1.	3.
pa	rallel to ca	rbonate veinlet.	18.60	20.10	1.50	FX 479494	0.001	0.200	28.	1.	3.
	12.20 13.70	0 Wavy, braided quartz	20.10	21.10	1.00	FX 479495	0.002	0.100	25.	17.	2.
ca	rbonate vein	let runs down core axis.	21.10	22.55	1.45	FX 479496	0.004	0,300	35.	2.	3.
Bro	own hematite	streaks along margins.									
Miı	nor brecciat	ion.									
	13.70 18.8	0 Patchy epidote alteration.									
Mod	derate degree	e of veining exhibiting									
sha	arp kinking a	and slight offsets.									
,	18.80 22.5	5 Decrease in millimetre size									
ve	inlets. Som	e narrow bands of 🤇									
cat	aclasite.										
22.55	23.72 CAT	ACLASITE									
	Dark gray	y / black, fine	22.55	23.72	1.17	FX 479497	0.350	0.300	63.	1.	2.
gra	ained catacla	asite with generally well									
dev	veloped folia	ation roughly									
рен	pendicular	to core axis.									
Dis	scontinuous s	seams of epidote and fine									
cal	cite common.	. Very fine magnetite.									
23.72	26.21 QUAR	RTZ MONZONITE									
	Mixed sec	ction of porphyritic	23.72	24.38	0.66	FX 479498	0.001	0.200	29.	1.	4.
qua	rtz monzonii	te and intercalated bands	24.38	25.20	0.82	FX 479499	0.068	0.300	89.	1.	2.
of	chloritic ca	ataclasite. Small wispy	25.20	26.21	1.01	FX 479500	0.007	0.300	59.	1.	2.
qua	ntz carbonat	te veinlets in places.									
26.21	27.82 CATA										
	Fine grai	ined cataclasite.	26.21	27.30	1.09	FX 479501	0.630	0.300	33.	1.	2.
?Му	lonitic in p	blaces. Fine pyrite -	27.30	27.82	0.52	FX 479502	0.350	4.700	214.	41_	8.
	netite throu										
_	7 70 07 55	- Our such a traditional states and the such a such as the such as									

27.30 27.55 Crenulated quartz carbonate

7002-0

7002-0

DRILL LOG

FROM	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		M	m	៣		PPM	PPM	PPM	PPM	PPM
	replacemer	* 707-									
27.82	•	QUARTZ MONZONITE									
21.02		ly weak to moderately	27.82	20 00	1 1 1 2	FX 479503	0.002	0.200	31.	. 1.	3.
		strained quartz monzonite.	29.00	30.00		FX 479504	0.002	0.200	43.	2.	7.
		ractured. Patchy epidote	30.00	30.90		FX 479505	0.001	0.100	20.	2.	4.
	alteration	•••	30.90	31.60		FX 479506	0.002	0.100	15.	1.	4.
		30.90 Trace amounts of quartz	31.60	32.62			0.230	0.200	73.	1.	3.
	carbonate	-	32.62	33.55		FX 479508	0.041	0.100	32.	1.	2.
_		31.60 A few irregular quartz	33.55	34.90		FX 479509	0.001	0.300	5.	1.	2.
c		veinlets up to 1 centimetre	34.90	36.00		FX 479510	0.010	0.100	7.	1.	5.
	wide.		36.00	36.75	0.75	FX 479511	0.004	0.300	16.	1.	3.
		36.00 Several narrow cataclasite	36.75	37.25		FX 479512	0.260	0.500	24.	1.	2.
t	oands. Sc	ant traces of veining. Some	37.25	37.70		FX 479513	0.011	0.600	125.	1.	2.
c	coarse gra	ined quartz segregations with	37.70	38.65	0.95	FX 479514	0.220	0.400	40.	1.	4.
f	fresh horn	blende.	38.65	39.38	0.73	FX 479515	0.310	0.300	29.	1.	7.
	36.00	41.45 Fine stringers increases to	39.38	39.80	0.42	FX 479516	0.290	0.600	51.	1.	5.
1	l per 5 to	10 centimetres. Light gray	39.80	40.32	0.52	FX 479517	1.030	3.600	21.	1.	10.
t	to white b	arren quartz with finely	40.32	41.10	0.78	FX 479518	0.111	0.500	10.	1.	3.
b	oladed car	bonate and possible fine	41.10	41.45	0.35	FX 479519	0.123	0.300	14.	1.	6.
g	grained fe	ldspars. Fine to medium	41.45	42.47	1.02	FX 479520	0.067	0.300	25.	2.	5.
g	grained bl	ebby pyrite generally	42.47	43.00	0.53	FX 479521	0.050	0.300	22.	2.	2.
t	throughout	thin cataclasite sections.	43.00	44.25	1.25	FX 479522	0.010	0.100	15.	. 1.	2.
· B	Between 40	.70 to 41.10, white quartz									
c	carbonate	vein breccia patch up to 12									
c	centimetre	s across shows fine grayish									
c	halcedony	towards margins and around									
c	clasts. F	aint colloform banding.									
	41.45	44.25 A few carbonate rich									
f	ractures	with fine grained pyrite.									
44.25	47.65	CATACLASITE									
		ly dense chloritic rock	44.25	45.00	0.75	FX 479523	0.005	0.200	59.	1.	2.
С	arries up	to 1% pyrite. Patchy	45.00	46.50	1.50	FX 479524	0.007	0.500	89.	2.	6.
е	pidote -	pyrite rich sections. Trace	46.50	47.65	1.15	FX 479525	0.820	20.200	599.	5.	5.

87002-0

PAGE 4 ** INCO ** **DRILL LOG**

FROM	TO DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m	m	m	m	m		PPM	PPM	PPM	PPM	PPM
	· · · · · · · · · · · · · · · · · · ·									
	nounts of quartz carbonate veinlets.									
47.65	69.47 QUARTZ MONZONITE	/7 /5	10 7		FV /7050/	0.7/0	4 000	24		,
41	Moderate propylitization	47.65	48.7		FX 479526	0.360	1.200	26.	1.	4.
	roughout. Some thin cataclastically	48.70	49.8		FX 479527	0.290	1.800	77.	1.	5.
	liated sections with up to 1 to 3%	49.85	50.6		FX 479528	0.038	0.400	13.	3.	3.
	vrite.	50.60	51.5		FX 479529	0.028	0.800	12.	2.	4.
	48.70 52.62 Several thin quartz	51.57	52.62		FX 479530	0.500	2.400	32.	1.	4.
	rbonate veinlets cross cutting coarse	52.62	53.9		FX 479531	0.310	0.900	21.	1.	4.
gr	ained quartz knots and segrgations.	53.95	54.8	5 0.90	FX 479532	0.670	1.500	42.	179.	6.
So	wme broken core due to fracturing.	54.85	56.00	0 1.15	FX 479533	0.320	1.800	26.	10.	2.
	52.62 56.95 Weak to moderate foliation	56.00	56.95	5 0.95	FX 479534	0.050	0.300	11.	3.	4.
พา	th occasional quartz carbonate	56.95	58.31	1 1.36	FX 479535	0.810	0.800	30.	1.	3.
ve	inlet roughly parallel to fabric.	58.31	59.00	0.69	FX 479536	0.129	1.000	8.	3.	2.
Fr	equent pyrite streaks as thin	59.00	59.74	4 0.74	FX 479537	0.081	0.400	21.	1.	2.
ра	rtings.	59.74	60.42	2 0.68	FX 479538	0.940	8.700	30.	2.	3.
	56.95 69.33 Significant increase in	60.42	61.00	0.58	FX 479539	1.390	8.000	26.	1.	3.
ch	alcedonic veining including moderate	61.00	61.50	0.50	FX 479540	1.160	7.800	39.	3.	4.
st	ockworking and small scale	61.50	62.00	0.50	FX 479541	0.051	0.100	6.	1.	2.
br	ecciation. Between 57.70 - 62.00	62.00	62.79	0.79	FX 479542	0.028	0.400	11.	1.	2.
me	tres, good braided - stockwork	62.79	63.97	7 1.18	FX 479543	0.072	0.800	46.	2.	5.
fe	atures hosted in a pale, somewhat	63.97	64.52	2 0.55	FX 479544	2.160	1.400	34.	3.	3.
	eached quartz monzonite. Whitish	64.52	65.10	0.58	FX 479545	0.049	0.400	25.	1.	2.
	rbonate common. Weak banding	65.10	65.84		FX 479546	0.063	0.200	21.	2.	5.
	dicated by pale green to white	65.84	66.84	· · · · ·	FX 479547	0.350	0.300	11.	1.	5.
	loured epithermal - looking quartz.	66.84	67.40		FX 479548	0.370	1,300	29.	2.	4.
	ry fine pyrite noted within a few	67.40	68.00		FX 479549	0.490	0.400	16.	2.	5.
	liceous sections.	68.00	68.88		FX 479549	0.120	0.500	27.	1.	2.
51	Between 62.00 to 68.88	68.88		7 0.59	FX 479550 FX 479551	0.520	1.700	18.	1.	z. 3.
	Between 02.00 to 00.00	00,00	07.4/	0.59	FA 479331	0.520	1.700	10.	1.	э.

87002-0

metres, slight decrease in veinlet density; also more carbonate rich. At 68.88 to 69.47 metres, numerous

disrupted and autobrecciated granitoid clasts in secondary siliceous matrix.

PAGE 5 ** INCO ** **DRILL LOG**

FROM TO DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m m	ព	m	M		PPM	PPM	PPM	PPM	PPM
Small islands of carbonate and									
extremely fine pyrite noted.									
69.47 69.90 QUARTZ VEIN			C						
Micro - fractured quartz	69.47	69.90	0.43	FX 479552	0.087	0.900	6.	4.	2.
vein with fine chlorite and carbonate -									
clay minerals along fractures. Minor									
pyrite along sheared contact margins									
trending 50 degrees to core axis.									
69.90 84.60 QUARTZ MONZONITE									
Strong propylitization.	69.90	70.40	0.50	FX 479553	0.410	0.400	29.	1.	2.
Feldspars slightly clay altered.	70.40	70.90	0.50	FX 479554	0.056	0.200	17.	1.	6.
69.90 74.76 Fairly well veined section	70.90	71.50	0.60	FX 479555	0.091	0.100	20.	1.	5.
similar to 56.95 to 69.33 metre	71.50	72.10	0.60	FX 479556	0.130	0.700	57.	1.	9.
interval. Vein and siliceous breccia	72.10	72.70	0.60	FX 479557	0.200	0.200	16.	1.	2.
zones show some crude banding between	72.70	73.00	0.30	FX 479558	0.017	0.300	13.	2.	6.
white, gray and gray - green	73.00	73.50	0.50	FX 479559	0.074	0.800	25.	1.	3.
chalcedonic flooding. Fine grained	73.50	74.10	0.60	FX 479560	0.100	0.400	9.	3.	7.
calcite common. Also very fine pyrite.	74.10	74.76	0.66	FX 479561	0.026	0.300	23.	1.	6.
	74.76	75.62	0.86	FX 479562	0.120	0.200	43.	1.	2.
74.76 83.20 Significant veining up to 2	75.62	76.30	0.68	FX 479563	0.023	0.100	22.	1.	9.
centimetres wide still present but more	76.30	77.00	0.70	FX 479564	0.640	1.200	20.	1.	2.
widely spaced. Generally trending 30 -	77.00	77.50	0.50	FX 479565	0.130	1.000	7.	1.	3.
50 degrees to core axis. In places	77.50	78.02	0.52	FX 479566	0.470	0.400	14.	1.	6.
quartz monzonite grades into fine	78.02	78.45		FX 479567	0.450	0.700	16.	1.	4.
grained micro - granite and shows only	78.45	79.00		FX 479568	0.120	0.200	18.	1.	5.
traces of veining. At 82.15 and 82.35	79.00	79.60	0.60	FX 479569	0.087	0.400	20.	1.	4.
metres, siliceous vein breccia with	79.60	80.20	0.60	FX 479570	0.046	0.200	86.	1.	2.
bleached intrusive breccia fragments	80.20	81.07		FX 479571	0.042	0.200	59.	1.	4.
and finely bladed calcite throughout.	81.07	81.60		FX 479572	0.220	1.100	52.	2.	5.
Peculiar purple - gray siliceous matrix	81.60	82.10		FX 479573	0.310	0.500	100.	1.	5.
noted.	82.10		0.63	FX 479574	0.980	18.200	64.	1.	7.
Between 82.35 to 84.60	82.73	83.20		FX 479575	0.027	0.300	24.	1.	2.
metres, granitoid gradually becomes	83.20	83.90	0.70	FX 479576	0.240	0.900	76.	2.	5.

87002-0

7002-0

PAGE 6 ** INCO ** **DRILL LOG**

FROM	TO	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	PB	
m	m	х.	m	m	m		PPM	PPM	PPM	PPM	PPM	
n	nore bleach	ned. Cut by white to black	83.90	84.20	0.30	FX 479577	0.210	1.000	28.	1.	4.	
		veinlets. Weakly banded.	84.20	84.60	0.40	FX 479578	0.340	1.500	62.	98.	3.	
A	t 83.75 me	etres, chalcedonic silica										
r	eplacement	breccia zone with fine										
4	oyrite bleb	os towards margins. Some										
4	atchy blac	k alteration along ragged										
S	elvages of	veinlets may be very fine										
g	rained pyr	itic sulfides.										
84.60	103.79	QUARTZ FELDSPAR PORPH										
	Prono	unced argillic	84.60	85.00	0.40	FX 479579	0.400	3,200	7.	2.	7.	
b	leaching a	s described in BH 87001-0	85.00	85.40	0.40	FX 479580	0.058	0.500	3.	2.	4.	
, t		tional contact.	85.40		0.40	FX 479581	0.110	0.600	4.	2.	5.	
	84.60 8	7.20 Broken up, disjointed, white	85.80	86.20	0.40	FX 479582	0.130	0.500	4.	1.	7.	
	- /	oured chalcedonic quartz	86.20	86.70	0.50	FX 479583	0.270	1.600	3.	1.	.11.	
		Fine microfracturing	86.70	87.20	0.50	FX 479584	1.020	0.900	45.	2.	13.	
	-	Minor limonite. Some fine	87.20	87.91	0.71	FX 479585	0.610	1.400	35.	2.	14.	
-	••	ite within argillic matrix.	87.91	88.50	0.59	FX 479586	0.250	0.500	2.	1.	11.	
S		kaolinite at 86.55 metres.	88.50	89.40	0,90	FX 479587	0.230	0.200	1.	1.	13.	
		7.80 Broken core. Rusty, friable	89.40	90.22	0.82	FX 479588	0.086	0.500	2.	3.	17.	
	-	tion along limonitic	90.22	91.25	1.03	FX 479589	0.220	0.200	1.	2.	15.	
f	ractures.		91.25	92.00	0.75	FX 479590	0.180	0.100	1.	1.	4.	
		1.25 Moderate to well silicified	92.00	92.79	0.79	FX 479591	0.280	0.200	2.	1.	9.	
		uch that only relict glassy	92.79	93.27	0.48	FX 479592	0.063	0.100	2.	3.	12.	
•	•	readily identifiable.	93.27	94.21	0.94	FX 479593	0.053	0.100	1.	2.	6.	
		fresh pyrite clots.	94.21	95.10	0.89	FX 479594	0.078	0.200	2.	1.	7.	
· P		ult at 91.30 metres.	95.10	96.32	1.22	FX 479595	0.034	0.100	2.	1.	5.	
		6.32 Weak to moderate drusy white	96.32	97.00	0.68	FX 479596	0.055	0.100	2.	3.	9.	
		lets generally cross cutting	97.00	97.80	0.80	FX 479597	0.044	0.100	1.	2.	9.	
		es to core axis. Limonite	97.80	98.56	0.76	FX 479598	0.095	0.100	2.	1.	5.	
S	treaks.		98.56	99.36	0.80	FX 479599	0.036	0.100	2.	1.	4.	
-		7.00 Irregular, vuggy quartz vein	99.36	100.40	1.04	FX 479600	0.021	2.900	3.	3.	27.	
- f(ollows core		100.40	101.00	0.60	FX 479601	0.074	0.100	1.	2.	12.	
	97.00 100	.40 Sporadic quartz veining.	101.00	101.48	0.48	FX 479602	0,083	0.100	2.	1.	3.	

87002-0

87002-**0**

87002-0 Page 6

PAGE 7 ** INCO ** **DRILL LOG**

FRO	M	то	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	I	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	Stron	gly fract	ured between 99.82 to	101.48	102.00	0.52	FX 479603	0.053	0.300	3.	1.	35.
	99.98	metres w	ith fine pyrite	102.00	102.50	0.50	FX 479604	0.110	0.100	2.	3.	13.
	strin	gers.		102.50	102.95	0.45	FX 479605	0.059	0.100	1.	1.	7.
	100.	40 103.7	9 Extremely well veined	102.95	103.79	0.84	FX 479606	0.110	0.100	1.	1.	43.
			ceous crackle breccia									
	zone	between 1	00.55 to 101.48 metres.									
	From	102.50 to	102.95 metres, total									
	silic	ification	with greenish sericitic									
			granitoid clasts, Some									
		ish carbo										
103.	79 10	4.57 QUA										
			looded - quartz vein	103.79		0.44	FX 479607	0.066	0.100	3.	1.	10.
			uggy cavities and pitted,	104.23	104.57	0.34	FX 479608	0.230	0,600	4.	11.	26.
			carbonate - feldspar									
			sulfides. Faint banding.									
		•	silica deposition									
	indic											
104.			RTZ FELDSPAR PORPH									
			0 Weak to moderate veining,	104.57	105.46		FX 479609	0.060	0.100	1.	1.	11.
		•	looding within totally	105.46	106.00		FX 479610	0.074	0.200	1.	1.	10.
			intrusive rock. Traces	106.00	106.60		FX 479611	0.260	0.600	1.	1.	21.
			e as fine grained blebs.	106.60	107.20		FX 479612	0.140	0.200	1.	1.	12.
		•	ca is typically a buff	107.20	107.90		FX 479613	0.073	0.200	1.	1.	11.
	-		ith small patches of	107.90	108.51			0.046	0.100	2.	1.	13.
			e and soft kaolinite.	108.51	109.00		FX 479615	0.072	0.300	2.	1.	19.
			9 Mostly massive well bleached	109.00	110.09		FX 479616	0.013	0.100	2.	2.	18.
		-	casional cross cutting	110.09	111.00		FX 479617	0.093	0.100	1.	1.	10.
			to moderate	111.00	111.70		FX 479618	0.080	0.200	1.	1.	14.
			g. Traces of oxidized	111.70	112.00		FX 479619	0.032	0.100	1.	1.	12.
		itic sulfi		112.00	112.80		FX 479620	0.045	0.300	2.	3.	8.
			7 Moderately well veined	112.80	114.60		FX 479621	0.170	0.300	1.	1.	8.
			ood cream coloured	114.60	115.89		FX 479622	0.080	0.200	1.	1.	13.
	SILICI	Tication	particularly between	115,89	116.60	0.71	FX 479623	0.150	0.200	1.	1.	19.

87002-0

002-0

87002-0 PAGE 7

PAGE 8 ** INCO ** **DRILL LOG**

FRO	DN TO DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
តា	"	m	m	m		PPM	PPM	PPM	PPM	PPM
	119.20 to 120.80 metres. Veining	116.60	117.10	0.50	FX 479624	0.063	0.100	2.	2.	9.
	locally braids forming silica matrix	117.10	117.90	0.80	FX 479625	0.029	0.100	9.	1.	12.
	breccia. Trace of very fine grained	117.90	118.70	0.80	FX 479626	0.026	0.100	2.	1.	11.
	pyrite. Vuggy sections with fine	118.70	119.20	0.50	FX 479627	0.022	0.200	3.	1.	8.
	hexagonal quartz crystals, carbonate or	119.20	119.70	0.50	FX 479628	0.099	0.300	4.	3.	11.
	kaolinite. From 123.95 to 126.97	119.70	120.30	0.60	FX 479629	0.084	0.100	4.	1.	5.
	metres, limonitic oxidization common	120.30	120.80	0.50	FX 479630	0.048	0.100	5.	1.	10.
	within pale, bleached intrusive matrix.	120.80	121.20	0.40	FX 479631	0.096	0.200	3.	1.	8.
	Dark black microfractures occasionally	121.20	121.80	0.60	FX 479632	0.052	0.200	4.	2.	6.
	form a narrow cross cutting network.	121.80	122.50	0.70	FX 479633	0.170	0.100	1.	1.	5.
	126.97 127.61 Fine rusty fractures forming	122.50	122.90	0.40	FX 479634	0.110	0.100	2.	1.	6.
	crackle texture.	122.90	123.28	0.38	FX 479635	0.100	0.100	6.	1.	3.
	127.61 136.80 Marked decrease in veining	123.28	123.75	0.47	FX 479636	0.094	0.200	5.	3.	12.
	to approximately 1 per 1 - 2 metres.	123.75	124.30	0.55	FX 479637	0.280	0.100	6.	2.	5.
	Network of rusty limonite	124.30	124.90	0.60	FX 479638	0.095	0.100	4.	1.	7.
	fractures generally throughout.	124.90	125.70	0.80	FX 479639	0.430	0.100	3.	1.	10.
	Crackle breccia zone between 133.70 to	125.70	126.97	1.27	FX 479640	0.077	0.100	4.	2.	10.
	134.50 metres.	126.97	127.61	0.64	FX 479641	0.043	0.300	4.	2.	26.
	136.80 137.30 Fractured stockwork of	127.61	128.50	0.89	FX 479642	0.051	0.100	2.	1.	21.
	barren quartz veinlets. Very fine	128.50	129.20	0.70	FX 479643	0.033	0.200	3.	2.	28.
	grained pyrite noted in one veinlet.	129.20	130.00	0.80	FX 479644	0.022	0.100	1.	2.	15.
	Also, black crackle breccia matrix	130.00	131.50	1.50	FX 479645	0.021	0.100	1.	1.	13.
	occurs in one locality.	131.50	132.89	1.39	FX 479646	0.014	0.200	1.	1.	16.
	137.30 145.68 Weakly veined, variably	132.89	133.70	0.81	FX 479647	0.011	0.100	1.	2.	10.
	fractured with limonite coatings.	133.70	134.50	0.80	FX 479648	0.014	0.100	1.	1.	20.
•	Trace fresh pyrite.	134.50	135.94	1.44	FX 479649	0.017	0.100	1.	1.	17.
	145.68 146.63 Silicified - veinlet breccia	135.94	136.80	0.86	FX 479650	0.038	0.100	1.	1.	16.
	zone. Friable contact margins at 70	136.80	137.30	0.50	FX 479651	0.046	0.200	4.	2.	32.
• ·	degrees to core axis. Pitted texture	137.30	138.70	1.40	FX 479652	0.013	0.100	1.	1.	12.
	throughout. Some limonite and less	138.70	139.38	0.68	FX 479653	0.055	0.200	2.	1.	13.
•	resistant clay - carbonate alteration.	139.38	140.30	0.92	FX 479654	0.011	0.200	2.	1.	15.
· •	No sulfides.	140.30	141.70	1.40	FX 479655	0.058	0.200	3.	2.	14.
	146.63 149.20 Narrow swarms of parallel	141.70	142.40	0.70	FX 479656	0.040	0.100	1.	1.	12.

87002-0

37002-0

٠

PAGE 9 ** INCO ** **DRILL LOG**

FROM	TO DESCRII	PTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
ពា	m	•	m	m	m		PPM	PPM	PPM	PPM	PPM
	inlets up to 2 centir	natron vida	1/2 /0	4/7 75	4 76	FV (70/57	0 000	0.000	2		10
	aces of fine pinhead		142.40 143.75	145.08		FX 479657 FX 479658	0.088	0.200 0.100	2.	1. 1.	10. 12.
	9.20 157.00 Weak 1	• •	145.08	145.68		FX 479656			1.		
	ction. Fine limoniti	•		145.63			0.072	0.100	2.	2.	14.
-	oss cut most of the v		145.68			FX 479660	0.077	0.100	1.	2.	9.
			146.63	147.40		FX 479661	0.140	0.300	3.	1.	11.
	3.50 metres, fine gra		147.40	148.40		FX 479662	0.046	0.200	3.	1.	12.
	trix shows crackle b		148.40	149.20		FX 479663	0.060	0.100	3.	2.	9.
LO	cally, intrusive text	ture obliterated.	149.20	150.30		FX 479664	0.087	0.100	2.	1.	8.
			150.30	151.40		FX 479665	0.032	0.100	1.	1.	19.
		ic replacement breccia	151.40		0.99	FX 479666	0.074	0.300	2.	1.	11.
	ne at 60 degrees to d		152.39	153.40		FX 479667	0.047	0.200	2.	2.	15.
	57.37 162.70 Massiv	• • .	153.40	154.23		FX 479668	0.032	0.100	2.	1.	28.
	rusive. Occasional		154.23	155.25	5 1.02	FX 479669	0.054	0.100	2.	1.	14.
	i to 1 metre interval		155.25	156.00	0.75	FX 479670	0.065	0.300	3.	1.	14.
10	52.70 164.00 Silice	eous section. Some	156.00	157.00	1.00	FX 479671	0.048	0.100	3.	2.	18.
vei	n breccia and broker	core. Rusty	157.00	157.37	0.37	FX 479672	0.290	0.200	3.	2.	17.
Lir	monite throughout.		157.37	158.95	1.58	FX 479673	0.020	0.200	2.	1.	22.
10	64.00 165.70 Varia	ole silicification.	158.95	160.32	1.37	FX 479674	0.043	0.100	2.	1.	24.
Mîr	or pinhead pyrite ir	silicic matrix.	160.32	161.75	1.43	FX 479675	0.087	0.100	2.	2.	11.
Fi	ne white carbonate t	hroughout.	161.75	162.70	0.95	FX 479676	0.140	3.400	332.	1.	297.
16	5.70 172.52 Degree	of veining drops off	162.70	163.37	0.67	FX 479677	0.140	0.300	7.	1.	15.
sig	nificantly. Intrusi	ve still highly	163.37	164.00	0.63	FX 479678	0.200	0.200	5.	1.	17.
ble	ached and argillical	ly altered. At	164.00	164.60	0.60	FX 479679	0.270	0.100	3.	2.	20.
169	.05 metres, vaguely	banded white	164.60	165.10	0.50	FX 479680	0.099	0.100	3.	2.	14.
qua	rtz veinlet at 30 de	grees to core	165.10	165.70	0.60	FX 479681	0.098	0.100	3.	1.	19.
axi	s.	-	165.70	166.55	0.85	FX 479682	0.062	0.100	2.	1.	15.
			166.55	167.00	0.45	FX 479683	0.200	0.100	2.	2.	13.
			167.00	168.12		FX 479684	0.097	0.100	2.	1.	14.
			168.12		1.35	FX 479685	0.091	0.100	2.	1.	17,
			169.47	172.52		NS		21102		••	

002-0

87002-0

PAGE 9

\bigcirc					\subset	>							
7003-0		*			PAGE 1								87003-0
					* INCO **								
OREHOLE :87003-0				*	*DRILL LOG**	*						PRINT DATE	:13-SEP-1991 09:22
ROJECT : Outback												FRINI DATE	1J-3EE-1771-07.22
ROPERTY NAME: Outback Claim Group													
atitude : 4245.00S	Departure	: !	5785.00E			Eleva	tion	: 1371	.50m			Hole length	: 115.21m
TS/Quad : 82E/9	Logged by	: D.I	1. Bohme	2		Assay	req.	: Au, 30	element	ICP		Level	:
ountry : Canada	Drilled by	/ : Ro	ger's Dr	illing	Services	Test	Method	: Hydrof	luoric a	cid		Dip	: -65
rov./state : British Columbia	Drill type	e :JK	S-Boyles	s Super	300	Start	ed	: July 1	, 1991			BL azimuth	: 34000
wp/County :	Core size			erf/B	STW (43 mm)	Compl	eted	: July				BH bearing	: 34000
laim # : 5332	Section	: 42	+50 S			Grid	name	: Cliff	Zone			Heading	:
			÷	* DEVI	ATION RECORD	DS **							
dent	h ann dia	dam	•••					-12 m	ما م ه ام		-12-		
dept 0.0		dep 93.8			dip de 52.00	epth	azm	dip	depth	azm	dip	,	
													·
COMMEN			******	*****	******	******	******	**					
		nothing					•						
	Hole surveyed a				'UU1-U. Samo		•	- where where					
FROM TO DESCRIPTION		FROM		.ENGTH	SAMPLE#	AU	AG	CU	MO	PB			
m m		m	m	m	Onthe LEAR	PPM	PPM	PPM	PPM	PPM			
0.00 1.52 CASING													
Overburden		0.00	1.52	1.52	NS								
1.52 11.71 QUARTZ MONZONITE													
Quartz monzonite porphy		1.52	5.10	3.58	NS								
propylite. Broken core from	1.52 to	5.10	5.75		FX 479686	0.007	0.100	4.	1.	4.			
5.10 metres.		5.75			FX 479687	0.001	0.100	9	1.	2.			
5.10 8.95 Sporadic vei		6.50	7.35		FX 479688	0.019	0.200	17.	1.	3.			
carbonate rich. At 6.95 metr		7.35	7.95	0.60		0.020	0.200	10.	1.	2.			
veinlet turns sharply and fol		7.95			FX 479690	0.014	0.200	22.	1.	2.			
/ fracture plane at 30 degree	es to core	8.95			FX 479691	0.007	0.100	15.	1.	5.			
axis. Some broken core.		10.10			FX 479692	0.003	0.100	34.	1.	2.			
8.95 11.71 Traces of ve	enniets. Some	11.00	11.71	0.71	FX 479693	0.012	0.100	19.	1.	2.			

87003-0 PAGE 1

PAGE 2 ** INCO ** **DRILL LOG**

FROM	TO DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	МО	ΡB
m	m	m	m	m		PPM	PPM	PPM	PPM	PPM
ep	idote - magnetite seams.									
11.71	12.95 AMPHIBOLITE									
	Coarse grained ? amphibolite	11.71	12.95	1.24	FX 479694	0.004	0.100	83.	1.	3.
lay	yer. Very magnetic with chloritic ?									
- py	roxenes. Coarse grained pyrite									
cle	ots. Minor epidote plus tiny quartz									
ca	rbonate veinlets.									
12.95	22.80 QUARTZ MONZONITE									
	12.95 16.90 Massive propylite. Broken	12.95	16.90	3.95	NS					
co	re at 12.90 metres. Epidotized	16.90	17.76	0.86	FX 479695	0.001	0.100	31.	1.	3.
bai	nds.	17.76	19.00	1.24	FX 479696	0.001	0.100	20.	1.	2.
	16.90 22.33 A few millimetre size quart	z 19.00	20.21	1.21	FX 479697	0.002	0.100	32.	1.	3.
ca	rbonate veinlets cross cutting fine	20.21	21.20	0.99	FX 479698	0.002	0.100	18.	1.	4.
to	medium grained quartz monzonite.	21.20	22.33	1.13	FX 479699	0.001	0.600	122.	2.	2.
2	22.33 22.80 Fine to sugary textured	22.33	22.80	0.47	FX 479700	0.001	0.100	.14.	1.	3.
chi	alcedonic quartz carbonate veinlets									
up	to 1 centimetre wide. Veinlets show									
pty	ygmatic folding. Some veinlet									
bro	ecciation.									
22.80	30.45 CATACLASITE									
	Chloritic, magnetite rich	22.80	23.40		FX 479701	0.005	1.200	143.	1.	4.
	taclasite with minor interbands of	23.40	23.94		FX 479702	0.001	0.600	115.	1.	2.
re	latively undeformed quartz monzonite.	23.94	24.75		FX 479703	0.005	0.400	32.	1.	3.
		24.75	25.90		FX 479704	0.001	0.100	28.	1.	2.
	22.80 24.75 Crenulated foliation	25.90	27.10		FX 479705	0.001	0.100	41.	1.	4.
	nerally trending perpendicular to	27.10	28.70		FX 479706	0.001	0.200	82.	1.	3.
	re axis. Some calcite segregations.	28.70	29.70		FX 479707	0.001	0.200	125.	1.	2.
	24.75 27.10 Some broken core, minor	29.70	30.45	0.75	FX 479708	0.011	1.000	94.	2.	2.
	ining.									
	27.10 30.45 Fine grained interstitial									
• •	rite throughout. Traces of wispy									
cai	rbonate rich veinlets.									

30.45 40.70 QUARTZ MONZONITE

	PAGE	3
**	INCO	**
[RILL	LOG

FROM	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	Weakly f	oliated to	30.45	31.50	1.05	FX 479709	0.012	0.100	9.	1.	3.
F	orphyritic qu	artz monzonite.	31.50	32.40	0.90	FX 479710	0.008	0.100	21.	1.	2.
	30.45 32.4	0 A few thin quartz carbonate	32.40	33.20	0.80	FX 479711	0.004	0.100	6.	1.	2.
Ň	/einlets.		33.20	33.65	0.45	FX 479712	0.001	0.100	31.	1.	2.
	32.40 34.4	0 Several weakly banded quartz	33.65	34.40	0.75	FX 479713	0.012	0.700	9.	1.	2.
c	carbonate vein	lets up to 2 centimetres	34.40	35.00	0.60	FX 479714	0.007	0.500	68.	· 1.	3.
i	vide at 33.15,	33.75 and 34.30 metres.	35.00	35.97	0.97	FX 479715	0.240	0.300	22.	1.	2.
١	/einlets show	fine pyrite as selvages.	35.97	36.60	0.63	FX 479716	0.088	0.200	41.	1.	2.
ļ	All veinlets s	lightly disrupted by tiny	36.60	37.20	0.60	FX 479717	0.850	3.400	120.	1.	3.
	cross fracture	s. Minor vein breccia	37.20	37.89	0.69	FX 479718	0.041	0.500	16.	1.	2.
8	also.		37.89	38.50	0.61	FX 479719	0.031	0.200	5.	1.	4.
	34.40 37.8	9 Several wispy discontinuous	38.50	39.00	0.50	FX 479720	0.660	2.500	9.	1.	3.
c	quartz carbona	te veinlets with	39.00	39.90	0.90	FX 479721	0.120	0.300	14.	1.	2.
Ċ	chalcedonic qu	artz partioned towards	39.90	40.70	0.80	FX 479722	0.180	0.400	20.	1.	7.
	•	Bladed white to brown									
C	carbonate occu	py veinlet centres.									
C	Cross cutting	crackle veinlets at 37.30									
n	netres.										
		0 A few tiny disjointed quartz									
	carbonate vein										
40.70											
	•	ine grained	40.70		0.50	FX 479723	0.034	0.200	23.	1.	5.
c	chloritized ca	taclasite. Some pyrite	41.20	42.06	5 0.86	FX 479724	1.230	1.500	98.	1.	2.
5	stringers. Na	rrow, variably kinked,	42.06	42.50	0.44	FX 479725	6.510	37.000	40.	1.	3.
	-	te veinlets generally									
1	throughout. A	t 42.23, veinlet									
k	precciation wi	th very fine pyrite.									
42.50) 49.70 QUA	RTZ MONZONITE									
	Fracture	d, propylitized	42.50	43.00	0.50	FX 479726	0.024	0.200	17.	1.	9.
	quartz monzoni		43.00	43.50	0.50	FX 479727	4.110	16.400	28.	1.	7.
	42.50 44.6	0 Veinlet density 1 per 5 to	43.50	44.00			0.270	0.600	17.	1.	8.
	10 centimetres	. At 44.10, quartz	44.00	44.60	0.60	FX 479729	0.088	2.100	37.	1.	7.
0	carbonate vein	let breccia.	44.60	45.11	0.51	FX 479730	0.230	3.100	14.	1.	9.

87003-0

PAGE 4 ** INCO ** **DRILL LOG**

FRO	M T	O DES	SCRIPTION	FROM	TO L	ENGTH	SAMPLE#	AU	AG	CU	MO	PB
m	m	1		m	m	m		PPM	PPM	PPM	PPM	PPM
	44.6	0 45.11 Ba	anded chalcedonic quartz	45.11	45.60	0.49	FX 479731	0.048	0.400	14.	1.	8.
	brecci		e green - brown	45.60	46.10	0.50	FX 479732	0.023	0.200	20.	1.	8.
	carbon	ate along mar	gins. No sulfides.	46.10	46.78	0.68	FX 479733	0.038	0.200	25.	· 1.	7.
	45.1	1 49.70 Fi	ine millimetre size	46.78	47.30	0.52	FX 479734	0.300	1.000	11.	1.	5.
	veinle	ts generally	throughout. At	47.30	48.10	0.80	FX 479735	0.057	0.400	22.	1.	3.
	45.80	and 48.75 met	res, ptygmatic drusy	48.10	48.65	0.55	FX 479736	0.013	0.100	16.	1.	7.
	quartz	carbonate ve	einlet cross cutting	48.65	49.20	0.55	FX 479737	0.540	1.500	31.	1.	6.
	large	coarse graine	ed pinkish quartz	49.20	49.70	0.50	FX 479738	0.350	1.000	96.	1.	2.
			e – magnetite rich									
	seams.											
49.		.95 CATACLAS										
			ited magnetite -	49.70	50.35	0.65	FX 479739	0.007	0.300	121.	1.	2.
	• •		asite. Locally cut	50.35	50.75	0.40	FX 479740	0.074	7.900	2267.	10.	2.
			ontinuous carbonate	50.75	51.40		FX 479741	0.069	1.100	123.	1.	3.
			ringers of chlorite	51.40	51.95	0.55	FX 479742	0.330	1.600	158.	1.	2.
			lations, minor									
	metres		ned zone at 50.40									
51.9		.00 QUARTZ M										
21.3		Quartz monzon		51.95	52.50	0.55	FX 479743	0.300	1.000	12.	1.	2.
			Some chloritic,	52.50	52.90	0.40	FX 479743	1.310	0.300	25.	1.	4.
			liated interbands up	52.90	53.70	0.80	FX 479745	0.097	0.200	37.	1.	5.
-		centimetres w		53.70	54.25	0.55	FX 479746	0.064	0.600	18.	1.	6.
			crystalline quartz	54.25	54.85	0.60	FX 479747	0.023	0.200	10.	1.	7.
		and quartz	· ·	54.85	55.31	0.46	FX 479748	0.044	0.400	72.	1.	2.
	brecci	• •		55.31	55.82		FX 479749	0.016	0.200	2.	1.	5.
	51.9		einlet density 1 per 5 to	55.82	56.35	0.53	FX 479750	0.005	0.100	3.	1.	2.
			cally cross cutting	56.35	56.74	0.39	FX 479751	0.019	0.500	38.	2.	2.
		liation.	the second second	56.74	57.00	0.26	FX 479752	1.220	1.300	86.	2.	2.
	53.7		ood stockwork development.	57.00	57.30	0.30	FX 479753	0.500	2.200	43.	1.	3.
			brecciation at	57.30	57.60	0.30	FX 479754	0.290	1.800	15.	1.	6.
		-	res exhibiting gray	57.60	57.95	0.35	FX 479755	0.230	1.000	21.	2.	4.
			osition around	57.95	58.33	0.38	FX 479756	0.270	1.400	18.	2.	2.
	-	•										

PAGE 5 ** INCO ** **DRILL LOG**

F r om m	TO DESCRIPTION m	FROM m	TO L m	.ENGTH m	SAMPLE#	AU PPM	AG PPM	CU PPM	MO PPM	PB PPM	
a l	lasts. Bladed white to brown	EQ 77	E9 75	0 / 2	FX 479757	0 047	1.400	62.	6.	2.	
	arbonate usually inwards from vein	58.33 58.75	58.75 59.30	0.42	FX 479757 FX 479758	0.063 0.044	0.100	62. 42.	2.	5.	
	- · · · · · · · · · · · · · · · · · · ·	59.30	59.30	0.55	FX 479758 FX 479759	0.044	0.300	42. 49.	2. 1.	5. 4.	
	argins. Very fine pyrite with ilicification.	59.30	60.35	0.60	FX 479759 FX 479760		0.200	49.		4.	
51		60.35	60.72	0.37	FX 479760 FX 479761	0.064 0.036	0.100	47.	1. 1.		
										2.	
	entimetres thick generally at 30	60.72		0.42		0.026	0.100	14. 24.	1.	2.	
	egrees to core axis. Minor	61.14		0.50	FX 479763	0.023	0.200		1.		
	recciation. Delicately banded	61.64	62.14		FX 479764	0.038	0.800	22.	1.	5.	
	nalcedonic quartz breccia. Dark	62.14		0.39		0.028	0.400	13.	1.	5.	
	treaks along bladed carbonate - silica	62.53	63.00	0.47	FX 4 7976 6	0.038	0.400	39.	1.	5.	
	ontact appear to carry very fine										
• •	vrite. Possible fine, whitish										
ac	dularia locally along selvages.										
	57.95 59.30 Irregular quartz carbonate										
Ve	einlets throughout.										
	59.30 63.00 Good stockworking and quartz										
	arbonate vein brecciation throughout.										
	t 60.15, bladed mats of white, brown										
	nd black carbonate. Minor soft white										
	aolinite with silica deposition										
	owards margins. Also at 60.60 metres,										
	imilar delicate banding between										
	arious shades of carbonate and										
	nalcedonic quartz. Very fine pyrite										
al	long selvages.										
63.00	65.40 QUARTZ FELDSPAR PORPH										
	63.00 63.40 Slightly bleached zone cut	63.00	63.40	0.40	FX 479767	0.086	0.300	65.	1.	2.	
b)	y veinlets. Upper contact marked by	63.40	63.80	0.40	FX 479768	0.027	0.100	63.	1.	2.	
ti	iny quartz streaks at 50 degrees to	63.80	64.30	0.50	FX 479769	0.360	5.700	49.	3.	3.	
cc	pre axis. Fine pyrite and bleached	64.30	64.80	0.50	FX 479770	0.370	0.300	67.	1.	4.	
Ca	ataclasite crenulations also marks	64.80	65.40	0.60	FX 479771	0.200	0.500	24.	1.	3.	
al	lteration front.										
	······································										

63.40 65.40 Well bleached, argillically

87003-0

PAGE 6 ** INCO ** **DRILL LOG**

FROM	I	то	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m		m		m	m	m		PPM	PPM	PPM	PPM	PPM
	alter	ed intrusi	ve cut by white									
			rtz flooding and									
		•	ure veinlets. Fine									
	-	-	common within veinlets.									· .
65.4	0 6	6.00 QUAR	TZ VEIN									
		Light bro	wn to buff beige	65.40	66.00	0.60	FX 479772	0.990	12.800	14.	3.	5.
	colou	ured quartz	vein - quartz breccia									
	zone	trending 4	5 degrees to core axis.									
	Blead	hed fragme	nts suggest multi -									
	stage	e silicific	ation. Rare pyrite.									
66.0	0 11	15.21 QUAR	TZ FELDSPAR PORPH									
		Highly bl	eached granitoid	66.00	66.45	5 0.45	FX 479773	0.093	0.100	2.	1.	15.
	rock.			66.45	67.00	0.55	FX 479774	0.070	0.100	3.	1.	12.
	66.		Irregular ribbons and	67.00	67.90		FX 479775	0.075	0.100	1.	1.	28.
		-	e quartz. Barren	67.90	69.10		FX 479776	0.200	0.100	2.	1.	10.
		-	throughout.	69.10	70.10		FX 479777	0.320	0.100	4.	1.	9.
	67.		Fairly barren looking	70.10	71.05		FX 479778	0.380	0.600	2.	1.	9.
			ched quartz monzonite.	71.05	72.15		FX 479779	0.310	0.100	2.	1.	8.
			ndary silicification and	72.15	73.30		FX 479780	0.069	0.100	4.	1.	19.
			. Hematitic staining at	73.30	74.60		FX 479781	0.078	0.100	2.	1.	15.
			Small patches of white	74.60	76.00		FX 479782	0.082	0.100	2.	2.	10.
			inite material. Cross	76.00	76.60		FX 479783	1.010	4.700	2.	1.	10.
			white, banded quartz	76.60	77.10		FX 479784	0.120	1.500	2.	1.	36.
		.et at 76.9		77.10	77.80		FX 479785	0.270	2.600	6.	2.	13.
	77.		Moderate stockworking as	77.80	78.64		FX 479786	2.000	39.700	3.	1.	13.
		•	increases to 1 per 10 -	78.64	79.50		FX 479787	0.200	3.600	2.	1.	35.
			Occasional faint	79.50	80.81		FX 479788	0.230	0.100	2.	2.	9.
			ne pyrite - carbonate	80.81	81.67		FX 479789	4.690	28.300	3.	1.	18.
		-	From 79.20 to 79.45	81.67	82.80		FX 479790	0.510	2.200	1.	1.	55.
		•	, crumbly zone partially	82.80	83.70		FX 479791	0.220	0.300	2.	2.	17.
	neale 79.	d by drusy	•	83.70 84.73	84.73		FX 479792 FX 479793	0.200	0.100 0.800	2. 2.	1.	14. 22.
			Sparse veining. Occasional aks carrying very fine	84.75 85.40	85.40	0.67	FX 479795	0.084	7.200	2.	1. 1.	22. 9.
	uark	DIALK SUP	and callying very time	07.40	00.00	0.00	FA 4/7/74	0.420	1.200	۷.	1.	7.

PAGE 7 ** INCO ** **DRILL LOG**

FRO	M	TO	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	мо	PB
m		m		m	m	m		PPM	PPM	PPM	PPM	PPM
	grain	ed pyrite.	. Some blebby	86.00	86.70	0.70	FX 479795	0.081	0.300	4.	1.	12.
	inter	stitial p	rite in clay - altered	86.70	87.78		FX 479796	0.049	0.400	1.	1.	14.
	matri	x. Minor	soft white zeolite	87.78	88.30	0.52	FX 479797	0.180	0.700	4.	2.	14.
	miner	al.		88.30	88.85	5 0.55	FX 479798	0.038	0.500	3.	1.	9.
	84.	73 90.8	3 Veinlets, quartz flooding	88.85	89.45	5 0.60	FX 479799	0.170	0.200	4.	1.	7.
	and f	racturing	increases slightly with	89.45	90.25	5 0.80	FX 479800	0.330	5.600	4.	1.	11.
	occas	ional fine	e pyrite specks along	90.25	90.83	5 0.58	FX 479801	0.074	1.700	3.	1.	21.
	margi	ns. Overa	all, moderate drusy	90.83	91.70	0.87	FX 479802	0.055	0.400	1.	1.	9.
	quart	z stockwor	rk development. Minor	91.70	92.65	5 0.95	FX 479803	0.250	3.300	3.	2.	11.
	green	nish ?sause	eritization of feldspars.	92.65	93.20	0.55	FX 479804	0.053	1.600	4.	1.	13.
	At 9	0.45 metre	es, braided white quartz	93.20	93.88	3 0.68	FX 479805	0.260	3.500	3.	1.	9.
	veinl	ets with f	fine pyrite streaks along	93.88	94.50	0.62	FX 479806	0.069	0.200	4.	1.	8.
	margi	ns. Some	vuggy quartz crystal	94.50	95.32	2 0.82	FX 479807	0.041	0.300	4.	1.	10.
	growt	:h.		95.32	96.05	5 0.73	FX 479808	0.039	0.300	4.	2.	9.
	90.	83 92.65	5 Only traces of quartz	96.05	97.00	0.95	FX 479809	0.180	0.600	1.	1.	8.
	veini	ing.		97.00	97.80	0.80	FX 4 798 10	0.072	0.300	3.	1.	11.
	92.	65 105.42	2 Weakly veined. Density	97.80	99.82	2 2.02	FX 479811	0.049	0.300	1.	1.	6.
	appro	ximately '	1 per 0.3 to 0.5 metres.	99.82	100.30	0.48	FX 479812	0.028	0.400	5.	2.	62.
	Mostl	y pasty wi	nite to cream brown	100.30	101.00	0.70	FX 479813	0.025	0.200	6.	1.	8.
	colou	ired drusy	quartz. Occasional	101.00	102.00	0 1.00	FX 479814	0.045	0.300	4.	1.	7.
	speck	s of parti	ly oxidized pyrite.	102.00	103.02	2 1.02	FX 479815	0.049	0.100	3.	1.	8.
	Faint	banding p	olus fine pyrite in cross	103.02	103.50	0.48	FX 479816	0.023	0.300	3.	1.	8.
	cutti	ng veinle	ts at 93.55 metres.	103.50	104.50	0 1.00	FX 479817	0.009	0.300	3.	3.	15.
		Friable o	clay altered	104.50	105.42	2 0.92	FX 479818	0.013	0.200	2.	1.	15.
	fract	ure at 96.	.60 metres at 20 degrees	105.42	106.82	2 1.40	FX 479819	0.011	0.100	1.	1.	17.
	to co	ore axis.	Between 97.65 to 97.80,	106.82	108.40	0 1.58	FX 479820	0.018	0.100	2.	2.	16.
	quart	z flooded	patch, vaguely banded,	108.40	109.90	0 1.50	FX 479821	0.015	0.300	1.	2.	12.
	some	pyrite clo	ots. Also friable broken	109.90	111.2	1 1.31	FX 479822	0.036	0.200	3.	1.	11.
	core	at 99.70 m	metres. Light to dark	111.21	112.17	7 0.96	FX 479823	0.037	0.100	1.	1.	12.
	gray	coloured v	veinlet at 100.23 perhaps	112.17	113.65	5 1.48	FX 479824	0.027	0.200	5.	2.	12.
	cause	d by extre	emely fine pyrite within	113.65	115.2	1 1.56	FX 479825	0.020	0.200	7.	1.	18.
	chalc	edonic qua	artz groundmass.									

`Localized brecciation from buff to

87003-0

B7003-0

PAGE 8 ** INCO ** **DRILL LOG**

FROM	TO	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM

white quartz flooding between 101.55 to 101.85 metres. Also whitish ?kaolinite along fractures. Thin veinlets carrying very fine sulfides seen at 100.75, 100.90 and 103.37 metres. 105.42 115.21 Veining decreases. A few friable, carbonate - kaolinite - quartz fractures. Intrusive texture totally bleached and barren looking. Minor amounts of variably oxidized pyrite. Some drusy, vuggy, cross cutting quartz veinlets noted at 111.97, 113.85 and 114.25 metre intervals. Graphitic fracture slip plane at 114.55 metres running at 50 degrees to core axis.

87003-0

PAGE 8

						\subseteq								\sim	
004-0						PAGE 1								87004-0	
					*	* INCO **									
					*	*DRILL LOG**	÷								
REHOLE :	:87004-0												PRINT DATE	:13-SEP-199	1 09:22
DJECT :	: Outback													.*	
PERTY NAME:	: Outback Claim Group														
titude :	: 4245.00s	Departure	: 578	85.00E			Eleva	tion	: 1371	.50m			Hole lengt	h: 124.36	n
;/Quad :	: 82E/9	Logged by	: D.M.	Bohme			Assay	req.	: Au, 30	element	ICP		Level	:	
intry i	: Canada	Drilled by	: Roge	r's Dr	illing	Services	Test	Method	: Hydrof	luoric a	cid		Dip	: -86	
ov./state :	: British Columbia	Drill type	: JKS-I	Boyles	Super	300	Start	ed	: July 2	, 1991			BL azimuth	: 34000	
o/County :	:	Core size	: BQ TI	hin Ke	rf / B	TW (43 mm)	Co	mpleted	: Jul	y 3, 199	1		BH bea	ring : 34000	
aim#:	: 5332	Section	: 42+5	0 S			Grid	name	: Cliff	Zone			Heading	:	
						ATION RECORD									
										donth	azm				
	depth 0.00	azm dip 340.00 -86.00	depth 124.36			dip de 6.50	epth	azm (dip	depth	4 2111	dip			
	•	340.00 -86.00 : ************ LEFT IN HOLE no Hole surveyed as	124.36	340.1	00 -8 ****** BH 87	6.50	• set - 1	******** upsite.	**	depth	02111	aip			
FROM TO	0.00 Comments	340.00 -86.00 : ************************************	124.36	340.1	00 -8 ****** BH 87 *****	6.50 **************** 001-0. Same	• set - 1	******** upsite.	**	MO	PB	αιρ			
FROM TC m m	0.00 COMMENTS O DESCRIPTION	340.00 -86.00 : ************************************	124.36	340.0	00 -8 ****** BH 87 *****	6.50 ************************************	• • set - •	******** up site. *******	**			αιρ			
m m	0.00 COMMENTS O DESCRIPTION	340.00 -86.00 : ************************************	124.36	340.1 ****** ed for ***** TO Li	00 -8 ****** BH 87 ***** ENGTH	6.50 ************************************	e set	******** up site. ********	** **	МО	РВ	aip			
m m 0.00 1.	0.00 COMMENTS D DESCRIPTION .52 CASING	340.00 -86.00 : ************************************	124.36 ******** othing describ ******** FROM m	340.1 ******* ed for ****** TO LI m	00 -8 ****** BH 87 ****** ENGTH M	6.50 ************** 001-0. Same ************** SAMPLE#	e set	******** up site. ********	** **	МО	РВ	dip			
m m 0.00 1. C	0.00 COMMENTS D DESCRIPTION .52 CASING Dverburden	340.00 -86.00 : ************************************	124.36	340.1 ******* ed for ****** TO LI m	00 -8 ****** BH 87 ***** ENGTH	6.50 ************** 001-0. Same ************** SAMPLE#	e set	******** up site. ********	** **	МО	РВ	dip			
m m 0.00 1. C 1.52 14.	0.00 COMMENTS D DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE	340.00 -86.00 : ************************************	124.36 thing describ FROM m 0.00	340.1 ******* ed for ****** TO LI m 1.52	00 -8 ****** BH 87 ***** ENGTH m 1.52	6.50 ************ 001-0. Same ************ SAMPLE# NS	e set	******** up site. ********	** **	МО	РВ	dip	.		
m m 0.00 1. C 1.52 14.	0.00 COMMENTS 0 DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar	340.00 -86.00 : ************************************	124.36 ********* othing describ ******** FROM m 0.00 1.52	340.1 ******* ed for ******* TO LI m 1.52 4.00	00 -8 ****** BH 87 ***** ENGTH m 1.52 2.48	6.50 ************* 001-0. Same ************* SAMPLE# NS NS	e set ******** AU PPM	********* up site. ******** AG PPM	** CU PPM	МО РРМ	РВ РР М	dip			
m m 0.00 1. 0.00 1. 0 1.52 14. V	0.00 COMMENTS 0 DESCRIPTION .52 CASING Dverburden .20 QUARTZ MONZONITE Variably propylitized quar ite.	340.00 -86.00 : ************************************	124.36 ************************************	340.1 ******* ed for ****** TO LI m 1.52 4.00 4.57	00 -8 ****** BH 87 ****** ENGTH m 1.52 2.48 0.57	6.50 ************* 001-0. Same ************ SAMPLE# NS NS NS FX 479826	e set - ******** AU PPM 0.009	up site. ********* AG PPM 0.300	** CU PPM 7.	мо РРМ	РВ РР М 4.	dip			
m m 0.00 1. 0.00 1. 0.00 1.52 14. V monzoni 1.52	0.00 COMMENTS D DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar ite. 2 4.00 Broken core. F	340.00 -86.00 : ************************************	124.36 ************************************	340.1 ******* ed for ****** TO Li m 1.52 4.00 4.57 5.90	00 -8 ****** BH 87 ****** ENGTH m 1.52 2.48 0.57 1.33	6.50 **************** 001-0. Same ************** SAMPLE# NS NS FX 479826 FX 479827	e set - AU PPM 0.009 0.001	up site. ********* AG PPM 0.300 0.300	** CU PPM 7. 7.	МО РРМ 1. 1.	РВ РРМ 4. 2.	dip			
m m 0.00 1. 0.00 1. 0.00 1.52 14. V monzoni 1.52	0.00 COMMENTS D DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar ite. 2 4.00 Broken core. F itized quartz monzonite.	340.00 -86.00 : ************ LEFT IN HOLE no Hole surveyed as ************	124.36 ************************************	340.1 ******* ed for ******* TO LI m 1.52 4.00 4.57 5.90 7.35	00 -8 ******* BH 87 ****** ENGTH m 1.52 2.48 0.57 1.33 1.45	6.50 *************** 001-0. Same ************** SAMPLE# NS NS FX 479826 FX 479827 FX 479828	e set - AU PPM 0.009 0.001 0.002	up site. AG PPM 0.300 0.300 0.100	** CU PPM 7. 7. 12.	МО РРМ 1. 1.	РВ РРМ 4. 2. 2.				
m m 0.00 1. 0 1.52 14. v monzoni 1.52 propyli 4.00	0.00 COMMENTS D DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar ite. 2 4.00 Broken core. F itized quartz monzonite. 0 4.57 Tiny quartz car	340.00 -86.00 : ************ LEFT IN HOLE no Hole surveyed as *************	124.36 ************************************	340.1 ******** ed for TO LI m 1.52 4.00 4.57 5.90 7.35 8.53	00 -8 ******* BH 87 ****** ENGTH M 1.52 2.48 0.57 1.33 1.45 1.18	6.50 ************************************	e set - AU PPM 0.009 0.001 0.002 0.001	up site. AG PPM 0.300 0.300 0.100 0.300	** СU РРМ 7. 7. 12. 15.	MO PPM 1. 1. 1. 1.	РВ РРМ 4. 2. 2. 2.				
m m 0.00 1. 0 1.52 14. w monzoni 1.52 propyli 4.00 veinlet	0.00 COMMENTS 0 DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar ite. 2 4.00 Broken core. F itized quartz monzonite. 0 4.57 Tiny quartz car ts. At 4.50 metres, 3 cen	340.00 -86.00 : ************************************	124.36 ************************************	340.1 ******* ed for ******* TO LI m 1.52 4.00 4.57 5.90 7.35 8.53 9.30	00 -8 ****** BH 87 ***** ENGTH m 1.52 2.48 0.57 1.33 1.45 1.18 0.77	6.50 ************************************	<pre>e set - AU PPM 0.009 0.001 0.002 0.001 0.001 0.001 0.001</pre>	up site. ********* AG PPM 0.300 0.300 0.100 0.300 0.300 0.400	** CU PPM 7. 7. 12. 15. 8.	MO PPM 1. 1. 1. 1. 1.	РВ РРМ 4. 2. 2. 2. 2.	dip			
m m 0.00 1. 0 1.52 14. V monzoni 1.52 propyli 4.00 veinlet wide ca	0.00 COMMENTS D DESCRIPTION .52 CASING Overburden .20 QUARTZ MONZONITE Variably propylitized quar ite. 2 4.00 Broken core. F itized quartz monzonite. 0 4.57 Tiny quartz car	340.00 -86.00 : ************ LEFT IN HOLE no Hole surveyed as ************************************	124.36 ************************************	340.1 ******** ed for ******* TO LI m 1.52 4.00 4.57 5.90 7.35 8.53 9.30 10.10	00 -8 ******* BH 87 ****** ENGTH M 1.52 2.48 0.57 1.33 1.45 1.18	6.50 ************************************	e set - AU PPM 0.009 0.001 0.002 0.001	up site. AG PPM 0.300 0.300 0.100 0.300	** СU РРМ 7. 7. 12. 15.	MO PPM 1. 1. 1. 1.	РВ РРМ 4. 2. 2. 2.	dip			

(

37004-0

87004-0 PAGE 1

(

B7004-0

PAGE 2 ** INCO ** **DRILL LOG**

FRO	4	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m		m	· · · · ·	m	m	m		PPM	PPM	PPM	PPM	PPM
	missi	na.		11.73	12.55	0.82	FX 479834	0.009	0.500	10.	1.	4.
	5.	-	00 Fairly massive quartz	12.55	13.20		FX 479835	0.009	0.600	16.	1.	4. 3.
		nite porp	· · ·	13.20		1.00	FX 479836	0.060	1.300	36.	2.	2.
	11.		20 Moderate stockworking of	19120	14120	1100		0.000	1.500	50.	F .	
			e carbonate rich									
			ew quartz carbonate									
	veinl	ets. Son	me veinlet brecciation.									
	Trace	pyrite.										
14.2		5.80 CAT	ACLASITE									
		Highly s	shattered, crushed	14.20	15.00	0.80	FX 479837	0.160	3.300	335.	1.	2.
	chlor	itic cata	clasite. Open-space fill	15.00	15.80	0.80	FX 479838	0.400	2.100	172.	1.	2.
	by ca	rbonate,	minor quartz carbonate									
	veinl	ets. Pos	sible amphibolite bands									
	with	fine magn	netite - pyrite clots.									
15.8	30 3	1.75 QUA	RTZ MONZONITE									
	15.	••	7 Moderate degree of hairline	15.80	17.05	1.25	FX 479839	0.220	0.500	13.	1.	6.
	to mi	llimetre	size carbonate rich,	17.05	18.40	1.35	FX 479840	0.021	0.700	27.	1.	2.
	drusy	quartz v	veinlets. Weak	18.40	19.40	1.00	FX 479841	0.029	0.500	19.	1.	2.
	stock	working p	olus veinlet brecciation	19.40	20.70	1.30	FX 479842	0.004	0,500	30.	1.	3.
			to 18.85 metres. Fine	20.70	21.90	1.20	FX 479843	0.010	0.600	24.	1.	2.
			titial pyrite common.	21.90	22.80	0.90	FX 479844	0.003	0.500	10.	1.	2.
			23.77 metres, quartz	22.80	23.77	0.97	FX 479845	0.002	0.400	10.	1.	2.
			lets increasing slightly	23.77	24.71	0.94	FX 479846	0.001	0.400	12.	1.	3.
			y shattered intrusive	24.71	26.00	1.29	FX 479847	0.004	0.400	20.	1.	4.
			autobrecciation.	26.00	27.00		FX 479848	0.001	1.300	48.	1.	3.
	23.		1 Irregular ptygmatic,	27.00	27.80	0.80	FX 479849	0.001	1.400	63.	2.	2.
			ne grained quartz veinlet	27.80	29.00		FX 479850	0.008	0.600	26.	2.	4.
			e axis. Very fine	29.00	30.20		FX 479851	0.001	0.300	16.	1.	3.
			pinhead pyrite seen.	30.20	31.00		FX 479852	0.001	0.300	7.	1.	2.
	Green	ish to wh	ite drusy quartz typical.	31.00	31.75	0.75	FX 479853	0.001	0.800	38.	2.	2.

24.71 31.75 Mostly quartz monzonite with foliated cataclasite bands betweem

87004-0

PAGE 3 ** INCO ** **DRILL LOG**

FRO	м	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	мо	РВ
m		m		m	m	m		PPM	PPM	PPM	PPM	РРМ
			.80 metres. No significant t 27.20, fine grained to									
			ponate segregation. Minor									
			ards of silicification.									
	Some	drusy	quartz carbonate veinlets at									
	30.90	and 3	1.60 metres.									
31.	75 3	36.90	CATACLASITE									
		Calca	reous, crenulated, dark	31.75	32.92	2 1.17	FX 479854	0.210	1.600	59.	2.	2.
	greer	n to bl	ack cataclasite. Fine	32.92	33.55	0.63	FX 479855	0.330	2.300	190.	1.	4.
	pyri	te clot	s generally throughout.	33.55	34.10	0.55	FX 479856	0.310	1.000	41.	1.	4.
	Betwe	een 33.	55 to 34.65 metres,	34.10	34.65	0.55	FX 479857	0.870	1.900	43.	4.	2.
	shat	tered n	etwork of chalcedonic quartz	34.65	35.97	7 1.32	FX 479858	0.200	2.200	124.	2.	2.
			veinlets within less	35.97	36.90	0.93	FX 479859	1.060	9.000	94.	3.	2.
		•	oliated section. Some									
		preccia										
			6.90 Mostly calcite rich veinlets									
		segrega										
36.	90 4		QUARTZ MONZONITE	- /							_	
			ve quartz monzonite.	36.90			FX 479860	0.770	2.200	22.	1.	2.
			inlet density at 1 per 20 -	38.17	39.23		FX 479861	0.220	0.400	16.	1.	4.
			res and generally cutting at	39.23		8 0.85	FX 479862	0.200	0.200	38.	1.	3.
		onate r	to core axis. Veinlets	40.08	41.00	0.92	FX 479863	0.180	0.400	32.	1.	2.
41.0			CATACLASITE									
41.	UU 4		to moderately	(4.00	(2.0)		EV (300//		0 400	70		-
	folio		ocally siliceous. Some	41.00 42.06	42.00	5 1.06	FX 479864 FX 479865	0.010	0.100 4.700	39. 75.	1. 1.	2. 2.
			at 42.15 to 42.60 metres.	42.00	43.20	/ 1.14	FX 4/9800	1.190	4.700	12.	1.	۷.
			ete quartz carbonate									
	veint											
43.2			QUARTZ MONZONITE									
			tly bleached, pale	43.20	43.60	0.40	FX 479866	0.170	0.900	23.	1.	2.
	areer	-	z monzonite, locally cut by	43.60	44.30		FX 479867	0.910	4.200	7.	1.	2.
	-	-	open-space fill chalcedonic	44.30	45.00		FX 479868	0.470	2.100	11.	1.	3.
	- -		1							•••	••	

87004-0

PAGE 4 ** INCO ** **DRILL LOG**

FROM	1 TO	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	quartz ve	einlets.	45.00	45.65	0.65	FX 479869	2.320	5.200	15.	2.	2.
	43.20	44.30 Chalcedonic quartz breccia	45.65	46.25	0.60	FX 479870	0.093	0.300	30.	1.	2.
	zone. G	reenish to white quartz	46.25	46.80	0.55	FX 479871	0.031	0.300	22.	1.	4.
	carbonate	e shows finely banded textures.	46.80	47.23	0.43	FX 479872	0.029	0.100	26.	1.	4.
	Possible	e adularia. Trace fine pyrite.	47.23	47.80	0.57	FX 479873	0.048	0.500	25.	2.	2.
			47.80	48.16	0.36	FX 479874	0.076	0.200	26.	1.	2.
	44.30	49.35 Moderate to strong stockwork	48.16	48.77	0.61	FX 479875	0.085	0.400	41.	1.	2.
	developm	ent. At least two stages	48.77	49.35	0.58	FX 479876	0.085	0.600	10.	1.	2.
	quartz f	looding. Minor offsets noted.									
	Carbonate	e appears to be minor									
	constitue	ent of some chalcedony									
	veinlets.	Brecciation common within									
	veins. (Contact between highly bleached									
	unitiss	silicified at 30 degrees to									
	core axis	s. Sparse fine grained pyrite.									
49.3	5 63.05	5 QUARTZ FELDSPAR PORPH									
	Hig	hly bleached,	49.35	49.75	0.40	FX 479877	0.190	0.700	5.	1.	3.
	argillica	ally altered intrusive with	49.75	50.18	0.43	FX 479878	0.250	0.100	17.	1.	4.
	fine inte	erstitial pyrite. Sharp	50.18	50.62	0.44	FX 479879	0.017	0.200	6.	1.	4.
	contact e	evident.	50.62	51.21	0.59	FX 479880	0.049	0.200	16.	1.	2.
	49.35	51.21 Open-space fill stockwork of	51.21	51.50	0.29	FX 479881	0.046	0.100	7.	4.	2.
	creamy wh	nite chalcednic quartz. Vague	51.50	51.90	0.40	FX 479882	0.068	0.400	15.	1.	3.
	banding.	Very fine blackish streaks	51.90	52.50	0.60	FX 479883	0.063	0.100	13.	2.	5.
	within si	licification. Very fine	52.50	53.00	0.50	FX 479884	0.170	0.400	19.	1.	2.
	grained ?	mineral unidentified. Traces	53.00	53.60	0.60	FX 479885	0.080	0.300	12.	2.	4.
	of pyrite	e and possible Mn oxides.	53.60	54.25	0.65	FX 479886	1.380	2.600	60.	2.	9.
	51.21	53.60 Chalcedony vein at 51.55	54.25	54.75	0.50	FX 479887	0.540	4.200	5.	1.	11.
	metres at	: 30 degrees to core axis (3 cm	54.75	55.26	0.51	FX 479888	0.250	2.000	7.	1.	14.
	wide). İ	rregular, drusy veinlets	55.26	55.80	0.54	FX 479889	0.100	2.400	8.	2.	13.
	locally d	cross cut by microfractures.	55.80	56.25	0.45	FX 479890	5.200	61.000	10.	2.	21.
	53.60	54.75 Variably shattered zone.	56.25	57.30	1.05	FX 479891	0.240	1.300	3.	2.	14.
	Some brok	en core. Possible fault	57.30	57.70	0.40	FX 479892	0.110	1.900	1.	3.	15.

87004-0

87004-0 PAGE 4

PAGE 5 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
(limonitic).	. Minor brecciation.	57.70	58.21	0.51	FX 479893	0.450	20,000	9.	2.	23.
	54.75 56	5.25 Stringer veining. Trace of	58.21	59.14	0.93	FX 479894	0.810	3.100	1.	2.	21.
f	aint bandir	ng. Fine wispy stringers of	59.14	60.10	0.96	FX 479895	0.920	2.800	4.	6.	23.
		ot cross cut quartz. At	60.10	61.00	0.90	FX 479896	0.045	0.200	4.	1.	13.
	-	s, very fine gray mineral	61.00	61.53	0.53	FX 479897	0.390	4.200	4.	3.	24.
		oyrite. Possibly	61.53	62.29	0.76	FX 479898	0.630	2.000	5.	1.	16.
		e ?silver mineral.	62.29	63.05	0.76	FX 479899	0.470	4.600	6.	1.	12.
	56.25 6	1.00 Degree of veining,									
m	icrofractu	ring and trace pyrite									
c	ontent drop	os off somewhat. Weak									
s	tockwork be	etween 57.40 to 58.10									
· IT	etres. Vei	inlets pitted by clay -									
c	arbonate.	Some hexagonal quartz									
g	rowths.										
	61.00 63	3.05 Several discordant, braided,									
m	nilky white	pitted quartz veinlets.									
M	linute quart	tz crystals in vugs. Some									
W	hite kaolir	nite.									
63.05	63.52	QUARTZ VEIN									
	Quarta	z flooding - vein	63.05	63,52	0.47	FX 479900	1.800	5.500	1.	1.	10.
b	oreccia with	n small hexagonal quartz									
		ugs. Traces of very fine									
		ite clots and whitish									
k	aolinite ma	aterial.									
63.52	111.60	QUARTZ FELDSPAR PORPHYRY									
	63.52 70).25 Increasing density of drusy	63.52	64.00	0.48	FX 479901	0.940	5.200	6.	2.	8.
W	hite vuggy	quartz veinlets. Weak	64.00	64.50	0.50	FX 479902	0.210	1.100	2.	2.	16.
S	tockwork in	n places. Very fine grained	64.50	65.00	0.50	FX 479903	0.040	0.300	4.	1.	6.
. P	yrite usual	lly can be seen in	65.00	65.50	0.50	FX 479904	0.210	2.500	1.	1.	11.
s	ilicificati	ion. Some veinlets are a	65.50	66.10	0.60	FX 479905	1.840	32.000	1.	2.	8.
		e colour and show faint	66.10	66.60	0.50	FX 479906	1.260	8.300	4.	1.	8.
		ine hairline - clay altered	66.60	67.60	1.00	FX 479907	0.780	2.100	8.	1.	11.
f	ractures so	ometimes cross cut drusy	67.60	68.00	0.40	FX 479908	1.220	3.100	1.	1.	42.

87004-0

\$7004-0

B7004-0

PAGE 6 ** INCO ** **DRILL LOG**

FROM	то то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	quartz. I	nterstitial pyrite clots	68.00	68.6	0.60	FX 479909	0.260	0.800	1.	1.	16.
	within int	rusive.	68.60	69.5	0.90	FX 479910	0.270	2.800	6.	2.	25.
	70.25	77.55 Degree of veining decreasing	69.50	70.2	5 0.75	FX 479911	0.850	10.100	6.	1.	15.
	to 1 per 0	.3 to 0.6 metres in bleached,	70.25	71.5	0 1.25	FX 479912	0.036	0,700	6.	1.	12.
	weakly fra	ctured intrusive. Drusy	71.50	72.5	4 1.04	FX 479913	1.020	9.000	4.	1.	47.
	quartz vei	nlets typically vuggy with	72.54	73.0	0.46	FX 479914	1.600	2,500	7.	2.	10.
	fine carbo	nate and trace pyrite along	73.00	74.0	0 1.00	FX 479915	0.410	1.300	5.	1.	11.
	selvages.	At 77.15 and 77.24 metres,	74.00	74.9	5 0.95	FX 479916	0.041	0.300	4.	1.	10.
	dark ribbo	ns of very fine grained	74.95	76.0	0 1.05	FX 479917	0.038	0.200	6.	1.	9.
	pyrite wit	hin quartz healed fractures.	76.00	76.9	0.90	FX 479918	0.190	0.600	3.	1.	8.
	77.55	78.64 Barren intrusive.	76.90	77.5	5 0.65	FX 479919	0.210	0.400	4.	1.	10.
	78.64	81.68 Weak silicification at 79.75	77.55	78.6	4 1.09	FX 479920	0.037	0.700	5.	1.	6.
	and 80.40	metres. At 80.13 metres,	78.64	79.7	0 1.06	FX 479921	0.480	5.600	5.	1.	34.
	graphitic	slip plane with fine pyrite	79.70	80.4	7 0.77	FX 479922	0.550	30.400	4.	15.	50.
	at 45 degr	ees to core axis.	80.47	81.6	8 1.21	FX 479923	0.460	2.100	2.	1.	12.
	81.68	87.00 Concentration of drusy	81.68	82.9	5 1.27	FX 479924	0.084	0.400	7.	1.	11.
	quartz inc	reases to 1 per 20 to 50	82.95	83.8	1 0.86	FX 479925	0.260	3.000	5.	1.	15.
	centimetre	s (less than 1 cm wide).	83.81	84.7	3 0.92	FX 479926	0.220	1.000	6.	1.	44.
	Fine pyrit	e and hackly silver gray	84.73	85.70	0.97	FX 479927	0.052	0.300	8.	1.	35.
	mineral no	ted at 84.41 and 85.29	85.70	87.0	1.30	FX 479928	0.210	1.900	5.	1.	11.
	metres.		87.00	88.3	0 1.30	FX 479929	0.230	0.500	9.	1.	9.
	87.00	92.50 Sporadic silicification.	88.30	89.28	8 0.98	FX 479930	0.170	0.500	6.	1.	19.
	Friable co	re sections.	89.28	92.50	3.22	NS					
	92.50 1	03.02 Very weak quartz flooding.	92.50	93.7	0 1.20	FX 479931	0.045	0.200	2.	1.	12.
	Creamy bei	ge silicification at 97.30	93.70	95.00	0 1.30	FX 479932	0.200	0.300	7.	1.	11.
	metres, ti	ny black irregular fractures	95.00	96.3	1 1.31	FX 479933	0.270	0.400	4.	1.	13.
	with very	fine grained sulfides.	96.31	97.50	0 1.19	FX 479934	0.078	0.300	2.	2.	13.
	103.02 1	11.60 Sparsely veined section.	97.50	98.7	1.20	FX 479935	0.270	0.700	1.	1.	12.
	Weak hairl	ine microfracturing. Very	98.70	99.97	7 1.27	FX 479936	0.069	0.300	2.	1.	11.
	little pyr	ite. At 108.40 metres, cream	99.97	101.00	1.03	FX 479937	0.410	0.500	2.	3.	9.
	colour sil	icification at 50 degrees to	101.00	101.70	0.70	FX 479938	0.280	0.500	5.	2.	9.
	core axis.		101.70	102.37	7 0.67	FX 479939	0.051	0.200	2.	1.	9.
			102.37	103.02	2 0.65	FX 479940	0.110	0.900	4.	8.	21.

B7004-0

	PAGE	7
**	INCO	**
[DRILL	LOG

FROM	и то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CÚ	MO	PB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
			103.02	104.00	0.98	FX 479941	0.097	0.500	5.	1.	12.
			104.00	105.00		FX 479942	0.110	0.800	5.	2.	10.
			105.00	106.07	1.07	FX 479943	0.038	0.300	5.	1.	9.
			106.07	107,25	1.18	FX 479944	0.140	0.500	4.	2.	16.
			107.25	108.26	1.01	FX 479945	0.031	0.400	3.	2.	12.
		· · · · · · · · · · · · · · · · · · ·	108.26	109.12	0.86	FX 479946	0.057	0.300	1.	2.	17.
			109.12	109.60	0.48	FX 479947	0.024	0.300	1.	1.	23.
			109.60	111.60	2.00	NS					
111.6	50 112.00	QUARTZ VEIN									
	Brown	to light gray quartz	111.60	112.00	0.40	FX 479948	0.032	0.200	5.	1.	17.
	flooding, s	ome brecciation. Multistage									
	silicificat	ion as indicated by fine									
	silica band	ling. Some white streaks of									
	kaolinite o	or possibly a zeolite group									
		o apparant sulfides.									
112.0	00 124.36	QUARTZ FELDSPAR PORPH									
		5.90 Mostly barren intrusive.	112.00	112.30		FX 479949	0.049	0.200	1.	1.	16.
	•	112.35 metres, a few	112.30	112.72		FX 479950	0.220	0.300	4.	2.	17.
		size veinlets with reddish	112.72	115.90		NS					
	brown hemat	itic selvages cross cuts a	115.90	116.72	0.82	FX 479951	0.028	0.300	1.	1.	8.
		y quartz veinlet. Veinlets	116.72	120.30							
	-	es to core axis.	120.30	121.31		FX 479952	0.021	0.100	2.	2.	13.
		4.36 Some soft white zeolitic	121.31	121.80		FX 479953	0.011	0.300	1.	2.	13.
-		cally. Minor	121.80	123.30	1.50	FX 479954	0.021	0.200	2.	2.	13.
	silicificat	ion. Trace pyrite with	123.30	124.36	1.06	NS					
	•	z carbonate veinlet -									
		ion noted at 121.28, 121.54									
	and 121.74	metres.									

87004-0

PAGE 7

\bigcirc				\bigcirc								
87005-0				PAGE 1								87005-0
				* INCO **	•							
BOREHOLE :87005-0				**DRILL LOG*	#						PRINT DATE	:13-SEP-1991 09:22
PROJECT : Outback												
PROPERTY NAME: Outback Claim Group			_									
Latitude : 4246.00s Departure		5786.000			Eleva			.50m				: 84.43m
NTS/Quad : 82E/9 Logged by		M. Bohme		· · · · · ·	Assay		-) element			Level	:
Country : Canada Drilled I Prov./state : British Columbia Drill ty	-	ger's Di S-Boyles	-	Services			: Hydrof : July 4	luoric a	610		Dip BL azimuth	: -45 : 10500
Twp/County : Core size				'300 ITW (43 mm)	Start Compl		: July 4				BH bearing	: 10500
Claim # : 5332 Section		+50 S		, w (45 mm)	Grid		: Cliff				Heading	1
		+	* DEVI	ATION RECOR	DS **							
depth azm dip	dep			•	epth	azm	dip	depth	azm	dip		
0.00 105.00 -45.00	84 - 4	43 105.	.00 -4	2.50								
COMMENTS : ********	*******	******	*****	****	******	******	**					ν.
LEFT IN HOLE	none											
Hole surveyed		ibed for	BH 87	'001-0. Sam	e set -	up site.						
				*****		-						
FROM TO DESCRIPTION	FROM	το ι	ENGTH	SAMPLE#	AU	AG	CU	MO	PB			
m m	m	m	m		PPM	PPM	PPM	PPM	PPM			
· · · · · · · · · · · · · · · · · · ·												
0.00 1.52 CASING												
Overburden	0.00	1.52	1.52	NS								
1.52 31.75 QUARTZ MONZONITE	4 50	7 40	4 50									
1.52 3.10 Broken core	1.52		1.58			0 500	40		60			
3.10 9.10 Moderately well fractured,	3.10			FX 479955	0.011	0.500	12.	1.	10.			
typical propylitized quartz monzonite	4.57		1.28	FX 479956	0.006	0.300	11. 25	1.	5.			
porphyry. Small wavy fractures throughout healed mostly by calcite,	5.85 7.05			FX 479957	0.006	0.400 0.500	25. 15	1.	3. 3.		-	
minor quartz.	8.22		0.88		0.004 0.003	0.200	15. 8	1. 1.	2.			
9.10 13.85 A few quartz carbonate rich	9.10			FX 479939 FX 479960	0.003	0.300	8. 10.	1.	2.			
veinlets up to 2 centimetres wide.	10.20			FX 479960 FX 479961	0.004	0.200	10.	1.	5.			
Minor vein brecciation. Fine clots of	10.20			FX 479961	0.001	0.200	11.	1.	4.			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10100			IN 717702	0.001	0.200	114		7.			

.

87005-0 PAGE 1

PAGE 2 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	τo	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
r	ovrite ger	nerally throughout intrusive.	11.60	12.62	1.02	FX 479963	0.002	0.200	46.	1.	3.
r		17.37 Sections of broken core.	12.62	13.85		FX 479964	0.001	0.200	19.	1.	5.
		Jous carbonate rich	13.85	15.50	1.65	FX 479965	0.004	0.200	11.	1.	8.
-	segregatio	ons common.	15,50	17.37	1.87	FX 479966	0.003	0.100	9.	1.	4.
		31.75 More massive propylite.	17.37	18.95	1.58	FX 479967	0.003	0.300	75.	1.	5.
L		attered by fine network of	18.95	19.37	0.42	FX 479968	0.002	0.200	22.	1.	4.
	-	microveinlets. At 20.25	19.37	20.42	1.05	FX 479969	0.002	0.100	14.	1.	7.
r	netres, fi	ine to coarse grained quartz	20.42	21.90	1.48	FX 479970	0.001	0.100	12.	1.	6.
· (carbonate	veinlet at 50 degrees to core	21.90	23.47	1.57	FX 479971	0.001	0.100	7.	1.	2.
	axis. Cru	umbly shear zone at 31.16	23.47	24.65	1.18	FX 479972	0.001	0.100	8.	1.	2.
r	netres af	ter which intrusive becomes	24.65	26.00	1.35	FX 479973	0.002	0.100	7.	1.	5.
1	fine grair	ned and slightly siliceous.	26.00	27.10	1.10	FX 479974	0.001	0.100	23.	1.	3.
			27.10	28.40	1.30	FX 479975	0.002	0.100	20.	1.	5.
			28.40	29.56	1.16	FX 479976	0.004	0.100	8.	1.	3.
			29.56	30.50	0.94	FX 479977	0.001	0.100	8.	1.	4.
			30.50	31.75	1.25	FX 479978	0.200	0.500	25.	1.	6.
31.7	5 32.75	BRECCIA									
	31.75	32.42 Well silicified breccia	31.75	32.42	0.67	FX 479979	0.750	16.400	36.	1.	4.
	pipe or c core axis.	dike trending 60 degrees to	32,42	32.75	0.33	FX 479980	0.660	15.100	20.	3.	4.

87005-0

37005-0

Variety of rounded fragments including shards of cataclasite all within a light to dark green siliceous matrix. Very fine grained pyrite throughout.

32.42 32.75 Similar to above except a

hard chalcedonic siliceous cement. Fragments show some degree of re-silicification including another narrow vein breccia seam (about 2 cm wide) cross cutting larger dike breccia structure. Scattered pyrite

Fine carbonate also.

throughout.

N

PAGE 3 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	MO	PB
៣	m		m	m	m		РРМ	PPM	PPM	PPM	PPM
32.75		UARTZ MONZONITE									
3	32.75 34	.06 Quartz monzonite host cut by	32.75	33.39	0.64	FX 479981	0.200	0.900	76.	3.	7.
goo	od open-sp	ace fill stockwork of	33.39	33.62	0.23	FX 479982	0.030	0.700	62.	2.	2.
cha	alcedonic	quartz. Some vague banding	33.62	34.06	0.44	FX 479983	0.016	0.400	30.	2.	6.
aro	ound veinl	et breccia clasts. Fine	34.06	34.75	0.69	FX 479984	0.005	0.200	28.	1.	7.
cai	rbonate.	Traces of fine pyrite.	34.75	35.30	0.55	FX 479985	0.010	0.800	17.	1.	5.
3	34.06 38	.16 Narrow zones of veining and	35.30	35.80	0.50	FX 479986	0.003	0.600	24.	1.	5.
pat	tchy light	green silicification.	35.80	36.40	0.60	FX 479987	0.290	0.300	37.	1.	4.
Ve	inlet dens	ity decreases to 1 per 10 -	36.40	37.00	0.60	FX 479988	0.011	0.100	19.	1.	3.
30	centimetr	es. Occasional weak	37.00	37.55	0.55	FX 479989	0.050	0.700	27.	1.	6.
sto	ockworking	•	37.55	38.16	0.61	FX 479990	0.077	0.400	15.	1.	3.
3	38.16 48	.37 Veining drops off	38.16	39.05	0.89	FX 479991	0.006	0.200	15.	1.	5.
dra	amatically	. Massive quartz monzonite	39.05	40.00	0.95	FX 479992	0.001	0.300	42.	1.	6.
sl	ightly fre	sher in appearance. Less	40.00	41.22	1.22	FX 479993	0.001	0.200	27.	1.	2.
рго	opylizatio	n apparant. Only a few	41.22	42.10	0.88	FX 4 7 9994	0.001	0.200	33.	1.	3.
dis	screte qua	rtz carbonate veinlets.	42.10	42.65	0.55	FX 479995	0.003	0.300	97.	1.	2.
4	48.37 52	.64 Ribbons of carbonate rich	42.65	43.72	1.07	FX 479996	0.001	0.200	31.	1.	7.
vei	ining incr	eases slightly. Rare	43.72	44.81	1.09	FX 479997	0.001	0.200	39.	1.	2.
ру	rite speck	s. Wavy, chloritic	44.81	46.10	1.29	FX 479998	0.001	0.200	58.	1.	5.
mia	crofractur	ing locally.	46.10	47.20	1.10	FX 479999	0.001	0.200	35.	1.	3.
5	52.64 58	.00 Millimetre size quartz	47.20	48.37	1.17	FX 480000	0.012	0.500	58.	1.	2.
cai	rbonate ve	inlets every 10 to 25	48.37	49.60	1.23	FX 483756	0.011	0.300	33.	1.	3.
cer	ntimetres.	Weak stockwork in places.	49.60	50.90	1.30	FX 483757	0.008	0.400	74.	1.	2.
			50.90	51.64	0.74	FX 483758	0.009	0.300	33.	1.	4.
5	58.00 61	.80 Weak to moderate development	51.64	53.95	2.31	FX 483759	0.004	0.100	25.	1.	4.
of	epitherma	l looking quartz carbonate	53.95	55.00	1.05	FX 483760	0.004	0.100	18.	1.	5.
vei	inlets up	to 5 centimetres wide.	55.00	56.00	1.00	FX 483761	0.001	0.100	35.	[°] 1.	2.
Bet	tween 58.10	0 to 58.35 metres, finely	56.00	57.00	1.00	FX 483762	0.003	0.200	33.	1.	4.
bla	aded carbo	nate within veinlets.	57.00	58.00	1.00	FX 483763	0.003	0.100	43.	1.	7.
Mir	hor breccia	ation. Quartz monzonite	58.00	59.00	1.00	FX 483764	0.005	0.300	121.	1.	2.
hos	stisun -	typically fine grained.	59.00	60.00	1.00	FX 483765	0.002	0.300	107.	1.	2.
Loc	cally, some	e green to white chalcedony	60.00	60.65	0.65	FX 483766	0.008	0.300	23.	1.	4.
rin	ming clas	ts. Rare very fine grained	60.65	61.80	1.15	FX 483767	0.170	0.500	57.	1.	4.
		· ·									

 \mathcal{T}

PAGE 4 ** INCO ** **DRILL LOG**

m m
healing at 60.29 and 61.75 metres. 63.09 63.75 0.66 FX 483769 0.037 3.300 27. 1. 4. 61.80 66.46 A few tiny quartz carbonate 63.75 6.61 1.35 FX 483770 0.019 0.300 36. 1. 2. veinlets cutting fine to medium grained 65.10 66.46 1.36 FX 483771 0.004 0.200 7. 1. 6. quartz monzonite porphyry. 66.46 68.35 QUARTZ FELDSPAR PORPH 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 68.35 0.75 FX 483773 0.001 0.200 16. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 68.35 0.75 FX 483774 0.022 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 68.35
61.80 66.46 A few tiny quartz carbonate 63.75 65.10 1.35 FX 483770 0.019 0.300 36. 1. 2. veinlets cutting fine to medium grained 65.10 66.46 1.36 FX 483771 0.004 0.200 7. 1. 6. quartz monzonite porphyry. 66.46 66.46 1.36 FX 483772 0.001 0.300 22. 1. 2. 66.46 68.35 QUARTZ FELDSPAR PORPH 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. 68.35 69.20 QUARTZ MONZONITE 68.35 69.20 0.85 FX 483776
veinlets cutting fine to medium grained quartz monzonite porphyry. 65.10 66.46 1.36 FX 483771 0.004 0.200 7. 1. 6. 66.46 68.35 QUARTZ FELDSPAR PORPH 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483775 0.006 0.300 36. 1. 2. 68.35 69.20 QUARTZ MONZONITE 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 69.20
quartz monzonite porphyry. 66.46 68.35 QUARTZ FELDSPAR PORPH Not really a quartz feldspar 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. 68.35 69.20 QUARTZ MONZONITE 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2.
66.46 68.35 QUARTZ FELDSPAR PORPH Not really a quartz feldspar 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483775 0.006 0.300 36. 1. 4. 68.35 69.20 QUARTZ MONZONITE 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5. 69.20 69.80
Not really a quartz feldspar 66.46 66.91 0.45 FX 483772 0.001 0.300 22. 1. 2. porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483775 0.006 0.300 36. 1. 2. 68.35 69.20 QUARTZ MONZONITE 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. 69.20
porphyry dike but resembling a slightly 66.91 67.60 0.69 FX 483773 0.001 0.200 16. 1. 2. bleached quartz monzonite with variably 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483774 0.022 0.200 38. 1. 4. argillitized feldspars. Microfractures 67.60 68.35 0.75 FX 483775 0.022 0.200 38. 1. 4. againtized feldspars. Microfractures 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 69.80 0.60 FX 483776 0.190 0.200
bleached quartz monzonite with variably argillitized feldspars. Microfractures throughout healed by carbonate or quartz carbonate veinlets. 68.35 69.20 QUARTZ MONZONITE Propylitized but no real bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
argillitized feldspars. Microfractures throughout healed by carbonate or quartz carbonate veinlets. 68.35 69.20 QUARTZ MONZONITE Propylitized but no real 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
throughout healed by carbonate or quartz carbonate veinlets. 68.35 69.20 QUARTZ MONZONITE Propylitized but no real 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
<pre>quartz carbonate veinlets. 68.35 69.20 QUARTZ MONZONITE Propylitized but no real 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.</pre>
68.35 69.20 QUARTZ MONZONITE Propylitized but no real 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
Propylitized but no real 68.35 69.20 0.85 FX 483775 0.006 0.300 36. 1. 2. bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
bleaching evident as described above. Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
Traces of carbonate veining. 69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
69.20 84.43 QUARTZ FELDSPAR PORPH Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
Bleaching increases 69.20 69.80 0.60 FX 483776 0.190 0.200 16. 1. 5.
significant to semi - pervasive 69.80 70.40 0.60 FX 483777 0.017 0.200 30. 1. 5.
argillitization; however veining is 70.40 71.05 0.65 FX 483778 0.014 0.300 14. 1. 5.
only weakly developed. Contact is 71.05 72.00 0.95 FX 483779 0.026 0.100 3. 3. 9.
defined by a faint fracture. Fine 72.00 72.32 0.32 FX 483780 0.360 9.200 3. 1. 14.
interstitial pyrite throughout 72.32 73.00 0.68 FX 483781 0.450 0.400 3. 2. 9.
intrusive. Some veinlets offset 73.00 73.96 0.96 FX 483782 0.001 0.600 3. 1. 8.
slightly by small scale fracturing. 73.96 74.65 0.69 FX 483783 0.002 0.300 3. 1. 11.
71.05 72.00 Strong argillic alteration. 74.65 75.44 0.79 FX 483784 0.006 0.400 2. 2. 17.
Some white to dark black 75.44 76.15 0.71 FX 483785 0.081 0.500 3. 1. 18.
microfractures. 76.15 76.65 0.50 FX 483786 0.001 0.300 3. 1. 16.
72.00 72.32 Smooth creamy beige to gray 76.65 77.40 0.75 FX 483787 0.210 0.600 4. 2. 11.
white semi - pervasive quartz flooding. 77.40 78.30 0.90 FX 483788 0.002 0.200 3. 1. 8.
Locally pyritic. Some greenish clay 78.30 78.70 0.40 FX 483789 0.001 2.400 4. 1. 15.
sericite alteration. Sharp contact 78.70 79.12 0.42 FX 483790 0.002 1.300 5. 3. 10.
with highly bleached quartz feldspar 79.12 80.60 1.48 FX 483791 0.210 0.500 4. 1. 14.

87005-0

37005-0

87005-0 PAGE 4

PAGE 5 ** INCO ** **DRILL LOG**

FROM	TO	DESCRIPTION	FROM	το ι	LENGTH	SAMPLE#	AU	AG	CU	MO	РВ
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
por	phyry almos	t perpendicular to core	80.60	81.60	1.00	FX 483792	0.002	0.300	4.	1.	13.
axi	s.		81.60	82.85	1.25	FX 483793	0.110	0.300	2.	2.	16.
		3 Totally bleached white,	82,85	84.43	1.58	NS					

argillitized intrusive. Patchy sections with interstitial pyrite. Discrete, passive looking veinlets and silicification noted at 74.20, 76.60, 77.25 and 82.53 metres. Graphitic slip plane at 40 degrees to core axis at 78.50 metres.

PAGE 5

					()							\bigcirc	
06-0					PAGE 1								87006-0	
					** INCO **									
REHOLE	:87006-0			,	**DRILL LOG**						5	RINT DATE	:13-SEP-1991	09:2
JECT	: Outback										'	KINI DATE		
PERTY NAME	: Outback Claim Group													
itude	: 4246.00S	Departure	: 5786	.00E		Elevatio	n:	1371.	50m		ł	ole length	: 87.47m	
/Quad	: 82E/9	Logged by	: D.M. B	DHME		Assay re	q. : Au	lu, 30 🕯	element	ICP	I	.evel	:	
ntry	: Canada	Drilled by	: Roger':	s Drilling	g Services	Test Met	hod : Hy	lydrofl	uoric ac	id	(Dip	: -45	
v./state	: British Columbia	Drill type	: JKS-Bo	yles Super	r 300	Started	: 10	July 4,	1991		I	BL azimuth	: 13000	
/County	:	Core size	: BQ Thi	n Kerf / E	3TW (43 mm)	Complete	d :Ju	July 5,	1991			BH bearing	: 13000	
im #	: 5332	Section	: 42+50	5		Grid nam	e :C	cliff Z	one		1	Heading	:	
				** DEV)	ATION RECORD	s **								
	depth 0.00	azm dip 130.00 -45.00	depth 87.47	azm 130.00 -4	dip de 42.50	pth azm	dip	0	depth	azm	dip			
		130.00 -45.00	87.47	130.00 -4	•.			D	depth	azm	dip			
	0.00	130.00 -45.00 : ***********************************	87.47	130.00 -4	42.50	*****	*****	0	depth	azm	dip			
	0.00	130.00 -45.00 : ***********************************	87.47	130.00 -4 ********** d as for I	42.50	*****	*****	D	depth	azm	dip			
	0.00	130.00 -45.00 : ************************************	87.47	130.00 -4 ********* d as for I 0.	42.50	*********** to 87005-0	******* . Hole	5	depth	azm	dip			
FROM T	0.00	130.00 -45.00 : ************************************	87.47	130.00 -4 ********* d as for I 0.	42.50 ************************************	*********** to 87005-0	******* . Hole *******	CU	depth	azm PB	dip			
	0.00 Comments	130.00 -45.00 : ************************************	87.47	130.00 -4	42.50 ************************************	*********** to 87005-0 *********	****** . Hole ******* G C				dip			
m n	0.00 COMMENTS TO DESCRIPTION n	130.00 -45.00 : ************************************	87.47 one te utilize BH 87001-	130.00 -4	42.50 ************************************	*********** to 87005-0 *********	****** . Hole ******* G C	CU	мо	РВ	dip			
m m	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING	130.00 -45.00 : ************************************	87.47	130.00 -4 ********** d as for I 0. *********** 0 LENGTH m	42.50 ************************************	*********** to 87005-0 *********	****** . Hole ******* G C	CU	мо	РВ	dip			
m m	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden	130.00 -45.00 : ************************************	87.47	130.00 -4	42.50 ************************************	*********** to 87005-0 *********	****** . Hole ******* G C	CU	мо	РВ	dip			
m n 0.00 1 1.52 34	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE	130.00 -45.00 : ************************************	87.47 ************************************	130.00 -4	42.50 ************************************	*********** to 87005-0 *********	****** . Hole ******* G C	CU	мо	РВ	dip			
m n 0.00 1 1.52 34	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz	130.00 -45.00 : ************************************	87.47 one te utilize BH 87001- ********** FROM T m m 0.00 1 1.52 5	130.00 -4	42.50 BH'S 87001-0 SAMPLE# NS NS	*********** to 87005-0 ********** AU A PPM P	****** Hole ****** G Cl PM PI	CU	мо ррм	РВ РРМ	dip			
m n 0.00 1 1.52 34 monzor	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz nite. Locally pyritic, mag	130.00 -45.00 : ************************************	87.47 one te utilize BH 87001- ********* FROM T m m 0.00 1 1.52 5 5.65 6	130.00 -4	42.50 BH'S 87001-0 ************* SAMPLE# NS NS FX 483794	to 87005-0 ********** AU A PPM P 0.002 0	****** Hole G Cl PM Pl	CU PPM 6.	МО РРМ	РВ РРМ 2.	dip			
m n 0.00 1 1.52 34 monzor 1.5	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz nite. Locally pyritic, may 52 5.65 Broken core	130.00 -45.00 : ************************************	87.47 te utilize BH 87001 ********* FROM Tr m m 0.00 1 1.52 5 5.65 6 6.80 8	130.00 -4	42.50 ************************************	to 87005-0 ********** AU A PPM P 0.002 0 0.001 0	******* Hole G CI PM PI .200	си Боррм 6. 9.	МО РРМ 1. 1.	РВ РРМ 2. 2.	dip			
m n 0.00 1 1.52 34 monzor 1.5 5.6	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz nite. Locally pyritic, may 52 5.65 Broken core	130.00 -45.00 : ************************************	87.47 one te utilize BH 87001 ********** FROM Tr m m 0.00 1 1.52 5 5.65 6 6.80 8 8.23 9	130.00 -4 *********** d as for 1 0. *********** 0 LENGTH m .52 1.52 .65 4.13 .80 1.15 .23 1.43 .00 0.77	42.50 H's 87001-0 SAMPLE# NS NS FX 483794 FX 483795 FX 483796	to 87005-0 ********* АU А РРМ Р 0.002 0 0.001 0 0.002 0	******* Hole ******* G CI PM PI .200 .200 .200	CU PPM 6.	МО РРМ	РВ РРМ 2.	dip		· · · · · · · · · · · · · · · · · · ·	
m m 0.00 1 1.52 34 monzor 1.5 5.6 cuttin	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz nite. Locally pyritic, may 52 5.65 Broken core 55 6.80 Carbonate rich ng parallel to core axis.	130.00 -45.00 : ************************************	87.47 ************************************	130.00 -4 ************************************	42.50 ************************************	*********** to 87005-0 ********** AU Å PPM P 0.002 0 0.001 0 0.002 0 0.010 0	******* Hole G CI PM PI .200	СU ЭРМ 6. 9. 10.	МО РРМ 1. 1. 1.	РВ РРМ 2. 2. 2.	dip		•	
m m 0.00 1 1.52 34 monzor 1.5 5.6 cuttin 6.8	0.00 COMMENTS TO DESCRIPTION n 1.52 CASING Overburden 4.02 QUARTZ MONZONITE Propylitized quartz nite. Locally pyritic, mag 52 5.65 Broken core 55 6.80 Carbonate rich	130.00 -45.00 : ************************************	87.47 ************************************	130.00 -4	42.50 H's 87001-0 SAMPLE# NS NS FX 483794 FX 483795 FX 483796	to 87005-0 ********** AU Å PPM P 0.002 0 0.001 0 0.002 0 0.010 0 0.004 0	. Hole . Hole . Hole . CI PM PI . 200 . 200 . 100 . 200	CU PPM 6. 9. 10. 7.	MO PPM 1. 1. 1. 1.	РВ РРМ 2. 2. 2. 3.	dip			

87006-0 PAGE 1

PAGE 2 ** INCO ** **DRILL LOG**

FROM	TO DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	мо	РВ
m	m	m	m	m		PPM	PPM	PPM	PPM	PPM
t	o 2 centimetres wide. At 12.85	12.89	13.33	0.44	FX 483801	0.002	0.800	138.	2.	2.
m	etres, coarse grained quartz vein cut	13.33	14.32	0.99	FX 483802	0.007	0.200	39.	1.	2.
	y drusy carbonate veinlets.	14.32	15.00	0.68	FX 483803	0.002	0.100	6.	1.	2.
	12.89 13.33 Drusy, broken up quartz	15.00	15.70	0.70	FX 483804	0.001	0.200	7.	1.	2.
c	arbonate veinlet at 10 degrees to core	15.70	16.35	0.65	FX 483805	0.011	0.500	34.	1.	3.
a	xis with fine pyrite.	16.35	17.00	0.65	FX 483806	0.003	0.300	60.	1.	2.
	13.33 15.70 Some broken core. Slightly	17.00	17.85	0.85	FX 483807	0.005	0.100	8.	1.	2.
ь	leached quartz monzonite with fine	17.85	18.60	0.75	FX 483808	0.004	0.200	9.	1.	2.
Г	ibbons of carbonate throughout.	18.60	19.50	0.90	FX 483809	0.004	0.200	9.	1.	2.
	15.70 18.60 Slightly argillitized,	19.50	20.40	0.90	FX 483810	0.010	0.200	37.	1.	3.
ь	leached quartz monzonite with	20.40	21.20	0.80	FX 483811	0.005	0.200	18.	1.	3.
c	arbonate rich vein breccia zones	21.20	24.37	3.17	NS					
, p	articularly between 15.45 to 17.00	24.37	25.40	1.03	FX 483812	0.002	0.200	10.	1.	3.
m	etres. No significant silicification.	25.40	26.51	1.11	FX 483813	0.003	0.300	60.	1.	2,
		26.51	27.73	1.22	FX 483814	0.001	0.200	21.	1.	5.
	18.60 24.37 Massive fresh looking quartz	27.73	28.70	0.97	FX 483815	0.001	0.100	10.	1.	2.
m	onzonite. Only a few discrete calcite	28.70	29.56	0.86	FX 483816	0.002	0.100	21.	1.	2.
v	einlets.	29.56	30.17	0.61	FX 483817	0.002	0.200	38.	1.	2.
	24.37 29.56 Some weakly developed	30.17	30.63	0.46	FX 483818	0.001	0.100	20.	1.	4.
f	oliation locally. A few irregular	30.63	31.07	0.44	FX 483819	0.001	0.200	55.	2.	4.
d	iscontinuous carbonate veinlets.	31.07	31.60	0.53	FX 483820	0.001	0.100	19.	1.	5.
	29.56 34.02 Small scale fracturing	31.60	32.61	1.01	FX 483821	0.004	0.100	34.	1.	5.
i	ncreases slightly. Several parallel	32.61	33.20	0.59	FX 483822	0.001	0.200	18.	1.	5.
q	uartz carbonate veinlets at 31.20	33.20	33.72	0.52	FX 483823	0.003	0.400	48.	1.	2.
m	etres. Vague bleaching of quartz	33.72	34.02	0.30	FX 483824	0.003	0.100	30.	1.	13.
m	onzonite between 33.70 and 34.02									
m	etres.									
34.02	35.95 BRECCIA									
	Possible narrow breccia pipe	34.02	34.53	0.51	FX 483825	0.190	2.300	37.	2.	2.
0	r dike offshoot as seen in BH 87005-0.	34.53	35.27	0.74	FX 483826	3,730	24.800	18.	3.	7.
		35.27	35.66	0.39	FX 483827	3.490	4.500	34.	3.	2.
ь	34.02 34.55 Chloritic wallrock recciation. Fine grained pyrite	35.66	35.95	0.29	FX 483828	0.028	0.300	19.	2.	4 -

87006-0

37006-0

•

PAGE 3 ** INCO ** **DRILL LOG**

FROM	и то	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	ĊU	MO	PB
m	m		M	m	m		PPM	PPM	РРМ	PPM	PPM
	throughout.										
	34.55 35	.20 Variably bleached and									
		ounded breccia fragments in									
	light green,	calcareous, chalcedonic									
	matrix. Som	e broken core.									
	35.20 35	.95 Drusy, white to light gray									•
	quartz veinl	ets cross cut the greenish									
	siliceous ce	ment of the breccia pipe.									
		t shows a weak network of									
	quartz carbo	nate veinlets. Small									
		ragments generally quite									
	pyritic.										
35.9		UARTZ MONZONITE									
		.45 Several light green,	35.95	36.60		FX 483829	1.550	1.800	14.	2.	2.
		fine grained siliceous	36.60	37.45		FX 483830	1.920	2.600	26.	2.	2.
	•	pendicular to core axis.	37.45	38.71	1.26	FX 483831	0.060	0.400	24.	1.	4.
	-	g evident within narrow	38.71	39.35		FX 483832	0.036	0.400	15.	1.	2.
		0 metres by various shades	39.35	39.90		FX 483833	0.075	0.200	8.	2.	4.
	of green col		39.90	40.41		FX 483834	0.032	0.100	17.	2.	2.
		.97 Slightly bleached quartz	40.41	40.97	-	FX 483835	0.180	1.300	49.	2.	4.
		th quartz carbonate veinlet	40.97	41.75		FX 483836	0.012	0.100	14.	1.	2.
		per 10 to 30 centimetres.	41.75	42.60		FX 483837	0.003	0.100	16.	2.	5.
	• •	within matrix.	42.60	43.00		FX 483838	0.032	0.200	23.	2.	6.
		.80 Weakly shattered in places.	43.00	43.85		FX 483839	0.003	0.100	11.	2.	4.
		carbonate veinlets with	43.85	. 44.72			0.006	0.100	15.	1.	7.
		ght coloured alteration	44.72	45.90	1.18	FX 483841	0.005	0.100	20.	3.	2.
I		vages noted around them.	45.90	46.45	0.55	FX 483842	0.010	0.200	35.	4.	5.
		.45 Veining increasing slightly.	46.45	47.50		FX 483843	0.001	0.400	16.	1.	5.
		et brecciation. Some tiny	47.50	48.80		FX 483844	0.005	0.400	47.	2.	2.
		ss cut coarse grained	48.80	49.45		FX 483845	0.004	0.200	33.	2.	3.
I	quartz segre	-	49.45	50.90		FX 483846	0.016	0.100	25.	1.	2.
		.00 Friable, calcareous, weakly	50.90	51.60		FX 483847	0.004	0.200	18.	1.	2.
1	precciated Z	one. Chloritic matrix.	51.60	52.45	0.85	FX 483848	0.001	0.100	30.	1.	3.

87006-0

PAGE 4 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	то	LENGTH	SAMPLE#	AU	AG	CU	МО	PB
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
	53.00	55.42 Several wavy quartz	52.45	53.00	0.55	FX 483849	0.006	0.200	23.	2.	4.
c	arbonat	e veinlets offset by	53.00	53.95	0.95	FX 483850	0.017	0.100	42.	2.	2.
'n	nicrofra	ctures.	53.95	54.72	2 0.77	FX 483851	0.003	0.200	42.	1.	2.
	55.42	59.00 Siliceous, massive quartz	54.72	55.40	0.68	FX 483852	0.003	0.500	66.	1.	2.
П	nonzonit	e. Quite pyritic in places.	55.40	56.80	1.40	FX 483853	0.003	0.300	54.	2.	2.
S	Sparse f	racturing.	56.80	58.00	1.20	FX 483854	0.004	0.200	40.	1.	2.
	59.00	64.62 Drusy quartz carbonate	58.00	59.00	1.00	FX 483855	0.004	0.400	82.	20.	4.
١	<i>v</i> einlets	1 per 20 to 40 centimetres.	59.00	60.04	1.04	FX 483856	0.001	0.300	36.	1.	3.
A	At 61.60	metres, light green to fine	60.04	60.40	0.36	FX 483857	0.007	0.300	55.	7.	3.
9	rained	white quartz veinlets. Weakly	60.40	61.37	0.97	FX 483858	0.002	0.200	65.	1.	4.
t	precciat	ed in places.	61.37	62.70	1.33	FX 483859	0.021	0.300	48.	1.	3.
	64.62	70.36 Mostly carbonate rich	62.70	63.09	0.39	FX 483860	0.030	0.200	26.	1.	2.
١	veinlets	and microfracture coatings.	63.09	64.27	7 1.18	FX 483861	0.004	0.100	19.	1.	2.
	70.36	76.63 Strong propylitization.	64.27	65.10	0.83	FX 483862	0.001	0.100	19.	1.	4.
L	ocally	quite pyritic. Relatively	65.10	66.14	1.04	FX 483863	0.006	0.200	29.	1.	2.
. 5	sparse a	mounts of veining (typically	66.14	67.00	0.86	FX 483864	0.007	0.200	35.	1.	2.
c	arbonat	e rich).	67.00	67.65	0.65	FX 483865	0.024	0.200	16.	1.	2.
			67.65	68.62	2 0.97	FX 483866	0.098	1.300	26.	1.	2.
			68.62	69.19	0.57	FX 483867	0.019	0.100	9.	1.	2.
			69.19	70.36	5 1.17	FX 483868	0.040	0.200	30.	5.	2.
			70.36	71.42	2 1.06	FX 483869	0.072	0.600	47.	2.	2.
			71.42	72.40	0.98	FX 483870	0.057	0.800	55.	1.	2.
			72.40	73.10	0.70	FX 483871	0.068	2.600	49.	5.	4.
			73.10	73.90	0.80	FX 483872	0.710	1.500	35.	15.	3.
			73.90	74.20	0.30	FX 483873	0.071	4.400	32.	5.	8.
		•	74.20	75.00	0.80	FX 483874	0.004	0.200	11.	1.	5.
			75.00	75.52	2 0.52	FX 483875	0.005	0.100	16.	1.	4.
			75.52	76.15	5 0.63	FX 483876	0.022	0.300	48.	1.	2.
			76.15	76.63	5 0.48	FX 483877	0.010	0.300	53.	1.	2.
76.63	87.4	7 QUARTZ FELDSPAR PORPHYRY									
	Fr	acture line contact	76.63	77.00	0.37	FX 483878	0.100	0.500	21.	1.	3.
ł	between	alteration front and propylite	77.00	77.40	0.40	FX 483879	0.520	4.200	22.	3.	6.
đ	at 40 de	grees to core axis (intrusive	77.40	78.60	1.20	FX 483880	0.340	1.700	3.	3.	13.

87006-0

PAGE 5 ** INCO ** **DRILL LOG**

FROM	то	DESCRIPTION	FROM	TO	LENGTH	SAMPLE#	AU	AG	CU	MO	рв
m	m		m	m	m		PPM	PPM	PPM	PPM	PPM
cor	ntact i	mplied).	78.60	78.90	0.30	FX 483881	0.069	0.300	5.	2.	8.
7	76.63	77.00 Very weak veining.	78.90	79.30	0.40	FX 483882	0.013	0.400	2.	2.	10.
-	77.00	77.40 Significant	79.30	80.45	1.15	FX 483883	0.170	0.200	4.	2.	9.
cry	yptocry	stalline quartz flooding.	80.45	81.38	0.93	FX 483884	0.160	0.300	4.	3.	12.
Si	lica ma	atrix brecciation also. Very	81.38	82.50	1.12	FX 483885	0.150	0.300	4.	2.	17.
fi	ne pyri	te in dark gray siliceous	82.50	87.47	4.97	NS					
mat	trix.	Greenish feldspathic matrix	í.								

77.40 87.47 Minor quartz flooding or cross cutting veinlets in remaining section. Totally bleached white quartz monzonite. Specks of less resistant white ?zeolite material and fine pyrite clots within argillic matrix.

likely clay sericite alteration.

87006-0

PAGE 5

APPENDIX II

H .

ACME ANALITICAL LABORATORIES LTD.

852 E. HASTINGS ST. VA. COUVER B.C. V6A 1R6 PHONI

PHONE (604) 253-3158 FAX () 253-1716

Page 1

Inco Expl. & Tech. Services PROJECT 60513 File # 91-2237

							26	90 • (566 B	Urraro	1 St.,	Van	couve	r BC	V6C 2	X8 S	Submi	tted I	by: D	DENNIS	BOHME		. N K					86 X			
SAMPLE#	Мо	Cu	Pb	Zn		Ni		Mn		As	U	Au	Th	۶r	Cd		Bi	٧	Ca			Cr	Mg		Ti	В	AL	Na	K	¥	Au*
	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	*	ppm	ppm .	ppm	ppm	ppm	ppm	ppm	ppm	ррп	X	*	ppm	ppm	*	ppm	%	ppm	%	*	%	ppm	_ppb
FX-479261	1	9	4	26		7	8	494	2.92	4	7	ND	6	157	.5	2	2	48	3.64	.065	9	10 1	.13	19	.06	21	.27	.03	.12	1	16
FX-479262	1	29	2	27		7	7	525	2.64	5	7	ND	6	314	.4	3	2	45	5.66	.062	8	10 1	.05	16	.04	2 1	.22	.03	.12		- 16 🗤
FX-479263	1	18	2	27		7	7			3	10	ND	5	159	.3	2	2	49	5.52	.075	6		.42	15	.01	21	.36	.03	.10	1	- 8
FX-479264	1	12	5	31	10.0	11		411		- 2	5	ND	6	136	.6	2	2			.082	5	12 1		22	.08		.37	.05	.09	1	3
FX-479265	2	16	4	26	- 1	. 9	9	479	3.41	- 4	5	ND	6	77	.5	2	2	78	1.39	.074	6	13 1	.79	25	.12	21	.46	.05	.07	1	. 8
FX-479266	2	37	· 2	27	.1	10	10	429	3.63	5	5	ND	9	101	.8	2	2	81	2.28	.094	5	12 1	.45	22	. 15	31	.31	.05	.07	1	2
FX-479267	1	176	2	39	.3	9	10	515		· 9	5	ND	4	117	1.0	2	2	125	4.01	.119	3	10 1	.76	10	.09	21	.28	.03	.04	1	, 7
FX-479268	2	44	2	24		8	7	409		. 3.	5	ND	5	112	.4	3	2			.091	- 3	10 1			.10		.11	.05	.06	1	1
FX-479269	2	26	2			8	6	386		5	5	ND	5	145	.4	2	2			.077	5	13 1			. 14		.19	.05	.07		1
FX-479270	1	27	2	29	26 31 :	9	7	430	3.25	2	5	ND	5	111	.4	2	2	66	2.55	.084	5	10 1	.45	24	.13	21	.27	.05	.07	1	. 3 .
FX-479271	1	16	2	21		10	7	329		2	7	ND	6	134	.4	2	2			.075	6	11 1		24	.13		.20	.04	.08	1	6
FX-479272	1	14	4	18	2.2.10.304	9	6	320		5	6	ND	6	145	.3	2	2			.082	6	12 1			.12		.26	.06	.06		2
FX-479273	2	28	3	16	1.000.000	7		272		. 5	5	ND	6	130	.2	2	2			.081	4	11 1		N	.14		.18	.06	.07		2
FX-479274	15	186	5	55		12	24	496		6	5	ND	7	200	-7	5	2			.091	10	11 1			.10		.83		.11		8 1
FX-479275	1	106	2	69	.3	6	18	584	5.55	2	8	ND	8.	135	1.2	4	2	50	3.52	.107	5	12 1	.09	55	•U2	2 2	.38	.06	.20		1
FX-479276	2	79	3	90		11		475		4	5	ND	8	83	.9	2	4			.068	8	13 1		33	.05		.05		.22		1
FX-479277	1	33	6	42	A 25 T T 1	11	8	384		4	5	ND	8	105	.3	2	4			.065	7		.99	25	.05		.30	.02	.16	1	28 8
FX-479278	2	30 8	2	46	- 2015 E.S.	10		415		3	6	ND	8	136		2	2			.059	7	10 1 13 1		25 31	.07		.41	.02	.16	2	7
FX-479279 FX-479280	1	50	2	66 128	.1	9 9		463 533		5 8	6 6	ND ND	10 11	122 125	.4	23	3			.088	8 8	14 1		102	-05	2 2		.11	.47	1	9
FA-479200		50	Ľ	120		,	"	رور	5.00	. 0	0	NU		125	1.0	5	3	43	2.02		U	14 1		106			• ()	***	• • • •		•.
FX-479281	2	26	3	50		11		422		3	5	ND	8	123	.5	3	2			.067	7	11 1			.04		.34	.03	.16	1	38
FX-479282	2	72	2	27	.2	10		419		3	5	ND	7	162	.3	3	2			.052	8		.88	33 -	-06		.05	.03	.18		14
FX-479283	1	17	2	25	.2	7		438		2	5	ND	_	177	.6	2	2			.055	9	12			.03		-10	.03	.14		10
FX-479284	1	30	2	39	.6	11		662		9	7	ND	8	249	2.2	2	2			.110	4	12 2		98	.06		.85	.04	.59		92 730
FX-479285	1	46	2	30	2.0	6	12	618	5.45	4	9	ND	8	331	2.1	2	3	22.	3.02	.063	12	y (.67	21	.02	~ ~ ~	.26	.01	.15		130 .
FX-479286	2	17	2	31	.2	11	8	463	2.92	2	5	ND	9	150	.6	2	4	36	2.26	.053	15	10	.82	24	.01	21	.10	.02	.18	1	55
FX-479287	1	22	2	38	.2	7		479		4	5	ND	10	232	.6	2	2	36	2.33	.054	15		.76		.01	21		.02	.20	1	41
FX-479288	3	46	5	71	:5	12		530		4	6	ND		195	1.1	4	2			.053	22		.85	-	.01		.40	.01	.27	2 L	29
FX-479289	6	101	-	110	.5	15		530	-	. 7	10	ND	8	160	2.3	5	2			.085	13	13 1			-03		.16	.01	.41		4
FX-479290	6	695	3	136	1.2	19	72	907	9.73	7	10	ND	6	190	2.8	5	2	177 3	3.63	.228	11	19 2	.58	45	.05	22	.93	.01	.55	19	17
FX-479291	3	30	2		.4	10	14	583		3	7	ND	8	156	.7	3	2			.065	12	11 1			.02		.52	.03	.19	2	14
FX-479292	8	30	2	87		14	21	801		5	7	ND	6	187		2	2			.062	14	12 1		27	.02		.34	.01	.22	10040 (P.)-	470
FX-479293	1	2	3	45	4.1	10		639		5	8	ND	5		1.0	2	2			.052	10	10 1		17	S. 1941		.28	.01	.19		110
FX-479294	1	21	2	42	.6	13		643		4	5	ND	8	227		2	5			.065	11	10 1			.01		.50	.02	.18		
FX-479295	7	15	4	34	.3	12	9	533 :	5.11	2	5	ND	8	165	• • • •	2	3	45 1	2.15	.066	12	12	.96	35	.01	2 1	.22	.03	.15		91
FX-479296	4	13	2	25	.3	12		485 2		4	5	ND	7	183	.9	2	5			.059	10		.78		.01		.06	.02	.15	1	78
STANDARD C/AU-R	18	56	36	132	7.5	70	32	1037	5.98	37	19	6	40	52	18.4	16	_21	56	.48	.092	38	58	.86	175	.09		.91	.06	.15	12	490

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AV. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

July 9/91.

DATE RECEIVED: JUL 3 1991 DATE REPORT MAILED:

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Inco Expl. & Tech. Services PROJECT 60513 FILE # 91-2237

Page 2

ACHE ANALYTICAL

SAMPLE#	Mo	Cu	Pb	70		N 3			F																				AL ANALI	
5AMLE#	ppm	ppm	ppm	Zn ppm	Ag Ppm	Ni ppm	Co ppm	Mn ppm	Fe As % ppn		Au ppm	Th ppm		Cd ppm	Sb ppm	Bi ppm	v ppm	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	TÍ %	8 ppm	Al X	Na %	K %	1	ppb
FX-479297 FX-479298 FX-479299 FX-479300 FX-479301	2 2 2 3 2	20 26 39 25 34	222222	35 33 35 43 41	.2 .2 .4 .8 .4	11 13 11 14 10	9 9 12 12 12	530 510 519 606 673	2.90 2 3.23 2 3.48 2	5 5 5 5 5	ND ND ND ND ND	6 7 6 7 7	163 132 132 202 279	.4 .2 .6 .7 .8	2 2 2 2 2	2 2 3 3	51 49 46	2.37 1.87 1.80 2.03 3.41	.064 .061 .064	9 8 9 12 13	12	.97 .96 1.06 1.11 1.09	26 27 27	01 04 02 01 01	2 1 2 1	1.16 1.11 1.21 1.48 1.42	.03 .03 .03 .02 .02	.13 .11 .12 .19 .17	1 1	100 8 25 960 60
FX-479302 FX-479303 FX-479304 FX-479305 FX-479306	6 1 7 3 6	52 17 26 41 26	3 4 2 3 2	43 38 37 31 31	6.5 .3 .5 .8 .3	10 10 13 14 12	13 11 11 9 10	658 644 635 646 519	3.47 2 3.76 3 3.16 3	5 5 5 5 5	ND ND ND ND	7 6 5 4 6	255 218 242 263 115	1.0 .6 .6 .4 .2	2 2 2 2 2 2	2 4 2 3 2	54 48 44	2.96 2.80 2.72 3.33 1.80	.068 .064 .060	12 12 11 9 9	13 12	1.15 1.16 1.11 .87 .97	32 23 24	02 02 01 01 06	2 2	1.46 1.40 1.37 1.11 1.10	.02 .03 .02 .02 .05	.20 .16 .16 .14 .13	1 1	1460 270 97 380 18
FX-479307 FX-479308 FX-479309 FX-479310 FX-479311	2 4 1 2 1	17 24 24 23 21	3 3 2 2 3	30 32 33 37 31	.7 .4 .3 .3 4.4	12 14 11 13 11	9 10 10 11 10	537 607 603 623 639	3.62 3 3.31 2 3.55 2	5 5 5 5 5	ND ND ND ND ND	5 6 5 5 5	155	.6 .4 .4 .6 .3	2 2 2 2 2	2 2 2 3	70 55 58	1.77 2.36 3.02 2.83 3.82	.074 .075 .078	6 8 9 11 11	16 13 14	1.09 1.18 1.11 1.15 1.11	33 38 32	11 07 02 01 01	2 ⁴ 2 ⁴ 2 1	1.12 1.27 1.33 1.43 1.33	.06 .05 .03 .03 .03	.15 .14 .15 .17 .16	1 1 1 1 1	40 66 30 19 400
FX-479312 FX-479313 FX-479314 FX-479315 FX-479316	2 2 2 2 2 2	20 48 18 42 19	3 5 3 3 4	34 34 33 40 31	.3 .6 .4 1.6 .7	12 10 11 13 11	10 10 9 10 8	628 542 533 728 626	5.18 2 5.42 3 5.85 4	5 5 5 5 5	ND ND ND ND ND	5 5 3 5	298 249 230 453 369	.2 .4 .2 .2 .5	2 2 2 2 2	2 2 2 2 2	41 47 48	3.49 2.42 1.91 4.37 3.87	.069 .073 .064	12 11 11 5 10	10 11	1.10 1.00 1.11 1.10 .95	58 59 112	01 01 01 01 01	2 1 2 1 2 1	1.37 1.30 1.46 1.52 1.27	.02 .02 .02 .02 .02	.20 .19 .20 .17 .20		25 52 80 330 350
FX-479317 FX-479318 FX-479319 FX-479320 FX-479321	8 2 2 2 2	34 33 21 41 23	22646	32 32 29 32 27	.5 .9 1.6 1.1 4.3	11 11 12 12 10	10 9 8 10 7	536 567 557 591 563	2.80 2 2.37 3 2.93 4	5 5 5 5 5	ND ND ND ND ND	7 8 6 5	233 227 278 254 355	.5 .2 .3 .4 .2	2 2 2 3	2 2 2 2 2 2	37 30 39	2.48 2.53 3.20 3.61 4.74	.064 .060 .067	10 12 10 11 7	11 11 11 11 9	.99 .91 .76 .92 .80	72 . 101 . 19 .	01 01 01 01 01	2 1 2 2 1	1.26 1.16 .92 1.21 .97	.02 .02 .02 .02 .02	.21 .18 .16 .20 .14	1 1 1	210 61 580 130 990
FX-479322 FX-479323 FX-479324 FX-479325 FX-479326	2 1 4 1 92	16 30 19 25 114	2 3 4 3	36 39 23 32 29	.4 3.0 8.4 .6 5.5	12 13 12 11 15	6 9	589 3 689 3 500 1 563 2 508 3	3.20 4 1.88 2 2.82 2	5 5 5 5 5	nd Nd Nd Nd	6 7 16 9 7	154 218 324 215 300	.2 .2 .3 .6 .3	2 2 2 2 3	2 2 5 2	40 24 39	2.42 2.93 3.96 2.09 2.99	.064 .045 .066	11 10 11 13 5	11 11 10 10 10	1.05 .99 .60 .93 .80		01	2 1 3 2 1	1.23 1.26 .78 1.26 .98	.02 .01 .02 .02 .02	. 16 . 19 . 16 .22 . 17	1 2 1	85 680 2050 540 990
FX-479327 FX-479328 FX-479329 FX-479330 FX-479331	2 2 1 3 1	48 13 10 18 34	4 5 6 3	32 36 43 36 37	3.0 .6 .8 .6	10 11 10 14 9	7 8 9 9	679 2 736 2 776 3 604 3 654 3	2.64 2 .05 3 .09 2	5 5 6 5 5	nd Nd Nd Nd	5 6 6 6	455 299 364 279 294	.6 .4 .8 .7 .7	3 2 4 3 5	2 2 2 2 2 2 2	35 44 48	4.84 3.95 3.72 2.74 2.82	.058 .066 .062	5 10 12 10 9	10 12	.79 1.02 1.18 1.01 1.00	145 115 40	01	2 1 2 1 2 1	1.02 1.24 1.39 1.25 1.21	.02 .02 .02 .04 .04	.18 .19 .20 .21 .20	1 1 1	080 380 410 270 230
FX-479332 STANDARD C/AU-R	2 18	28 58	3 40	37 133	.3 6.9	13 75		595 3 1060 3		5 18	ND 6	7 39	255 52	.9 18.6	3 15	2 19		2.01 .49		11 38	11 58	1.02 .94	125 177	02 09		1.32 1.98	.05 .06	.28 .14	1 11	37 520

Inco Expl. & Tech. Services PROJECT 60513 FILE # 91-2237

SAMPLE# Mo Cu Pb W Au* Zn Ag Ni Со Mn Fe As U Th Cd Sb V Ti к Au Sr Bi Са Ρ La Сг Mg Ba B AL Na ppm inga ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm z x ppm ppm % ppm % mqq % % % ppm ppb FX-479333 2 19 10 43 655 2.70 .4 9 9 2 5 ND 6 362 .2 2 2 39 3.18 .052 10 11 .85 75 .01 2 1.14 .03 .17 ीः 200 FX-479334 31 7 29 5 629 2.40 1 .6 8 11 5 ND 5 358 2 2 36 3.76 .040 6 8 .72 26 .01 2.91 .03 .12 270 :5 FX-479335 2 57 3 37 7 675 3.11 7 278 2 2 1.22 180 11 5 ND 2 50 2.52 .065 10 .95 36 .02 .04 .24 .4 4 :3 10 FX-479336 2 40 4 44 .4 8 12 809 3.36 3 5 ND 7 480 .3 2 2 41 3.57 .060 11 8 1.01 34 .01 2 1.37 .02 .21 1 460 39 .9 FX-479337 5 45 4 9 12 742 3.20 2 5 ND 7 406 .5 2 2 41 3.62 .062 10 11 .89 25 .01 2 1.24 .03 .19 1 160 FX-479338 2 24 3 43 1.9 9 10 727 3.18 7 5 ND 328 3 2 44 3.50 .061 11 10 .98 22 .01 2 1.24 .03 .16 340 6 .4 FX-479339 2 29 5 .02 1 2650 28 9 781 2.93 3 5 9 2 2 37 5.23 .042 8 .63 78 .01 2 1.04 1 1.5 2 578 .6 6 .16 FX-479340 3 2 9 2 2 2 2 1.82 .06 64 39 42 .5 15 646 3.45 5 ND 6 308 .3 54 1.86 .067 10 11 1.06 76 . 05 .38 18. .04 FX-479341 34 2 54 9 19 811 4.27 5 5 ND 377 .7 4 2 53 2.67 .062 8 12 1.44 190 .03 2 1.96 .34 1 76 1 .4 6 2 45 .3 2 106 2 1.97 .09 .41 110 FX-479342 2 24 7 15 692 3.61 5 ND 7 327 :2 2 2 56 2.28 ,066 10 8 1.09 .06 1 2 2.13 .27 790 FX-479343 2 90 2 75 1.7 9 33 935 5.34 5 5 ND 6 456 .6 2 2 49 3.78 .055 8 10 1.43 113 : .01 .04 FX-479344 39 46 9 15 744 3.49 6 5 2 2 39 3.32 .052 9 8 1.00 261 .01 2 1.25 .02 .22 70 1 4 .5 ND 6 422 .6 ୀ : .39 FX-479345 18 48 7 2 494 2 2 10 8 1.07 66 .03 2 1.28 .03 110 1 2 .3 13 789 3.63 5 ND 7 .4 51 3.31 .064 1 .17 FX-479346 1 16 2 31 8 8 742 2.78 2 5 5 740 2 2 35 5.61 .051 9 .61 26 .01 2.30 .02 1 110 ..6 ND .2 6 .79 5 24 .01 2 .21 .02 .13 590 FX-479347 1 33 2 26 1.9 8 7 793 2.34 3 7 950 2 3 27 7.11 .043 ND 4 .3 4 180 FX-479348 29 4.37 .045 5 29 . 01 2 .27 .01 .18 18 30 2 35 1.2 9 699 2.62 2 ND 5 592 2 2 5 .60 1 6 5 .3 FX-479349 2 19 6 31 .6 11 5 365 1.60 2 25 ND 12 228 .2 2 2 15 1.18 .028 11 8 .33 15 .01 2 .21 .03 .14 4 210 2. .74 2 5 .23 19 .01 2 .14 .04 .09 200 FX-479350 2 10 31 298 5 NÐ 12 179 2 2 9 1.02 .007 14 1 .4 5 1 .4 3 .14 12 .13 .04 210 FX-479351 1 4 16 31 .3 5 1 256 .62 2 5 ND 13 99 .4 2 2 5 .98 .007 14 ..01 4 .06 1 2 .05 3 27 .2 8 9 5 17 124 2 2 8 1.21 .005 15 8 .11 13 :01 .11 .12 1 160 FX-479352 6 8 1 242 .55 ND .2 2 3 .07 12 .01 2 .12 .05 .10 260 FX-479353 30 .9 15 2 .62 .005 14 1 1 5 4 1 209 .69 2 6 ND 68 .2 6 1 330 .003 3 2 .11 .04 .07 FX-479354 21 .5 2 5 14 2 2 .64 10 .04 11 .01 -1 1 2 2 1 1 168 .52 ND 65 .2 4 FX-479355 3 32 2 5 ND 26 57 .2 2 2 5 .59 .007 18 9 .05 13 .01 3 .12 .05 .07 1 110 3 6 .4 11 1 212 .61 11 .07 1 420 28 .63 2 2 12 4 .08 .01 2 .11 .04 FX-479356 1 1 10 .8 6 1 287 5 ND 14 120 .2 2 8 1.38 .006 FX-479357 1 2 7 28 .4 3 296 .69 2 5 ND 15 123 .2 2 2 7 1.52 .005 13 3 .07 12 :01 2 .12 .04 .07 1 81 1 58 7.13 .05 FX-479358 2 2 28 .2 g 266 .72 2 5 ND 18 81 .2 2 2 7 .80 .006 16 9 .09 14 ::01 -08 6 1 3 .20 13 .01 2 .13 .03 .08 69 2 5 15 123 2 2 .88 .007 14 FX-479359 1 1 11 41 .1 4 1 406 1.04 ND .2 14 .09 .03 .07 220 23 2 14 100 2 2 .77 .005 13 3 .13 11 .01 2 FX-479360 1 1 8 .3 3 1 262 .61 6 ND .2 11 8 .07 13 .01 2 .10 .04 .06 ी 200 29 2 5 13 103 2 2 1.26 .006 14 FX-479361 3 3 4 .4 9 1 355 .76 ND .2 6 2 .07 160 24 2 5 12 84 2 2 .99 .007 13 4 .08 13 .01 .11 .04 1 FX-479362 1 1 7 .1 3 1 304 .66 ND .2 7 220 .02 .07 FX-479363 9 32 2 10 2 2 7 2.04 .007 13 3 .08 10 .01 2 .14 - 1 6 :4 3 1 536 .83 5 ND 120 .2 FX-479364 2 11 24 237 .55 2 5 ND 10 .2 2 2 .84 .006 10 5 .05 10 :01 2 .10 .04 .06 -1 180 1 .4 4 1 67 6 20 5 9 9 3 9 2 .09 .04 .06 140 FX-479365 1 8 .3 3 201 .52 2 ND 67 .2 2 2 7 .84 .005 .05 .01 1 1 1 12 3 11 2 .11 .04 .08 100 FX-479366 1 4 16 29 .3 1 244 .63 2 10 ND 12 70 .2 2 2 10 .84 .007 .06 :101 1 4 7 2 .08 .02 .04 110 5 18 2 7 91 .2 2 2 .99 .004 6 .03 7 .01 1 FX-479367 1 8 -1 6 1 234 .47 5 ND 6 .89 .003 8 .01 3 .08 .02 .03 -29 FX-479368 4 15 1 218 .48 2 5 ND 5 91 .2 2 2 6 5 4 .04 1 -1 - 1 - 3 38 179 11 470 STANDARD C/AU-R 18 57 37 131 7.4 31 1045 4.02 39 17 39 52 18.7 15 22 57 .49 .090 57 .87 .09 33 1.96 .06 .15 70 6

Page 3

ACHE ANALYTICAL

ACME ANALYVICAL

Inco Expl. & Tech. Services PROJECT 60513 FILE # 91-2237

SAMPLE# Mo Zn 🛛 Ag Cu Pb Ni Co Mn Fe As U Au Th SΓ Cd Sb Bi ۷ Ca Þ Ba 🔄 T i Na κ 88 V Au* La Сr Mg В AL % ppm % % ppm ppm ppm ppm ppm mqq mqq ppm ppm ppm ppm ppm ppm ppm ppm ppm % % ppm ppm ppm % ppm % % ppm ppb FX-479369 9 15 32 10 -1 1 333 .68 2 5 ND 10 78 .2 2 3 9 .90 .013 12 5 .07 12 201 3 .11 .04 .05 68 FX-479370 11 35 9 351 2 6 1 1 .81 2 5 ND 13 81 .2 2 10 .94 .007 13 7 .09 13 .01 .12 .04 .05 2 95 2 4 FX-479371 13 28 .2 7 2 1 2 1 347 .64 5 ND 14 74 :2 2 2 1.01 .008 15 3 .07 12 .01 .11 .03 .05 1 - 67 8 2 FX-479372 . 1 3 15 34 .2 8 369 .78 2 7 ND 12 75 :2 2 2 10 .99 .008 15 5 .09 12 .01 2 .12 .04 .07 1 59 1 FX-479373 2 5 19 31 .3 79 .2 .03 11 319 .74 3 5 12 2 2 8 .10 12 .01 .13 .06 1 100 1 ND 10 .84 .009 14 4 FX-479374 9 5 .01 .13 2 120 13 .2 5 12 2 15 .12 12 .04 .05 1 4 44 1 500 .92 2 ND 108 -2 2 12 1.60 .006 6 FX-479375 1 7 21 56 .1 9 2 439 1.26 2 5 ND 13 92 .3 2 2 19 1.05 .009 15 7 .18 11 .01 3 .14 .04 .05 120 35 93 .2 2 12 .12 .03 .05 270 FX-479376 2 11 16 .2 2 5 ND 10 2 .96 .008 13 8 .11 .01 3 11 1 357 .80 13 1 .80 .010 .06 900 FX-479377 1 9 14 54 .4 10 1 312 .71 3 5 ND 15 84 .2 2 2 9 18 7 .08 14 .01 2 .12 .04 1 FX-479378 11 39 .2 .91 2 113 19 5 .12 15 .01 3 .13 .04 .06 1 75 1 3 10 1 385 5 ND 14 .2 2 13 1.05 .010 2 FX-479379 43 10 13 .01 3 .12 .04 .06 2 47 2 -7 11 .2 13 3 5 ND 122 2 19 1.20 .010 18 .15 2 474 1.12 14 .5 2 92 5 .04 .06 1 FX-479380 1 4 13 39 .2 8 1 455 .92 2 5 ND 15 106 .2 2 2 13 1.29 .012 18 .12 14 .01 3 - 13 FX-479381 1 26 39 420 .94 18 ND 15 104 .3 3 13 1.12 .007 18 4 .12 14 .01 2 .13 .04 .07 130 4 .4 4 1 4 2 200 2 27 32 9 3 100 2 12 7 11 :01 3 . 14 .03 .05 FX-479382 6 .3 1 379 .88 6 ND 11 .2 2 12 1.10 .012 .11 FX-479383 1 4 15 23 .2 6 1 266 .60 2 6 ND 13 90 .2 2 2 7 .88 .002 10 5 .06 10 -01 2 .10 .03 .06 68 79 FX-479384 1 4 15 35 .2 6 1 349 .93 3 5 ND 19 85 .2 2 2 13 .93 .012 17 5 .11 12 :01 3 .12 .04 .06 .12 .04 .07 2 100 FX-479385 3 5 12 30 .2 13 1 292 .84 2 5 ND 14 75 .2 2 2 12 .77 .007 14 10 .10 13 .01 3 5 .09 14 .01 2 .13 .05 .06 53 FX-479386 1 8 12 31 7 2 5 81 .2 .96 .011 16 .1 1 337 .86 ND 16 2 4 12 1 39 FX-479387 2 3 16 29 2 5 82 .2 15 7 .10 13 .01 3 .12 .04 .06 1 .1 7 1 269 .81 ND 14 2 2 12 .79 .011 FX-479388 .06 54 2 3 13 30 .1 8 295 .90 2 5 ND 17 76 .2 2 2 13 .82 .009 16 8 .10 12 :01 3 .12 .04 1 69 FX-479389 5 12 28 7 303 ND 17 84 .2 2 3 10 .91 .010 15 6 .09 12 .01 2 .12 .04 .06 1 .2 1 .75 2 5 2 90 2 .99 .009 .12 14 .01 2 .15 .04 .07 10 100 2 37 .3 5 2 .91 5 17 13 4 FX-479390 4 14 416 ND .6 2 16 13 FX-479391 15 9 .12 .01 2 .13 .04 .06 1 65 3 5 13 39 11 10 1 340 .98 2 5 ND 13 84 .2 2 2 13 .87 .008 1 FX-479392 13 32 2 5 ND 14 94 .2 2 2 12 1.02 .011 17 5 .11 13 :01 2 .13 .05 .07 61 1 4 .2 354 .84 4 1 12 :01 3 .12 .05 .07 22 FX-479393 1 4 16 38 .1 3 1 389 .96 3 5 ND 20 84 .3 2 2 16 .97 .008 20 4 .11 1 30 10 .01 .05 .08 FX-479394 3 5 15 35 :1 9 363 .83 2 5 ND 28 86 :3 2 3 12 .93 .009 18 .10 15 4 .13 1 1 5 2 17 5 .16 14 .01 3 .13 .04 .07 1 31 FX-479395 1 12 40 482 .93 2 ND 13 162 .4 2 18 1.48 .008 1 .1 6 1 39 5 .13 12 .01 2 .13 .04 .06 1 FX-479396 1 4 15 37 11 7 1 433 .90 2 ND 8 141 .4 2 2 15 1.24 .007 18 6 13 2 .12 .04 .06 1 43 13 9 .11 .01 FX-479397 7 25 303 .80 2 5 ND 19 89 .2 2 2 13 .76 .005 3 16 .1 11 1 5 16 .01 2 .14 .04 .08 1 46 FX-479398 1 5 15 32 .1 5 1 316 .85 2 5 ND 10 112 .2 2 3 14 .78 .008 12 .12 13 1.10 .010 15 .01 2 .12 .05 .07 1 -58 FX-479399 1 12 35 .2 6 1 396 .82 2 5 ND 14 108 .4 2 3 4 .11 14 10 1.17 .013 17 10 .08 12 .01 2 .12 .05 .08 54 FX-479400 2 2 7 34 .2 11 388 .78 2 5 ND 16 106 .3 2 2 1 1 20 .11 .03 .06 200 FX-479401 2 8 20 :2 2 240 .58 2 5 ND 12 82 .2 2 2 9 .74 .008 14 7 .06 .01 2 1 1 1 2 82 12 3 .10 15 .01 2 .13 .03 .08 1 110 FX-479402 1 2 8 34 .4 6 1 380 .96 5 ND 14 .3 2 3 10 1.00 .009 2 2 9 33 :2 7 304 .76 2 5 ND 11 79 .2 2 2 11 .68 .004 12 7 .11 11 .01 2 .12 .03 .06 10 99 FX-479403 1 FX-479404 12 22 1 227 .55 2 ND 10 80 .2 2 2 11 .67 .008 9 4 .09 10 .01 2 .12 .03 .06 10 140 1 3 4 -5 .1 38 178 .09 31 1.96 .06 .15 11 540 STANDARD C/AU-R 18 57 40 132 7.4 76 33 1057 3.98 40 18 6 39 52 18.9 16 21 55 .49 .093 60 .92

ACME ANALYTICAL

ACME ANALYFICAL

Inco Expl. & Tech. Services PROJECT 60513 FILE # 91-2237

Page 5

ACHE ANALYTICAL

	·		<u></u>										_																~	CHE ANAL	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tí %	B ppm	Al %	Na %	K %	a da se a sector de la sector de	Au* ppb
FX-479405 FX-479406 FX-479407 FX-479408 FX-479409	1 3 2 2 1	3 3 3 2 3	17 25 7 15 10	28 36 23 33 27	.5 .3 .6 .4 .2	5 10 7 9 3	1 1 1 1	312 338 227 233 314	.85 .95 .81 .89 .72	3 10 14 2 2	5 5 5 5 5	ND ND ND ND ND	14 13 18 14 18	95 113 67 72 84	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	13 19 8 11 9	.89 .58 .54	.008 .009 .008 .008 .008	10 14 14 12 15	5 10 6 7 5	.08 .10 .06 .08 .05	12 16 15 16 14	.01 .01 .01 .01 .01	3 3 3 3 4	.18 .13 .12 .13 .13	.04 .05 .05 .05 .05	.04 .05 .05 .07 .06		92 57 130 130 38
FX-479410 FX-479411 FX-479412 FX-479413 FX-479414	3 2 2 1 3	5 4 1 2 5	22 8 16 9 14	39 37 31 29 35	.3 .5 .4 .3 .4	11 4 6 2 9	1 1 1 1	342 276 245 233 273	1.07 .94 .92 .87 .97	5 3 2 4	5 5 5 5 5	ND ND ND ND	13 15 13 15 19	85 57 83 71 87	.2	2 4 2 2 2	2 2 2 2 2	14 11 14 10 12	.47 .56 .57	.009 .009 .009 .009 .009	12 14 13 13 17	11 5 5 4 9	.08 .07 .08 .06 .07	14 12 15 13 15	.01 .01 .01 .01 .01	3 2 3 4 3	.14 .12 .13 .12 .12	.05 .04 .05 .05 .05	.06 .05 .06 .06 .06	1 1 1 1	110 110 120 42 41
FX-479415 FX-479416 FX-479417 FX-479418 FX-479419	2 2 1 3 1	3 4 1 3 3	11 16 17 5 11	33 28 30 24 26	.4 .8 .6 .3 1.4	5 5 3 7 5	1 1 1 1 1	215 217 316 356 300	.87 .93 .97 .81 .80	3 2 2 2 2 2	5 5 5 11	ND ND ND ND 2	19 16 14 14 19	48 65 118 105 113	.2 .2 .2 .2	2 3 2 3	2 2 2 2 2 2	10 11 16 9	.43 .65 1.02	.008 .010 .009 .010 .010	17 16 12 15 14	4 4 7 4	.05 .06 .12 .07 .09	14 15 17 83 16	.01 .01 .01 .01 .01	3 2 3 2 3	.11 .13 .13 .12 .12	.04 .05 .04 .05 .05	.05 .06 .06 .05 .07	1	88 88 56 61 130
FX-479420 FX-479421 FX-479422 FX-479423 FX-479423 FX-479424	2 1 3 1 2	4 2 9 2 4	12 7 13 15 8	42 27 42 32 33	.4 .6 .2 .2	5 2 9 4 5	1 1 1 1	414 1 367	.81	2 2 2 2 2	5 5 5 5	nd Nd Nd Nd Nd	15 14 12 12 15	130 93 95 104 109	.2 .2 .2 .2	2 2 4 2 2	2 2 2 2 2	9 16 13 1	.99 .92 1.01	.010 .011 .010 .010 .009	14 14 13 11 12	4 3 12 4 5	.13 .06 .10 .08 .07	14 13 15 15 14	.01 .01 .01 .01 .01	2 2 2 2 2	.14 .11 .15 .12 .12	.04 .04 .04 .04 .05	.07 .06 .06 .06 .05	1111	37 48 93 74 80
FX-479425 FX-479426 FX-479427 FX-479428 FX-479428 FX-479429	1 3 1 2 1	3 4 6 4 4	8 24 8 9 7	23 35 24 29 37	.2 .6 .2 .4 .3	2 8 5 6 2	1 2 1 1	422	.65 .97 .92 .94 .91	2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd	17 18 17 19 16	83 162 116 147 130	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	11 1 9 1 16 1	1.99 1.36 1.13	.011 .010 .011 .011 .011	14 13 15 17 14	3 8 4 3	.04 .08 .07 .09 .08	15 14 15 18 15	.01 .01 .01 .01 .01	3 2 2 3 4	.13 .13 .13 .14 .11	.05 .04 .05 .06 .05	.07 .05 .06 .07 .06	1 1 1 1	29 130 17 39 49
FX-479430 FX-479431 FX-479432 FX-479433 FX-479434	3 1 1 2	6 2 1 3 2	13 14 27 15 13	34 35 38 28 30	.6 .3 .3 .3 .2	9 4 3 2 7	1 1 1 1	385 1	.87 .83 .02 .63 .73	3 2 2 2 2	5 5 5 5 5	ND ND ND ND ND	18 13 11 9 10	147 79 102 116 98	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2 2	12 1 9 11 11 11	.66 .89 .89	.011 .011 .010 .011 .011	14 14 13 13 12	9 2 2 7	.08 .07 .10 .09 .07		.01 .01 .01 .01 .01	5 2 2 2 2	.13 .13 .18 .12 .12	.06 .04 .03 .04 .05	.07 .06 .10 .05 .05	1 1 1 1	27 49 20 29 62
FX-479435 FX-479436 FX-479437 FX-479438 FX-479439	1 3 1 3 1	2 5 5 3	14 8 8 22	35 30 31 32 45	.4 .5 .4 .3 .1	4 6 2 8 4	1 1 1 1	440 343 453	.77 .82 .74 .94 .07	2 2 2 2 2	5 5 5 5 5	ND ND ND ND ND	10 12 9 12 15	88 161 91 134 146	.2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2	9 14 1	1.36 .83 1.32	.012 .012 .013 .011 .011	13 15 15 13 13	4 6 2 8 3	.07 .07 .06 .06 .12		.01 .01 .01 .01 .01	5 3 2 2	.13 .15 .12 .13 .13	.05 .06 .05 .06 .05	.06 .07 .06 .07 .06	1 1 1	68 87 19 34 23
FX-479440 STANDARD C/AU-R	2 19	2 62	9 38	35 131	.4 6.9	5 72	1 33_1	379 1069 3	.91 .99	2 38	5 16	ND 6	12 39	110 53	.2 17.2	2 18	2 17			.011 .090	14 37	5 58	.07 .90	15 179	.01		.14 1.90	.06	.07 .15	1 13	97 540

ÆÆ

Inco Expl. & Tech. Services PROJECT 60513 FILE # 91-2237

ACHE ANALTTICAE					<u>.</u>																								ACHE ANAL	TICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba Ti	B	AL	Na	ĸ	<u> </u>	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ррл	ppm	ppm	ppm			-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ppm	~%	ppm %	: -	*	%			
		••					F1	FF		F F	F F	P ' P ''''	r p	P P	P P P P P P P P P P		PP	PP			PP'''	<u> </u>		100000 """"""					<u></u>	
FX-479441	1	3	17	33	.2	5	1	384	.81	2	5	ND	13	111	.2	2	2	14	1.21	.011	12	7	.08	17 .01	3	.15	.07	.06	1	19
FX-479442	2	Ā	10	33	.3	6	i	396		2	5	ND	10	74	.2	6	2	14		.010	13	6	.07	17 .01	2		.06	.06		6
FX-479443	2	3	11	41	.1	5	1	556		2	5	ND	11	115	.3	ž	2	• •			13	4								. 6
		-				-	1									_				.011			.09	14 .01			.05	.04		
FX-479444	2	3	24	43	.1	6	1	390	.96	2	5	ND	12	106	.2	2	2	1 a 4		.011	12	5	.09	18 .01			.06	.04		5
FX-479445	2	· 1	11	33	.5	6	1	346	.88	2	5	ND	10	78	.2	2	2	10	.96	.011	12	7	.06	19 .01	2	.15	.06	.06		80
				-	_	-					_														è.					
FX-479446	2	2	27	30	.3		1	308	.81	3	5	ND	9	103	.2	• 4	2	17		.010	12	7	.08	29 01	. –		.05	.06	18 P.	74
FX-479447	3	4	. 9	23	2.3	7	1	263	.81	2	5	ND	7	80	.2	.4	2	10	.66	.009	10	8	.07	15 .01	2	. 15	.05	.04	1	78
FX-479448	2	5	7	24	.6	6	1	217	1.01	3	5	ND	5	58	.2	2	2	13	.32	.008	7	8	.09	14 .01	2	.17	.04	.04		86
FX-479449	2	- 7	. 11	21	.2	7	1	186	.92	3	8	ND	5	65	.2	3	2	12	.33	.006	6	6	.09	14 🛄 01	2	.17	.03	.04	<u> </u>	200
FX-479450	3	4	8	28	:1	9	1	259	.78	2	5	ND	7	73	.2	2	2	9	.58	.011	12	8	.07	19 .01	2	.17	.06	.08	1	64
	1								• •																					
FX-479451	2	4	14	31	.1	7	1	343	.90	3	5	ND	10	110	.2	2	2	15	.91	.011	11	6	.11	16 .01	2	.16	.05	.05	1 A A	72
FX-479452	2	2	11	23	.1	6	i	294	.74	3	5	ND	.0	90	.2	2	2	11		.012	11	7	.08	20 .01	2		.06	.07	1	33
FX-479453	2	3	15	32	.1	6	1	406	.98	4	5	ND	10	133	.2	2	5	22		.012	10	5	.14	35 .01	. –		.04	.05	<u></u>	45
FX-479454	2	3	10	19	.1	5	1	399	.87	3	5	ND	8	129	.2	2	Ž			.011	10	5	.12	17 .01	2		.04	.06		-, ,
FX-479455	2	6	8	23	.2	7	1	348		2	5		-		.2		ź				11	7	.02	20 .01	ź		.04	.00	4	7
FX-4/9433	6	0	0	23	.2	(ŀ	340	.88	2	2	ND	11	100	. >	2	۲.	14	.91	.011			.09	20 .01	۲	. 10	.00	.09		
EV 170/E4		2	7	10	4	F	1	777		7	F		~	01	2	2	_	10	00	012	4.1	7	0.0	17 .01	2	17	.05	.07	- 19 A	7
FX-479456	4	2	•	18	.1	5	1	337	.80	3	5	ND	9	91	.2	2	. 4	12		.012	11	7	.08		2					
FX-479457	2	5	12	30	.2	7	1	387	.95	3	5	ND	10	118	.2	2	2	16		.012	13	6	.12	17 .01	2		.05	.05		0
FX-479458	2	2	10	28	.2	7	1	420	.95	2	5	ND	11	112	.3	3	2		1.05		14	6	.10	16 .01	2		.05	.06	88 1	2
FX-479459	2	2	11	26	. 1	6	1	398	.91	4	5	ND	12	111	.2	2	2			.012	13	7	.10	18 .01	2		.05	.06	!	6
FX-479460	1	3	15	27	.1	5	1	480	-89	3	5	ND.	11	152	.2	2	2	18	1.57	.012	12	7	.10	18 .01	2	. 12	.05	.06		3
		_															_					_			_					
FX-479461	.3	7	11	43	.1	8	2	810		3	. 5	ND	10	110	.3	3	2			.015	12	8	. 15	18 .01	2		.05	.06		4
FX-479462	2	4	11	32	.2	7	1	384		2	5	ND	10	84	.2	3	2	13		.013	14	11	.09	19 .01	2		.06	.07	1	1
FX-479463	2	3	10	39	. 1	6	1 -	418	1.04	- 3	11	ND	9	82	.2	2	2	8	.95		12	5	.09	18 .01	່ 2		.04	.11		1
FX-479464	1	3	7	28	°.1	5	1	405	.79	2	5	ND	9	97	.3	2	2	11	1.10	.012	12	7	.07	16 .01	2	. 13	.05	.06	38 L.	1
FX-479465	2	5	5	28	. 1	6	1	512	.97	2	5	ND	8	152	.2	2	2	12	1.47	.011	10	6	.10	17 .01	<u> </u>	.14	.05	.06		1 1
																								- 1997) 1997 - 1						
FX-479466	1	5	6	61	.2	4	2	570 2	2.19	2	13	NÐ	8	117	.3	3	2	6	.68	.065	28	5	. 18	51 .01	2	.55	.02	.30		1 1 -
FX-479467	2	4	12	25	-1	5	1		.84	2	5	ND	8	143	.2	2	2	15	1.21	.012	11	6	.10	18 .01	2	.13	.04	.06	880 1 0	1
FX-479468	Ž	Ĺ	9	33	.1	7	1	463		5	5	ND	9	148	.2	ž	2			.012	8	8	.13	19 .01	-	.16	.05	.07	1	18
FX-479469	2	6	Ś	20	.1	8	1		.76	4	5	ND	7	117	.2	2	2	13	.79		8	8	.11	17 .01			.05	.06		15
FX-479470	2	6	7	30	.1	8	3	664 1		2	6	ND	-	164	.3	ž	2		-	.013	6	7	.13	26 01	2	. 19	,03	.07		9
FX-4/94/0	۲	в	. f	50	• !	٥	2	004	1.0/	2	0	NU	1	104		2	د	22	1.04	.015	0	'	. 15	20 .01	<u> </u>	. 17	.05	.07		,
EV 170174	-	,	<u>^</u>	75				7/7	77	7	r.		,	153	2	2	2	14	1 07	017	8	4	.13	19 .01	2	. 13	.05	.06	10 - 1 0	16
FX-479471	2	4	9	25	.1	6			_76	3	. 5	ND		152	.2	2	2			.012	-	6			_					
FX-479472	2	3	5	41	.5	5	2		.76	3	5	ND	6	99	.2	2	2	19		.016	8	6	.10	21 .01	2		.04	.05		32
FX-479473	2	6	6	22	.2	6			.93	2	5	ND	6	128	.2	2	2			.013	8	6	.11	23 .01	2		.04	.07		76
FX-479474	2	4	10	24	.5	6		496 1	.25	2	5	ND	8	308	.2	4	5			.023	11	6	.33	25 .01	2		.05	.07		37
FX-479475	2	5	8	24	.2	5	1	477	.83	3	8	ND	6	263	.2	2	2	20	1.66	.013	8	5	.29	71 .01	2	.14	.05	.07	ः ् 1 ः	15
																														I
FX-479476	24	265	2	35	.9	8	13	729 3	.51	12	5	ND	5	329	.5	2	2	51	2.27	108	4	11	.63	23 .01	2	.49	.04	. 11	1	8
STANDARD C/AU-R	18	64	37	133	7.1	70	33 <i>°</i>	1055 3	.97	36	18	7	39	53	17.2	18	18	58	.48	.089	37	58	.88	177 .09	34	1.89	.06	.15	12	470
					<u> </u>						· · · · ·														· · · · ·			-		

A A	(
ACME ANALYTICAL	

ACHE ANALYTICAL																									ACAE		-
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe As % ppm		Au ppm	th ppm			Sb B pm pp	i m Pf	V Ca P m % %	i.a ppm	Cr ppm	Mg X	Ba Ti ppm %	B ppm	Al %	Na %		Au* ppb	
FX-479477 FX-479478 FX-479479 FX-479480	29 23 44 14	235 70 117 92	5 7 4 5	31 34 33 50	.8 .4 .8 .5	11 9 11 10	13 8 10 13	592 3 815 2 811 2 1046 3	.99 11 .98 17	5 5 5 5	ND ND ND ND	6 8 6 6	169 305 323 218	-6 -6 -5 -9	2 2 2 2	2 5	52 1.36 .069 50 2.67 .063 52 3.02 .073 54 2.59 .070	7 9 8 11	12 10 12 13 1	.69 .96 .97 1.14	28 .01 25 .01 24 .01 58 .01	2 2 2 2	.72 .85 .93 1.37	.04 .03 .03 .03	.13 1 .13 3 .12 1 .12 1	32 22 26 12	•

ACME ANAL	TICA	LLA	BOR	ATOR	IES	LTD	Need	្តែ	52 E.	HAS	ST'T N	GS S	2111		עווט	ED B	C	VA	A 1	PÁ S	ъ	HONI	F/60	4 \ 75	3-31	តែន	FAX		1)253-	1716
AA										осн	839.		<u></u>		신간화						•		-,	-,					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A
TT		<u></u> 1	nco	<u>Ex</u>	<u>pl.</u>	8			Serv 666 Bu											Le #	91 BOHME	-22	85	P	age	1			Ť	Ť
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe	As ppm	U ppm	Au ppm	<u>49-09.</u> Th	Sr	Cd	Sb ppm	Bi	V ppm	Ca %	P	La	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al %	Na %	к % р	W Au* m ppb
FX 479481 FX 479482 FX 479483 FX 479484 FX 479484 FX 479485	1 1 1 1	8 5 41 10 9	2222	18 28 38 31 26	.1 .1 .3 .2 .1	7 9 6 8 7	5 7 8 5	280 429 410 541 339	2.27 3.30 3.10 3.08 2.29	3 4 2 3	5 5 5 5 5	ND ND ND ND	5 5 4 5	112 115 101 121 94	.3 .2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2 2	68 58 56	2.62 2.21 3.36	.071 .071 .065 .062 .067	6 7 6 7 6	28 15 16	1.01 1.28 1.22 1.20 1.02	23 20 17 15 19	.11 .13 .08 .10 .11	3 5 3	1.10 1.41 1.35 1.30 1.09	.06 .05 .04 .03 .04	.06 .08 .07 .08 .07	1 5 1 1 1 28 1 3 1 5
FX 479486 FX 479487 FX 479488 FX 479489 FX 479489 FX 479490	1 1 1 1	38 20 20 34 12	23235	56 41 27 28 39		7 6 9 7 6	11 9 6 6	782 754 471 370 469	4.71 3.89 2.80 2.45 2.87	5 4 4 4	5 5 5 5 5	ND ND ND ND ND	2 6 4 3 6	122 99 114 104 157	.2 .2 .2 .2	4 3 2 3	2 2 3 2	82 63 63	5.34 3.43 2.50	.098 .102 .068 .070 .081	3 5 5 5 4	18 18 20	2.23 1.85 1.48 1.04 1.27		.08 .07 .11 .12 .12	3 2 2	1.96 1.58 1.37 1.00 1.23	.02 .02 .03 .05 .04	.03 .02 .04 .05 .05	1 9 1 4 1 3 1 3 1 1
FX 479491 FX 479492 FX 479493 FX 479494 FX 479495	1 2 1 1 17	7 26 37 28 25	22332	33 34 23 24 28	.1 .1 .2 .2 .1	6 8 6 7	6 6 8 6 10	373 319 309	2.47 2.87 2.84 2.55 3.37	3 4 4 2 3	5 5 5 5 5	NÐ Nd Nd Nd	4 5 5 5 5	287 145 151 111 105	.2 .2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2	54 62 56	2.47 2.27 1.98	.075 .075 .076 .067 .070	4 5 4 9	14 17 16 13 18	.91 1.16 .94 .92 .99	16 19 20 133 25	.11 .11 .13 .13 .13 .14	4 5 4	1.25 1.15 1.16 1.00 1.15	.02 .05 .05 .06 .05	.03 .05 .05 .07 .08	1 1 1 260 1 1 1 1 1 2
FX 479496 FX 479497 FX 479498 FX 479499 FX 479500	2 1 1 1 1	35 63 29 89 59	3 2 4 2 2	32 76 47 66 59	.3 .2 .3 .3	11 7 7 5 8	9 17 9 13 8	452 549 433 484 454	3.77 5.32 4.22 5.45 5.00	3 3 3 2 3	5 5 5 5 5	ND ND ND ND ND	4 6 8 10 8	131 140 86 68 103	.2 .2 .2 .2	2 3 2 2 2	2 2 2 2 2	55 49 54	1.90 1.12 1.22	.080 .069 .061 .058 .070	7 10 9 8 8	18 18 17	1.31 1.31 1.25 1.44 1.30	27 26 29 30 35	.08 .05 .06 .08 .08	3 · 4 · 2 ·	1.53 1.79 1.61 1.78 1.79	.04 .01 .03 .03 .04	.13 .17 .17 .18 .18	1 4 1 350 1 1 1 68 1 7
FX 479501 FX 479502 FX 479503 FX 479504 FX 479505	1 41 1 2 2	33 214 31 43 20	2 8 3 7 4	53 65 36 45 41	.3 4.7 .2 .2 .1	7 9 6 9 7	12 21 8 11 9	536 611 450 431 427	5.66 5.39 3.26 3.25 3.22	6 17 4 2	5 5 5 5	ND ND ND ND ND	8 5 7 7 6	176 321 124 104 136	.2 .2 .2 .2	3 2 2 2 2 2	2 2 2 2 2	51 39 47	4.74 2.06 1.61	.091 .122 .053 .061 .048	8 6 9 10 8	21 15	1.39 1.27 .93 1.11 .86	44 28 25 29 23	.07 .03 .03 .08 .04	2 ⁻ 3 ⁻ 3 ⁻	2.12 1.88 1.33 1.39 1.32	.04 .01 .02 .03 .02	.20 .19 .17 .14 .17	1 630 1 350 1 2 1 1 1 1
FX 479506 FX 479507 FX 479508 FX 479509 FX 479510	1 1 1 1	15 73 32 5 7	4 3 2 5	51 76 62 27 29	.1 .2 .1 .3 .1	6 5 9 7 8	8 11 8 7 7	422 516 544 413 418	2.94 4.69 4.22 2.61 2.74	2 3 2 2 2	5 5 5 5 5	ND ND ND ND ND	7 7 6 7 7	149 103 127 138 128	.3 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	55 45 47	1.41 1.93 2.00	.044 .064 .054 .058 .058	9 8 9 9 13		.95 1.24 1.17 .91 .84	29 49 46 31 29	.03 .08 .03 .06 .01	3 2 7	1.30 1.69 1.50 1.08 1.11	.02 .04 .02 .04 .03	.18 .30 .18 .13 .14	1 2 1 230 1 41 1 1 1 10
FX 479511 FX 479512 FX 479513 FX 479514 FX 479515	1 1 1 1 1	16 24 125 40 29	3 2 2 4 7	28 49 50 66 47	.3 .5 .6 .4 .3	7 9 7 8 5	12 29 10	557 675 496	2.93 4.38 10.36 5.08 3.40	3 5 8 4 2	5 5 5 5 5	nd Nd Nd Nd	6 2 7	168 135 275 112 187	.3 .2 .2 .2 .2	2 2 2 2 2 2	22222	53 176 50	1.94 4.59 1.22	.053 .051 .499 .069 .066	11 9 6 11 8	21	.85 1.34 .81 1.34 .86	13 39	.01 .02 .01 .02 .01	5 1 4 3 1	1.70 .91	.01 .01	.12 .18 .04 .23 .20	1 4 1 260 1 11 1 220 1 310
FX 479516 Standard C/AU-R	1 18	51 56	5 37	41 132	.6 6.8	6 68			3.73 3.93	3 38	5 18	ND 7		196 51		2 15	2 20			.061 .089	7 37	16 58	.92 .88		.01 .09				.18 .15	1 290 1 510
		THIS	LEAC	HIS		AL FO	R MN I	FESR	WITH : CA P IS BY	LA CR	MG B/	A TI I	B W AI	ND LI	MITED	FOR														

ACHE ANALYTICAL

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2285

ACHE ANALITTICAE																													ACHE ANALYI	TICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	Ĺa	Cr	Mg	Ba	Ti	B	AL	Na	K W /	A #
	ppm	ppm	ppm	ppin		ppm	ppm	ppm	×	15 A. A.	-				3000 93			•		1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						-				-
	ppii	- PPvil	Ppm	- Mail	- Mail	Phil	- ppin	- Phil	~	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppii	ppm	%	X	ppm	ppm	*	ppm	<u>%</u>	ppm	*	<u> </u>	% ppm i	ppo
FX 479517		- 14	40	10		,	~	FO/					-			_			:	100						_		÷.,		
		21	10		3.6	6	9	596		4	13	ND	7	343	.2	2	2			.039	6	10	.66		.01		1.00			030
FX 479518	1	10	3	29	.5	6	7	642	2.07	5	5	ND	10	341	.3	3	2	25	4.77	.046	10	8	.58	186	.01	2	.93	.02	.20 1	111
FX 479519	1	- 14	6	58	.3	6	11	637	3.46	- 4	5	ND	9	346	.2	2	2	36	3.32	.048	10	8	.97	28	.01:	2	1.42	.01	.22	123
FX 479520	2	25	5	67	.3	8	9	582	4.33	. 4	5	ND	10	174	.2	2	2	42	1.56	.066	10	12	1.17	42	.01		1.77	.01	.22 1	67
FX 479521	2	22	2	45	.3	7		597		. 4	5	ND	ġ	230	.2	2	2			.051	9		.88	42	.01		1.23	.01		50
	-		-			•	•	251	3.17	-		ΠD	,	230	- - -	L	"	34	2.12	.051	,	,	.00	46	+ • •	2	1.23	.01		50
5V / 705 33	4	45	2	53		-	40	105			-		~			-			4			~	~	10	~~~	~		~~		.40
FX 479522		15	2		,⊴ . ‡:	7		495		2	5	ND		181	· -2	2	2			.052	13		.96	40	-02		1.33	.02		10
FX 479523	1	59	2	96		6	22	635		2	5	ND	9		.2	2	3			.048	11	-	1.52	96	.05		2.60	.01	.48 1	5
FX 479524	2	89	6	63	S.5	9	22	617	4.84	2	5	ND	7	223	े.2	2	2	- 48	1.85	.059	13	11	1.40	52	.02	3	2.04	.02	.29	7
FX 479525	5	599	5	81	20.2	11	52	687	7.92	14	5	ND	8	258	.2	2	5	133	3.38	.348	9	16	1.70	51	.02	2 :	2.59	.01	.26	820
FX 479526	1	26	4	54	61.2	7	10	540	3.40	- 4	5	ND	8	175	.3	2	2	42	2.22	.065	12	9	.91	31	.01	2	1.39	.02	.19	360
	•				승규 문	•				•	-		-		14. T	-	-	•			•=	•		~.	영지권	-				
FX 479527	1	77	5	46	1.8	13	10	586	2 72	L	5	ND	0	269		2	7	77	₹ 1 ⊑	.054	11	9	.88	55	.01	7	1.33	.02	.20 1	290
	1		-		NY 1 1					. 4	-			-	2		2					-								
FX 479528	3	13	3	28	.4	9	8	458		- 4	6	ND	9	179	-2	3	2			.044	10	13	.74		.01		.94	.02	1 (200 000 000)	38
FX 479529	2	12	- 4	35	.8	8		597		5	5	ND	8	267	•2	2	2			.054	10	10	.90	73	.01		1.22	.02	10000000000	28
FX 479530	1	32	4.	48	2.4	8	13	625	3.94	6	6	ND	7	203	.2	2	4	41	2.87	.053	9	10	1.09	116	.01	2	1.48	.02	.17 🐘 1	500
FX 479531	1	21	4	. 64	.9	6	16	619	5.44	5	5	ND	8	189	.2	2	5	47	1.75	.059	20	10	1.26	31	.01	2	1.85	.02	.22 1	310
					1940 - F																				1998					
FX 479532	179	42	6	36	1.5	11	13	528	3 76	2	5	ND	5	238	.2	2	3	20	2 80	.050	5	12	.76	55	.01	3	1.11	.01	.20 1	670
FX 479533	10	26	2		1.8					1	ś			291			,				8		1.06	25	5	-	1.42	.02		320
						10	16	724		2	-	ND	<u>'</u>		.2	2	4			.056			-		.01				33655657853	
FX 479534	3	11	4	39		7		613		2	5	ND	7	209	.2	2	2			.062	12		1.07		.01	-	1.35	.03		50
FX 479535	1	30	3	- 40	.8	5	15	635	4.05	3	5	ND	7	269	.2	2	2	- 38	2.88	.052	8	8	1.02	29	.01		1.45	.02	· · · · · · · · · · · · · · · · · · ·	810
FX 479536	3	8	2	29	1.0	9	10	583	2.98	S 4 1	5	ND	7	259	.2	2	5	- 38	2.85	.051	11	12	.85	262	.01	2	1.16	.03	.17	129
										i Ang sa															(10 ji					
FX 479537	1	21	2	31	.4	8	11	621	2.73	5	5	ND	7	325	.2	2	2	39	3.54	.058	10	11	.83	199	.01	2	1.15	.03	.17	81
FX 479538	ż	30	3	38	8.7	5	10	680	· · ·	5	5	2	6	316	.2	2	2			.058	10	11	.90		.01		1.17	.03		940
	1		3	37	8.0	6		517			-		6	241		ž	2			.051	9	9	.79	70	.01		1.05	.03	.18 1 1	
FX 479539		26	_	-						5	5	ND	-		-2		-		-						1.8 1				1000000000	
FX 479540	3	39	4		7.8	11		460		6	5	5	7	239	-2	2	2			.057	10	15	.71	17			1.00	.03	.18 1 1	
FX 479541	. 1	6	2	35	्र .1	9	10	574	2.83	2	5	ND	7	255	.2	2	2	45	2.42	.060	13	10	.99	16	.01	- 4	1.23	.03	.16	51
																				1					2323					
FX 479542	1	11	2	32	.4	10	11	588	2.92	4	5	ND	8	249	.2	2	2	43	2.48	.057	12	11	.97	39	.01	2	1.23	.04	.17	28 ·
FX 479543	ż	46	5	42	.8	7	13	722		2	5	ND	6	266	.2	2	2			.062	8		1.01	82	.01		1.32	.03	.17 1	72
FX 479544	3	34	3		1.4	11	12	800		- 3	5	ND	-	334	.2	2	Ž			.065	11		1.15	39	.01		1.47	.04	- 1 1 1 1 10000007-0	160
	-		-							-	-		-												- S 6 .		1.54	.04	.21 1	
FX 479545	1	25	2	53	.4	9		736		2	5	ND	<u> </u>	249	.2	2	5			.074	12		1.24	29	.01					
FX 479546	2	21	5	51	.2	9	13	800	3.44	4	5	ND	5	315	.2	2	2	53	2.83	.070	11	12	1.18	156	.01	2	1.48	.04	.18	63
					Sola Sola															1997 - N. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19				:	22년					
FX 479547	1	11	5	55	S.3	6	13	855	3.49	2	5	ND	6	284	.2	2	2	53	2.97	_070	11	12	1.30	73	.01	2	1.54	.03		350
FX 479548	2	29	4	47	1.3	10	12	896		- 5	5	ND		395	.2	2	2	46	4.46	.062	9	14	1.08	112	.01	2	1.32	.03	.15 1 3	370
FX 479549	ž	16	5	57	.4	9		788		ź	ŝ	ND		229	.2	2	4			.074	11		1.21		.02		1.44	.05		490
	1	27	-			-				-	5					ž	Ž				11		1.08	43	.05		1.23	.06		120
FX 479550			2	49	.5	7		661		3		ND		213	-2					.067					12 N. 26				2002000000	
FX 479551	1	18	3	43	1.7	7	11	573	2.75	2	5	ND	6	183	.2	2	5	54	1.85	.053	9	9	.92	22	.01	2	1.09	.04	.15	520
ł					828 H.										- 					1 ÷ .										
FX 479552	4	6	2	7	.9	13	2	212	.67	2	5	ND	1	198	.2	2	4	6	1.60	.006	2	12	. 13	21	.01	2	.18	.01	.03	87
STANDARD C/AU-R	19	56	38	131		70		1039		39	23	6	41	52	18.7	14	20	55	.47	.091	39	58	.88	177	.09	34 3	1.88	.06	.15 13 5	510

ACHE ANALYTICAL																												ACRE	ANALYTICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm			As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm				Cr ppm	Mg %	Ba Ti ppm %	B ppm	Al %	Na %	K % Pf	W Au* m ppb	
FX 479553 FX 479554 FX 479555 FX 479556 FX 479557	1 1 1 1	29 17 20 57 16	2 6 5 9 2	59 54 59 60 57	.4 .2 .1 .7 .2	7 8 6 10 7	15 13 14 18 15	763 819 766 776 848	3.37 3.74 3.71	2 3 4 3 4	5 5 6 5 5	ND ND ND ND	5 5 5 5 3	315 279 255 227 288	.2 .2 .2 .4 .4	2 2 2 2 2 2	2 2 2 2 2 2 2	56 67 60	2.62 3.30 2.44 2.58 2.95	.068 .076 .080	12 9 11 10 10	11 13 14	1.16 1.09 1.16 1.26 1.20	152 .01 30 .01 37 .02 33 .01 61 .01	2 2 4	1.46 1.27 1.42 1.55 1.51	.04 .04 .05 .04 .04	.19 .15 .18 .20 .21	1 410 1 56 1 91 1 130 1 200	
FX 479558 FX 479559 FX 479560 FX 479561 FX 479562	2 1 3 1 1	13 25 9 23 43	6 3 7 6 2	46 46 45 55 60	.3 .8 .4 .3 .2	7 6 9 7 8	12 13 12 14 17		3.28 3.11 3.59	3 5 5 4 2	5 5 5 5 5	nd Nd Nd Nd	4 4 10 4 4	287 343 365 320 253	.2 .2 .2 .2 .4	2 2 2 2 2	2 2 2 2 2	54 51 60	2.91 2.94 3.23 3.34 2.21	.060 .056 .068	7 8 9 10 11	11 14 11	1.00 1.02 .95 1.20 1.33	106 .01 103 .01 118 .01 93 .01 53 .06	2 2 3	1.22 1.26 1.20 1.46 1.53	.04 .03 .04 .04 .07	.14 .14 .15 .17 .23	1 17 1 74 1 100 1 26 1 120	
FX 479563 FX 479564 FX 479565 FX 479566 FX 479567	1 1 1 1	22 20 7 14 16	9 2 3 6 4	61 53 45 64 60	.1 1.2 1.0 .4 .7	7 9 5 8 7	13 10	845 759 831 912 909	3.40 2.79 3.70	2 4 6 3 2	5 5 5 5	ND ND ND ND	4 4 5 8 6	264 214 356 276 312	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	68 44 60	2.15 2.26 3.82 2.76 3.06	.071 .057 .077	11 9 9 14 14	14 9 11	1.31 1.12 .97 1.31 1.24	169 .06 69 .07 141 .01 59 .01 46 .02	2 2 2	1.55 1.32 1.15 1.54 1.55	.06 .06 .04 .05 .06	.24 .20 .13 .18 .21	1 23 1 640 1 130 1 470 1 450	
FX 479568 FX 479569 FX 479570 FX 479571 FX 479572	1 1 1 2	18 20 86 59 52	5 4 2 4 5	61 62 64 61 57	.2 .4 .2 .2 1.1	9 8 11 8 8	15 18	908 943 904 877 932	3.89 4.51 4.33	3 5 5 4 4	5 5 5 5 5	ND ND ND ND	5 6 4 5 4	267 308 289 374 426	.2 .2 .5 .4	2 2 2 2 2	2 2 2 2 2 2	62 87 79	2.73 3.18 2.66 2.55 3.07	.081 .093 .092	14 12 11 12 10	12 14 14	1.31 1.35 1.43 1.37 1.30	54.01170.0162.05215.04151.01	2 2 2	1.63 1.66 1.75 1.68 1.59	.05 .05 .06 .06 .04	.21 .20 .26 .35 .23	1 120 1 87 1 46 1 42 1 220	
FX 479573 FX 479574 FX 479575 FX 479576 FX 479576 FX 479577	1 1 2 1	100 64 24 76 28	5 7 2 5 4	75 64 56 55 43	.5 18.2 .3 .9 1.0	11 10 4 8 5	18 14 17	974 984 834 906 951	4.48 3.74 4.09	5 4 6 4 2	5 5 5 5 5	ND 3 ND ND ND	4 4 5 4	309 352 276 432 778	.2 .2 .2 .2	3 2 2 2 2	2 2 2 2 2	74 75 57	2.50 3.36 2.39 3.10 5.41	.086 .082 .078	12 9 10 10 9	14 12 12	1.72 1.52 1.25 1.29 1.12	64 .04 79 .02 72 .06 53 .01 84 .01	2 2 2	2.04 1.74 1.45 1.13 .59	.06 .04 .06 .04 .03	.33 .22 .21 .21 .20	1 310 1 980 1 27 1 240 1 210	
FX 479578 FX 479579 FX 479580 FX 479581 FX 479582	98 2 2 2 1	62 7 3 4 4	3 7 4 5 7	49 24 21 32 23	1.5 3.2 .5 .6 .5	7 1 6 4 2	14 3 2 2 1	796 561 337 338 184	1.83	4 4 2 2 2	68 17 10 5 7	ND ND ND ND ND	7 11 10 15 10	557 302 225 273 184	.2 .2 .2 .2 .2	2 2 2 2 2	2 3 2 2 2	18 12 12	3.27 2.74 1.70 1.67 .77	.011 .009 .008	9 11 15 12 14	6 4 7 5 4	1.00 .41 .30 .36 .21	224 .01 27 .01 25 .01 25 .01 17 .01	2 2 4 3 3	-41 -16 -15 -15 -13	.03 .04 .04 .05 .04	.22 .06 .08 .08 .07	1 340 1 400 1 58 1 110 1 130	
FX 479583 FX 479584 FX 479585 FX 479586 FX 479586 FX 479587	1 2 2 1	3 45 35 2 1	11 13 14 11 13	33 62 55 17 19	1.6 .9 1.4 .5 .2	3 8 5 3 1	12	421 760 707 174 220	3.50	3 2 4 2 2	5 21 11 6 5	nd Nd Nd Nd Nd	11 7 9 6 8	314 201 248 128 129	.2 .2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2	33		.078	16 14 13 11 12	4 9 6 4 3	.42 .56 .45 .17 .15	34 .01 23 .01 26 .01 17 .01 13 .01	2 4 2	.14 .36 .29 .13 .13	.04 .03 .02 .03 .03	.06 .19 .13 .10 .09	1 270 1 1020 1 610 1 250 1 230	
FX 479588 STANDARD C/AU-R	3 19	2 58	17 38	32 132	.5 7.5	6 70	1 32	368 1054	.62 3.98	2 37	5 18	NÐ 7	11 40	140 52	.2 18.5	2 15	2 21		1.26		14 40	8 59	.13 .88	15 .01 178 .09		.12 1.90	.03 .06	.08 .15 1	1 86 1 530	

ACHE ANALYTICAL

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2285

ACHE ANALTTICAL		-																			•								ACNE AP	ALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	Às	U	Au	Th	Sr	Cd	Sb	Bi	۷.	Ca	P	La	Ċr	Mg	Ba	TI	B	AL	Na	ĸ	Au*
 	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm		ppm	%	ppm	%	%		ppb
FX 479589 FX 479590 FX 479591 FX 479592	2 1 1 3	1 1 2	15 4 9	24 31 36 29	.2 .1 .2	3 4 3 7	1 1 1	291	.38 .56 .56	2 2 2 2	5 5 5	ND ND ND	9 11 11	95 60 70	.2 .2 .2	2 2 2 2	222		.75 1.11	.006 .007 .006	13 16 14	5 4 4	.05 .02 .04	15 17 13	.01 .01 .01		.10 .13 .11	.04 .05 .04	.06 1 .07 1 .06 1	220 180 280
FX 479593	2	2 1	12 6	35	.1 .1	4	1	313 305	.46 .55	2 2	5 5	ND ND	11 13	87 69	.2 .2	2 2	2 2	5 7		.006 .007	14 16	7 5	.04 .05	13 15	-01. -01		.10 .12	.04 .05	.06 1 .07 1	63` 53
FX 479594 FX 479595 FX 479596 FX 479597 FX 479597 FX 479598	1 1 3 2 1	2 2 1 2	7 5 9 5	28 35 25 28 30	.2 .1 .1 .1 .1	3 3 7 5 3	1 1 1 1	223 325 316 300 322	.56 .67 .49 .55 .60	2 2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd	10 - 12 11 13 12	61 80 97 76 100	.2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	8	1.13 1.20 .77	.006 .006 .006 .006 .007	14 15 14 16 16	5 4 8 5 5	.06 .07 .06 .07 .06	15 14 15 15 15	.01 .01 .01 .01 .01	2 2 2	.11 .11 .11 .12 .12	.05 .05 .05 .05 .05	.07 1 .06 1 .07 1 .07 1 .07 1	78 34 55 44 95
FX 479599 FX 479600 FX 479601 FX 479602 FX 479603	1 3 2 1	2 3 1 2 3	4 27 12 3 35	26 48 23 28 74	.1 2.9 .1 .1 .3	3 5 3 4 3	1 1	448 1 294	.59 .74	2 2 2 2 2	5 5 5 11	ND ND ND ND	12 13 8 9 11	87 85 126 96 283	.2 .2 .2 .2	2 2 2 2 2	2 9 2 2 2	11 9 6	1.10 1.50 1.24	.007 .007 .004 .005 .005	15 14 9 10 12	4 7 1 5 9	.07 .13 .08 .07 .57	14 17 461 14 21	.01 .01 .01 .01 .01	2 2	.12 .12 .09 .12 .22	.05 .04 .03 .03 .01	.07 1 .06 1 .05 1 .07 1 .14 1	36 21 74 83 53
FX 479604 FX 479605 FX 479606 FX 479607 FX 479608	3 -1 1 1	2 1 1 3 4	13 7 43 10 26	46 29 53 18 43	.1 .1 .1 .6	8 4 5 3 10	1	2621 3	.64 .46 .52	2 2 2 2 2 2	5 5 9 5 12	ND ND ND ND	11 15 8 6 6	92 78 370 159 137	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	27	2.23 1.98	.006 .006 .004 .003 .002	14 14 8 7 5	8 5 10 5 12	.13 .07 .74 .05 .26	13 17 15 11 11	.01 .01 .01 .01 .01	2 2 2 2 2	.13 .12 .16 .09 .13	.04 .04 .01 .03 .01	.07 1 .07 1 .14 1 .05 1 .08 1	66
FX 479609 FX 479610 FX 479611 FX 479612 FX 479613	1 1 1 1	1 1 1 1	11 10 21 12 11	32 36 38 17 34	.1 .2 .6 .2 .2	4 3 2 3 4		275 315 401	.78 .80 .71 .72 .86	2 2 3 5 2	5 5 5 6	ND ND ND ND ND	12 9 10 4 11	93 69 105 86 127	.2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2		.86 .98 1.09	.007 .005 .006 .003 .007	14 12 15 13 16	8 6 7 6	.12 .09 .12 .05 .12	14 11 14 7 15	.01 .01 .01 .01 .01	23	.13 .11 .12 .06 .12	.04 .04 .04 .02 .05	.07 1 .05 1 .06 1 .03 1 .07 1	60 74 260 140 73
FX 479614 FX 479615 FX 479616 FX 479617 FX 479618	1 2 1 1	2 2 2 1	13 19 18 10 14	37 39 32 28 37	.1 .3 .1 .1	4 3 7 5 5	2 1 1 1	403 287 309	.93 .87 .74 .67 .95	2 2 2 2 2	5 5 5 5	nd Nd Nd Nd Nd	9 10 9 12 10	82 169 107 98 95	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	15 13 9	1.37 .87 1.01	.007 .007 .007 .007 .007	15 15 14 14 13	6 6 8 5 6	.10 .14 .11 .08 .13	14 15	.01 .01 .01 .01 .01	2 2 2	.13 .12 .11 .13 .12	.05 .04 .04 .05 .04	.07 1 .06 1 .06 1 .07 1 .06 1	46 72 13 93 80
FX 479619 FX 479620 FX 479621 FX 479622 FX 479623	1 3 1 1	1 2 1 1 1	12 8 8 13 19	41 28 32 41 31	.1 .3 .3 .2 .2	3 7 2 3 3	1 1 1 1	324 179 318 385 360	.93 .69 .62 .84 .81	2 2 2 2 2	5 5 5 5 5	ND ND ND ND ND	12 15 15 15 12	100 67 76 83 108	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	10 9 10	.53 .95 1.01	.007 .007 .007 .007 .007	15 16 17 15 15	6 9 4 6	.11 .08 .05 .09 .10	14 15	.01 .01 .01 .01 .01	4 4 2	.12 .13 .11 .13 .12	.04 .05 .05 .04 .04	.06 1 .07 1 .07 1 .07 1 .07 1	32 45 170 80 150
FX 479624 STANDARD C/AU-R	2 18	2 57	9 39	31 132	.1 6.7	6 70		384 1048 3	.82 .98	2 37	5 16	ND 7	13 39	106 52 1	.2 8.6	2 19	2 19			.008 .090	14 38	7 58	.10 .88	13 177	.01 .09	2 31 1	.11 1.89	.05 .06	.06 1 .15 11	63 520

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2285

P La SAMPLE# U Au Th Sr Cd \$b Bi Са Cr Mg Ba Ťi В Na К 💮 W Au* Mo Cu Pb Zn Ag Ni Co Mn Fe As v AL ppm ppm % ppm ppm % % % ppm % % % % ppm ppb inga inga inga inga inga ppm ppm mag mag mqq ppm ppm ppm ppm MCC 100m FX 479625 .89 .008 19 .01 2 .13 .05 .06 29 9 100 2 2 7 .12 1 12 32 .1 -5 2 335 .92 2 5 ND 11 .2 14 - 14 FX 479626 2 11 35 3 2 2 5 13 85 τ2 13 .87 .010 15 5 .10 11 :01 5.12 .05 .06 1 26 1 .1 359 .88 ND 2 2 22 FX 479627 3 8 33 .2 2 2 356 3 5 ND 11 103 .2 2 2 10 1.00 .009 15 4 -09 7 101 4 .12 .05 .07 1 1 .81 .2 2 .10 .04 .06 1-.99. FX 479628 3 4 11 31 .3 7 1 444 .95 3 5 ND 7 170 2 2 14 1.52 .006 10 9 - 14 15 .01 7 123 .2 10 .93 .006 9 .08 13 .01 2.10 .04 .05 1 84 5 24 281 5 2 2 5 FX 479629 1 4 .1 5 1 .69 2 ND 13 1.02 .007 13 2.11 .04 .06 48 FX 479630 10 30 2 336 .83 5 ND 11 124 .2 2 2 11 6 . 11 .01 1 5 .1 3 3 1 1 96 7 .07 12 .01 4.09 .03 .05 17 .2 3 305 .59 5 ND 6 126 .2 2 2 10 1.26 .004 4 FX 479631 1 3 8 1 6 52 6 27 .2 8 331 2 5 ND 7 75 .2 2 2 9 .85 .007 10 8 .08 6 .01 4.11 .04 .06 . **1**. . FX 479632 2 4 1 .68 1 170 5 30 3 3 5 ND 7 97 .2 2 2 9 .97 .007 10 4 .08 11 .01 5.11 .04 .06 FX 479633 .1 1 360 .68 1 1 .2 3.09 .03 - 04 1 110 2 6 18 3 1 274 .53 2 5 ND 6 77 2 2 6 .79 .005 7 5 .04 7 .01 FX 479634 1 .1 100 2 .69 .004 7 5 .04 10 -01 2.13 .03 .05 1 FX 479635 3 16 5 2 256 .53 3 8 ND 6 66 .2 2 6 1 6 .1 .92 .007 9 .05 15 .01 2.09 .03 .06 11 94 5 92 .2 8 FX 479636 3 5 12 18 .2 8 1 292 .57 2 ND 8 2 2 8 2.10 .05 280 .2 .05 8 :01 .04 1 FX 479637 2 6 5 20 .1 5 2 236 .57 2 5 ND 7 61 2 2 7 .59 .006 10 4 .74 .005 9 .06 10 .01 .10 .03 .05 1 95 7 25 277 .63 2 5 ND 9 81 .2 2 2 8 4 4 FX 479638 .1 2 1 4 6 .06 1 430 5 .2 .91 .008 4 .07 7 .01 4 .11 .04 3 10 25 2 ND 12 99 2 2 9 11 FX 479639 1 .1 1 1 309 .62 3,10 77 14 90 .2 2 2 9 .82 .008 13 8 .06 11 .01 .04 .06 FX 479640 5 ND 2 4 10 26 .1 10 1 280 .62 -4 5 . 16 9.01 4 .13 .03 .07 1 43 2 55 .3 2 486 1.51 2 5 ND 13 139 .2 2 2 19 1.43 .007 14 FX 479641 -4 26 6 57 .48 .095 175 .09 36 1,90 .06 .15 13 530 19 7 39 52 18.4 19 40 58.89 19 57 43 134 6.8 75 32 1066 4.02 38 15 STANDARD C/AU-R

44

ACHE ANALYTICAL

ACME ANAL	TCA	L LA	BOR	ATOR	IES	LTD		8	52 E	. на	STIN	165	ST.	VAN	COUV	ER)	в.с.	V	5A 1	R6	1	PHON	E(6(04)25	3-315	8 F	AX (6	Q4)2	53-1	716
AA				Store					GI	EOCH	IEMI	[CA]		NA	YBIS	B CI	ERŢJ	(FI)	CAT	E									A	A
TT		<u>1</u> 1	<u>nco</u>	Ex	pl.	<u>8</u> '	<u>[ec]</u> 26	1. 1 70 • 1	566 Bi	/ice	es I I St.,	PRO. Van		<u>r 6</u> r 80	051: V6C 2	<u>8-8</u>	201(Submit) tted	Fi by:D	le ENNIS	# 91 Bohmi	1-2: E	314	Pa	age	1			T	Ľ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		N i ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	5 5 1 5		Cr ppm	Mg %	Ba ppm	Ti % Pf	BAL xm %		K %	W ppm	Au* ppb
FX 479642 FX 479643 FX 479644 FX 479645 FX 479645 FX 479646	1 2 1 1	2 3 1 1	21 28 15 13 16	33 61 30 30 40	.1 .2 .1 .1 .2	3 6 5 4 3	1 2 1 1 1	355 536 352 361 466	.75 .84	2 3 2 2 2	5 5 5 5 5	ND ND ND ND ND	12 13 12 12 12 14	115 196 120 116 129	.2 .3 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	37 11 13	1.53 1.34 1.22	.009 .010 .010 .010 .010 .010	13 14 15 16 15	6 7 7 6 5	.06 .17 .04 .05 .06	86 24 19	.01 .01 .01 .01 .01	3 .15 2 .15 3 .14 2 .13 2 .14	.05 .06 .05	.06 .03 .06 .06 .06	1 1 1 1 ⁻ 1	
FX 479647 FX 479648 FX 479649 FX 479650 FX 479651	2 1 1 2	1 1 1 1 4	10 20 17 16 32	39 54 37 31 55	.1 .1 .1 .2	7 5 4 7	1 1	412 810 545 464 817	2.68 1.85 1.01	2 2 3 2 2	5 5 5 5 5	ND ND ND ND	15 20 12 15 15	129 185 130 121 206	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	34 22 13	1.37 1.01 1.34	.011 .011 .010 .010 .011	16 19 16 16 16	8 6 8 9	.06 .21 .14 .06 .29	17 16 19	.01 .01 .01 .01 .01	2 .14 2 .16 2 .14 2 .15 2 .16	.04 .04 .06	.05 .03 .03 .07 .05	1 1 1 1 1	11 14 17 38 46
FX 479652 FX 479653 FX 479654 FX 479655 FX 479655 FX 479656	1 1 1 2 1	1 2 3 1	12 13 15 14 12	40 37 33 39 31	.1 .2 .2 .2 .1	4 5 4 7 5	1 1 1 2 1	367 401 371 443 405	1.00	22222	5 5 5 5 5	ND ND ND ND ND	15 18 13 12 10	102 98 102 109 108	.6 .2 .4 .7 .2	2 2 2 2 2 2	2 2 2 2 2		.98 .95 1.13	.010 .009 .010 .010 .009	17 17 15 16 13	5 6 5 8 6	.07 .07 .07 .08 .06	17 17 18	.01	2.14 2.15 2.15 2.15 2.15 2.14	.05 .05 .05	.05 .06 .06 .06 .06	1 1 1 2 1	13 55 11 58 40
FX 479657 FX 479658 FX 479659 FX 479660 FX 479661	1 1 2 1	2 1 2 1 3	10 12 14 9 11	41 42 49 33 33	.2 .1 .1 .1 .3	4 4 8 5	1 1 1 1	429 350 341 435 407	1.17 1.23 1.08	2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd Nd	13 13 12 8 8	114 89 83 139 126	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	20 18 13	.75 .64 1.26	.009 .010 .011 .008 .008	16 16 16 10 10	6 7 9 6 6	.08 .08 .09 .07 .06	19 . 19 . 16 .	.01 .01 .01	2 .14 2 .15 4 .17 2 .14 2 .14	.06 .05 .04	.06 .05 .07 .04 .04	1 1 1 1	88 46 72 77 140
FX 479662 FX 479663 FX 479664 FX 479665 FX 479665 FX 479666	1 2 1 1	3 3 2 1 2	12 9 8 19 11	40 34 39 37 36	.2 .1 .1 .1 .3	4 7 6 3 3	1 1 1 1	424 410	.87 1.15	2 2 2 2 2 2	5 5 5 5	nd Nd Nd Nd	11 11 10 10 11	121 94 113 157 110	.3 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	13 19 21	1.00 1.08 1.30	· · · · ·	14 14 15 15 16	7 9 10 5 6	.10 .06 .08 .07 .06	18 19 18	.01 .01 .01	2 .15 2 .14 2 .16 2 .14 2 .15	.05 .06 .06	.05 .06 .06 .06 .07	1 1 1 1	46 60 87 32 74
FX 479667 FX 479668 FX 479669 FX 479670 FX 479671	2 1 1 2	2 2 3 3	15 28 14 14 18	34 82 37 32 31	.2 .1 .1 .3 .1	7 5 4 5 9	1 3 1 1	359 664 366 288 364	4.22	2 2 2 2 2 2	5 5 5 5	ND ND ND ND ND	11 11 10 11 11	101 129 103 71 117	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	15	.81 .95 .70	.011 .018 .012 .011 .010	14 12 15 15 13	10 8 7 7 12	.07 .39 .07 .06 .06	18 . 18 . 19 .	.01 .01 .01	2 .15 2 .21 3 .15 2 .19 2 .16	.03 .06 .06	.07 .04 .07 .07 .05	1 1 1 1 1	47 32 54 65 48
FX 479672 FX 479673 FX 479674 FX 479675 FX 479675 FX 479676	2 1 1 2 1	3 2 2 2 332	17 22 24 11 297	26 40 36 39 39	.2 .2 .1 .1 .1 3.4	6 4 4 6 4	1 1 1	468	.79 .90 .66 .58 .59	2 2 3 2 2	5 5 5 5 5	nd Nd Nd Nd		92 119 142 139 163	.2 .2 .3 .2 .2	2 2 2 2 2 2	2 2 2 6	18 17 9	1.10 1.39 1.66	.006 .010 .011 .010 .020	7 18 16 15 16	6 7 8	.08	18 🕺	.01 .01 .01	2 .19 2 .20 2 .20 3 .14 5 .14	.06 .06 .06	.07 .07 .06	1 1 1 1 1	290 20 43 87 140
FX 479677 STANDARD C/AU-R	1 20	7 62	15 44	28 138	.3 7.1	5 73		328 1088 :	.63 3.95	7 40	5 19	ND 6	8 40		.2 18.7	2 15	2 22	11 61		-008 -100	11 40		.03 1.00	28 185	.01 .103	2.22 6 1.97				140 470
		THIS		H IS	PARTI/ CORE	nl foi 1	r mn i Au* Ái	FE SR IALYSI	CA P Is by	LA CR ACID	LEACH	BA TI 1/AA //	BW FROM	AND L 20 GM	IMITEI Sampi	FOR E.	NA K			AU DE	TECTIO	ON LI	4IT B	ML WIT Y ICP I	IS 3 PP	м.	_			
DATE RECE	IVE): .	JUL 5	1991	DA	TE 1	REPO	RT)	AIL	ed:	yn	ly	10 "	71	S 1G	NED	BY.	¥.,	••••].	D.TOY	έ, C.	LEON	G, J.WA	NG; CE	RTIFIE) B.C.	ASSAY	rers	

.....

ACHE ANALYTICAL																											AUHE	ANALTIICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg X	Ba Ti ppm %	B ppm	Al %	Na %	00000000	Au* ppb	
······································					State and					<u> </u>													303666 C				2000000		-
FX 479678	1	5	17	45	2	5	1	411	.87	4	5	ND	8	104	.2	2	2	16	.92 .010	11	6	.07	44 .01	2	.20	.04	.04 2	200	1
FX 479679	2	ź	20	36		8	1	393	.76		5	ND	ō	164	2	2	2	22		9	7	.15	28 .01	3	.15	.03	.03 2	270 `	
	-		20							8 T.	1		-			-	-			ć	;		1. 6010 (1997)				20000/756	99	
FX 479680	2	- 3	- 14	- 34	9 1 1	- 5	1	429	.72	2 C	5	ND	9	171	. .	2	2	15	1.44 .007	9	0	.10	15 .01	2	- 14	.04	.03 1	77	
FX 479681	1	3	19	32	1	4	1	379	.74	3	5	ND	8	149		2	2	16	1.27 .008	9	5	.11	15 .01	2	.13	-04	.03	98	
FX 479682	1	2	15	31	8 H.	ż	1	376	.61	2	5	ND	13	127	.2	2	2	11	1.17 .009	¹ 3	4 -	.07	16 .01	2	.12	.05	.05	62	•
TA TIYOUL	· ·	-		31		-	•	310		-			1.5		•-	-	-	•••		••									
	-	-		20		,	4	705			F	ND	10	474		2	2	10	1.08 .009	13	7	.07	17 .01	7	.12	,05	.06 1	200	
FX 479683	2	2	13	29	88 • 1 -	0	1	325	.55	्र	2	ND	10	121	-	2	2	• -		•			1 1 1 1 1 1 1 1 1				1000000000000000		
FX 479684	1	. 2	. 14	34	1	- 4	1	337	.60	S 4 -	5	ND	11	111	· .2·	2	- 3	12	1.03 .009	14	- 4	.07	15 .01	- 3	.12	.05	.05	97 1	1
FX 479685	1	2	17	40	.1	4	1	343	.62	2	5	ND	12	119	.2	2	2	15	1.01 .009	13	5	.07	16 .01	3	.12	.05	.05	91	
17 412002	•	-			201 T 🕈 👬	-	•						••			_													

ACME ANAL		L L/	BOR	ATOR	IES	LTD	•	8	521	5. H/	STI	NGS	ST	VA) Am	7F.R	BC	v	6A .	186	1	PHON	P /6	1412	6723	150	. Pa	77 2	253-	1716
AA										EOC	er eş											EBON	E (0	54)2	99-3	130	ΓA	~ (0 \	_/255-	A
TT		I	nco	Ex	<u>pl.</u>	<u>& '</u>		<u>h.</u>	<u>Ser</u>	vic	98	PRO	JEC	T 6	051	3-8	201(0	Fi	.1e	# 9 :	1-23	348		Page	≥ 1				
	1	<u></u>			<u>.</u>			<u></u>		Burrar	d St.	, Van	couve	r BC	V6C 2		Submit	tted	by: I	DENNIS	BOHM	E								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		1.000	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P X		Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al X	Na %	K 1 % ppr	Au* 1 ppb
X 19686 X 19687	1	4	4	21	.1	8	7		2.85	2	5	ND	5	129	.2	2	2			.075	6		1.16	25	.12	_	1.47	.06	.09 1	7
x 479688	1	17	2 3	20 24 ⁻	.1	8 5	6 6		2.49 2.67	- 4 5	5 5	ND ND	7 4	150 199	.2 .2	2 2	2 2			.080	5	11 8	.93 1.11	27	.14		1.31	.07 .06	.09	- 1 19
x 4 79689 x 479690	1	10 22	2 2	17 28	.2	7 7	6 8		2.48	4	5	ND ND	4 5		.2	2 2	2 2		-	.062	6		1.09	28 22	.14		1.62		.14 3	20 14
6 9691	1	15	5	34	.1	5	11	520	3.55	2	5	ND	4	139	.3	2	2	71	2.72	.073	5	8 -	1.33	23	-14	2	1.64	.05	.10 1	. 7
K 4(19692 K ∤ 9693	1	34 19	2 2	28 24	1	7 8	7	376	2.76	2	5	ND ND	5	134 150	.2	2	2	67	2.02	.080	4	8	1.05		.14	3	1.29	.09	.09	3 12
x 4 9694	i 1	83 31	33	18 19		3		373	3.53	6	5	ND	2	138	.3	Ž	ż	128	3.49	.231	2	10	. 89	5	.04	3	.75	.05	.01	4
x 4 7695					•1	8	7		2.73	2	5	ND	6	144	.2	2	2			. 106	6		1.25		.13		1.33		.10 1	1
(20 32	2 3	18 24		7 8	6 9		2.73 3.61	2	5	ND ND	8 9	109 84	.2	2	2			.081	4 5	10 10	.88. 1.00	30 28	.14 .13		1.15 1.36	.08 .06	.09	1 2
(4 '9698 (4 '9699	1 2	18 122	4	23 20	.1	7 7	9 9		3.78	24	5 5	ND ND	11 7	146 130	.2	2	2 2			.079	10 4		1.22	23 27	.01		1.79 1.73	.02 .04	.20	2
(9700	1	14	3	24	•1	9	8		2.93	4	5	ND	3	221	.2	2	2			.057	9	10	.90	29	.05		1.29	.03		1
x 479701 x 479702	1	143 115	4 2	74 85	1.2	4	18 20		4.82	3	5 5	ND ND	8 8	194 142	.2	2 2	2 2			.064	12 11		1.38 1.39	28 30	.05		1.95	.02 .01	.19 1	5 1
x 479703	i	32	3	97	.4	11	22	655	6.22	2	5	ND	7	129	ે.2	2	2	51	2.13	.051	14	10	1.67	29	.10	2	2.44	.01	.22	5
x 479704 x 479705	1	28 41	2 4	77 73	.1	6 7	15 18		4.24 4.14	2 2	5 5	ND ND	8 8	149 171	.2 .2	2 2	2			.066	9 7		1.44 1.32	55 43	.11 .12		2.36 2.12	.07 .03	.28 .23	1 1
x 479706	1	82	3	40	.2	7	12	458	4.40	3	5	ND	10	102	.2	2	2			.057	7		1.08	44	.12		1.66	.03	.28	1
X 479707 X 479708	1 2	125 94	2 2	91 161	.2	9 8	28 33		6.80 7.58	2	5 5	ND ND	12 7	119 133	.4	4	2			.075	5 5	12 23	2.31	139 65	.14		3.46 3.25	.10 .03	.56	1
x 479709 x 479710	1	9 21	32	40 45		6 6	7 7		3.16 3.28	33	5 5	ND ND	777	108 87	.2	2	2 2			.057	10 8	9 10	.96 .94	33 43	.08		1.34	.04 .04	.15	12 8
x 479711	1		2	34	.1	7	8		3.02	2	5	ND	7	131	.2	2	2			.058	9	10	.96	34	.07	2	1.36	.05	.18	4
x 479712	1	31	2	60	્રા	8	11	510	3.95	2	5	ND	7	121	2.2	2	2	53	1.61	.059	11	10	1.11	45 31	.04 .01	2	1.71	.03		2 1
x 479713 x 479714	1	9 68	3	33 40	.7	7 7	6 8	571	2.83 4.54	2	5	ND ND	6 8	154 110	.3	23	2	43	1.69	.062	7	7 '	1.13	39	.03	2	1.77	.03	.24	7
(479715	1	22	2	38	.3	9	7	685	4.58	3. 	5	ND	6	109	.2	2	2			.070	6	9	1.09	41	.03	-	1.83	.03	.24	240
(479716 (479717	1	41 120	2 3	76 55	.2 3.4	4			7.15 5.19	23	5 5	ND ND	16 9	104 161	.5 .2	2 2	2			.061	3 10		1.73		.11	-	2.87 1.75	.05 .03	.90	88 850
(479718 (479719	1	16 5	2	36 39	.5	5	7	510	2.97	3	5	ND	7	239 198	.3	2	2	42	2.58	.058	10 9	7	.90	39	.01 .01	2	1.36	.03	.18	41 31
(479720	1	9	3		2.5	8			2.32	2 2	5	ND 2	8	224	.2	2	2			.055	7	8	.82		.01		1.17	.05		660
k 479721	1	14	2		3	7			3.16	2	5	ND	8	236		2	2			.066		8	.92		.01			.03		120
TANDARD C/AU-R	19	62	39	132	7.5	70	32	1050	3.94	38	21	6		53	18.9	16	20	58	.48	.089		58	, 88	176	.09	53	1.92	.07	.15 12	480

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AVA AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ACHE ANALYTICAL

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2348

Page 2

ACHE ANALYTICAL																									··			ACM	E ANALYTI	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		As ppm		Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %		Cr ppm	Mg %	8a Ti ppm %		Al %	Na %	К %		Au* ppb
FX 479722 FX 479723 FX 479724 FX 479725 FX 479726	1 1 1 1	20 23 98 40 17	7 5 2 3 9	44 48 89 77 39	.4 .2 1.5 37.0	8 12 9 5 8	7 18 13	442 549 754 615 504	5.13 9.17 5.03	3 2 5	5 5 5 5	ND ND 3 5	7 6 6	173 138 194 223 237	.2 .2 .2 .7	2 2 3 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	59 57 35	2.81	.061 .058 .060	7 6 3 3	12 2 9 1	.87 1.20 2.11 1.22 .78	74 .04 314 .13 191 .07 36 .01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.35 2.43 3.60 1.92	.01 .01	.32 1.18 .74 .18	1 2-1 16	180 34 230 510
FX 479720 FX 479728 FX 479728 FX 479729 FX 479730 FX 479731	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 17 37 14 14	7 8 7 9 8	29 26 37	16.4 .6	9 8 7 9 8	6 5 7 6 7	534 422	2.18 1.88 2.28 2.75	5 5 4 6	5 5 5 10 5	ND 5 ND ND ND ND	8 5 7 5 8	467 345 185 525 292	.4 .2 .3 .2 .2	2 2 2 2 2 2 2 2	2 5 2 3	27 27 31 30	2.77 4.69 3.38 2.14 5.26 2.60	.043 .039 .052 .038	9 5 7 9 5 9	9 8 6 7 9	.78 .53 .62 .63 .67	28 .01 55 .01 33 .01 25 .01 260 .01 181 .01	2 2 2 2	.91 .85 .99 1.02 1.07	.03 .03 .03 .03 .03 .03	.21 .14 .15 .19 .18 .22	14 2 2	24 110 270 88 230 48
FX 479732 FX 479733 FX 479734 FX 479735 FX 479736	1 1 1 1	20 25 11 22 16	8 7 5 3 7	29 47 56 74 38	.2 .2 1.0 .4 .1	7 8 7 8 6	9	398 536 547 615 518	3.08 3.55 4.41	4	5 5 5 5	ND ND ND ND		265 231 173 192 369	.2 .2 .3 .6	2 2 2 2 2 2	2 2 3 2	38 39	2.23 2.21 1.96 2.08 2.19	.046 .048 .064	8 9 7 11	-	.60 .90 1.01 1.12 .78	29 .01 34 .01 34 .02 79 .01 29 .01	2 2 2	.93 1.31 1.50 1.82 1.31	.03 .03 .03 .02 .02	.18 .21 .26 .23 .25	2 1 1 1	23 38 300 57 13
FX 79737 FX F 79738 FX 479739 FX 479740 FX 479740 FX 479741	10	31 96 121 2267 123	6 2 2 3	59 73 115	1.5 1.0 .3 7.9 1.1	7 10 12 26 11	14 27 70	593 623 664 1087 2317	4.58 7.05 8.12	4 2 14	5 5 5 7	nd Nd Nd Nd	6 7 12	405 259 170 382 1278	.2 .2 .2 1.2 1.3	2 2 5 9	2 3 2 2 2	38 78 262	4.22 2.17 1.43 5.44 15.25	.048 .078 .435	5 6 9 31 3	11 11 17	.70 1.24 1.80 2.19 1.37	36 .01 34 .01 48 .03 56 .02 113 .02	2 3 2	1.15 1.96 2.84 3.04 1.21	.02 .01 .01 .01 .01	.16 .28 .38 .37 .01		540 350 7 74 69
FX '9742 FX '9743 FX 4⊉9744 FX '9745 FX 4 '9746	1 1 1 1	158 12 25 37 18	2 2 4 5 6	73 44 50 43 28	1.6 1.0 .3 .2 .6	9 10 10 9 8	9 10 10	1090 560 653 537 479	3.50 4.19 3.77	4 4 5	5 5 5 5 5	2 ND ND ND	3 8 9 7 7	505 232 286 165 292	.8 .3 .2 .7 .2	2 2 2 2 2 2	2 2 6 2 2	41 56 47	6.18 1.73 2.37 2.13 2.93	.055 .072 .056	6 10 14 7 7	8 7	1.96 1.16 1.14 .96 .71	57 .01 211 .01 60 .03 42 .01 152 .01	2 2 2	2.21 1.52 1.71 1.36 1.02	.01 .02 .02 .03 .02	.09 .24 .36 .20 .16	3 3 1	330 300 310 97 64
FX 9747 FX 79748 FX 79749 FX 79750 FX 79751	1 1 1 2	10 72 2 3 38	7 2 5 2 2	27 43 26 26 45	.2 .4 .2 .1 .5	10 11 9 10 7	-	500 577 533 423 520	3.59 2.54 2.48	25224	5 5 5 5 5	ND ND ND ND	7 6 5 7 6	271 232 380 192 155	.2 .3 .3 .3 .5	2 2 2 2 4	3 2 2 6 2	49 38 41	3.04 2.31 3.69 2.07 1.95	.056 .049 .056	6 6 7 10 9	10 9	.72 1.12 .73 .76 1.07	40 .01 43 .01 145 .01 52 .01 30 .01	2 2 2	1.06 1.59 1.11 1.08 1.46	.03 .03 .04 .04 .03	.18 .19 .17 .16 .16	1 2 1 1 3	23 44 16 5 19
FX 79752 FX 79753 FX 479754 FX 479755 FX 479756	2 1 1 2 2	86 43 15 21 18	2 3 6 4 2	58 25 39	1.3 2.2 1.8 1.0 1.4	10 7 7 11 12	15 5 7	535 500 999 519 445	4.67 2.20 2.89	2 2 2 2 2 4	5 5 7 5 5	nd Nd Nd Nd Nd	6 2	202 293 1109 333 202	.4 .4 .2 .2	2 2 2 2 2 2	6 6 2 2 2	37 16 26	1.43 1.72 11.93 2.78 1.36	.051 .021 .046	6 6 2 6 10	7 9 6 10 9	1.07 .85 .38 .68 .84	26 .01 63 .01 120 .01 129 .01 22 .01	2 2 2	1.76 1.44 .68 1.08 1.23	.02 .02 .01 .02 .03	.25 .32 .17 .20 .23	1 1 1	220 500 290 230 270
X 479757 STANDARD C/AU-R	6 19	62 62	2 38	55 136	1.4 7.0	10 73		610 1145		2 40	5 20	ND 7	7 40	212 54	.2 18.8	4 15	2 20	45 60	2.11 .49	.064 .099	12 39		1.08	30 .01 188 .09		1.47 2.03	.02 .07	.21 .15	11	63 520

4

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2348

Page 3

44

1 3 12 21 1 4 1 239 .75 2 5 NO 8 81 .2 2 2 9 .65 .006 9 6 .06 124 .01 2 .14 .05 .08 1 75 2 479775 1 2 10 34 .1 5 1311 .90 2 2 2 10 .74 .007 9 4 .07 27 .01 2 .14 .06 .08 1 200 X 479776 1 2 9 .20 2 10 .75 .00 13 .5 .01 3 .13 .05 .08 13 20 .07 16 .01 3 .13 .05 .08 13 20 .00 17 2 .07 16 .01 3 .13 .05 .08 .06 .09 .06	ACHE ANALYTICAL	. <u></u>																													ACHE ANA	LYTICAL	
1X 477509 1 49 4 37 3 7 1 648 5.42 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 3 4 1	AMPLE#														-	- S-694			-								-			K X			
xx 477640 1 47 4 35 2 6 9 668 2.66 2.5 NO 2 2 2 2 1 3.33 1.2 1.12 1.03 1.05 1.03 2.5 1.05 1.74 1.16 2.5 1.15				5				-				-				20120		_		2.39	.066	7									1		<u> </u>
x 479761 1 10 3 33 .1 8 7 692 .5 NO 2 467 2 2 2 25 25 20 10 47 10 67 88 .03 .15 1 12 68 .03 .15 1 12 68 .03 .15 1 .15 .16 .15 .16 .15 .16 .15 .16 .15 .16 .15 .16 .15 .16 .15 .16 .15 .16 .16 .17 .16 <		l i		2			•					-		_			_	_				-				17 T T T P							
1 1 1 1 1 2 4 7 10 5 10 5 5 10 3 25 10 3 25 10 3 25 10 2 <th2< td=""><td></td><td>i</td><td></td><td>3</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td></td><td>10000</td><td>-</td><td>_</td><td></td><td></td><td></td><td>•</td><td>-</td><td>-</td><td></td><td>1 C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></th2<>		i		3				-				-		_		10000	-	_				•	-	-		1 C							•
xx 477764 1 22 5 3 421 2 2 2 5 3 00 05 8 10 10.2 68 01 21 23 3 16 1 38 x4 47766 1 35 5 4 8 11 710 28 1 33 1 21 33 13 1 134 04 17 12 33 13 1 133 1 2 133 13 1 134 04 17 12 1 138 1 143 1 14 1 <				2				•				-				1914						-					-				i		
xx 479765 1 1 3 5 2 2 5 2 2 5 2 2 5 2 3 66 6 1 1.00 73 01 2 1.34 64 .17 1 2 2 5 2 3 6 6 1 1.00 73 01 2 1.17 03 .16 1 1.00 73 01 2 1.17 03 .16 1 3 1 2 .60 0.3 .23 1 8 2 2 5 5 2 5 7 2 2 2 46 3.3 1 1 7 1 2 40 0.3 .17 1 7 1 1 6 1 3 1 <td></td> <td>1</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>ND</td> <td>2</td> <td>252</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>9</td> <td>1.05</td> <td>31</td> <td>.02</td> <td>2</td> <td>1.25</td> <td>.04</td> <td>.18</td> <td>1</td> <td>23</td> <td></td>		1		2								-	ND	2	252		_					8	9	1.05	31	.02	2	1.25	.04	.18	1	23	
x 479766 1 39 5 51 4 8 11 734 5.91 2 5 ND 2 28 2		1		5		.8					2	5	ND	3		.2		2				8	10	1.02	68	.01	2	1.23	.03	. 16	1	38	
x 479767 1 65 2 41 3 8 11 743 3.91 2 5 ND 2 547 2 2 2 463 34 006 6 8 1.07 36 011 2 .60 .03 .23 1 86 x 479768 1 63 2 40 16 61 673 373 2 5 ND 2 44 22 2 124 30 01 2 40 .03 16 1360 353 16 1360 36 14 12 22 23 130 101 16 101 16 101 16 101 2 100 233 .03 .16 1300 16 1200 1706 22 2 453 100 101 16 011 2 170 16 011 2 1300 16 1200 170 13 12 233 16 1200 170 130 12 1300 16 1200 16		1		5		111111					2	-		-		1.11						6	11	1.09		.01	2	1.34		.17			
x 479768 1 6 1 6 1 2 70 10 2 40 0.0 0.0 10 2 33 0.0 1 2 10 2 40 0.0 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 10 2 33 0.0 1 700 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3		1 :		-		WAR 95, 111	-				4	-										6				.01					1		
xi X 479769 3 469 3 36 5.7 6 13 573 2.67 2 5 ND 1 444 2 2 2 31 2.43 005 4 6 7.3 0.01 2 33 0.03 1.66 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 65 1.01 1.01 1.01 1.01 2 1.03 0.01 2 1.01 1.01 2 1.03 0.01 2 1.01 1.01 1.01 2 1.01 1.01 1.01 1.01 1.01 1.01 2 1.01 1.01 1.01 2 1.01 1.01 1.01 2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	× 479767	1	- 65	2	41	.3	8	11	743	3.91	2	5	ND	2	547	.2	2	2	46	3.34	_066	6	8	1.07	36	.01	2	.60	.03	.23	1	86	
xx 479770 1 67 4 40 3 8 10 654 3.10 2 5 ND 2 52 7 2 2 2 43 2.4 0.03 17 1 370 x 479771 1 24 3 4 5 6 5 338 1.59 5 35 ND 1 056 7 8 1.10 37 01 2 .35 .03 .17 1 370 .01 2 .35 .03 .17 1 370 .01 2 .17 .02 .08 1 .22 2 2 12 1.0 .00 1 .01 2 .14 .05 .09 1 .02 .01 <td></td> <td>1</td> <td></td> <td>2</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>5</td> <td>6</td> <td></td> <td></td> <td>85 A GA</td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>		1		2			-					-		2				2				5	6			85 A GA	-				1		
1 24 3 41 1 5 6 8 782 2.83 3 5 NO 1 706 2 2 2 2 1 5 0.66 7 8 1.10 37 01 2 .35 .03 .16 1 200 .17 .02 .08 1 990 1 2 15 19 1 5 1 300 .64 2 5 ND 9 201 .2 2 2 1 1 .01 2 .17 .02 .08 1 990 .22 2 1 1 .01 2 .14 .05 .08 1 7 .9 1 2 .14 .05 .08 1 7 .07 .07 .07 9 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 .05 .01 .01 .01 .01 .01 .01 .01		1 7		3		2000 C 100	-				2	-	•	•		300107	_	_				4	-				2						
x 479772 3 14 5 23 12.8 6 5 338 1.59 5 35 ND 2 222 2 2 1 5 2.8 44 0.01 2 .17 .02 .08 1 990 x 479773 1 2 15 19 .1 5 1 300 .64 2 5 ND 9 201 .2 2 2 12 1.04 .01 2 .17 .02 .08 1 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .08 .09 .02 .2 2 12 .04 .00 .04 .04 .04 .04 .05 .08 175 .03 .02 .03 .05 .08 175 .01 .04 .04 .03 .05 .08 12 .07 .05 .007 19 .07 15 .01 3 .13 .05 .08 13 .01 .03				4			-				- 88 2 -	-						_				5				ev	2						
1 2 15 19 1 5 1 300 64 2 5 ND 9 201 2 2 2 12 10 001 2 12 0.0 1 7 .19 16 01 2 .12 .05 .08 1 93 1 3 12 21 1 4 1 239 .75 2 5 ND 8 81 .2 2 2 12 100 2 .14 .05 .08 1 .09 .02 2 2 12 100 .07 .01 2 .14 .05 .08 1 .01 .01 .07 .2 2 2 10 .07 .07 .01		1 ·		-			-					-		-		1.11	-	_					_										
x 479774 1 3 12 2 1 4 1 223 75 2 5 NO 8 81 2 2 2 0 65 0.06 9 6 0.66 122 01 2 14 05 0.06 1 77 77 1 1 28 33 1 3 2 349 1.43 2 5 ND 9 0.2 2 2 10 74 0.07 9 4 0.07 27 01 2 14 0.6 0.8 175 x 479776 1 2 9 2.2 2 10 .75 0.06 13 5 01 3 .15 0.6 0.06 10 3 .15 0.6 0.05 .00 14 .07 13 .13 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 <td>× 4/9//2</td> <td>5</td> <td>14</td> <td>2</td> <td>25</td> <td>12.8</td> <td>0</td> <td>5</td> <td>338</td> <td>1.59</td> <td>2</td> <td>55</td> <td>ND</td> <td>2</td> <td>222</td> <td>-2</td> <td>2</td> <td>2</td> <td>15</td> <td>.95</td> <td>.022</td> <td>5</td> <td>2</td> <td>.28</td> <td>44</td> <td>.U1</td> <td>2</td> <td>•17</td> <td>.02</td> <td>.08</td> <td></td> <td>770</td> <td></td>	× 4/9//2	5	14	2	25	12.8	0	5	338	1.59	2	55	ND	2	222	-2	2	2	15	.95	.022	5	2	.28	44	.U1	2	•17	.02	.08		7 70	
1 1 28 33 1 3 2 340 1.43 2 5 ND 9 90 2 2 2 12 1.09 0.07 9 4 .07 27 .01 2 .14 .05 .08 1 75 1 4 9 32 .1 4 1 283 .84 2 5 ND 10 67 .2 2 2 10 .75 .006 13 5 .07 16 .01 3 .15 .66 .09 1 .20 .16 .01 3 .15 .06 .09 .16 .01 .15 .01 3 .15 .06 .09 .13 .05 .08 1 .21 .06 .09 .13 .05 .08 1 .01 <td< td=""><td>:X 479773</td><td>1.</td><td>2</td><td>15</td><td>19</td><td>31</td><td>5</td><td>1</td><td>300</td><td>.64</td><td>2</td><td>5</td><td>ND</td><td>9</td><td>201</td><td>.2</td><td>2</td><td>2</td><td>12</td><td>1.04</td><td>.007</td><td>11</td><td>7</td><td>. 19</td><td>16</td><td>.01</td><td>2</td><td>. 12</td><td>.05</td><td>.08</td><td>1</td><td>93</td><td></td></td<>	:X 479773	1.	2	15	19	31	5	1	300	.64	2	5	ND	9	201	.2	2	2	12	1.04	.007	11	7	. 19	16	.01	2	. 12	.05	.08	1	93	
xx 479775 1 1 128 33 1 3 2 349 1.43 2 5 ND 9 90 .2 2 2 12 1.09 .007 9 4 .07 27 .01 2 .14 .05 .08 1 75 xx 479775 1 4 9 32 .1 4 1 283 .84 2 5 ND 11 67 .2 2 2 10 .74 .007 9 7 .07 15 .01 3 .15 .06 .08 1 200 xx 479776 1 2 9 .28 .6 3 1 289 .79 2 5 ND 16 67 .2 2 2 .07 15 .01 3 .13 .05 .08 1 380 .08 .07 16 .01 2 .14 .06 .09 1 .380 .21 .09 .13 .10 2 .14 .06 .09 <td>× 479774</td> <td>1</td> <td>3</td> <td>12</td> <td>21</td> <td>1</td> <td>4</td> <td>1</td> <td>239</td> <td>.75</td> <td>2</td> <td>5</td> <td>ND</td> <td>8</td> <td>81</td> <td>.2</td> <td>2</td> <td>2</td> <td>9</td> <td>.65</td> <td>.006</td> <td>9</td> <td>6</td> <td>.06</td> <td>124</td> <td>.01</td> <td>2</td> <td>.14</td> <td>.05</td> <td>.09</td> <td>1</td> <td>70</td> <td></td>	× 479774	1	3	12	21	1	4	1	239	.75	2	5	ND	8	81	.2	2	2	9	.65	.006	9	6	.06	124	.01	2	.14	.05	.09	1	70	
x 479777 1 4 9 32 .1 4 1 283 .64 2 5 ND 10 67 .2 2 2 10 .75 .006 13 5 .07 16 .01 3 .15 .06 .09 1 320 rx 479778 1 2 9 28 .66 3 1 279 .82 2 5 ND 16 55 .2 2 2 0 .09 17 2 .07 15 .01 3 .13 .05 .08 1 310 312 .94 2 5 ND 16 55 .2 2 2 10 .59 .007 19 6 .06 15 .01 2 .14 .06 .09 1 .310 .13 .131 .01 .137 .05 .06 .07 .007 13 .01 .2 .14 .06 .09 1 .310 .131 .15 .14 .09 .06 .09 <	FX 479775	1	1	28	33	ે:1	3	2	349	1.43	2	5	ND	9	90	.2	2	2	12			9	- 4	.07	27	.01	2	. 14	.05	.08	1	75	
xx 479778 1 2 9 28 .6 3 1 279 .82 2 5 ND 18 67 .2 2 2 9 .70 .009 17 2 .07 15 .01 3 .13 .05 .08 1 310 xx 479779 1 2 8 30 1 4 1289 .79 2 5 ND 16 55 .2 2 2 10 .59 .07 19 6 .06 15 .01 2 .12 .05 .09 1 .09 1 .01 2 .15 .01 2 .15 .04 .09 1 .09 .08 .007 .11 .03	FX 479776	1	2	10	34	2°1	5	1	311	.90	2	5	ND	11	67	.2	2	2	10	.74	.007	9	7	.07	15	.01	2	. 14	.06	.08	1		
x 479779 1 2 8 30 .1 4 1 289 .79 2 5 ND 16 55 .2 2 2 10 .59 .007 19 6 .06 15 .01 2 .12 .05 .007 19 6 .06 15 .01 2 .12 .05 .007 19 6 .06 15 .01 2 .12 .05 .007 19 6 .06 15 .01 2 .12 .05 .007 14 4 .07 13 .01 2 .15 .04 .09 1 .69 .06 .15 .01 2 .15 .04 .09 1 .69 .21 .22 .21 .15 .007 13 .008 15 .01 2 .13 .06 .09 1 .16 .01 2 .13 .06 .09 1 .100 .21 .23 .21 .23 .007 11 5 .04 .01 .21 .05<	FX 479777	1	4	9	32	.1	4	1	283	-84	2	5	ND	10	67	.2	2	2	10	.75	.006	13	5	.07	16	-01	3	. 15	.06	,09	1	320	
x 479780 1 4 19 33 1 3 1 312 .94 2 5 ND 12 65 .2 2 2 10 .58 .007 14 4 .07 13 .01 2 .15 .04 .09 1 69 x 479781 1 2 15 41 1 3 1 377 .93 2 5 ND 11 72 .2 2 2 11 .73 .007 13 3 .08 15 .01 2 .14 .06 .09 1 78 x 479782 2 10 23 .73 2 5 ND 11 54 .2 2 2 9 83 .007 11 5 .01 2 .13 .06 .09 1 78 x 479783 1 2 10 23 .73 2 5 ND 12 77 2 2 2 11 5 .001 2 .13 .	FX 479778	1	2	9	28	.6	3	1	279	.82	2	5	ND	18	67	.2	2	2	9	.70	.009	17	2	.07	15	.01	3	. 13	-05	.08	1	380	
x 479781 1 2 15 41 1 3 1 377 .93 2 5 ND 11 72 .2 2 2 11 .73 .007 13 3 .08 15 .01 2 .14 .06 .09 2 .82 x 479782 2 2 10 31 .1 5 1 .253 .73 2 5 ND 11 .54 .2 2 2 12 .55 .00 15 .01 2 .14 .06 .09 2 .82 x 479783 1 2 10 23 4.7 3 1 241 .63 2 5 ND 11 77 .22 2 2 14 .82 .001 2 .13 .06 .09 1 101 101 2 .14 .06 .09 1 .08 .07 .2 2 2 14 .82 .008 15 4 .01 2 .14 .06 .09	FX 479779	1	2	8	30	.1	4	1	289	.79	2	5	ND	16	55	.2	2	2	10			19	- 6	.06		.01	2	- 12			1		
x 479782 2 2 10 31 1 5 1 253 .73 2 5 ND 11 54 .2 2 2 12 .55 .008 15 7 .05 15 .01 2 .13 .06 .09 2 82 x 479783 1 2 10 23 4.7 3 1 241 .63 2 5 ND 8 68 .2 2 2 9 .83 .007 11 5 .04 16 .01 2 .13 .06 .09 1 1010 x 479784 1 2 36 6 1.47 1.05 2.5 ND 12 77 .2 2 2 14 .02 .007 11 5 .01 2 .13 .06 .09 1 101 2 .07 15 .01 2 .13 .06 .09 1 .200 .214 .02 .007 12 .6 .05	FX 479780	1	4	19	33	. 1		1			5	5	ND	12					10				4										
A 1702 1 2 10 11 2 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 <t< td=""><td>FX 479781</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>	FX 479781	1						1						11														_					
1 2 36 46 1.5 4 1 383 .99 2 5 ND 12 77 .2 2 2 14 .82 .008 15 4 .07 16 .01 2 .14 .06 .09 1 120 FX 479785 2 6 13 53 2.6 6 1 417 1.05 2 5 ND 14 83 .2 2 3 12 .96 .008 13 6 .08 16 .01 2 .14 .05 .09 1 270 FX 479786 1 3 13 31 39.7 4 1 335 .82 2 5 ND 11 74 .2 2 2 17 1.21 .006 11 3 .01 2 .14 .04 .11 1 2000 FX 479787 1 2 3 1 200 .78 2 5 ND 14 51 .2 2 17	FX 479782	2	2	10	31		5	1	253	.73	2	5	ND	11	54	.2	2	2	12	.55	.008	15	7	.05	15	.01	2	.13	.06	.09	2	82	
1 2 6 13 53 2.6 6 1 417 1.05 2 5 ND 14 83 .2 2 3 12 .96 .008 13 6 .01 2 .14 .05 .09 1 270 FX 479785 1 3 13 31 39.7 4 1 335 .82 2 5 ND 11 74 .2 2 2 9 .93 .007 12 6 .05 18 .01 2 .14 .04 .11 1 200 FX 479787 1 2 35 32 3.6 3 1 300 .78 2 5 ND 8 107 .2 2 2 17 1.21 .06 11 3 .01 2 .13 .05 .07 1 230 FX 479788 2 5 3 7 2 5 5 9 75 .2 2 7 .74	FX 479783	1	2					1				-	ND				-	2	-				5			67 F 66 -					1		
1 3 13 31 39.7 4 1 335 .82 2 5 ND 11 74 .2 2 2 9 .93 .007 12 6 .05 18 .01 2 .12 .05 .08 1 200 FX 479787 1 2 35 32 3.6 3 1 300 .78 2 5 ND 8 107 .2 2 2 17 1.21 .06 11 3 .07 15 .01 2 .14 .04 .11 1 200 FX 479788 2 2 9 .93 .007 15 7 .05 14 .01 2 .13 .05 .07 1 230 FX 479789 1 3 18 26 28.3 4 1 258 .77 2 5 5 9 .75 .2 2 2 .07 .11 .01 2 .14 .06 .08 <		1	_				-	•				-					2	_					4		• - •	187 F 85 -	-			-			
x 479787 1 2 35 32 3.6 3 1 300 .78 2 5 ND 8 107 .2 2 2 17 1.21 .006 11 3 .07 15 .01 2 .14 .04 .11 1 200 x 4 19788 2 2 9 .01 .01 2 .13 .05 .07 1 .01 2 .13 .05 .07 1 .230 1 .255 .05 .01 2 .13 .05 .07 1 .230 1 .49788 .07 .05 14 .01 2 .13 .05 .07 1 .230 .14 .04 .11 1 .200 .05 .05 .01 .01 2 .13 .05 .07 1 .230 .14 .04 .01 2 .11 .05 .00 .01 .02 .2 .2 .07 .03 .07 .12 .03 .007 12 .03 <t< td=""><td></td><td>2</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td>• •</td><td></td><td></td><td>2</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		2	-				-	-			-	-		• •			2	-					-				_						
x y y x y y x y		1	-					1									_										_						
FX 4/9789 1 3 18 26 28.3 4 1 258 .77 2 5 9 75 .2 2 2 7 74 .007 13 5 .05 25 .01 2 .14 .06 .08 1 4690 FX 4/29790 1 1 55 30 2.2 3 1 306 .86 2 5 ND 11 96 .2 2 2 11 .87 .007 12 3 .07 11 .01 2 .13 .04 .09 1 510 FX 4/29790 2 2 17 25 .3 6 1 255 .65 2 5 ND 12 89 .2 2 8 .90 .008 14 .01 2 .15 .05 .09 1 220 FX 4/29792 1 2 14 240 .70 2 9 ND 14 67 .2 2 2 9 .64 .007	FX 479787	1	2	35	32	3.6	3	1	300	، 78	° 2	5	ND	8	107	.2	2	2	17	1.21	.006	11	3	.07	15	-01	2	. 14	.04	.11	1	200	
x x	FX 4 19788	2	_	-			-	1			-	5						_					7								100000000000000000000000000000000000000		
x 2 2 17 25 .3 6 1 255 .65 2 5 ND 12 89 .2 2 2 8 .90 .008 14 7 .06 14 .01 2 .15 .05 .09 1 220 x 4.79792 1 2 14 1 240 .70 2 9 ND 14 67 .2 2 2 9 .06 14 .01 2 .15 .05 .09 1 200 x 9793 1 2 22 3 .04 .006 11 4 .01 2 .15 .05 .09 1 200 x 9793 1 2 22 3 14 .03 .09 12 .2 2 14 .06 11 .01 2 .14 .03 .09 1 .00 1 .01 2 .14 .03 .09 1 .03 .09 1 .04 .05 </td <td></td> <td>1</td> <td>3</td> <td></td> <td></td> <td>2 1 1 1 1 1</td> <td>•</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>		1	3			2 1 1 1 1 1	•	1					-					_	-				-										
x 479792 1 2 1 4 1 240 .70 2 9 ND 14 67 .2 2 9 .64 .007 12 5 .06 14 .01 2 .15 .06 .09 1 200 x 9793 1 2 236 .8 3 1 418 .89 2 5 ND 9 121 .2 2 12 1.48 .006 11 4 .01 2 .14 .03 .09 1 .84		1	1			6.5.0.001		1				-				· .							-		-								
x 9793 1 2 22 36 .8 3 1 418 .89 2 5 ND 9 121 .2 2 2 12 1.48 .006 11 4 .07 11 .01 2 .14 .03 .09 1 84		2					-	1				-							-	-			•			1							
	FX 479792	1	2	14	25		4	1	240	.70	2	9	ND	14	67	.2	2	2	9	.64	.007	12	5	.06	14	.01	2	. 15	.06	.09	7	200	
TANDARD C/AU-R 18 60 40 129 7.4 70 32 1045 3.93 38 17 8 39 52 17.6 15 21 61 .47 .088 37 58 .87 176 .09 34 1.87 .06 .15 13 490	FX 9793	1					3	1	418	.89	2		ND	9									4			S. 1. 66		· · · · · · · · · · · · · · · · · · ·			1		
	STANGARD C/AU-R	18	60	40	129	7.4	70	32	1045	3.93	38	17	8	39	52	17.6	15	21	_61	.47	.088	37	58	.87	176	.09	34	1.87	.06	. 15	13	490	

....

ACHE ANALYTICAL

14

ACHE ANALYTICAL SAMPLE# Mo Cu Pb Zn Ag Ni Со Mn Fe As U Sr Cd Au Th SЬ Bi ۷ Ca 🔆 P La Mg Ba 🔆 Ti AL N Au* Cr B Na ĸ ppm ррп ppm ppm ppm ppm ppm mqq % ppm ppm * ppm % ppm ppm ppm ppm ppm ppm ppm X 🛞 ppm ppm * * ppm % % ppm ppb FX 479794 2 9 32 7.2 7 249 .71 1 1 3 5 ND 12 67 2 .60 .006 7 .08 14 .14 .2 2 8 -14 .01 2 .05 .07 2 420 FX. 479795 4 12 38 1 .3 6 1 476 .91 2 5 ND 14 117 .80 .005 .2 2 2 13 14 5 .12 13 .01 2 .17 .04 81 .10 10 FX 479796 27 1 1 14 209 .4 5 2 5 1 .58 ND 12 58 .2 2 3 7 .44 .007 13 3 .06 13 .01 2 .13 .04 1 - 49 .07 2 .7 FX 479797 4 14 25 9 1 161 .57 2 5 ND 9 41 .2 2 2 .30 .003 13 .04 5 8 16 .01 3 .14 .06 .07 1 180 1 3 9 30 FX 479798 5 3 228 2 9 1 .64 ND 12 59 .2 2 2 .06 15 7 .52 .008 14 4 .01 2 .14 .06 .08 38 1 FX 479799 30 .2 1 4 7 4 208 .63 2 2 .14 1 -5 ND 14 62 .2 2 8 .48 .004 .06 15 .01 3 .05 .08 10 170 -14 4 FX 479800 1 4 32 232 2 11 5.6 6 1 .64 5 ND 11 62 .2 2 2 8 .55 .006 14 7 .06 15 .01 3.15 .05 .07 1 330 FX 479801 3 25 1 21 1.7 5 1 176 .54 2 5 ND 18 50 .2 2 2 7 .44 .004 18 5 .05 16 .01 2.14 M8 -.06 .06 -74 FX 479802 9 37 1 1 .4 6 1 152 .69 2. 5 ND 11 42 .2 2 2 10 .19 .006 16 4 .08 17 .01 2 .16 .06 .06 1 55 FX 479803 2 3 11 33 3.3 1 127 7 .65 2 5 ND 13 38 .2 2 2 9 .17 .004 .07 17 2 250 15 6 .01 2 .16 .06 .07 FX 479804 1 4 13 33 1.6 4 157 .67 2 ND 47 2 2 9 .36 .003 .06 18 2 .16 .06 53 1 -5 11 .2 14 .01 .07 6 - E 3 9 29 FX 479805 1 3.5 4 151 .60 2 5 ND 12 43 .2 2 2 .32 .004 13 2 .06 .13 .06 1 9 14 .01 2 .07 260 1 FX 479806 4 8 34 1 .2 6 1 155 .68 2 5 ND 10 39 .2 2 5 9 .18 .005 14 6 .07 15 .01 2 .13 .05 .06 2 69 32 FX 479807 1 4 10 .3 219 .67 2 5 ND 15 191 .2 2 .59 .006 2 .07 24 .01 2 .09 .04 .04 1 41 4 1 2 12 14 2 9 29 FX 479808 4 .3 5 163 2 5 13 60 .2 2 .07 14 2 .05 .06 1 39 1 .61 ND 2 11 .39 .008 14 4 .01 .13 FX 479809 35 .07 2 .13 2 180 8 80 2 .78 .006 5 14 .01 .05 .08 1 1 .6 6 1 271 .67 3 .5 ND 16 .2 2 11 16 .13 FX 479810 1 3 11 32 .3 1 277 .78 2 5 ND 14 73 .2 2 2 12 .71 .002 14 5 .07 15 .01 2 .05 .08 1 72 6 .01 .64 .006 FX 479811 1 1 6 29 .3 5 1 240 .60 2 5 ND 12 66 .2 2 2 9 14 4 .06 14 3.14 .06 .07 8**1**8. 49 28 FX 479812 2 5 62 53 .4 9 2 285 .95 4 5 ND 10 60 .2 2 2 12 .36 .005 12 7 .10 12 .01 2 .14 .03 .07 ÷١ 25 FX 479813 1 6 8 35 .2 286 .78 2 5 ND 11 75 .2 2 2 11 .70 .005 13 .09 16 .01 2 .16 .06 .07 1 6 1 6 45 FX 479814 1 7 35 3 265 .71 2 10 83 2 2 11 .64 .006 15 3 .09 14 .01 2 .14 .05 .07 .3 1 5 ND .2 4 3 .79 .005 13 .11 15 3.15 .06 .07 49 FX 479815 8 37 317 .70 2 5 ND 11 109 .2 2 15 6 .01 1 -1 5 1 2 23 3 8 36 .3 5 318 .76 5 12 71 .2 2 3 11 .64 .008 14 4 .07 15 .01 2.14 .06 .07 FX 479816 1 1 2 ND .57 .006 3 -14 .05 9 FX 479817 3 3 15 31 242 2 5 8 65 .2 2 2 9 13 3 .07 14 .01 .06 1 :3 4 1 .64 ND .10 13 2 .13 .05 13 FX 479818 1 2 15 40 .2 5 1 398 .88 2 5 ND 11 69 .2 2 3 12 .57 .006 15 5 .01 .06 .01 2 .14 .06 11 FX 479819 1 1 17 39 3 1 340 .73 2. -5 ND 10 88 .2 2 2 11 .91 .007 13 4 .08 17 .06 <u>с</u> 1 .13 2 2 39 334 2 5 10 97 .2 2 2 13 .88 .006 13 2 .09 15 .01 2 .05 .07 18 FX 479820 16 .1 3 1 .72 ND .10 1 15 2 .2 2 12 .79 .007 9 17 .01 2 .16 .06 .07 FX 479821 1 12 41 .3 6 1 334 .80 5 5 ND 11 78 3 16 83 13 5 .08 15 .01 2 .14 .06 .07 1 36 3 36 .2 .78 5 13 .2 2 2. .82 .008 14 FX 479822 1 11 4 1 314 5 ND 15 .15 .06 1 37 .2 13 3 .08 .01 2 .08 FX 479823 1 1 12 -34 .1 4 1 309 .73 2 5 ND 10 86 2 3 .86 .007 -14 27 FX 479824 . 2 5 12 39 408 .83 5 ND 96 .2 2 2 14 1.07 .008 -14 6 .09 14 .01 2.14 .06 ...08 2 .2 7 1 2 12 FX 479825 7 18 37 .2 3 419 .83 2 5 ND 13 122 .2 2 2 14 1.41 .003 14 4 .09 15 .01 2.15 .05 .08 1 20 1 1 13 510 34 1.88 .06 .15 STANDARD C/AU-R 18 58 40 134 7.2 68 33 1067 3.92 38 25 6 39 52 18.5 14 19 56 .48 .087 40 59 .83 171 .09

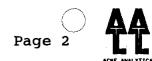
FILE # 91-2348

Page 4

Inco Expl. & Tech. Services PROJECT 60513-82010

				· · · · · · · · · · · · · · · · · · ·													:	·													
ACME ANAT	JICA	T TY	BOR	ATOR	IES	LTD	•	8	52 E	. HA	STI	NGS	ST.	V	'COU	/ER I	B.C.	V	6A 1	R6		PHONI	E (60)4)2	53-3	158	FA	xv	4)25	3-17	716
						si, i			G	EOCI	IEM:	[CA]	LAI	NAL	¥81	всі	SRT]	CFIC	CAT	E											N
		I	nco	Ex	Dl.	8	recl	h .	8er	vice	an I	PRO	TEC	г ∶б	051	3-82	010)	Fi	_م1	# g∙	1-23	36		Page	_ 1 ا د					
						n jeu	26	90 •	666 B	urrar	St.	, Van	couve	r BC	V6C 2	X8 S	Submit	tted	by: D	ENNIS	BOHM	Ē									
SAMPLE#	Mo			Zn	- CY	Ni	Со	Mn		As	U.	Au	Th		Cd	Sb	Bi	V	Ca	P		Cr	Mg	Ba		B	AL	Na	K	¥	Au*
	ppm	ppm	ррл	ppm	ppst	ppm	ppm	ppm	X	: ppm	ppn	ррп	ppn	ppm	ppm	ppm	ppm	ppm	<u>×</u>	X	ppm	ppm	*	ppm	*	ppm	*	*	%	mqc	ppb 👘
FX 479826	1	7	4	27	ु.उ	8	7	443	3.02	. 3	5	ND	5	113	.2	2	2	66	2.28	.069	5	13 1	.10	23	.08	2	1.24	.05	.09	1	`9 -
FX 479827	1	7	2	19	.3	5.	5	452	2.55	2	5	ND	3	143	.4	2	2			.068	6	-8-1	.03	20	.08	2	1.18	.05	.09		1
FX 479828	1	12	2	15	1	7	5		2.22	3	5	ND	5	157	6.8	2	2	65	2.47	.078	4	9	.81	25	. 13	3	1.08	.07	.08 🐰	1 -	.2 .
FX 479829	1	15	2	23	.3	8	6		3.03	3	5	ND	4	101	.3	2	2			.074	5		.09	28	14		1.28	.06	.10 🏼	1 .	1
FX 479830	1	8	2	23	.4	7	7	477	3.14	2	5	ND	4	111		2	2	69	2.82	.072	8	10 1	1.18	21	.12	3	1.38	.04	.10		1
FX 479831	1	8	2	22	.4	7	6	363	2.80	2	5	ND	4	137	.2	2	2	74	2.80	.076	6	9 1	1.08	24	.14	2	1.22	.06	.09	1	2
FX 479832	1	75	2	34	.6	7	8	417	3.05	2	5	ND	4	136	.6	2	2	68	2.31	.073	5	9 1	1.13	23	.15	2	1.34	.05	.10		1
FX 479833	1	11	3	28	.5	8	6	443	3.01	2	5	ND	3	128	.4	2	2	69	2.67	.071	7	11 1	1.11	26	.14	2	1.33	.05	. 12 🖉	81 -	2
FX 479834	1	10	4	29	.5	8	5	365	2.62	3	5	ND	4	159	.2	2	2	73	2.62	.077	5	91	1.07	22	. 14	3	1.25	.05	. 10 🖉	1 i	9
FX 479835	1	16	3	35	.6	7	5	457	2.75	2	5	ND	4	164	.5	2	2	66	2.95	.073	7	9 1	1.34	23	. 15	2	1.50	.05	.12 🧋		8
FX 479836	2	36	2	55	1.3	8	7	661	4.20	7	5	ND	6	236	.9	2	2	04	3 21	.076	6	10 1	88	20	.18	2	2.10	.03	.11	1	60
FX 479837	1 1	335	2		3.3	8			4.77	8	5	ND	ž	535	1.7	2	4			266	6	21 2		9	.06		2.12	.03	.02 🖉		160
FX 479838	1	172	2	51	2.1	8	29		4.76	6	5	ND	3	370	1.4	2	ż			.228	4	22 2		ģ	.05			.04	.02		400
FX 479839	1 i	13	- 6	33	5	7			2.68	3	5	ND	-	176	.5	ž	2		2.96		4	12 1		24	.13		1.17	.08	.08 🖗		220
FX 479840	1	27	2	26	.7	8			2.64	3	5	ND	5	232	.4	2	2	68	4.23	.067	6	10 1	1.18	26	. 13	2	1.32	.06	.09	1	21
FX 479841	1	19	2	27	.5	9	7	402	2.83	2	5	ND	5	153	.6	2	2	70	2 47	.067	5	11 1	.08	24	.13	2	1.21	.05	.10	1	29
FX 479842	i	30	ž	25	5	ý	7		2.85	- 4	5	ND		148	.7	2	2		2.49		7	12 1		-	.10		1.21	.05	.09	8 i -	4
FX 479843	i	24	2	21	.6	ŝ	6		2.97	3	5	ND	6	140	.9	2	2		2.44		5	12 1		24	.10		1.28	.06	.09		10
FX 479844	i	10	2	16	.5	7	-		2.75	2	5	ND	6	155	1.0	2	2		3.33		8	11 1		17	.06	_	1.28	.03	.10		3
FX 479845	i 1	10	2	23	. 4	10			2.94	2	5	ND	8	140	.7	2	2		2.68		10	13 1		25	.05		1.22	.05	.13	1	2
FX 479846	1	12	3	19	.4	9	E	222	2.57	2	- 5	ND	5	193	.4	2	2	42	2.78	042	6	13 1	06	24	.08	2	1.18	.05	.10	4	1
FX 479847	1	20	2	26	82	8			2.88	2	5	ND	6	168	ंदुः	2	2		2.73		6	12 1		31	.07	_	1.31	.05	.11 🖉		4
FX 479848	1	48	· 3		1.3	8	27		5.19	3	5	ND	8	225	.7	2	ž		3.28		7	14 1		47	.03	_		.01	.30 🖉	1	1
FX 479849	Ż	63	2	68	1.4	10			4.93	2	ś	ND	6	168	7	2	ž		2.91	2.000.00	10	13 1		39	.03			.01	.30	1	i
FX 479850	2	26	4	42	.6	8	8		3.69	3	5	ND	7	108	.6	2	2		1.65		9	11 1		32	04		1.54	.03	.20	1	8
	-	20	-	. –		-					•		·	•		-					-										
FX 479851	1	16	3	31	.3	7	_		3.00	2	5	ND		103	.5	2	2			.054	11	11 1		30	.05		1.27		.15	S.	1
FX 479852	1	7	2	32	.3	9	8		3.12	2	5	ND		130	.6	2	2		2.11		10	12		33	.02		1.27		.16		1
FX 479853	2	38	2	44	.8	9	9		3.35	2	5	ND	4	174	.5	2	2		2.66		10	11 1	-	32	.02		1.50	.03	.23	81. 1	1
FX 479854	2	59	2	97	1.6	7	16		6.51	2	5	ND		159	.9	2	3		1.87		5	12 1		136	.06		3.14	.02	.64	200.70	210
FX 479855	1	190	- 4	47	2.3	5	9	408	4.16	2	5	ND	4	226	े.7	2	2	45	2.85	.053	8	8	.86	35	.02	2 '	1.61	.01	-29		330
FX 479856	1	41	4	41	1.0	7	8	450	3.10	3	5	ND	4	300	.7	2	2	29	4.07	.040	7	9	.81	25	.01			.01	.22 🖉	2022 C	310
FX 479857	4	43	2		1.9	- 8	7		3.40	2	5	ND	7	452	.4	2	2		5.00		8	11	.80	25	.01	2 '	1.33	.02	.22 🛞		870
FX 479858	2	124	2		2.2	9	21		7.91	4	5	ND	6	260	2.2	2	2	90 3	3.34	.125	7	10 2	.00	35	.03	2 3	5.05	.01	.26 🐰		200
FX 479859	3	94	2	66	9,0	7			6.03	5	5	ND	5	252	1.4	2	2	87 3	3.18	.126	8	11 1	.33	43	.04	2 '	1.74	.04	.26	(1)	060
FX 479860	1	22	2	23	2.2	9	5	335	2.52	2	5	ND	5	173	1.2	2	2	47	1.99	.059	7	12	.83	44	.03	2 '	1.13	.05	.20		770
FX 479861	1	16	4	29	.4	9	٨	387	2.62	2	5	ND	5	187	.2	2	2	52	2.23	060	10	11	.93	52	.02	2	1.26	.04	.15	1	220
STANDARD C/AU-R	18			132					3.97	37	17	8	40		17.3	15	22			.088					.09					12	
																				_				_							

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AV AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.


guly 10/91.

DATE RECEIVED: JUL 8 1991 DATE REPORT MAILED:

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

i.

ACHE ANALYTICAL																												ACHE AN	ALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	ρ	La	Cr	Mg	Ba Tí	В	AL	Na	KW	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	X	ppm	ppm	X	ppn X		×	%		ppb
																					<u> </u>								
FX 479862	1	38	3	33	.2	7	6	509 3		2	7	ND	6	185	.6	2	2	59	1.88 .	072	6	12 1	1.04	71 .02		1.36	.05	.20 1	200
FX 479863	1	32	2	60	4	9	10	647 4	4.48	2	8	ND	. 9	169	.4	2	2	62	1.58	05 9	7	12 1	1.36	169 .09	2	2.10	.04	.72 1	180
FX 479864	1	39	2	96	11 I.	9	14	825 6	5.13	5	7	ND	12	199	.5	2	2	- 74	1.62 .	078	6	12 1	1.94	352 .16	2	3.41	.06	1.72 💮 1	10
FX 479865	1	75	2	77	4.7	11	17	677 6	5.48	9	5	5	9	339	1.5	5	2	72	2.38 .	093	5	13 1	1.42	243 .07	2	2.54	.02	.67 1	1190
FX 479866	1	23	2	50	.9	7	12	711 5	5.01	4	11	ND	10	390	.7	2	2	41	1.87	044	7	6	1.10	58 .01	2	1.73	.02	.25	170 ·
	-																												÷
FX 479867	1	7	2	19	4.2	5	. 6	772 1	i.93	2	11	ND	7	895	2	2	2	23	7.26	032	6	6	.46	331 .01	2	.66	.02	.16 1	910
FX 479868	1	11	3	23	2.1	11	7	539 2	2.40	3	5	ND	8	457	.2	2	4	30	4.13	043	7	9	.62	24 .01	2		.04	.13	470
FX 479869	2	15	2	26	5.2	9	7	521 2	2.47	2	8	4	8	422	.2	2	2	30	3.75 .	044	7	11	.63	24 .01	2	.90	.03	.18 1	2320
FX 479870	1	30	Ξ.	29	.3	12	6	466 2		ž	5	ND	9	311	.2	2	2		1.95 .		11	10	.71	225 .01	2	.88	.03	.19 1	93
FX 479871	li	22	- 4	36	.3	8	7	486 2		2	, Q	ND	10	250	.2	2	5		2.23		10	9	.65	46 .01			.04		31
			•				•			-	•				н, ^{та} н	-	-					•			_				
FX 479872	1	26	4	41	ૈંો	. 7	8	491 2	2.55	ź	5	NÐ	8	220	.3	2	2	37	1.65	052	14	7	.77	30 .01	2	1.03	.04	.17 2	29
FX 479873	2	25	2	28	5	11	_	518 2		2	5	ND	9	304	3	2	2		2.60		11	9	.60	21 .01	2		.04	.14	9
FX 479874		26	2	43	.2	8		706 2		3	5	ND	9	450	.3	2	2		3.62		12	-	.82	26 .01	2		.03	.14	76
FX 479875			2	71	1 A. 2010	11	11	997		2	5	ND	7	625		3	2		4.40		2		1.24	107 .02	. –	1.43	.03	.19	–
		41	_	28	-4	7				_	5												.54	2000 / Tr			.03	1000-000 T	
FX 479876	1	10	2	20	.6	(5	431 2		2	2	ND	_ 7	262	.2	2	2	40	2.18	U4Z	9	. (.24	46 .01	2	.02	.05	.16 1	62
		-	-	-		~	-						~	150		-	-				-	~		/	~	71	07		100
FX 479877	1	5	3	20	.7	9	5	474 2		2	5	ND	8	450	.2	2	2		3.14		7	9	.47	24 .01	2		.03	.16 1	190
FX 479878		17	4	25	.1	8	7	403 2		2	5	ND	9	445	ି . 2	4	3		2.01 .		10	6	.62	42 .01	2	.35	.03	.19 1	250
FX 479879	1	6	4	27	.2	6	6	538 2		2	9	ND	9	643	.2	2	2		3.41 .0		7	5	.91	29 .01	2	.27	.03	.16 1	
FX 479880	1.1	16	2	24	ું .2	10		378 2		2	8	ND	10	334	.2	4	2		1.72 .		9	9	.54	26 .01	2	.32	.03	.19 1	
FX 479881	4	7	2	33	.1	11	8	443 2	2.83 -	- 2	6	ND	9	359	.2	2	2	33	1.64 .	048	9	9	.72	30 .01	2	.38	.03	.20 1	46
a de la compañía de l																									_				
FX 479882	1	15	3	30	.4	9	6	420 2		2	5	ND	13	337	.2	2	2		2.41		7	5	.45	21 .01	2	.29	.03	.18 1	
FX 479883	2	13	5	39	. 1	6	8	518 2		2	5	ND	8	405	.2	2	2	29	2.17 .	042	6	8	.76	28 .01	2	.31	.03	.15	63
FX 479884	1	19	2	29	Q.4	7	8	404 2		2	6	ND	10	303	.2	2	2	30	1.43 .	042	10	7	.55	25 .01	2	.32	.03	.18 1	170
FX 479885	2	12	4	21	.3	9		433 2		2	5	ND	8	512	.2	2	2	24	2.27	037	9	9	.78	46 .01	2	.26	.04	.14 📰 1	80
FX 479886	2	60	9	52	2.6	4	11	558 3	.04	4	32	2	5	406	.2	3	2	35	1.88	068	4	6	.69	52 .01	2	.25	.02	.13 1	1380
FX 479887	1	5	11	29	4.2	6	3	237 1	-26	2	10	ND	11	198	.2	2	. 4	15	.58 .0	011	8	7	.23	15 .01	2	.15	.04	.08 1	540
FX 479888	1	7	14	20	2.0	7	1	123	.69	2	5	ND	11	33	.2	2	5	4	.10 .	006	15	6	.03	16 .01	2	.16	.05	.10	250
FX 479889	Ż	8	13			8	1	147	.72	6	7	ND	12	62	2	2	2	5	.17 .	005	13	7	.08	16 .01	2	.15	.05	.11 1	100
FX 479890	2	10	21		61.0	5	1	181	.72	2 Ž	Ś	2	13	36	.2	2	2	5		006	14	4	.08	16 .01	2	.17			5200
FX 479891	2	3	14		1.3	1	1	163	.61	2	5	ND	16	28	.2	ž	4	4	.06 .		16	3	.06	14 .01	3	.15	.06	.08 1	240
	- 1	-				•	•			- -	-					-	•	•				-			_				
FX 479892	3	1	15	24	1.9	3	1	129	.58	3	5	ND	16	31	.2	2	2	3	.08 .	009	14	6	.05	17 .01	2	. 16	.07	.08 1	110
FX 479893	2	ò	23		20.0	6	i	114	.60	2	5	ND	9	42	2	2	2	5	.13 .		8	6	.05	11 .01	2	.11	.04	.08	S
FX 479894	2	1	21		3.1	3	•	170	.63	2	5	ND	13	26	.3	2	2	5	.05 .		12	5	.06	17 .01	2	.17	.08	.08 1	
FX 479895		4	23		2.8	6	1		.74	÷ 2	5	ND	21	32	.2	2	2	6		009	15	5	.07	15 .01	4	.15	.06	.09 1	
	6	4	13		.2				.65	2	5	ND	13	26	.2	2	3	6		008	15	4	.07				.08	.07 1	
FX 479896	1	4	12	22	• 6	1	•	177	.02	4	2	NU	13	20	ंट	2	2	0	.00 .	000	12	4	.01	16 .01	2	. 10	.07	.0/ 1	45
PV (70007	-	,	~ /					167		-	-		40	. ,	(j	~	-	-	or ¹	000	10	~	~ ~		~			43	700
FX 479897	3	4	24		4.2	5			.71	् उ	5	ND	12		.2	2	2		.06 .		12	8	.06	12 .01		.15		.12 1	390
STANDARD C/AU-R	17	58	39	133	<u>87.1</u>	70	55	1064 3	.93	38	21	6	41	52	18.7	14	21	56	.48	040	39	58	.84	172 .09	- 51	1.89	.06	.15 .11	520

Page 3

ACHE ANALYTICAL																											ACKE ANALYTI	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Hn ppm		As ppm	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P % %	La ppm	Cr ppm	Mg %	Ba T ppm	i B 6 ppm	Al %	Na %	K W Au % ppm p	
FX 479898 FX 479899 FX 479900 FX 479901 FX 479902	1 1 1 2 2	5 6 1 6 2	16 12 10 8 16	23 18 24	2.0 4.6 5.5 5.2 1.1	4 6 5 5 6	1 1 1 1	204 134 107 110 152	-80 -60 -53 -59 -82	6 6 7 7 7	9 5 9 5 5	ND ND ND ND ND	11 10 9 11 15	36 26 36 27 37	.2 .2 .2 .2 .2	2 2 3 2 2	2 2 6 2 2	8 5 5 5 8	.09 .006 .05 .005 .11 .007 .08 .008 .07 .009	14 14 7 14 14	6 4 7 4 8	.09 .05 .04 .05 .06	16 .0 15 .0 12 .0 19 .0 16 .0	2 2 2	.15 .15 .12 .17 .15	.05 .05 .04 .07 .05	.09 1 4 .08 1 18	40
FX 479903 FX 479904 FX 479905 FX 479906 FX 479907	1 1 2 1 1	4 1 1 4 8	6 11 8 8 11	26 25 29 38 33	.3 2.5 32.0 8.3 2.1	7 1 3 7 5	2 1 1 2 1	157 138 158 206 169	-80 -74 -72 -83 -78	5 7 4 5	5 5 6 5	ND ND ND 2 ND	14 11 14 12 12	31 31 34 37 33	.2 .2 .2 .2 .2	2 2 3 2 2	2 3 2 4	8 10 10 11 8	.07 .009 .07 .006 .09 .007 .09 .007 .08 .007	17 17 15 17 16	5 5 3 8 5	.08 .07 .08 .10 .07	17 .0 19 .0 15 .0 16 .0 18 .0	2 2 2	.17 .17 .15 .15 .16	.07 .07 .06 .06 .07		60
FX 479908 FX 479909 FX 479910 FX 479911 FX 479912	1 1 2 1 1	1 1 6 6 6	42 16 25 15 12		3.1 .8 2.8 10.1 .7	4 6 8 3 2	1 1 2 1 1	305 1	.75 .11 .91 .77 .90	5 5 3 4 7	7 5 5 5 5	nd Nd Nd Nd	11 12 15 13 17	35 71 76 42 31	.2 .2 .2 .3 .2	2 2 3 2	2 2 2 2 2	8 15 14 12 11	.09 .004 .16 .008 .20 .011 .14 .013 .11 .005	14 17 16 16	4 6 7 4 5	.07 .16 .13 .08 .08	16 .0 15 .0 16 .0 18 .0 19 .0	2 2 4	.15 .16 .14 .16 .16	.05 .04 .05 .06 .07	.09 1 8	
FX 479913 FX 479914 FX 479915 FX 479916 FX 479917	1 2 1 1	4 7 5 4 6	47 10 11 10 9	38 37 43 36 33	9.0 2.5 1.3 .3 .2	3 7 4 4 7	1 1 2 1 1	179 168 317 212 202	.82 .79 .93 .73 .66	5 5 6 4	5 5 5 5 5	nd 4 Nd Nd Nd	11 18 15 12 13	30 44 77 59 57	.2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2	12 14 16 14 11	.11 .006 .16 .015 .31 .011 .24 .008 .46 .006	15 18 16 15 15	3 8 5 5 8	.08 .08 .13 .10 .07	16 .0' 17 .0' 18 .0' 18 .0' 18 .0' 17 .0'	3 2 2	.16 .17 .16 .15 .15	.06 .07 .06 .06 .07		00
FX 479918 FX 479919 FX 479920 FX 479921 FX 479922	1 1 1 15	3 4 5 5 4	8 10 6 34 50		.6 .4 .7 5.6 30.4	7 7 6 6	1 1 1 2	268 370 290 226 363 1	.68 .89 .77 .63 .02	4 2 3 5	5 5 5 5	nd Nd Nd Nd	15 15 16 16 14	66 71 52 57 72	.2 .2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 6	11 12 12 12 17	.81 .008 .98 .006 .57 .011 .47 .008 .68 .007	14 14 16 17 12	9 5 4 8	.06 .07 .07 .08 .11	16 .0' 14 .0' 17 .0' 16 .0' 14 .0'	2 2 2	.14 .14 .15 .15 .12	.06 .05 .06 .06 .03	.08 1 21 .08 1 3 .08 1 48	90 10 37 80 50
FX 479923 FX 479924 FX 479925 FX 479926 FX 479927	1 1 1 1	2 7 5 6 8	12 11 15 44 35	42 36 37 44 44	2.1 .4 3.0 1.0 .3	4 8 5 7 5	1 1 1 2	320 237 164 199 425 1	.86 .83 .75 .71 .14	3 5 2 4 3	5 5 5 5	ND ND ND ND ND	17 16 13 12 19	47 54 45 58 82	.2 .2 .2 .2	2 2 2 2 2	2 3 2 7 2	12 13 12 12 16	.49 .009 .61 .009 .35 .008 .72 .007 .76 .007	15 18 13 13 15	3 7 4 7 5	.09 .08 .07 .05 .09	15 .01 15 .01 16 .01 16 .01 16 .01	2 2 2	.15 .15 .14 .13 .15	.05 .06 .05 .05 .06	.10 1 8 .08 1 20 .09 2 22	60 84 60 20 52
FX 479928 FX 479929 FX 479930 FX 479931 FX 479932	1 1 1 1	5 9 6 2 7	11 9 19 12 11	35 47 36 36 39	1.9 .5 .5 .2 .3	5 3 5 4 3	1 2 1 1	483 1 306 341	.84 .07 .79 .77 .77	2 3 3 2 2	5 5 5 5 5	nd Nd Nd Nd Nd	15 16 13 13	66 101 71 80 83	.2 .2 .2 .2 .2	2 2 2 2 2	5 2 2 2 2		.75 .006 1.25 .007 .73 .007 .82 .004 .91 .007	14 14 13 14 15	5 5 8 5 4	.07 .09 .07 .09 .09	15 .01 16 .01 13 .01 15 .01 15 .01	3 2 2	. 14 . 15 . 13 . 14 . 14	.06 .05 .05 .06	.09 1 23 .08 2 17	70 45
FX 479933 Standard C/AU-R	1 18	4 62	13 38	39 132	.4 7.0	4 69		343 1054 3	.94 .95	2 37	5 15	ND 6	13 40	79 52 1	.2 8.7	2 15	2 17	12 57	.83 .003 .48 .089	13 40	4 58	.10 .88	15 .01 177 .09		.14 1.93	.05 .06	.10 2 27 .16 12 54	

La

FX 479951

FX 479952

FX 479953

FX 479954

STANDARD C/AU-R

1

2

2

2

18

1

2 13

1

2

57

8

13

13

35

40

35

41

36 132 7.3

.1

.3

.2

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2336 Page 4 ACHE ANALYTICAL ACHE ANALYTICAL SAMPLE# Pb Mo Cu Zn 🖉 Ag Ni Со Mn Fe As U. Th Cd Sb 8 i Ca P La Au Sr v Cr Ti W Au* Mg Ba В AL Na κ ppm ppm ppm ppm ppm ppm ۲. X ppm * · . XI ppm **ppm** ppm % ppm % % % ppm ppb FX 479934 2 2 13 43 .3 7 1 315 .78 2 97 11 .91 .006 5 ND 13 .2 2 2 13 6 .09 15 .01 2 .12 .04 .06 **1**3. - 78 FX 479935 12 31 ..7 6 2 12 1 1 1 332 .94 5 ND 99 .2 2 2 10 1.12 .007 13 4 .08 13 .01 2.14 .05 .05 1 270 FX 479936 2 11 38 .3 4 2 13 .2 1 1 385 .85 5 ND 91 2 2 11 1.00 .008 16 4 .08 17 .01 4 .14 .06 .08 1 69 FX 479937 9 38 3 2 .5 3 322 2 ND 15 .2 2 1 .83 6 84 2 11 .84 .008 16 4 .08 18 .01 6 .16 .06 .08 1 410 FX 479938 2 5 9 38 .5 7 1 308 .82 2 5 ND 13 83 .2 2 2 11 .86 .006 15 7 .08 15 2 .05 .08 2 280 .01 .14 FX 479939 9 34 .2 5 373 .99 2 1 2 1 5 ND 13 84 .2 2 2 11 .86 .006 16 4 .09 17 .01 7 .16 .06 .08 1 51 FX 479940 8 4 21 39 .9 3 1 490 1.26 2 5 ND 13 83 .2 2 2 13 .99 .004 17 5 .12 2 .17 .05 1 110 16 .01 .07 5 5 2 13 74 .2 FX 479941 1 12 39 .5 1 362 1.00 5 ND 2 3 12 .84 .009 14 4 .09 16 .01 2 .15 .05 .08 10 - 97 FX 479942 2 5 10 31 .8 5 380 2 5 ND 13 120 .2 2 2 10 1.59 .006 13 1 .74 12 6 .07 .01 2 .13 .05 .07 2 110 2 FX 479943 1 5 9 33 .3 4 267 .72 5 ND 14 61 .2 2 2 10 .68 .009 15 4 .07 14 .01 2.14 .05 1 .09 1 38 FX 479944 2 2 5 2 5 9 .2 2 12 .97 .007 .08 .01 2.15 4 16 36 .5 1 328 .82 ND 81 10 6 14 .05 .08 1 140 FX 479945 2 3 12 38 6 350 2 5 ND 83 .2 2 2 13 15 .09 14 2 .13 .05 .07 31 .4 1 .89 11 .98 .006 4 .01 1 7 2 .2 FX 479946 2 17 37 .3 333 .81 5 ND 11 83 2 2 12 .89 .007 14 8 .09 15 .01 2.14 .05 .07 1 57 1 1 2 .2 .12 15 FX 479947 23 37 .3 4 1 379 .92 5 ND 10 108 2 2 18 1.06 .007 12 4 .01 3.16 .04 .07 1 24 1 1 2 .2 19 .2 5 7 145 2 5 10 2 .03 1 32 17 330 .55 ND 3 8 1.72 .001 6 .04 .01 .12 .05 FX 479948 1 5 4 1 10 1.06 .006 3 .12 .05 .06 1 49 FX 479949 35 2 97 .2 2 3 13 3.07 12 .01 1 1 16 ..2 2 1 360 .73 5 ND 11 FX 479950 2 17 41 .3 1 365 .78 2 5 ND 11 80 .2 2 2 11 .94 .006 14 6 .08 13 .01 2 .12 .05 .06 1 220 4 4

.2

.2

.2

.2

52 18.9

2

2

2

2

15

3

2

2

2

20

10 1.05 .008

16 1.22 .004

11 1.49 .007

14 1.25 .008

57 .47 .088

.07

.09

58 .84

4 .13

5

6 .07

6

15

13

14

13

38

13 .01

12

14

14

175

.01

.01

.01

.09

2 .14 .05

2

2 .16

34 1.92

.16

2 .14 .04

-04

.05

.06

.08

.06

.09

.06

.16

1 28

1

12.

1 21

11 490

21

11

2

3

3

3

39

5 ND

5 ND

5 ND

5

18

ND

6 40

12 105

10 136

12 119

14 124

.76

. 89

372 1.19

1 378 1.01

32 1040 3.92

2

4

6

3

71

1 333

1

ACME ANA	TICA!	G LA	BOR	ATOP	RIES	LTD	•	8	52 E	5. HA	stii	NGS	8T .	Y	COU	VER	B.C.	v	5A 1	.R6	1	PHON	E(60	04)2	53-3	158	FA	K (1)25	3-1	716
AA									G	EOCI	(EM)		l Ai	NAL	Y8I	8 CI	ERT]	FI	Cat	e										A /	
TT		Ŀ	nco	Ex	<u>pl.</u>	<u>&</u>				vice urrard											# 91 Bohmi		390		Page	e 1					
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	10000000000	Ni ppm	Co ppn	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca X	P X		Cr ppm	Mg X	8a ppm	Ti X	8 ppm	Al X	Na %	к Х	V ppn	Au* ppb
FX 479955 FX 479956 FX 479957 FX 479958 FX 479958 FX 479959	1 1 1 1	12 11 25 15 8	10 5 3 3 2	42 27 36 41 38	.3	14 8 9 8 8	9 9 9 9 10	549 624 630	3.66 3.72 3.76 3.79 4.11	5 2 2 2 4	5 5 5 5 5	ND ND ND ND	5 5 6 6	110 127 183 242 208	.5 .2 .6 .9 1.3	2 2 2 2 2 2 2	222222	76 76 78	2.95 3.43 3.69	.084 .084 .079 .084 .090	8 8 10 9	15 17 20	1.47 1.32 1.43 1.49 1.45	45 45 60 44	.15 .15 .17 .18 .19	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.68 1.84 1.97 2.39 2.36	. 10 . 09 . 13	.12 .17 .18 .24 .14		11 6 6 4 3
FX 479960 FX 479961 FX 479962 FX 479963 FX 479964	1 1 1 1	10 10 11 46 19	2 5 4 3 5	33 35 37 37 36	.3 .2 .2 .2 .2	9 7 8 9 8	9 9 9 9	600 496 494	3.73 3.59 3.73 3.40 3.60	32424	5 5 5 5 5	ND ND ND ND	455 545	187 286 121 154 166	.8 .9 .7 .5 1.0	2	222222	82 86 74	4.43 2.17 3.35	-089 -085 -090 -082 -080	6 8 4 7 6	16 17 11	1.23 1.23 1.21 1.41 1.49	52 52 53 34 34	.18 .16 .15 .12 .13	2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1.72 1.78 1.60 1.64 1.84	. 13	.13 .17 .14 .13 .11	11111	4 4 1 2 1
FX 479965 FX 479966 FX 479967 FX 479968 FX 479969	1 1 1 1	11 9 75 22 14	8 4 5 4 7	31 26 29 26 19		8 8 7 8 11	8 6 5 5	421 325 344	3.11 2.95 2.64 3.69 2.89	3 2 3 4 3	5 5 5 5 5	ND ND ND ND	4 6 6 8	213 245 196 207 205	.9 1.3 1.1 .9 .9	2	2 2 2 2 2	69 69 68	4.56 3.31 3.78	.075 .077 .087 .081 .079	7 7 6 3 8	15 16 14	1.35 1.41 1.21 1.46 1.62	37 31 52 33 33	.13 .13 .15 .12 .08	3 3 2	1.70 1.66 1.49 1.67 1.70	.06 .12 .06	.15 .11 .10 .10 .10 .12	11111	4 3 2 2
FX 479970 FX 479971 FX 479972 FX 479973 FX 479974	1 1 1 1	12 7 8 7 23	6 2 5 3	30 29 30 31 36	.1 .1 .1 .1	9 9 11 9 9	7 7 9 8 8	460 555 558	3.45 3.22 3.63 3.40 3.59	2 2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	6544 4	181 193 198 170 172	.2 .2 .3 .3 .6	222	2 2 2 2 2 2	66 79 72	3.68 3.57 3.23	.083 .082 .088 .088 .081 .074	6 8 9 7 9	14 16 17	1.48 1.38 1.38 1.30 1.51	35 33 39 37 31	.10 .07 .09 .07 .03	2 2 2	1.74 1.66 1.62 1.58 1.78	.08 .06 .07 .08 .05	.11 .14 .12 .13 .15	1111	1 1 1 2 1
FX 479975 FX 479976 FX 479977 FX 479978 FX 479978 FX 479979	1 1 1 1	20 8 25 36	5 3 4 6 4	33 38 32 47 46	.5	12 9 10 9 7	9 8 8 9 10	542 517 609	3.26 3.26 3.30 4.13 3.67	2 2 2 3 5	5 5 5 5 5	nd Nd Nd Nd	5 5 5 8 4	140 168 164 342 237	.3 .2 .5	2 2 2	2 2 2 2 2 2 2	63 68 95	3.43 2.92 5.56	.074 .078 .080 .077 .051	8 10 8 5 6	15 24 19	1.34 1.39 1.44 1.75 1.12	32 32 34	.05 .02	2 2 2	1.55 1.60 1.62 1.90 1.50		.13 .12 .11 .08 .17	1 1 1 1 1 1 1	2 4 1 200 750
FX 479980 FX 479981 FX 479982 FX 479983 FX 479984	3 3 2 2 1	20 76 62 30 28	4 7 2 6 7	29 59 47 54 40		6 9 6 7 10	7 8 7 9 11	568 540 702	2.54 3.11 2.67 3.21 3.41	3 3 2 2 2 2	5 11 5 5 5	4 ND ND ND	4 4 5 6 5	460 161 160 169 145	1.0 .6 1.0	2 2 2	2 2 2 2 2 2	22 21 27	3.91 4.27 4.38	.029 .062 .060 .057 .071	24 13 13 13 10	8 11 12 11 15	.50 .64 .54 .81 1.08	17	.01	232	.83 1.23 1.24 1.37 1.38	.01 .01 .03 .03 .05	.15 .27 .29 .25 .20	12111	660 200 30 16 5
FX 479985 FX 479986 FX 479987 FX 479988 FX 479988 FX 479989	1 1 1 1	17 24 37 19 27	5 5 4 3 6	46 39 49 45 31	.6 .3			621 672 584	3.55 3.26 3.96 3.24 2.55	2 5 2 2 2 2	5 5 5 5 5	ND ND ND ND	4 4 5 7	146 250 147 132 189	.2 .6 .8	2 2 2	2 2 2 2 2	45 66 53	4.16 2.20 2.30	.070 .064 .077 .066 .048	10 11	12 17 13	1.08 .83 1.33 1.10 .83	25 39 31	.01 .01	2 2 2	1.49 1.27 1.75 1.50 1.19	.05 .05	.20 .15 .16	1 1 1 1 1	10 3 290 11 50
FX 479990 STANDARD C/AU-R	1 18	15 59	3 37	37 133	.4 7.6	8 70			3.02 3.96		5 20	ND 7	5 39		.7 17.6		2 21			.059 .087			.94 .89		.01 .09		1.31 1.88			1 12	77 530
		THIS	LEAC	HIS		AL FO	DR MN	FE SI	R CA	H 3ML P LA C Y Acid	R MG	BA TI	BW	AND	LIMITI	ED FOR															
DATE RECI	EIVEI	D:	JUL S	9 199	1 D	ATE	REPC	ORT	MAI	LED :	Ji	rly	12	91.	SI	gned) вч.	· · :	<u> </u>		.D.TO	YE, C	LEON	4G, J.	.WANG;	CERT	IFIED	8.C.	ASSAY	ERS	

AAA ACHE ANALYYICAL

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2390

Page 2

ACHE ANALYTICAL

	·····																												CHE ANALYTE	CAL
SAMPLE#	Mo PPM	Cu IPPM	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	·	As pm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	1210122-000	La ppm	Cr ppm	Mg X	Ba Ti ppm X	B ppm	AL X	Na X	K X	W Au ppm pp	u*. pb
FX 479991		15	5	52			44	695	7 50		F			407		-	•					47								-
			-			8				2	5	ND	5	183	.6	2	2			.077	9		1.13	28 .04		1.48	.05	.14		6
FX 479992	1	42	6	54	.3	9	11	650		2	5	ND	- 4	128	.4	2	2			2075	8	15	1.24	33 .08		1.46	.06	.13 §		1 .
FX 479993	1	27	2	53	.2	10	10	665	3.60 📖	2	5	ND	- 4	132	1.3	2	2	84	1.82	.078	6	19	1.24	44 317	2	1.42	.09	.14	888 t	1.
FX 479994	1	33	3	53	.2	8	11	706	3.53 🛞	2	5	ND	5	152	1.2	2	2	82	2.05	.077	6	17	1.20	41 .17	2	1.36	.08	. 12 🖁		1
FX 479995	1	97	2	64	.3	10	15	729	3.93	3	5	ND	3	139	.6	2	2			.083	8		1.30	41 .17		1.54	.08	.10	1	3
FX 479996	1	31	7	59	.2	10	11	733	3.53	2	5	ND	5	153	1.0	2	2	83	2.29	.081	6	19	1.23	40 .17	2	1.40	.08	. 13	• •	1
FX 479997	1	39	2	54	.2	8	11	670	3.62 🕷	2	5	ND	4	140	1.4	2	2		1.81		6		1.23	43 .18		1.41	.08	.12		1
FX 479998	1	58	5	56		9	11	741	3.72	2	5	ND	4	164	1.8	ž	2			.075	7		1.28	39 .16		1.43	.07	.10		. 1
FX 479999	1	35	3	52	2222-7.772	ġ	11	694		2	ŝ	ND	3	138	1.2	ž	2		1.81		6		1.25	69 .17		1.42	.10	.16		÷ .
FX 480000	1	58	2	56		8	13	815		2	5	ND	3	187	.6	2	2			.079	10		1.28	25 .02		1.51	.05	.13		12
			-								_						-													
FX 483756		33	3	59		8		818		2	5	ND	4	182	.4	5	2			.076	11		1.35	39 .01		1.68	.05	.15		11
FX 483757	1	74	2	63	.4	9	13	931		3	5	ND	7	202	1.1	2	2			.080	13	13	1.31	25 .01		1.67	.04	. 13 🛔		8
FX 483758	1	33	- 4	- 59	.3	8	12	850	3.73 🏼	2	5	ND	4	169	1.2	2	2	62	2.86	.076	12	15	1.27	27 .01	2	1.63	.04	. 14 🖁		9
FX 483759	1	25	4	59		8	12	807	3.82 🚿	2	5	ND	3	142	.6	2	2	68	2.27	.079	11	13	1.26	26 .02	2	1.58	.05	.13 🖁		4
FX 483760	1	18	5	58		9	12	875	3.83	2	5	ND	3	156	.9	2	2			.077	11		1.26	64 .02		1.61	.05	.14	1	4
FX 483761	1	35	2	57	.1	8	12	870	3 05	2	5	ND	2	162	1.0	2	2	75	2 24	.077	10	12	1.28	32 .04	2	1.59	.06	.15	4	1
FX 483762		33	7	56		8	12	780		2	5	ND	7	164	.6	Ž	2			.079	7		1.22	76 .12	_	1.49	.10	.21		3
						_				1. J. T. S.	-					_	-													
FX 483763		43		62		. 9		918		2	5	ND	2	265	.6	2	2			.088	11		1.30	48 .03	-	1.70	.07	.17		2
FX 483764	1	121	2	72		12		1219		2	5	ND	3	594	1.0	2	2			,100	12		1.33	35 .01		1.87	.03	.22		5
FX 483765	1	107	2	71	.3	11	15	983	4.66	3	5	ND	2	357	1.4	2	2	85	3.66	.105	13	17	1.41	31 .01	2	1.99	.05	.21		2
FX 483766	1	23	4	62	.3	9	13	972	3.90 🐰	2	5	ND	4	421	1.3	2	2	63	4.21	-083	11	14	1.28	110 .01	2	1.75	.04	.22		8
FX 483767	1	57	4	60		7	13	883		2	5	ND	3	329	.5	2	2			.085	9		1.12	139 .01	2	1.60	,04	.18	SS 1 1	70
FX 483768	1	35	ż	60		7	11	859		3	5	ND	ž	343	.9	2	2			.071	10		1.24	45 .01		1.54	.04	.16		51
FX 483769			1	58		-		898		8-18 - I	5	•	2		.7		2			- 10 - 10 - 200				35 .01			.04	.21	3335555555	37
		27				8	10			8.58	-	ND	•	486		2	_			.076	11		.95			1.30			00000000000	-
FX 483770	1	36	2	62	.3	. 8	12	897	3.72	2	5	ND	5	461	1.3	2	2	59	5.47	.080	13	12	1.09	28 .01	2	1.49	.04	.23		19
FX 483771	1	7	6	24	.2	5	5	465	1.68	2	6	ND	13	321	.2	2	2	18	3.88	.021	10	7	.50	41 .01	2	.74	.03	.13	1	4
FX 483772	1	22	2	56	3	9	11	888	3.97 🛞	4	5	ND	4	392	.7	2	2	55	3.86	.077	12	13	1.05	53 .01	2	1.30	.03	.19		1
FX 483773	1	16	2	51	.2	7	11	897	3 58	.	5	ND	4	570	1.1		2	48	4.31	.071	13	ġ.	1.01	30 .01	2	1.11	.03	.21	88 f	1
FX 483774		38	7	50		8	11	934	0000	3	5	ND	3	629	. 8	2	- Ž			072	13		1.06	46 .01		1.17	.04	.25	1	22
			2			_	• •			ee 1769.	5		-			2	2							111 Rep. 1997	-		.05	.18		6.
FX 483775	1	36	2	55	.3	9	12	831	3.07	2	2	ND	4	364	.6	2	2	04	3.00	.076	10	12	1.09	35 .01	2	1.42	.05	. 10	1	0.
FX 483776	1	16	5	54	.2	7	10	940	2022	2	5	ND	4	619	.7		2			.069	9		1.04	33 .01	2	.78	.03	.19	*********	90
FX 483777	1	30	5	49	.2	6	11	811		2	5	ND	5	486	.6	2	2			.076	. 9	11	.78	24 .01	2	.59	.03	.21	MARCAR (1997)	17
FX 483778	1	14	5	58	3	8	11	932	3.85 🚿	2	40	ND	4	528	.5	2	2	42	3.83	.077	9	13	.77	29 .01	2	.55	.03	.22 🕺		14
FX 483779	3	3	9	44		4	3	581		2	65	ND	6	302	.2		2			.021	15	7	.42	155 .01	2	.28	.03	. 16		26
FX 483780	1	3	14	46		6	1	281	.97	2	29	ND	16	290	2		2			005	10	7	.15	14 .01		.18	.02	.13		60
TO TO TO P	•	3	14	40	7.4	0	1	601	•71		67	AU	10	£70		£	2	U	767		10		• 12	· • • • • • •	£	. 10		••••		
FX 483781	2	3	9	35		7	1	290		3	7	DN	19	119	2		2	6		.006	18	8	.09	16 .01	_	.16	.04	.09		50
STANDARD C/AU-R	18_	59	40	132	7.5	71	51	1044	J.Y7 🎡	37	22	8	40	52	17.6	15	22	55	.48	-090	37		.89	177 .09	_ 57	1.89	.07	.15	12 5	IV.

01401 F#		-	- 1		Second												·····			·								ACHE A	MALTTICAL
SAMPLE#	Мо	Cu	Pb	Zn	A8	Ni	Co	Mn	Fe 🕴	As	U	Au	Th	Sr 🕺	Cd	Sb	Bi	V	Ca 🎆	ΡL	8	Cr M		Ba 🛛 T i	8	AL	Na	K	Au*
L	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7 📖	X pp				pm 🕺 🗶	ppm	X	X		
																	P.C	FFin		<u>- PP</u>	- P		- P	<u>ት። «</u>	Phu			X ppn	n ppb
FX 483782	1	3	8	27	.6	4	1	272	1.ດດ 🖁	2	8	ND	19	81	.2	2	2	6	.64 .00	8 1		8.0			_				& * !
FX 483783	1	3	11	31	3	6	. i	221			ğ	ND	27	50		-	_	-		- 100 C	-			13 .01	2	.20	.04		2 1
FX 483784	Ż	2	17	33		8	1		X		-				.2	2	2	7	.17 .DC	20 1	-	7.0	-	16 .01	2	.17	.06	.10	2
FX 483785						-		164	.92	3	7	ND	17	28	.2	2	2	6	.07 .00	8 1	8	9 .0	3	16 .01	- 3	.17	.07	. 10 🔆 🛃	2.6
		3	18	38	3 5	4	1	129	.84	3	5	ND	20	28 🖇	3	2	2	4	.07 .00	7 1	8	6 .0	3	18 .01	3	.17	.07	.11 🚟	81
FX 483786	1	- 3	16	36	3	6	1	257	1.29 🖇	3	7	NĎ	47	61 🖇	.2	2	2	9	.17 .00	6 1	9	6 .0		14 .01	2	.18	.06	.11	1
																		-			•		•		-			•••	
FX 483787	2	- 4	11	32	.6	8	1	155	1.03 🕴	3	6	ND	40	51	.2	2	2	6	.18 .00	78 1	7	9.0	=	15 .01	•	.15	.06		8. aaa
FX 483788	1	3	8	20		5	1	199		2	6	ND	27	59	2	2	2	6		- 19 A					2				2 210
FX 483789	1	Ā	15	72	2.4	7	3	735			50	•••=						-	.19 .00		-	7 .0		14 .01	2	.17	.05	.11	2
FX 483790	3	Š					-		8	2		ND	.27	96	.2	2	2	8	.16 .00		-	6.1		13 .01	2	.21	.02	.13 💓 1	B 1
	2		10	47	1.3	10	2	560		2	45	ND	22	112 🛔	.2 .2	2	2	9	.29 .00	8 1	8	10 .1	1	14 .01	2	.23	.03	. 14 🔍 1	2
FX 483791	1	4	14	28		5	2	217	.99	2	5	ND	17	42 🕺	.2	2	2	8	.15 .01	18 1	6	9 .0	5	21 .01	3	.21	.07	.10	210
	1								200 X					8						×									§ -:-
FX 483792	1	- 4	13	35	3	6	1	201	1.08 🖇	2	5	ND	18	36	.2	2	2	7	.11 .00	9 1	7	7.04	6	20 .01	2	. 19	.08	.10	2
FX 483793	2	2	16	38	3	8	1	242		3	7	ND	21	45	2	2	2	8	.25 .00			10 .04	-	18 .01				1 5000003	52 -
FX 483794	1	6	2	32	2	7	ġ	608 3		2	5	ND	6	179			5	-		553	2				2	.17	.07	.10	2 110
FX 483795		, 9	2	27			•				-		-		.3	2	2	75 4		000	(9 1.2		26 .06		1.57	.06	.08 🔬 1	2
		-			.2	7	9	580		2	5	ND	6	154	.8	2	2	65 3				10 1.2		27 .06	2 '	1.58	.04	.12 🔅 1	K 1
FX 483796		10	2	28	.1	9	8	574 3	3.39 §	2	5	ND	6	196	1.4	2	2	68 3	5.41 .07	9	6	14 1.0	B (36 10	2	1.63	.07	.14 📖	2
									3					8						<u> </u>									
FX 483797	1	7	3	30	.2	6	8	571 3	3.35 🖗	2	5	ND	5	189 🖁	.6	2	2	63.3	5.49 .07	Ř I	7	9 1.2	n :	25 .06	2	1.57	.05	.13	i 10
FX 483798	.1	6	2	30	.3	7	8	593		2	5	ND	6	X	1.0	2	2		5.43 07	.46	0	10 1.2		29 07		1.56	.06	555 Sec. 19	8 '
FX 483799	1	õ	2	33	.2	8	8	573 3	**	5	5	ND	ŭ	163	ġ		_											.10	8 1 1
FX 483800	1	44	Ž	34	.2	7	-				-		•			2	2		3.12 .07			12 1.13		26 .08		1.48	.05	.09	3
FX 483801						-	11	526 3		2	5	ND	3		1.0	2	2		2.46 .07			12 1.23		29 .08		1.52	.07	.09 🔆 1	21
FA 403001	2	138	2	38	.8	7	17	506 3	5.65 💡	2	5	ND	4	213	.8	2	2	52 4	.26 .07	9 1	0	8 1.23	5	28 .02	2	1.55	.04	.14 📖 1	2
	_													- 8						×									ž I
FX 483802	1	39	2	- 36	.2	9	12	481 3	5.95	2	5	ND	- 4	130 💈	.8	2	2	67 3	5.15 .07	8 1	1	14 1.40	5	30 .01	2	1.77	.04	. 15 1	ê 7
FX 483803	1	6	2	26	1	7	7	410 3	5.07 🖗	2	5	ND	4	172	.2	2	2		5.20 .07			11 1.2		26 01		1.50	.04	.13	2
FX 483804	1	7	2	22	.2	7	6	360 2	2 80	2	5	ND	5	211	3	ž	2		5.59 07	- XX	9	6 1.0		33 .01		1.41	.04	.15	
FX 483805	1	34	3	21	.5	7	7	386 2		2	Ś	ND	4	378	.3		2		5.005	262	•			200030					52 T
FX 483806	4	60	ž	24	.3	-							-			2	-		5.06 .06	600 T		13 .9		25 .01		1.62	.04	.15	li 1 <u>1</u>
FA 403000	1	00	۲	24	. .	7	10	334 2	2.78	2	5	ND	3	202	1.0	2	2	48 3	5.46 .07	58 '	9	10 1.0	5	25 01	2 '	1.43	.03	.15	3
		-	-			_	-		&					i i i i i i i i i i i i i i i i i i i						8									2
FX 483807	1	8	2	24		7	6	357 2	2.90 🖉	2	5	ND	4	167 🛞	.7	2	2	57 3	1.29 07	3 (8 '	10 1.0	7 3	27 .03	2 '	1.36	.04	.12	6 5
FX 483808	1	9	2	26	.2	10	7	387 3	5.08 🖇	2	5	ND	4	144 🕺	1.1	2	2	67 2	2.70 07	9	7	17 1.10	0	30 10	2	1.42	.06	.09	
FX 483809	1	9	2	31	.2	8	7	507 3	5.20 🖔	2	5	ND	4	135	.9	Ž	2		2.65 .07		-	15 1.29		28 .11		1.54	.06	.08	ê î l
FX 483810	1	37	3	35	.2	7	8	461 3		2	5	ND	4	132	5	2	2		2.43 07			12 1.23		35 .13		1.47	.08	.11	10
FX 483811	i	18	3	33	2	7	7	480 3			ś	ND	5				2												
	•	10	5	22		'		400 2	.uz 🕺	2	2	NU	2	129	1.5	2	2	04 2	2.23 .07		5	12 1.0		27 .11	2	1.35	.06	.08 📖	§ >
			_			-	-		Š		-			. 8					883										Å.
FX 483812	1	10	- 3	28	.2	8		444 2		2	5	ND	6	189 🕺	.6	2	2	573	.82 .07	58 (5 ⁻	15 1.27	7 3	26 .01	2 '	1.53	.04	. 13 📖 1	li 2
FX 483813	1	60	2	33	.3	9	8	439 2	2.93 🖉	2	5	ND	6	217 🕺	1.2	2	2	52 3	1.50 08	18 9		14 1.28		26 .01		1.52	.03	.12	3
FX 483814	1	21	5	31	.2	10		432 3		2	5	ND	4	163	.8	Ž	2		.05 .07			16 1.29		27 .01		1.49	.04	.13	8 i
FX 483815	1	10	Ž	31		8		495 3		2	Ś	ND	4	126	8	2	2		17 07			12 1.30		20 .01					
FX 483816	1	21	ž	29		8		472 3		2	5		•	132	5		_									1.55	.04	.11 1	
17 405010	1	6. I	2	27		0	0	412 3		6	2	ND	3	122 🕺		2	2	20 2	.82 .06	8 10	J .	12 1.10)	26 .01	Z 1	1.46	.04	.14 📰 1	2
	-		-			_		·												×.									ž –
FX 483817	1	38	2	31	.2	9		528 2		2	5	ND	- 3	189 🖉	.4	2	2	54 4	.18 .06	5 10	י נ	14 1.04	1	21 .01	2 1	1.34	.04	. 14 🔆 1	2
STANDARD C/AU-R	18	60	37	131	7.3	70	31 1	034 3	5.93 🖗	38	18	8	38	52 🖠	7.5	15	21	54	.48 .08	2 30		56 .88		75 .09	-		.06	2002000	s – I
					and a second second second						•				007.WC					× .								- 1 - 30016	

Page 4

/	ACHE AMALYTICAL

																												*	WE ANALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe 🎆	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	La	Cr	Mg	Ba 🖉 Ti	B	AL	Na	K	W Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	× 8	pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	×.	ppm 🔆 🕺	ppm	*	2	X 8	ppm ppb
											<u>.</u>														<u>.</u>			X	
FX 483818		20	4	- 39			10	528		6	5	ND	6	119	.2	2	2			.073	13		1.18	29 .01		1.42	.04	. 14 🖉	1 1
FX 483819	2	55	- 4	41	.2	11		476		7	5	ND	6	100	.2	3	2	51	3.19	.069	11	15	1.12	29 .01		1.40	.04	. 15 🕺	1 1
FX 483820	1	19	5	40	** 1	10	7	552		6	5	ND	6	259		2	2	49	5.03	.063	11	15	1.08	31 .01	2	1.39	.03	. 15 🛞	4 1
FX 483821	1	34	5	35	331	7	11	533	2.91 💹	7	5	ND	6	210	.2	2	2	55	3.95	.065	10	13	1.03	26 .01	3	1.34	.04	.14	1 4
FX 483822	1	18	5	78	.2	10	11	564	3.37 🛞	7	5	ND	7	136	.3	2	2	69	2.72	.074	11	15	1.14	44 .03	6	1.40	.07	.12	1
	1) – – – – – – – – – – – – – – – – – – –			X	
FX 483823	1	48	2	32	.4	7	10	536	2.92 💹	6	5	ND	6	216	.2	2	2	51	4.04	.069	11	15	1.10	42 .01	5	1.31	.04	.14 🖁	1 · 3
FX 483824	1	30	13	39		7	9	474		7	5	ND	5	200	3	Ž	2			.061	10		1.13	29 .01		1.30	.04	.13	1 3
FX 483825	Ż	37	2	44	2.3	6		618		12	5	ND	7	392	2	2	ž			.064	5		1.27	23 .01		1.56	.01	.12	1 190
FX 483826	3	18	7		20.000	12	7		2000	5	7	2	2	430	.2	2	2			.028	ž	13	.50	TI 386-83		.75	.01	.12	1 3730
FX 483827	3	34	2	39	4.5	9			202	8	Ś	3	7				2												2009-0-0-0-0-
FX 403027	2	34	۲	37		y	12	413	∍. ∪o ⊗	•	2	2	4	206	.2	2	2	29	2.79	.040	12	10	.70	25 .01	. J	1.00	.02	. 18	1 3490
rv /07030	<u> </u>	10	,	76		40	40	/01	- oz 🐰	-	F			440		~	-	15	2 02	AL A	45		86	34	÷		~		4 70
FX 483828	2	19	4	35	.3	10	10	481		<u>_</u>	5	ND	10	118	.2 .2	2	4			.054	15	16	.80	26 .01	X 7	1.14	.04	.18	1 28
FX 483829	2	14	2	31	1.8	9	10	554		4	5	2	8	120		2	2			.053	14	14	.81	22 .01		1.10	.04	.15	1 1550
FX 483830	2	26	2	41	2.6	9	10	520	200	3	5	2	7	209	. 2	2	2			.054	14	- 14	.82	22 .01		1.15	.03	.15 🖁	1 1920
FX 483831	1	24	- 4	- 34	.4	10	13	580		4	5	ND	8	141	.4	2	2			.062	14	14	.91	26 .01		1.27	.04	.15 💈	1 60
FX 483832	1	15	2	- 34	.4	10	12	601	3.36 💹	4	5	ND	8	131	,2	2	· 2	55	2.61	.065	16	14	.93	29 .01	2	1.33	.04	.15 🕺	1 36
																									8 8			ž	
FX 483833	2	8	4	34	.2	7	·11	638	3.17 🐰	6	5	ND	9	153	.2	2	2	52	3.02	-062	16	14	.90	28 .01	§ 2	1.35	.04	.16 💈	1 75
FX 483834	2	17	2	38		12	11	606	3.32 🖗	5	5	ND	8	223	.4	2	2	50	3.57	.056	14	15	.86	27 .01	2	1.35	.04	. 15 🖇	1 32
FX 483835	2	49	4	33	1.3	8	13	565	2.82 🖄	7	5	ND	7	247	.2	2	2			.051	13	12	.71	24 .01	84	1.12	.03	. 16 🖁	180
FX 483836	1	14	ż	37		7	11	564		6	5	ND	8	139	2	Ž	3			.062	13		1.07	26 .01		1.47	.03	. 19	1 12
FX 483837	Ż	16	5	43		8	13	639		6	5	ND	ŏ	134	3	2	2		-	.067	14	14	.98	29 01	÷-	1.41	.04	.17	1 3
TA 40J0J1	-	10	2					037	J.L7 💥			10	,	134		~		22	L.93		14	14	.,,		š –			•••	
FX 483838	2	23	6	45	.2	8	12	616	t 12 🖗	4	5	ND	8	145	.3	2	2	46	2 42	.060	14	13	.88	25 .01	2	1.26	.03	. 19	1 32
FX 483839	2	11	,	40		9	12	592	2000		5	ND	8	120		ž	5			.062	13	14	.93	32 .03		1.25	.05	.14	1 3
	4		4 7							4	-		6		.2		2			.059	12	15	.93	29 102		1.24	.05	.13	1 6
FX 483840	1 1	15		38		9	12	577		2	5	ND	-	142		2													1 5
FX 483841	3	20	2	34		10	11	566		5	5	ND	8	123	•4	2	2			.057	13	13	.89	31 .03		1.20	.05	.14	2000020
FX 483842	4	35	5	37	.2	10	11	635	3.02 🛞	3	5	ND	8	198	.2	2	2	50	5.67	.055	13	14	.87	26 .01	6	1.22	.05	. 15	1 10
			-			-			🐰		-			40-	i i i i i i i i i i i i i i i i i i i	~					47	47	•			4 37	0F	49	
FX 483843	1	16	5	34		7	11	565		5	5	ND	10	127	.2	2	2			.057	13	13	.94	29 .03		1.23	.05	.13	
FX 483844	2	47	2	40	.4	6	12	519		5	5	ND	8	115	.2		2		2.01	- 10 March 1	13	13	.89	26 .01		1.21	.04	. 15	5
FX 483845	2	33.	- 3	- 31	.2	10	9	498	2.48 🛞	4	5	ND	7	187	.2	2	2		2.60		13	12	.73	21 .01		.99	.04	.14	1 4
FX 483846	1	25	2	- 36	S. P	7	11	601	3.00 💹	3	5	ND	4	178	.2	2	2	48	2.86	.057	12	12	.88	27 .01		1.23	.04	. 14 🕴	1 16
FX 483847	1	18	2	40	.2	7	13	757	3.67 🛞	2	5	ND	5	219	.3	2	2	54	4.29	.064	12	13	.94	22 .01	2	1.39	.04	. 16	4
																									8				
FX 483848	1	30	3	43		6	11	915	3.10 🖉	2	5	ND	7	189	.2	2	2	44	5.08	.057	11	11	1.32	16 .01	2	1.65	.03	.16	1 1
FX 483849	2	23	6	35	2	6	ġ	925		4	5	ND	8	250	.2	2	2			.049	10	11	.80	24 .01		1.25	.02	.21	1 6
FX 483850	2	42	2	46		ğ	13	759		7	5	ND	4	221	.ž		2			.061	11	12		27 0	··• —	1.32	.03	.19	1 17
											5		5		.2	ź	2			.064	13		1.06	19 .01		1.45	.04	.17	1 3
FX 483851		42	2	48	.2	10	15	757		5		ND	-	174			2												1 3
FX 483852	1	66	2	52		8	15	767	J.43 🛞	4	5	ND	6	171	.2	3	2	22	3.40	.066	14	13	1.20	21 .01	8 2	1.56	.04	. 15	J
						~			🤉		-		-				_		• • •		47	40					~		
FX 483853	2	54	Z	45		. 9		644		2	5	ND	5	162		_	2			2060	13		1.06	20 .0		1.43	.04	.17	1 3
STANDARD C/AU-R	19	60	43	132	7.4	71	32	1074	3.89	38	15	7	41	53	18.9	15	20	58	.48	-089	40	57	.87	174 .09	§ 33	1.85	.06	<u>.15 §</u>	12 520

THE ANALYTICA

Inco Expl. & Tech. Services PROJECT 60513-82010 FILE # 91-2390 Page 5

44

ACHE ANALYTICAL

					20000000														· · · ·									_
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	-U	Au	Th	Sr	Cd	Sb	Bi	V	Ca 🎯 f	🕴 La	Cr	Mg	Ba 🖉 🏌 🚺	8	AL	Na	- K 🖗	N Au*	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	* 😒	ppm	ppm	X	ppm 🕺 🕷	ppm	*	X	- X 🕅	ppm ppb	- 1
																			8									-
FX 483854	1	40	2	- 59	.2	7	13	644	3.31 2	5	ND	3	109	8.7	2	2	52 2	2.19 .06	9	11	1.06	25 .01	2 1	1.41	.04	.10 🏽	4	
FX 483855	20	82	- 4	57	- 4	8	12	670	3.72 2	5	ND	4	119	33. S	2	2	62 (2.09 074	10	13	1.24	28 .02	2 1	1.49	.05	. 13 🕺	X 4	
FX 483856	1	36	3	59	.3	7	11	811	3.51 2	5	ND	5	184	.6	2	2	58 3	3.64 .069	8 11	13	1.15	29 .01	2 1	1.53	.03	. 16 🖗	2016 I.	
FX 483857	7	55	3	52		. 8	11	668	3.45 2	5	ND	5	131	.9	2	2	53	2.55 .069	9	13	1.15	29 .01		1.51	.04	.15	4 7	
FX 483858	1	65	4	56	2	8	12	643		5	ND	Ä	117		2	2		1.94 070	oc - 5		1.17	50 .02		1.47	.05	.15 🖉	2 2	
	•		•			-				-		•	•••		-	-	•••		8	• •			-			- T- &		
FX 483859	- 1	48	3	55	3	7	10	801	3.29 2	5	ND	4	237	1.1	2	2	53 /	4.04 .066	13	11	1.03	86 .01	2 1	1.44	.03	.15 ဳ	1 21	
FX 483860		26	2	55	2		12	785		5	ND	5	169	.9	2	5		2.93 07	ee		1.27	31 .01		1.74	.03	.15	1 30	
FX 483861	1	19	2	50		, 7	12	711		5	ND	5	151	9	Ž	5		2.47 .07			1.17	50 .01		1.54	.04	.14 8		
FX 483862		19	4	48		6	11	731		5	ND	5	186	8	ž	5		3.34 .06	50 C		1.28	25 .02		1.52	.04	.11 8		
FX 483863		29	ž	50	.1	6	11	737		5	ND	5	164	1.0	ź	2		2.80 .07			1.25	29 .01		1.58	.04	.12	1 6	
FA 403003	•	27	۲,	50		0	11	151		2	NU	2	104		2	2	20	2.00 .07.			1.25	27 .01	2	1.30	.04	• IC 🛞	, t c	
FV /070//		76	2	EO		7		707	, _{FA}	e			400		•	-	17	7 AC 07	8	4.5	4 20				~	- 47 Ö		
FX 483864		35	2	50	. 2	<u></u>	11	787	12212201200	5	ND	5	198	8. <u>5</u>	2	2		3.15 .074	66 - E		1.28	25 .01		1.63	.04	.13	1 7	
FX 483865		16	2	50	.2	<u> </u>	11	785		5	ND	-5	212	.9	2	2		2.99 .07			1.26	21 .01		1.66	.04	. 15 📓	1 24	
FX 483866	1	26	2	50	1.3	(12	725	2000000000	5	ND	6	245	.7	2	2		2.93 .07			1.13	82 .01	-	1.52	.04	.16	1 98	
FX 483867	1	-9	2	46		6	10	950		5	ND	6	307		2	2		5.69 .064			1.11	16 .01		1.56	.03	.15 🛞	1 19	
FX 483868	5	30	2	52	.2	7	12	768	3.53 2	5	ND	5	200	.8	2	2	62 3	3.00 .07	§ 11	11	1.14	22 .01	2 1	1.52	.04	.13 🖉	1 40	
																			8								£222	
FX 483869	2	47	2	48	.6	6	11	707	3.48 2	5	ND	5	217	1.0	2	2	53 🖯	3.10 .064	8	12	1.19	20 .01	2 1	1.47	.03	.10 🛞	1 72	
FX 483870	1	55	2	46	.8	7	12	761	3.69 2	5	ND	5	261	1.4	2	2	51 :	3.83 .07	87	12	1.07	48 .01	2 1	1.48	.03	. 15 🐰	1 57	
FX 483871	5	49	4	44	2.6	7	11	649	3.49 2	5	ND	4	223	1.4	2	15	50	3.25 067	85	12	1.05	52 .01	2 1	1.37	.03	. 15 🛞	1 68	
FX 483872	15	35	3	26	1.5	5	7	481	2.30 2	8	ND	4	258	.9	2	2	30 3	2.97 .04	5	7	.64	64 .01	- 2	.87	.03	. 14 🐰	1 710	
FX 483873	5	32	8	26	4.4	5	8	534	2.36 2	5	ND	8	218	.7	2	34	32	3.50 .03	85	8	.77	48 .01	2	.99	.03	. 13 🐰	2 71	
	_																		ě									
FX 483874	1	11	5	41	.2	6	10	655	3.17 2	6	ND	9	228	.2	2	2	50 3	2.86 .069	8	10	1.03	108 .01	2 1	1.30	.04	. 16 🛞	1 4	
FX 483875	1	16	4	48	1	6	11	770		5	ND	4	272	27 T	2	2		3.63 .07		10	1.09	104 .01	2 1	1.37	.04	. 14 ຶ	5	
FX 483876	1	48	ż	50	.3	7	12	782		5	ND	4	236	10	2	ž		3.17 .07		12	1.19	63 .01	2 '	1.45	.04	.14 🖁	1 22	
FX 483877		53	Ž	55	3	8	14	856		5	ND	Ĺ.	307	8.7	Ž	- Ž		3.34 .076			1.05	20 .01		1.29	.03	.15 🖇	10	
FX 483878		21	3	48	5	6	10	828		5	ND	6	374	8	2	2		3.93 .07		11	.75	21 .01		.66	.04	.16	1 100	
17 405010						•		010		-					-	-				•••			. –			§		
FX 483879	7	22	6	38	4.2	8	7	733	2 80 5	105	ND	5	536	.5	2	2	25	3.45 .043	6	8	.49	27 .01	2	.32	.03	. 15 🖁	1 520	
FX 483880		26	13	32	17	0	4	210	.99 3	19	ND	18	204	2	ž	3		1.09 .00	60 T	7	.08	31 .01	2	.16	.05	.06	1 340	
	2	3	13		3	0	ź	197		7	ND	18	109	2	Ž	2	8	.47 .00		6	.08	471 .01	2	.18	.06	.08	1 69	
FX 483881		2	-	32		o Z	2		0.0000000000000000000000000000000000000	20	ND	10	89	.6	ź	2	9	.37 .00		6	.10	27 .01	2	.18	.04	.10	1 13	
FX 483882	2	4	10	44		<u></u>	2		* - *					2	2	ź	5	.11 .00		7	.03	14 .01		.16	.06	.07	1 170	
FX 483883	2	4	9	26	.2		1	107	.93 3	5	ND	18	32	885	6	۲	2		S 12	1	.05	14 .01	6	. 10	.00			
	F			-				474	0002	-			-		•	~			8 4-	-	0/	44 884	,	14	04	Š	1 160	
FX 483884	3	- 4	12	30		10	1	131	.78 2		NÐ	22	30		2	2	6	.09 .00		<u>_</u>	.04	16 .01		.16	.06	.08	200200025	
FX 483885	2	4	17	29		8	_2	152	.90 7	9	ND	26	62	.2	2	2	6	.24 .000			.06	42 .01		.15	.05	.08	1 150	
STANDARD C/AU-R	18	60	38	132	7.6	70	32	1038	3.95 38	19	7	39	52	17.6	15	22	55	.48 .08	38	55	.90	176 .09	57	1.88	.07	.14 🛛	12 520	
		_																				-		-				- 7

APPENDIX III

INCO EXPLORATION AND TECHNICAL SERVICES INC. MEMORANDUM

INCO

то	R. A. Alcock		
FROM	B. C. Jago	DATE	August 29, 1991
SUBJECT	BRITISH COLUMBIA/OUTBACK PROJECT: PHASE AND CHARACTERIZATION OF AU-AC		

D. Bohme submitted two samples of drill core from an epithermal Au-Ag prospect in order to identify a very fine-grained, grey-silver mineral and to characterize the gold-silver mineralization. Two polished sections were prepared from each of the samples. Precious metal mineralization was characterized using a Jeol Scanning Electron Microscope and Energy Dispersive X-ray Analysis.

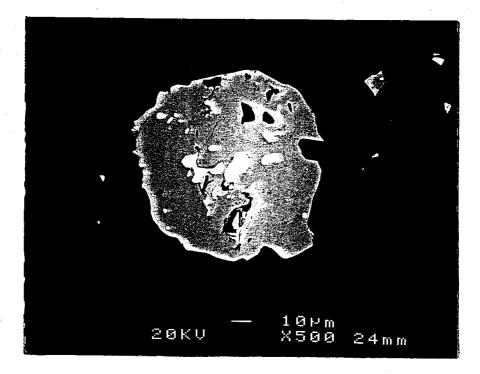
BH 87003 @ 42.23 m/C91-1501, C91-1502/FX479725 (6.51 g/t Au, 37.0 g/t Ag over 0.44 m)

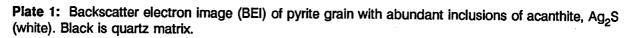
The mineralized portion of this sample is quartz-rich and brecciated by later calcite containing traces of Fe. Polkilitic pyrite is the dominant sulphide; trace phases include sphalerite, electrum and Se-bearing acanthite Ag_2S , all of which occur as discrete phases in the quartz matrix or more commonly as minute (< 10 um) inclusions in pyrite.

Acanthite is the dominant precious metal phase in this sample as only a trace of very fine-grained electrum was found. Acanthite forms up to 25% of the host pyrite grain and usually occurs as elongate, amoeboid-shaped inclusions showing a weakly to strongly developed zonal arrangement. Concentrations of acanthite crystals may occur in the core of pyrite grains and be enclosed by a relatively barren grain margin (Plate 1) or they may form a discontinuous mantle +/- sphalerite (Plate 2) around a barren core that is enclosed by barren pyrite grain margin. Fe-poor sphalerite also occurs as amoeboid-shaped inclusions (Plate 3) with acanthite and this in turn may be surrounded by a discontinuous mantle of minute acanthite grains (Plate 4).

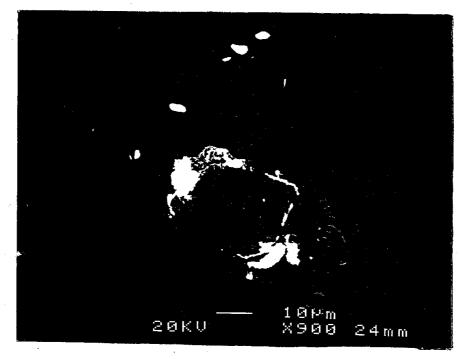
BH 87004 @ 56.24 m/C91-1503, C91-1504/FX479890 (5.2 g/t Au, 61.0 g/t Ag over 0.45 m)

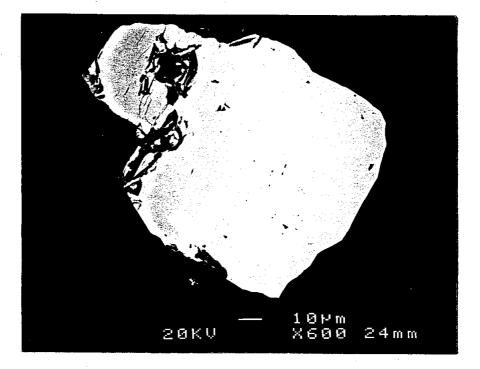
Au-Ag mineralization occurs as electrum and acanthite in a medium to coarse-grained quartz-feldsparcarbonate vein. The feldspar is end-member orthoclase and carbonate is Fe-rich with minor Mg. Rutile, apatite and allanite are common accessory minerals and generally are restricted to feldspar-carbonaterich portions of the sample that are strongly fractured. Minute grains of galena and barite were found in one portion of the sample.

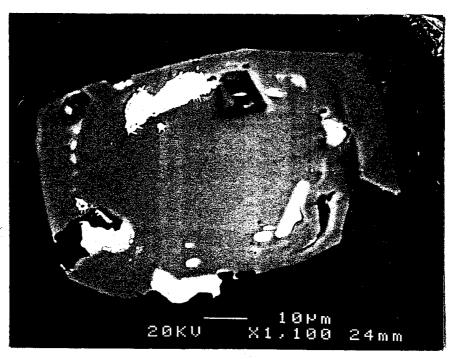

Electrum and acanthite typically occur as minute inclusions (< 15 um) in poikilitic pyrite (Plate 5) where they show a poorly developed zonal arrangement about a barren core (Plate 6). Less commonly, they occur as very fine-grained discrete phases in quartz-rich portions of the vein that contain at least minor amounts of pyrite. Chalcopyrite and electrum may form composite inclusions in pyrite, but chalcopyrite does not occur in as close association with acanthite. Only a single grain of electrum was found in this sample and this was modestly enriched in Au relative to Ag.


Brig- for

/dh


Attachment:


x.c.: D. Bohme P. Rush File


Plate 2: BEI of composite pyrite grain showing a discontinuous mantle of acanthite (white) on a core pyrite grain which in turn is overgrown by an outer, acanthite-mineralized pyrite mantle. Black is quartz matrix.

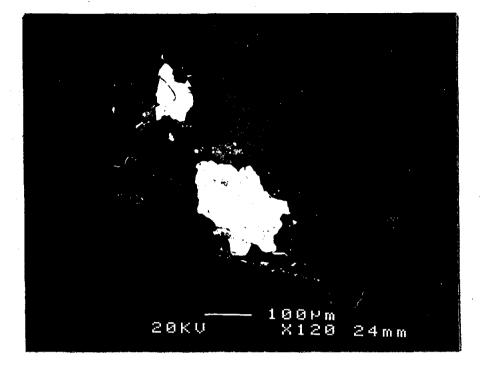
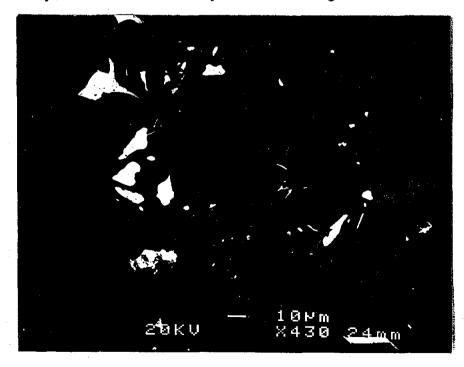
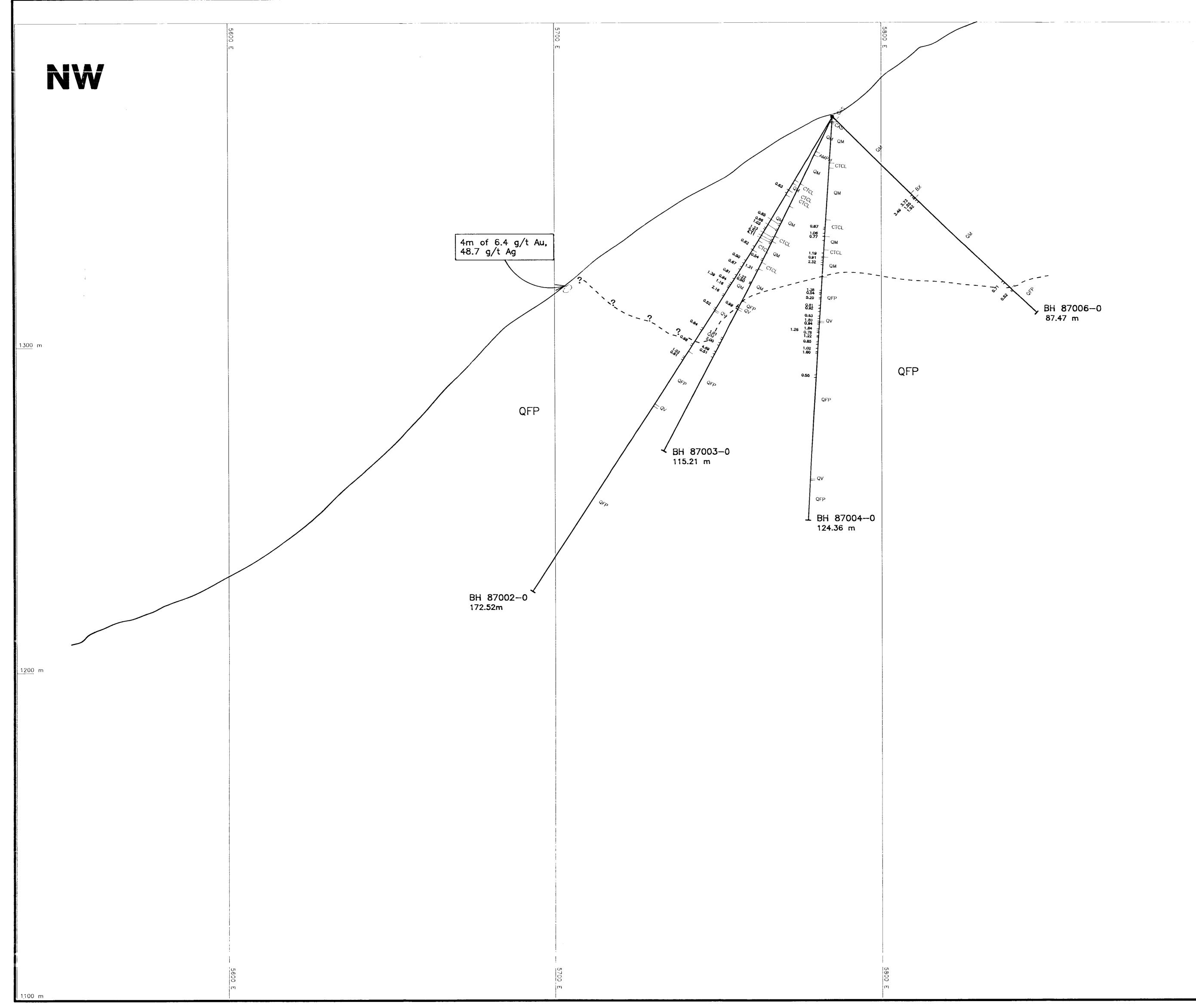
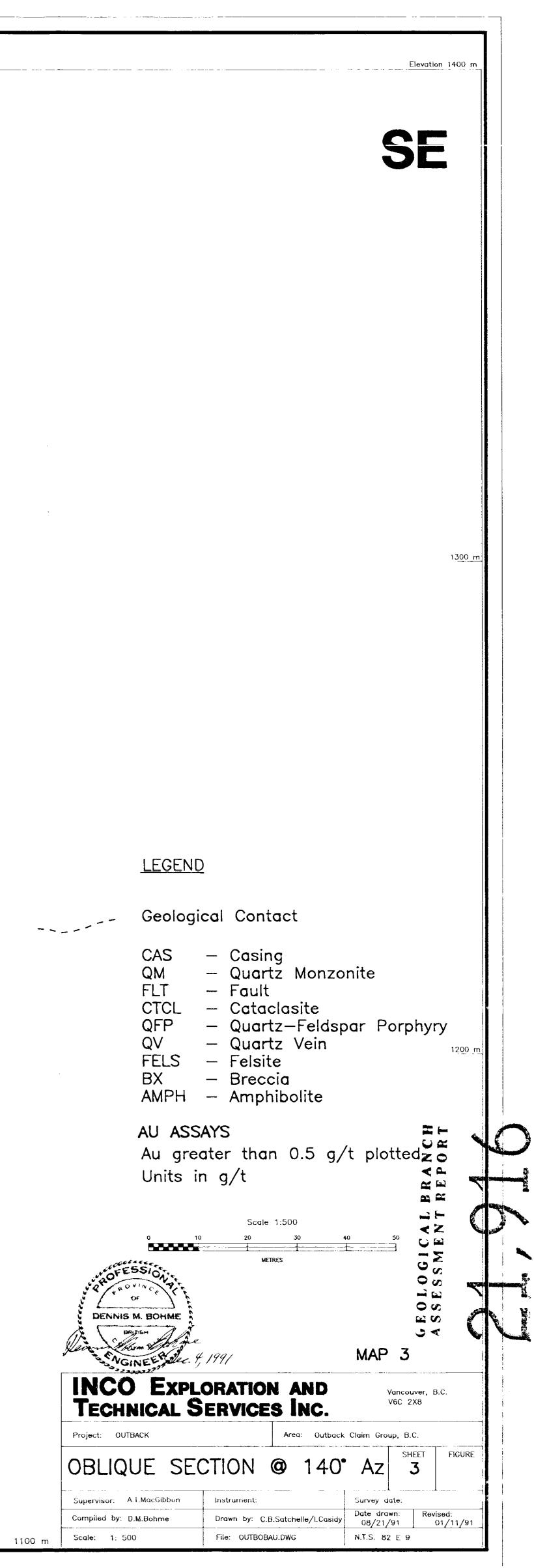
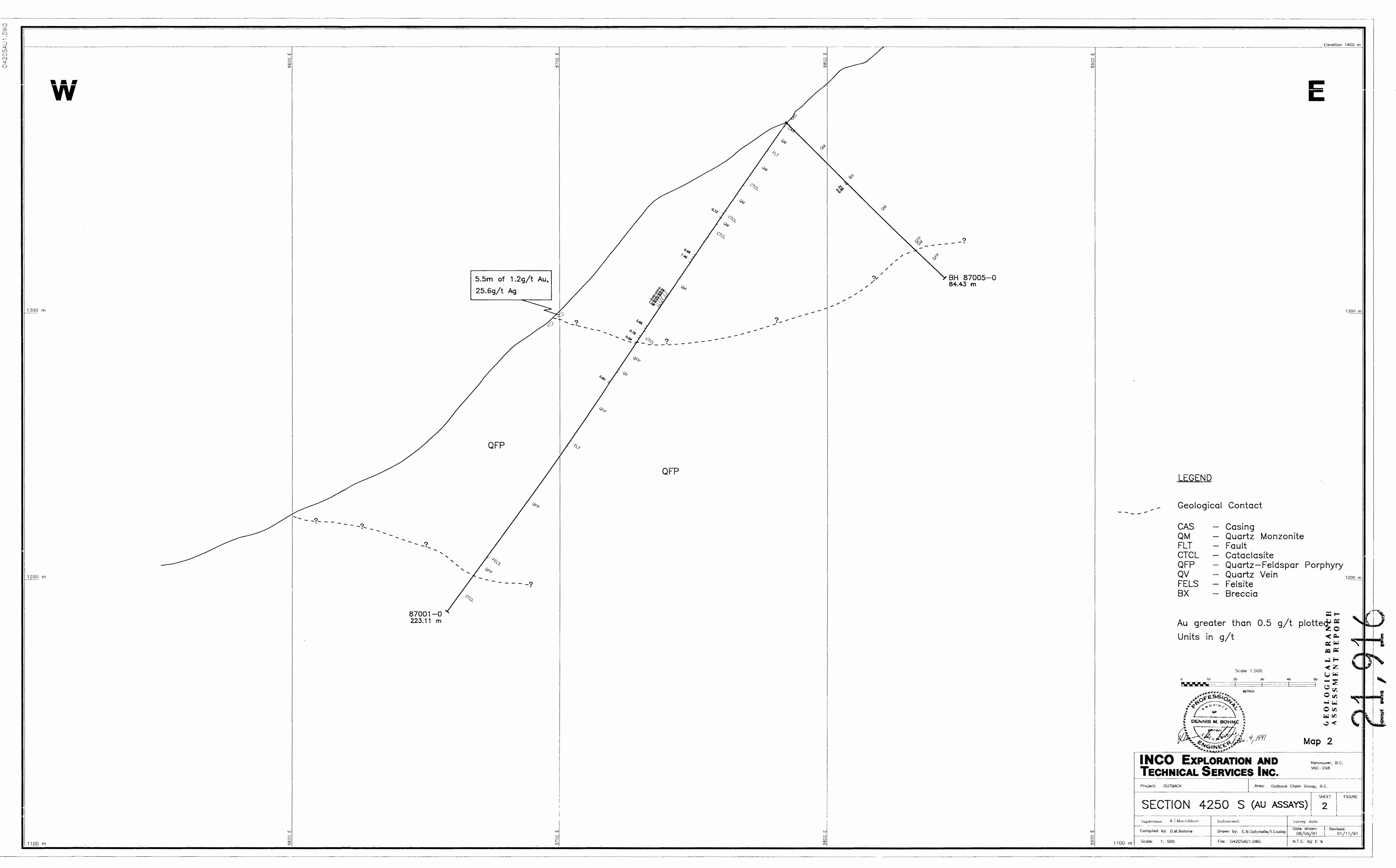


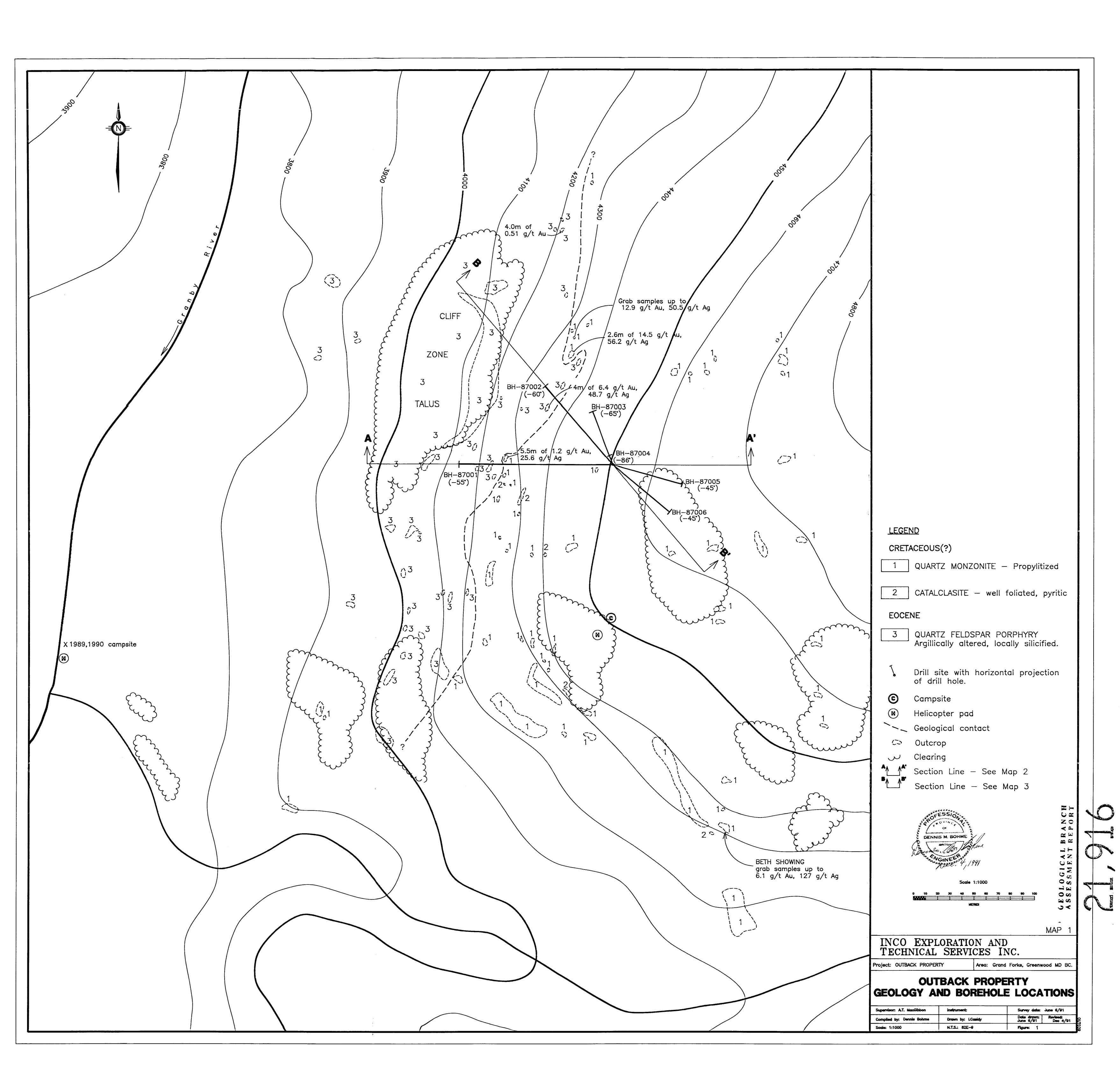
Plate 3: BEI of pyrite grain with very fine to fine-grained inclusions of acanthite (bright white) and larger, amoeboid-shaped inclusions of sphalerite (light grey).


Plate 4: BEI of pyrite grain showing a discontinuous inner mantle of sphalerite (light grey) and acanthite (bright white) and an outer mantle of pyrite. Acanthite grains may be zoned (elongate grain near top of pyrite) such that grain cores (speckled) are Ag-rich and grain margins (irregular flames intergrown with pyrite) are Se-rich.




Plate 5: Pyrite with tiny inclusions of electrum (white) and acanthite (white) in quartz-feldspar-carbonate matrix (shades of grey, quartz is dark). Bright specks in quartz (black) are minute grains (< 1-2 um) of electrum and acanthite. Feldspar and carbonate are barren.


Plate 6: Pyrite grain with electrum (white and speckled), acanthite (white) and rare chalcopyrite (light grey). Note relatively barren core surrounded by inclusion-rich margin.



CAS		Casing
QM		Quartz
FLT		Fault
CTCL		Catacla
QFP	—	Quartz-
QV	—	Quartz
FELS		Felsite
ЗХ	—	Breccia
AMPH		Amphibo

