LOG NO:	JAN 14	RD.
ACTION:		
FILE NO:		

ASSESSMENT REPORT

ON THE 1991 EXPLORATION PROGRAM

INEL PROPERTY

ISKUT RIVER AREA LIARD MINING DIVISION NORTHWESTERN BRITISH COLUMBIA

LATITUDE:	56	DEGREES	37 '	N
LATITUDE:	56	DEGREES	37'	N

LONGITUDE: 130 DEGREES 57 W

PREPARED FOR

GULF INTERNATIONAL MINERALS LTD.

OCTOBER 5, 1991

BY: VICTOR A. JARAMILLO, M.SC.A. ROBERT G. GIFFORD, P.Eng.

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,026

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS AND TOPOGRAPHY	2
3.0	PROPERTY DESCRIPTION AND OWNERSHIP	5
4.0	EXPLORATION HISTORY	6
5.0	OBJECT OF PRESENT WORK	7
6.0	GEOLOGY	7
	6.1 Regional Geology	7
	6.2 Property Geology and Mineralization	8
7.0	1991 EXPLORATION PROGRAM	8
	7.1 Trenching	9
	7.2 Construction of New Roads	9
	7.3 Road Rehabilitation	10
	7.4 Diamond Drilling	10
	7.5 Geological Work	10
	a) Discovery Zone Adit Geology	11
	b) AK Zone Adit Geology	15
	c) Western Slopes Area Geology	17
	d) Inel Basin Zone Geology	20
	e) High Stake Zone Geology	20
	f) Inel Creek Zone Geology	21

.

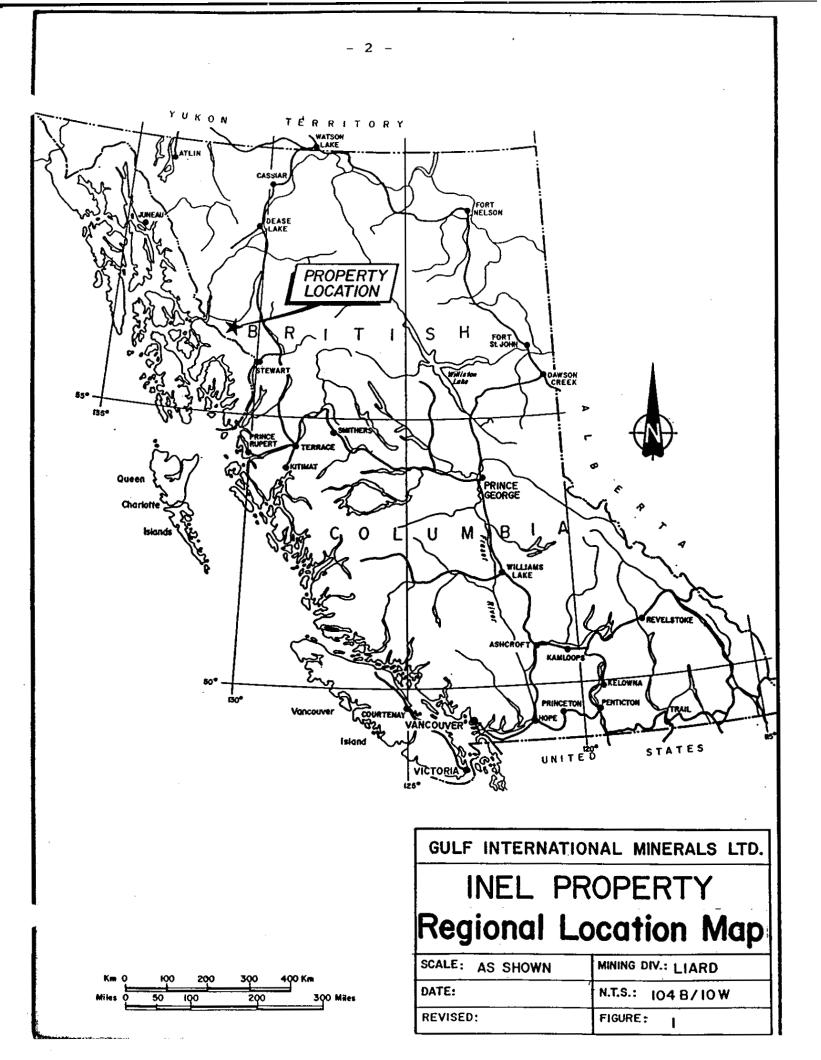
TABLE OF CONTENTS (Cont'd)

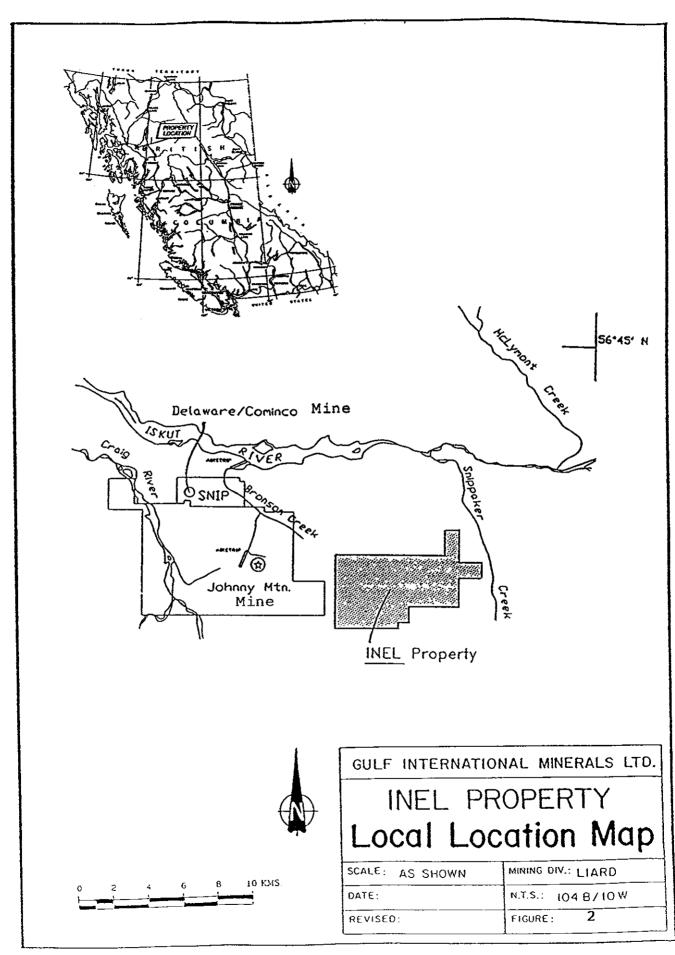
		<u>Page</u>
8.0	CONCLUSIONS	21
9.0	ITEMIZED COSTS STATEMENT FOR THE 1991 FIELD PROGRAM	24
10.0	STATEMENT OF QUALIFICATIONS	29
11.0	ENGINEER'S CERTIFICATE	30
12.0	REFERENCES	31
13.0	APPENDIX	32
	13.1 Drill Log for Hole 192	
	13.2 Sample Record, 1991	
	13.3 Geochemical and Assay Certificates	
	13.4 List of Rock Samples Collected During 1991	

LIST OF FIGURES

1.	INEL PROPERTY:	Regional Location Map	2
2.	INEL PROPERTY:	Local Location Map	3
3.	INEL PROPERTY:	Claim Map	4
4.	SOUTH DISCOVERY	ADIT: Assay Plan	12
5.	NORTH DISCOVERY	ADIT: Assay Plan	13
6.	1991 ROAD CONSTRU	UCTION MAP In Poc	ket
7.	INEL PROPERTY: (Geology Plan In Poc	ket
8.	DISCOVERY ADIT:	1510 m. Level Plan Geology In Poch	ket
9.	AK ZONE: Underg	round and Surface Geology In Poch	ket
10.	AK ZONE: Assay a	and Geology Plan In Poc	ket

.


1.0 INTRODUCTION


The Inel property is located in northwestern British Columbia about 25 kilometers east of the international border with Alaska and about 10 kilometers south of the Iskut River (Figure 1.). The property consists of 15 contiguous claims (217 units) that are 100% owned by Gulf International Minerals Ltd.

This report will cover the physical and geological work carried out during the summer of 1991 (July 15 -September 2) at the Inel property. The work done during this time included underground mapping and sampling, surface mapping, sampling, trenching and some prospecting. Also, one diamond drill hole left from the previous year was drilled further. In order to gain access to some of the work areas, new roads were built and some existing ones were rehabilitated. To gain access to mine workings and to support the working environment required rehabilitation of mine portals, generators, compressor and of power maintenance reinstallation of ventilation systems and improvement of mine walls by rock scaling.


2.0 LOCATION, ACCESS AND TOPOGRAPHY

The Inel property is located at latitude 56 degrees 37' north and longitude 130 degrees 57' west, approximately 7 km south of the confluence of Snippaker Creek and the Iskut River as shown on Figure 2. The property lies within the Liard Mining Division and consists of 15 contiguous mineral claims which comprise 217 units (Figure 3).

- 3 -

Access to the property is by helicopter from the Bronson Creek airstrip, located about 10 km northwest of the property. Daily flights to the strip from Smithers, Terrace and Wrangell, Alaska, have been available using a variety of fixed-wing aircraft. Vertical relief on the property exceeds 1300 meters from 800 m. near Bronson Creek to greater than 2,100 m. on Snippaker Ridge. Vegetation is sparse, but ground cover due to talus, snow and small glaciers is considerable.

3.0 PROPERTY DESCRIPTION AND OWNERSHIP

The Inel property consists of 15 contiguous claims that contain 217 units and have an area of 54 square kilometers. Gulf International Minerals Ltd. is the registered owner.

Summary of Claim Data				
<u>Claim</u>	<u>Units</u>	Record	Expiry Date	
INEL 1 *	9	1243	Apr. 1, 1994	
I NEL 2	12	1244	Apr. 1, 2001	
INEL 3 *	9	1245	Apr. 1, 1994	
I NEL 4	12	1246	Apr. 1, 2001	
INEL 2	16	2586	Oct. 18, 1994	
INEL 3	20	2587	Oct. 18, 1996	
INEL 4	20	2588	Oct. 18, 1997	
INEL 8 **	9	2944	Oct. 6, 1992	
INEL 9 **	12	2945	Oct. 6, 1992	
SLOCUM 1	20	2573	Sep. 13, 1994	
SLOCUM 2	20	2574	Sep. 13, 2001	
KEDGE	20	2584	Oct. 18, 1999	
KEDGE 2	20	2585	Oct. 18, 1997	
SKX 1	12	3718	Dec. 5, 1994	
SKX 2	6	3719	Dec. 5, 1994	

* A legal survey plan of Claims I NEL 1 and 3 was completed in November 1987. The claims are designated Lots 7037 and 7036, respectively, Cassiar Land District.

**Claims INEL 8 and 9 overstake claims INEL 3 and 4.

4.0 EXPLORATION HISTORY

The Inel property was staked by R. Gifford in 1969 and optioned to Skyline Exploration Ltd., who later acquired it in 1975. In 1972, the property was optioned to Texas Gulf Sulphur Company, who carried out until 1974, geochemical and geophysical surveys, geological mapping, trenching and sampling. In 1975, Texas Gulf discontinued exploration on the Inel property mainly due to changes in the provincial government.

In 1980 Skyline renewed exploration on the property, Inel Resources was incorporated in 1987 and Gulf International Minerals Ltd. amalgamated with Inel Resources in 1989. Work done since 1980 is summarized in the following table.

Exploration on the Inel Property Since 1980

1980	-	Trenching, sampling, mapping (Skyline).
1981	-	Trenching, sampling, mapping (Skyline).
1982	-	Prospecting (Skyline).
1983	-	Airborne geophysics; Discovery Zone:
		sampling (Skyline).
		Discovery Zone: 22 holes 1,630 m (Skyline).
1985		Mapping, trenching, geochemistry (Skyline).
1986	-	No program.
1987	-	Incorporation of Inel Resources Ltd. Discovery
		Zone: mine development 183 m (Inel Resources).
1988		Discovery Zone: mine development 570 m, 54 holes
		4,258 m. AK Zone discovered (Inel Resources).
1989	-	Discovery Zone: mine development 120 m, 46 holes
		5,454 m. AK Zone: 31 holes 3,060 m. (Gulf Int'1).
1990	-	AK Zone: drifting 367 m, 23 holes 2,360 m
		(Gulf Int'l and Avondale Resources).

5.0 OBJECT OF PRESENT WORK

The 1991 field program had the following objectives:

- a) To gain a better understanding of the AK and Discovery Zones by doing surface and underground mapping and sampling. This in order to define new drill target areas with high possibilities of exploration success.
- b) To find new mineralized areas by surface prospecting and mapping.
- c) To gain a better understanding of the property geology by doing detailed mapping.

6.0 GEOLOGY

6.1 <u>Regional Geology</u>

The Inel Property is situated within the Stikine Arch, a Paleozoic to Mesozoic-aged arc of volcanic and sedimentary rocks. The oldest exposed rocks in the area are limestones and volcanic rocks of Permian age. These are overlain by Stuhini Group clastic sediments and volcanic rocks of Upper Triassic age.

Following this sequence is the Hazelton Group of Lower to Middle Jurassic age. It comprises mafic flows, felsic tuffs, shales, siltstones and breccias. These rocks are intruded by plutons of granodioritic to syenitic composition.

- 7 -

6.2 Property Geology and Mineralization

The Inel Property is underlain by rocks that are assigned to the Unuk River Formation of the Hazelton Group, with remnants of Betty Creek Fm. capping the ridges. The lowest exposed rocks on the property are felsic pyroclastic rocks that are overlain by clastic sediments and interbedded tuffaceous rocks. The sediments are overlain by flows and tuffs of basaltic composition.

All these rocks are intruded by alaskitic to dioritic sills and dikes, including a megacrystic syenite.

Mineralization in the Inel includes massive sulphides with gold and base metal that are stratabound and possibly volcanogenic, also sulfides with gold values in an intrusive breccia that is controlled by a major fracture system and stockwork zones with gold enriched pyrite-chalcopyrite stringers and veinlets.

7.0 1991 EXPLORATION PROGRAM

Physical and geological work done at Inel during the 1991 field season included:

- 8 -

7.1 <u>Trenching</u>

Done near the AK Portal area in order to expose and sample the AK Breccia. A total of 6 trenches were made and have been localized in the 1:5000 scale map attached (Figure 6). The trenches are:

<u>Trench</u>	Length	<u>Width</u>	Depth
#1	6.0 m	1.0 m	0.5 m
#2	5.4 m	1.2 m	0.4 m
#3	10.0 m	1.0 m	0.4 m
#4	4.0 m	1.0 m	0.5 m
#5	5.0 m	1.5 m	0.8 m
#6	<u>5.0 m</u>	<u>1.0 m</u>	<u>0.5 m</u>
Total = 6	35.4 m	6.7 m	3.1 m

7.2 Construction of New Roads: (See Figure 6)

D.D.H. 169 Area	=	90 m	
Western Slopes Area	=	630 m	
D.D.H. 137 Area	=	830 m	
Lower Discovery Road	=	<u> 120</u> m	
		1,670 m	Length New Roads

Average width = 4 m.

Construction of new roads was done using a DH-5 Caterpillar and doing some blasting.

```
Access to:

D.D.H. 169 Area = 1,720 m

D.D.H. 137 Area = 650 m

AK & Discovery Areas = <u>1,725</u> m

4,095 m
```

Road rehabilitation was also done using a DH-5 Caterpillar and doing some blasting.

7.4 Diamond Drilling: (See Figure 6 for Location)

During the 1991 field season DDH-192 in the south end of the AK adit was extended from 352 feet (drilled in 1990) to a depth of 481 feet. This totalled 129 feet drilled during 1991. All drill core is stored at the Inel Property in suitable racks at the base camp.

Refer to the Appendix for the complete log of DDH-192.

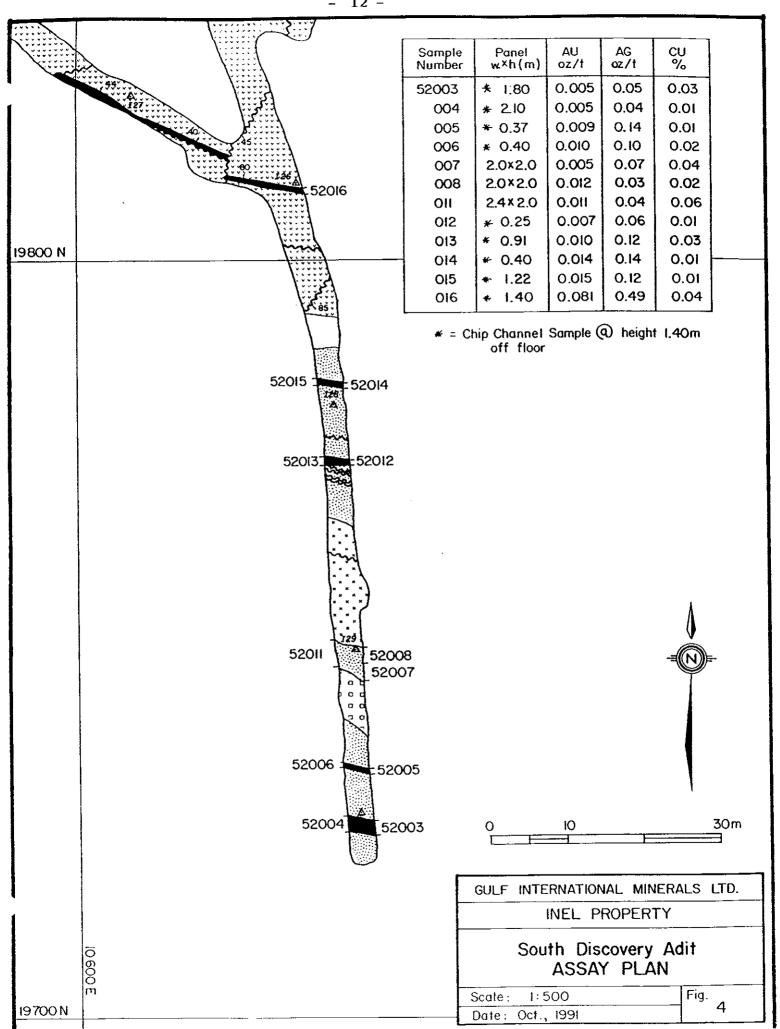
7.5 <u>Geological Work</u>

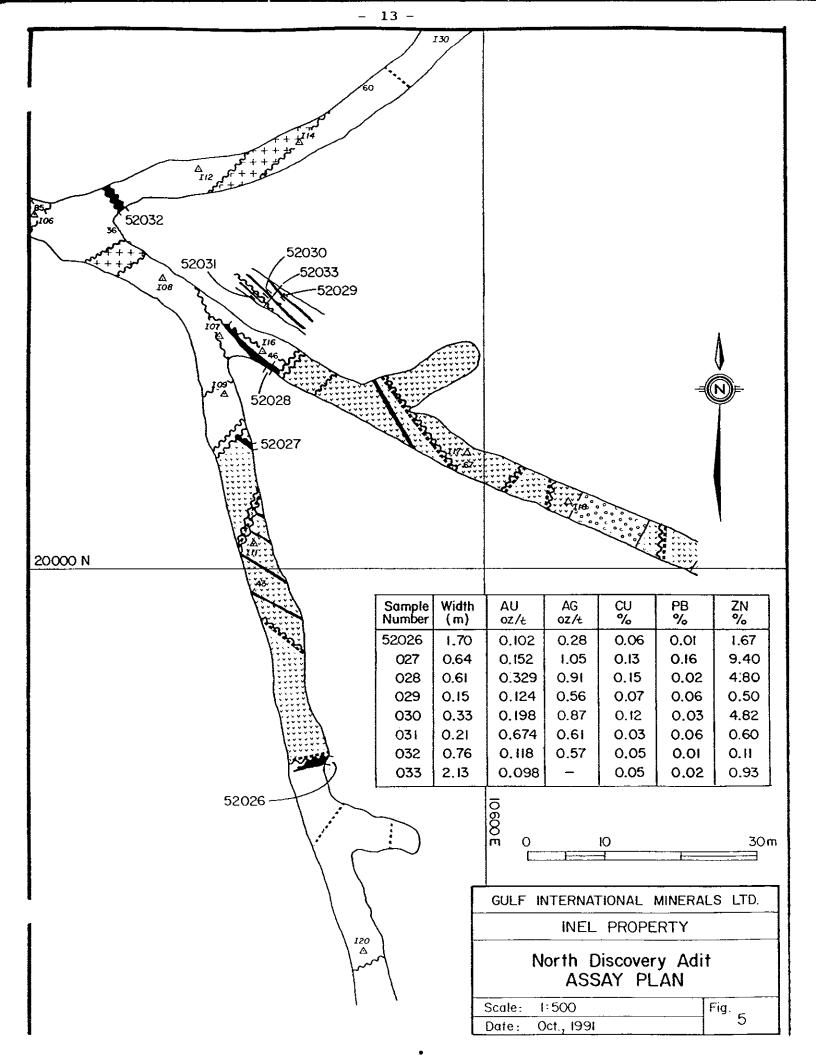
This work consisted in underground geological mapping and sampling, surface mapping and prospecting, and also core reviewing. Underground mapping was done in the Discovery adit at a scale 1:500. Here 873 meters were mapped and samples were taken of mineralized structures. In the Discovery South Area, panel

- 10 -

samples were taken one meter wide from the floor to the back of some walls in the drift and veins were channel sampled (see Figure 4). In the Discovery North Area veins were channel sampled (see Figure 5). At the AK adit, mapping was done at a scale of 1:250. Here 367 meters were mapped underground.

Also, systematic sampling was done along the walls of the AK drift. Sampling consisted in horizontal channels taken every one meter at a height of about 1.40 meters (see Figure 10).


Surface mapping and prospecting was done in the AK, Inel Creek, High Stake, Inel Basin and Western Slope Areas. In these areas, mapping was done at a 1:2500 scale (see Figure 7).


Core reviewed during 1991 includes the following drill holes:

24, 130, 154, 164, 170, 172, 173, 175, 178, 181, 182, 183, 186, 187, 188, 189, 190, 191 and 192.

a) <u>Discovery Zone Adit Geology (Figure 8)</u>
 Underground mapping (1:500) in this zone shows altered banded sediments in contact with massive chloritized basalts. The sediments trend an average of 175 degrees and dip between 15 - 46 degrees east.

Mineralization is found in both rock types as veins, stockwork and stratabound lenses. The veins range in thickness from 2.0 meters to a few centimeters with strike lengths in the order of 50 meters. In terms of mineralogy they contain auriferous pyrite enriched in zinc with minor galena and traces of chalcopyrite. Gangue minerals include quartz, chlorite and calcite.

Stratabound mineralization is found in the northern section of the drift and is characterized by lenses and stringer zones of sulphide. These consist of mainly pyrite sphalerite with minor and galena, chalcopyrite and significant gold. This style of mineralization is associated with volcanic material in the transition zone from an underlying sedimentary sequence to an interbedded sequence of basaltic flows and fine grained sediments.

To date, underground diamond drilling has defined preliminary stratabound reserves of 350,000 tons grading 0.1% Cu, 0.1% Pb, 2.6% Zn, 0.39 oz/ton Ag and 0.102 oz/ton Au for lens No. 1. Other parallel lenses are known and remain to be examined. Within the No. 1 lens is a higher grade area with 127,000 tons grading 0.1% Cu, 0.2% Pb, 3.5% Zn, 0.72 oz/ton Ag and 0.204 oz/ton Au. Stockwork mineralization is localized in the southern end of the drift and is characterized by irregular stringers, veinlets, masses and veins of pyrite with minor chalcopyrite and significant gold. This style of mineralization lies within strong K-spar altered banded sediments and proximal to a megacrystic K-spar porphyry. Veins are mainly pyritic, with quartz, Kspar and sericite.

Drill hole 72 (1988 hole) drilled from the southern end of the drift to the south gave the following assay results:

<u>Length (m)</u>	<u>Cu %</u>	<u>Ag oz/t</u>	<u>Au oz/t</u>
1.61	0.25	2.07	0.372
1.22	0.74	4.05	0.415

b) AK Zone Adit Geology (Figure 9)

In this zone mineralization is associated with an Intrusive Breccia that cross-cuts the enclosing sediments and tends to follow a K-spar porphyry dike. The intrusive breccia contains pyrite, and sphalerite, with minor galena, chalcopyrite, arsenopyrite, and significant gold. The intrusive breccia contains fragments of syenite, argillite and a few of basalt. These are generally 2 - 5 centimeters in diameter, but may be as large as 20 cm. The matrix is dark grey and contains rock flour and crushed rock.

Along the drift two such intrusive breccias have been mapped and a third one was intercepted by drilling to the east during 1990. These three structures may be the same separated by faulting. The first intrusive breccia mapped in the drift is 9 meters wide and can be traced for 150 meters by surface mapping, underground mapping and drilling. It strikes 110 degrees and dips an average of 65 degrees southwest.

The AK Zone was explored by surface and underground drilling during 1989 and 1990. Some of the better intercepts include:

<u>DDH</u>	<u>Length (m)</u>	<u>Au oz/t</u>
S - 116	12.5	0.384
S - 148	5.3	1.110
S - 149	7.6	0.347
U - 171	7.4	1.197
U - 182	5.5	0.265
U - 185	12.9	0.379

A second mineralized structure encountered in the drift is a light olive green to grey rock with stockwork type mineralization composed of irregular veinlets, stringers and concentrations of sphalerite, pyrrhotite and pyrite, with minor galena. It seems this structure may be associated with a felsic to intermediate dike system.

Some of the better grades include (Panel Samples):

Sample <u>Number</u>	Panel <u>Width (m)</u>	<u>Au oz/t</u>	<u>Cu %</u>	₽b_%	<u>Zn %</u>
52240	1.0	.053	.02	.08	6.66
52342	1.0	.254	.02	.13	5.84
52399	1.0	.010	.02	.04	5.88
52227	1.0	1.576	.07	.08	5.26

c) <u>Western Slopes Area Geology</u>

Geological mapping and prospecting in this area was done at a scale of 1:2500. In the southern section of this zone an irregular shaped felsic breccia was identified in contact with black argillites and an Alaskite (Quartz Monzonite) intrusive. The breccia has angular to subrounded fragments 1.0 to 40.0 centimeters in diameter. The matrix is fine grained to mainly aphanitic. The breccia has 1 - 15% disseminated pyrite with traces of chalcopyrite and sphalerite. Some breccia fragments contain fine grained disseminated pyrite up to 30%.

Irregular zones of chlorite and ferrodolomite alteration overprint the breccia and some sections of the alaskite intrusive. Few narrow (0.5 - 20.0 cm) pyrite veinlets cut the breccia and a 15 cm. wide massive lens of chalcopyrite was found in an altered intrusive (alaskite) proximal to the breccia.

A chip sample taken across 1.0 meter in the breccia assayed:

Sample No.	<u>Au oz/t</u>	<u>Cu %</u>	<u>Pb_%</u>	<u>Zn %</u>
52448	.039	.48	.10	.09

The middle section in the Western Slopes Area has black to gray metasediments in contact with a strongly silicified to quartzose structure with stockwork type stringers and disseminations of pyrite (10-25%). Also some alaskite outcrops with 1% disseminated pyrite have been mapped in this area. It is probable this quartzose structure may be a contact envelope between the Alaskite and the sediments. A chip sample taken across 1.0 meter in this quartzose structure assayed:

<u>Sample No.</u>	<u>Au oz/t</u>	<u>Cu %</u>	<u>Pb_%</u>	<u>Zn %</u>
52476	0.017	.26	.005	.02

In the northern section of the Western Slopes Area (Super Bowl Creek) a mafic intrusive (Dioritic) with 4% disseminated magnetite has been identified. About 30 to 40 meters above this intrusive a silicified structure with massive stringers, veinlets and disseminations of chalcopyrite (2-40%) was mapped. This copper outcrop is about 20 meters long and about 8 meters wide. A chip sample taken across 1.0 meter in this mineralized structure assayed:

Sample No.	<u>Au oz/t</u>	<u>Ag oz/t</u>	<u>Cu %</u>	<u>Pb_%</u>	<u>Zn %</u>
52478	.024	1.09	4.02	.01	.05

Drill hole 167 drilled in 1989 missed this chalcopyrite structure since it was drilled about 20 meters northeast of it. Though, it intercepted a diorite zone with quartz flooding, pyrite, magnetite and with anomalous copper. This interval assayed:

<u>Interval (m) Au oz/t Aq oz/t Cu % Zn %</u> 9.45 0.006 0.048 0.142 0.01

- 19 -

d) Inel Basin Zone Geology

This area shows a chloritic stockwork outcrop with stringers and veinlets of quartz, pyrite and less chalcopyrite. Also, strongly silicified pyritic stockwork outcrops have been mapped. These silicified structures are very similar to the rocks mapped in the middle section of the Western Slopes. A grab sample taken from this silicified zone assayed:

<u>Sample No.</u>	<u>Au oz/t</u>	<u>Cu %</u>
52463	0.004	0.28

Chips taken across 2.0 meters in the chloritic stockwork structure assayed:

<u>Sample No.</u>	<u>Au oz/t</u>	<u>Cu %</u>	Pb %	<u>Zn %</u>
52461	0.036	1.26	0.03	0.20

e) <u>High Stake Zone Geology</u>

Geological mapping (1:2500) and prospecting found massive pyrite talus fragments which led to the mineralized source. Here two pyrite outcrops were mapped suggesting a vein trending west. These mineralized outcrops have concentrations of auriferous pyrite (20-80%) with an average width of 2.8 meters. Host rocks are banded sediments which trend 190 degrees and dip 32 degrees east. Chip channel samples assayed:

- 20 -

<u>Sample No.</u>	<u>Width</u>	<u>Au oz/t</u>	<u>Cu %</u>
52050	2.4	.076	.02
52051	3.3	.221	.01

f) <u>Inel Creek Zone Geology</u>

Mapping in this area (1:2500) revealed the alaskite intrusive in contact with chloritized basalts. Some of the outcrops were a hard brittle fine grained rock which may represent a chilled margin. The basalts had stockwork type stringers and veinlets of pyrite (15-20%).

8.0 CONCLUSIONS

At the Discovery Zone stratabound mineralization is characterized by lenses and stringer zones of auriferous pyrite and sphalerite. Preliminary reserves for the higher grade part of lens No. 1 are 127,000 tons grading 0.1% Cu, 3.5% Zn and 0.204 oz/ton Au. Other parallel lenses are known and remain to be examined.

Also of interest is the stockwork mineralization found in the southern end of the Discovery drift. This zone shows some similarities to the mineralization at the Johnny Mountain Mine. Such as strong potassic alteration, quartz-pyrite veins and some brecciation. It would be advantageous to extend this south drift.

~ 21 -

The AK Zone contains an intrusive breccia dike which is associated with gold of economic grade. The breccia cross-cuts sediments and tends to follow a K-spar porphyry dike. It contains pyrite and sphalerite, with minor galena, chalcopyrite, arsenopyrite, and significant gold. The intrusive breccia continues beyond the current limits of exploration and it is reasonable to assume that other similar mineralized zones may exist.

In the AK drift a light olive green to grey rock with stockwork type mineralization has been identified. It is composed of veinlets, stringers and concentrations of sphalerite, pyhrrotite and pyrite, with minor galena. This mineralized structure requires further investigation, though at this stage it seems to be associated with a felsic to intermediate dike system.

In the southern section of the Western Slopes Area a felsic breccia of irregular shape was mapped in contact with black argillites and an Alaskite intrusive. The breccia has 1-15% disseminated pyrite with traces of chalcopyrite and sphalerite. The middle section in the Western Slopes Area has metasediments in contact with a quartzose structure with stockwork type stringers and disseminations of pyrite (10-25%). This quartzose structure may be a contact envelope between the Alaskite and the sediments. The northern section of the Western Slopes area has a diorite intrusive near a silicified structure with stringers, veinlets and disseminations of chalcopyrite (2-40%). It is probable this copper mineralized structure may represent a small manifestation of a larger deep seated porphyry system.

The Inel Basin shows a chloritic pyrite-chalcopyrite stockwork zone in contact with a strongly silicified pyrite stockwork. This may represent a contact envelope grading from an intrusive (Alaskite) to a chilled margin (silicified pyrite stockwork) to pyrite-chalcopyrite mineralized basalts.

In the High Stake Zone two large pyrite outcrops were mapped which suggest a vein trending west. These mineralized outcrops have concentrations of auriferous pyrite (20-80%) with an average width of 2.8 meters. Host rocks are banded sediments.

At the Inel Creek Zone there is Alaskite in contact with chloritized basalts. The basalts carry stockwork type stringers and veinlets of pyrite (15-20%).

9.0 ITEMIZED COSTS STATEMENT FOR THE 1991 FIELD PROGRAM

- I. Itemized Cost Statement for Physical Work Undertaken on the Inel Property in 1991
 - <u>Trenching</u>: 6 trenches were excavated in rock for an aggregate length of 35.4 m, averaging 1.1 m in width and 0.5 m in depth. This work was undertaken in the period August 17-26, 1991.

<u>Equipment Rental</u>

Air compressor, pneumatic drill &	
drill steel, drill bits, air hose	
10 days @ \$300/dy	\$3,000
<u>Materials</u>	
Cilgel 70% explosive, 6 cases	1,172
Amex explosive, 2 bags	129
3 m Fuse assemblies, 12	25
Labor	
Paul Oliver 10 days @ \$200/d	2,000
George Mercredi 5 days @ \$300/d	1,500
Todd Hancock 5 days @ \$150/d	750
Food and Accommodation	
20 man-days @ \$100/d	2,000

TOTAL COST

\$10,576

- 25 -

2. <u>New and Improved Road Construction</u>

(a) New road construction. Aggregate lenth was 1,760 m and average width was 4 m. All work was with D5H caterpillar tractor. Period of work was July 15-Sept 2, 1991.

Equipment Rental, Tractor D5H tractor, fuel, oil and materials 32 days @ \$600/d 19,200 Machine Operator Don Halicki 32 days @ \$200/d 6,400 Mechanic George Mercredi 13 days @ \$350/d 4,550 Equipment Rental, Drilling Machine Long Tom blast-hole drills, portable air compressor, drill steel and bits, air hose 2,000 5 days @ \$400/d Drilling Labour Paul Oliver 5 days @ \$200/d 1,000 George Mercredi 5 days @ \$300/d 1,500 Materials Cilgel 70% explosive, 7 cases 1,367 Food and Accommodation 55 man days @ \$100/d 5,500

NEW ROAD CONSTRUCTION TOTAL \$41,517

(b) Improved road construction. Aggregate length was 4,095 m and average width was 4
m. All work was with D5H caterpillar. Period of work was July 15-Sept 2, 1991.

Equipment Rental, Tractor

D5H tractor, fuel, oil and materials	
17 days @ \$600/d	10,200
<u>Operator</u>	
Don Halicki 17 days @ \$200/d	3,400
<u>Mechanic</u>	
George Mercredi 4 days @ \$350/d	1,400
Equipment Rental, Drilling Machine	
Long Tom blast hole drill, portable	
air compressor, drill steel and bits,	
air hose, 3 days @ \$400/d	1,200
Drilling Labour	
Paul Oliver 3 days @ \$200/d	600
George Mercredi 3 days @ \$300/d	900
<u>Materials</u>	
Cilgel 70% explosive, 7 cases	1,367
Amex explosive, 4 bags	258
3m fuse assemblies, 24	50
Food and Accommodation	
27 man days @ \$100/d	2,700

IMPROVED ROAD CONSTRUCTION, TOTAL \$22,075

TOTAL PHYSICAL WORK

\$74,168 ========

II. Itemized Cost Statement for the 1991 Drilling Program:

Diamond drilling was undertaken underground in the AK adit to extend DDH 192, 39.3 m of BQ core were drilled. Work was in the period July 26-Aug 1, 1991.

Equipment Rental

JKS 300 U/G electric drill and power pack, pumps, fuel, drilling rods and bits, materials, 7 days @ \$100/d \$ 700 <u>Electrical</u> Norm Day 2.5 days @ \$400/dy 1,000 <u>Labour (waterline, drilling, set-up/teardown)</u> Paul Oliver 7 days \$200/d 1,400 George Mercredi 7 days @ \$300/d 2,100 <u>Food and Accommodation</u> 16.5 man days @ \$100/d <u>1,650</u>

TOTAL DRILLING

\$6,850

======

III. Itemized Cost Statement for Geological Work Undertaken on the Inel Property in 1991:

Transportation: July 15-Sept 2		
Trucking	\$	337
Helicopter, Northern Mountain		
Hughes 500	14	,095
Fixed Wing aircraft, Central Mountain	8	,646

- 27 -

Lab Analyses: July 15-Sept 2 79 CuPbZn Assays \$7.50/s 439 Geochem. 5 Elem. ICP \$3.50/s 461 Au Fire Assay \$8.50/s 476 Rock Sample Prep. \$1.50/s 9 Au-Ag Fire Assay \$11.34/s 16 30 Elem. ICP \$4.50/s 3 Soil Sample Prep \$1.00/s 6,992 9 Geochem. Au \$6.00/s Labour: July 15-Sept 2 Todd Hancock July 19-Sep 2, 40 days @ \$150/d 6,000 Paul Carter July 15-Sep 2, 49 days @ \$200/d 9,800 Paul Oliver July 17-Sep 2, 22 days @ \$200/d 4,400 Victor Jaramillo July 19-Sep 2, 45 days @ \$200/d 9,000 Robert Gifford Aug 7-Sep 2, 27 days @ \$200/d 5,400 George Mercredi Aug 1-Aug 22, 2 days @ \$300/d 600 Norm Day July 15-July 19, 2.5 days @ \$400/d 1,000 Food and Accommodation: July 15-Sep 2 187.5 man days @ \$100/d <u>18,750</u> TOTAL COST FOR GEOLOGICAL WORK \$85,020 ====== TOTAL COST FOR PHYSICAL, DRILLING AND GEOLOGICAL WORK: \$ 74,168 PHYSICAL DRILLING 6,850 85,020 GEOLOGICAL GRAND TOTAL COST \$166,038

=======

- 28 -

10.0 STATEMENT OF QUALIFICATIONS

I, VICTOR A. JARAMILLO OF VANCOUVER, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- I am currently employed as Project Geologist with Gulf International Minerals Ltd. at Suite #200 - 675 West Hastings Street, Vancouver, B.C. V6B 1N2
- I am a graduate of Washington and Lee University, Virginia, U.S.A. (B.Sc. 1981), and McGill University, Montreal, Canada (M.Sc. Applied, 1983).
- 3. I have practiced my profession in mineral exploration and mining geology continuously since 1981.
- 4. I am a Fellow of the Geological Association of Canada.

SIGNED AND DATED THIS 5TH DAY OF OCTOBER, 1991 AT VANCOUVER, BRITISH COLUMBIA.

Jacuit

Victor A.//Jaramillo, M.Sc.A., FGAC

11.0 ENGINEER'S CERTIFICATE

- I, ROBERT G. GIFFORD, DO HEREBY CERTIFIY:
- That I am a consulting geologist with a business address at 1256 Alderside Road, Port Moody, British Columbia.
- 2. That I graduated with a B.A. Sc. degree in Geological Engineering from the University of British Columbia.
- 3. That I am a Registered Professional Engineer in the Association of Professional Engineers of the Province of British Columbia and have been since 1967.
- 4. That this report is based on all available information on the Inel property.
- 5. That I am a Director of Gulf International Minerals Ltd.

SIGNED AND DATED THIS 5TH DAY OF OCTOBER, 1991 AT VANCOUVER, BRITISH COLUMBIA.

R.G. Gifford, P. Eng.

12.0 <u>REFERENCES</u>

Gifford, R.G., 1990, 1990 Drilling Program Inel Property: December 31, 1990.

Gifford, R.G., 1991, Report on the Inel Property: May 29, 1991.

Grove, E.W., 1989, Exploration and Development Proposal for Inel Resources Ltd. on the Inel Property: October 31, 1989.

Illerbrund, K. 1990, Fieldwork Inel Property: Gulf International Minerals Ltd., November 23, 1990.

Mosher, G.Z., 1990, Geological Exploration Inel Property: November 20, 1990.

APPENDIX

13.1 DRILL LOG FOR HOLE 192

GULF INTERNATIONAL MINERALS LTD. 200-675 West Hastings Street, Vancouver, B.C., Canada V6B 1		HOLE NO. <u>U-192</u>
(604) 683-9 630	N2 DRILL LOG	Sample Nos. 60917-60923
		52001-52002
LOCATION	AZIMUTH 055°	SKELETON LOG
LATITUDE		0.0-29.0 Basalt
DEPARTURE	+ 34.5	29.0-54.5 INTERFINGERED Sediments/Basalts
ELEVATION	TOTAL LENGTH	54.5-94.0 SEDIMENTS-STrongly altered.
		94.0-99.6 Sulphide Fracture Breccia Zone (Altx
K. ILLERBRUN /V. Jaramillo	DATE STARTED	199.6-103.0 Shear Zone - Rehealed
K. ILLERBRUN /V. Jaramillo DATE Oct. 24, 1990 — July 30, 1991	DATE COMPLETED	103.0-162.6 Sediments - Siltstones
CONTRACTOR	CORE SIZE	162-6-164.2 Intrusive
Arctic	BQ	164.2-236.1 Sediments
Arcine	HORIZONTAL PROJECTIONS (L-Cos DIP)	12261-3000 Sugnite Porphysic
		236.1-300.0 Symmite Porphyry 300.0-481.0 Banded Argillite/Siltstones
DIP TESTS	4	300.0-481.0 Danded Migilliter Silcsiones
		E.O.H.
	VERTICAL PROJECTIONS (L-Sin DIP)	
COMMENTS		
End of Hole was 352' in Oct.	1990 and was	
extended to 481' during Tuly	1991	
extended 10 781 and g	• / // •	
PROJECT	OBJECTIVE AK ZONE	= HOLE NO. U/92

	SAMPL	E				ASSA	YS			AI TERATION AUDICAL CONTRACT			
NUMBER	From	70	Width	Cu	59	22	A.	Au		ALTERATION MINERALIZATION DESCRIPTION	From	70	GEOLOGICAL DESCRIPTION
						[ļ	. 			0	290	BASANT
								┼──		Py is predeminant (any)			- Duck green to give
60917									3-546-Ry + Rtz	culobala . A			- sill stone finger (
		<u>/₹</u>	5.0						5-546 Ry ARte	accuss as disseminations			and from made (G
60918	·	22	5/0					<u> </u>	5% Py cholor + str	and as stringers			are common to
60919	22	27	50						2% Py clustowaster				the send of sec
			$\left \right $					 		ale wining @ 12,5' and			-few physicalaie?
								 		22.6			phones <1mm
								····		Dirty white gtz with			recomizable.
	{									- strong clusters of py			1
													0-2 Broken to gravely
													0-2 Broken to gracely No oxidation.
					<u> </u>			·					2.0-12.5 Broken to gravelly
	-+			-1		_						-+	weakly oxidized
						.							16-19.5 Oxidized weak
							 ·						to Intense
						-1			· · · · · · · · · · · · · · · · · · ·			_	- tocal sandy gouge
GULI	18	TEE	RAT	IOF	TAL	KI.	REP	AT. 9	LTD. PROJECT: T	WEL AK ZONE	AGE 1		OF & HOLE NO. U192

.

	SAMP				·	ASSA	YS			ALTERATION MINERALIZATION	1		
NUMBER	From		Width	Çu	1 5 9	2 1	A E	Au		DESCRIPTION	From	То	GEOLOGICAL DESCRIPTION
 	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> · ·</u>			29.0	59.5	INTER Devices
<u>├</u>				 	<u> </u>	· 	╂	 					September 2501
┝━──				[,				<u> </u>		Sulphide mineralization			AND BASALTS.
 				 	<u> </u>				1	decreases - only associated			Dark green to Br
 						<u> </u>	┼	╏╴╴╸	· · · ·	with Basalts			EBount 24
						┼──	╂───	<u> </u>		Py as ate in Boxalte			
 		-				<u> </u>	<u>├</u> ──		ļ	and clusters rimming			siltslones show
<u> </u>										slot contacts			fingers and ro
						├							fragments in P
													-Silt share fingers
•											Ŀ.		2 feet this
													with layer
				1				•					of bosonths
						•			· · · · · · · · · · · · · · · · · · ·				entwined.
6020	54.5	545	2.0						Tr Ga in Ala,				
	·								If GA in Qtz ,	PAS-ELS Arothe Altored werkly	545	226	SEDIMENTS - STRONGLY
										silicities sittetore.			Massive to weakly
							· · .			Tool Go is Chastr			Bollod to all Ge
GULI	. XB	TBR	RA7	101	NAL.	HI	NBR	ÁL S	LTD. PROJECT.	INEL AK ZONE	AGE		dostroyed .

•

	SAMP	LE				ASSA	YS .		•	ALTERATION MINERALIZATION	<u> </u>	•	
NUMBER	From	To .	Winh	Cu	8 P	2.	42	Au	SULPHIDE Record	DESCRIPTION	From	To	GEOLOGICAL DESCRIPTION
·		 		<u> </u>	<u> </u>	<u> </u>		<u> </u>		62 - Diz veroince with		·	
			<u> </u>		<u>-</u> -	<u> </u>				Associated subhides.			54.3-67 Broken to 6
60921	610	630	2.0				l		3-5965ph Bonding in	Soh > Pri			Oxidation Soon
				·	1 				<u>~~~</u>				- on fx planes to
										Q12 - Didy epique grey.			whole core
	- · ·							<u> </u>					Early Gouse De
					· ·					• •			halines 12 als
										Attendion continues			
		 											<u> </u>
				•						1 Providence in the second sec			Also sondy going
: -								•		everprinting	·		between 66-6
										Oxidation ents by 165		· · ·	
											·	• •	Bedding features
		·····								30-94 Stongly Blendod	-	· ·	
		•		<u> </u>						- to weakly failt	·		
										Attered .	-		P 30° CA.
					·								
		•			, č,		3		in the state of the state	35-94 Sulphile dringer wining	<u>··</u>	-	75.0 While Az utining.
•				<.*				-+		proding to a weak		. 1	tandom : andre to
				<u> </u>				-1		Mosaic Breecion			Nicht seller its
د بشتر				<u>.</u>	. 25 	-7 		<u>·</u>			-	÷.	Dicty yellow time
				141	34						44		
GULI	* * #	TER	RA1	TOP	I Á L	RÍ	NBR/	LS	ETD. SPROJECT	NEL AK ZONE			OF 8 HOLE NO.

•

	SAMP	LE		1	4	ASSA	YS						
NUMBER	· From	. To	Width	Cu	РЪ ,,,,	21	A 8	42	SULPHIDE Record	ALTERATION MINERALIZATION DESCRIPTION	From	· · To .	GEOLOGICAL DESCRIPTIO
· ·			 	<u> </u>		 	ļ	<u> </u>		Sulphides Sph=Py : Pyrr	94.0	99.6	CAN'L S. N
60922	94.0	99.b	36		<u> </u>	<u> </u>	<u> </u>	<u> </u>	3590 Ry TIGN 3-5905ph Tecpy	with traves of coy & Go.		1/10	
									· · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	Zone + Mausie S
				1			1 ·	 		Sittetores Argillic Attend.	┥──		Grodes from weak
				ĺ			1			ZITZ tores Argillic Attend.	╉━╍		reining to Massive
													· · · · · · · · · · · · · · · · · · ·
			1	—							<u> </u>		
							<u> </u>		99.6-103	Argillic AHD of core	- 99.6	103	SHEAR ZONE -REAFAL
		<u>.</u>								weak to Interse.			weak foliation
					 					Banded 140 with			د المالية
									· · · · · · · · · · · · · · · · · · ·	foliation			<u>ciltatores à 3</u>
										Alteration ands abruptly			Later Q12 Cushi
		•	· _							Q 102'			- relieding
						•							
		• •							· · · · · · · · · · · · · · · · · · ·		┨───┤		Minor Sulphid
						•	• •				<u> </u>]		between 99.6 to
				•	•				· · · · · · · · · · · · · · · · · · ·		11		disseminated Ba
		,			· · ·		•						of Py aligner
				···-						· · · · · · · · · · · · · · · · · · ·			with foliation
				•	•		· · ·	<u> </u>		A			
	•				14 A.		• •					-+	
GULI	1 18	TEI	RA	011	NAL	RI	NBR	ALS			PAGE		OF 7 HOLE NO.

	SAMP	LÊ				ASSA	YS		· ·	ALTERATION MINERALIZATION				
NUMBER	From	To .	Width	Cu	P b	Zu	A2	A 2	SULPHIDE Record	DESCRIPTION	From	. To	GEOLOGICAL DESCRIPTION	N
<u></u>	 		 	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>				1		
	ļ		ļ	 		<u> </u>	<u> </u>	<u> </u>		103 Bleaching of seds	1020	1640	SEDIMENTS - SILTSTON	
										trains continues to			Massive to un	eak h
			·			•	• •	1	· · ·	162.6'			beddod @ 65	°c.A
										102.6			- Darkgrey to	·
60923	131	৫১১	4.5						1405pt. 190 Py_ in Q+2				- lighter grey	<u></u>
60924						1		<u> </u>	17014 1- Q12 1290556 19014 in Q12	131.6-140 Rtz Veins Love			alloration in	tery.
		1-10-0	1 <u>#-2</u>				<u> </u>	<u> </u>	190 Ry in Qtz	associated supplides.			increases,	
										spht Ry			- Qtz Stringer	
						 							veining perv	·
						<u> </u>			• ·				2-3 per for	
								. <u>.</u>	······································				usually \$ 1	
							· 							
													thick . Ou	
			••••								· -	 	thicker on 5 cm.	<u>es h</u>
÷ د														
	· .											<u> </u>	- are is Milk,	
				·				·	an di sugar di setta	• •			with localize	
2								••				<u> </u>	Inpillie Hor	loes
14 C										14B No Bulphidos detected	.4		48 20 cm side 242 V	
CUL:	1 18	TBB	A R.A.	101	NAL	кт	888	<u> </u>	ETD. PROJECT: \	in Rtz vein			Milky White = Ellon	te :
									ETD. PROJECT:	NEL AX ZONE	AGE	5	OF 8 HOLE NO. 1319	

• .

						ASSA	<u> </u>			ALTERATION MINERALIZATION	Γ		GEOLOGICAL DESCRIPTION
RMBER	From	. To	Wicth	Cu	P b	22	42	Au	SULPHIDE Record	DESCRIPTION	. From	. 70	GEOLOGICAL DESCRIPTION
<u> </u>							 				162.6	169.2	INTRUSIVE - Granite
<u>.</u>						<u> </u>				· · · ·			Q12 250% eyes 42
							ļ	<u> </u>	•				Molice 13% 11mm
					<u> </u>								
					L		<u> </u>			· · · · · ·			Feldspirs-plug ~30%
													- contract @ 162.6 stor
													and definite - sods
•					·			·					weakly breeciated
													~30°cA
												-+	- contract @ 164.2
													Broken - Oxidized.
			·		i		 						sed's foliated at
								-1 -1-1	• •				30° c.A.
													Qtz healing / win
		—											panullel to Colicatio
										Alteration blenching with	11.42		SEDIMENTS SUISTONES
										beal agillic character			Mussive to weak
										decreases by 178'			Bedded.
****									1	and the second		14	
GULI	2 ;¥1	TEB	BA:	TIO	R A L	жı	NÈR	ALS	LTD. PROJECT	VEL AX ZONE	L	 6	OF 8 HOLE NO. U192

.

Í S	SAMP	LE				ASSAY	(S			ALTERATION - MINERALIZATION		
NUMBER	From	70	Width	Cu	Pb	2 n	Az	a a	SULPHIDE Record	DESCRIPTION	From T	GEOLOGICAL DESCRIPTION
									suray. etcings pyheroti	moderate Argillic alt.	169.Z23	5.1 Sediments = Thinly banded
								 		Υ		(Imm-Icm) Argillitas/Siltatures
								ļ		•		Black to grey color.
											·	Caleite - Qtz irrag. strings
								 		· · · · · · · · · · · · · · · · · · ·		hairline to Icm. at 30°
										·		to 80 to C.A.
							; ;			· · · · · · · · · · · · · · · · · · ·		Argi-/silt. bands at
										·. 		70-80 C. A.
												Few irreg. strings of
												pyhrrotite.
2001	235.8	236.4	0.8	.01	.26	.26	-14	.001	sph(<2%), jn (<1%)	1-2cm Qtz-sph-gn. veinlet at 40° to C.A. (dontant).	296-1 300	O Syenite Porphyry : Contact at
									•	at 40° TO C.H. (contant).		236.1 at 40° to C. Axis.
					-					· · · · · ·		with Icm Atz unit with
2002	245.6	247.0	1.4	<u>.04</u>	.03	-49	<i>•</i> //	.003	<u>рү (3%), сру~ \$%,sph<17</u>	irreg. units Qtz-py-cp-sph.		sph, gn at contact.
											-	Porphyry has 1-2cm
									·			phenos K-spar in a finer
												grained matrix.
									LTD. PROJECT:	INEL - AK ZONE July 30/91	┯┛━━╹	Weak Scrietic att.

S	SAMPI	LE			, A	SSAY	S				ALTERATIO	ON MINE	RALIZATION			GE	OLOGIC	AL DESCI	RIPTION
NUMBER	From	To	Wich.	Cu	Pb	Zn	12	Au .	SULPHIDE Record		DE	SCRIPTION		From	To]	• .		
				· · ·					Fow irreg. sti pyhrrotite. rare dirs.cpy strings.	ings lary	moderate	Provillic	AHE.	300.0	481-0	Bande	1 An	<u>illite/s</u>	iltstones
				<u> </u>					rare diss. cpy string s.	in'		V				Black	<u>+0</u>	grey e	olor.
			•	. 					V		•	•				Irreg	. str	<u>ings</u> a	olor. alcite,
																hair li	nc to	0.25	cm widt
	 		ļ						· ·						<u> </u>				- 95*
<u> </u>				· ·							· ·		. <u></u>			Core	Axis		
															EOH	4			
																			·
																	_		
													,						
																	** <u></u>		
		1		1									•						
			\uparrow			1									1				
	1	1	1	[1				
	<u> </u>	1		-			1						<u></u>		1	1			
			+	<u> </u>														·	
	-	1	1	1		1				·						 			
		1	1	<u> </u>		<u> </u>			· _ 		······.		··						
GUL	P I	NTE	RNA	TIO	RAL	M J	I	RALS	LTD. Pr	OJECT:	INEL - A	K ZONE	. Y.J.	PAGE	8	OF	8	HOLE NO.	U-19.

13.2 SAMPLE RECORD, 1991

l

INEL

		INEL	GULF I	NTERNATIONAL MINERALS LTD			Date	July 29	1, 1991
				Sample Record			Page	o f	;
Sample	or	Survey Location or		Description	Au 02/T	AB 0Z/T	Cu •/•	P b •/•	Zn /
Number	Drill Hole	Footage	length x width		{	ļ	·	ļ	
52001	<u>U-192</u>	235.8-236.4	<u> </u>	1-2 cm Qtz, sph 22%, 9n = 1% Veinle	1	,/#	.01	- 26	-26
52002	U-192	245.6-247.0	1.4'	Valts Qtz, py 3%, cpy 41%, sph 21%	.003	. 7	.04	.03	- 49
52003	Discovery South X-cut	VEIN #1 (East Wall)	5.9'	K-spar, 62, chlorite, Serpentine (1), calcite Vein with volts, diss. py 25%	.005	.25	-03	.01	.01
52004	ц	VEIN #1 (West wall)	6.9'	K-spar, Qtz, chlorite, Serpentine (?), calcite Vein with volts, diss. py 25% K-spar, Qtz, chlor., Serpentine (?), calcite vein with volts, strings dis. py 30	.005	.04	.01	.01	-01
52005	لان	YEIN #2 (Fast wall)	1.2'	Qtz, K-spar Vein with Unit's PY 50-	.009	. '#	.01	.02	-14
52006	4	VEIN # 2 (West wall)	1.3'	Qtz, K-spar Vein with units py 45%	.010	.10	.02	.01	.01
52007	4	MINERALIZED ZONE Between intrusives	6.6×6.6	STOCKWORK: strings, Valts and diss. py 30% in a K-spar Otz matrix Stockwork: strings, Valts, and diss.	.005	.07	.04	.01	.01
52008	v	14 60	6.6 × 6.6	Stock work: strings vilts, and diss. By 25% in a K-spar, Etz matrix	.012	.03	.02	.01	.01
52009	44	Grab Sumple)	Syenite Porphyry	.001	.01	.01	.01	.01
52010	Camp Zone	Next to Kitchen	Grab	Light grey Rx, strong Diss. Py 8%	.004	.05	.01	.01	.01
52011	Discovery South X-cut	MiNERALIZED ZONE Between intrusives	7.9' x 6.6	Stall work tong stainer walk. How	• . 011	.04	.06	.01	.01
52012	ta a	VEIN #3 (East wall)	0.8'	K-spar Qtz Vein strings py 207		.06	.01	.01	.03
52013	u	VEIN # 3 (West wall)	3.0'	K-spar, Qtz Vein, Valts py 30%	. 210	./2	.03	.01	-05
52014	*	VEIN # 4 (East wall)	4 _ 1	Qtz, K-spor, py 60%	1.014	. /4	.01	.01	.07
52015	u	VEIN #4 (West wall,		Rtz, K-spar, py 40%	.015	.12	.01	.01	.02
52016	44	VEIN #5(East wall,		Qtz with massive py 60%	.081	.49	.04	.01	-02
			<u>}</u>	/ ' '					
					}				
					1				

S	a	m	D	1	e	R	e	c	•	r d	
-	~	•••	r	_	~	~~	•	~	v		

			GULF I	INTERNATIONAL MINERALS LTD			Date	AUgust	+ 6, 199
				Sample Record				2 01	· · · · · · · · · · · · · · · · · · ·
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size length x width	Description	∆u	Ag	Cu	Pb	Z'n
52017	NW Corner Property	Outcrop at Creek South of Cairo #1	Grab	Silicified with diss. py 10%	370 POD-		0.16	.05	
52018	4	21	Grab	2 cm Veinlet, py 25%-	Poh		.02	.006	
52019	Big Bowl Creek	North Side Slope	501/	Orange color soil	3.50		.02	.000	
52020	4	~	Grab	Felsic Structure with py 15%	1 1 1 1 1 1 1		.01	.001	
52021	Road Below Cump	Below old Drill Pad	Soil	Grey clay with Fig. dis. py 10%					
52022		4	Grab	Felsic Rock with py 20%.	1240 PPb		.01	.002	
52023	4	4	Soil	Grey clay with diss py 15%.	84.2		· · · ·		
52024		<i>u</i>	Grab	Silic Rock Py 15%-	PP54 PP5		.04	.001	
52025	4	4	Grab	Sili: Rock py 10%	340.		.05	.002	
52026	Discovery	Corner X-cut East	5.6'	Vein: py 20% sph 4%	.102	-28	.06	.0/	1.67
52027	4	North of 52026	2.1'	Vein: py 30% sph 15%	.152	1.05	-/3	-16	9.40
52028	4	North junction x-cut 5.	2.0'	Vein: Massive py 65%	- 329	.91	-15	.02	4.80
52029	<i>u</i>	North of x-cut South	, 0.5'	Flat Vein: Py 85%	.124	- 56	.07	.06	0.50
52030	"	4	1.1'	Flat Vein: py 80%	.198	. 87	.12	-03	4.32
52031	4	· li	0.7'	Flat Vein: py 80%	. 674	.61	.03	-06	0.60
52032	"	Entrance North X-cut	2.5'	Vein: Qtz, massive py 90%		• 57	.05	.01	•//
	<u> </u>]		- <u>-</u>		
]			1	
					1		1		

Date <u>August 15/1991</u> Page 3 of

Sample Record	e Record
---------------	----------

				Sample Record			Page	<u> </u>	ť
Sample	or	Survey Location or	Panel Size	Description	Au	Ag	Cu	Pb	z'n
Number	Drill Hole	Footage	length x width		\				
52033	Discovery Adit	Arca of flat lenses perpend to them	Channel 7.0'	Parallel Lenses by 20-40% by, in between strings py 15%	.098		.054	.02	0.93
52034	U-189	97.0-102.0	5.0		.004		.009	.003	0.05
52035	U-189	102.0-106.0	4.0		.009		.014	.002	0.06
52036	<u>U-189</u>	106.0-110.0	4.0		.006		.014	.005	0.05
52037	<u>U-189</u>	110.0-114.0	4.0	-	.001		-016	.01	0.14
52038	U-189 HIGH STAKE AREA	114.0-118.0	4.0		.005		.013	-03	0.15
52039	нісн	South Side Incl GLACIER ELEV. 1660m	minuclized	boulder re 2'size good PYSP Cp .	.040		0.13	0.15	6.3
	BG 91(103-2)	il	"	" PY stringers .	.147		.035	.03	.07
52041	RG 91(103-3)	+1	"	" " Silicic Py SP Stringers	.082		0.1	.06	0.19
52042	RG 91 (10.3-4)	"	•	" attered PYSP "	.018		.033	.07	5.07
1	RG 91(103-5)	S. Side MEL GLACIER	-	danse udite gtz, pass. alt "Zone, miner PYCP strengers	.002		-118	.007	0.06
52044	RG 91(102-1)	EL. 1640m ~ 100 m 5. 07 52039		Altered seds PY CALCITO STRINGERS .	.004		.007	-007	0.03
]				
52045	High Stake Area	Boulder (Chips) B-1	6' x 4.3'	Mineralized Roulder PY 20%	.185		.14		0.12
52046	<u>(</u>	-	2:3'X 1.0'	" Goulder py 25% sili R	.078		.07		
52047	4	Talus Frag. (1-A)	LINE 10.5 Long	" Frag. py 10-80%	.080		.03	-/3	0.15
52048	4	·· · · (2-A)		Mixed Frag. Seds Bas. py1-407	.028		.01		0.11
52049	4	Chips near of Ven	6.0' across	Silici Rock with strings py 10%			.01		0.34
52050	<i>Li</i>	Vein (Lower) chips	8.0'	Vein with conc py 20-40%	-076		.02		
52051	4,	Vein (Upper) thips	11-0!	Massive py 80% atz in Sili Rx.	.221		-01		
		·/ - /				<u> </u>	· · · · · ·	·	

Date August 15, 1991

S	а	щ	р	I	e	E	l	e	С	0	r	d	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

Pag	e of	5

				· · ·				· · · · · · · · · · · · · · · · · · ·	- <u>r</u> 0 r	
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size		ription	∆ u	Ag	Cu	Рb	Z'n
52052	High Stake Area	Talus Frag. (1-B)	LINE 105'Long	Mineralized	Frag. py 10-80%	.071.		.01	. 14	.06
52053	4	" " (1-c)	ie V	4	4. 4	.129		.03	.04	.05
520.54	<i>u</i>	" " (1-D)	"	<i>42</i>	11 11	-027		.02	.04	.09
520.5.5	4	" " (I-E)	te	u	4 4	.041		.03	.03	.07
52056	4	" " (2-B)	u	Mixed Frag.	Sals Bas. By 1-40%	.022		.01	.02	0.18
				V]				
52057	Below	End OF Road below Camp	grab	Diss. py 10- mal.	20%, traces aguite in Sili Rx	.023		0.5	.006	.02
	· ·	,			·].				
520.58	AK Adit	First Breccia(1-1	1.0 m.	Wall Rock	- Diss. py 2%	.001		.03	.02	0.28
52059	4	" 1-2	4	Wall Rock	1 - 4 4	1.002		.03	:03	0.32
52060	4	" L-3	и	Intrusive R	Durk Grey Bx Fray. 9-10-0-23 m Coarse X . Jus py 10-20%	-005		.02	.02	0.21
52061		" 1-4	4	4		.003		.02	.01	0.19
52062	4	" L-5	4	4	"	.003		.02	.008	.04
52063	4	" 1-6	ч.	. 4	ų	.005		.02	.01	.12
52064	4	<u> </u>	4	<u> </u>	t	1.002		.02	.03	.15
5206.5	ч	" 1-8	"	*	4	1.001		.02	.04	-16
52066	4	" 1-9	· u	4	"	.006	. <u>.</u>	.02	.01	-21
520.67	Li .	* L-10	4	4	٢,	1.002		.01	.01	.17
52068	"	" L-11	"	4	4	1.002		.02	.01	-25
52069	u	" L-12	"	"		1.004		.02	.02	. 45

Date August 22, 1991

.01

.01

.001

.15

				JOHN 1	MILIONAL MINE	SKALS LID			Date	Mugust	22, 199
					Sample Reco	rd				<u>ۍ</u> ،	
Sample Number	Mine Heading or Drill Hole	Survey L or Foota		Panel Size length x width	Descri	ption	Δu	Αg	Cu	РЪ	Z'n
52070	AK Adit	First Br	eccia L-13	1.0m.	Intrusive Bx	DARK Gray By Frag. 10-25cm c.y diss! PY 10-20 %	1.0/2		1.02	.04	. 52
52071	u	4	L-14	4	4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.008		.02	.02	- 26
52072	ų	Le	1-15	4	4	Ľ	.008		-02	.03	.52
52073	ų	u	1-16	4	4	*1	1.002		.02	.04	.28
52074	4	4	<u>L-17</u>	4	4	4	.002		-02	-01	-23
52075	y	41	1-18	ų	4	4	.003		.02	.02	. 3P
52076	ų	4	1-19	4		4	.006		.02	.02	-22
52077	4	4	1-20	"	4	12	-006		.01	.02	.17
52078	ų	u	1-21	4	ų	4	.007		.01	.02	-21
52079	4	u	1-22	4	10	4	.008		.01	.02	.15
52080	u	ц	1-2.3	4	4	11	1.002		.02	-03	.23
52081	4	ч	1-24	4	4	le	.001		.02	.02	-26
52082	le	4	1-25	4	4	4	.003		.02	.02	.23
52083	u	4	L-26	4.	. 4	4	.003		.009	.01	-21
52084	ii ii	· u	1-27	4	4	. 4	.013		.01	.02	.35
52085	ų	u	1-28	4	4	¢	.007		.02	.06	.30
52086	u	4	1-29	4	4	4	.009		.02	.03	.19
52087	ų	4	1-30	4	9	4	.012		.05	.03	.35
52088	"	4	1-31	"	Wall Rock f.	Int. Bx.	.049		.05	.08	1-11
		1		-			1				

Wall Rock . Banded 1-2% py

L-32

u

4

52089

u

Date August 23, 1991

Sample Record

Page 6	o	f
--------	---	---

Sample Number	Mine Heading or Drill Hole	Survey Lo or Footag		Panel Size length x width	Des	cription	Au	Ag	Cu	РЪ.	Z'n
52090	AK Adit	First Bree	cia R-1	1.0m	Wall Roc.	K: Banded Seds. diss. Py 1-2%	.016		.05	.009	.20
52091	4	4	R-2	4	11 11 P	Les 4 the sec	.002		.01	.02	.43
52092	4	<u>.</u>	R-3	u	Intrusive	Breccia: Frag. 10-250 diss. py 10-25%	.004		.02	.02	.25
52093	4	<u> </u>	R-4	(د	4	diss. py 10-25-1-	.007		.02	.02	.34
52094	ų	4	R-5	ч			.028		.02	.04	-17
52095	·····	<i></i>	R-6		4	Ÿ	.015		.02	.02	.12
52096	4	<u>(i</u>	<u> </u>	4	Li li	¢i.	.002		.01	.02	.31
52097	u	۲. v	R-8	4	ų.	4	.002		.01	.01	.26
52098	4	(1	R-9	4	li li		.003		.02	.01	.30
52099	"	4	R-10	ų	4	ų	.011		.01	.01	.19
52100	4	4	R-11	ų	4	4	.004		.02	-02	-25
52101	<i>4</i>	4	R-12	4	u	ч	.005		.01	.02	.23
52102	le	u	R-1.3	ч	¢(4	.006		.01	-02	. 24
52103	4	ų	R-14	· · ·	, 	и	. 016		.02	.03	.30
52104	4	· "	R-15	4	ų	Ÿ	.011		.01	.02	.31
52105	ic	4	R-16	4	4	ų	.005		.02	.01	.47
52106	4	ų	R-17	4	4	4	.009		-02	.02	. 27
52107	4	u	R-18	4	4	4	.021		-02	.05	0.67
52108	"	и	R-19	4	4	*	.039		.04	.06	.45
52109	4	"	R-20) u	A	63	1.002		.01	.02	.19

Date <u>August</u> 23, 1991 Page <u>7 of</u>

Sample	Record

			V			
а	g	e		o	£	
	~	-		•	÷	

Sample Number	Mine Heading or Drill Hole	Survey Locat or Footage	(Panel Size length x width	Descrip	tion	Au	Ag	Cu	РЪ	Z'n
52110	AK Adit	First Breccia	<u>R-21</u>	1.0m	Wall Rock:	Banded Seds. 1-2% py:	.003		.009	.002	.04
52 ///	AK Adit	2nd Breccia	R-1	1.0 m	Wall Rock: Bl	eached Seals-py<34	.005		.03	.005	. 53
52112	<u>.</u>	"	R-2	4	Wall Rock:		.003		.02	.01	.20
52113	<u> </u>	4	R-3	4	Intrusive Bx	Pulylithic Bx Fray- 1-25cm Diss	.010		0/	.007	- 48
52/14	ų	4	R-4	<i>y</i>		Py 10-20%	.ozj		.01	.009	-64
52115	u	u u	R-5	4	(e	4	.020		-02	-008	.17
52116	4	u ,	R-6	(i	<u>`</u> u	ч	.027		.01	.006	.17
52117	4	"	R-7	4		. «	.019		.02	.02	.08
52118	ų	<u> </u>	R-8	ų	"	4	-022		.02	.02	.22
52/19	4	4	R-9	4	*	4	.033		.03	.03	-12
52120	"	" A	R-10	4	4	t.	.031		.01	-03	.25
52121	4	4	<i>Q-11</i>	~	4	K	.011		.008	.02	.40
52122	4	4	R-12	u .	· 4	«	.013		.02	.01	.19
52123	4		R-13	4	4	. 4	.048		.02	.05	-22
52124	4	1	R-14		4	"	1.009		.02	.01	-21
52125	4		2-15	-	4	4	.013		-02	.02	-28
52126	4	1	2-16	4	4	÷	1.026		.05	.02	.16
52127	4	·	R-17	4	4	ct.	.022		.0/	.01	.22
52128	4	1	8-18	(1	4	4	.059		.01	-01	-20

Date August 23 1991

Sample Record

Pageof	
--------	--

Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size	Description	Au	Ag	Cu	РЪ	Z'n
52129	AK Adit	2nd Breasia R-19	1.0m	Intrusive Bx : 125 cm dis py 10-201	.041.		.01	.01	.37
52130	4	* R-20	1	· · · · · · · · · · · · · · · · · · ·	-045		.01	.02	. 43
52131	<u> </u>	" R-21	4	د. لا	.012		.01	.02	-11
52/32	4	" R-22	u	ч ^й	.012		.01	-03	.04
52133	4	" R-23	0.60m	<i>a u</i>	.003		.01	:01	0.17
52134	4	" R-24	1.0 M	Uhll Rock: Bleached Seds- diss. Py < 2%	.005		.0/	.006	0.14
52/35	4	<u>" R-25</u>	1.0m	Wall Rock: « «	1.002		.01	.003	0.16
				-]				
52136	Zinc Knob	Naur Trench	Grab	Sili. Rx diss. py 10-15%.	1.009		0.18	.001	.01
] .				
52137	AK Adit	2nd Breckia L-1	1-0.m	Wall Rx = Bleached Sends diss. Py = 3 -/- Polylithic Breccu Frag	1.002		.02	-04	0.31
52138	ų.	" 1-2	+	Intrusive Bx: 1-10 cm dis. py 10-20	.005		.01	.02	0.39
52 139	4	" 1-3	4	ų « 4	.022		.02	.01	0.45
			<u> </u>]				
52140	AK Adit	0.I-50->S.E. L-C	1.0	Dark grey banded Seds. Weakly Argine Diss. py < 2%.	.003		.01	.003	.04
52141	4	<u> </u>	4	u 4	.001		.009	.004	.05
52142	*	L-2	4	4) 	1.002		.01	.004	• 11
52143	4	2-3	"		.001		.01	.03	-18
52144	4	2-4	۲.	K 4	. 00.3		.02	.009	.19
52145	"	2-5	4	in	1.001		.02	.01	-15

Date <u>August</u> 23, 1991 Page 9 of _____

Sample Record

Page 7 0	£	
----------	---	--

Sample Number	Mine Heading or Drill Hole	Survey Loc or Footage		length x width		cription	Au	Αg	Cu	РЪ	Z'n
52146	AK Adit	I-50->5Ē	1-6	1. O.m	Dark grey ba Diss. Py 22	nded Sc. Is. Weakly Argillic	1.002		.01	.003	.07
52147	4	4	L-7	4	4	4 	.001		.01	.002	.06
52148	4	4	1-8	4	4	4	.001		.01	.006	.03
52149	4	4	L-9	4	4	4	.001		.01	.004	.03
52150	ų	u	1-10	4	4	u .	.001		.0/	.003	-02
52151	*1	ц	1-11		47	ų	.001		.02	.003	.17
52152	4	ų	L-12	4	K	v	.001		.02	.005	.06
52153	u .	4	L-13	4	4	4	.002		- 07	.04	.24
52154	4	4	6-14	ų	4	"	.001		-03	.02	.16
52155	*	ų	2-15	ų	4	4	.003		.04	.02	.36
52156	u	ų	L-16	4	र्	. 4	.005		.03	.02	.28
52157	<u> </u>	4	<u> 2-17</u>	"	ų	4	.001		.01	.003	./3
521.58	ч	ų	1-18	4	4	4	.00/		.004	.001	.02
52159	u	u	1-19	че ,	Felsic ,	DyKe	1.001		.009	.001	.02
52160	u	. 4	L-20	u	Durk grey E Diss. py/< 2	birded Seds. Wenkly Pryillic	1.001		.009	.005	.06
52161	4	9	2-21	ų –	4	4	.002		.01	.01	.09
52162	4	47	1-22	4	ie	4	1.001	·	.01	.007	.01
521:03	<i>u</i>	"	L-23	3 "	4	¥	1.001		.01	.004	.02
52164	4	4	1-24	4	4	11	1.001		.008	.003	.02
52165	4	"	1-25		4	"	1.001		1.008	.01	.04

Date <u>August 25, 1991</u> Page <u>10 of</u>

Sample Record

Page	<u>70</u>	0	f		
------	-----------	---	---	---------	--

Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	length x width		∆u	Ag	Cu	Рb	Z'n
52 166	AK Adit	I-50-75.E. L-26	1.0 m.	Dark grey banded Seds- Weakly Argidic. Diss. py 1224.	.001.		.008	.006	.04
52167	4	" L-27	`	4 <i>(e</i>	.001		.008	.003	-01
52 168	4	" 1-28	4	ч "	.001		.006	. 0006	.02
52169	ų	" 4-29	4	<i>u</i> 4	.001		.009	.002	.05
52170	4	" L-3C	4	¥ 4	.001		.008	.002	.02
52171	<u>u</u>	" L-3/	ų	4 4	.001	-	.009	.001	.02
52172	*	" 2-32	ų	· · · · · · · · · · · · · · · · · · ·	. 00/	-	.007	.002	.01
52173	ų	4 4-33	1	Dacite Conglomerate Banded Seds 127	.001		-01	.004	.01
52174	4	" 4-34	1	Banded Seds. Weukly Argillic. Niss. py < 2%.	001		.008	.006	-04
52 175	4	" 4-35	"	4 4	.00		.008	.005	.04
52 176	u	" L-36	"	4 4	1.001		.005	.006	•11
52177		4 4-37	, u	Dacite Conglomerate 22% Py	.001		.005	.02	.09
52178	4	" L-38	4	<i>ue u</i>	.001		.006	.04	.26
52179	ų	× 4-3) 4.	9 4	1.001		.01	.05	. 3/
52180	ų	4 L-40) (1	4 (Vein: 10cm) sph 41, por	.054		.03	-21	4.58
52181	a	4. L-41	۲ ۲	" (Vaia 15 m Py 25%, 5/00 4 %-1	.042		-02	-17	4.07
52182	4	" L-40	2 4	Bunded Seds. Weakly Argillic. Diss. py < 2% -	.001		.01	.02	.18
52 183	4	1 4-40	3 4	<i>a u</i>	.005		-008	.003	.05
52184	la -	" L-44	<i>i</i> +	4 4	1.001		.01	.005	.09
52185	4	" L-4:		1c 1t	1.001		.01	.004	.09

Date August 25, 1991

Sample Record

P -3	age_	 _of	

					DAMPIE V.								
Sample Number	Mine Heading or Drill Hole	Survey Loca or Footage	(Panel Size length x width		ription		Au	Ag	Cu	Рb	Z'n	
52186	AK Adit	I-50-75.E.	1-46	1.0m.	Banded Scuts.	Diss. py -	< 2 -/-	.00!		. 01	.003	.03	
52187	4	4	L-47	ų	4		n	.001		.01	.0009	.02	
52188	u	4.	1-48	4	4		4	.002		.01	.005	.03	
52189	4	પ	L-49	и	*		¢	.00/		.02	.002	.02	
52190	4	ų	1-50	4	t1		4	.001		-0/	.001	.02	
52191	ų	4	1-51	ų	ĸ		4	.001		.01	.0008	.02	
52192	ų	<i>4</i> 4	1-52	ų	· 4		4	.008		.01	.04	-28	
52193	4	"	1-53	ų.	K		<i>k</i>	.005		.04	.007	.04	
52194	4	" 1	- 54	"	4		4	.003		.0/	.002	.03	
52195	4		1-55	¢,	4		4	.002		.03	.07	.46	
52196	u	4	1-56	1.50m	ų		u	.006		.0/	.02	-24	
52197	ц		-57	1.0m	4		4	.003		.01	.002	.02	
52198	4		-58		ų		u	.003		.008	.001	.02	
52199	4	4 1	1-59	4.	Dacite Congi	omerate	4 2% py	.004		.008	.001	.02	
52200	4	· 4]	-60	4	4	4e	*	.005		.008	.001	.01	
52201	New Road	Below Discove	ry Portal	сніРз 3.0,т	Felsic Rx	diss. p	<u>y 15-20%</u>	.034	·	.03	.002	.006	
52202	AK Adit	I-50-75.E.	1-61	1-0m	Dacite Cung	lomerate	< 2% py	.004		.009	-002	.03	
52203	10	4	L-62	1	Mineralized Sa sph 10%	=.ls. LFold) . RO 20	Qtz, py 20%,	.042	1.21	.04	.46	4.90	

Date <u>August 25, 1991</u> Page <u>12</u> of

	Sample	Record	
el Size	· · · · · · · · · · · · · · · · · · ·	• • • • •	 A 11

		1						<u></u> 01	
Sample Number	Mine Heading or Drill Hole	Survey Locatio or Footage	n Panel Size length x width		Åu	Ag	Cu	РЪ	Z'n
52204	AK Adit	I-50-35.E. 1-6	3 1.0m	Mineralized Seds. (FOLD) Qtz, py 20- sph 107. po 207.	.088.	1-72	.08	. 57	4.00
52205	4	" 1-6	4 "	u le u	.036	2-40	.09	1.16	3.48
52206	u	" L-6	5 "	End fold : sph 1%, py 15%, pol	9.002		.02	.10	.26
52207	**	" L-66		Banded Seds. Diss. py < 2%	.010		.03	.13	.56
52208	4	4 L-6;		4 4	.001		.02	.05	.32
52209	*	" 1-6	8 "	ч "ро 5-/.	.010		.01	.02	-11
52210	4	" 1-69		" po 4/			.009	.03	.06
52211	a	4 L-7	· · · · · ·		003		.02	.06	- 34
52212	4	« L-7			1.004		.02	.08	- 49
52213	4	" 4-7.	2 4		1008		.03	.05	0.74
52214	()	" L-7:	3 4	Banded Sods. diss. py < 2%	.001		.03	.07	0.48
52215	и	" 2-74	4	4 K	.004		.03	.08	2.20
52216	4	" L-7:	- "	4 4	.019		.04	-18	0.78
52217	4	4 L-70		u 4	.001		.003	.003	0.11
52218	1/	· · · L-7;	7 "	4 4	1.001		.01	.01	0.10
52219	(1	4. L-70	2 1	4 4	1.001		.01	.009	0.05
52220	4	4 L-7	7 4	4 u	.00/		.02	.08	1.27
52221	4	" L-8e	0 4	4 4	.001		.008	.03	0.13
52222	4	" 1-8	1 4	4 4	1.00/	1	.01	.05	0.11
52223	4	4 L-8.	2 "	61 61	1.00/	1	-01	.03	0.04

Date <u>August 25, 1991</u> Page 13 of

Sample Number	Mine Heading or Drill Hole	Survey L or Foota		Panel Size length x width		escription	1	Au	Ag	Cu	РЪ	Z'n	
52224	AK Adit	I-50-75.	E. L-83	1.0m	Banded	Seds. Diss. py	~ 2%	.00/		.01	-01	0.13	
52225	4	4	1-84	1.30m	æ	٩		.002		.01	-01	0.05	
52226	"	4	2-85	1.0m	(Altx) stro	ng Stuk Po 30.	-, sph 6%	.017		.02	.07	0.72	
52227	4	4	1-86	ч	u	4	4	1.576		.07	-08	5.26	
52228	4	4	1-87	u	4	4	н	.013		.02	-06	0.68	
52229	4	4	1-88	4	4	.4	4	.011		.01	.01	0.17	
52230	4	4	1-89	ų	u	<i>u</i>	4	.005		.01	.08	0.91	
52231	4	4	1-90	4	u ·	*	4	.001		.01	.06	0.14	
52232	4	u	4-91	ų	4	4	*	.002		.01	.09	0.19	
52233	4	ų	L-92	4	4	4	4	.005		.01	.02	0.21	
52234	4	4	L-93	4	4	4	iu	.003		.02	.05	0.30	
52235	4	4	2-94	4	ť	4	4	.001		.006	.004	0.04	
52236	4	ų	2-95	4	4	4	4	.004		-006	.006	0.08	
52237	4	4	1-96	4	' K	4	"	.080		.03	.07	3.66	
52238	"		<u>L-97</u>	"	4	4	4	.002		.01	.02	0.33	
522.39	"	4	_ 1-98	4	4	4	4	1.009		.03	.07	7.11	
52240	4	4		4	4	 4	<i>u</i>	.053		.02	-08	6.66	
52241	4	"	1-100	4	Banded	Seds. Diss. py	L 2 %-	.00/		.008	<u> </u>	0.14	
	 			<u>}</u>]					
52242	AK Sortace	Upper Tr	ench(Gab)	Grab	Intrusio	e Bx: diss. py le	of, V.G. ?	1.002		.04	.005	.03	

Sample Record

Date <u>August 25 1991</u> Page 14 of _____

Sample Record

Pag	e		0	f	
-----	---	--	---	---	--

Sample				Υ <u> </u>								
Number	Mine Heading or Drill Hole	Survey Loc or Footage		Panel Size length x width	D	escription	1	∆u	Ag	Cu	Рb	Z'n
522/12		· · · · · · · · · · · · · · · · · · ·		}]	 			
52243		I-50→5.E.	_L-101	1.0m	Banded	Seds. Diss. p	y ∠2%	.002		.005	.003	0.20
52244		16	L-102	41	4		4	.00/		.007	.02	0.10
52245	۴	4	L-103	4	4			.007		.02	.10	0.41
52246	*	4	L-104	4	4	4		.001		.006	.02	0.18
52247	**	4	L-105	и	4	4		.001		.009	.004	0.06
52248	4	4	L-106	40	4	4		.002		.008	.004	0.06
52249	14	. 4	L-107	1.60 m.	. 4	t.		.003		.01	.004	0.06
52250	4	4	L-108	1.0m	4	4		.00/		.007	.003	0.03
52251	ų	"	L-109		4	<i>u</i>		.001		.01	.005	0.03
52252	4	4	L-110	40	4			.00/		.006	.007	0.11
52253	4	Ľ	L-111	Y	4	4		.007		.006	.006	0.10
52254	4	te	L-112	4	u	4		.002		.006	.005	0.02
52255	4	4	L-113	4	4	4		.002	_	.007	.008	0.03
52256	4	4	L-114	1.40m	"(4		.005		.01	.02	0.50
52257	<u> </u>		L-115	1.0 m.	(Altx) St.	uK in Seds-Poo	30%, PY 5%	.001		.009	.009	0.67
52258	*	4	L-116	ų	~ ~	"	4	.021		.01	.04	0.89
52259	4	4	L-117	*	4	ę	4	.035		.01	-04	0.62
52260	4	4	L-118	LE	u	4	"	.020		.01	.05	0.79
52261	ų	*	L-119	4	Min. Dacite	Congl. [Vein 200	, py 30-1-)	.069		.02	.05	1.87
52262	tı	Li I	L-120	L		Ione py 20%,	,, ,	\		.01	.04	1.56
									L.,,	.	<u> </u>	

					Sample		Page_15_of				
Sample	Mine Heading or	Survey L or		Panel Size	Des	scription	∆u	Ag	Cu	Рb	Z'n
Number	Drill Hole	Foota	ge	length x width	ļ						
52263	AK Adit	I-50->	5.E <u>L-121</u>	1.0m	Min. Dacite (Congl. Stuk. py 20-30	.0/9		.04	.04	13-68
52264	4	4	L-122	(1		ч 	-019			•	0.29
52265	4	4	L-123	**	4	4	.021				0.49
52266	4	4	L-124	ч	4	4	.010				0.28
52267	4	4	L-125	4	4	<u> </u>	_017				0.15
<u> </u>						· · · · · · · · · · · · · · · · · · ·					
52268	AK Surface	Trench	<u> </u>	1.0 m	Intrusive	Breccia. Diss. py 5-1	5% .002		.05	.07	0.20
52269	4	4	L-2	te	<u> </u>	iy	.00/		.05	.03	0.11
52270	4	4	L-3	u	4	4	100/		.03	.02	0.11
52271	ų	4	<u>L-4</u>	4	Li Li	11	1.001		.02	.01	0.04
52272	4	4	L-5	(c	4	"	.004		.04	-04	0.08
52273	4	Le .	L-6	4	ų	4	. 00/		- 03	-04	0.10
52274	4	14	<u>L-7</u>	"	4	4	_002		.05	.06	0.18
52275	4	4	L-8	4	· 4	4	_ 005		.05	.07	0.08
52276	4	. 4	<u> </u>	1.40m	4	. 9	.00/		.03	.01	0.04
52277	4	4	L-10	1.0m	4	4			.02	-02	0.07
52278	4	4	<u> </u>	4	4	"	1.001		.02	.02	0.06
52279	4	4	<u>L-12</u>	4	4	4	.007		.03	.06	0.13
52280	4	•	L-13	4	iii	+	-013		.03	.04	0.16
52281	4	u	1-14	"	q	<i>C1</i>	.006		.03	.03	0.13

					Sample R	ecord				Page	<u>16_</u> of	: <u></u>
Sample Number	Mine Heading or Drill Hole	Survey Lo or Footag		Panel Size length x width	Desc	ription		Au	Ag	Cu	РЪ	Z'n
52282	AK Surface	Trench	L-15	1.0.m.	Intrusive 1	Breccia. Diss	.py 5-15/	.014		0.04	0.10	0.20
52283	4	41	L-16	u	4		4	.010		. 02	0,04	0.11
52284	ik .	te	L-17		4		4	.011		.04	0.14	0.15
52285	4	4	L-18	4	4		4	.023		.03	0.02	0.32
52286	4	<u>ц</u>	L-19	ч	Hornfolsed	Seds. dis	15. py 3%	.001		.01	.003	0.12
52287	4	se	1-20	<u>u</u>	4	a		.002		-01	.01	0.18
52288	4	(1	L-21	4	Intrusive	Breccia. Di	iss. py 5-15-1.	.004		.03	.007	0.06
52289	4	1e	L-22	ų	ч		v	.004		.02	.007	0.02
52290	4	te	1-23	4	4		4	-005		-03	.009	0.04
52291	4	4	L-24	4	4		4	.00.8		.0/	.01	0.06
52292	4	4	L-25	"	4		u	.002		.02	.009	0.03
52293	"	4	L-26	4	"		4	.002		- 01	.02	0.03
52294	(e	4	L-27	ų	*			.005		.03	.03	0.06
52295	4	<i>t</i> ,	L-28	"	' «		41	.002		.02	.02	0.15
52296	Copper DOME ZONE	See Geo.	Мар	0.15m.				.064	4.25	27.9	.02	-21
52297	4	4						.004		0.007	.002	0.02
52298	AK Adit	I-50->5.	<i>≡ L-124</i>	1.0m	Min.Dacite Co	ongl. Stuk. P	y 20-30%. 26 1%	.061		.01	.05	1.51
52299	a	"	L-127	4	44	·	4	.002	<u> </u>	<u> </u>		<u> </u>

		· · · · · · · · · · · · · · · · · · ·			Sample Reco	rđ			Page	/701	[
Sample Number	Mine Heading or Drill Hole	Survey Loc or Footage	ation	Panel Size length x width	Descri	ption	Au	Ag	Cu	РЪ	Z'n
52300	AK Adit	I-50→5.E.	L-128	1.0.m.	Min. Dacite Congl.	STWK- PY 20-30%	.028		-01	- 01	0.28
52301	**	2	1-129	4	4	14	.022		.01	.06	0.41
52302	4	4	1-130	и	L.	4	.008		.01	.02	0.32
52303	"	4	1-131	ч		и	.003		.01	- 03	0.89
52304	4	4	1-132	4	Min. Dacite Conyl. Ve	in 3-5cm py 35%,	.017		.02	.03	3.35
52305	4	4	1-133	4	<u> </u>	"	.030		.01	.03	1.74
52.306		4	1-134	ч	" " Veio	15cm. py 20%,	.0,39		.01	-05	2.70
52307	4	4	1-135	ч	u u Va	1ts PY 207 sph 4%	.089		.02	.05	2.51
52308	"	4	1-136	"	Min. Dacite Cong	1. PY 5% po 1-2%	.001		.009	.06	0.75
52309	4	ų	1-137	4	4e V	4	.006		.02	.04	0.22
52310	4	ц	L-138	u	4	ų	.001		- 03	.01	0.04
52311	4	4	1-139	4	4	4	.001		.02	.03	.05
523/2	4	4	1-140	4	<i>(c</i>	4	.004		.22	.02	.07
52313	4	4	L-141	te	4	4	. 001		.02	.007	-18
52314		4	1-142	<u>«</u>	4		. 001		.008	.03	.04
52315	4	4	L-143	CI .	44	4	.001	· · · ·	.02	.06	-04
52316	4	4	1-144	4	4	4	.001		-01	.01	.03
52317	"	11	<u>L-145</u>	4	4	4	.081		.03	.09	1-78
52318	4	"	1-146	"	11	4	.00/		.008	.003	. 13
52319	4	4	<u>L-147</u>	4	"	4	.002		.008	1	.05

<u> </u>				Sample Record			Page	18_01	
Sample Number	Mine Heading or Drill Hole	Survey Location or		Description	₽₹	Ag	Cu	Ър	Z'n
			length x width	1	ļ		[]		
52320	AK Adit	I-50-75.E. L-148	1.0m.	Min-Dacite Congl. PY 37. 101-2%.	.002		.02	.02	• 11
52321	<u>4</u>	" L-149	ч	Min. Dacite Congl. PY 5%, po 1-2%. (Altx) Stwk in Seds. py 2%, po 5%	.009	<u></u>	.01	.002	. 16
<u>52322</u>	4	" L-150			.079		.04	-03	2-37
52323	4	<u>" L-/5/</u>	4	4 ⁽ 1	.001	<u>,</u>	.01	.01	.06
52 324	4	<u> </u>	4	ч (¢	.001		.02	-003	.02
<u>52325</u>	¥	<u> </u>	"	ų ų	.001		.01	-005	.11
52326	۲	<u> </u>	4	61 ff	.001		.01	-003	.29
<u>52327</u>	4	<u> </u>	<u> </u>	^ن ا (۲	.00/		.04	.004	.49
52328	4	<u> </u>	4	Fault contact with Mineralized Basalts fy 20%, sph 3%. Qtz	-057		.06	-02	1.99
52329	<u>ч</u>	" L-157	4	u u u	.070		.06	.04	4.79
52330	در	" L-158	u	Massive Chloritic Basalts-diss py 10%	.001	•	.009	.003	.39
<u>52331</u>	AK Adit	I-54->5.E. L-1	1.0m	15 IE 63	.003		.02	.005	-21
52332	*	<u> </u>	0.70m	VEIN(0.70m) py 20%, sph %.	.007		.03	-01	-73
52333	"	<u> </u>	1.0m	Massive Chloritic Basalts. Diss. py 10%.	.001		.006	.02	.09
<u>52334</u>	AK Adit	I-50->5.E. R-92	1.0m	a a ce	.002		.02	.004	.16
<u>52335</u>	4	" R-91	4	Basalts py 15%, sph 3%, Btz.	.001		.01	.002	. 10
52336	4	" R-90	4	(Altx) Stuk in Seds. py 2%, po 5%.	.001		.03	.004	.10
52337	10	" R-89	4	LI 4	.001		.007	.003	.02
<u>52338</u>	.e	" R-88	"	4 4	1.001		.01	.003	.01
52339	11	" R-87		4 "	1.001		.01	.002	.01

Date_____

Dat	e
-----	---

	T			Sample 1	Record			Page	19 .	 f
Sample Number	Mine Heading or Drill Hole	Survey Locatio or Footage	n Panel Size	Des	cription	Au	Δg	Cu	РЪ	z'n
52340	AK Adit	I-50-75.E. R-8	6 1. O.m.	(Altex) Sturk	in Seds. py 2%, posy.	.001	<u> </u>	1.01	.01	.04
52341	4	" R-8	5 «	u	4	.021		.01	.02	<u> </u>
52342	4	" R-84		4	ie ie	-254		.02		.69
52343	4	" R-8		u	4	.020			.13	5.84
52344	4	* R-8;		4	4	1.00/		.01	.03	- 59
52345	*	" R-8		4	4	.002		.01	-02	-09
52346	4	" R-8			4	1		.01	.05	•14
52347	te	" R-7		4		.00/		.01	.02	.05
52348	4,	" R-7		4	4	.001	<u> </u>	.01	.01	-03
52349	"	" R-7			4	.001		.01	.007	.04
52350	4					-00/	· · ·	.01	.02	-/3
52351	97	<u> Λ- Λ</u>	e "	Min. Dacite (Congl. PY 5%, po 1-2%	.001		.02	.02	.09
52352		" R-7."		4	<r< td=""><td>-003</td><td></td><td>.02</td><td>.003</td><td>.04</td></r<>	-003		.02	.003	.04
	10	<u>« R-74</u>		4	4	.001		.03	.007	.05
52353	te	<u> </u>		4	4	.0/3		.02	.04	.63
52354	4	" R-7		*	. 4	.041		.01	.05	1.04
52355	4	" R-7/		¥	4	-003		.005	.008	.03
52356	4	" R-70	7 4	· 4	4	.001		1	.003	.03
52357	4	" R-6	9 "	4	4	.001		1	.002	.01
52358	4	" R-6;		۲		.001		.004	.002	.01
52359	4	" R-6		4	4	.00/		.007	.06	- 92

				Sample Record				Page	20 .	ť
Sample Number	Mine Heading or	Survey Locatj or	on Panel Size	Descriptio) n	Δu	Ag	Cu	Pb	Z'n
	Drill Hole	Footage	length x width	1	-]				
52360	AK Adit	I-50-75.E. R-0	56 1.0 m	Min. Dacite Congl. (Vein 1	Sca- P'sph 4.1)	.185		.03	.07	1.42
52361	*/	4 R-0		V	64 2011	.079		.02	.05	1.42
52362	41	4 R-6	4 "	Min. Dacite Congl.	Py 20% , sph 4/	.069		.02	- 14	3.38
52363	4	" R-0	3 4	ie 7	11	.017		.03	.03	4.00
52364	"	" R-4	2 4	4	4	.026		.03	:04	3.69
52365	4	"	61 4	Nin. Dacite Congl.	Py 10-20%	.004		.007	.01	0.14
52366	4	" R-0	60 "	41	12 12	.006		.02	.04	3.19
52367	4	" R	<u>-</u> 9 "	· 4	4	.001		.004	.006	- //
52368	4	" R-:	8 4	u	44	.004		.006	.005	.08
52369	4	* R-;		4	4	.001		.003	.002	.03
52370	4	" R-5		4	4	.010		.005	.005	.17
52371	4	" R-5		4	ч	.034		.008	.02	- 37
52372	4	" R-3	4 "	"	44	.0/5		.008	.02	.64
52373	4	" R-5		4	4	.013		.01	.02	.68
52374	4	* R-5		Contact Zone : Py 1	15%, 5ph 1-4%.			.01	.02	3-11
52375	4	* R-3		4 4		022		.02	.03	.75
52.376	4	" R-5		(Altx) StwK : po 30	1/ sph 1-3-/-	.014		.02	.02	.82
52377	4	" R-4		u u	"	.002	<u> </u>	.008	.01	.41
52378	*	" R-4		4	(e	.0/4		.01	.02	1.34
52379	'n	" R-4		4	¢,	.005		.008	.02	-35

Date____

	<u></u>	·		Sample Record			Page	21_01	·
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size	Description	Au	Ag	Cu	РЪ	Z'n
52380	AK Adit	I-50-75.E. R-46	1.0m.	(AItx) STWK- po 30%, sph 1-6%	.00.6	 	.02	.02	-45
52381	4	" R-45	ie ie	· · · · · · · · · · · · · · · · · · ·	.007		.01	.05	• 44
52382	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	" R-44	4	ц И	.002		.005	.02	-18
52383	4	* R-43	4	(1 te	.00/		.007	.02	.20
52384	*	" R-42	"	4 4	.003		.009	.03	- 53
52385	4	* R-41	4	4 11	.009		.01	.02	-15
52386	4	" R-40	4	· (e · · · ·	.002	_	.01	.04	.48
52387	4	* R-39	ĸ	ч и	.007		.02	.04	2.91
52388	4	* R-38	4	4 4	.003		.007	.008	.19
52389	4	" R-37	ie ie	4 4	.04./		.02	.17	-92
52390	4	" R-36	4	4 4	.008		.01	.03	.42
52.391	. 4	* R-35	4	11 4	.020		.02	.09	.68
<u>52392</u>	4	"	"	ч а	.012		.01	.02	-20
52393	()	" R-33	4.	· 4	.004		.01	.02	-16
52394	4	· R-32	4	4 4	.004		.02	.03	3.03
52395	4	" R-31	"	4 4	- 342		.04	.08	- 84
52396	ų	" R-30	4	4 4	.004		.02	.03	.14
<u>52397</u>	4	" R-29	ų	4 F	.010		-01	.005	.06
<u>52398</u>	4	" R-28			.003		.02	.03	.26
<u>52399</u>	"	" R-27	, u	<i>u u</i>	1.010		.02	.04	5.88

Date____

.

	r	<u></u>			Sample Record			Page_0	<u>22_ot</u>	·
Sample	or	Survey Loca or	tion	Panel Size	Description) Au	Ag	Cu	РЪ	Z'n
Number	Drill Hole	Footage		length x width)				1
<u>52400</u>	AK Adit	I-50-75.E.	<u>R-26</u>	1.0 m	(Altx) STWK- po 30%, sph 1-6%.	.008		-02	.02	. 47
52401	COPPER DOME ZONE	Lenses South C	ск.	0-20m	Py (20%) Lens in Sili. Rx	.027		-06	.002	.009
52402	AK Adit	I-50-75.E.	R-25	1.0m	(AItx) STWK. PY 30%, sph 1-6%	.0/3		.02	.02	. 14
52403	*1	41	R-24	4	4 4	.004		.03	.05	-39
<u>52404</u>	4		R-23		4 ⁴	1.001		.02	.05	.30
<u>52405</u>	4	4	R-22	ų	4 4	-116		.05	.06	2.78
52406	4	"	R-21	4	u 4	.001		.02	.04	- 44
<u>52407</u>	- e		R-20	4	4 4	.004		.02	.09	-24
52408	4	4	<u>R-19</u>	4	4 4	.003		.04	.10	- 42
<u>52409</u>	1 4	4	R-18	4	« <i>u</i>	.003		.03	.09	-21
52410	4	4	R-17	te .	Banded Seds. Diss. py 2-5%	.004		.04	.14	-13
52411	4	•	R-16	4	Dacite Congl. Diss. Py 5%	1.001		.01	.006	.04
52412	4	<u> </u>	R-15	4	4 4 4	1.002		.007	.002	.03
52413	٠	"	<u>R-14</u>	ų	Banded Seds. Diss. + string po 107 py 2%.	.005		.008	.005	.04
52414	4	<u> </u>	<u>R-13</u>	4	<u>u</u> "	1.002		.010	.003	-05
52415	4		R-12	4	44 Y	.002		.010	.004	.04
52416	4	4	<u>R-11</u>	4	ie 41	1.001		.03	- 010	.07
52417	4	4	R-10	4	<u>()</u>	.001		.01	.0/	-11

	T	I			Sample R	ecord			_	Page	23_01	[
Sample Number	Mine Heading or Drill Hole	Survey Loc or Footage		Panel Size	Desc	ription	A {	u	Ag	Cu	РЪ	Z'n
52418			R-9			ads. Diss. + strings	PC MT 0	~	 			
52419	4	4	R-8	4	Uanaea Ue	ea(s				.0/	.002	.01
52.420	4	4	R-7	4	"					.0)	.002	.04
52421	4	4	R-6	4			0			.008	-004	-04
52422	4	4	R-5			•				.01	.003	.03
52423	(,	· · · ·	R-4	4						.02	.002	.02
52424	4	4			4					-01	.003	.03
52425		4	R-3	4		ч 				.01	.003	.03
	4	<u></u>	R-2	4		"	1.00			.01	.003	.05
52426		4	_R-1			nglomerate. Diss. F		23		-008	. 01	-12
52427	AK Adit	I-42->5.	2-1	1.0 m.	Syenite : Di	2. py 5. /., sph 2.	10.	52	-85	.06	.30	2.74
52428	4	4	1-2	0-90m	Vein (0.90) P	y 30%, sph 5%	etz . O.	32	1.70	.05	1-38	7.66
52429	"	46	L-3	0.90m.		4C 4C	i	08		.07	.04	2.25
52430	4	4	L-4	1.0.m	Syenite Par	Hy min- PY 15%, 54				.14	.05	2.73
52431	4	4	1-5			Rx. py 4-8%	.0			.03	-02	-60
52432	4	. 4	L-6	ų	4	4		94		.05	.008	.08
52433	4	4	L-7	4	"(<br </td <td></td> <td>22</td> <td></td> <td>.01</td> <td>.007</td> <td>.06</td>		22		.01	.007	.06
52434	4	4	R-1	1.0 m	Syenite . D		-0			.02	·····	- 36
5243.5	4	4	R-2					_		-04	-05	
52436	"	4	R-3	1.0 m	Sugart on 12	0 × 15 %, sph 4 %, c				· · · · · · · · · · · · · · · · · · ·	.05	0.59
52437	ų	4	<i>R-ЗА</i>	1.2m	Syenite I	here here a straight the second secon	<u>.</u> 0			.02 .007	.03	0-47

		1		Sample Record			Page_0	2401	e
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size length x width	Description	۸u	Ag	Cu	РЪ	Z'n
52438	AK Adit	I-42->5 R-3B	1.2m.	Syenite. Diss. py 5%	.00.7		.006	.007	0.55
52439	4	" R-4	1.0 m.	4 4	.004		.01	.02	1.55
<u> 52440</u>	"	" R-5	0.70 m	Vein 20-30% py, sph 5%. chlor.	.383		.10	.02	0.63
52441	4	4 R-6	1.0 m.		.136		.03	.007	-06
52442	4	« R-7	1.0 m	1 11 14 1.	.035		.02	.006	-11
<u>52443</u>	4	" R-8	I.D.M.	<i>u</i> 4	.051		.04	.05	•//
52444	"	" R-9	1.0 m.	<i></i>	.007		.009	.02	.07
·]		6		
<u>52.445</u>	Superior ZONE	at 1.145m. Elev.	chips Im	Bx Silf- + Rusty diss. px 10%.	.005		.02	.03	- 34
52446	4 Rational Disc	4		Bx, Rusty outerop By 20%	.005		.02	.002	-03
<u>52447</u>	Below Discovery Portal	Road at 1470m	4 11	Stuk diss. Py 15th CPy 27	.005		-14	.006	.02
52448	Copper DOME	Rounded py Struct.	4 4	Bx struct. diss. py 15 % cpy <1%			.48	.10	.09
	INEL CK.	'/					- / //		
<u>52449</u>	ZONE	D.D. 130: 283-287'	4.0'		.001		.005	.004	.01
<u>52450</u>	4	" 287-291'	4.0'		.001		.003	.002	.01
<u>52451</u>	¢(" 291-295"	4.0'		.001		.003	.002	.01
52452	4	" 295-299"	4.0'		.001		.005	-003	-04
<u>52453</u>	<u> </u>	" 299-303"	4.0'		.022	<u> </u>	.01	.0/	- 45
52454	4	" 303'-307'	4.0'		.007		.01	.01	- 45
52455	~	· 307-310.5'	3.5'		.009		.01	.03	.36

Date____

				Sample Record			Page_	<u>25</u> of	·
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size	Description	Au	Ag	Cu	РЪ	Z'n
52456		D. D. H = 130 : 310.5-313	2.5'				.01	07	
		D. D.H: 24/26'-30'			.00.4			.03	.09
52457	1		4.0'		.004		.03	.00/	.04
52458	"	" 30-34'	4.0'		-007		.05	-002	-03
<u>52459</u>	4	" 34'-38'	4.0'		-010		.03	.002	- 05
52460	4	" 38'-42'	4.0'		.027	. <u> </u>	.03	.004	-02
52461	ICE CAVE	See Map 1:2500-1	chips Imetres	Stwk Qtz, py 30%, cpy 1%, malaguite	.0.36		1.26	.03	.20
52462	‹د	" 5-2	chips	Qtzose vuggy partially leached cpy traces			.02	.002	.005
52463	"	" 5-3	Grab	Stuk py 20% cpy 41%	.004		.28	.0005	-007
52464	u	* 5-4	chips 4 metres	Chloritic RX, Stuk Qtz, Py 40% stains.	.008		- 32	.007	.02
52465	"	" 5-5	Chips Bouetres	Stuk py 20%, cpy traces	.003		• 14	.005	.009
52.466	4	" 5-6	Chips I metre	Stuk atz py 15% mineral	.002		.02	.001	.003
52467	4	" 5-7	chips 2 metres	Stuk atz py 15% mineral Aphanitic green Rx (Stuk) py 10% Traces cpy	.001		.005	.002	.006
52468	INEL Ridge	DD.H-24: 174-178'	4.0'	· · · · · · · · · · · · · · · · · · ·	.021		- 05	.006	- 04
52469		" 173'-182'	4.0'		.031		.29	.004	.18
52470	ч	" 182'-186'	4.0'		.015		.05	.002	.02
52471	u	* 186'-190'	4.0'		.004		.01	.004	-16
52472	u	" 190'-194'	4.0'		-055		.01	-01	.06
52473	a	" 194'-199'	5.0'		.014]	.03	.002	.04

Date____

·		· . · · · · · · · · · · · · · · · · · ·		Sample Record			Page	2601	ť
Sample Number	Mine Heading or Drill Hole	Survey Location or Footage	Panel Size length x width	Description	Au	Ag	Cu	РЪ	Z'n
52474	Super Bowl CK Area	Lower Zone (SEE MAP) 5-1	Chips I metre	atz struct., strings + diss. py 20%	.016		.02	.006	.01
52475	4	4 5-2	u u	Dark grey intrusive diss. py 10%.	1		-06	.005	.09
52476	4	<u> </u>	a	Sili- Rx strings py 20%, welaguite	.017		-26	.005	.02
52477	4	4 5-4	chips 2 metres	Sili. Rx Liss. py 10%.	-011		.004	.004	.003
52478	4	" 5-5	Chips I metre	Sili. Rx diss. py 10%. Strings, diss. conc. Epy 30%, py 5%, malaquite stains in 5:11. Rx.	.024	1.09	4.02	:01	.05
		- END OF	1991	FIELD SEASON -]				
			}		· · · ·				
					[·
				•	<u> </u>				
		-			[
					{				
					}				
L	<u>L</u>]		ļ]

13.3 GEOCHEMICAL AND ASSAY CERTIFICATES

		2000.0000		1000 (Sec.)	Sec. 20. 3		8.400 M								~~	1.				1	-							30. AS	1999-004			888.887	300.0000	a air	
											G.	-101	5 A B		CAL	AB	BA.		EK.	i și și și	CA	LE													
AA							G	ulf	In	ter	na	ti a	ona	1	Min	era	15	Lt	a.		Fi	le	# 9	91-	30	16									
								200	~ 675	۷.	Hast	ings	. St.	, V	ancouv	er B	C V6	B IN	2 S	ubmit	ted l	by: \	VICTO	R JA	RAMI	LLO									
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	· Cd	Sb	Bi	٧	Ca	P	La		Ma	88	TE	B	AL	Na	K	<u></u>	Cu	Pb	Zn	Ag**	ÅU**
	ppm		ppm			ppm				- 20. OS					ı ppm			•		X							X	X		ppm	×	X		oz/t	
D. E2004	7	27		2407		46	40	2115	7 00		F			E 4 C		,	7			070	F			F D			77	07	2/		01	74	24	•/	.001
D 52001 D 52002	1 -			2193 4300		o		2465	3.09	- 007.200		ND ND			20.8		3			.078		9 3			.01		.37 .36				.01	.26			003
D 52002		38	42		2.1	0			6.86			ND			11		ģ			117		_	1.17		01		.48				÷	.01	.01		.005
D 52003	1	68	40		1.8	S			7.92		-	ND					6			.109		10			01		.40								005
0 52004	-		106		5.0				13.28	- 100 C	-	ND			17		16			.078		11	.67		01						8				009
0 52005	–		100	101		01		440	13.20		2	NU		71		2	10	,	1.11		2		.02	0		4	.50	.01			.04	.01	105	• • •	
D 52006	3	75	30	50	3.5	123	79	899	15.68	79	5	ND	1	152		2	7	5	1.54	,074	2	15	.90	10	01	2	.19	.01	.15	1	.02	.01	.01	.10	.010
D 52007	63	578	27		2.8				10.37			ND			1.0	2	14			127		5	.46	11	.01	2	.29	.01	.21		.04	.01	.01	.07	.005
D 52008	8 2	52	18		1 2					- 000000000		ND	1	81		2	10			112		19	.48	17	.02	2	.51	.01	.42	8 f	.02	.01	.01	.03	.012
D 52009	2	18	3		880 1			1188	1.37	4	5	ND	3	147	' 🛞 🕉	2	2			.087		1			.01	2	.50	.01	.38		.01	.01	.01	.01	,001
D 52010	7	64	14	40	1.7	6	7	480	4.70	45	5	ND	2				8	3		.050		3			.01		.28	.01	.18	S 1	.01	.01	.01	.05	.004
						8																									ģ.				
D 52011	4 6	54	7	86	1.5	66	28	824	5.88	32	5	ND	1	110	9	2	6	11	2.31	,101	2	13	1.02	21	.02	2	.45	.01	.36		.06	.01	.01	.04	.011
D 52012	22 '	15	38	278	2.2	148	54	1981	11.18	- 34	5	ND	1	115	2.6	2	11	15	1.90	.087	2	34	1.29	9	.01	2	.42	.01	.33	<u>_</u>	.01	.01	.03	.06	007
D 52013	83	44	76		4.7				13.77			ND	1	57	4.1	2	12	- 4	.96	.083	2	15	.38	10	.01	2	.22	.01	.18		.03	.01	.05	. 12	.011
D 52014	2 '	48	95	642					21.09	29	5	ND	1	68	6.4	2	13	3	.91	,023	2	14	.66	6	.01	2	.20	.01	.14	- 20	.01	.01	.07	. 14	.014
D 52015	11 '	52	40	219	4.2	160	203	210	13.12	74	5	ND	1	- 46	2.7	2	12	6	.86	.060	2	24	.50	10	.01	2	.29	.01	.23	M	.01	.01	.02	.12	.015
D 52016	2 3	91	127	207	16.2	120	105	253	19.48	218	6	2	1	21	2.1	2	189	15	.60	.028	2	58	1.06	12	.04	2	.89	.01	.44	8 B	.04	.01	.02	.49	.081
STANDARD	19	60	42	133	7.0	73	32	1061	4.01	42	20	6	40	52	18.7	15	22	56	- 48	002	40	58	. 90	178	ON CONTRACT	33	1.90	.06	.15	- 1 1	.83	1.37	2.32	.99	098

Standard is STANDARD C/R-1/AG-1/AU-1.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AG** + AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. $\sim \rho$

DATE RECEIVED: JUL 30 1991 DATE REPORT MAILED: Hug 2/91.

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 8	52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716
GEOCHEMICAL ANALYSIS	S CERTIFICATE
Gulf International Minerals Ltd	LFILE # 91-3283 Page 1
200 - 675 W. Hastings St., Vancouver BC	V68 1N2 Attn: VICTOR JARANILLO
SAMPLE#	AU*
	ppb
D 52019	350.0
D 52021	250.0
D 52023	84.2
RE D 52021	270.0
- SAMPLE TYPE: P1 SOIL P2 TO P3 ROCK P1 TO P3 AU* ANALYSIS BY ACID LEACH/AA FROM 30 GM SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	PLE.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Aug 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Aug 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Aug 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Aug 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Arg 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Arg 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Arg 13/91.
AU* ANALYSIS BY ACID LEACH/AA FROM 30 GN SAM Samples beginning 'RE' are duplicate samples DATE RECEIVED: AUG 8 1991 DATE	REPORT MAILED: Aug 13/91.

~

<u>Gulf International Minerals Ltd.</u> FILE # 91-3283 Page 2

• ,

••

SAMPLE#	Au* ppb	
D 52017	370	
RE D 52018	34	
D 52018	33	
D 52020	91	
D 52022	240	
D 52024	54	
D 52025	340	
STANDARD AU-R	490	

Gulf International Minerals Ltd. FILE # 91-3283 Page 3

• •

.

• •

 SAMPLE#	Cu ¥	Pb %	Zn %	Ag** oz/t	Au** oz/t
 · · · · · · · · · · · · · · · · · · ·			•		
D 52026	.06	.01	1.67	.28	.102
D 52027	.13	.16	9.40	1.05	.152
D 52028	.15	.02	4.80	.91	.329
D 52029	.07	.06	.50	.56	.124
D 52030	.12	.03	4.82	.87	.198
D 52031	.03	.06	.60	.61	.674
D 52032	.05	.01	.11	.57	.118

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3555 200 - 675 W. Hastings St., Vancouver BC V68 1N2 Attn: R. GIFFORD

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	ંક	oz/t
D 52033	539	221	9324	15.5	12.40	.098
D 52034	89	32	499	.8	4.51	.004
D 52035	142	16	563	.6	5.02	.009
D 52036	137	53	495	.9	5.07	.006
RE D 52041	995	625	1865	31.2	18.92	.082
D 52037	160	119	1375	1.2	4,53	.001
D 52038	130	296	1490	2.2	5.49	.005
D 52039	1336	1525	63132	31.0	25.48	.040
D 52040	354	277	691	22.3	20.36	.147
D 52041	970	624	1862	30.2	18.56	.079
D 52042	332	669	50733	25.9	13.08	.018
D 52043	1181	74	619	23.6	1.46	.002
D 52044	69	69	323	2.0	7.44	.004
STANDARD C/AU-1	64	40	131	7.4	4.02	.097

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU . 1000 PPB - SAMPLE TYPE: ROCK

AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE Samples beginning 'RE' are duplicate samples.

DATE REPORT MAILED: Hung 20/91 AUG 16 1991 DATE RECEIVED: SIGNED BY D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAI(604)253-1716 ASSAY CERTIFICATE Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3555R SAMPLE# Zn * D 52039 5.02 D 52042 4.07 - 1 GM SAMPLE LEACHED IN 50 NL AQUA - REGIA, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP ang 23/41 DATE REPORT MAILED: DATE RECEIVED: AUG 21 1991 L. A. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-3607 200 - 675 W. Hastings St., Vancouver BC V68 1N2 Attn: VICTOR JARAHILLO

				• • • • • • • • • • • • • • • • • • • •		
SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	*	oz/t
D 52045	1358	752	1246	53.0	22.14	.185
D 52046	675	602	9 84	24.9	15.51	.078
D 52047	282	1305	1558	22.6	21.65	.080
RE D 52051	153	428	288	13.2	19.92	.221
D 52048	140	158	1071	6.9	8.12	.028
D 52049	129	169	3350	3.3	9.07	.001
D 52050	188	687	674	12.8	13.69	.076
D 52051	143	406	254	12.6	20.36	.213
D 52052	123	1383	565	59.1	11.90	.071
D 52053	277	403	505	22.7	21.01	.129
D 52054	166	415	943	10.4	12.40	.027
D 52055	324	301	676	15.1	17.35	.041
D 52056	143	191	1828	6.2	7.84	.022
STANDARD C/AU-1	56	40	132	6.9	4.02	.097

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK Samples beginning 'RE' are duplicate samples.

DATE REPORT MAILED: Aug 22/91 DATE RECEIVED: AUG 19 1991 SIGNED BY. ..D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3768 Page 1 200 - 675 W. Hastings St., Vancouver BC V68 1N2 Attn: VICTOR JARAMILLO

200 - 675 W. Hastings	St., Vanco			tn: VICTOR		
SAMPLE#	Cu	Pb	Zn	Ag	Fe	
	ppm	ppm	ppm	ppm	\$	oz/t
D 52057	4887	57	196	5.8	18.40	.023
D 52058	306	157	2784		4.06	
D 52059	312	325	3220		4.24	
D 52060	183	172	2140		5.32	
D 52061	215	107	1919		6.09	
B 32001	210	701	±2 ±2			
D 52062	185	76	366		5.80	
D 52063	209	129	1190	3.3	5.03	.005
D 52064	151	275	1531	3.5	5.20	.002
D 52065	162	433	1592	3.3	4.84	.001
D 52066	160	149	2054	3.0	6.35	.006
D 52067	125	113	1665			
D 52068	158	121	2543			
D 52069	165	225	4473		5.27	
D 52070	225	410			6.89	
D 52071	242	238	2592	6.2	5.96	.008
D 52072	227	302	5172	5.8	4.93	.008
D 52073	191	357	2790		4.84	
D 52074	158	117	2304		5.36	
D 52074	158	150	3784		6.45	
RE D 52071	229	247	2587	6.2	5.93	
NE D 52071	263	271	2507	0.2		
D 52076	153	219	2211	3.9	6.59	.006
D 52077	140	205	1659	3.4	5.91	.006
D 52078	131	212	2142	3.6	5.68	.009
D 52079	129	248	1488	3.6	4.86	.008
D 52080	189	266	2262	3.8	5.04	
D 52081	168	182	2581	2 /	4.35	.001
D 52081	150	229	2282		4.90	
D 52082	91	145	2133	2.8	4.96	
	1					
D 52084	113	187	3484	4.2	5.97	
D 52085	152	606	2978	4•⊥	4.99	.007
D 52086	163	320	1923	6.0	7.49	.009
D 52087	461	349	3489	10.2	11.07	.012
D 52088	464	842	11064	19.3	12.66	.049
D 52089	137	147	1463	2.7	4.43	.001
D 52090	480	88	1951		14.59	
D 52091	133	169	4297	2.2		
D 52092	168	163	2515	3.5	6.67	-1
STANDARD C/AU-1	58	37	126	7.2	3.88	.098
	1					

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

1991

DATE RECEIVED: AUG 22

DATE REPORT MAILED: Hug 26/91.

Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3768 Page 2

~ •

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	ક	oz/t
D 52093	201	238	3375	4.7	6.94	.007
D 52094	210	400	1689	10.3	8.39	.028
D 52094	199	246	1204		7.29	
1				6.4		.015
D 52096	147	193	3114	2.8	5.24	.002
D 52097	140	118	2631	2.2	6.06	.002
D 52098	169	131	2951	2.4	5.18	.003
D 52099	117	116	1872	2.8	5.14	.011
D 52100	164	182	2537	3.6	6.49	.004
D 52101	142	168	2283	2.5	6.41	.005
D 52102	145	220	2426	2.8	5.17	.006
5 52102	140	220	4720	2.0	2.7	
D 52103	214	266	3007	6.9	6.91	.016
D 52104	140	178	3086	2.8	6.14	.011
D 52105	248	117	4704	4.6	7.42	.005
D 52106	181	205	2659	4.0	6.85	.009
D 52107	238	512	6685	7.8	9.93	.021
D 52107	230	J T Z	0085	/.0	3.33	.021
D 52108	380	555	4477	11.2	10.28	.039
D 52109	144	167	1861	2.7	5.71	.002
D 52110	93	20	418	.6	4.75	.003
D 52111	347	48	5250		6.52	.005
D 52112	172	136	1953	1.7		
D 52112	172	T20	1903	1.7	5.00	.003
D 52113	122	67	4833	1.8	4.89	.010
D 52114	127	92	6350	3.1	4.84	.021
RE D 52110	97	22	483	.6	4.97	.001
D 52115	160	82	1684	3.8	· · · · · · · · · · · · · · · · · · ·	.020
D 52116	138	57	1723	2.2	5.82	.027
5 52120	100	57	1/23	2.4	9.92	.027
D 52117	159	233	828	5.8	7.51	.019
D 52118	205	209	2187	6.3	6.81	.022
D 52119	251	279	1182	5.9	7.27	.033
D 52120	118	264	2457		5.78	.031
D 52120	75	157	3967	3.0		
D 52121	75	197	3907	3.0	5.45	.011
D 52122	174	144	1862	4.2	6.32	.013
D 52123	170	462	2184	14.6	8.12	.048
D 52124	151	111	2090	4.1	5.69	.009
D 52124 D 52125	203	204	2789	6.5		.009
D 52125 D 52126	480	204	1582			
D 32120	400	234	T297	5.7	6.59	.026
D 52127	137	104	2195	2.8	5.11	.022
D 52128	116	130	2025	3.7	5.45	.059
STANDARD C/AU-1	58	38	131	7.0		.098

Gulf International	Minerals Lt	d. PROJECT_	INEL	FILE #	91-3768	Page 3

- .

÷ .

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
 	ppm	ppm	ppm	ppm	\$	oz/t
D 52129	116	110	3683	2.7	4.33	.041
D 52130	141	207	4284	3.5	5.35	.045
RE D 52132	144	258	432	3.3	5.71	.011
D 52131	148	192	1068	3.3	5.07	.012
D 52132	149	264	424	3.4	5.74	.012
D 52133	148	147	1742	1.7	5.13	.003
D 52134	113	57	1441	.6	5.32	.005
D 52135	117	25	1608	.7	5.89	.002
D 52136	1782	11	107	2.0	8.95	.009
STANDARD C/AU-1	58	35	133	7.0	4.01	.098

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3858 Page 1 200 - 675 W. Hastings St., Vancouver BC V68 1H2 Attn: VICTOR JARAMILLO

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	8	oz/t
D 52137	150	428	3123	3.3	5.19	.002
D 52138	100	248	3948	3.0	5.63	.005
D 52139	152	139	4518	3.8	5.38	.022
D 52140	98	27	414	.6	4.33	.003
D 52141	85	37	483	.6	3.93	.001
D 52142	128	42	1068	.8	4.76	.002
D 52143	116	290	1848	2.0	5.09	.001
D 52144	208	92	1870		5.17	.003
D 52145	152	115	1502	1.8	5.04	.001
D 52146	123	32	676	.7	4.77	.002
D 52147	102	24	646	.5	4.25	.001
D 52148	111	58	303		4.20	.001
D 52140	116	42	299		4.12	.001
D 52150	107	31	246		3.90	.001
D 52150 D 52151	166	30	1696		4.70	.001
D 52151	100	30	1020	• 7	4.70	.001
D 52152	204	49	566	.8	4.00	.001
D 52153	700	373	2413	4.1	4.65	.002
D 52154	308	174	1649	1.8	3.82	.001
D 52155	390	183	3619	5.5	5.33	.003
D 52156	347	154	2779	8.9	5.49	.005
D 52157	101	28	1337	.8	4.54	.001
D 52158	45	10	194	.4		.001 .
D 52159	85	10	185	.3	5.37	.001
D 52160	90	51	588		4.18	.001
RE D 52156	352	162	2823	8.6		.006
D 52161	118	106	894	.7	4.27	.002
D 52162	100	74	149	.4		
D 52163	130	39	214	.5	200000.20020.000	.001
D 52164	78	27	161	.3		.001
D 52165	82	114	435	.5	3.60	.001
D 52166	78	64	420	.4	3.53	.001
D 52167	79	25	124	.3		.001
D 52168	70	6	157	.2		
D 52169	85	18	549	.3	2010/00/00/00/00/00/00/00/00/00/00/00/00/	.001
D 52105	78	17	239	.4	3.44	.001
D 52171	89	10	165	.4		
D 52172	68	20	96	.3	an a	
STANDARD C/AU-	1 57	41	130	6.7	3.96	.099

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

DATE RECEIVED:		DATE REPORT MAILED:	Hug 30/91
SIGNE	D BY	D.TOYE, C.LEONG, J.WANG; CERTIFIED	B.C. ASSAYERS

Gulf International Minerals Ltd. PROJECT INEL FILE # 91-3858 Page 2

.

.

•

SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Fe %	Au** oz/t
D 52173	109	39	150	.6	3,85	.001
D 52174	81	64	442	.5	3.14	.001
D 52175	78	54	415	.6	3.15	.001
D 52242	421	54	260	3.4	4.98	.002

ACME ANALYTICAL LABORATORIES LTD.

.....

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-4035 Page 1 200 - 675 W. Hestings St., Vancouver BC V68 1N2

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	૪	oz/t
D 52176	54	55	1118	.6	2.57	.001
D 52177	52	222	877		2.72	.001
D 52178	63	360	2621	1.4	1.43	.001
D 52179	112	537	3109	3.2	4.20	.001
D 52180	363	1780	41685		19.19	.054
D 52181	251	1421	38197	25.9	14.17	.042
D 52182	129	190	1767		5.00	
D 52183	77	31	453		4.03	.005
D 52184	115	50	893		4.07	.001
D 52185	131	38	935		4.59	.001
D 52186	102	25	262	. 4	3.89	.001
D 52187	104	9	212	.4	4.74	.001
D 52188	116	45	269	.4	4.95	.002
RE D 52192	134	452	2862		4.20	.006
D 52189	169	22	234	.5	5.14	.001
D 52190	123	10	214	. 4	4.99	.001
D 52191	119	8	156		5.09	
D 52192	135	416	2828		4.27	
D 52193	440	73	400		5.19	.005
D 52194	101	16	305		4.81	.003
D 52195	282	740	4630	5.0	8.44	.002
D 52196	141	236	2352		8.97	
D 52197	97	21	219	.4	20.01220012220022	.003
D 52198	78	13	165	.3		.003
D 52199	76	11	183	. 4		.004
D 52200	82	11	101	.5	4.21	.005
D 52202	89	20	337		4.16	
D 52203	393	4054	50653		19.36	.042
D 52204	850	5239	40714	62.3	16.38	.088
D 52205	920	9647	35085	87.9	18.82	.036
D 52206	244	1012	2599	9.4	11.90	.002
D 52207	320	1307	5557	17.6	17.46	.010
D 52208	169	468	3164	5.4	9.83	.001
D 52209	118	241	1117	2.5	5.82	.010
D 52210	90	298	627	3.8	6.95	.002
D 52211	151	595	3436	5.9	7.77	.003
D 52212	184	821	4918	6.6	9.50	.004
STANDARD C/AU-1	57	38	133	6.9	4.00	.099
	1					

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

DATE RECEIVED: AUG 30 1591 DATE REPORT MAILED: $\frac{5}{91}$

Gulf International Minerals Ltd. FILE # 91-4035 Page 2

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	*	oz/t
D 52213	309	517	7351	4.8	13.30	.008
D 52214	271	727	4845		9.54	
D 52215	279	660			10.50	
D 52216	441	1792	7845		13.58	
D 52217	31	26	1055	.5	100000000000000000000000000000000000000	.001
D 52217	71	20	1055	.5	3.02	.001
D 52218	109	103	1013	1.0	5.35	.001
D 52219	126	90	482	.9	55555555555555555555555555555555555555	
D 52220	186	908		3.8		
D 52221	78	254	1317		4.87	
D 52222	143	535	1081	2.4	19742012020202020202020202	
	210	000	2002			
D 52223	102	292	441	1.2	4.51	.001
D 52224	120	110	1316	.9	4.26	.001
D 52225	123	134	483	1.2	4.54	.002
D 52226	173	701	7182	3.9	4.23	.017
D 52227	852	837	58020	14.5	4.44	1.576
D 52228	237	634	6799	5.2	6.34	.013
D 52229	105	118	1719	1.2		
D 52230	136	844	9093	5.4		
D 52230	135	643	1351	3.7		
D 52231	143	857	1908	3.9		
D 52252	145	657	1908	2.2	···· 30	.002
D 52233	118	223	2086	2.1	4.94	.005
D 52234	212	519	2952	3.4	177777777777777777777777777777777777777	
D 52235	55	35	398	1.3		
D 52236	57	59	841	.8	1.000000.00000000000000000000000000000	
D 52237	347		38088	16.5		
2 22227	• • • •			2010		
D 52238	146	234	3318	3.8	7.03	.002
D 52239	219	763	73357	8.3	6.57	.009
D 52240	240	812	69885	12.6	13.32	.053
D 52241	83	107	1361			
D 52243	49	32	1950	.7	 Manharata Santana Santana 	
D 52244	67	181	1033	1 0	3.26	.001
D 52244 D 52245	164		4117	5.2		
RE D 52240	207		59961		11.04	
D 52246	56	169		1.2		
D 52247	86	37	559	.8	3.71	.001
D 52248	75	40	615	.6		<i>.</i>
D 52249	112	41	589	1.2		
STANDARD C/AU-1	58	42	130	7.3	3.95	.100

<u>Gulf International Minerals Ltd.</u> FILE # 91-4035 Page 3

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
 	ppm	ppm	ppm	ppm		oz/t
D 52250	73	33	250	.3	3.29	.001
D 52251	104	47	313	.5	4.17	.001
D 52252	59	71	1091	.5	2.90	.001
D 52253	59	59	994	.8	3.47	.007
D 52254	62	49	231	.4	3.33	.002
5 50055				_		
D 52255	68	82	348	.6	3.42	.002
D 52256	102	175	5040	2.4	5.26	.005
D 52257	89	87	6717	1.6	5.34	.001
D 52258	133	376	8855	4.4	8.95	.021
D 52259	96	357	6244	4.5	7.73	.035
D 52260	114	471	7922	4.6	10.33	.020
RE D 52265	79	89	4811	1.6	************************************	
D 52261	193		17830		12.95	.069
D 52262	120		14606	7.5	7.99	.053
D 52263	322		99999	5.0	7.71	.019
D 52264	84	262	2940	3.5	12.37	.019
D 52265	80	91	4860	1.6	9.22	.021
D 52266	62	191	2760	1.5	5.76	.010
D 52267	100	132	1496	2.4	7.94	.017
D 52268	523	691	2033	9.0	13.56	.002
D 52269	466	302		4.8		
D 52270	272	248		4.0	5.12	
D 52271	200	117	413	2.7	5.75	.001
D 52272	433	421	771	8.3	8.68	
D 52273	315	356	986	5.2	5.95	.001
D 52274	455	555	1787	7.3	6.15	.002
D 52275	536	660		15.4	200000000000000000000000000000000000000	.005
D 52276	331	132		3.4	5.08	.001
D 52277	234	219	719	4.0		
D 52278	231	160		3.4	4.87	.001
D 32270		100	500	J • 4		.001
D 52279	258	599		7.1	000000000000000000000000000000000000000	.007
D 52280	311	424		6.4	000000000000000000000000000000000000000	5
D 52281	335	331	1344	4.4	5.64	.006
D 52282	408	1013	2008	14.4	10.39	.014
D 52283	240	426	1103	4.2	5.58	.010
D 52284	251	1410	1484	6.1	6.30	011
	351			7.7		
D 52285	1	244				
 STANDARD C/AU-1	56	36	131	6.8	3.91	.098

Gulf International Minerals Ltd. FILE # 91-4035 Page 4

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	8	oz/t
D 52286	108	29	1178	.9	4.81	.001
D 52287	145	145	1765	2.7	4.95	.002
D 52288	299	70	620	2.3	5.72	.004
D 52289	225	65	221	2.3	5.68	.004
D 52290	267	94	393	2.9	5.68	.005
RE D 52287	141	152	1790	2.5	5.04	.002
D 52291	132	126	595	2.7	6.18	.008
D 52292	187	87	270	1.9	5.67	.002
D 52293	119	156	295	2.8	6.01	.002
D 52294	296	289	590	5.2	7.14	.005
D 52295	172	227	1496	2.8	5.51	.002
D 52297	65	19	190	.6	14.39	
STANDARD C/AU-1		39	134	7.1	3.99	

•	ASS	SAY CER	TIFICA		Hone (60	4)253-3158 FAX(604)253-171
<u>Gulf Inte</u>	rnational		ls Ltd.	FI		
	SAMPLE#	Cu %	Pb %	Zn ¥	Ag** oz/t	Au** oz/t
······	D 52296	27.90	.02	.21	4.25	- 064

- SAMPLE TYPE: CRUSHED ROCK

DATE RECEIVED: AUG 30 1991 DATE REPORT MAILED: Sept 5/91. BIGNED BY.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER B.C. VOA 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Gulf International Minerals Ltd. 200 - 675 W. Hastings St., Vancouver BC V68 1N2 Attn: VICTOR JARAMILLO

FILE # 91-4071 Page 1

200 ~ 6/5 W. Hastings	IST., Vancou	LIVEF BL N	OD INZ A	ttn: VILIUA	K JAKAMILLI	u .
SAMPLE#	Cu	Pb	Zn	Ag	Fe	
	ppm	ppm	ppm	ppm	8	oz/t
D 52175	69	89	578	.7	2.99	.004
D 52201	283	22	59		17.48	.034
D 52298	130		12381		11.44	.061
D 52299	61	27	411	.7	3.72	
D 52300	109	148	2807	4.2	7.89	
D 52301	129	648	4063	4.1	9,09	.022
D 52302	95	186	3177	1.8	6.28	
D 52302	112	286	8870			
				3.4	5.44	
D 52304	237		31575	5.7	6.36	
D 52305	115	212	14680	5.2	10.33	.030
D 52306	125	422	25276	9.3	11.72	.039
D 52307	261	467	24337	19.1	12.50	.089
D 52308	92	583	7489	1.9	3.82	.001
D 52309	229	381	2236	2.1	5.12	.006
D 52310	328	125	354	1.5	5.64	
D 52311	182	267	548	2.6	4.32	.001
D 52312	2177	204	709	12.3	5.61	
D 52313	172	70	1812	1.3	3.53	
D 52314	82	341	364	3.0	4.68	
D 52314 D 52315	176	555	431	4.3	5.11	
2 02020	1.0	555	434	4.5		.001
D 52316	104	136	267	1.7	3.07	.001
D 52317	285	767	14620	6.8	10.77	
D 52318	85	26	1347	.5	3.69	
D 52319	83	22	452	.6	3.81	
D 52320	226	155	1111	2.3	4.94	
D 52321	133	23	1564	.9	5.04	.009
D 52322	356		20726	9.0	5.14	
D 52322 D 52323						
	138	115	623	1.2	4.67	
D 52324	154	26	176		4.50	
D 52325	123	51	1074	1.0	4.99	.001
D 52326	143	28	2896	1.6	6.71	.001
D 52327	361	42	4914		6.54	
D 52328	551		17030		21.23	
RE D 52324	144	22	178		4.38	
D 52329	543		44666	8.3		
D 52320	06	20	2051	1 1	6 22	001
D 52330	86	29	3851	1.1	6.32	-
D 52331	229	47	2115	1.6		
STANDARD C/AU-1	56	39	129	6.7	3.93	.099

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 3 DATE REPORT MAILED: eot b

SIGNED BY D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Gulf International Minerals Ltd. FILE # 91-4071 Page 2

•

٠

SAMPLE#	Cu	Pb	Zn	Ag		Au**
	ppm	ppm	ppm	ppm	*	oz/t
D 52332	345	142	7348	3.6	7.63	.007
D 52333	55	151	898	.7	7.10	.001
D 52334	186	36	1607	1.9	7.41	.002
D 52335	126	24	980	1.2	6.49	.001
D 52336	250	35	975	1.2	7.41	.001
RE D 52332	406	151	8621	3.9	8.24	.007
STANDARD C/AU-1	57	39	134	6.8	4.01	.099

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-4118 Page 1 200 - 675 W. Hastings St., Vancouver BC V68 1W2 Attn: VICTOR JARANILLO

Zou - Ors W. Hastings						
SAMPLE#	Cu	Pb	Zn	Ag		Au**
	ppm	ppm	ppm	ppm	*	oz/t
D 52449	47	36	104	.4	1.50	.001
D 52450	32	24	96	.4	1.33	.001
D 52451	28	24	110	.3	1.27	.001
D 52452	46	30	427	.6	1.17	.001
D 52453	137	105	4507	2.1	1.58	.022
D 52454	141	125	4455	1.6	2,59	.007
D 52455	125	315	3610	2.1	3.78	.009
D 52456	138	259	948	2.6	2.01	.004
D 52457	325	12	412	1.6	5.01	.004
D 52458	485	15	336	2.4	5.43	.007
D 52459	292	23	519	2.0	4.86	.010
RE D 52464	3165	66	222	11.2	18.90	.007
D 52460	317	44	199	3.7	4.34	.027
D 52461	12589	252	1953	71.7	25.74	.036
D 52462	188	17	45	1.0	2.34	.001
D 52463	2771	5	72	4.0	3.69	.004
D 52464	3189	70	220	11.3	19.14	.008
D 52465	1383	51	90	3.3	9.68	.003
D 52466	241	11	29	.8	5,59	.002
D 52467	53	18	55	.4		
D 52468	485	62	409	4.5	3.31	.021
D 52469	2854	42	1785	10.5		
D 52470	541	15	245	2.5	2.79	
D 52471	108	40	1631	1.3	3.16	.004
D 52472	148	107	624	5.0	4.43	.055
D 52473	258	18	406	1.4	3.74	.014
D 52474	152	61	100	4.1		.016
D 52475	593	51	946	2.7		
D 52476	2640	46	209	5.7		
D 52477	41	35	26		13.93	
STANDARD C/AU-1	59	42	133	7.4	4.00	.099

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

DATE REPORT MAILED: Sept 9/91. DATE RECEIVED: SEP 4 1991 SIGNED BY .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

SAMPLE#	Cu	Pb	Zn	Aq**	Au**	
	8	સ્		Ag** oz/t		
D 52478	4.02	.01	.05	1.09	.024	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-4035R

SA	MPLE#	Zn	Ag	
		z	oz/t	
D	52180	4.58	-	
D	52181	4.07	-	
D	52203	4.90	1.21	
D	52204	4.00	1.72	
	52205	3.48	2.40	
D	52207	-	-	
D	52215	2.20		
D	52216	-	-	
D	52220	1.27	-	
D	52227	5.26	-	
		- - -		
D	52237	3.66	-	
D	52239	7.11	-	
D	52240	6.66	-	
	52261	1.87	-	
	52262	1.56	-	
D	52263	13.68	-	
	52275		-	
	52282		-	
	52205	3.45	2.37	

- 1 GM SAMPLE LEACHED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are duplicate samples.

DATE REPORT MAILED: Sept 10/91 DATE RECEIVED: SEP 6 1991 SIGNED BY. .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

2 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-4117 Page 1 200 - 675 W. Hastings St., Vancouver BC V6B 1N2 Attn: VICTOR JARANILLO

SAMPLE#	Cu	Pb	Zn	Ag	Fe	
	ppm	ppm	ppm	ppm	8	oz/t
D 52337	72	28	168	.4	3.80	.001
D 52338	119	29	147		3.98	.001
D 52339	124	16	111	.4	3.53	.001
RE D 52343	139	340	5271	2.2	4.73	.017
D 52340	96	107	442	1.0	3.22	.001
D 52341	142		6948		4.55	.021
D 52342	176		47300		8.57	.254
D 52343	145	344	5880		4.80	.020
D 52344	143	169	892	1.2	4.65	.001
D 52345	121	488	1422	2.1	4.24	.002
D 52346	120	246	517	7 /	4 23	001
D 52348	129	246	517		4.33	.001
	129	100	296	.9	4.24	.001
D 52348	116	65	434	.7	4.33	.001
D 52349	133	173	1343	1.3	3.94	.001
D 52350	163	186	872	1.1	5.05	.001
D 52351	173	29	360	.7	4.47	.003
D 52352	285	71	546		4.43	
D 52353	157	411			4.65	.013
D 52354	147		10359		3.34	.041
D 52355	51	79	348	.8	3.10	.003
D 52356	50	29	271	.4	2.55	.001
D 52357	49	19	129	.3	2.54	.001
D 52358	41	16	99	.4	2.76	.001
D 52359	72	628	9177		2.60	.001
D 52360	314		11571	15.9	5.03	.185
D 52361	195		11342		6.90	
D 52362	162		31917		10.92	.069
D 52363	251		33342	5.7	8.48	.017
D 52364	296	305	31343	5.9	6.74	.026
D 52365	70	117	1361	1.2	4.74	.004
D 52366	189	215	28847	3.8	5.67	.006
	1				202000000000000000000000000000000000000	
D 52367 D 52368	41	58	1075	.5	3.21	.001
	61	47	753	1.0	4.55	.004
D 52369	33	16	324	.3	2.94	.001
D 52370	47	52	1663	1.1	6.50	.010
D 52371	82	211	3700	4.4	8.52	.034
D 52372	78	189	6445	2.9	6.71	.015
STANDARD C/AU-R	61	39	136	7.0	4.04	.096
			······			

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CRUSHED ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning (RE' are duplicate samples.</u>

DATE RECEIVED: SEP 1992 DATE REPORT MAILED: 10/91 SIGNED BY. I.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Gulf International Minerals Ltd. FILE # 91-4117 Page 2

5

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	*	oz/t
D 52373	101	192	6833	3.2	8.85	.013
D 52374	114	192	28233	2.8	7.77	.011
D 52374 D 52375	186	256	8546	6.9		.022
D 52376	202	158	8166	3.5		.014
D 52377	78	134	4080	1.8	5.76	.002
D 52378	107	189	10275	2.7	9.14	.014
D 52379	77	223	3548	2.2		.005
D 52380	158	162	4470	2.5	000000000000000000000	.006
D 52381	136	471	4364	5.2	000000000000000000000000000000000000000	.007
D 52382	51	190	1757	1.9	4.88	.002
D 52383	65	223	2022	2.9	6.93	.001
D 52384	93	261	5295	3.8	000000000000000000000000000000000000000	.003
D 52385	97	168	1487		12.41	.009
D 52386	121	385	4778		10.23	.002
D 52387	256		24276		16.38	.007
52367	250	510	24270	J • T	10.30	
D 52388	68	79	1897	.9	4.47	.003
D 52389	202	1652	9184	16.8		.041
D 52390	133	280	4247	4.5	200.0202020202020	.008
D 52391	243	896	6754	13.4	*****	.020
D 52392	122	150	1987	2.4	~~~~~~~~~~~	.012
0 32332	AUU	100	2507	£4 + T		• • • • •
D 52393	148	192	1550	2.0	5.12	.004
RE D 52389	211	1677	9374	17.6		.043
D 52394	251		27093	5.1	***************************************	.004
D 52395	415	766	8423	14.2	X-2	.342
D 52396	167	250	1439	2.5	22205/22202222222222222	.004
2 00020	207	200	2105	213		
D 52397	103	52	644	.7	5.29	.010
D 52398	213	301	2635	2.9	9.32	.003
D 52399	170		46667	3.5	8.79	.010
D 52400	220	218	4671		9.33	.008
D 52401	566	210	85		13.48	.027
<i>D 32</i> 401	500	20	05	2.J		• 447
D 52402	175	192	1384	2.2		.013
D 52403	329	537	3915	4.1	8.37	.004
D 52404	162	521	3001	4.9		
D 52405	558		25680	10.6		.116
D 52406	235	363	4352	3.3	·····	
D 52407	203	853	2398	4.5	8.03	.004
D 52408	393	946			14.49	
STANDARD C/AU-1	57	37		6.8	2000/00/00/00/00/00/00/00/00/00/00/00/00	.098

Samples beginning 'RE' are duplicate samples.

<u>Gulf International Minerals Ltd.</u> FILE # 91-4117 Page 3

...

SAMPLE#	Cu	Pb	Zn	Ag	Fe	Au**
	ppm	ppm	ppm	ppm	\$	oz/t
D 52409	284	934	2052	6.8		.003
D 52410	398	1430	1324		13.54	.004
D 52411	120	55	447	.7	4.25	.001
D 52412	69	21	289	.6	3.42	.002
D 52413	83	48	411	.6	3.99	.005
D 52414	98	32	469	.8	3.73	.002
D 52415	96	40	417	.7	3.61	.002
D 52416	268	98	670	1.3	3.01	.001
D 52417	147	118	1117	.9	3.52	.001
D 52418	111	23	114	.4	3.21	.001
D 52419	102	17	381	.5	3.63	.004
D 52420	75	39	383	.6	3.39	.007
D 52421	118	29	270	.8	3.58	.004
D 52422	198	21	186	.6	3.22	.001
D 52423	106	29	262	.4	3.31	.001
D 52424	104	30	257	.4	3.19	.001
D 52425	99	25	452	.3		.001
D 52426	83	138	1192	.8	·····	.003
D 52427	667		27574		20.68	.052
D 52428		12143		57.9		.032
	~~ -	202.19		55		
D 52429	721	347	22707	5.4	8.55	.008
D 52430	1510		26543	10.1	200020000000000000000000000000000000000	.029
D 52431	284	232	6047	3.1		.044
D 52432	499	77	846	3.9	2004/0004/00024/0004/0004	.094
D 52433	114	66	567	1.3	200000000000000000000000000000000000000	.022
0 32433		00	507	1.7		• 022
D 52434	180	482	3596	4.7	5.32	.006
D 52434	367	492	5934	8.5		.032
D 52435	208	251	4711	3.6		.015
D 52437 D 52438	73 60	99 68	8477 5530		2.94 2.43	.014
D 32430	00	00	2220	1.3	2.43	.007
D 52439	103	200	15328	1 6	5.50	.004
D 52439	1029		6308		19.04	
		150				
D 52441	259	68 62	643	3.2	200.000.0000000000000	.136
D 52442	238	62		1.5		.035
RE D 52438	62	63	5330	.8	2.40	.007
			1054			051
D 52443	387	479	1074	6.3	56666666666666666666666666666666666666	
D 52444 STANDARD C/AU-1	94 64	184 40	749 132	1.0 7.6		
		<u> </u>	123	.7 6	3.99	000

Gulf International Minerals Ltd. FILE # 91-4117 Page 4

.

SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Fe %	Au** oz/t
D 52445	245	255	3433	1.8	4.68	.005
D 52446	190	23	295	2.3	7.08	.005
D 52447	1364	64	193	4.2	4.58	.005
D 52448	4841	971	942	64.8	14.91	.039
RE D 52447	1457	76	206	4.8	4.83	.005

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Gulf International Minerals Ltd. FILE # 91-4035R

	SAMPLE#	Cu	Pb	Zn	Ag	
	"	8	 *	*	oz/t	
	D 52180	.03	.21	4.58		
	D 52181	.02	.17	4.07	_	
	D 52203	.04	.46	4.90	1.21	
	D 52204	.08	.59	4.00	1.72	
	D 52205	.09	1.16	3.48	2.40	
	D 52215	.03	.08	2.20	-	
	D 52220	.02	.08	1.27	-	
	D 52227	.07	.08	5.26	-	
	D 52237	.03	.07	3.66	-	
	D 52239	.03	.07	7.11	-	
	D 52240	.02	.08	6.66	-	
	D 52261	.02	.05	1.87	-	
	D 52262	.01	.04	1.56	-	
	D 52263	.04	.04	13.68	-	
	RE 52205	.09	1.15	3.45	2.37	
- SA	GM SAMPLE LEACHED MPLE TYPE: ROCK PL Les beginning 'RE'	JLP		-		

A ASSAY CI	ERTIFICAT	E		
Gulf International M		(*************************************	TTE # 91-407	
	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>	100 1 51 10.	
SAMPLE#	Cu	Pb	Zn	
	ક	*	\$	
D 52298	.01	. 05	1.51	
D 52304	.02		3.35	
D 52305	.01		1.74	
D 52306		.05		
D 52307	.02	.05	2.51	
D 52317	.03	.09	1.78	
D 52322		.03		
D 52328		.02		
D 52329 RE D 52298		.04 .05		
RE D 52296		.05	7+33	
STANDARD R	.85	1.37	2.33	
- 1 GM SAMPLE LEACHED	TH SO MI AOUA -	REGIA, ANA	IVCIC BY ICD	
- SAMPLE TYPE: ROCK P	ULP		LIGIO DI 1061	
- SAMPLE TYPE: ROCK PU Samples beginning 'RE	ULP <u>'are duplicate s</u>	amples.	_	
Samples beginning 'RE	ULP <u>'are duplicate s</u>	amples.	_	us la
- SAMPLE TYPE: ROCK PA Samples beginning 'RE' DATE RECEIVED: SEP 6 1991	ULP <u>'are duplicate s</u>	amples.	AILED: Sept	12/91
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	1
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	7 SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	<u>¹ are duplicate s</u> DATE RI D.TOYE, C.LEC	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	ULP <u>'are duplicate s</u> DATE RI	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	<u>¹ are duplicate s</u> DATE RI D.TOYE, C.LEC	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	<u>¹ are duplicate s</u> DATE RI D.TOYE, C.LEC	amples. EPORT N	HAILED: Sept	, SAYERS
Samples beginning 'RE'	<u>¹ are duplicate s</u> DATE RI D.TOYE, C.LEC	amples. EPORT N	HAILED: Sept	, SAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 A GEOCHEMICAL ANALYSIS CERTIFICATE

•

Gulf International Minerals Ltd. FILE # 91-3283R

SAMPLE		Pb	Ag	Fe	
	ppm	ppm	ppm	¥	
D 5201	7 1613	455	11.4	15.29	
D 5201	8 177	64	2.1	10.51	
D 5202	0 98	14	.8	6.66	
D 5202	2 130	22	.8	8.02	
D 5202	4 404	12	.5	4.55	
D 5202	5 497	21	1.8	9.20	
RED 5	2017 1653	473	11.9	15.96	
STANDA	RDC 61	40	6.9	4.00	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK PULP Samples beginning (RE' are duplicate samples.

<u>Gulf Int</u>	ASSAY CE ernational <u>Mi</u>			FILE # 91	-4118R 2
	SAMPLE#	Cu %	Pb %	Zn ¥	
	D 52461	1.17	.04	.26	
:	1 GM SAMPLE LEACHED I SAMPLE TYPE: ROCK PUL	N 50 ML AQUA ·	REGIA, AN	WALYSIS BY ICP.	
DATE RECEIVED: S	EP 10 1991	DATE	REPORT	MAILED:	Sept 16/91.
SIGNED	BY.C.horrow	•D.TOYE, C.LI	EONG, J.WAN		• •

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

352 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

<u>Gulf International Minerals Ltd.</u> FILE # 91-4117R

			<u></u>		
SAMPLE#	Cu	Pb	Zn	Ag	
	96 1	*	સ	oz/t	
D 52342	.02	.13	5.84	-	
D 52360	.03	.07	1.42	-	
D 52361	.02	.05	1.42	-	
D 52362	.02	.14	3.38	-	
D 52363	.03	.03	4.00	-	
D 52364	.03	.04	3.69	-	
D 52366	.02	.04	3.19	_	
D 52374	.01	.02	3.11		
D 52378	.01	.02	1.34	_	
D 52387	.02	.04	2.91	-	
D 52394	.02	.03	3.03	_	
D 52399	.02	.04	5.88	_	
D 52405	.05	.06	2.78	-	
D 52427	.06	.30	2.74	.85	
D 52428	.05	1.38	7.66	1.70	
D 52429	.07	.04	2.25		
D 52430	.14	.05	2.73	-	
D 52439	.01	.02	1.55	_	
STANDARD R-1	.84	1.37	2.33	2.93	

- 1 GM SAMPLE LEACHED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP

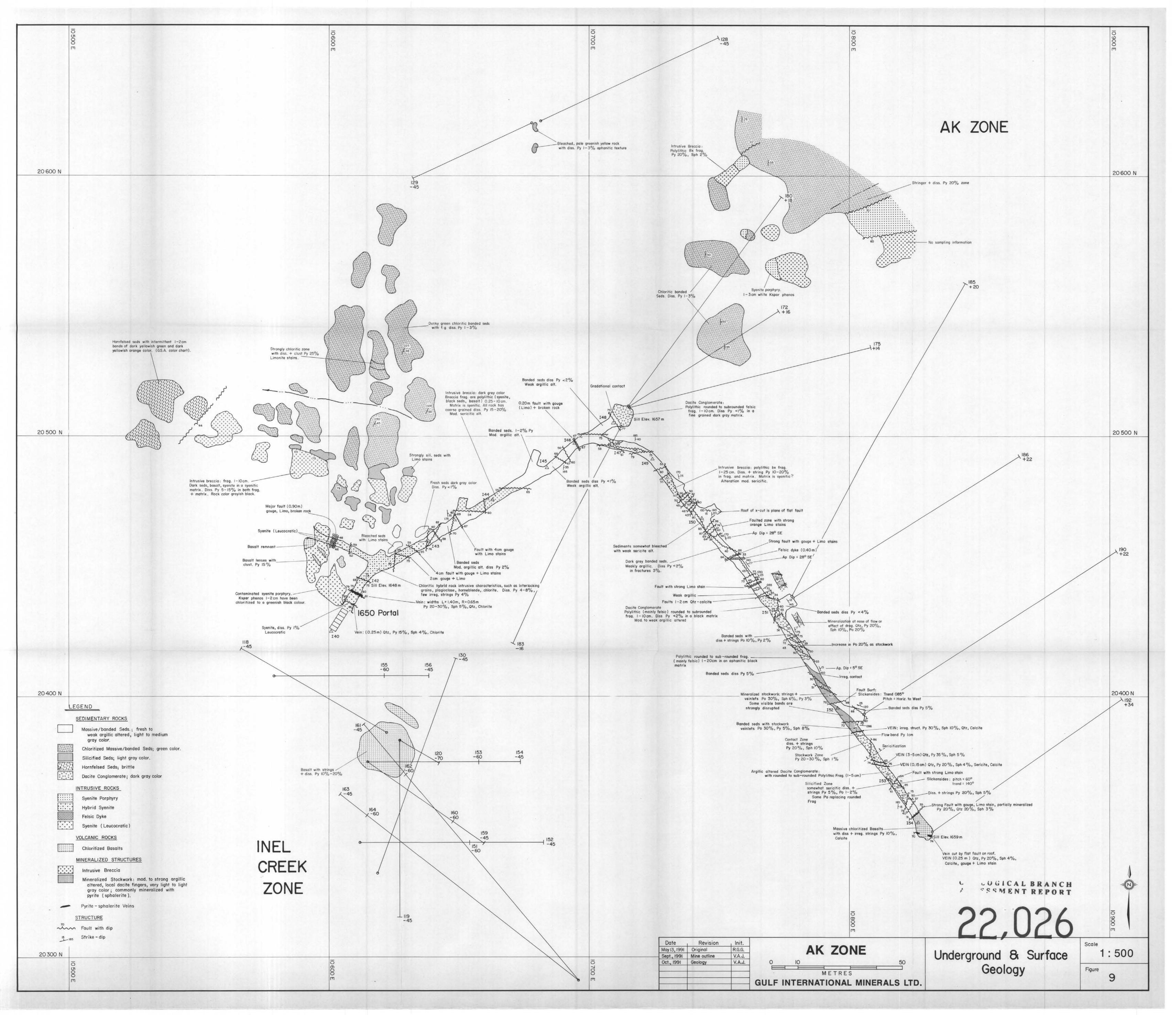
DATE RECEIVED: SEP 13 1991

SIGNED BY.

DATE REPORT MAILED: Sept 19/91.

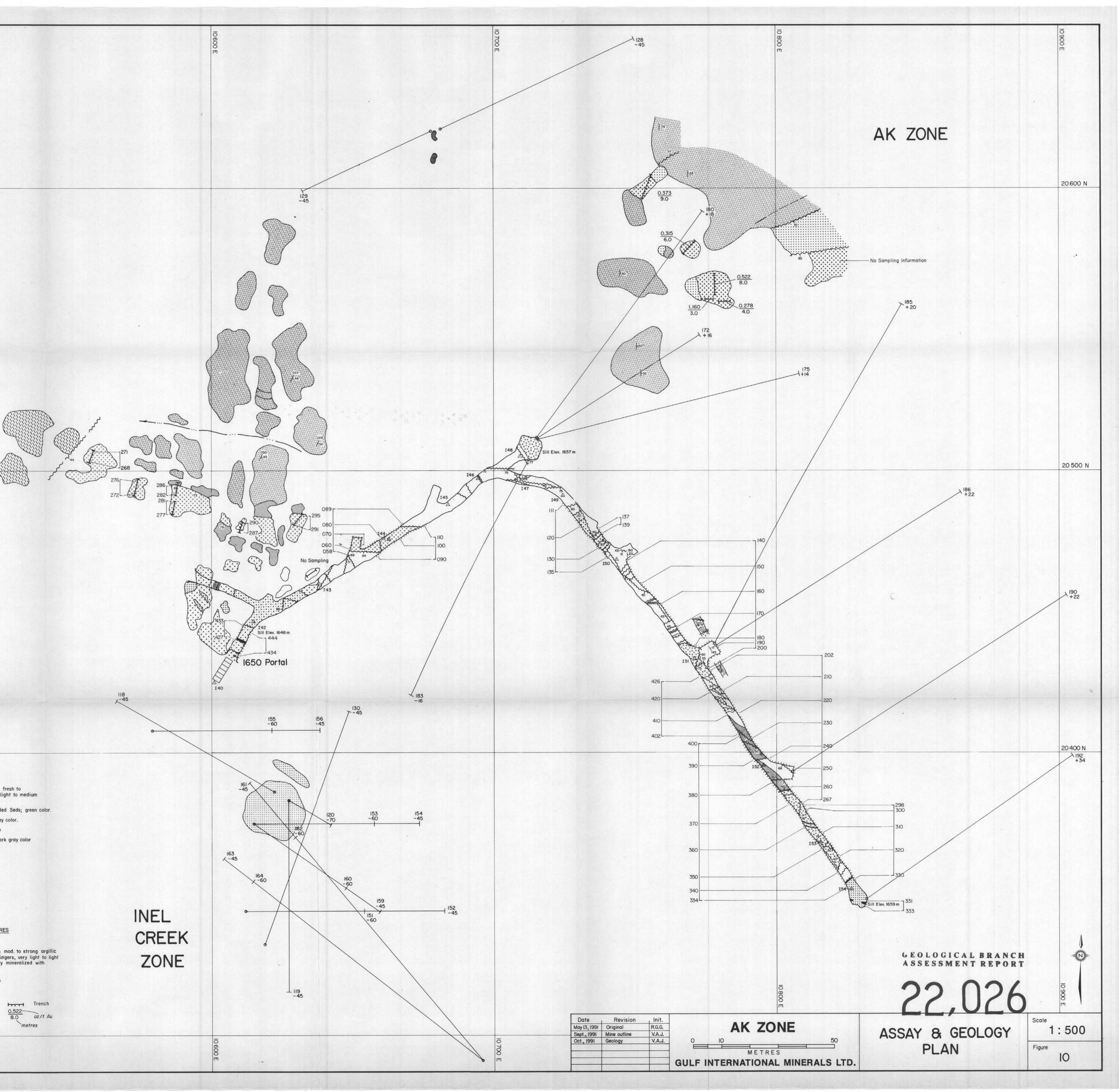
13.4 LIST OF ROCK SAMPLES COLLECTED DURING 1991

13.4 LIST OF ROCK SAMPLES COLLECTED IN 1991


<u>Sam</u> p	<u>ple</u>	No.	Description
91	-	1	Basalt (South-end AK Drift).
91	-	2	Basalt (Middle Zone, Discovery Adit).
91	-	3	Banded Sediments, with K-Spar alt. of selective bands (South-end Discovery South Adit).
91	-	4	Syenite Porphyry (Discovery South Adit).
91	-	5	Intrusive (Dioritic) (Discovery South Adit).
91	-	6	3rd vein from south-end of the South Discovery Adit.
91	-	7	4th vein from south-end of the South Discovery Adit.
91	-	8	lst vein from south-end of the South Discovery Adit.
91	-	9	Intrusive Breccia (1st breccia as one goes in the AK Adit).
91	-	10	Intrusive 2 (Alaskite) from cross-cut NE Discovery North Adit.
91	-	11	Intrusive (chloritized) from cross-cut North, Discovery North Adit.
91	-	12	Black banded Argillites from cross-cut North, Discovery North Adit.
91	- :	13	Vein in the South Drift, south of three lenses in Discovery Adit.
91	-	14	Dacite Conglomerate (AK Adit).
91	-	15	Banded Sediments. Discovery North cross-cut.
91	-	16	Vein (contact) with South Breccia AK Adit.
91	-	17	Altered Stockwork Zone po-py-sph in AK Adit.
91	- :	18	Basalt Agglomerate with epidote alteration in matrix. Discovery Adit cross-cut east.
91	- :	19	Altered (Altx) zone with stringers and veinlets, po, sph. Ak Adit.

Sample No.	Description
91 - 20	Intrusive breccia. AK Adit, 1st breccia.
91 - 21	Veinlets of sphalerite from altered (Altx) zone. AK Adit.
91 - 22	Intrusive breccia. Stained sample shows sand size particles of K-spar. From 1st breccia AK Adit.
91 - 23	Altered zone in Dacite Conglomerate. AK Adit.
91 - 24	Intrusive breccia from trench (Sample 52291) in which was V.G. observed. Surface AK Portal Zone.
91 - 25	AK Zone, Syenite Porphyry.
91 - 26	Samples of massive cpy from veinlet South Western Slopes Zone.
91 - 27	Felsic breccia from small knoll in South Western Slopes Zone showing pyritic subrounded fragments of felsic composition.
91 - 28	Felsic breccia sample from South Western Slope Zone with diss. py, minor sph (2 m from sample 91-27).
91 - 29	Black argillite with slaty cleavage. Lower area of Zinc Knob.
91 - 30	Py, cpy stockwork, volcanic host. South Western Slopes Zone. Debris from basin above.
91 - 31	Alaskite. LCP INEL 1, 2, 3, 4. Campsite EL. 1,390 m.
91 - 32	Alaskite. End of road below Discovery (Road) Portal.
91 - 33	Dyke rock debris. Source, toe area of south ice patch.
91 - 34	Dyke rock debris with sphalerite and galena diss. Source; toe area of south ice patch.
91 - 35	Banded qtz, py, sph mineralization. Discovery Adit.
91 - 36	Banded qtz, py, chlorite mineralization. Discovery Adit.
91 - 37	Large sample intrusive breccia. From 2nd breccia AK Adit.

											4		0 500 E
Certificate Number	Width (m)	Au oz/t	Zn %	Certificate Number	Width (m)	Au oz/t	Zn %	Certificate Number	Width (m)	Au oz/t	Zn %		
52058 059 060	1.0 1.0 1.0	Tr Tr Tr	0.28 0.32 0.21	52202 .203 204	1.0 1.0 1.0	Tr 0.042 0.088	Tr 4.90 4.00	52375 376 377	1.0 1.0 1.0	0.022 0.014 Tr	0.85 0.82 0.41		
061 062 063	1.0 1.0 1.0	Tr Tr Tr	0.19 Tr 0.12	205 206 207	1.0 1.0 1.0	0.036 Tr Tr	3.48 0.26 0.56	378 379 380	1.0 1.0 1.0	0.014 Tr Tr	1.34 0.35 0.45		
064 065 066	1.0 1.0 1.0	Tr Tr Tr	0.15 0.16 0.21	208 209 210	1.0 1.0 1.0	Tr Tr Tr	0.32 0.11 Tr	381 382 383	1.0 1.0 1.0	Tr Tr Tr	0.44 0.18 0.20	6	
067 068 069	1.0 1.0 1.0	Tr Tr Tr	0.17 0.25 0.45	211 212 213	1.0 1.0 1.0	Tr Tr Tr	0.34 0.49 0.74	384 385 386 387	1.0 1.0 1.0	Tr Tr Tr Tr	0.53 0.15 0.48 2.91		
070 071 072 073	1.0 1.0 1:0	0.012 Tr Tr Tr	0.52 0.26 0.52 0.28	214 215 216 217	1.0 1.0 1.0	Tr Tr 0.019 Tr	0.48 2.20 0.78 0.11	388 389 390	1.0 1.0 1.0	Tr 0.041 Tr	0.19 0.92 0.42	20 600 N	
074 075 076	1.0 1.0 1.0	Tr Tr Tr	0.23 0.38 0.22	218 219 220	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 1.27	391 392 393	1.0 1.0 1.0	0.20 0.12 Tr	0.68 0.20 0.16	20 000 N	
077 078 079	1.0 1.0 1.0	Tr Tr Tr	0.17 0.21 0.15	221 222 223	1.0 1.0 1.0	Tr Tr Tr	0.13 0.11 Tr	394 395 396	1.0 1.0 1.0	Tr 0.342 Tr	3.03 0.84 0.14		
080 081 082	1.0 1.0	Tr Tr Tr	0.23 0.26 0.23	224 225 226	1.0 1.3 1.0	Tr Tr 0.017	0.13 Tr 0.72	397 398 399 400	1.0 1.0 1.0 1.0	Tr Tr Tr Tr Tr	Tr 0.26 5.88 0.47		
083 084 085 086	1.0 1.0 1.0	Tr 0.013 Tr Tr	0.21 0.35 0.30 0.19	227 228 229 230	1.0 1.0 1.0 1.0	1.576 0.013 0.011 Tr	5.26 0.68 0.17 0.19	402 403 404	1.0 1.0 1.0	0.013 Tr Tr	0.14 0.39 0.30		
087 088 089	1.0 1.0 1.0	0.012 0.049 Tr	0.35	231 232 233	1.0 1.0 1.0	Tr Tr Tr	0.14 0.19 0.21	405 406 407	1.0 1.0 1.0	0.116 Tr Tr	2.78 0.44 0.24		
090 091 092	1.0 1.0 1.0	0.016 Tr Tr	0.20 0.43 0.25	234 235 236	1.0 1.0 1.0	Tr Tr Tr	0.30 Tr Tr	408 409 410	1.0 1.0 1.0	Tr Tr Tr	0.42 0.21 0.13		
093 094 095	1.0 1.0 1.0	Tr 0.028 0.015	0.12	237 238 239	1.0 1.0 1.0	0.080 Tr Tr	3.66 0.33 7.11	411 412 413	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr		
096 097 098 099	1.0 1.0 1.0	Tr Tr Tr 0.011	0.31 0.26 0.30 0.19	240 241 243 244	1.0 1.0 1.0	0.053 Tr Tr Tr	6.66 0.14 0.20 0.10	414 415 416 417	1.0 1.0 1.0 1.0	Tr Tr Tr Tr Tr	Tr Tr Tr 0.11		
100 101 102	1.0 1.0 1.0	Tr Tr Tr Tr	0.25 0.23 0.24	245 246 247	1.0 1.0 1.0	Tr Tr Tr	0.41 0.18 Tr	418 419 420	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr Tr		
103 104 105	1.0 1.0 1.0	0,016 0.011 Tr	0.30 0.31 0.47	248 249 250	1.0 1.6 1.0	Tr Tr Tr	Tr Tr Tr	421 422 423	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr		
106 107 108	1.0 1.0 1.0	Tr 0.021 0.039	0.27 0.67 0.45	251 252 253	1.0 1.0 1.0	Tr Tr Tr	Tr O.II Tr	424 425 426	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0.12		
109 110 111	1.0 1.0 1.0	Tr Tr Tr	0.19 Tr 0.53	254 255 256	1.0 1.0 1.4	Tr Tr Tr	Tr Tr 0.50	427 428 429	1.0 0.9 0.9	0.052 0.032 Tr	2.74 7.66 2.25		
112 113 114	1.0 1.0 1.0	Tr Tr 0.021	0.20 0.48 0.64	257 258 259	1.0 1.0 1.0	Tr 0.21 0.035	0.67 0.89 0.62	430 431 432	1.0 1.0 1.0	0.029 0.044 0.094	2.73 0.60 Tr		
115 116 117 118	1.0 1.0 1.0	0.020 0.027 0.019 0.022	0.17 Tr	260 261 262 263	1.0 1.0 1.0	0.020 0.069 0.053 0.019	0.79 1.87 1.56 13.68	433 434 435	1.0 1.0 0.3	0.022 Tr 0.032	Tr 0.36 0.59		A STE
110 119 120	1.0 1.0 1.0	0.033 0.031 0.011		263 264 265 266	1.0 1.0 1.0	0.019 0.021 Tr	0.29 0.49 0.28	436 437 438 439	1.0 1.2 1.2	0.015 0.014 Tr Tr	0.47 0.85 0.55	20 500 N	C
122 123 124	1.0 1.0 1.0	0.013 0.048 Tr	0.19 0.22 0.21	267 298 299	1.0 1.0 1.0	0.017 0.061 Tr	0.15	440 441 442	0.7 1.0 1.0	0.383 0.136 0.035	0.63 Tr 0.11		Ritte
125 126 127	1.0 1.0 1.0	0.013 0.026 0.022	0.22	300 301 302	1.0 1.0 1.0	0.028 0.022 Tr	0.28 0.41 0.32	443 444	1.0 1.0	0.051 Tr	0.11 Tr		
128 129 130 131	1.0 1.0 1.0	0.059 0.041 0.045 0.012	0.37	303 304 305 306	1.0 1.0 1.0	Tr 0.017 0.030 0.039	0.89 3.35 1.74 2.70			-			
132 133 134	1.0 1.0 0.6 1.0	0.012 0.012 Tr Tr	0.11 Tr 0.17 0.14	307 308 309	1.0 1.0 1.0	0.039 0.089 Tr Tr	2.51 0.75 0.22						
135 137 138	1.0 1.0 1.0	Tr Tr Tr	0.16 0.31 0.39	310 311 312	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr						
139 140 141	1.0 1.0 1.0	0.022 Tr Tr	Tr Tr	313 314 315	1.0 1.0 1.0	Tr Tr Tr	0.18 Tr Tr						
142 143 144	1.0 1.0 1.0	Tr Tr Tr	0.11 0.18 0.19	316 317 318	1.0 1.0 1.0	Tr 0.081 Tr	Tr 1.78 0.13						
145 146 147 148	1.0 1.0 1.0 1.0	Tr Tr Tr Tr	0.15 Tr Tr Tr	319 320 321 322	1.0 1.0 1.0 1.0	Tr Tr Tr 0.079	Tr 0.11 0.16 2.37						
149 150 151	1.0 1.0 1.0	Tr Tr Tr Tr	Tr Tr Tr	323 324 325	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0.11	TRENCH	IES				
152 153 154	1.0 1.0 1.0	Tr Tr Tr	Tr 0.24 0.16	326 327 328	1.0 1.0 1.0	Tr Tr 0.057	0.29 0.49 1.99	52268 269 270	1.0 1.0 1.0	Tr Tr Tr	0.20 0.11 0.11		
155 156 157	1.0 1.0 1.0	Tr Tr Tr	0.36 0.28 0.13	329 330 331	1.0 1.0 1.0	0.070 Tr Tr	4,79 0,39 0,21	271 272 273	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr		
158 159 160	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr	332 333 334	0.7 1.0 1.0	Tr Tr Tr	0.73 Tr 0.16	274 275 276	1.0 1.0 1.4	Tr Tr Tr	0.18 Tr Tr		
161 162 163	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr	335 336 337	1.0 1.0 1.0	Tr Tr Tr Tr	Tr Tr Tr Tr	277 278 279	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Q.13		
164 165 166 167	1.0 1.0 1.0	Tr Tr Tr Tr	Tr Tr Tr Tr	338 339 340 341	1.0 1.0 1.0	Tr Tr Tr 0.021	Tr Tr 0.69	280 281 282 283	1.0 1.0 1.0	0.013 Tr 0.014 Tr	0.16 0.13 0.20 0.11	20 400 N	
168 169 170	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr	342 343 344	1.0 1.0 1.0	0.254 0.020 Tr	5.84 0.59 Tr	284 285 286	1.0 1.0 1.0	0.011 0.023 Tr	0.15 0.32 0.12		LEGEND
171 172 173	1.0 1.0	Tr Tr Tr	Tr Tr Tr	345 346 347	1.0 1.0 1.0	Tr Tr Tr	0.14 Tr Tr	287 288 289	1.0 1.0 1.0	Tr Tr Tr	0.18 Tr Tr		SEDIMENTARY ROCKS Massive/banded Seds.; fresh to
174 175 176	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0.11	348 349 350	1.0 1.0 1.0	Tr Tr Tr	Tr 0.13 Tr	290 291 292	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr		weak argillic altered, light to gray color. Chloritized Massive/banded Seds
177 178 179	1.0 1.0	Tr Tr Tr	Tr 0.26 0.31	351 352 353	1.0 1.0 1.0	Tr Tr 0.013 0.041	Tr Tr 0.63 1.04	293 294 295	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0,15		Silicified Seds; light gray color.
180 181 182	1.0	0.054 0.042 Tr	0.18	354 355 356 357	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr						Dacite Conglomerate; dark gray
183 184 185 186	1.0 1.0 1.0	Tr Tr Tr Tr	Tr Tr Tr Tr	358 359 360	1.0 1.0 1.0 1.0	Tr Tr 0.185	Tr 0.92 1.42						INTRUSIVE ROCKS Syenite Porphyry
187 188 189	1.0 1.0 1.0	Tr Tr Tr	Tr Tr Tr	361 362 363	1.0 1.0 1.0	0.079 0.069 0.017	1.42 3.38 4.00		-				Hybrid Syenite Felsic Dyke
190 191 192	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0.28	364 365 366	1.0 1.0 1.0	0.026 Tr Tr	3.69 0.14 3.19					Ŀ	Syenite (Leucocratic) <u>VOLCANIC ROCKS</u>
193 194 195	1.0 1.0 1.0	Tr Tr Tr	Tr Tr 0.46	367 368 369 770	1.0 1.0 1.0	Tr Tr Tr	0.11 Tr Tr						Chloritized Basalts
196 197 198	1.5 1.0 1.0	Tr Tr Tr	0.24 Tr Tr Tr	370 371 372 373	1.0 1.0 1.0		0.17 0.37 0.64 0.68		\$0.010	oz/t = T			MINERALIZED STRUCTURES
199 200	1.0	Tr Tr	Tr Tr	373 374	1.0	0.013	0.68 3.11			oz/f = 1 % = Tr			Mineralized Stockwork: mod. to altered, local dacite fingers, v gray color; commonly minera
													pyrite (sphalerite). Pyrite – sphalerite Veins


STRUCTURE

Fault with dip

20 300 N

Pyrite – sphalerite Veins

15 185 Strike - dip

