y	The MALO 9 RD
LOG NO: AUG 0 6 1992 RD	LOG NO: JANUS
ACTION: LOSS ACCOUNT	ACTION:
Justonest	
PROSPECTING REPORT - SKIN	NER. GROUP
FILE NO:	I FILE NU:

CLINTON MINING DIVISION NTS LOCATION 92N/9

LATITUDE: 51° 42' LONGITUDE 124° 22'

OWNER: LOUIS BERNIOLLES OPERATOR: OTTARASKO MINES LTD.

AUTHOR OF REPORT: L. BERNIOLLES DATE SUBMITTED: DECEMBER 23, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

22 (107
	FERNMENT AGENT CLINTON
	DEC 2 7 1991
	TRANS No.

TABLE OF CONTENTS

	Page
INTRODUCTION	. 3 /
Location of property	. 3 /
Access to the claims	. 3 /
Index map	. 4 /
Physiography and climate	. 5 /
Property definition	. 5 /
Summary of work done	. 6/
DETAILED TECHNICAL DATA AND INTERPRETATION	. 6 /
Purpose of investigation	. 6 /
Description of observations made during the investigation	. 6 /
Sample descriptions	. 8 /
Stream sediment survey	. 13 /
Soil survey	. 15 /
CONCLUSIONS AND RECOMMENDATIONS	. 17 /
ITEMIZED COST STATEMENT	. 18 /
STATEMENT OF QUALIFICATIONS	. 19 /
APPENDICES	. 20 /
Appendix 1 - Stream sediments, analysis results21	L-22 /
Appendix 2 - Soil sampling, analysis results23	3-29 /
Appendix 3 - Rock sampling, analysis results30)-38 /
MAP A - Regional Geology(in pock	cet) /
MAP B - Soil sampling locations(in pock	cet)
MAP C - Rock sampling locations(in pock	cet) /
MAP D - Detail Map, K.K. Zone(in pock	(et)
MAP E - Detail Map, Big Slide Zone(in pock	cet) /

INTRODUCTION

Location of property. The Skinner claim group covers approximately 20 $\rm km^2$ a few kilometres to the northeast of Tatlayoko Lake in the Western Chilcotin region of British Columbia.

Access to the claim. From Williams Lake, access to the area is by road to Tatla Lake, 225 km west of Williams Lake on Highway 20, then a further 25 km by good gravel road southward to Tatlayoko Lake, where a local 4 wheel drive road known as Skinner Road gives access to the western part of the claim group. Tatla Lake is a small unincorporated community; local businesses and services include a hotel, a motel, 2 restaurants, a general store, a garage and a nursing station.

Section of B.C. Road Map showing location of Index Map area.

- 3 -

- 4 -

.

Physiography and climate. The SKINNER group of claims is located at the northern extremity of the Chilcotin Range, a transitional feature at the contact of the Pacific Ranges with the Fraser plateau to the east. Locally, the summits of the Chilcotin Range are flat-topped or rounded, in sharp contrast to the jagged topography prevalent a few kilometres to the west in the Niut Range. Elevations on the claim group vary between 840 m in the Homathko valley to the west, and 1750 m at the summit of Mt. Skinner. Mount Waddington, the highest point in British Columbia's Coast Mountains (4016 m) is situated approximately 60 km to the southwest of the claim group.

The climate of the area is relatively dry and temperatures are moderate, seldom going below -20° C during the winter months. Typically, snow begins to accumulate in December and melts off in March or April. Timberline is at approximately 1800 m, and the claim group is entirely covered by scrub pines, with occasional Douglas fir stands on the lower slopes or ridges.

Property definition. The SKINNER group consists of 6 2 post claims and 6 4 post claims for a total of 86 units, effectively covering 1975 hectares after overstaking is taken in account.

Name	No. of units	record No.	expiry date
SK1	(4 P.) 1	3292	May 27, 2001
SK2	(2 P.) 1	3324	June 20, 2001
SK3	(2 P.) 1	3325	June 20, 2001
SK4	(2 P.) 1	3397	July 19, 1993
SK5	(2 P.) 1	3398	July 9, 1993
SK6	(2 P.) 1	3375	July 15, 2001
SK7	(2 P.) 1	3376	July 15, 2001
SKINNER 1	(4 P.) 18	3443	Oct. 6, 1995
SKINNER 2	(4 P.) 20	3444	Oct. 9, 1996
SKINNER 3	(4 P.) 9	3445	Oct. 14, 1995
SKINNER 4	(4 P.) 12	3446	Oct. 15, 1995
SKINNER 5	(4 P.) 20	3573	Feb. 6, 1996

These claims are underlain by a diorite stock (the eastern half of the Tatlayoko Intrusive) which has intruded Lower Jurassic sediments of the Tyaughton Trough. The Yalakom Fault, a major transcurrent fault of southwestern B.C., is mapped near the northeast corner of the property. The local geology was mapped by H. W. Tipper in 1967; the most recently published map of the area was compiled by G.S.C. geologists in 1985 (Open File 1163, Roddick & Tipper). A section of this map is included in this report (MAP A, in pocket).

The Mount Skinner stock has been fractured into numerous blocks along two axes: first, in a northwesterly direction, that is in the direction of the Yalakom Fault; and in a northeasterly direction, presumably as a result of stresses caused

- 5 -

by the major northwesterly faulting.

In June 1990, during a regional exploration program conducted by Tchaikazan Exploration Services Ltd. under contract to Ottarasko Mines Ltd., a gold-quartz vein (the Victoria vein) was located along a northeast trending break in the diorite intrusive. A small amount of hand trenching performed during the summer of 1990 exposed the vein over a strike length of 106 m, and sampling gave several high-grade gold values across the vein, the best assay being 3.957 oz/ton Au across 65 cm.

A 50% interest in the 5 units covering this discovery was subsequently optionned to Northair Mines Ltd. This option has since been terminated by Northair after their first-year trenching and drilling program failed to improve the strike length and vein widths substantially.

In parallel with this Northair program, Ottarasko Mines conducted a program of prospecting, stream sediment survey, soil survey, rock geochemistry and hand trenching on the remaining 81 units of the property. The results of this work are summarized by this report.

Summary of work done. The entire claim group, covering approximately 20 km², was prospected in detail by a threeperson team, for a total of 189 man/days, over the period March 14 to September 2 1991. A total of 199 soil samples, 21 stream sediments and 81 rock samples were sent for multielement analysis to ACME Analytical Laboratories Ltd. The results of these various sampling programs are examined and summarized in separate sections of this report.

DETAILED TECHNICAL DATA AND INTERPRETATION

<u>Purpose of investigation</u>. After the initial discovery, a staking program was undertaken to include most of the favourable geology into the claim group. Using the structural and geologic characteristics of the discovery vein, as well as soil geochemical orientation data gathered in the vicinity of this discovery, a program covering the entire group was initiated to find any possible extension or recurrence of this type of mineralization.

Description of observations made during the investigation. MAP C (in pocket), scale 1:12,500, shows the location of most of the rock samples which were taken during the prospecting program. Maps D And E (in pocket) scale 1:500, give a more detailed view of two areas of intensive sampling. Finally MAP B (in pocket) scale 1:25,000, shows the location of the soil sampling line at the foot of the bluffs to the south of Mount Skinner, along west and northwest-trending fault lines. The map showing the locations of samples and anomalies for the stream sediment survey is included within ghe text for that

- 6 -

....

section of the report.

As previously discussed, the discovery vein is located in a northeast-trending break within the diorite intrusive. The vein strikes at 50° to 60° and dips steeply to the northwest (70°). The fault lineament in which the vein is located strikes 70°, so that it appeared early in the program that any extension of the mineralization along this fault line would probably take the form of en echelon veins or vein segments of limited strike lengths. Detailed prospecting and hand trenching along the fault lineament confirmed these hypotheses and led to two additional discoveries of gold-quartz veining 300 m and 600 m east of the first showing. The vein widths are narrow (25 - 30 cm) and the values in gold are in the order of 1 to 3 grams per tonne. (Samples SK-91-13, SK-91-14, SK-91-52.) On the discovery vein itself, hand trenching showed that the vein is offset 3 m by a right lateral break 35 m from its eastern end. The offsetting fault strikes approximately 125° and dips 50° to the southwest.

A second area of interest on the claim group is located approximately 1600 m to the northeast of the discovery vein (Victoria vein) and was named the Big Slide showing because of the steep talus slope in which the mineralization is located. (See MAP E for details.) At the Big Slide, a number of narrow sub-parallel sheeted quartz veins are to be found, with southeast strikes and dips of $40^{\circ} - 45^{\circ}$ to the southwest. These sheeted veins therefore have the same general attitude as the offsetting break for the Victoria vein. These veins carry gold and copper mineralization, with assays varying between 2 and 56 gr/tonne Au and low copper values (up to .72% Cu) over widths of 2 to 15 cm. (Sk-91-61, SK-91-67, SK-91-69, SK-91-71, SK-91-72, SK-91-75)

A third area of interest (K.K. Zone, MAP D)was noted because of slightly anomalous copper values in outcrop (.25% Cu) as well as strong gold anomalies in soil samples. In spite of intensive and detailed prospecting, the source for the gold anomaly was not located.

Copper and molybdenum values were noted in a shear zone approximately 500 m due north of the Victoria vein. Copper values of up to 2% and molybdenum values of up to .08% were documented by Northair during their mapping program (Ar 21396, samples 76013-017).

- 7 -

SAMPLE DESCRIPTIONS:

- SK-91-1 Composite rock sample from talus taken over 50 m. Altered diorite with hematite, carbonate and magnetite. General chloritization. One piece felsite from dyke.
- SK-91-2 Rock from shear zone located uphill from SK-91-1. Altered diorite, carbonate veinlets.
- SK-91-3 Composite rock sample from talus taken over 25 m. Limonite stained quartz-carbonate, hematite stained diorite, iron + copper sulphide inclusions in granodiorite (malachite stains).
- SK-91-4 Composite rock sample from gully. Altered diorite.

. «

Ŀ,

- SK-91-5 Composite rock sample from shear zone taken over 30 m. Altered sediments (shales, greywackes). Carbonated, pyritized. Carbonate veins and veinlets.
- SK-91-6 Fractured, blood-red conglomerate. Epidote and quartz hairline veinlets.
- SK-91-7 Quartz float composite. Sericite, hematite stains.
- SK-91-8 Rock, from 2 outcrops 10 m apart. Fractured diorite. Joints strike 75° dip 80° S.
- SK-91-9 Rock, from outcrop of limonitic carbonated diorite.
- SK-91-10 Shear zone with calcite veining. Strike 50° dip 30° S.
- SK-91-11 Vein, outcrop over 20 m, 2 to 15 cm wide. Strike 80° dip 85° S. Calcite, limonite.
- SK-91-12 Outcrop in roots of overturned tree. Calcite, minor powdery grey minerals.
- SK-91-13 Quartz vein float. Several blocks up to 30 cm wide. Vugs, weathered sulphides, hematite and limonite stains. Located near fault scarp (strike 70° dip 70° 80° N).
- SK-91-14 Quartz vein in shallow trench 20 25 cm wide. Strike 70° . Exposed over 1 m.
- SK-91-15 Quartz vein. White quartz. Strike 120° dip 40° N. Exposed over 2 m, thickness 10 to 15 cm.
- SK-91-16 Quartz vein. Strike 40^o dip 85^o N. Exposed in shallow trench over 5 m, width 10 to 25 cm. Hematite stains, minor malachite.

SK-91-17 Outcrop of quartz rich felsite - 75 m².

- 8 -

<u>_</u>____

- SK-91-18 Quartz vein. Strike 80° dip 75° N. Exposed over 3 m in shallow trench - 20 cm wide. Minor sulphides and malachite.
- SK-91-19 Quartz float, composite taken from south facing draw on talus.
- SK-91-20 Float sample, limonite rich.
- SK-91-21 Quartz veins (2) + stringers. Strike 20° dip 75° E. Width 20-60 cm. Exposed length 40 m altogether. White quartz.
- SK-91-22 Quartz vein float.
- SK-91-23 Outcrop of fractured altered volcanics. Joints strike 60^o dip 45^oS.
- SK-91-24 Sample from several carbonate veins outcropping in bluffs. Main vein striked 85° dip 40° N.
- SK-91-25 Quartz float. White quartz.
- SK-91-26 Quartz vein float. Hematite stains. Up to 10 cm thick.
- SK-91-27 From outcrop. Copper sulphides and malachite disseminated over 1 m^2 in altered diorite.
- SK-91-28 Quartz float. Fractured, pyritized, rusty weathering quartz.
- SK-91-29 Quartz float composite. Mostly white quartz. Fractures, grey or brown inclusions and crack-fillings. Country rock slightly rusty.
- SK-91-30 Composite from talus. Pyritized c ountry rock, orange or red weathering.
- SK-91-31 Talus float. Altered quartz-flooded rock. Hematite stains.
- SK-91-32 From outcrop. Large alteration zone, iron stains, epidote. Country rock diorite.
- SK-91-33 From outcrop within extensive gossanous area. Quartz lens(?) with heavy yellow stains on fractures.
- SK-91-34 From outcrop. Rusty weathering quartz.
- SK-91-35 Fractured pyritized rock.
- SK-91-36 Composite from float in fault lineament striking 60^o at eastern limit of gossan area. Pyritization, limonite.
- SK-91-37 From outcrop. Quartz with iron and molybdenum stains.
- SK-91-38 Quartz-carbonate outcrop. Strike 1250 dip vertical.

9 -

SK-91-39 Float block. Pyritized sediments.

SK-91-40	From outcrop. Altered pyritized sediments.
SK-91-41	From float blocks of pyritized diorite.
SK-91-42	Coarse intrusive dyke in diorite. Strike 30 ⁰ dip 80 ⁰ S. 30 to 40 cm wide. Disseminated sulphides.
SK-91-43	Shear zone in diorite. Strike 10 ⁰ . 30 cm wide.
SK-91-44	Chip sample across shear zone in diorite. Strike 345°. 1 m wide.
SK-91-45	Composite from pyritized, fractured diorite.
SK-91-46	Composite from iron-stained float on talus and purple volcanic outcrop with calcite veinlets.
SK-91-47	Sample from shear zone in diorite. Strike 90 ⁰ . Quartz flooding, minor sulphides.
SK-91-48	Calcite veins and veinlets in brittle reddish volcanic(?) rock.
SK-91-49	Composite from traverse on talus over 50 m. Mostly altered diorite.
SK-91-50	Shear in diorite. Strike 20 ⁰ . Near mafic dyke. Quartz and hematite-stained diorite.
SK-91-51	Quartz vein hanging wall - sample across 50 cm. (See next, SK-91-52) Altered diorite.
SK-91-52	Quartz vein exposed in trench. Strike 45° dip 70° N, width 25 cm.
SK-91-53	Quartz vein footwall - sample across 50 cm. Altered diorite.
SK-91-54	Quartz vein in trench. Strike 70° dip 45° N.
SK-91-55	Quartz zone trenched on talus slope. Disseminated pyrite, limonite stains. Total outcrop over $5 \text{ m x } 2 \text{ m}$. This sample across 2 m at top of outcrop.
SK-91-56	See description above (SK-91-55). This sample across 2 m, center of outcrop.
SK-91-57	See description above (SK-91-55). This sample across 2 m, lower part of outcrop.
SK-91-58	Quartz-carbonate zone (vein?), strike 25° dip 80° S. Out- cropping out of talus slope over 5 m ² . Sample across 40 cm.
SK-91-59	Composite sample from gossan area. Disseminated pyrite, limonite staining. This sample taken from upper (eastern) part of altered zone.

- 10 -

- SK-91-60 See description above (SK-91-59). This composite sample is from lower part of gossanous area.
- SK-91-61 Quartz vein. Strike 120° dip 40° S. 5 10 cm wide, exposed on cliff-face for 20 m. Quartz with sporadic copper mineralization (chalcopyrite, malachite).
- SK-91-62 Quartz vein float. White quartz veinlets in greywacke.
- SK-91-63 Composite sample from quartz veinlets and lenses in diorite outcrop.
- SK-91-64 Composite sample from several outcrops of quartz-carbonate in talus slope.
- SK-91-65 Mafic rock containing magnetite. Sample from several large float blocks in talus.
- SK-91-66 Composite sample of quartz vein material from talus slope.
- SK-91-67 From outcrop. Pyritized, rusty weathering quartz from vein exposed in trench on talus slope. Strike 125° dip 40° S. Width 5 - 10 cm of primary vein material, but the footwall is quartz enriched and contains sulphides over another 20 to 30 cm. (See below - SK-91-68.)
- SK-91-68 Sample across 30 cm, quartz vein + footwall. (See full description above - SK-91-67.)
- SK-91-69 Quartz vein. Strike 115^o dip 40^o S. Width 5 cm, sulphides layered near center of vein.
- SK-91-70 Silicified zone on strike of vein described above (SK-91-67). Ten m away from trenched area. Sample across 3 m.
- SK-91-71 Quartz float. Vuggy quartz, hematite stains, weathered sulphide pockets.
- SK-91-72 Quartz vein. Strike 150° dip 40° S. 5 to 10 cm thick, exposed on rock slope for 15 m. Hematite stains, locally abundant sulphides.
- SK-91-73 Quartz-carbonate outcrop exposed over 10 m^2 .
- SK-91-74 Quartz vein. Strike 120° 75 m long, 20-30 cm wide.
- SK-91-75 Composite from 12 veins 2-4 cm thick, strike 125⁰-150⁰, dip 40⁰-45⁰ S. Mostly crystalline white quartz.
- SK-91-76 Dark brown altered diorite, from float block found near soil gold anomaly sample site.
- SK-91-77 Quartz float on talus slope.

SK-91-78	Shear zone. Strike 130° dip 30° N.	
SK-91-79	Pyritized shale and conglomerate sub	o-outcrop.
SK-91-80	Quartz lens, strike 15 ⁰ , 4 m long, White quartz with minor epidote.	25 cm wide.
SK-91-81	Mafic sill with abundant magnetite. exposure over 75 m, thickness 2 m.	Intermittent

×.

Stream sediment survey. Twenty-one stream sediment samples were taken from streams draining the Mt. Skinner area. Several small streams could not be sampled because of the extremely seasonal nature of the drainage in this area; because of this, some stream beds are totally vegetated and the value of sampling in these conditions would be questionable.

The background values for most elements appear to be quite low; the number of samples taken is too small to arrive at meaningful thresholds of anomaly by using statistical methods; instead the ten percentile value for high-contrast elements (Au, As, B, Mo) was arbitrarily selected as anomaly thresholds, as follows:

Au 🐘	10	PPB
As	50	PPM
В	25	PPM
Мо	10	PPM

The map on the following page indicates the locations of samples taken and the corresponding sample number, and shows the anomalous locations; the full analysis results as found in Appendix 1.

The gold anomalies are situated downstream from the Big Slide zone, where significant gold values in outcrop are located. Anomalies in Boron and Molybdenum correlate with these gold anomalies.

ARIS SUMMARY SHEET

District Geolo	ogist, Kamloops		Off Confidential	: 92.09.03
ASSESSMENT REI	PORT 22007 MIN	NING DIVISION: C	linton	
PROPERTY: LOCATION: CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR: COMMODITIES SEARCHED FOR: KEYWORDS:	Mt. Skinner LAT 51 42 30 I UTM 10 5729286 NTS 092N09W Skinner 1-5,SK 1-7 Ottarasko Mines Berniolles, L. 1991, 38 Pages Gold,Copper Jurassic,Sediments,I Chalcopyrite,Malachi	LONG 124 23 00 404416 Intrusives,Fault ite,Gold	s,Quartz veins,Pyr	ite
WORK DONE: Pro: PRO: RELATED	specting 5 1000.0 ha Map(s) - 5; Scale(s)) - 1:125 000,1:	25 000,1:12 500,1:	500
REPORTS: MINFILE:	21396 092N 039,092N 061			

Soil survey. A soil orientation survey was conducted across the Victoria vein before any mechanical work was performed in the vicinity. The samples were taken at 1 m intervals for 4 m right above and across the vein and at 5 m intervals to the north (downslope). A total of 8 samples were taken from the B horizon, and one sample from the A horizon, which is very thin and discontinuous in this area. The results are plotted on the next page, section view. Gold is definitely its own best indicator in this environment.

A further soil orientation study was conducted at the foot of the cliffs and talus, in the area where the vein might be expected to extend. The samples were taken at 25 m intervals. Here again, a downslope anomaly in gold values indicates that gold is the best indicator for the type of mineralization sought after. The results of this survey are also plotted on the next page, plan view.

Subsequently a 4.2 km survey line was established at the foot of the bluffs and talus line which mark the south and southwestern limits of the Mt. Skinner intrusive stock. Soi1 samples were taken every 25 m along this line. The samples taken during the orientation survey were incorporated in this line survey, samples OS-L1 through 10 becoming SK-S-086 through 077 in this incorporation. Map B (in pocket) shows the location of the survey line and of some control sampling The analysis results from this survey can be locations. found in Appendix 2, pp. 23-29. In addition to the anomaly located downslope from the discovery vein, a strong anomaly was identified near the northwest extremity of the line and led to a follow-up soil sampling program along two lines on ten metre centres in the K.K. zone, details on Map D (in pocket). The follow-up soil survey, and detailed prospecting in the K.K. zone, failed to locate a source for the gold anomaly. However, mildly gold anomalous altered diorite was found as float near the highest soil anomaly (sample SK-91-76).

Other soil anomalies were noted in the vicinity of the Victoria vein (SK-S-74, 23 PPB Au) and near the eastern end of the line (SK-S-161, 17 PPB Au). This last anomaly may be caused by a slightly auriferous mafic sill containing abundant magnetite (SK-91-65, SK-91-81).

- 15 -

¥.,

State on

CONCLUSIONS AND RECOMMENDATIONS

The Mt. Skinner property contains two intrusivehosted mesothermal gold vein systems. The main showing is the Victoria vein and two en echelon veins located 300 m and 600 m to the east of the Victoria, which belong to the same system. The Victoria vein has a strike length of 110 m and has been drilled to a depth of 32 m; it is open to the west and at depth. On the surface the best chip sample across the vein assays at 1.69 oz/ton Au over 1.4 m, and assays of more than 2 oz/ton over shorter intersects are common. At depth the best drill intersect so far is 1 m of 1.82 oz/ton Au at a depth of 32 m (true width 80 cm). On the basis of current data from surface sampling and drilling, a small reserve of 13,000 tons of .470 oz/ton Au is indicated with dilution to a 5-foot mining width. Approximately two thirds of the contained gold comes from an ore shoot 15 m long which rakes steeply to the northwest and has a calculated grade of 1.14 oz/ton Au diluted).

On the Victoria vein system, the following program is proposed: a) further hand trenching of the three veins to find possible extensions, with particular emphasis on the western end of the Victoria, which is inaccessible to mechanized trenching at this time b) further drilling of the Victoria, with emphasis on depth drilling of the main ore shoot c) bulk sampling of the main ore shoot for a depth of 3 or 4 m from the surface (150 to 200 ton bulk sample).

Approximately 1600 m to the northeast of the Victoria, a second gold vein system is characterized by a number of subparallel narrow sheeted quartz veins in the intrusive stock (Big Slide Zone). Assays of up to 55 gr/tonne across 15 cm have been obtained. In this area, a follow-up program of hand trenching and drilling is proposed. One drill hole, driven from the top of the zone on a strike of 30° dip 50° NE, would be approximately normal to all the sheeted veins found so far, and would therefore be a relatively economical way of evaluating the potential of the entire zone.

The Mt. Skinner area is prospective for porphyry-type copper-gold mineralization. Numerous occurrences of low-grade copper have been found on the property, and this area was in fact the target of a fair amount of grassroots exploration in the 1960's, with copper as the only object of the search. All additional information about this property should be looked at in this light; up to now the only area where copper and gold values seem to correlate to any extent is the Big Slide zone, and a large scale low-grade resource may be possible in that area.

- 17 -

ITEMIZED COST STATEMENT - MT. SKINNER PROJECT

· · · · ·

Field personnel - March 14 t 1 lead prospector (L. Ber 1 prospector (V. Ber 1 prospector (F. Ber	o Sept. 2 1991 niolles) 76½ days @ \$175 niolles) 37 days @ 125 niolles) 75½ days @ 125	\$	13,387.50 4,625.00 9,437.50
		\$	27,450.00
Supplies and field groceries		\$	2,271.40
Ground transport	4460 km @ 30¢	\$	1,338.00
Laboratory analysis rock samples sediment samples soil samples G.S.T. Shipping soil samples	81 samples @ \$12.75 21 samples @ 10.50 128 samples @ 6.00 71 samples @ 10.50	\$	1,032.75 220.50 768.00 200.94 223.58 745.50
		\$	3,191.27
Report writing and preparati includes writing, typing, and reproduction	on drafting, office supplies	\$	2,000.00
		- - -	

Total

\$ 36,250.67

×.

STATEMENT OF QUALIFICATIONS

I, Louis M. Berniolles, residing at Tatlayoko Lake, British Columbia, do hereby state that:

- 1. I am a graduate of the University of British Columbia, Vancouver (1963) and hold a B. A. degree in Economics.
- I attended the B. C. Ministry of E.M.P.R.'s Advanced Prospecting Course at Selkirk College, Castlegar, B. C. in 1979.
- 3. I have been engaged in mineral exploration on my own or as an employee of Tchaikazan Exploration Services Ltd., since 1979.
- 4. The work reported herein was carried out by myself or under my supervision: the conclusions and discussions of the data are my own.

Retuin

Louis M. Berniolles

Dated at Tatlayoko Lake, British Columbia, this 23rd day of December, 1991.

ŝ.

APPENDICES

7

Appendix 1 Stream Sediments, analysis results	p.	21-22
Appendix 2 Soil Sampling, analysis results	p.	23-29
Appendix 3 Rock Sampling, analysis results	p.	30-38

ACME AN LYTI	ICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 F	AX(604)253-1716
AA	GEOCHEMICAL ANALYSIS CERTIFICATE	AA
T T	Tchaikazan Exploration Services Ltd. File # 91-4675 P.O. Box 41, Tatla Lake BC VOL 1V0 Submitted by: LOUIS BERNIOLLES	ĨĨ
SAMPLE#	Mo Cu Pb. Zn Ag Ni Co Mn. Fe. As U Au Th Sr. Cd Sb Bi V Ca. P. La Cr. Mg Ba Ti B. Al Na K. ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	V Au** Pt** Pd** ppn ppb ppb ppb
CH-91-1	5 1104 2 11 1.0 5 14 324 2.66 34 5 ND 1 21 2 2 5 23 51 D10 2 13 .42 7 .01 3 1.37 .08 .03	1-136-111-
CH-91-2	7 31 3 42 3 16 7 1034 3.71 56 5 ND 1 39 5 3 2 10 3.43 011 2 69 26 34 01 9 29 02 14 4 883 2 19 5 6 66 317 7 79 15 5 ND 1 5 2 2 4 41 10 006 2 18 70 5 01 2 1.35 02 02	2-24-1-1
2. CH-91-4	4 326 2 165 4.5 13 8 745 13.63 597 5 36 1 14 5.7 2 2 42 .65 022 2 50 .77 31 04 8 1.68 .03 .17	2 24118 1 -1
RE CH-91-8		() (1) (1) (1) (1) (1) (1) (1) (1) (1) (
CH-91-5	-7 121 5 13905 1.9 8 8 1435 7.71 51501 6 15 1 178 478.1 9 2 15 7.63 010 2 24 .36 17 01 6 .41 02 10 -3 287 2 107 1 0 7 20 311 8 99 49409 5 6 1 15 3 1 2 2 17 38 006 2 1 42 8 02 2 72 02 08	8 12791 1 3
CH-91-7	-5-45-2-26 3 15 19 211 7.42 49330 5 3 1 19 .2 2 2 17 .15 .007 2 45 .31 16 .02 2 .79 .04 .14	1 5023 2 4
CH-91-8 OT-91-27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 <u>19</u> <u>1</u> <u>3</u>
SK-91-81	1 31 4 150 .4 1 22 1578 8.92 31 5 ND 1 17 .8 2 2 9 2.81 .023 2 6 .55 72 .05 289 1.49 .21 .29	1 11 1 2
STANDARD C/FA-10R	IR 18 59 36 132 6.7 70 32 1039 3.96 39 16 7 36 53 18.4 15 18 56 .48 .090 36 58 .88 177 .09 33 1.88 .06 .15	1 <u>3</u> 471 454 463

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP/GRAPHITE FURNACE.(30 GM) Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 24 1991 DATE REPORT MAILED: >/

œ

32

ACME AN	ACME AN UTICAL LABORATORIES LTD.							8	52 E	. н	STI	NGS	ST.	VAN	COUV	/ER I	B.C.	¥6	A 1	R6	j	PHON	E(60)4)2	53-:	3158	FA	60	4)253-1	716
4 4				Te	<u>cha</u> :	<u>ika</u>	<u>zan</u>	Ex	G plo	EOCI <u>rat</u>	HEM: ion P.(ICA Se	L Al <u>rvic</u> x 41,	NAL 205 Tatl	YSI Lto a Lak	S CI	ERT:	IFIC File VO	ат: • #	E 91	-197	72	Pa	age	1			9	A /	A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	TI X	B ppm	Al %	Na %	K W X ppm	Au* ppb
SK-C-1	1	11	5	84	.1	11	10	1014	3.33	11	5	ND	1	45	.9	2	2	53	.85	.040	4	17	.70	66	.08	2 1.	42	.03	.06 1	2
SK-C-2	1	22	2	61	.4	12	11	474	2.91	9	5	ND	2	56	.2	2	· 2	55	88.1	.038	4	18	.69	69	.10	13 1.	56	.05	.10 1	5
SK-C-3	1	56	2	69	.4	14	9	488	2.80	7	5	ND	1	51	.6	2	2	45	.12	.053	. 4	18	.53	85	.08	30 1.	82	.04	.12	2
SK-C-4	1	28	6.	81.	•4	11	12	3884	2.81	15	10	ND	1	114	•2	4	2	44	1.55	3117	3	19	.62	132	.05	16 1.	51	.03	.10 1	1
SK-C-5	1	40	4	89	.3	13	13	754	3.71	20	5	ND	ł	54	•7	2	2	62 1	.94	.046	5	18	.84	86	.09	51.	84	.04	.09 1	4
SK-C-6	1	31	2	68	.3	8	11	635	3.25	8	5	ND	1	26	.2	2	- 2	-58	.92	.023	4	16	.58	57	.08	51.	95	.02	.05 1	1
SK-C-7	2	83	2	99	.2	13	15	1042	3.68	10	5	ND	- 1	44	.5	2	2	60	1.73	056	7	18	.77	102	.04	11 2.	67	.02	.08 1	6
SK-C-8	15	33	2	86	.4	9	18	4174	5.05	17	5	ND	1	34	.6	. 2	-2	70 '	1.07	.033	- 3	14	.66	105	.06	21.	68	.02	.04 1	1
SK-C-9	3	34	6	148		16	18	852	5.73	31	5	ND	1	38	.9	2	- 2	46	.85	.052	5	13	.61	84	.02	2 1.	87	.02	.03 1	2
SK-C-10	2	• 37	7	141	.2	14	22	989	5.98	34	5	ND	1	46	.7	2	2	44	1.04	. 053	5	13	.57	92	.04	2 2.	08	.02	.04 1	4
SK-C-11	2	31	7	127	.4	12	16	951	5.13	25	5	ND	1	49	.7	5	2	53 1	1.12	.056	5	.14	.59	85	.07	5 1.	96	.03	.04 1	2
SK-C-12	1	19	3	97	.3	6	9	609	4.39	15	5	ND	· 1	61	.6	2	2	31 1	1.53	2038	2	7	.38	63	.04	22.	68	.03	.04 1	1
STANDARD C/AU-S	20	59	40	136	7.3	71	32	1104	4.03	38	21	7	40	52	18.7	15	21	56	.50	.092	39	59	.90	180	.09	31 1.	96	.07	.14 11	48

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 STREAM SED P2 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPY.

SIGNED BY

Ame 28/91

DATE RECEIVED: JUN 25 1991 DATE REPORT MAILED:

~ 21

. . . . D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Tchaikazan Exploration Services Ltd. PROJECT SK-91 FILE # 91-2760 Page 2 ACHE ANALYTICAL ACHE ANALYTICAL P % Mg Ba % ppm Pb Zn Ag Co Mn Fe As U Au Th Sr 🛞 Cd Sb ßí V Ca La Cr Ti B AL Na - K 🖉 W Au* SAMPLE# Cu Ni Mo ~ % % 🌾 ppm % % ppm ppb ррт % ppm noq ppm 14 .60 11 928 4.07 17 .9 2 50 1.02 .046 3 96 .09 4 2.09 .04 .05 1.0 5 ND 48 2 SK-C-13 20 8 105 1 11 1 1 118204.0116128314.5098 54 1.11 .040 15 .64 121 .11 54 1.1 2 3 6 2.07 .04 .06 24 8 117 **1** 12 5 ND 1 2 **3** .4 SK-C-14 1 56 .85 .040 51 1.11 .049 5 43 1.0 2 2 3 20 .83 101 0.11 4 2.12 .04 .06 1.3 ND. 1 SK-C-15 1 26 9 126 .2 16 2 14 .63 109 10 11 969 4.82 51 5 ND 1 52 .9 2 2 .10 3 2.01 .03 .06 1.8 SK-C-16 1 : 17 4 112 5 ND 1 29 1.0 2 2 78 1.04 .039 2 15 1.13 45 .06 4 2.24 .03 .05 11.5 4 112 10 16 1680 4.93 11 SK-C-17 10 51 7 11 747 3.61 39 2 2 57 1.19 .044 3 16 .61 67 .06 14 1.92 .03 .07 1.3 77 8 5 ND 1 SK-C-18 1 47 6 11 9 6 50 ⁻ 2 2 51 1.45 .062 3 20 .57 152 .06 9 2.09 .03 1 1.9 72 73 5 ND .9 .08 7 .1 12 12 2701 3.44 1 SK-C-19 1 39 5 47 1.65 .068 53 9 2 2 15 .57 107 .06 18 1.96 .04 1 12 9 871 3.21 ND 1 2 .09 1 2.1 SK-C-20 83 4 1 3 15 .75 116 .07 27 1.93 .04 .11 2 52 1.38 .055 9.9 12 1489 3.44 13 5 ND 53 1.2 2 65 6 80 .3 14 1 SK-C-21 1

22

 $\overline{\mathbf{C}}$

- 23

Tchaikazan Exploration Services Ltd. PROJECT SK-91 FILE # 91-1163

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr pom	Cd DDII	Sb pom	Bi ppm	V	Ca %	Р %	La	Cr pom	Mg %	Ba	Ti X	B	Al %	Na %	K pp	Au*
<u></u>			FF	F.F	arres active																									<u> </u>
OS-L1	1	22	5	150	.2	9	7	602	2.40	5	5	· ND	1	38	.3	2	· 2	- 47	.51	.060	3	16	.34	191	.11	11	1.17	.03	. 15 🛒	2) 3
0S-L2	1	15	2	75	.2	5	8	452	2.42	3	5	ND	1	32	.2	2	2	50	.47	.031	3	17	.38	103	. 12	13	1.15	.03	.17	5 24
OS-L3	1	24	2	104		11	. 7	673	2.40	2	· 5	ND	1	31	-2	3	2	46	.48	028	- 4	17	.38	191	312	17	1.19	.04	.13 📖	2; 8
OS-L4	1	18	2	93	8 . 1	8	8	445	2.38	2	. 5	ND	1	28	•2	2	2	50	.47	.016	3	15	.36	110	.13	10	1.17	.03	.12	lį 3
0S-L5	· 1	28	2	92		11	. 8	589	2.71	3	5	ND	1	34	.2	2	2	52	.46	.047	. 4	18	.43	181	.12	9	1.34	.03	.27	2
														-																÷
IOS-L6	1	42	2	76		11	. 9	1121	2.87	4	5	ND	1	33	.2	2	2	55	.57	.035	5	19	.43	180	01331	8	1.55	.03	.21	1월 1
05-17	1	50	2	95		10	9	1058	2.66	3	5	ND	1	32	.2	2	2	50	.59	.051	4	17	.41	195		6	1.46	.02	.22	1 2
05-18	1	19	2	131	.2	7	5	367	2.19	2	5	ND	1	32		2	2	44	.46	.036	3	15	.31	101	.12	9	1.10	.03	.23	1 3
05-10	1	16	2	55		11	8	455	2.38	3 3 C	5	ND	1	30	.2	2	2	52	.46	021	4	17	.35	72	13	. 8	1.11	-04	.22	1 2
05-110	1	21	2	88		ö	7	1158	2.60	2	5	ND	1	35	3	2	2	50	.54	016	5	16	.38	141	.13	2	1.28	.03	.25	1 3
																														8 - T
05-111-4	. 4	67	4	218	and the second s	16	16	4450	3 54	•	5	ND	1	54	6	2	2	62	.65	141	5	22	.57	339	0 10	4	2.91	-02	_ 14 📖	18 35
00-111-P		64	2	145		17	16	1608	3 50	5	. 5	ND		38		3	2	66	53	0.85	4	23	.63	190		ż	2.90	.02	M	52
103-01-B		71	2	144		10	16	1534	3 61	2	5	ND	2	36	×.	Š	2	. 68	50	001	5	23	63	177	- 11	8	3.07	.02.	00	67
05-02-5		F4		110		10	17	1204	2 11		5		1	30	· /	2	5	60		045	Ĩ.	20	56	150		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 43	02	.07 08	10 120
05-03-8		20	2	119		10	11	1415	2.11	and the second s	5	ND	1	34		2	2	56		000	- 7	10	53	160			2 08	02	10	170
05-04-6		. 45	2	110		14	11	1015	2.75		2	ND			••	. Ľ	· -	50	- 41		-	. 13		100		-	2.00	.02		
00 UF 0		07		440		10	17	AFE	7 /7		· E	ND		7/	<u> </u>		. 7	45	17	0.42	5	22	42	1/.0		4	5 47	02	na 🧰	10 200
US-US-B		60	. 0	110		19	12	000	3.42		5	NU		. 24	÷4			57	.43	004		40	.02	140		7	1 01	.02	-00	6 200 6 220
10S-06-B	1	. 51	. 2	112	88 5	10	10	804	3.08		2	NU	1	37	88 •12 -	. 2	2	20	.40	010	4	10	.27	103		2	1.91	.02	.09	1 220
OS-U7-B		30	2	95		. 9	11	937	3.00	<u></u>	. 2	ND	. 1	34	•0	2	2	60	-41	-048	- 4	20	.52	112	() () () () () () () () () ()	2	1.80	.02	.12	190
OS-U8-B	1	38	3	88	.3	12	12	1119	3.10	2	- 5	ND	1	- 38	 2	. 2	· 2	60	.61	.045	4	20	.57	147	.10	Z	2.47	.02	.09	1 110
STANDARD C/AU-S	20	61	41	133	7.3	72	- 33	1076	3.97	38	22	· 7'	. 40	53	17.0	15	21	59	.48	090	41	59	-88	178	.09	34	1.89	.07	.15 🚿	18 46

• 4

Pag 2

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. PHONE(604)253-3158 FAX(604)253-1716 ц. Р

GEOCHEMICAL ANALYSIS CERTIFICATE

Tchaikazan Exploration Services Ltd. PROJECT SK-91 FILE P.O. Box 41, Tatla Lake BC VOL 1V0 Attn: LOUIS BERNIOLLES FILE # 91-1669 Page 1

\sim	SAMPLE#	AU*	
		ppb	
	SK-S-001	2	
	SK-S-002	1	
	SK-S-003	1	
	SK-S-004	1	
	SK-S-005	- 1	
	BK B 005		
	SK-S-006	1	
	SK-S-007	1	
	SK-S-007	· · ·	
	SK-S-008	2	
	SK-5-009	4	
	SK-S-010	L L	
	SK-S-011	1	
	SK-S-012	1	
	SK-S-013	1	
	SK-S-014	320	
	SK-S-015	11	
	SK-S-016	3	
	SK-S-017	160	
	SK 5 017	100	
	SK-S-010	1	
	SK-S-019	. 1	
	SK-S-020	1.	
	SK-S-021	2	
	SK-S-022	1	
	SK-S-023	· 1	
	SK-S-024	1	
and the second	SK-S-025	1	
		-	
	SK-S-026	1	
	SK-S-027	- 1	
	SK 5 027	1	
	SK-S-028		
	SK-S-029		
	SK-S-030	5	
	SK-S-031	2	
	SK-S-032	5	
	SK-S-033	1	
	SK-S-034	1	
	SK-S-035	1	
	SK-S-036	1	
	STANDARD AU-S	46	
· · · · · · · · · · · · · · · · · · ·	DIMPHID NO D	- T	and the second

DATE REPORT MAILED: June 13/91.

- 24 -

-4,

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

JUN 10 1991 DATE RECEIVED:

SIGNED BY

Tchaikazan Exploration Services Ltd. PROJECT SK-91 FILE # 91-1669 Page 2

÷.

	SAMPLE#	AU*
60		dqq
	SK-S-037	
	SK-S-038	$\mathbf{\overline{8}}$
	SK-S-039	3
	SK-S-040	2
	SK-S-041	1
and the second second second second second	SK-S-042	
	SK-S-043	
· · · · · · · · · · · · · · · · · · ·	SK-S-044	$\frac{1}{2}$
	SK-S-045	1 = 1
	SK-S-046	1 1
	SK-S-047	1
	SK-S-048	2 2 3
	SK-S-049	1
	SK-S-050	1
	SK-S-051	1
	SK-S-052	1
	SK-S-053	2
	SK-S-054	1
	SK-S-055	1
	SK-S-056	1. 1
	SK-S-057	1 1
	SK-S-058	la l a construction de la const
	SK-S-059	1
	SK-S-060	1
	SK-S-061	
	SK-S-062	1
	SK-S-063	9
	SK-S-064	. 12
	SK-S-065	3
	SK-S-066	$\left[\left[1 + \frac{1}{2} \right] \right]$
	SK-S-067	
	SK-S-068	3
	SK-S-069	$\frac{1}{2}$
	SK-S-0/0	
	24-2-011	
	SK-S-072	a second s
	SU-9-012 Su-9-012	45
	STANDARD AU-S	

 \bigcirc

- 25 -

Tchaikazan Exploration Services Ltd. PROJECT SK-91 FILE # 91-1669 Page 3

S	AMPLE#	AU* ppb	
S	K-S-073 K-S-074 K-S-075	5 23 3	
S S S	K-S-076 K-S-087	2 2	
S S S S S S	K-S-088 K-S-089 K-S-090 K-S-091 K-S-092	1 3 2 2 2 2	
S S S S S	K-S-093 K-S-094 K-S-095 K-S-096 K-S-097	4 3 1 2 1	
s s s s	K-S-098 K-S-099 K-S-100 K-S-101 SK-S-102	6 1 1 3 2	
	SK-S-103 SK-S-104 SK-S-105 SK-S-106 SK-S-107	1 1 2 2 3	
	SK-S-108 SK-S-109 SK-S-110 SK-S-111 SK-S-112	1 2 4 1 2	
	SK-S-113 SK-S-114 SK-S-115 STANDARD AU-S	1 1 3 48	

 \bigcirc

- 26 -

2. 	<u></u>			· · ·		· · · ·											•														
ACME ANALY	FICA	I LA	BOR	ATOF	lIES	LTD	•	8	52 1	S. HA	STII	NGS	ST.	VAN	COU	VER I	3.C.	Vé	A 1	R6)	PHON	E(60)4)2	153-3	158	FA.	x()0	4)253	-171	6
						_			G	EOCH	IEMI			VAL	YSI	B CI	GRTI	FIC	CAT.	E 	ц	01	105	70	D .		•		Å		
		<u>""c</u>	naı.	<u>kaz</u>	<u>an l</u>	<u>sxp</u>	lor	ati	<u>on</u> _	<u>serv</u>	71C8 P.(9 9 . D. Bo	<u>ьта.</u> x 41,	Tati	a Lak	e BC V	<u>SR-</u> (0L 1V	<u>,0</u>		r T T (e #	эт.	-19	13	F	iye	т			• L•	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	Al %	Na %	K X pr	W Au m pp	* b
SK-S-116	1	36	4	181	.2	18	9	896	2.99	13	5	ND	1	47	2.0	2	2	45	-88	.052	8	23	.46	155	.07	12	1.45	.02	.32	1	4
SK-S-117 SK-S-118	1	.34 14	3 2	104	.2	18 11	. 11	1081 900	2.46	8	5	ND ND	1	58	.7	2	3	- 41	.54	.044	3	17	.33	109	10	10	1.21	.02	.25		1
SK-S-119 SK-S-120	1	22 25	3 4	64 67	.1	11 10	8	370 707	3.22	6	5	ND ND	. 1	41 43	.4 .4	2	2 2	50 50	. 39 . 45	.026 .024	4	19	.44	60 94	.12	4	1.32	.02	.20	1	1
SK-S-121	1	28	4	87	.1	9	8	642	2.87	8	5	ND	1	35	.6	3	2	46 52	.48	.039	3	16	.48	98	.09	6	1.51	.02	.20	1	1
SK-S-122 SK-S-123	1	26	2	72	• 1	12	9	815	3.01	7	6	ND	· 1	47	.3	2	2	52	.55	.038	6	19	.46	142	.12	6	1.50	.02	.28	1	3
SK-S-124 SK-S-125	1	25 40	4	103	.1	11	10	881	3.53	28	5	ND	. 1	31	.4	2	3	48	.51	1049	7	18	.60	169	.09	8	1.88	.02	.24	i	2
SK-S-126	1	51	4	99 50	.2	11	11	1055	3.55	13 10	5	ND	1	55 37	.7	2	5	58 55	.82	.057	5	18 10	.64	150 09	.09 13	8 8	1.75	.03	.23	1	2
SK-S-127 SK-S-128	1	65	9	98	-5	11	17	1089	4.31	73 10	5	ND	1	76	.8	2	2	38	1.88	.037	8	12	.58	503 77	.02	17	2.30	.02	.43	1 1	3
SK-S-129 SK-S-130	1	50	4	64	.2	23	12	553	3.63	10	5	ND	1	55	.3	4	2	59	.69	.032	6	32	.77	84	.10	11:	2.47	.02	.35	2	Ĩ.
SK-S-131	1	19 18	3	53	.1	10 10	. 7	520 827	2.56	75	5	ND.	: 1 1	30	.2	2	2	49 45	.41	.020	4	18 18	.40	64 91	.14	7 5	1.21	.03	.21	1	1 1
SK-S-132 SK-S-133 SK-S-134	1	25	3	162	1	9 16	- 7 11	912 879	2.74	7	5	ND	· 1	31	.8	2	2	44	.50	.041	4	16 21	.48	107 83	.11	9	1.46	.03	.29	1	6 2
SK-S-135	i	28	3	83	1	8	8	889	2.84	6	5	ND	1	35	.4	2	2	48	.50	.043	5	16	.44	101	.11	. 7	1.42	.02	.26	1	2
SK-S-136 SK-S-137	1 1	52 45	2 3	145 153	.2	9	9	1843 1241	2.84	5	5 8	ND ND	1 1	-51 45	.8 .7	2	5	41 46	.83 .65	.068	4	15 16	.43 .52	304 137	.10 .10	8 10	1.61	.02	.26 .27	1 1	6 2
SK-S-138 SK-S-139	1	26 36	2	70 87	.3	11 12	8 10	618 876	2.99	37	6 5	ND ND	1	36 36	.2	2	4	55 51	.51 .56	.030	6 4	21 18	.46 .53	.90 109	.15 .13	5 8	1.53 1.79	.02	.27	1 1	1 2
sk-s-140	1	36	2	99	.1	11	9	1085	2.97	7	5	ND	1	34	.7	2	2	52	.55	.037	- 5	18	-47	148	.13	8	1.51	.02	.25	1	2
SK-S-141 SK-S-142	1 1	39 28	.3 3	118 93	.1	10 9	11 9	1235 1028	3.38	6 3	5 5	ND ND	1	35 31	.7 .2	2 2	3	53 53	.55 .47	.060 .041	5 4	16 16	.56 .52	167 103	.10 .12	6	1.75	.02 .02	.29 .28	1	7 1
SK-S-143 SK-S-144	1	60 40	4	76 96	.1	13 9	12 11	769 858	3.75 3.44	10 6	5 5	ND ND	1 1	38 39	.3	5 2	23	62 59	.62 06.	.064 .047	6 5	21	.67 .61	96 105	.11	7 :	2.50 1.89	.02 .02	.28 .19	1	3
SK-S-145	1	32	2	81	.2	10	9	723	3.18	6	5.	ND	1	32	.5	2	2	56	.50	.033	4	16	.52	84	.13	- 5	1.69	.02	.22	1	3.
SK-S-146 SK-S-147	1	27 31	2 3	61 74	.1	10 11	7	465 745	2.95	6 8	5	ND ND	1 1	29 32	.2 .2	2	4 2	58 57	.46	.019 .038	5	19 20	.44 .49	66 69	.16 .14	6	1.35 1.61	.03	.17	1	1.
SK-S-148 SK-S-149	1 1	44 22	. 4 3	66 63	.2 .2	13 12	10 8	555 796	3.48 3.17	3 4	5	ND ND	1	: 46 34	.2 .3	2	3 2	61 56	.60 .47	.039 .027	6 5	22 18	.53	75 66	.13	6	2.10	.02 .02	.11	1	5
sK-S-150	1	46	2	71	.1	12	14	579	3.68	7	5	ND	. 1	29	•2	2	4	61	.50	.040	6	21	.63	58	.14	6	1.98	.02	.11	1	3
SK-S-151 STANDARD C/AU-S	1 18	136 61	4 38	102 137	.1 7.2	11 70	11 33	700 1057	4.23	12 38	5 16	ND 6	41	25 52	.4 18.5	7 15	2 19	51 57	.40 .48	.032 .095	4 39	14 58	.52	.137 180	.04	7 33	1.83	.02	.13 .15	1 2 4	1 ,8
1		1CP	50	0 GR/	M SAM	PLE I	S DIO	ESTED		H 3ML	3-1-2	HCL-	HNO3-	H2O A	T 95	DEG.	C FOR	ONE	HOUR	AND I	S DIL	UTED	TO 10	ML ! Y Iri	WITH W	ATER.		:			
27		~ SA	MPLE	TYPE	: SOIL	nt FU	AU* A	NALYS	SIS B	Y ACID		H/AA	FROM	10 GM	SAME	LE.	nrt K	\mathcal{O}	ľ			un Ll									
I DATE RECE	EIVE	D:	JUN 2	25 19	91 D	ATE	REF	ORT	MAJ	LED:	4	me	- 28	191	S]	IGNEI	BY				70.10	DYE, O	C.LEO	NG, .	I.WANG	CER	TIFIED	B.C	ASSAY	RS	
\$* 7 *					•						U										ł										

A A V																									•			$\langle i \rangle$	A	Δ	
		T	cha	ika	zan	Exj	p 10 :	rat	ion	Se:	rvio	ces	Lto	1. I	PROJ	JECI	r si	K-91	1 J	FILI	S #	91.	-191	73		Pa	ge	2	ACHE A	ALYTICAL	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Śr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	` Ba	ti	В	AL	Na	K 🔊 🕷	Au*	
	ppm	ppm	ppm	ррп	ppn	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	<u>×</u>	ppm	ppm	X	ppm		ррп	X	%		pbp	
SK-S-152	2	157	5	170	.2	9	14	849	6.16	5	5	ND	1	18	1.0	16	2	54	.70	.047	4	8	:48	259	.01	62	.24	.01	.16 4	2	
SK-S-153	2	127	. 7	226	8 1	14	16	1690	4.70	6	5	ND	1	27	2.8	2	2	73	.59	.049	7	18	.79	197	.10	62	.59	.01	.18	§ 2	
SK-S-154	1	31	2	65	1	10	. 8	341	3.17	3	5	ND	1	23	.4	3	2	57	.46	.021	5	18	.54	62	.14	4 1	.44	.01	.14 📖 1	§ 1	
SK-S-155	1	28	3	92		9	7	398	3.03	3	5	· ND	1	31	.5	2	2	51	.50	.068	5	17	.49	109	.14	61	.33	.02	.12 🔜 1	8 4	
SK-S-156	1	82	3	260	.1	13	14	1029	6.35	24	- 5	ND	1	34	.6	2	2	74	.43	.150	6	14	.45	205	.04	10 1	.89	.01	.26 1	2	
SK-S-157	1	21	3	135		8	6	756	2.56	3	5	ND	1	22	.4	2	2	43	.40	.041	4	15	.40	183	.11	5 1	.30	.01	.06	12	
SK-S-158	1	37	- 3	94	1	11	11	624	3.70	5	5	ND	1	22	.4	3	3	55	.48	.048	7	16	.56	144	.09	61	.72	.01	. 14 📖 1	1	
SK-S-159	.1	112	4	151	8 I.	10	15	1738	5.15	8	6	ND	2	33	1.0	. 3	2	55	.97	089	6	13	.38	336	.06	91	.44	.01	.18	1	
SK-S-160	1	125	3	173	1	11	14	2287	4.48	3	5	ND	1	31	1.4	4	. 2	67	.71	.079	8	15	.73	560	.07	92	.46	.01	.25	§ . 1	
SK-S-161	1	59	2	114	.1	10	11	669	3.61	2	5	ND	. 1	22	.4	3	2	58	.42	.053	5	15	.61	140	.10	61	.77	.01	.15 3	17	
SK-S-162	1	73	3	186	.1	9	14	1126	4.12	7	5	ND	- 1	35	.9	4	2	52	.55	.102	5	15	.84	201	.10	7 2	.32	.01	.21	1	
SK-S-163	1	20	4	98	1	7	.6	701	2.18	2	. 5	ND	1	23	.5	2	2	37	.46	.029	- 3	13	.36	110	12	71	.05	.01	.18 📖	2	
SK-S-164	1 -	20	2	115	20 1	9	. 7.	638	2.60	2	8	ND	2	29	.3	2	2	46	.50	,042	5	17	.44	129	.14	61	.34	.02	.20	§ 1	
SK-S-165	1	24	3	211	1	14	8	671	2.78	2	5	ND	1	34	.5	3	2	46	.48	•074	3	17	.52	126	.12	71	.64	.02	.14 334	2	
SK-S-166	1	18	3	87	.1	9	7	469	2.62	4	5	ND	. 1	32	.3	3	3	49	.51	.041	4	17	.44	99	.13	61	.31	.02	.16 2	1	
SK-S-167	1	33	2	131		.9	10	1188	3.15	2	5	ND	t	39	.6	2	2	52	.69	.045	5	16	.52	186	.12	61	.72	.01	.21	1	
STANDARD C/AU-S	18	64	38	133	7.3	70	31	1073	3.99	36	18	7	40	53	18.6	15	20	56	.48	.096	39	58	.90	178	.09	34 1	.98	.07	.15 11	47	

. 9

841C - ----

ACME ANALYTICAL LABORATOR	(ES LTD. 852 F	HASTINGS PHONE (604	ST. VANCOUVER B.C. V6A 1R6 1)253-3158 FAX(604)253-1716
GEOCHEMI	CAL ANALYSIS CE	ERTIFICAT	E
Tchaikazan Exploration	Services Ltd. PR	OJECT SK-	91 FILE # 91-2338
P.O. Box 4	I, Tatla Lake BC VOL 1VO A	ttn: LOUIS BERN	IULLES
	SAMPLE#	AU*	
		ppb	
	SK-F01A	3	
	SK-F02A	2	
	SK-F03A	2	
	SK-F04A	2	
	SK-F05A	4	
	SK-F06A	5	
.	SK-F07A	13	
	SK-F08A	4	
	SK-F09A	2	
	SK-F10A	3	
	SK-F11A	5	
	SK-F01B	· 3.	
	SK-F02B	2	
	SK-F03B	3	
	SK-F04B	10	
		1	
	SK-F05B	3	
	SK-F06B	4	
	SK-F07B	2	
	SK-F08B	2	
	SK-F09B	2	
		_	
	SK-F10B		
	SK-F11B		
	SK-F12B	3	
	STANDARD AU-S	40	

- SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ACME ANALYTICAL LABORATORIES LTD.

(X

30. 34

- 30 -

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Tchaikazan Exploration Services Ltd. PROJECT SK-91 File # 91-1073

P.O. Box 41, Tatla Lake BC VOL 1VO

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	La	Cr	Mg	Ba 🛛 Ti	В	: Al·	Na	κ 📖	🖌 Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	X	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ррп	ppm	* *	ppm	ррп	*	ррп 🏀 🏌	ppm	*	*	% pp	n ppb
		70		E E		4	42	1259	5 57	30	5	ND	. 1	57	2	2	2	96	6 08 030	٦	19	1.23	21 12	14	2.16	.18	-09	1 2
SK-91-1	1	44		71		0	10	98/	1. 97	5	ŝ	- 10	1	22	5	2	5	83	2 87 050	3	23	1.62	18 05	16	2.33	.19	10	<u>1∛</u> 1
SK-91-2	1	10	· •			, y	10	004	4.07		2	NU	1.		88 - 5-	5	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E 77 00/0	5	10	40	1/ 000		1 22	15	05	z g
SK-91-3	2	550	. 6	81	-2	10	22	1249	5.8/		· 2.	NU	1	19		4	. 4	44	3.13 .049	<u> </u>	10	.09		2	1.22	. 15	.0,	
SK-91-4	1	20	2	- 98	88 . 1	6	. 11	748	3.55	7	5	ND	- 1	13		- 2	·. 2	60	.30 3083 §	4	15	•44	32 U1	2	.84	• 15	.US 🔅	₩ · 1
SK-91-5	,2	29	. 4	82	.2	11	12	631	6.84	24	5	ND	· 1	103	.2	3	2	39	4.48 .028	3	22	.59	42 _02	11	2.33	.08	.12	1.
SK-91-6	1	43	2	100		7	14	908	4.24	10	5	ND	1	38	.2	3	2	48	.90 _044	2	21	1.52	48 .25	7	1.90	.08	.16	1 1
Sr-91-7	1	12	2	33	- 18 A A A A A A A A A A A A A A A A A A	5	2	813	1.50	3	5	ND	3	55	-2	2	2	7	2.73 039	5	14	43	46 .01	5	.24	.11	.12	1) 1
SK-91-8	1	217	4	93	.4	9	20	846	6.12	8	5	ND	1.	23	.2	2	2	170	1.41 055	3	25	1.15	12 .10	126	1.83	-19	.05	1 1
SK-91-9	1	776	2	113	4	10	23	1393	5.08	21	5	ND	1	34	.2	210	2	- 79	4.86 2037	2	22	.99	34 02	16	1.73	- 16	.14 📖	3 1
SK-91-10	2	25	8	71	.2	6	11	1352	3.54	4	5	ND	1	40	.5	5	2	46	5.47 .030	2	21	.91	24 .02	27	1.69	. 14	.16	3 1
sk-91-11	1	42	2	66	.3	3	16	2481	7.00	2	5	ND	1	91	.3	10	2	61	13.71 .014	2	15	2.23	24 _01	6	.47	.08	.06	4 1
sr-91-12	1	38	9	57	5	1	15	2973	5.93	2	5	ND	1	205	.3	. 7	2	74	23.94 008	4	11	1.44	13 .01	8	1.74	.04	.02	5 1
cr-01-13	10	25	2	2	2.8	. 8	1	53	.71	2	5	4	1	1	.2	2	2	3	.03 004	. 2	7	.01	6 .01	11	.05	.01	.02	1 3150
STANDARD C/AU-R	20	62	40	135	7.4	71	33	1134	4.03	42	21	7	38	53	18.0	15	23	62	.48 .090	40	59	.89	179 .09	37	1.90	.07	.15 🕺 1	1 510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ACME ANALYTICAL LABORATORIES LTD.

ω

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Tchaikazan Exploration Services Ltd. PROJECT SK-91 File # 91-1163 Page 1 P.O. Box 41, Tatla Lake BC VOL 1VO Submitted by: LOUIS BERNIOLLES

SAMPLE#	Mo	Cu	Pb	Zn Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr Cd	Sb	Bi	.v	Ca P	La	Cr	Mg`	Ba T	B	Al	Na	K ₩ Au*
	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	% ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	% %	ppm	ppm	%	ppm	ppm	%	%	X ppm ppb
sk-91-14	11	19	17	56 1.4	7	14	517	8.65 15	5	2	1	23 .4	13	2	10	.05 .040	3	3	.24	1915 .0	31	.92	.01	.19 1 1760

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-ROCK P2-SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE, ρ

DATE RECEIVED:	MAY 1 1991	DATE REPORT MAILED:	Maria	3/41	SIGNED BY.	(him	.D.TOYE, C.LEONG,	J.WANG; CERTIFIED B.C. ASSAYERS
			nung			· · · · /		

																													. :		
ACME ANAL	TICA	L LA	BOR	ATOR	IES	LTD	•	8	52 E	. НА	STI	NGS	ST.	VAN	COU	VER I	B.C.	ve	5A 1	R6	1	PHON	E(60)4)253	-3:	158	FA	K∕~§C)4)25	13-1	716
A A									G	EOCI	HEM	[CA	L Al	NALY	(BI	8 CI	ERT:	[FIC	CAT	E	•			•				U.			A
			Tc	hai	kaza	an 1	Ехр		ati	$\frac{\text{on } l}{41}$	Serv			<u>. 100</u>	<u>P</u>	ROJI	ECT	SK	-91	RNIO		≥ #	91.	-1554	:						
								F.U.	BUA	41, 1	atta	Lave	BC 10				cu by		15 01				4 . ·	1.1		4 a a a a a a a a a a a a a a a a a a a	•				
SAMPLE#	Mo	Cu	Pb	Zn	Ad	Ni	Со	Mn	Fe	As	U	Âu	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba 🚿	10	В	Al	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppn	ррп	ppm	ppm	X	X	ppm	ppm	. X	ppm 💹	*	ppm	*	%	X	ppm	ppb
	_						·	051									-	~	- 0F	004	-	40				10	15	0.1	07		
SK-91-15				17	88 S .	Ŷ	2	254	. 75	<u> </u>	2	NU					4		.05	001	2	12	.00	21 W		10	. 15	.01	.05		12
SK-91-16		168	- 1 <u>(</u> .	. 78	<u></u>	. 8	0	405	4.21	2	2	NU				2	2		.00	020	. 4	13	.41	- 47	5	4	.07	.01	- 10		42
SK-91-17	1		4	100		. 4	2	690	1.39	88 S	ž	NU		4			2	¥.	.09	.000	~ ~	. 13	1.47	44 001		01	.3/	-02	. 10 0		
SK-91-18	2	178		20		<u> </u>	1	205	.49	88 5	2	ND	1		•4	.4	4	2	.20	SUUD:	2		- 13	· // 🔐		-4	.5/	-01	.07		;
SK-91-19	2	27	10	40		8	6	1245	2,18	8	. 5	ND	1	54	• 4	2	. 2	- 28	5.18	.017	2	11	.29	20		У.	•49	•01	.02 3		. 4
SK-91-20	1	66	10	125		5	12	1639	5.23	23	5	ND	1	12	,5	6	2	130	.73	,028	2	5	.14	122 🔍	01	2	.41	.01	.01	1	1
SK-91-21	3	- 11	6	18	.2	10	2	145	.87	2	5	ND	· 1	6	.2	· 2	2	10	.76	.007	2	10	.15	11 🔍	05	63	.75	.03	.01 🕴		1
SK-91-22	2	7	4	9	.2	8	1.	28	.43	3	6	ND	2	1	.2	2	2	1	.01	.002	2	6	.01	27 💹	D1	. 7	.10	.01	.05		10 👘
sk-91-23	2	63	. 3	94	.2	8	11	993	3.59	6	5	ND	1	16	.3	2.	2	53	1.42	,013	2	9	.73	246 📖	01	7	.78	.05	.01		1
SK-91-24	1	57	2	75	•3	3	9	1396	3.28	4	5	ND	1	40	.2	5	2	37	7.75	.026	3	. 9	.77	19	01	8	.37	.03	.02	1	3
sk-91-25	2	10	6	39	3	9	. 9	838	4.02	4	5	ND	1	6	.2	2	4	13	.46	.014	2	10	.24	11 🔍	01	6	.32	.01	.02		4
STANDARD C/AU-R	18	58	38	132	6.9	71	32	1039	3.94	40	19	6	38	52	18.4	14	19	55	.48	.090	38	58	.88	176	09	31 1	.87	.06	.15		480

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

17

 $\frac{3}{2}$

and the second				<u>e verene</u> re	e de la						i National de			A Seina		- 		8841°2	200220				<u>an an a</u>			<u>1919</u>			38-8-92-7	
ACME ANA	TICA	l la	BOR	ATOR	IES	LTD	•	8	52 E	. HA	STIN	GS E	БТ.	VANC	OUVI	ER B	•C•	V6	A 1F	16	P	HON	e(60	4)253-3	158	FAI	(~ 5 04	1)253	-17,	10
.									GF	loch	FMT	CAL	٦N	ALY	STS	CE	RTT	FIC	ATE										I A	
																												Ľ	۸D	, ())))
			TC	hail	kaza	an :	Ехр	lor	atic	n S	erv	ice	sL	td.	PR	<u>oje</u>	CT	SK-	<u>91</u>	F	ile	#	91-	1773						
								P.O.	Box 4	1, Te	tla L	ake B	C VOL	100	Sub	mitte	d by:	LOUI	S BER	HIOLL	ES									4
CAMDI E#	Mo	<u></u>	Dh	<u></u>	<u> </u>	<u></u>	n Co	<u>Mn</u>	F.A		**************************************		<u></u> ть	Sr .	rd.	sh	Ri	······································	e. Ce	P	<u></u> le	î. Cr	Ma	Ra Ti	B	A 1	Na	ĸ 🛛	<u>.</u>	
JAMP LE#	DDM	DOM	000	000	DDM	DOM	DDm			DOM	bbm	DDm	bbm	DOD	DOT	bou	DDM	ppm	X	X	DDia	DOM	X		DOM	*	* *	× 🖗	. mac	ppb
	PP···	PP	PP		<u>erriv</u>		<u> </u>			<u>xrr:::</u>		FF	<u></u>	<u> </u>		<u> </u>														-
SK-91-26	3	18	2	76	.2	11	11	956	3.07	2	5	ND	1	14	.4	2	2	57	1.50	.019	2	17	.74	15 .01	11 1.	.16	.01	.02		26
SK-91-27	5	2493	4	129	.5	50	71	1035	14.33	2	5	ND	1	78	-6	10	8	221	1.82	.071	3	20	2.00	8 .21	67 2.	.52	.03	.01 🛞	#1 .	28
SK-91-28	9	18	2	18	1.1	4	· 7	166	4.38	9	5	3	1	2	,2	2	- 4	8	.03	.007	2	9	.19	26 .01	2.	.42	.01	.03 🛞	_2 4'	190
SK-91-29	- 4	99	2	43	1.1	5	4	392	1.86	2	5	ND	1	25	.3	2	2	15	.85	.015	2	10	.33	18 .03	3.	.63	.01	.04 🛞		830
SK-91-30	14	30	3	38	.3	. 4	5	498	4.21	4	5	ND	. 1	22	.3	2	· 2	28	1.98	.042	2	11	.76	17 .01	2.	.68	.04	.07 🎡		6
			_			-					-					_		-				-	~ ~ ~	0000		~ 7				~
SK-91-31	2	22	9	10	.2	2	1	47	.80	4	. 5	ND	.1	Z	-2	· 2	2		.05	.005	2	5	.04	27 .01	10	.27	.01	.15		2
SK-91-32	4	29	3	55	• 3	3	7	687	4.93		5	ND	1	- 27	•2	2	<u> </u>	91	.56	.080	2	- 15	1.41	15 .51	22.	.07	.04	.06 🛞	88 - E	22
sk-91-33	2	4	7	. 7		· 1	- 4	68	2.76	2	5	ND	1	- 3	3	2	4	9	.08	.018	2	6	.31	22 13	2.	.45	-05	•14 🛞		1
sK-91-34	- 5	9	3	. 9	1	.6	. 3	94	3.56	2	5	ND	1	6	.2	2	ີ 2	16	.03	.020	2	10	.45	26 .05	2.	.60	.05	.16 💥		1
SK-91-35	2	239	- 4	109	.2	9	17	304	4.50	2	5	ND	1	37	.6	. 2	2	198	.97	.069	2	· 13	.65	6 .31	21.	.49	.08	.03 🛞		1
SK-91-36	19	111	2	38	.2	3	34	391	6.56	3	5	ND	1	16	.2	2	2	21	.27	.034	2	13	.96	22 .08	21.	.42	.05	.10 🛞		3
sk-91-37	6	3	2	6	S.C	3	5	. 73	3.20	2	5	ND	. 1	- 4	.2	2	2	9	.02	.023	2	8	.38	26 .01	2.	.54	103	.17 🛞	<u>I</u>	2
STANDARD C/AU-R	20	60	44	139	7.4	71	32	1104	4.01	38	19	6	40	53	18.9	16	22	57	.52	.090	40	59	.92	182 .09	34 1.	.93	.06	.15 🛞	41 (470

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUN 14 1991 DATE REPORT MAILED:

ALA ACHE AMALYTICAL

Ь

Tchaikazan Exploration Services Ltd. FILE # 91-1972

) Page 2

ACHE ANALYTICAL

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K	M	Au*
	ррл	ppm	ррп	ppm	ррп	ppm	ррп	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	X	*	ppm	ppm	*	ppm		ррп	%	*	X	ppm	ppb
er-01-79	7	67	z	97		20	17	002	7 07	72	5	ND.	1	144		2	2	25	7.01	050		71	1 40	2/	01	2	55	0/	07	4	
5K-91-30	2	41	ر. ورون	01		40	21	776	2.72	20	1			100				25	1.01			31	4 05	45		2		.04	.03		-
SK-91-39	2	24	13	69		12	· · · <u>(</u>	0/1	0.40	SO 1	2	UN	· 1	15	6	8	ંગ્	02	- 13	.045	2	15	1.05	12	SCU I		2.15	.04	.04	888 <u>1</u> 8-	4
SK-91-40	2	- 44	2	150		10	· 7	418	9.70	37 J	5	ND	1	14	1.0	8	7	33	.36	+039	. 3	. 13	.76	25	-29	7	2.16	.04	.04 §	Z	9
SK-91-41	3	464	2	28	.2	9	12	451	4.79	29	5	ND	. 1	- 9	2	3	2	8	1.03	.030	2	6	.84	6	.07	. 4	1.94	.03	.01 🖇	88 P.	6
SK-91-42	5	348	2	23	- 20	10	12	481	5.37	36	5	ND	<u> </u>	16	.2	2	3	12	.39	.025	2	8	.89	13	.06	6	1.74	.06	.06 🖁	881	3
			_													·	. –				. –								2000		
SK-91-43	2	28	3	65	.3	. 7	11	973	3.45	4	- 5	ND	1	34	.2	2	2	44	3.95	.037	2	5	.75	13	.01	5	.55	.04	.04		1
SK-91-44	2	120	2	30	.2	8	6	321	4.58	33	5	ND	1	13	.2	6	2	36	.60	.090	2	7	.94	21	17	24	1.99	.03	.05 🖁	3	2
SK-91-45	2	392	2	- 99	.4	7	13	852	3.65	8	- 5	ND	1	10	.6	5	2	49	1.61	.042	2	. 7	.98	10	.01	14	1.36	.06	.01		1
SK-91-46	1	86	2	63	.4	6	13	1869	4.53	3	5	ND	1	58	.8	2	4	31	7.07	.025	2	5	.96	39	.01	. 6	.96	.03	.03		3
SK-91-47	1	46	3	66	3	2	12	2823	5.58	3	5	ND	1	70	9	8	2	26	9.07	.007	2	· 3	1.57	262		3 -	.27	.01	.01 🖇	3	- 1
				•		· .		,					•								_	-									
SK-91-48	1	57	2	43	.5	5	8	2245	2.27	10	5	ND	1	63	.6	2	2	49	10.18	.044	2	5	1.18	22	.17	5	1.75	.03	.02 🕺		- 3
SK-91-49	1	41	2	79	.3	6	13	1555	4.13	5	5.	ND	1	64	.6	2	2	59	5.11	.035	2	7	.94	54	.08	9	1.44	.04	.04 🔞	1	2
SK-91-50	1 10	95	2	61	3	8	14	662	6.93	89	5	ND	- 1	. 14	.2	6	2	108	1.19	.048	3	9	.68	15	.08	18	1.31	.03	.03 🖇	86	2
STANDARD C/AU-R	18	62	39	131	7.2	70	33	1051	3.93	37	24	7	39	53	18.0	15	20	55	.48	.090	39	58	.89	174	.09	32	1.89	.07	. 15 🖁	×11	480

ACME ANAI	TICA	I. I.	ABOF	LATO	RIES	LTI).		352	E.F	ASTI	NGS	ST.	VAN	cou	VER	B,C	. v	6A 1	R6	1	SHON	IE (60	04)2!	53-2	8158 FA	X ** 3()4)253-1	716
A A			<u>Tc</u>	<u>:haj</u>	<u>kaz</u>	an_	Exr	<mark>0101</mark> P.C	(:at:). Bo)	SEOC Lon (41,	CHEM Ser Tatla	ICA <u>vic</u> _{Lake}	LA es BCV	NALS Ltd. ^{0L 1V0}	281 . F s	8 C ROJ ubmit	ERT ECT ted b	IFI SK y: LAU	CAT) -91 JIS BE	E RNIOL	File Les	e #	91	-216	55		νų _{či} γ	4	Æ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	BAL ppm %	Na %	K W % ppm	Au* ppb
sk-91-51	1	36	2	98	.1	17	22	1522	6.24	105	5	ND	1	12	.9	3	2	44	.47	.057	2	5	2.30	42	.01	2 3.69	.02	.11 1	4
SK-91-52	7	18	- 2	6	.8	14	2	133	1.18	19	5	ND	1	2 🐰	.2	2	4	5	.03	.005	2	8	.09	4	01	2.15	.01	.01	1090
SK-91-53	1	32	2	130	.2	13	18	1884	5.34	6	5	ND	1	9	1.0	5	3	37	.41	.029	2	7	2.00	50	.01	5 2.97	.02	.10 1	29
SK-91-54	1	14	2	15		2	5	867	1.45	8	5	ND	1	9 👸	.2	2	2	6	.83	.004	2	3	.16	27	.01	5.44	.01	.07 2	24
SK-91-55	32	83	2	7	1.0	7	2	77	5.48	9	5	ND	1	6	.3	2	8	7	.05	.021	2	4	.10	37	.05	2.43	.06	.16 1	10
sK-91-56	16	83	2	14	2.4	9	2	172	5.38	7	5	ND	1.	11 🖁	.2	2	4	13	.08	.034	2	7	.34	32	.09	2.65	.13	.16 1	16
SK-91-57	29	45	5	11	1.1	- 4	3	115	5.68	6	- 5	ND	1	ି ୨	.2	2	7	14	.03	.027	. 2	5	.30	31	.10	2 .57	.06	.12	9
SK-91-58	7	36	2	52	.2	3	9	1609	4.38	30	6	ND	- 1	99 🐰	2.1	6	2	56	11.13	.022	2	4	1.16	16	.01	2,43	.01	.01 2	11
SK-91-59	5	40	3	29	.2	4	3	312	3.27	13	5	ND	- 1	4 8	.2	2.	2	25	.21	.044	2	4	.70	15	.06	2 1.05	.06	.11	10
SK-91-60	4	55	2	77	.3	5.	8	725	4.34	6	5	ND	1	6	.6	2	2	59	.49	,065	2	7	1.23	10	.15	2 1./1	.05	.04 1	51
sk-91-61	3	2854	4	133	16.2	6	7	589	3.81	6	5	23	1	4 🖗	2.3	2	12	45	.16	.026	2	6	.61	7	.08	3 1.21	.03	.03	18810
STANDARD C/AU-R	17	63	39	133	7.4	72	33	1096	4.01	36	15	6	39	53 1	8.6	15	21	57	.51	.095	. 40	59	.88	183	.09	32 1.99	.07	.15 🔆 13	460

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

nly 4/ 91

DATE RECEIVED: JUL 1 1991 DATE REPORT MAILED:

81

ACME ANAL?	CIT?	AL L	ABOF	LATO	RIES	LTI	>.		352	E.F	(AST)	INGS	ST.	VAN	icot	IVER	B.C	. 1	76A 11	26	J	рном	E(60)4)2	53-3	3158	FA	x / 50	4)253	-1716
AA										GEOC	CHEM	ICA	l A	NAL	YSJ	ເຮັດ	ERI	'IFI	CATE	:								٤.	A	A
T			<u>Tc</u>	<u>hai</u>	kaz	an_	Exr	<u>,101</u>	cat:	ion	<u>Ser</u>	vic	es	Ltd	<u>• I</u>	PROJ	ECI	<u>' S</u>	<u>(-91</u>]	File	e #	91	-25	24				Ĩ	
	<u></u>		<u></u>		<u></u>				л. во -	<u>^ +ı,</u>		Lake						IY LU			LES				<u></u>		<u></u>			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag pom	Ni ppm	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	ppm	Sb ppm	́В1 ppm	ppm	Ca %	Р Х	La ppm	Cr ppm	Mg %	Ba ppm	Т1 Х	в. ppm	AL %	'Na %	K % pp	Au* n ppb
sk-91-62	1	47	4	80	.4	9	7	463	3.25	5	6	ND	1	21	.2	2	2	54	.70	.036	2	12	.70	47	.19	10 1.	65	.07	.10	1 1
SK-91-63	1	38	3	16	.2	5	4	176	1.47	2	6	ND	1.	13	.2	2	2	25	1.89	.009	2	9	.27	12	.08	11 1.	71	.05	.06	1
sk-91-64	1	12	2	49	.4	2	5	1793	4.88	70	5	ND	1	. 117	2.4	12	2	42	20.76	.029	2	1	1.47	69	.01	6.	26	.01	.02	3 2
SK-91-65	1	238	5	151	.4	- 3	26	1124	9.66	13	5	ND	1	18	1.4	7	2	127	1.75	067	2	10	1.15	69	.22	. 14 1.	.77	.14	.14 📖	1 49
SK-91-66	1	112	3	16	.1	7	5	189	1.11	5	5	ND	1	3	.2	2	2	8	.31	.006	2	5	.12	9	.01	13.	23	.01	.02	1 10
sk-91-67	13	38	2	25	2.1	10	10	223	5.34	11	5	6	1	2	.3	2	ຸ 2	9	.05	.014	2	10	.23	20	.01	10.	54	.02	.04	3 5770
sk-91-68	12	62	2	48	.5	3	-13	524	3.90	- 4	5	ND	. 1.	3	.2	2	2	20	.24	.040	2	- 5	.84	16	.01	81.	.25	.03	.06	1 620
SK-91-69	5	2303	3	10	8.4	6	8	185	2.38	2	5	3	1	1	.2	2	- 4	3	.04	004	.2	- 5	.08	- 4	.01	6.	.16	.01	.02 📖	1 2070
SK-91-70	9	42	2	66	.2	- 3	14	761	4.18	2	. 5	ND	1	4	.4	2	2	26	. 15	.048	2	5	.46	29	.01	81.	.08	.03	.07	1 92
SK-91-71	7	80	6	10	51.6	9	1	68	1.03	12	5	56	1	1	.2	2	18	2	.01	.004	2	12	.01	2	.01	5.	.04	.01	.01	2 55950
sk-91-72	1	7237	21	85	65.2	5	2	. 99	2.82	27	5	57	1	1	2.7	2	45	9	.03	.007	2	6	.07	2	.01	8.	.17	.01	.01	1 54000
STANDARD C/AU-R	20	64	40	134	7.6	72	32	1097	3.95	44	18	6	41	52	19.0	16	21	61	.50	092	41	60	.89	180	.10	39 1.	.95	.07	.15 1	2 510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

July 18/91.

DATE RECEIVED: JUL 14 1991 DATE REPORT MAILED: (

A A	بن.					. 69			0.	GI	LOCH	EMI	CAL	AN	ALY	SIS	CE	RTI	V8 FIC	A IN ATE	.0	F	HUN	2(804)25	2-21	59	ГАЛ		•] 23	3-1710 A A
T T			<u>Tch</u>	<u>ai}</u>	<u>caza</u>	<u>n E</u>	<u> xp]</u>	<u>ora</u>	<u>tic</u> P.O.	on E Box (<u>erv</u> 1, Ta	<u>ice</u> tla L	<u>s L</u> ake B	ta.	<u>PR</u> 1V0	<u>OJE</u> Sub	<u>CT</u> mitte	<u>SK-</u> d by:	<u>91</u> LOUI	F (S BER	ile NIOLLI	# ES	91-	2760	Pa	ge	1		4	ÎĈ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	В ррп	Al %	Na %	К %	W ppm	Au* ppb
sk-91-73	1	61	3	77	.4	8	16	1763	5.05	11	5	ND	1	22	.2	4	2	120	8,08	,030	2	8	.40	25 .01	9	.40	.01	.01	1	5
SK-91-74	3	51	- 4	12	2	11	12	223	1.91	4	5	ND	1	50	.2	2	2	20	.53	.008	2	11	.20	6 .05	- 4	.55	.01	.01	1	4
SK-91-75	6	518	10	29	12.6	20	5	560	1.49	8	13	20	1	5	.2	. 8	14	. 9	.32	.004	2	19	.18	16 .01	- 4	.37	.02	.04	1	19960
sk-91-76	1	58	2	90	.4	9	13	668	4.31	3	8	ND	· 1	8	.2	2	· 2	75	1.21	.047	3	7	1.30	10 .01	5	1.89	.08	.04	1	61
SK-91-77	3	10	3	4	.1	11	1	151	.51	2	5	ND	-1	8	.2	2	2	3	-14	.003	2	11	.04	6.01	2	.10	.01	.01	1	12
sk-91-78	2	40	2	83	4	8	14	1086	3.97	5	5	ND	1	28	.3	2	2	49	4.83	.034	3	6	.94	16 .01	11	1.26	.04	.06	1	8
SK-91-79	1	30	3	74		- 6	12	301	8.30	7	7	ND	1	13	.3	2	2	36	.30	,028	2	10	.60	36 .11	3	1.86	.03	.16		<u></u> 1
sk-91-80	2	13	2	4		9	. 1	108	.43	2	5	ND	1	13	.2	2	2	5	.74	.002	2	8	.04	14 .01	5	.65	.08	.01		4

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 STREAM SED AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 22 1991 DATE REPORT MAILED: July 26/9/ SIGNED BY.

MOUNT SKINNER PROJECT - K. K. ZONE SAMPLING

Scale 1/500 - Surveyed by Brunton and hip chain. Slope measurements corrected. Altitude in meters.

50 m

soil sampling site, with Au value in PPB

X rock sample, with sample number, gold value in gram/tonne L. Berniolles - Ottarasko Mines Ltd. - July 1991

MAP E

MOUNT SKINNER PROJECT - BIG SLIDE ZONE SAMPLING

Scale 1/500 - Surveyed by Brunton and hip chain. Slope measurements corrected. Altitudes in metres.

1

quartz vein edge of outcrop Xnock sample site and number, gold value in gram per tonlate

L. Berniolles - Ottarasko Mines Ltd. - July 1991

50 m

