ARIS SUMMARY SHEET

District Ge	eologist, Smithers		Off	Confidential:	92.09.26
ASSESSMENT	REPORT 21975	MINING DIV	ISION: Skeena		
PROPERTY: LOCATION:	Kai LAT 55 00 00 UTM 09 60948 NTS 104A04W	44 450956	29 46 00		
CAMP:	050 Stewart C	amp of	, odk		
CLAIM(S): OPERATOR(S AUTHOR(S): REPORT YEAL KEYWORDS: WORK	Bray, A.D.				
DONE: (Geological,Geochemi GEOL 1500.0 ha Map(s) - 5; Sca ROCK 67 sample(s SILT 9 sample(s 19398 104A 059,104A	ale(s) - 1:10 5) ;ME 5) ;ME	0,1:1000,1:10	000,1:50 000	

		A REAL PROPERTY AND A REAL		
LOG NO:	nEC	<u>n 1991</u>	RD.	
ACTION	DEG	£; -		
		n Markalandar (1996) - an	an sta an	۰ مدینی میں
FILE NO	-	anaganing and an		

ASSESSMENT REPORT

1991

GEOLOGICAL AND GEOCHEMICAL EXPLORATION PROGRAM

on the

KAI PROPERTY

SKEENA MINING DIVISION

LOCATED

13 KM NORTHWEST OF MT. ANDREAS VOGT BRITISH COLUMBIA

CENTRED ON

LATITUDE: 55 00'00" NORTH LONGITUDE: 129 46'00" WEST

NTS 104A/4 AND 103P/13

SUB-RECORDER RECEIVED DEC 2 0 1991 VANCOUVER, B.C.

OWNER

BOND GOLD CANADA INC.

OPERATOR

BOND GOLD CANADA INC.

REPORT BY

ADRIAN D. BRAY KATHARINE F. BULL TONI K. HINDERMAN

DATE: 13/12/91

C R ZO ₹ ₽. 24 12 88 <u>_</u> d Z C) E S M C .0 00 0.00 60 60

3 🗹

SUMMARY

1991 EXPLORATION PROGRAM ON THE KAI PROPERTY

Several mountaineering reconnaissance-style geological traverses were conducted on the Kai property between July 3rd and September 14th, 1991. The program consisted of 1:10,000 geological mapping, 1:1,000 and 1:100 detailed mapping, lithogeochemical and stream sediment sampling.

The thirty-seven claim, 2088 hectare property is located on the eastern flank of the Coast Mountains, approximately thirteen kilometres northwest of Mt. Andreas Vogt. The property is situated in Stikinia Terrane and is underlain by volcanic and sedimentary rocks of the Lower Jurassic Hazelton Group. These rocks have been intruded by felsic to intermediate plutons of Jurassic and Tertiary age.

Structurally controlled quartz-sulphide veins containing pyrite, argentiferous galena, sphalerite, chalcopyrite and tetrahedrite returned high gold and silver values over narrow widths. High silver shows a good correlation with elevated lead, zinc and arsenic.

The values in the veins appear to be spotty and the veins themselves are of limited extent. The chances of discovery of an economically viable gold and/or base metal deposit seems remote. No further work is recommended on the property.

TABLE OF CONTENTS

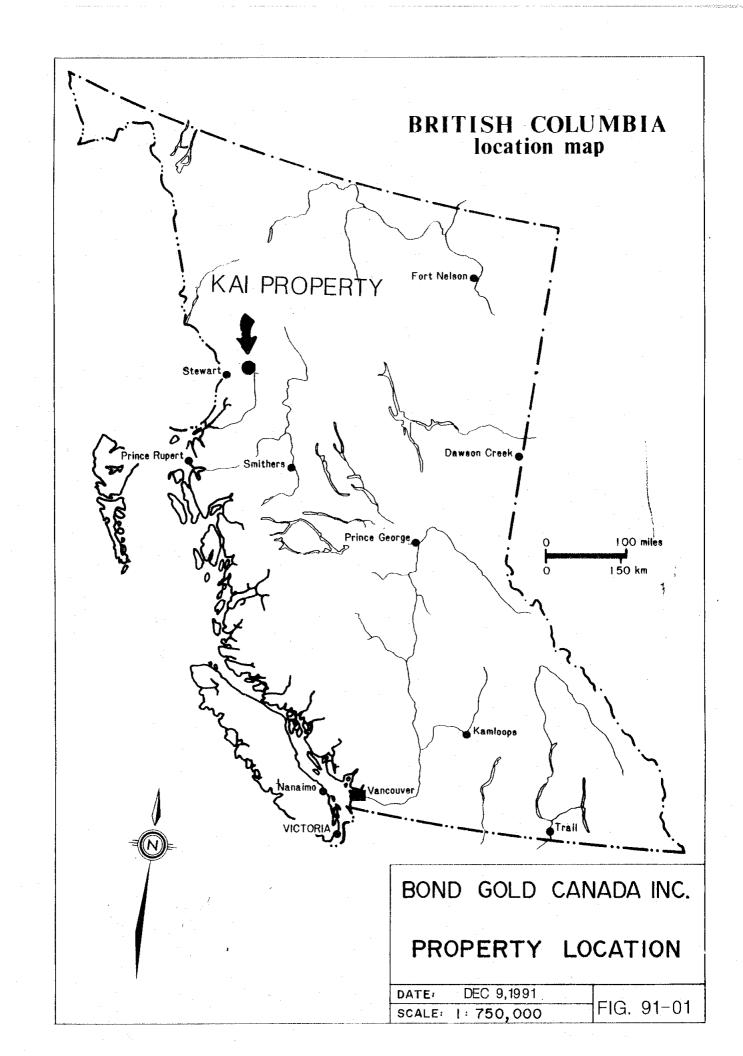
		page
	SUMMARY	i
1.0	INTRODUCTION	1
1.1	PROPERTY STATUS	4
1.2	EXPLORATION HISTORY	7
2.0	REGIONAL GEOLOGY AND MINERALIZATION	10
3.0	PROPERTY GEOLOGY	16
3.1	HARTLEY GULCH PROSPECT GEOLOGY	19
4.0	MINERALIZATION AND SAMPLING	21
4.1	KROHMAN OPTION MINERALIZATION AND SAMPLING	22
4.2	HARKLEY SILVER MINES OPTION MINERALIZATION AND SAMPLING	27
5.0	CONCLUSIONS AND RECOMMENDATIONS	32
6.0	COST STATEMENT	33
7.0	CERTIFICATES OF QUALIFICATIONS	34
8.0	REFERENCES	37

LIST OF FIGURES

FIGURE	91-01	LOCATION MAP	2	
FIGURE	91-02	1:50,000 CLAIM LOCATION MAP	IN	POCKET
		1:50,000 CLAIM DISPOSITION MAP	-	
		1:10,000 PROPERTY GEOLOGY		POCKET
FIGURE	91-03A	1:10,000 SAMPLE LOCATION MAP	IN	POCKET
FIGURE	91-03B	1:1,000 GEOLOGY AND SAMPLE LOCATION		
		OF THE HARTLEY GULCH PROSPECT	IN	POCKET
FIGURE	91-03C	1:100 GEOLOGY AND SAMPLE LOCATION,		
		UPPER ADIT OF THE HARTLEY GULCH		
		PROSPECT	IN	POCKET

LIST OF TABLES

TABLE 1	PROPERTY STATUS SUMMARY	6
TABLE 2	SURFACE SAMPLE RESULTS	30

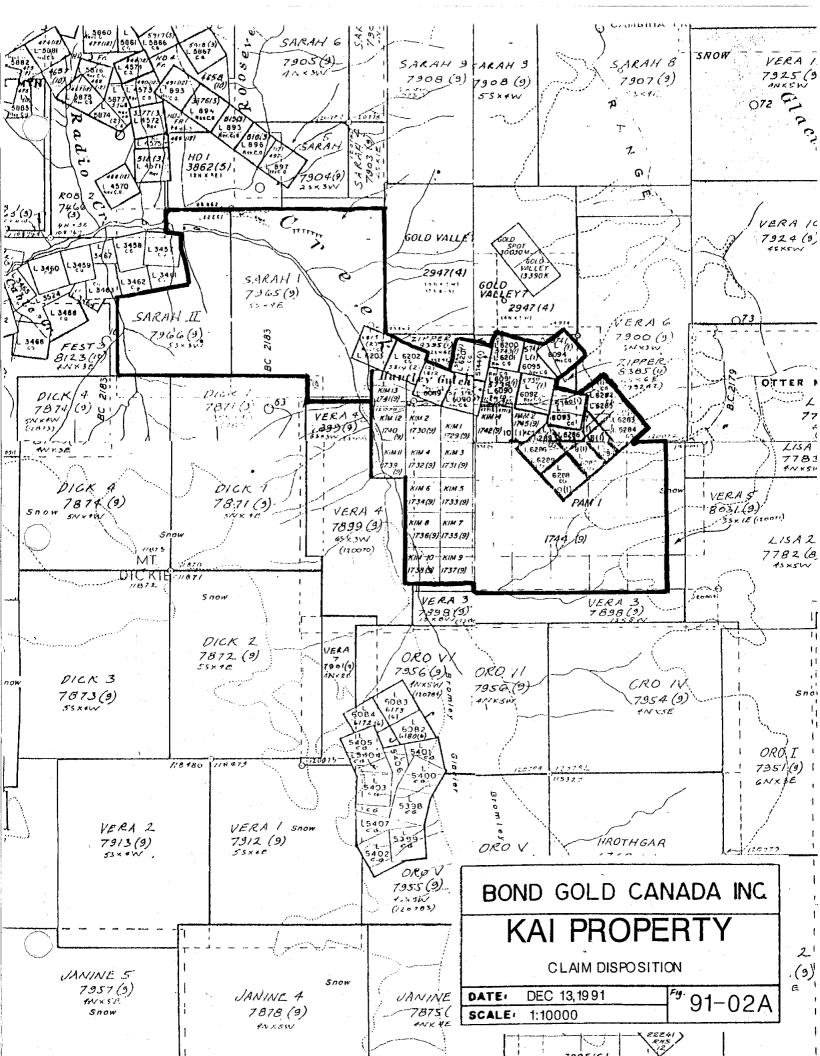

LIST OF APPENDICES

APPENDIX A	SURFACE SAMPLE DESCRIPTIONS
APPENDIX B	ASSAY CERTIFICATES

1.0 INTRODUCTION

The Kai property is located within the eastern flank of the Coast Mountains, approximately sixteen kilometres northeast of Stewart, British Columbia (Figure 91-01). The nearest paved road is Highway # 37A, ten kilometres to the northwest. Access to the property was gained by helicopter from Bond Gold Canada Inc.'s Red Mountain camp, approximately five kilometres to the south. Extensions and upgrading of an existing logging road running south from Highway # 37A up the Bitter Creek Valley could provide future road access.

The Kai property is centred on latitude 55 00'00" North and longitude 129 46'00" West. Elevation ranges from 300 to 1850 metres above sea level. Western hemlock is the dominant tree, while Sitka spruce, amabilis fir and black cotton wood are common subdominants. Common shrubs along valley bottoms include mountain alder, willows, red-osier dogwood, red elderberry, raspberry, devils' club, mountain maple and thimbleberry. Mountain alder is a widespread pioneer species on avalanche slopes and recently deglaciated terrain. The subalpine mountain hemlock zone occurs from about 900 to 1350 metre levels. Alpine vegetation occurs intermittently between 1350 and 1600 metre levels, giving way to bare rock at higher elevations. Wildlife consists of mountain goats, grizzly and black bears, wolverines, wolves, marmots, martens and ptarmigans.



The area has a coastal climate regime. Snowfall is heavy due to high elevations, northern latitude and proximity to the ocean. In the Stewart area mean annual snowfall ranges from 520 centimetres at sea level and 1500 centimetres at 460 metres elevation (Bear Pass) up to 2250 centimetres at an elevation of 915 metres (Tide Lake Flats).

A geological and geochemical exploration program on the Kai property was conducted by Dihedral Exploration and Bond Gold Canada Inc. geologists between July 3rd to September 14th, 1991. The exploration consisted of 1:10,000 reconnaissance-style geological mapping, 1:1,000 and 1:100 detailed geological mapping of the Hartley Gulch Prospect, lithogeochemical (n=67) and stream sediment sampling (n=9) sampling.

1.1 PROPERTY STATUS

The Kai property, held under Option agreements between Harkley Silver Mines, Darcy Krohman, and 100% claims owned by Bond Gold Canada Inc., is located within the Skeena Mining Division of British Columbia. The property consists of 89 mineral units within thirty-seven contiguous claims. Figures 91-02 (in pocket) and 91-02A show the location and disposition of the claims, respectively. Relevant claim information has been summarized in the following table.

TABLE 1

PROPERTY STATUS SUMMARY

CLAIM NAME	RECORD NO.	UNITS/HECTARES	RECORD DATE
SARAH 1	 7965	20/500	26/09/89
SARAH 2	7966	15/375	26/09/89
BON ACCORD	5812	1/18.64	16/02/87
BON ACCORD 1	5813	1/19.98	16/02/87
BON ACCORD 2	5738	1/19.98	19/01/87
BON ACCORD 3	5739	1/20.90	19/01/87
BON ACCORD 4	5740	1/20.90	19/01/87
BON ACCORD 5	5741	1/20.90	19/01/87
BON ACCORD 6	5742	1/14.34	19/01/87
BON ACCORD 7	5743	1/17.58	19/01/87
BON ACCORD 8	5744	1/20.89	19/01/87
BON ACCORD 9	5814	1/20.90	16/02/87
BON ACCORD 10	5815	1/20.90	16/02/87
MONTREAL 1	4	1/19.13	27/01/75
MONTREAL 2	5	1/20.90	27/01/75
MONTREAL 3	6	1/9.84	27/01/75
MONTREAL 4	7	1/9.53	27/01/75
MONTREAL 5	7	1/7.73	27/01/75
MONTREAL 6	8	1/12.79	27/01/75
MONTREAL 7	9	1/20.90	27/01/75
MONTREAL 8 CG	8573	1/20.90	22/03/90
PAM 1	1744	20/500	26/09/79
PAM 2	1745	1/25	26/09/79
KIM 1	1729	1/25	26/09/79
KIM 2	1730	1/25	26/09/79
KIM 3	1731	1/25	26/09/79
KIM 4	1732	1/25	26/09/79
KIM 5	1733	1/25	26/09/79
KIM 6	1734	1/25	26/09/79
KIM 7	1735	1/25	26/09/79
KIM 8	1736	1/25	26/09/79
KIM 9	1737	1/25	26/09/79
KIM 10	1738	1/25	26/09/79
KIM 11	1739	1/25	26/09/79
KIM 12	1740	1/25	26/09/79
KIM 13	1741	1/25	26/09/79
KIM 14	1742	1/25	26/09/79

TOTAL

89 UNITS/ 2088 HA

MONTREAL/PAM/KIM = HARKLEY SILVER MINES OPTION B. ACCORD = KROHMAN OPTION SARAH 1-2 = 100% BOND GOLD CANADA INC.

1.2 EXPLORATION HISTORY

No previous record of work is known for the 100% owned Bond Gold Canada Inc. Sarah 1 and 2 claims. Claims underlying the Krohman and Harkley Silver Mines Options have been intermittently prospected since the turn of the century.

KROHMAN OPTION:

Work conducted on the Krohman Option between the period 1910 to 1943 consisted of approximately 262 metres of tunneling in three adits. Structurally controlled quartz-sulphide veins occur in two main shear veins, the Lower (or No. 1) and the Upper (or No. 2) veins. Values of up to 15.43 gAu/t gold and 66.17 gAg/t over 4.27 metres are reported.

No further significant work appears to have been done on the property until 1981 when a program of mapping, surface trenching and sampling was conducted by Northair Mines Ltd. (Assessment Report # 10392). Surface sampling returned a value of 22.83 gAu/t and 156.0 gAg/t over 2.8 metres. The most significant assay from the diamond drill hole program (3 DDH totalling 315.2 metres) returned a value of 6.07 gAu/t and trace silver over 0.50 metres. Norcan Exploration Ltd. conducted a limited prospecting program during 1983 (Assessment Report # 12400). No significant mineralization was noted. Ibex Energy Inc. 1988 program included minor soil and lithogeochemical sampling, as well as a 200 metre

test line of VLF/EM. Lithogeochemical sampling returned values of up to 21.00 gAu/t, 42.8 gAg/t, 0.24% Pb and 0.01% Zn from grab samples. Soil geochemistry showed high background for Au, Ag, Pb and Zn. The geophysical results were inconclusive.

The property was optioned to Bond Gold Canada Inc. in the latter part of 1989. Prospecting and lithogeochemical sampling (n=24)during the 1990 summer field season returned values of up to 4.90 gAu/t and 23.0 gAg/t over 0.80 metres.

HARKLEY SILVER OPTION:

Between the period 1911 to 1940, approximately 275 metres of tunnels were driven on two levels on the Harkley Silver Mines Option. Some high grade ore is reported to have been shipped during the mid-1930's, although this could not be substantiated during a literature search. Messrs. Hepson and Fegen shipped 4,810 pounds of selected material from the property to the Trail, B.C. smelter in 1965. The ore returned values of 0.41 gAu/t, 3,930.89 gAg/t, 12.8% Pb and 21.7% Zn.

Little work other than some sampling was done until a geochemical soil survey was conducted in 1989 by Harkley Silver Mines (Assessment Report # 19398). This program identified a 250 metre by 250 metre Cu-Pb-Zn +/- Sb anomaly on the east-central portion of the property. Bond Gold Canada Inc. optioned the property in late 1989. An airborne geophysical program flown in early 1990

identified three moderate to weak EM targets which were subsequently mapped, sampled and drilled in the 1990 summer field season (Assessment Report # 20200). No significant gold or silver values were obtained by the diamond drilling (210.50 metres in 2DDH). Surface sampling returned up to 575.7 gAg/t, but no significant gold values.

2.0 REGIONAL GEOLOGY AND MINERALIZATION

GEOLOGY

The Kai property is situated within a broad, north-northwest trending vulcano-plutonic belt composed of the Upper Triassic Stuhini Group and the Upper Triassic to Lower - Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane together with the Cache Creek and Quesnel Terranes constitute the Intermontane Superterrane which is believed to have accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the complex in the east.

The Jurassic stratigraphy was established by Grove (1986) during regional mapping between 1964 and 1968. Formational subdivisions have been and are in the process of being modified and refined as a result of recent work being undertaken in the Stewart, Sulphurets, and Iskut areas by the Geological Survey Branch of the BCMEMPR (Alldrick 1984, 1985, 1989), the Geological Survey of Canada (Anderson 1989, Anderson and Thorkelson 1990) and the Mineral Deposits Research Unit at the University of British Columbia. A sedimentological, stratigraphic, and structural framework is slowly emerging for this area.

The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick succession of turbidites (Bowser Lake Group). Grove (1986) subdivided the Hazelton Group into four litho-stratigraphic units (time intervals defined by Alldrick 1987): the Upper Triassic to Lower Jurassic (Norian to Pliensbachian) Unuk River Formation, the Middle Jurassic Betty Creek (Pliensbachian to Toarcian) and Salmon River (Toarcian to Bajocian) Formations, and the Middle to Upper Jurassic (Bathonian to Oxfordian- Kimmeridigian) Nass Formation. Alldrick assigned formational status (Mt.Dilworth Formation) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently treated either as the uppermost formation of the former or the basal formation of the latter (Anderson and Thorkelson 1990). The Nass Formation has now been assigned to the Bowser Lake Group.

The Unuk River Formation, a thick sequence of andesitic flows and tuffs with minor interbedded sedimentary rocks, host several major gold deposits in the Stewart area. The unit is unconformably overlain by heterogeneous maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic tuffs and tuff breccias characterize the Mt.Dilworth Formation. This formation represents the climactic and penultimate volcanic event of the Hazelton Group

volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson 1990). The Upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin), and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest conformably on the Hazelton Group rocks. They include shales, argillites, silt- and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and the Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastic rocks to the west.

Two main intrusive episodes occur in the Stewart area: a Lower Jurassic suite of dioritic to granodioritic porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group and an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The Early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase phenocrysts and locally potassium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs, and a

widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al. 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to west-vergent compression and concomitant crustal thickening at the Intermontane - Insular superterrane boundary (Rubin et al 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

MINERALIZATION

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Big Missouri), Iskut (Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsault (Alice Arm) gold/silver mining camps. Mesothermal to epithermal, depth-persistent gold-silver veins form one of the most significant types of economic gold deposits. There is a spatial as well as temporal association of this gold mineralization with Lower Jurassic calc-alkaline intrusions and volcanic centres. These intrusions are often characterized by 1-2 cm-sized potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of deposit is the historic Silbak-Premier gold-silver mine which has produced 56,600 kg gold and 1,281,400 kg silver in the time from 1918 to 1976. Current open pit reserves are 5.9 million tonnes grading 2.16 g Au/t and

80.23 g Ag/t (Randall 1988). The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dikes. The ore bodies comprise a series of en echelon lenses which are developed over a strike length of 1,800 metres and through a vertical range of 600 metres (Grove 1986, McDonald 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections, but also occur locally concordant with andesitic flows and breccias. Two main vein types occur: silica-rich, low-sulphide precious metal veins and sulphiderich base metal veins. The precious metal veins are more prominent in the upper level of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum, and argentite. Pyrite, sphalerite, chalcopyrite and galena combined are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite. Quartz is the main gangue material, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the precious and base metals (McDonald 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum

and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east-trending faults. This mineralization is less significant in economic terms.

Porphyry molybdenum deposits are associated with the Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposits is the B.C. Molybdenum Mine at Lime Creek. 3.0 PROPERTY GEOLOGY (FIGURES 91-03, 91-03A; IN POCKET)

The Kai property is underlain by Early Jurassic Hazelton Group volcanic and sedimentary rocks which have been intruded by intermediate to felsic plutons of Tertiary and Jurassic ages. In general, the volcanic and sedimentary units strike north to northnortheast and have steep dips to the east. All rock names are based on field observations rather than on bulk rock analyses.

Volcanic Rocks: The bulk of the volcanics (including pyroclastics and flows) in the map area do not contain mappable marker beds. As a result, the distinction between units is sometimes difficult. For example, vapg and vapm are differentiated by the colour of the rocks. However, with time it became clear that maroon colouration due to hematite content in the volcanics can vary locally down to centimetre scales. Thus, there are maroon volcanics included in the vapg unit and green volcaniclastics within the vapm unit. In fact, it is the presence of sedimentary structures in reworked maroon tuffs that distinguishes the vapm unit rocks from vapg unit rocks. The two volcanic units mapped on the Kai property are described as follows:

vapg - green andesitic pyroclastics. The vapg unit includes agglomerate (volcanic clasts > 64 mm), lapilli (clasts 2-64 mm), and coarse to fine ash tuff, crystal tuffs, and a subordinate percentage of green volcanic flows and maroon pyroclastics and flows. The agglomerates contain rounded to subangular volcanic clasts, most of which are of intermediate composition. A subordinate percentage of the clasts may be non-volcanic. Tuffs are often difficult to distinguish from very fine-grained flows, but competency of crystals is the determining factor. Crystals other than plagioclase, whether euhedral or subhedral to anhedral, are rare. Outcrops of vapg occur on the east-central portion of the property.

vapm - maroon andesitic pyroclastics. This unit includes maroon agglomerates, lapilli to fine-ash tuffs, wackes, lithic sandstones, siltstones and rare flows, and green pyroclastics and flows. The presence of rocks of volcanic material with sedimentary structures is the determining factor in determining this unit.

Cross-bedding, grading and channel features are common in the sedimentary interbeds, allowing for recognition of tops. Outcrops of vapm occur on the northern and east-central portions on the property.

<u>Sedimentary Rocks</u>: Sedimentary rocks on the Kai property have been divided into three units, each of which are described as follows:

ssw - siltstone and wacke. Thinly-bedded, dark gray to black siltstone and minor fine-grained gray to pale-green wacke. These rocks are turbidite-derived, although the Bouma sequences have not been defined. Volumetrically the most abundant of the three sedimentary units, these rocks occur on the south-central portion of the Sarah 1 and Pam 1 claims.

swbr - brown-weathering wackes and tuffs. Brown or gray weathering, coarse-grained wackes, sandstones and conglomerates with minor siltstone and limestone. This unit usually occurs within volcanic-dominant sections. The unit resembles some of the other sedimentary units, but the following are characteristic for the unit: the sediments are interbeds in dominatly volcanic units and non-siltstone sediments predominate. This unit outcrops on the Bon Accord, Bon Accord #2, 3, 6 & 7 claims.

svbl - black sediments and volcanics. These rocks are characterized by a black matrix, most likely due to a high carbon content. Southwest of Cambria Peak they have a brown-weathering surface making visual distinctions between svbl and swbr difficult. The svbl unit includes tuffs, flows, conglomerates and siltstones and outcrops on the Bon Accord #4 & 5 and Montreal 1 claims. <u>Plutonic Rocks</u>: The bedded rocks are cut by dykes and small stocks of intermediate to felsic composition. Some of these intrusive are of probable Tertiary age (unit T?ip) and others, based on the degree of alteration and deformation, appear to be Jurassic (unit Jip). A felsic to intermediate stock of undetermined age (unit ip) occurs on the southwest portion of the Pam 1 claim.

There are two major sets of steeply dipping faults on the property, one of which strikes north to northwest and dips to the west, and one of which is close to east-west. No clear sense of movement has been observed. A thrust fault in the central part of the Pam 1 claim, which thrusts volcanics on top of sediments, clearly exhibits listric geometry. 3.1 HARTLEY GULCH GEOLOGY (FIGS. 91-03B, -03C; IN POCKET)

Rocks in the Hartley Gulch prospect (Krohman Option) were mapped at 1:1,000 scale and consist of argillites, siltstones and andesites (unit swbr, Fig. 91-03B). The units strike north-northwest and have dips of 60 to 70 degrees to the northeast. Locally, the sediments are intruded by a fine-grained diorite which is referred to as an augite porphyry (T?ip). The diorite weathers to a brownish white and has a dark-green matrix when fresh. In zones of shearing or near contacts with the country rocks, it is finergrained and more siliceous. In the northeast portion of the Bon Accord claim block, the diorite contains several slices on the order of 20 metres or so in width of siliceous, fine-grained bedded rocks, To the southwest, the sediments are cut by minor dykes and sills of diorite. There are two main structurally controlled quartz-sulphide veins referred to as the Lower (or No. 1) and the Upper (or No. 2) veins. The Upper vein has at least one prominent splay.

The Lower vein has an average strike of about 310 degrees and dips 60 degrees to the north. It can be traced for about 120 metres. On the surface, it consists of a 0.5 to 1.0 metre thick zone of ferricrete with a central portion of grey clay containing sulphides.

The Upper (or No. 2) vein adit was mapped in detail at 1:100 (Fig.

91-03C). The average trend of the Upper vein system is 290 degrees, dipping about 60 degrees to the north. The shear zone hosting the vein varies in width from 3 to 10 metres, but the vein itself is limited to a width of less than 10 centimetres. The northern splay of the vein strikes roughly east-west and dips steeply northward. The northern splay can be traced for about 70 metres and the main portion of the vein is 190 metres long, with the east end covered by talus.

Mapping at 1:100 in the Upper vein adit shows the rear third quarter to be in intermediate to felsic (?) intrusive. The front quarter of the adit is in a light green rock with a closely spaced joint pattern which might be after bedding. It appears to be a bleached argillite or fine-grained epiclastic rock.

4.0 MINERALIZATION AND SAMPLING

Assay results are shown in Table 2. Values of less than 100 ppm (< 0.01%) for copper, lead and zinc are shown as NSV (No Significant Value). Surface sample descriptions and assay certificates are provided in Appendices A and B, respectively. Sample locations are plotted on Figures 91-03A (1:10,000), 91-03B (1:1,000; Hartley Gulch Prospect) and 91-03C (1:100; Upper Adit Hartley Gulch Prospect).

Six historical showings represent the major mineralization on the Kai property. Two showings, referred to as the Lower (or No. 1) and Upper (or No. 2) veins, occur on the Krohman Option claim block. The remaining four of showings (Main, Trench, No. 3, Glacier) occur on the Harkley Silver Mines Option claim block. Each of the showings are discussed with reference to the Option.

4.1 KROHMAN OPTION MINERALIZATION AND SAMPLING

ADIT SAMPLING

Previous reports discuss three adits dating from the early 1900's. The lower two adits are apparently buried by talus, but the uppermost adit is accessible. Located at an elevation of about 1050 metres, the adit is approximately 26 metres in length and is standing reasonably well, although there is bad ground in two areas which have been timbered. Most of the timbers have broken, allowing the ground to slough. The resulting backs appear to be stable. Twelve samples (45615B-45617B, 45620B-45621B) were collected (Figure 91-03C).

Several shear zones exposed in the adit, filled with light green clay gouge and rock fragments, range in width from 1 to 10 cm. Sample 45615B, a 9 cm chip sample containing a few percent pyrite in some of the rock fragments, contained 0.04 ppm gold and weakly anomalous silver and base metals.

Two minor veins towards the back of the adit contained a few centimetres of sulphides, one as clean bands in a quartz vein and one as breccia fragments with up to 10% pyrite. Sample 45616B is a representative chip of 10 cm of the brecciated vein, sample 45617B is a representative sample of the 1-2 cm quartz vein from exposures on both sides of the adit. Sample 45616B contained 0.19 gAt/t and 2.7 gAg/t. Sample 45617B assayed 1.12 gAu/t and 23.2

gAg/t. The high silver shows good correlation with copper, lead, zinc and arsenic (1.76%).

A small quartz-pyrite vein near the centre of the adit is 6 to 12 cm in width and cuts two shears which intersect nearby. Neither shear displaces the vein. Sample 45620B, a 12 cm chip, assayed 0.39 gAu/t, 14.7 gAg/t and shows elevated copper, lead, zinc and arsenic.

Two large veins are located near the front of the adit. They differ considerably in appearance and in mineralization. The northernmost is a mottled-appearing zone of quartz and irregularly distributed sulphides. It is 1.5 metres wide on the east side of the adit, where it has sharp contacts, and about 50 centimetres wide on the west wall, where it is not as well defined. The sulphides, pyrite and arsenopyrite, average about 10% for the vein as a whole. Samples 45621B and 45622B are duplicate chips across a 1.5 metre interval on the east wall. They contained 2.26 and 0.74 gAu/t, and 39.0 and 33.9 gAg/t, respectively. High silver shows a good correlation with elevated lead, zinc and arsenic.

The Upper vein is somewhat narrower on the east side of the adit; 66 cm as opposed to the total 90 cm width on the west side. It is also more homogeneous, consisting of quartz with irregular concentrations of sulphides. Percentages were difficult to gauge accurately but appear to contain 5% galena, 2% sphalerite and 5%

combined pyrite and arsenopyrite. Galena and sphalerite are concentrated on the southern margin. Sample 45623B, a 66 cm chip of the vein, contained 2.17 gAu/t and 188.6 gAg/t. The high silver shows a good correlation to lead, zinc and arsenic.

A 65 cm wide zone near the front of the adit contains pyrite, galena, sphalerite, chalcopyrite and probably arsenopyrite. Percentages were difficult to estimate due to coatings on the vein. Sample 45624B, a chip across the entire 65 cm interval, contained 1.55 gAu/t, 236.7 gAg/t and strongly anomalous lead, zinc and arsenic. Sample 45625B, a 25 cm zone of very dark grey malachite stained material adjacent to sample 45625B, assayed 2.56 gAu/t and 78.3 gAg/t. It contains little in the way of visible sulphides, but is strongly anomalous in lead, zinc and arsenic.

A section of the diorite on the north side of the first large vein in the adit (sample 45624B) is bleached and altered looking and contained an average of 5% pyrite as disseminations, in segregations and in small shears. This mineralization appears to be wall rock alteration related to the vein, with the pyrite content dropping off markedly after about a metre. Sample 45626B, a 1.0 metre chip interval beginning at the vein margin, contained 0.56 gAu/t and 15.1 gAg/t. High silver shows a good correlation with lead, zinc and arsenic.

Sample 45627B is located within the intrusive at the back of the

adit. It contained 2% disseminated pryite and returned a value of 0.04 gAu/t and 1.1 gAg/t.

A limonite-stained and fractured area under a flat shear about 7 metres from the end of the adit has up to 3% pyrite as disseminations and on fracture planes. Sample 45628B, a 1.0 metre interval averaging 1% pyrite, contained 0.07 gAu/t and 2.2 gAg/t.

SURFACE SAMPLING

Thirty surface samples (45618B-45619B, 45707B-45716B, 45965B-45983B) were collected from variably sheared and silicified intrusives, volcanics and sediments (Figure 91-03B). The vast majority of the samples contained narrow quartz veins with varying amounts of pyrite, chalcopyrite, galena, sphalerite, and arsenopyrite.

Fifteen of the samples (45618B-45619B, 45707B-45715B, 45968B-45969B, 45971B-45972B and 45975B-45976B) assayed greater than 1.0 ppm gold over narrow widths. They range in value from 2.10 (45969B) to 37.40 (45715B) gAu/t over 0.15 and 0.20 metres, respectively. The arithmetic mean of gold for 30 samples is 4.65 gAu/t

Only one sample (45965B) of the thirty assayed less than 1.0 gAg/t. The silver values range from 0.1 (45965B) to 356.9 (45711B) gAg/t. The arithmetic mean of silver for the 30 samples is 37.68 gAg/t

High gold and silver values show a good correlation with high lead, zinc, arsenic, and to a lesser extent with copper.

STREAM SEDIMENT

Three stream sediment samples (RG91-48, RG91-49A and RG91-50) were taken from drainages on the Krohman Option (Figure 91-03A). The three samples assayed 17, 21 and 17 ppb gold and 0.9, 1.4 and 0.9 gAg/t, respectively. The samples are weakly anomalous in base metals and arsenic. 4.2 HARKLEY SILVER MINES OPTION MINERALIZATION

SURFACE SAMPLING

Four historical surface showings represent the major mineralization the Harkley Silver Mines Option. These include the Main, Trench, No. 3 and Glacier showings. Twenty-five samples were collected from the three showings as well as from additional locations (Figure 91-03A). The Trench showing was not located in the field.

Main Showing (45938B-45940B, 45949B-45954B, 45959B-45962B:

Variably mineralized east-west trending shears with an estimated width of 95 metres and length of 75 metres. The shears consist of milky quartz, less carbonate and some wall rock inclusions. Infrequent masses and disseminations of sphalerite, argentiferous galena, chalcopyrite and tetrahedrite are present. The showing is characterized by an orange tint due to carbonate alteration.

Gold values range from 0.015 (45949B) to 2.530 (45939B) gAu/t, both over 0.15 metres. Of the thirteen samples, only one (45939B) assayed greater than 1.0 gAu/t. The weighted average of gold for thirteen samples is 0.35 gAu/t. All thirteen samples contained greater than 1.0 gAg/t, with a range from 3.3 (45951B) to 865.6 (45960B) gAg/t. The weighted average of silver for thirteen samples is 225.0 gAg/t. High silver shows a good correlation with elevated copper, lead, zinc, arsenic and antimony.

<u>Trench Showing:</u> historically described as two parallel northwesttrending, moderately dipping shears exposed in an F-shaped trench. Mineralization is said to be similar to that of the Main Showing. The footwall of the lower of the two shears shows strong carbonate alteration and carries disseminated tetrahedrite for a width of 30 cms. Subsidiary, narrow 1-2 cm quartz-filled tension fractures occur.

<u>No. 3 Showing (45947B):</u> this showing consists of a number of quartz-filled tension fractures exposed over a 3 metre strike length. Fracture widths are generally less than 1 cm with one up to 20 cm. The veins strike east-west with dips of 25 to 30 degrees to the north. Trace galena and sphalerite is noted. The host rock is a sheared volcanic breccia with a carbonatized matrix.

Sample 45947B contained 0.023 aAu/t, and 8.4 gAg/t. The sample is anomalous in lead and zinc.

<u>Glacier Showing (45941B-45946B):</u> this showing is a ladder vein system abutting against a strong shear zone. The vein system has been exposed over 30-40 metres along slope and 20 metres down slope. The shear is characterized by milky quartz, wall rock fragments, carbonate and masses of argentiferous galena and lesser tetrahedrite. The ladder veins are quartz-carbonate filled tension fractures with rare sulphides (galena, sphalerite, tetrahedrite). Vein frequency averages 7 per metre, with widths of 2-3 cm. The host rock (volcanic breccia) is carbonate altered.

All six samples contain less than 1.0 gAu/t. The weighted average of gold for the six samples is 0.07 gAu/t. Silver values range from 23.5 (45945B) to 202.1 (45943B) gAg/t, with a weighted average for the six samples of 104.6 gAg/t. The high silver correlates with elevated lead and zinc.

Five additional samples (45251B, 45374B, 45937B, 45948B, and 45955B) were taken from quartz veins, shears and limonitic altered volcanics during the course of 1:10,000 reconnaissance mapping. These samples all contained less than 1.0 gAu/t. Silver values range from 1.4 (45937B, 45955B) to 177.4 (45374B) gAg/t, with an arithmetic mean of 39.3 gAg/t. Mean silver is strongly skewed by the high 177.4 gAg/t value.

STREAM SEDIMENTS

Nine stream sediment samples (RG91-40 to RG91-43, RG91-47 and RG91-49) were collected from various drainages throughout the Harkley Silver Mines Option. The samples are weakly anomalous in gold, silver, zinc and arsenic.

TABLE 2

SURFACE SAMPLE RESULTS

SAMPLE NUMBER	WIDTH (m)	Au (ppm)	Ag (ppm)	Cu/Pb/Zn %
45251B	0.15	0.023	14.5	0.96/NSV/NSV
45374B	0.15	0.098	177.4	0.03/7.37/1.51
45615B	0.09	0.037	1.2	NSV/NSV/NSV
45616B	0.10	0.192	2.7	0.02/0.01/0.03
45617B	GRAB	1.120	23.2	0.16/0.12/0.11
45618B	0.15	2.450	3.6	NSV/0.01/0.01
45619B	0.15	10.200	26.9	0.04/0.17/0.07
45620B	1.20	0.385	14.7	0.07/0.09/0.02
45621B	1.50	2.260	39.0	0.06/0.58/1.85
45622B	1.50	0.743	33.9	0.04/0.48/0.85
45623B	0.66	2.170	188.6	0.09/2.48/1.39
45624B	0.65	1.550	236.7	0.10/5.19/7.24
45625B	0.25	2.560	78.3	0.08/1.58/5.79
45626B	1.00	0.560	15.1	0.02/2.28/2.56
45627B	2.00	0.036	1.1	NSV/0.02/0.07
45628B	1.00	0.068	2.2	NSV/0.02/0.04
45707B	0.35	17.000	55.0	0.21/0.03/0.01
45709B	0.50	6.400	22.4	0.14/0.04/0.02
45710B	0.20	2.370	4.3	0.02/0.02/NSV
45711B	0.15	10.400	356.9	0.62/5.74/30.72
45712B	0.20	7.890	97.5	0.31/0.11/0.04
45713B	0.15	9.400	22.1	0.02/0.23/0.34
45714B	0.30	0.454	10.7	0.01/0.08/0.07
45715B	0.20	37.400	41.4	0.03/0.10/0.04
45716B	0.15	0.778	7.7	0.03/NSV/0.13
45937B	0.15	0.056	1.4	0.01/NSV/NSV
45938B	0.15	0.277	411.6	0.42/2.11/0.62
45939B	0.15	2.530	352.6	4.50/0.25/0.52
45940B	0.15	0.049	306.5	0.58/5.68/5.84
45941B	0.15	0.042	71.1	0.02/1.38/2.05
45942B	0.15	0.129	183.8	0.07/5.85/11.13
45943B	0.15	0.105	202.1	0.02/9.15/10.98
45944B	0.15	0.027	55.1	NSV/1.73/4.46
45945B	0.15	0.025	23.5	0.01/0.48/0.70
45946B	0.15	0.096	92.1	NSV/4.18/5.01
45947B	0.15	0.023	8.4	NSV/0.12/0.38
45948B	0.15	0.029	1.8	0.01/0.02/0.03
45949B	0.15	0.015	26.7	0.02/0.09/0.04
45950B	0.15	0.026	9.1	2.06/NSV/NSV
45951B	0.15	0.020	3.3	0.13/NSV/NSV
45952B	0.15	0.306	53.2	0.03/0.33/0.37
45953B	0.15	0.085	21.9	NSV/0.46/0.67
45954B	0.15	0.016	13.5	NSV/0.10/0.21
45955B	0.15	0.017	1.4	NSV/NSV/NSV

TABLE 2 (CONT.)

SURFACE SAMPLE RESULTS

SAMPLE NUMBER	WIDTH (m)	Au (ppm)	Ag (ppm)	Cu/Pb/Zn %
45959B	0.15	0.185	48.3	0.01/0.18/0.30
45960B	0.15	0.790	865.6	4.67/1.35/0.48
45961B	0.15	0.068	149.9	0.04/2.32/2.52
45962B	0.15	0.157	663.2	0.29/1.63/11.85
45965B	0.15	0.316	0.1	NSV/NSV/NSV
45966B	0.15	0.204	2.0	0.01/0.06/0.13
45967B	0.15	0.423	33.9	0.04/0.68/1.53
45968B	0.15	3.640	12.5	0.02/0.06/0.02
45969B	0.15	2.100	8.4	0.04/0.02/0.01
4597.0B	0.15	0.107	1.4	NSV/NSV/NSV
45971B	0.15	2.580	82.2	0.16/0.73/0.08
45972B	0.15	4.030	27.7	0.03/0.29/0.01
45973B	0.15	0.076	2.2	NSV/0.02/NSV
45974B	0.15	0.210	3.0	0.01/0.01/0.01
45975B	0.15	3.330	5.2	0.01/NSV/0.01
45976B	0.15	16.250	249.2	0.91/2.35/0.16
45977B	0.15	0.537	13.0	0.05/0.04/0.07
45978B	0.15	0.591	27.9	0.03/0.31/0.10
45979B	0.15	0.097	5.7	0.03/0.01/0.01
45980B	0.15	0.032	1.4	0.03/NSV/NSV
45981B	0.15	0.045	1.6	0.01/NSV/NSV
45982B	0.15	0.222	1.2	0.03/NSV/NSV
45983B	0.15	0.021	3.3	NSV/NSV/0.09
RG91-40*		0.015	0.7	NSV/NSV/NSV
RG91-41*		0.011	1.0	NSV/NSV/NSV
RG91-42*		0.020	1.3	0.01/NSV/NSV
RG91-43*		0.020	1.3	NSV/NSV/0.01
RG91-47*		0.014	1.5	0.01/NSV/0.02
RG91-48*		0.017	0.9	NSV/NSV/0.01
RG91-49*		0.006	0.9	NSV/NSV/NSV
RG91-49A*		0.021	1.4	NS/NSV/0.02
RG91-50*	بی این این این این این این این این این ای	0.017	0.9	NSV/NSV/0.01

*STREAM SEDIMENT SAMPLE

5.0 CONCLUSIONS AND RECOMMENDATIONS

The 1991 exploration program on the Kai property consisted of 1:10,000 geological mapping, 1:1,000 and 1:100 detailed mapping of the Hartley Gulch prospect, lithogeochemical (n=67) and stream sediment (n=9) sampling. Structurally controlled quartz-sulphide veins containing pyrite, argentiferous galena, sphalerite, chalcopyrite and tetrahedrite returned high gold and silver values over narrow widths. High silver shows a good correlation with elevated lead, zinc and arsenic.

The values in the veins appear to be spotty and the veins themselves are of limited extent. The chances of discovery of an economically viable gold and/or base metal deposit seems remote. No further work is recommended on the property. 6.0 COST STATEMENT

EXPENDITURE TYPE	<u>TOTAL</u> \$
Salaries- Permanent - Contract Computer Rental and Lease Computer Supplies Equipment Repair and Maintenance	600 4400
Postage/Courier Supplies and Stationary Consulting Fees Copies/Maps Travel and Accommodation	369 93 8053 458
Camp Costs Assays and Analysis Camp Equipment/Supplies Aircraft- fixed wing Aircraft- rotary wing	872 6174 1156 7433
AILCLAIC- LOCALY WING	/433

Total

\$ 29,608

33

7.0 CERTIFICATE OF QUALIFICATIONS

I, Adrian Dana Bray, of 1041 Comox St. Apt. 31, Vancouver B.C., do hereby certify that:

- I have studied Geology at Acadia University in Wolfville, Nova Scotia and have received a Bachelor of Sciences degree with Honours in Geology in October of 1986.
- I am an associate member in good standing of the Geological Association of Canada.
- 3. I have continuously practised my profession since graduation in Nova Scotia, Ontario, Quebec and British Columbia.
- 4. I am employed by Bond Gold Canada Inc.
- 5. The statements in this report are based on office compilation on the Kai property. The field work was conducted from July 3rd to September 14, 1991. I have personally conducted or supervised the work described in this report.

Dated at Vancouver this 14th day of December, 1991.

ADRIAN D. BRAY

34

CERTIFICATE OF QUALLIFICATIONS

- I, Katharine F. Bull of PO Box 81418, Fairbanks, Alaska, do hearby certify that:
- I have received a Bachelor of Science degree in geology from the University of Washington of Seattle, Washington in 1984, and a Master of Science degree from University of Alaska in Fairbanks, Alaska in 1988.
- 2. I am a member in good standing of the Alaska Miners Association and of the Association of Women Science.
- 3. I have continuously practiced my profession since 1981, in Alaska, Arizona, British Columbia and Greenland.
- 4. I am a partner of Dihedral Exploration of PO Box 110918, Anchorage, Alaska.
- 5. The statements in this report are based on field work on claims at intervals during the period from July 31 to September 9, 1991.

Dated at Vancouver this 3rd day of December, 1991.

Katharine F. Bull

CERTIFICATE OF QUALLIFICATIONS

- I, Toni K. Hinderman, of 3401 West 64th Avenue, Apt. 6, Anchorage, Alaska, do hearby certify that:
- I have received a Bachelor of Arts degree in geology from Dartmouth College in Hanover, New Hampshire in 1966 and a Master of Science degree from Stanford University in Stanford, California in 1968.
- 2. I am a member in good standing of the Society of Mining and Exploration of The American Institute of Mining and Metallurgy, of the Alaska Miners Association, and of the Northwest Mining Association.
- 3. I have continuously practiced my profession since honorable discharge from the U. S. Army in 1969.
- 4, I am a partner of Alaska Earth Sciences of 11341 Olive Lane, Anchorage, Alaska.
- 5. The statements in this report are based on field work on claims at intervals during the period from July 31 to September 9, 1991.

Dated at Vancouver this 3rd day of December, 1991.

Toni K. Hinderman

8.0 REFERENCES

ALLDRICK, D.J. (1984): Geologic setting of the precious metal deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D.J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p.316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1, p 223- 240.

ALLDRICK, D.J., GABITES, J.E. and GODWIN, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp; in: Geological Fieldwork 1986, BCMEMPR Paper 1987-1, p. 93-102

ALLDRICK, D.J., BROWN, D.A., HARAKAL, J.E., MORTENSEN, J.K. and ARMSTRONG, R.L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R.G. (1989): A stratigraphic, plutonic, and structural framework of the Iskut River Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R.G. and THORKELSON, D.J. (1990): Mesozoic stratigraphy and setting for some mineral deposits in Iskut map area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139

BULL, K., HINDERMAN, K. and TUTHILL, A. (1991): Dihedral Exploration 1991 Activities on the Bond Gold/LAC Minerals Claim Group, Near Stewart British Columbia, Internal Company Report, 31 p.

GROVE, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63, 434p

McDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver-Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352 McDONALD, D. (1990): Temperature and Composition of Fluids in the base metal rock Silbak Premier Ag-Au Deposits, Stewart, B.C.; in: Geological Fieldwork 1989, BCMEMPR, Paper 1990-1, p. 323-335

MONGER, J.W., PRICE, R.A., and TEMPELMAN-KLUIT, J.D. (1982): Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology, v.10, p. 70-75

RANDALL, A.W. (1988): Geological Setting and Mineralization of the Silbak Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the Northern Canadian Cordillera, Society of Economic Geologists, p. 85-99

RUBIN, C.M, SALEEBY, J.B., COWAN, D.S., BRANDON, M.T., and MCGRODER, M.F. (1990): Regionally extensive mid-Cretaceous westvergent thrust system in the northwestern Cordillera: Implications for continent-margin tectonism. Geology, v.18, p. 276-280

A P P E N D I X A

SURFACE SAMPLE DESCRIPTIONS

SAMPLE CLAIM DESCRICPTION

WIDTH (m)Au (ppm)Ag (ppm)Cu (ppm)Pb (ppm)Zn (ppm)As (ppm)Sb (ppm)

45251B	PAM 1 VEIN IN MARCON TUFF; VN 280/455	0.15	0.023	14.5	9643	26	27	⁻ 1	1
45374B	PAM 1 LEACHED OUTH VOLC. BRECCIA W/ GALENA	0.15	0.098	177.4	301	73658	151320	80	346
45615B	B. ACC2 GOUGE IN 2-9CM ZONE HAS 4% PY, IN ADIT	0.09	0.037	1.2	13	17	58	82	9
456168	B. ACC2 10-15 CM SHEAR ZONE WITH PY IN CLASTS, IN ADIT	0.10	0.192	2.7	165	. 119	270	1716	9
456178	B. ACC2	0.00	1.120	23.2	1587	1241	1062	17590	60
456188	B. ACC2 SEMI-MASS. GREY, CLAYEY PY RESIDUAL IN ARGILLITE	0.15	2.450	3.6	79	125	104	808	9
45619B	B. ACC2 HIGH GRADE FROM 10 CM MASSIVE SULFIDE-QTZ. VEIN	0.15	10.200	26.9	388	1678	719	60760	11
456208	B. ACC2 6 TO 12 CM QZ PY VEIN IN ADIT	1.20	0.385	14.7	667	898	199	2156	9
45621B	B. ACC2 1.5 M QZ VEIN IN ASIT	1.50	2.260	39.0	5ó1	5841	18509	4240	31
45622B	B. ACC2 1.5 M QUZ VEIN IN ADIT, DUPE OF 45621B	1.50	0.743	33.9	381	4815	8518	3720	21
456 23 8	B. ACC2 ONE OF MAIN VEINS IN ADIT	0.66	2.170	188.6	881	24847	13945	5834	128
45624B	B. ACC2 ONE OF MAIN VEINS IN ADIT	0.65	1.550	236.7	1046	51900	72400	2579	194
45625B	B. ACC2 BLACK MATERIAL IN VEIN NEXT TO 45624B	0.25	2,560	78.3	786	15846	57900	2734	56
45626B	B. ACC2 PYRITIZED DTE NEXT TO 45624/25 VEIN IN ADIT	1.00	0.560	15.1	189	2281	25599	2806	15
456278	8. ACC2 DTE W/ TRACE TO 2% PY, IN ADIT	2.00	0.036	1.1	15	162	722	179	6
456288	B. ACC2 DTE W/ 1 TO 3% PY ADJACENT TO SHEAR IN ADIT	1.00	0.068	2.2	93	229	388	896	6
4570 7 8	B. ACC2 STR WEATHERED MIN IN SHEAR ZONE @ 120; //90-40131	0.35	17.000	55.0	2102	279	119	4757	7
4570 9 8	B. ACC2 BELOW+30M SE OF 985 ADIT; QTZ-SULFIDE SHEAR; SPLAY?	0.50	6.400	22.4	1479	426	241	46432	20
457108	B. ACC2 QTZ-SULFIDE VEIN BELOW 985 ADIT; SHALLOW DIP	0.20	2.370	4.3	190	208	84	7463	3
45711B	B. ACC2 QTZ-SULFIDE VEIN BELOW 985 ADIT; @ 240; SPLAY #1?	0.15	10.400	356.9	6172	57408	307200	2615	1121
45712B	B. ACC2 ABOVE 985 ADIT; MIN SHEAR WITH SPH,CPY,GA RICH N	0.20	7.890	97.5	3135	1062	444	14640	148
457138	B. ACC2 ABOVE 985 ADIT; QUARTZ/PY/ASPY VEIN	0.15	9.400	22.1	214	2272	3362	48457	30
45714B	B. ACC2 ABOVE 985 ADIT; GRAPHITE SCHIST, LIM, IN SHEAR	0.30	0.454	10.7	143	764	716	3133	7
45715B	B. ACC2 QTZ-SULF VEIN PARALLEL AND ABOVE 12-14	0.20	37.400	41.4	275	1015	374	7233	1
45716B	B. ACC2 PY MIN PARALLEL TO 294 TRENDING DIORITE DIKE	0.15	0.778	7.7	323	72	1337	354	1
45937B	PAM 1 RUSTY ARGILLITE WITH 3-4% PY, MASS. & STRINGERS	0.15	0.056	1.4	100		9	. 16	3
45938B	MTRL 5 QTZ VN, 3-7 CM, GA 3-4%, TET 1-2%, CPY 1-2%, IN SILTST	0.15	0.277	411.6	4166	21148	6 2 41	1294	2615
45939B	MTRL 1 BX QTZ VN WITH VOL FRAGS, TET 5-6%, 1-2% GA, TR CPY	0.15	2.530	352.6	44980	253 3	5233	1627	36014
45940B	MTRL 1 BX QTZ VN, 10-20 CM,SPH,TET,GA 3-5% - SHOWING #1	0.15	0.049	306.5	5781	56842	58408	249	3964
45941B	PAM 1 QTZ VN IN SH. ZONE WITH SPH 2-4%,GA 3-4%,7-10CM VN	0.15	0.042	71.1	219	13844	20476	25	144
45942B	PAM 1 QTZ VN, 7-10 CM, IN SH ZN TET 1-2%, GA 3-5%, VOLCLAST	0.15	0.129	183.8	741	58455	111296	94	617
45943B	PAM 1 _ QTZ VN IN SH ZN,GA 3-5%,SPH 3-4%, 7-10CM VEIN	0.15	0.105	202.1	216	91515	109790	79	293
45944B	PAM 1 QTZ VN,10-15 CM,GA 3-5%,SPH 3-4%,TET 1-2%	0.15	0.027	55.1	78	17282	44596	34	97
45945B	PAM 1 QTZ VNLTS,2-3CM, 1-2% GA & SPH	0.15	0.025	23.5	106	4786	7033	31	60
45946B	PAM 1 QTZ VN, 7-10CM, IN VOLCANOICLASTIC, 3-5% GALENA	0.15	0.096	92.1	41	41773	50099	46	142
_ 45947B	PAM 1 QTZ FLOAT WITH 1-2% SPH & TR. GA FROM SHOWING #3	0.15	0.023	8.4	49	1179	3808	25	24

(

459488	MTRL 7	LAPILLI TUFF WITH F.G. PYRITE 2-3% ON FRAC.PLNS	0.15	0.029	1.8	112	223	305	6	1	
45949в	MTRL 3	QTZ-CARB VN,5-7CM,ON VOL BX,SPH 2-3%,GA 1-2%	0.15	0.015	26.7	206	919	444	28	26	
45950B	MTRL 3	ASH TUFF WITH CU STAINING & CPY 2-3%	0.15	0.026	9.1	20577	36	98	32	109	
45951B	MTRL 3	QTZ-CARB VN IN VOL BX WITH F.G.CPY 2-3%	0.15	0.020	3.3	1255	29	1	25	1	
45952B	MTRL 2	QTZ VN, 5-15CM, WITH GA 2-3% AND 3-4% PYRITE	0.15	0.306	53.2	264	3263	3682	662	55	
45953B	MTRL 1	QUARTZ VN, 4-7CM, WITH 1-2% GALENA, VN OVER 75M	0.15	0.085	21.9	35	4601	6727	1200	18	
45954B	MTRL 4	QUARTZ-CARB VNWITH 1-2% GA & 1-2% SPH, VN OVER 15M	0.15	0.016	13.5	39	999	2114	90	17	
45955B	MTRL 4	FRAC. IN VOLC. BX WITH COARSE & F.G. PY. 2-3%	0.15	0.017	1.4	53	58	51	37	2	
45959B	MTRL 4	QUARTZ-CARB VN,2-4CM,GA 2-3%,SPH 1-2%,TET 1% SH #1	0.15	0.185	48.3	111	1839	2983	26	70	
45960B	MTRL 4	QUARTZ-CARB VN, 1-3CM, MASSIVE TET. 50-75% IN V.BX	0.15	0.790	865.6	46743	13503	4790	1427	31981	
45961B	MTRL 4	QUARTZ-CARB VN, 10-15CM, IN VOL.BX,GA&SPH 3-6%	0.15	0.068	149.9	358	23229	25249	43	352	
45962B	MTRL 4	SHEAR ZN WITH MASS. GA & SPH 75% IN BRECC. VOLC.	0.15	0.157	663.2	2851	16329	118544	4143	3043	
45965B	B. ACC2	SHEARED ARGILLITE WITH CLAY	0.15	0.316	0.1	32	48	33	58	1	
45966B	B. ACC2	SH'D & SIL. PORPH. AND.,2-3% SPH,PY,ASP,1-2% CPY	0.15	0.204	2.0	114	598	1321	507	1	
45967B	B. ACC2	QTZ. VN 5-7CM IN AND. PY 4-6%, GA&SPH&ASP&CPY 2-5%	0.15	0.423	33.9	358	6783	15285	39786	41	
45968B	B. ACC2	ARGILLITE WITH QUARTZ WITH 3-5% PY & ASP	0.15	3.640	12.5	196	568	230	88530	46	
459698	B. ACC2	2 ARGILLITE WITH QTZ VN,5-7CM,PY3-5%,ASP 2-3%	0.15	2.100	8.4	370	200	101	2684	3	
45970B	B. ACC2	ARGILLITE IN CONTACT WITH PORPH. DYKE, 1-2% PY	0.15	0.107	1.4	52	37	81	362	6	
45971B	2.	2 QUARTZ VN IN SHEART ZN WITH ASP & PY 3-5%	0.15	2.580	82.2	1564	7276	803	35371	54	
45972B		QTZ VN ALONG SH ZN WITH ASP & PY 3-5%	0.15	4.030	27.7	281	2907	111	61704	44	
45973B	B. ACC2	SILICIFIED PORPH. WITH 3-4% PYRITE	0.15	0.076	2.2	93	174	29	1103	1	
45974B		SILICIFIED PORPH WITH 3-4% PYRITE	0.15	0.210	3.0	118	110	141	3777	4	
45975B	B. ACC2	2 SIL. ANDESITEWITH QTZ. 4-6% PY&2-3% ASP. IN SHEAR	0.15	3.330	5.2	111	70	114	48668	24	
45976в		MASS. PY& ASP IN 1-2CM BANDS, 10%GA, BAND 5-10CM WID	0.15	16.250	249.2	9115	23582	1623	11466	275	
459778		QUARTZ AND MASSIVE PY & ASP 10-12% ALONG SHEAR	0.15	0.537	13.0	523	431	658	15343	4	
45978B	B. ACC	2 SILICIFIED ANDESITE WITH 3-5% PY. & ASP	0,15	0.591	- 27.9	337	3095	979	19256	26	
45979B	B. ACC	2 SILICIFIED ANDESITE WITH 5-6% COARSE & F.G. PYRITE	0.15	0.097	5.7	349	109	115	1265	1	
45980B	B. ACC	2 SILICIFIED ANDESITE WITH 5-6% PYRITE	0.15	0.032	1.4	319	56	22	120	1	·
45981B	B. ACC	2 ARGILLITE WITH DISSEMINATED AND STRINGERS PY.5-6%	0.15	0.045	1.6	119	38	42	255	1	
45982B	B. ACC	2 SHEARED ANDESITE WITH DISS. & F.G. PYRITE, 6-8%	0.15	0.222	1.2	328	88	17	540	1	
45983B	B. ACC	2 SILICIFIED ANDESITE WITH 3-5% PYRITE	0.15	0.021	3.3	76 -	69_	915	1908	1	
RG91-40	D PAM 1	STREAM SEDIMENT SAMPLE		0.015	0.7	46	27	90	13	1	
RG91-4	1 PAM 1	STREAM SEDIMENT SAMPLE		0.011	1.0	67	35	99	10	1	
RG91-43	2 PAM 2	STREAM SEDIMENT SAMPLE		0.020	1.3	114	56	123	14	1	
RG91-4	3 PAM 2	STREAM SEDIMENT SAMPLE		0.020	1.3	87	53	138	25	1	
RG91-4	7 PAM 2	STREAM SEDIMENT SAMPLE		0.014	1.5	136	73	163	26	1	
RG91-4	8 B. ACC	3 STREAM SEDIMENT SAMPLE		0.017	0.9	35	30	100	16	1	
RG91-4	9 PAM 2	STREAM SEDIMENT SAMPLE		0.006	0.9	36	27	92	12	1	
RG91-4	9АВ. АСС	3 STREAM SEDIMENT SAMPLE		0.021	1.4	84	79	246	41	1	
RG91-5	O B. ACC	3 STREAM SEDIMENT SAMPLE		0.017	0.9	70	41	106	16	1	

· · · · ·

(

 \bigcirc

A P P E N D I X B

ASSAY CERTIFICATES

COMP: BOND GOLD CANADA

PROJ: ZREM 24

ATTN: G.MACMILLAN

· · · · · · · · ·

.....

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1S-9995-RJ1+2

DATE: 91/08/31

* ROCK * (ACT:F31) PAGE 1 OF 2

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM I	BE B PPM PP		CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM		MO PPM	NA PPM I	NI PPM P	P PM	PB PPM	SB PPM	SR PPM	TH PPM	T I PPM	V PPM	ZN PPM	GA PPM F	SN PPM F	W CR
45615 B 45616 B 45617 B 45618 B 45618 B 45619 B	2.7	15830 18780 6240 14890 2600	82 1716 17590 808 60760	1 1 1 13	199 111 38 124 3	.5	5 17710 5 11800 9 27550 4 550 4 740	.1 .1 .1 .1 125.4	9 15 20 20 61	13 165 1587 79 388	29190 49740 98620 101790 241210	3850 1270	5	9460 12820 12320 16290 1010	530 1011 4297 234 1		200 100 10 20 10	1 20 1 4 1 4	10	17 119 1241 125 1678	9 9 60 9 11	18 14 25 1	2 1 1 1	32 29 13 30 13	16.2 42.0 16.6 42.6 3.2	58 270 1062 104 719	6 6 2 4	1 1 1 1	1 26 2 22 3 61 3 73 1 11
45620 B 45621 B 45622 B 45623 B 45623 B 45624 B	14.7 39.0 33.9 188.6 236.7	7990 8680 8250 4330 2560	2156 4240 3720 5834 2579	44359	137 65 60 30 27	.1 .1 .1	6 51580 8 12330 5 16130 9 48660 4 51530	.1 396.2 190.1 328.1 1218.5	14 14 15 19	667 561 381 881 1046	81870 67480 77490 114740 63080	2110	6 5 2	9070 9150 10420	11445 1144 1818 4921 10105	21 11 7 14 20	10 10 10 10 10	1 14 1 12 1 5	70 / 90 2/	898 5841 4815 4847 1900	9 31 21 128 194	44 17 20 48 67	1 1 2 1	13 11 12 7 5	24.2 29.8 21.8 21.7 18.5	199 18509 8518 13945 72400	1 1 1 1	1 1 1 1 3	3 41 1 14 1 22 1 17 1 21
45625 B 45626 B 45627 B 45628 B 45628 B 45707 B	2.2 55.0	7170 6260 15450 14630 6850	2734 2806 179 896 4757	7 3 1 1 10	22 25 154 63 89	.1 .2	5 48510 7 51730 1 14660 2 17330 7 1380	874.0 564.1 9.1 2.9 .1	29 17 8 9 15	786 189 15 93 2102	72240 76210 28770 43200 135790	2160 2150	5 10	14590 24390 14660 13810 1230	14915 8086 693 1694 1	45 7 3 1	10 10 150 50 50	15 9 1 9 1 18	00 1 10	5846 2281 162 229 279	56 15 6 7	51 58 17 20 2	1 1 3 3 1	8 30 15 47	160.9 25.1 20.0 29.0 34.4	57900 25599 722 388 119	1 1 4 3 1	1 1 1 1	1 48 1 25 2 43 3 45 1 24
45709 B 45710 B 45711 B 45712 B 45713 B	4.3 356.9 97.5 22.1	280	46432 7463 2615 146400 48457	42 17 15	96 1003 28 34 24	.1 .1	1 100 1 3 00	.1 6399.6 .1 46.3	22 28 28 30	6172 3135 214	133350 125030 67300 243030 272650	2380 560 300 230	11 4 3 1	9930 3190 1420 10 30	777 344 339 1 1	1 4 33 1 1	60 70 30 10 10	1 5 7 5 1 1	10 10 :	426 208 7408 1062 2272	20 3 1121 148 30	6 22 28 31 1	1 1 1 1	108 55 9 3 5	61.7 66.7 9.7 1.2 2.3	241 84 307200 444 3362	1 1 1 1	1 1 10 1 1	2 45 1 40 1 16 1 21 1 102
45714 B 45715 B 45716 B 45965 B 45966 B	41.4 7.7 .1 2.0	11960 1500 21730 18110 35030	3133 7233 354 58 507	6 14 26 1 1	85 24 246 107 103	.1 1 .2 .1	3 22210 4 8840 2 2990 1 10810 3 25170	4.6 1 24.1 15.5	7 36 28 19 25	323 32 114	47530 241470 86540 70250 101690	1670 3740	1 13 2	27830	1853 14 261 265 5234	63 1 2 10 1	30	1 1 5 1 18 1 14	90 10 70	764 1015 72 48 598	7 1 1 1	29 1 22 32	1 1 2 1	7 93 28 75	342.8 21.9 27.6 213.5 160.6	716 374 1337 33 1321	31256	11111	8 87 1 125 3 75 4 54 3 24
45967 B 45968 B 45969 B 45970 B 45971 B	12.5 8.4 1.4 82.2	13960 3130 2830 10930 1270	39786 88530 2684 362 35371	4 1 1 1	83 28 46 939 80	.1	6 4210 5 6110 4 43950 1 17860 2 610	403.4 .1 .1 .1 .1	18 22 11 5 21	196 370 52 1564	171570 78210 22080 127230	1160 1260 2660 780	1 1 1 1	6390 1610 13630 7550 180	455 545 8570 406 1	1 6 45 10	30 10 40 90 20	16 1 71 10	50 10 60	6783 568 200 37 7276	41 46 3 6 54	7 1 51 32 2	1 1 2 1	28 21 12 59 18	22.8 49.7 44.1 469.3 22.8	15285 230 101 81 803	1 1 3 5 1	31111	3 107 2 93 6 151 12 169 3 105
45972 B 45973 B 45974 B 45975 B 45975 B 45976 B	3.0 5.2 249.2	710	61704 1103 3777 48668 114660	2 2 20 21	39 139 166 34 118	.1 .2 .1 .1 1	3 220 2 11180 1 15330 1 1400 1 160	.1 .1 .1 .1 .1	25 12 15 40 30		168370 48640 58060 173410 289560	780 4180 5140 860 470	6 1	100 19350 11200 1520 10	1 417 915 137 1	143 1 1	10 70 70 10 10	2 19 1 21 1	00 00 30	2907 174 110 70 3582	44 4 24 275	1 11 17 1 3	1 5 4 1	22 37 23 16 9	21.9 33.6 26.1 10.4 3.0	111 29 141 114 1623	1 7 5 1	1 1 1 1	2 100 4 81 3 65 2 54 1 33
45977 B 45978 B 45979 B 45980 B 45981 B	5.7 1.4 1.6	18910 11640 7920 23990 17120	15343 19256 1265 120 255	10 6 8 6 1	86 117 30 16 24	1	4 3760 5 4380 1 7790 1 9880 1 14010	.1 .6 .1. .1	46 32	337 349 319 119	146710 119390 215890 211730 94430	100 490 590	4 3 18	10990 5870 7020 18480 19600	591 565 318 444 628	1111	10 50 10 10 70		00 80	431 3095 109 56 38	4 26 1 1	2 4 5 11	1111	32 23 27 67 45	22.5 15.8 31.6 79.2 62.4	658 979 115 22 42	1 1 1 2	3 1 6 3 1	3 64 2 58 2 85 1 39 3 66
45982 B 45983 B RG 91-40 RG 91-41 RG 91-42	.7 1.0 1.3	3150 5390 13590 15880 21180	540 1908 13 10 14	8 1 11 11 8	1 136 161 365 428	.1 .1 .1 .1	1 20980 1 20010 5 15850 7 19180 5 11120	.1 11.1 .1 .1 .1	68 12 14 18 22	328 76 46 67 114	290790 35670 40310 49680 53600	90 2550 1140 1660 2090	25	3330 3250 11290 14430 15550	236 373 874 1023 1617	1 1	10 150 520 100 120		20	88 69 27 35 56	1 1 1 1	4 27 34 49 26	1 4 1 1	71 11 986 1594 644	20.1 8.0 67.5 94.1 93.8	17 915 90 99 123	1 1 4 2 3	1 1 2 1	1 102 2 67 2 20 3 29 2 15
RG 91-43 RG 91-47 RG 91-49	1.5	23590 25430 11320	25 26 12	24 8 6	327 244 610	.1 .1 .1	7 9790 4 8060 3 22720	.1 .1 .1	23 31 11	87 136 36	62730	3430 2350 2090	32 28 13	16860 17640 8840	2091 2319 1276		170 130 90	1 16 34 22 1 12	50	53 73 27	1 1 1	38 24 46	1 1 2	1326 603 474	120.7 96.3 56.7	138 163 92	3 2 3	1 1 1	2 14 2 26 1 10
					-																			- - -					
)					<u> </u>						\bigcirc														()		

COMP: BOND GOLD CANADA PROJ: ZREM 24

ATTN: G.MACMILLAN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 DR (604)988-4524

FILE NO: 1S-9995-RJ1+2 DATE: 91/08/31

* ROCK * (ACT:F31) PAGE 2 OF 2

SAMPLE NUMBER	AU-FIRE PPB	
45615 B 45616 B 45617 B 45618 B 45618 B 45619 B	37 192 1040 2190 10000	
45620 B 45621 B 45622 B 45623 B 45623 B 45624 B	385 1610 743 1970 1860	
45625 B 45626 B 45627 B 45628 B 45628 B 45707 B	2060 560 36 68 15000	
45709 B 45710 B 45711 B 45712 B 45713 B	5600 2130 9100 5500 8050	
45714 B 45715 B 45716 B 45965 B 45966 B	454 29400 778 316 204	
45967 B 45968 B 45969 B 45970 B 45971 B	423 2160 1600 107 2510	
45972 B 45973 B 45974 B 45975 B 45976 B	4300 76 210 2540 9100	
45977 B 45978 B 45979 B 45980 B 45981 B	537 591 97 32 45	
45982 B 45983 B RG 91-40 RG 91-41 RG 91-42	222 21 15 11 20	
RG 91-43 RG 91-47 RG 91-49	20 14 6	
		·
. ())	\bigcirc

EN LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-9995-RA1

о _Г

Company:	BOND G	OLD	CANADA
Project:	ZREM 24		
Attn:	G.MACMI	LLAN	

MN

Date: AUG-31-91 Copy 1. BOND GOLD CANADA, VANCOUVER, B.C. 2. BOND GOLD CANADA, C/O MIN-EN LABS.

He hereby certify the following Assay of 20 ROCK samples submitted AUG-20-91 by G.MACMILLAN.

	*AU oz/ton	*AU g/tonne		Sample Number
	.033	1.12	' B	45617
	.071	2.45		45618
	. 298	10.20		45619
	.066	2.26		45621
	.063	2.17		45623
	.045	1.55	Β	45624
	.075	2.56	В	45625
	. 496	17.00	B	45707
	.187	6.40	B	45709
	.069	2.37	В	45710
	. 303	10.40	В	45711
	.230	7.89	B	45712
	. 274	9.40	B	45713
	1.091	37.40	В	45715
	.105	3.64	В	45968
	. 061	2.10	B	45969
· · ·	.075	2.58	В	45971
	.118	4.03	В	45972
	.097	3.33	В	45975
	.474	16.25		45976

*AU = 1 ASSAY TON.

Certified by

COMP: BOND GOLD CANADA

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 15-9996-RJ1

DATE: 91/08/26

ATTN: G.MACMILLAN

PROJ; ZREM 21

TN: G.MACMIL	LAN								(6	04) 980-	5814	OR (604)98	8-452	4							* R(DCK *	(ACT:	F31)	PAGE	1 OF
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM PF	B PM F	BA BE E PPM PPM PF			CO PPM	CU PPM	FE PPM	K PPM	LI	MG PPM	MN PPM	MO NA PPM PPM	PPM	P PPM	PB PPM		SR PPM P		TI PPM	V PPM		GA PPM P		W CR M PPM
45251 B 45374 B 45937 B 45938 B 45938 B 45939 B	14.5 177.4 1.4 411.6 352.6		80 2 16 1294 1627	1 2		2 37560 11 19720 1 13650 1 55530 1 54800	.1 4157.0 .1 241.8 483.4	14 9 14	301 100 4166 44980	124540 44490 52650 41750 60120	580 910 1370 1160 1570	12 1 4 1 1	7560 2940 4430 3300 14410	2274	1 300 25 30 3 680 2 370 2 430	1 5	950 1340 320 360 630	26 73658 17 21148 2533	2615 36014	180 75 11 64 163	1 ' 2	177 9 11	18.9	27 151320 9 6241 5233	1 1 1 3	2 8 1 2 1 2 1	9 82 1 36 4 122 7 165 1 105
45940 B 45941 B 45942 B 45943 B 45944 B	306.5 71.1 183.8 202.1 55.1	1920 1130 2400 2710 3140	94 2 79 2 34	24 12 4 21 6 22 6 14 3	71 .2 404 .1 695 .1 670 .1 1 341 .1	2 56660 1 77320 8 19190 10 33240 5 81590	1668.9	14 15	5781 219 741 216 78	55320	1470	6 2 1	12790 13020 2970 6080 13090	2357 3226 1865	13 50 4 40 19 40 22 40 7 50	1 1 2 1	570 590 1060 1560 900	56842 13844 58455 91515 17282	3964 144 617 293 97	117 216 75 120 183	1 1 1 1 1 1	14 10 13 15 17	15.4 27.5 20.5 21.0 35.0	58408 20476 111296 109790 44596	4 2 1 3 4	6 1 6 9	6 50 4 57 1 75 8 73 4 72
45945 B 45946 B 45947 B 45948 B 45948 B 45949 B	1.8 26.7	7200 4060 1380 25120 750	31 46 25 6 28	8 2 7 12	183 .1 116 .1 54 .1 87 .1 25 .1	1 51370 3 52630 1 62190 4 9580 1 141330	218.3 1440.6 119.8 .1	17 15 8 21 4	106 41 49 112 206	50670 49750 46260 52170 17590	4360 2480 1000 2450	1 1 38 1	10310 10550 3130 35080 3650	1650 2372 2709 1148 3173	1 150 10 80 1 50 1 360 1 70	1 1 1	1710 1390 350 2110 200	4786 41773 1179 223 919	60 142 24 1 26	117 167 131 13 144	1 1 1 1 1 1	20 16 11 342	39.2 55.5 11.0 247.9 19.3	7033 50099 3808 305 444	4 3 1 8 5	1 3 1	3 47 5 82 5 126 6 61 2 52
45950 B 45951 B 45952 B 45953 B 45954 B	9.1 3.3 53.2 21.9 13.5	8590 4820 2680 1410 1460	9 0	1 1	431 .1 78 .1 60 .1 50 .1 60 .1	1 10780 1 127350 1 30990 1 75750 1 86160	246.3	11 9 60 10 8	20577 1255 264 35 39	42680 46110 85360 66280 58430	950 1780 820 1200	1 3 1 1	1350 13390 5160 18290 21730	365 5925 1376 2889 2794	1 110 1 30 1 60 1 30 1 40	5 1 1 1	1370 140 620 200 300	36 29 3263 4601 999	109 1 55 18 17	17 214 57 216 222	1 1 1 1	7 12	45.5 19.0 14.1 13.6 16.7	98 1 3682 6727 2114	1 5 1 3 5	1 1	5 72 4 74 3 106 4 94 5 141
45955 B 45959 B 45960 B 45961 B 45962 B	1.4 48.3 865.6 149.9 663.2	890	37 26 1427 43 4143	21		1 130860 1 121390 1 55680 1 38870 12 39260	.2 86.7 501.6 727.8 3417.5	14 6 21 7 16	53 111 46743 358 2851	46840 44630	1400 750 2940 700	1 1 1 1	21960 12600 3090 5980 11900	4950 2264 2309 1510 1311	7 160 1 50 4 110 6 70 26 370	3 1 5 1 4	850 230 1200 240 910	58 1839 13503 23229 163290	2 70 31981 352 3043	217 354 76 74 131	1 1 2 5	13 9 16 7 11	35 4	51 2983 4790 25249 118544	6 5 1 1 2	1 2 2	3 48 5 114 8 37 7 204 2 52
RG 91-48 RG 91-49 RG 91-50	1.4	10530 15340 11170	41	61) 14 14	064 .1 273 .1 717 .1	3 26170 5 12790 5 22740	.1	11	35 84 70	32820 43700 36940	2560 1450 1570	10 19 14	8340 11160 9830	1503 1708 1510	1 90 1 90 1 90	6	1290 1390 1410	30 79 41	1	57 28 51	3 3 4	317 675 498	50.6 78.8 59.2	100 246 106	3 2 2	1 1 1	1 10 2 12 1 10
					-			·												<u></u>						-	
					· ·		•													,							<u></u>
		-																									<u>*</u>
,	-									<u></u>													<u></u>				
		<u> </u>												_				<u> </u>						<u>. </u>	-		
. (5										($\overline{)}$													\rangle		

COMP: BOND GOLD CANADA

PROJ: ZREM 21

ATTN: G.MACMILLAN

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1S-9996-RJ1 DATE: 91/08/26

* ROCK * (ACT:F31) PAGE 2 OF 2

SAMPLE NUMBER	AU-FIRE PPB	
45251 B 45374 B 45937 B 45938 B 45938 B 45939 B	23 98 56 277 2410	
45940 B 45941 B 45942 B 45943 B 45944 B	49 42 129 105 27	
45945 B 45946 B 45947 B 45948 B 45948 B	25 96 23 29 15	
45950 B 45951 B 45952 B 45953 B 45954 B	26 20 306 85 16	
45955 B 45959 B 45960 B 45961 B 45962 B	17 185 790 68 157	
RG 91-48 RG 91-49 RG 91-50	17 21 17	
	· · · · · ·	
· ·		
. (}	

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

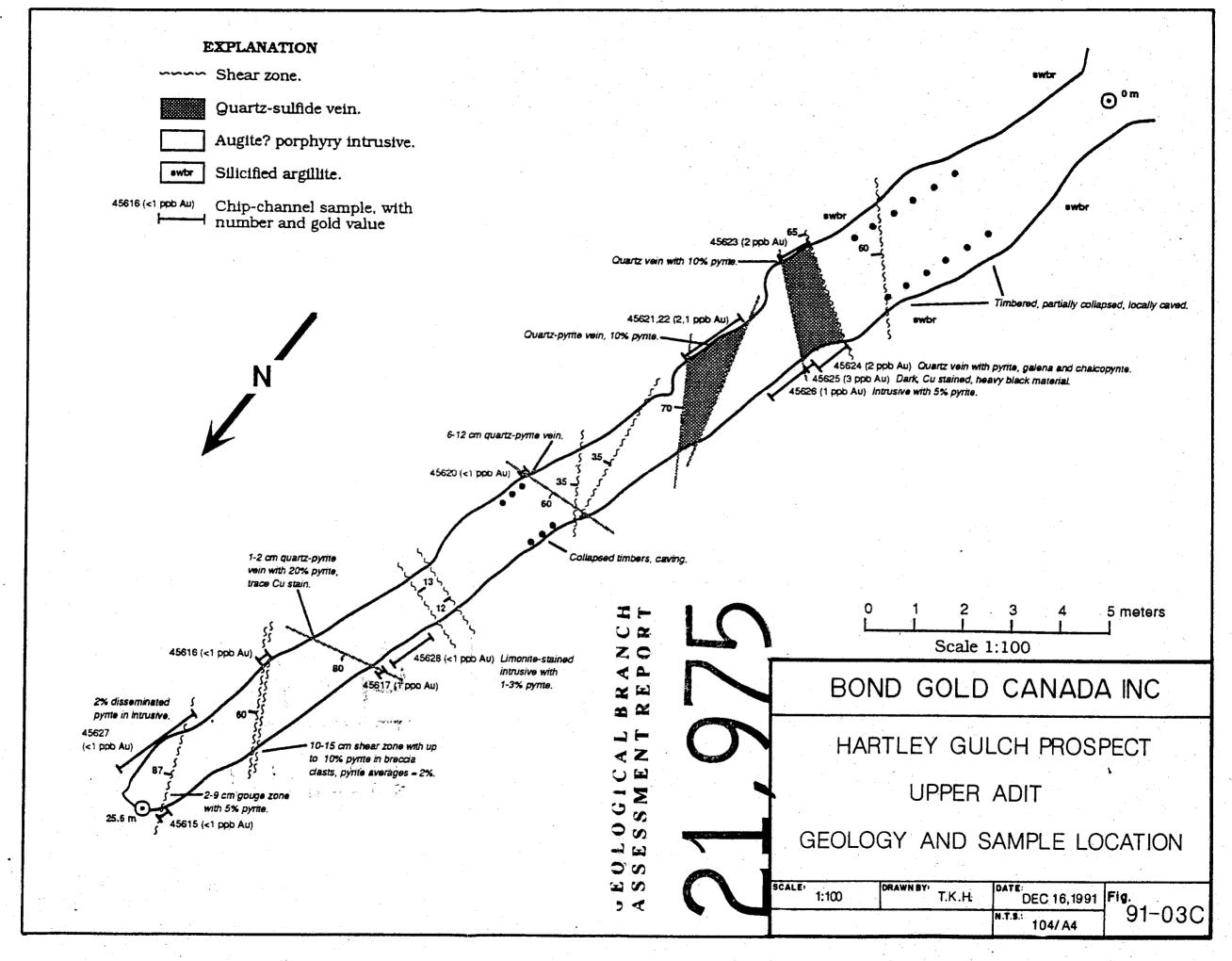
<u>Assay Certificate</u>

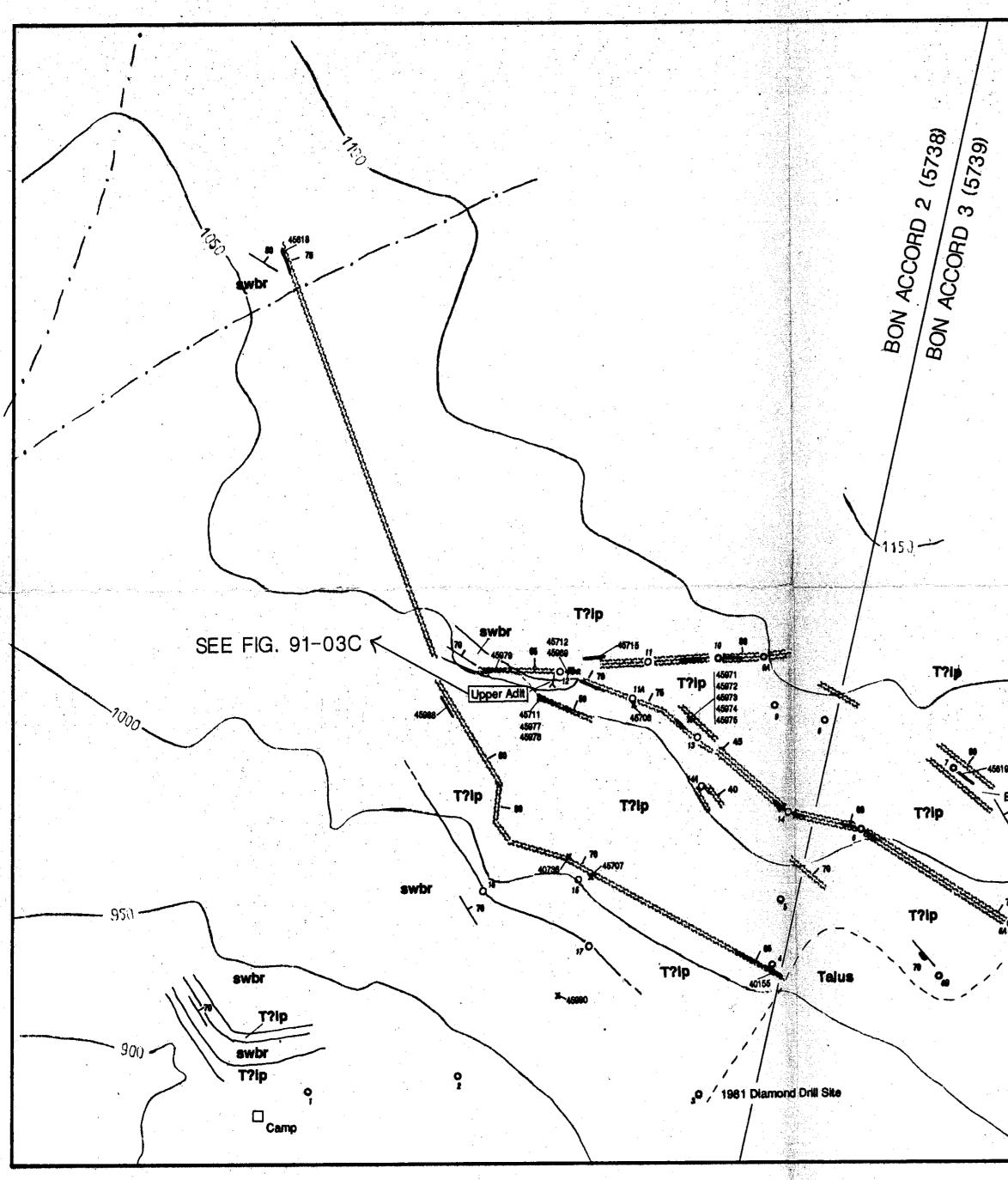
SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

1S-9996-RA1

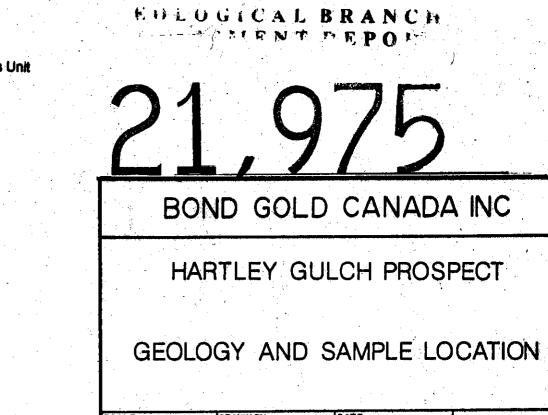
Company: BOND GOLD CANADA Project: ZREM 21 Attn: G.MACMILLAN

LABORATO (DIVISION OF ASSAYERS CORP.)

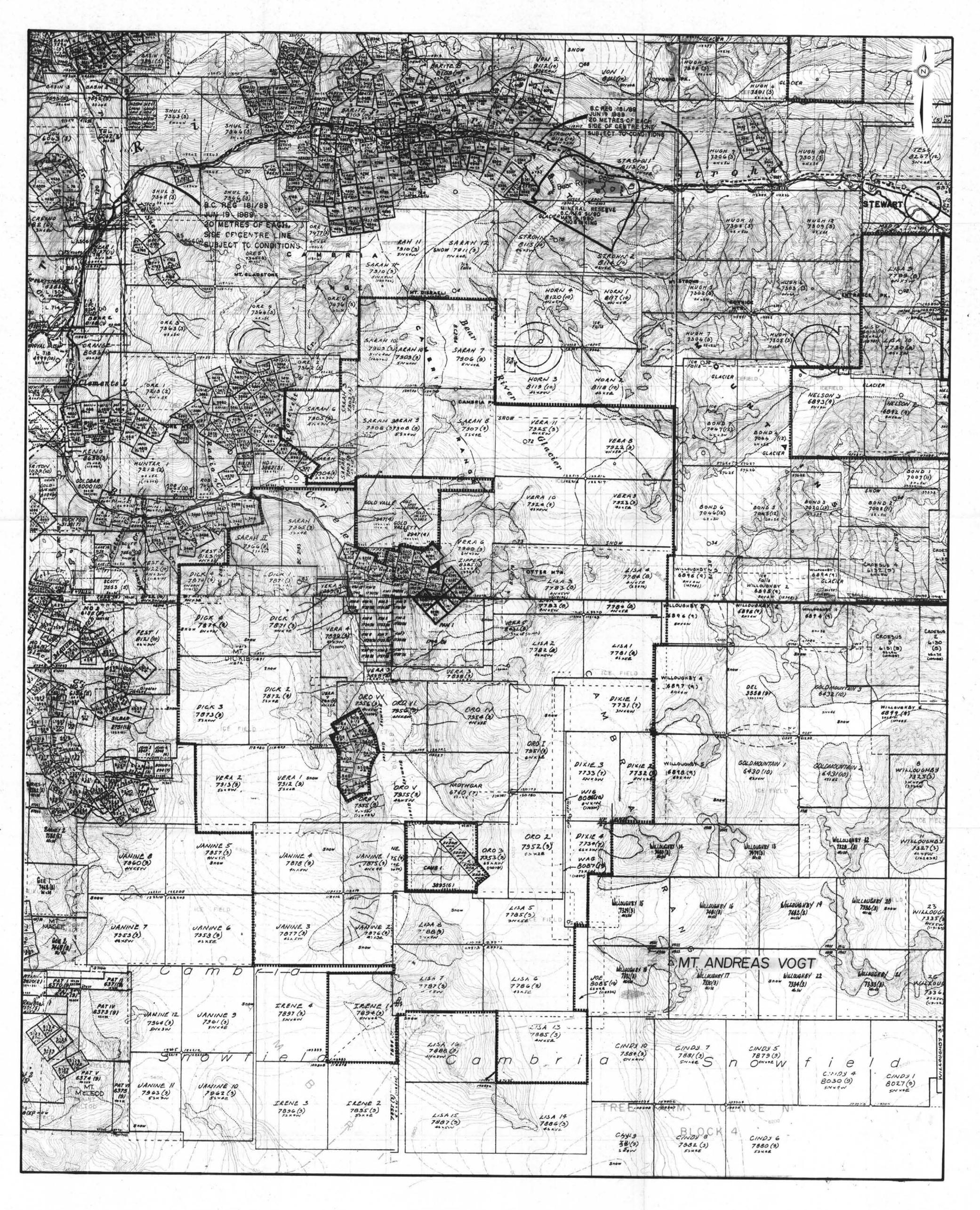

Date: AUG-26-91


Copy 1. BOND GOLD CANADA, VANCOUVER, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted AUG-22-91 by G.MACMILLAN.

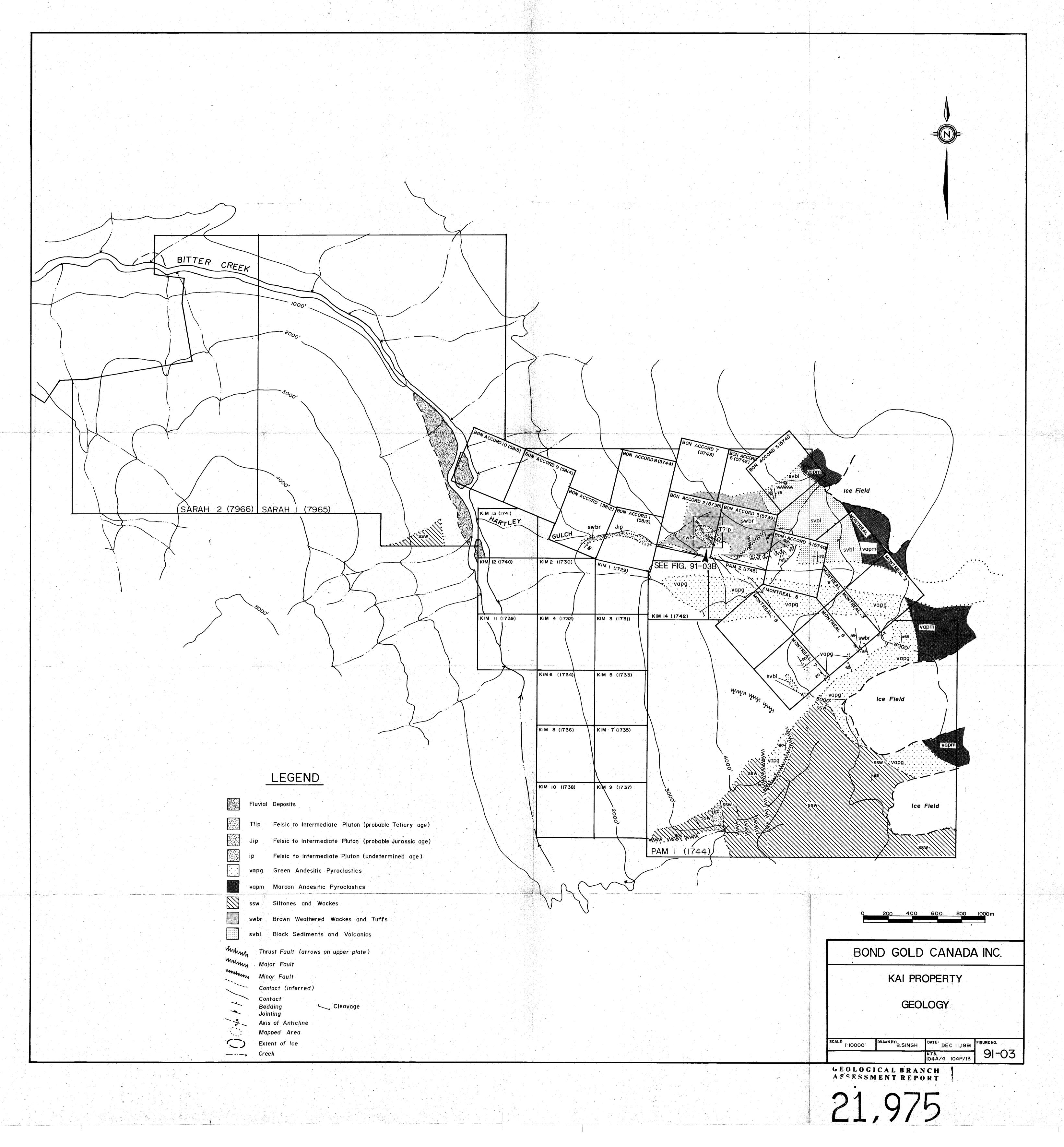

Sample	AU-FIRE	AU-FIRE	
Number	g/tonne	oz/ton	
45939 B	2.53	,074	

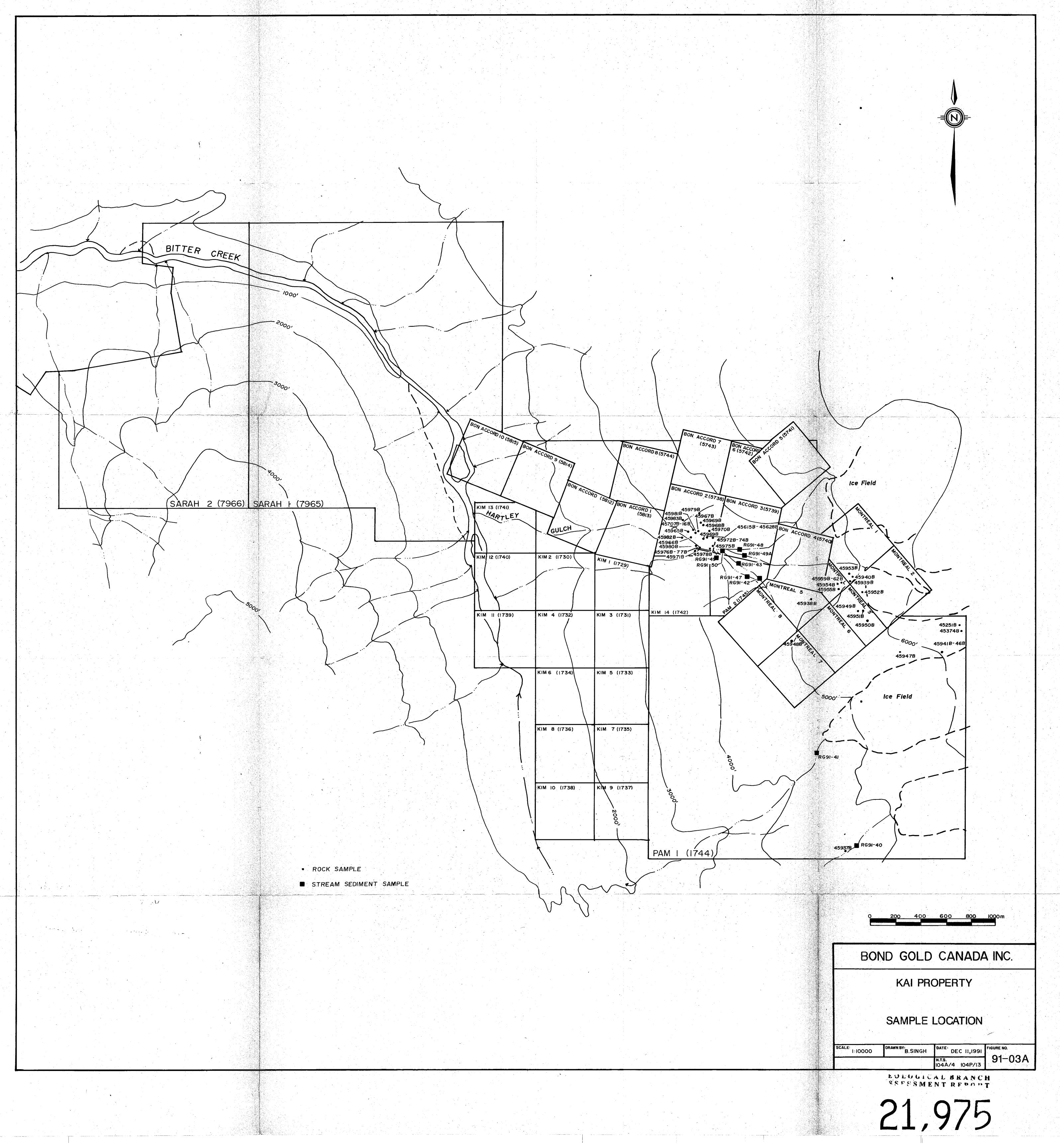
Certified by Perform


	EXPLANATION	
T?lp	Felsic to intermediate pluton of Tertia	ry(?) age.
swbr	Brown-weathering wackes and tuffst grey-weathering, coarse-grained sedim with minor siltstone and limestone; oc interbeds in volcanic units.	ents and tuffs
xxxxxxxx	Shear zone, with attitude.	
_	Sulfide mineralization.	میں اور اور میں اور
	Contact, dashed where approximate.	
	Attitude of bedding.	
atten M	Rock sample site.	
45567 X		

			: : :	
•	BCALE: 1+1000	DRAWN BY	DATE DEC 4,1991	- ^{Fig.} 91-03B
	DATA BY:DIH	EDRAL EXPL.	N.T.S. 104A/4	91-030
. •				

Bedded Siliceous Unit


40152 40153 40154 Talus



SOLOGICAL BRANCH SESSMENT REPORT

BOND GOLD CA	ANADA INC
CLAIM LOCA	TION
SCALE: /: 50000	91-02

