

Geological, Geochemical, and Geophysical Surveys

JORDAN RIVER PROPERTY

Copeland Group

Lat. $51^{\circ} 07.5^{\prime} \mathrm{N}$ Long. $118^{\circ} 24^{\prime} \mathrm{W}$ UTM 5664500N 401500E

Frisky Group
Lat. $51^{\circ} 08.5^{\prime} \mathrm{N}$ Long. $118^{\circ} 17^{\prime} \mathrm{W}$ UTM 5666000 N 410000 E

Revelstoke Mining Division NTS 82M 1W

Owner and Operator:
First Standard Mining Ltd.
802-6540 Burlington Ave.
Burnaby, B.C.
V5H 4G3
GEOLOGICALERANCH ASSESSMENT REPORT

By: T. Clarke, B.Sc. (Hon.)
and
J. Laird, Prospector

Date: December 10, 1991

TABLE OF CONTENTS

Page
1.0 Introduction 1
1.1 Summary 1
1.2 Location, Access and Vegetation 3
1.3 Property Details 3
1.4 History 6
1.5 Summary of Work 6
2.0 Geology 7
2.1 Regional Geology 7
2.2 Copeland Group Geology (King Fissure Deposit) 11
2.2.1 Lithology 11
2.2.2 Structure 13
2.2.3 Mineralization 14
2.3 Frisby Group Geology 16
2.3.1 Lithology 17
2.3.2 Structure 18
2.3.3 Mineralization 18
3.0 Geochemistry 19
3.1 Copeland and Frisby Groups Rock Geochemistry 19
3.2 Frisby Group Soil Geochemistry 19
4.0 Geophysics 21
4.1 Copeland Group 21
4.1.1 Magnetic Surveys 21
4.1.2 VLF-EM Survey 22
4.2 Frisby Group 23
4.2.1 Magnetic Survey 23
4.2.2 VLE-EM Survey 23
5.0 Recommendations 24
5.1 Copeland Group 24
5.2 Frisby Group 25
6.0 Itemized Cost Statements 26
7.0 Bibliography 30

APPENDICES

```
Appendix 1: Statements of Qualifications
Appendix 2: Rock geochemistry results
Appendix 3: Rock sample descriptions
Appendix 4: Soil geochemistry results
Appendix 5: East Zone VLF-EM Data
Appendix 6: East Zone Geophysical Interpretation
Appendix 7: Frisby Ridge South Grid VLF-EM Data
```


LIST OF FIGURES

Figure 1:	Location Map	page
Figure 2:	Jordan River Property	page 5
Figure 3:	Geology of the Jordan River Area	in pocket
Figure 4:	King Fissure Deposit Geology	in pocket
Figure 5:	King Fissure Deposit - Diagrammatic Geological Sections	in pocket
Figure 6:	Cliff Zone Grid Geology	in pocket
Figure 7:	Cliff Zone Grid Corrected Magnetics	in pocket
Figure 8:	East Zone Grid Geology	in pocket
Figure 9:	East Zone Grid Magnetics	in pocket
Figure 10:	East Zone Grid VLF-EM Profiles and Fraser Filter Anomalies	in pocket
Figure 11:	Frisby Ridge - Big Slide Zone Prospecting and Sampling	in pocket
Figure 12:	Frisby Ridge - Big Slide Grid	in pocket
Figure 13:	Frisby Ridge - Big Slide Grid Magnetics	in pocket
Figure 14:	Frisby Ridge - Big Slide Grid Sample Locations	in pocket
Figure 15:	Frisby Ridge South Grid Geology	in pocket
Figure 16:	Frisby Ridge South Grid Pb Soil Geochemistry	in pocket
Figure 17:	Frisby Ridge South Grid Zn Soil Geochemistry	in pocket
Figure 18:	Frisby Ridge South Grid Ag Soil Geochemistry	in pocket
Figure 19:	Frisby Ridge South Grid Sr Soil Geochemistry	in pocket
Figure 20:	Frisby Ridge South Grid La Soil Geochemistry	in pocket
Figure 21:	Frisby Ridge South Grid Ba Soil Geochemistry	in pocket
Figure 22:	Frisby Ridge South Grid Y Soil Geochemistry	in pocket
Figure 23:	Frisby Ridge South Grid Nb Soil Geochemistry	in pocket
Figure 24:	Frisby Ridge South Grid Sc Soil Geochemistry	in pocket
Figure 25:	Frisby Ridge South Grid VLF-EM Profiles	in pocket
Figure 26:	Frisby Ridge South Grid Baseline $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$ Soil Geochemistry	in pocket
Figure 27:	Frisby Ridge South Grid Baseline Sr, La, Ba Soil Geochemistry	in pocket
Figure 28:	Frisby Ridge South Grid Baseline Y, Nb, Sc Soil Geochemistry	in pocket
Figure 29:	Frisby Ridge North Grid Geology	in pocket

1.0 Introduction

1.1 Summary

The Jordan River property, near Revelstoke, B.C., consists of the Copeland Group and the Frisby Group. The Copeland Group contains the King Fissure $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Ba}$ massive sulphide deposit, while the Frisby Group covers additional exposures of the sulphide-bearing stratigraphy.

Work on the Jordan River property in 1991 consisted of linecutting, geological mapping, geophysical (magnetic and VLFEM) surveys, a soil geochemical survey, prospecting, and rock chip sampling.

On the King Fissure Deposit, geological mapping and geophysical surveys were successful in tracing the massive sulphide layer around the eastern closure of the Copeland synform. Evidence seen in drag folds, the general fold morphology as indicated by surface exposures and limited drilling, and in regional folding patterns, suggests that hinge zone thickening should occur in the eastern half of the synform. Preliminary examination of the West zone has demonstrated the presence of footwall sulphide stockworking, brecciated zones within the massive sulphides, and a massive sulphide-barite sequence exceeding 4 m thickness. Brecciation and high-grade $\mathrm{Pb}-$ Zn-Ag stockworking is also seen in the Cliff Zone, where massive sulphides commonly exceed 2 m thickness. These features indicate proximity to exhalative sulphide vent zones.

Prospecting and geological mapping on the Frisby Group have traced the favourable sulphide-host carbonate stratigraphy for approximately 2.5 km . Within this sequence, the massive $\mathrm{Zn}-\mathrm{Pb}$ sulphide layer has been traced for over 1.2 km in the Big Slide zone, and remains unexplored to the south.

A light rare-earth bearing extrusive carbonatite layer was recognized in the King Fissure Deposit in 1990. This unit, occurring less than 50m stratigraphically below the massive sulphide horizon, was also successfully traced on the Frisby Group.

1.2 Location, Access, and Vegetation

The Jordan River property lies in mountainous terrain on both sides of the Jordan River, approximately 19 km northwest of the town of Revelstoke, B.C.. The Copeland and Frisby groups lie west and east, respectively, of the Jordan River. Elevations range from 620 m in the river valley to 2560 m at Mount Copeland. Access to the property is by a 15 minute helicopter flight from Revelstoke. A road accessing the former Mount Copeland molybdenum mine leads to within approximately 10 km of the King Fissure Deposit. An old pack trail leaves the road at Hiren Creek and proceeds up Jordan River and Copeland Creek to the King Fissure Deposit, a distance of 10 km .

The Copeland Group is mostly rugged, rocky terrain, entirely in alpine. The upper part of Frisby Ridge on the Frisby Group lies mostly in sub-alpine, while the lower regions (generally below 1500 m) are densely treed with fir, cedar, spruce, and pine. Open areas are covered with thick slide alder and scrub brush. Drainage from the Copeland Group is into Copeland and Hiren Creeks, which in turn drain easterly into the Jordan River. Drainage from the Frisby Group is both west into the Jordan River and east into Lake Revelstoke on the Columbia River.

1.3 Property Details

The Jordan River property is composed of two groups totalling 185 units as follows*:

Frisby Group

Claim	Record \#	Units	Expiry Date ${ }^{* *}$
Jordan 2	248446	10	Nov. 20, 1993
Jordan 3	248447	20	Nov. 20, 1993
Jordan 4	248448	10	Nov. 20, 1993
Frisby 1	248440	12	Nov. 6,1993
Frisby 2	248441	12	Nov. 20, 1993
Frisby 3	248442	12	Nov. 20, 1993
Frisby 4	248443	12	Nov. 20, 1993

Total size of the Frisby Group is 88 units.

Copeland Group

Claim	Record \#	Units	Expiry Date**
Copeland 1	248318	10	Nov. 22, 1992
Copeland 2	248319	10	Nov. 22, 1992
Copeland 3	248321	20	Nov. 22, 1993
Copeland 4	248320	20	Nov. 22, 1993
Jordan 1	248445	20	Nov. 20, 1992
L. 14774	--	--	--
L. 14775	--	--	--
L. 14776	--	--	--
L. 14777	--	--	--
L. 14778		--	--
L. 14779	--	--	--
L. 14780	--	--	--
L. 14781	--	--	--
L. 15539	--	--	--
L. 15540	--	--	--
L. 15541	--	--	--
L. 15542	--	--	--
L. 15543	--	--	--
L. 15544	--	--	--
L. 15545	--	--	--
L. 15564	--	--	--
L. 15565	--	--	--

Total size of the Copeland Group is 97 units.
(* The 20 unit Hiren 1 claim, also part of the Jordan River property, staked in October, 1991, is not included in this report.)
(** Assuming acceptance of this report)
All claims, including crown-granted claims which cover the King Fissure Deposit, are 100% owned by First Standard Mining Ltd.. The Copeland 1-4 claims were staked to protect ground surrounding the deposit. The Jordan 1-4 and Frisby 1-4 claims were staked to cover favourable stratigraphy east of the King Fissure Deposit.

1.4 History

The King Fissure Deposit was discovered in the late 1800's by early prospectors who cut a trail into the property and drove three short tunnels. No other systematic exploration was carried out on the property until the late 1950 's when American Standard Mines Ltd. and Bunker Hill Mines Ltd. conducted extensive surface sampling and metallurgical testing. Bralorne Pioneer Mines Ltd. drilled five diamond drill holes in 1963 and another five in 1965. A summary report, drill logs, and preliminary mine plans prepared subsequent to this drilling are not available.

In 1970, Dr. J. T. Fyles of the B.C. Department of Mines published a report on geology and mineral deposits of the Jordan River area. The report included detailed maps and preliminary cross sections of the King Fissure Deposit.

In the fall of 1990, a re-examination of the property was conducted by J. Laird and R. MacGillivray. Significant results of this work included identification and sampling of several high-grade $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Ba}$ zones within the King Fissure Deposit, and the recognition of a light rare-earth bearing extrusive carbonatite layer stratigraphically below the massive sulphides.

1.5 Summary of Work

Work on the Jordan River property was conducted between August 23 and September 30, 1991.

Copeland Group:
All work on the Copeland Group was performed on the Copeland 3-4 claims.

1. Grid establishment - A total of 7.8 km of line were established on two grids on the King Fissure Deposit.
2. Geological mapping - 7.8 km 's of grid were mapped at a scale of 1:2,500.
3. Geochemical sampling - A total of 29 rock chip samples were collected from the Copeland Group; all samples were variously analyzed by ICP or whole rock methods; 14 samples were assayed for base and precious metals, and 4 extrusive carbonatite samples were analyzed for light rare-earth element content.
4. Geophysical surveys - 7.4 km 's of grid were surveyed for magnetics; $4.35 \mathrm{~km}^{\prime}$ s of grid were surveyed by VLF-EM methods.

Frisby Group:

1. Grid establishment - $15.6 \mathrm{~km}^{\prime} \mathrm{s}$ of grid were established on the Frisby 1-3 claims.
2. Geological mapping - 12.7 km s of the grid were mapped at a scale of $1: 2,500$.
3. Geochemical sampling - 173 soil samples were collected from grid on the Frisby 2 claim and analyzed for 35 elements by ICP methods; A total of 32 rock chip samples were collected from the Frisby 1-4 and Jordan 2-4 claims; all samples were variously analyzed by ICP or whole rock methods. In addition, 12 samples were assayed for base and precious metals, and 4 extrusive carbonatite samples were analyzed for light rare-earth element content.
4. Geophysical surveys - 0.49 km 's of grid on the Frisby 3 claim were surveyed for magnetics; 3.0 km 's of grid on the Frisby 2 claim were surveyed by VLF-EM methods.

2.0 Geology

2.1 Regional Geology (Figure 3)

The Jordan River property is underlain by Monashee Complex metamorphic rocks which lie within the Paleozoic and older Shuswap metamorphic complex. The Monashee Complex consists of a series of granitic gneiss domes of probable Aphebian age enveloped by metasedimentary gneisses and schists (Hoy, 1987). The Jordan River map area lies on the southeastern flank of the northernmost of these domes, the Frenchman Cap gneiss dome.

Compilation work conducted in the winter of 1990-1991 has resulted in stratigraphic and structural interpretations substantially different to those in previous publications (ex. Fyles, 1970, Hoy and Brown, 1980). This re-interpretation, made possible largely by the recognition of an extrusive carbonatite layer in the King Fissure Deposit, has enabled correlations to be made with stratigraphy elsewhere in the Monashee Complex, such as the Cottonbelt area on the northwest flank of the Frenchman Cap gneiss dome (see Hoy, 1987). Units referred to in this report are keyed to those on the Jordan River area geology map (Figure 3).

The Frenchman Cap gneiss dome consists largely of medium-to. dark-grey, medium-grained, granitic biotite-feldspar gneiss. Within the granitic gneiss are inclusions of biotite-hornblende gneiss and light grey granitic gneiss.

Folding within the gneiss intensifies towards the unconformably overlying metasediments (Fyles, 1970). Previously referred to as mixed gneiss (Wheeler, 1965; Fyles, 1970), it is herein referred to as Unit 1 granitic gneiss.

Overlying the core gneisses are Unit 2 quartz-pebble conglomerates, white quartzites, and less commonly, quartz-mica schists. In most places the conglomerates and quartzites are between 15 and 60 m thick, but in hinge zones of folds they can exceed 300 m thickness. Cross-bedding has been noted in the transition zone between the lower conglomerate and overlying quartzites (Fyles, 1970).

Above Unit 2 lies Unit 3, a package of green calc-silicate gneiss, calcareous schist, marble, biotite schist, quartzite, and Tremolite-rich, locally dolomitic marble occurs as discontinuous layers and lenses. Where quartzites achieve appreciable thicknesses they are recognized separately as Unit 3q. Amphibolite sills(?) are also locally significant. Fenite has been noted in correlative stratigraphy in the Mt. Grace area on the northwest flank of the Frenchman Cap gneiss dome (Hoy, 1987). Unit 3 has been described as being a few hundred feet thick, pinching out west of the Jordan River, south of Hiren Creek (Fyles, 1970).

Overlying Unit 3 is grey-green coloured calc-silicate gneiss of Unit 4. Amphibolites intercalated with the calc-silicate gneiss, generally less than 2 m thick, are thought to be sills due their pinching and swelling nature. Quartzites also occur within this unit, and where significantly thick are mapped as Unit 4 q .

Above Unit 4 lies Unit 5, a predominantly carbonate sequence hosting the massive $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Ba}$ sulphide layer. Lithologies within this unit are continuous over large areas, and are directly correlatable with massive sulphide-bearing stratigraphy described in the Mt. Grace area (Hoy, 1987).

In the Jordan River area the base of the Unit 5 sequence is indicated by a $0.5-1.0 \mathrm{~m}$ thick gneissic-textured marble layer, informally named the basal marble. This marble consists of white to light-grey calcite, with brown biotite laminations occurring near the upper contact. This upper contact with the extrusive carbonatite layer is gradational over approximately 15 cm , with. the base of the carbonatite containing laminations of light grey marble. The continuity and contact relationships of the basal marble suggest it may also have an exhalative origin.

The extrusive carbonatite (Unit 5c) is medium to dark brown in colour, commonly over 5 m thick, and ranges from non- to highly fragmental in nature. Mineralogy of the matrix consists primarily of calcite and phlogopite, with lesser fluorapatite and pyrochlore, while the light grey breccia fragments consist almost entirely of albite and phlogopite (Hoy, 1987). Fragment size ranges from less than 1 cm to over 20 cm . The largest fragments occur in the most intensely brecciated sections, and are interpreted to be near vent zones. More detailed descriptions of the carbonatite can be found in Hoy (1987). Above the carbonatite lies interlayered fine grained mica schist and calcsilicate gneiss and schist, in turn overlain by a regionally continuous white marble layer, informally named the marker marble (Unit 5 m). The carbonatite-marker marble contact appears to be gradational, with brown phlogopite-biotite layers occurring near the base of the marble; these micaceous intercalations do not appear to be appreciably anomalous in rare earth element content (T. Hoy, verb. comm.). Thickness of the marble is commonly 3lom. Mineralogy is almost entirely calcite, although accessory scapolite occurs on Frisby Ridge. Above the marker marble lies relatively non-descript, grey, fine-grained mica schist and calcsilicate gneiss $5-30 \mathrm{~m}$ thick. This is overlain by the massive sulphide sequence (Unit 5s). The sulphide layer, while not ubiquitous, is locally well-developed (ex. King Fissure and Cottonbelt deposits). Sulphides consist primarily of fine to coarse grained pyrrhotite, sphalerite, galena, and pyrite, commonly within a siliceous or calcareous matrix. Barite ranging in occurrence from discrete crystals to massive layers is intimately associated with the sulphides. More detailed descriptions of the massive sulphide layer are presented in property geology sections.

Above the sulphide layer lie quartzites and quartz-biotite schists of Unit 5q grade upwards into Unit 6. Amphibolite sills(?) displaying local contact metamorphism are common in the 5q metasediments.

Unit 6 medium-grained biotite-sillimanite schists and quartzites commonly form rusty weathering cliffs, best exposed on the King Fissure Deposit, on the north side of lower Copeland Creek, and on the western slope of Frisby Ridge. The schists often have a knotted appearance, and are migmatitic in the centre of the King Fissure Deposit. Thin (<1m), irregular marble layers occur within Unit 6 on Frisby Ridge and Mount Copeland.

Intruding the metasedimentary sequence are gneissic nepheline syenites (Unit N). These grey, medium-grained feldspar-biotite gneisses have moderately-well defined foliations and locally pitted weathering surfaces. Nepheline amounts to as much as 20 percent; accessory minerals include calcite, zircon, sphene, fluorite, and magnetite. Concentrations of molybdenite occurring in the border phases of the nepheline syenite have been mined at the Mount Copeland molybdenum mine. Lack of quartz and effervescence of some samples with acid distinguish the syenite from biotite-quartz-feldspar gneisses (Fyles, 1970). Zircons extracted from the nepheline syenite have been dated at 740 +/36 Ma (Parrish and Scammell, 1988). Regional mapping indicates that the syenites' preferred level of intrusion was in the upper regions of unit 3, and that it is folded by the earliest recognized deformation. This is best displayed in the area southwest of Mount Copeland.

The youngest rocks recognized in the Jordan River area are Tertiary lamprophyre dykes. Ranging from <1m to over 3m thickness and often occurring in swarms, these dykes tend to fill northerly trending faults and fractures. Rarely the lamprophyre forms sills. In the King Fissure Deposit area, fault-hosted and manto style $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ mineralization is associated with the dykes and structures. On the north side of Copeland Creek, on the wild Goose property, similar structures host Au-bearing $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Cu}$ veins.

Three phases of folding are recognized in the Jordan River area (Fyles, 1970). Phase 1 folds, having warped axial planes dipping primarily to the southwest, are isoclinal with highly attenuated limbs and thickened hinge zones. Thrust faulting and local shearing parallel to the foliation accompanies Phase 1 folding. Phase 2 folds are generally overturned, with axial planes dipping at low to moderate angles to the south and southwest. Although most Phase 2 folds are of a concentric style, thickened hinge zones have been noted, particularly near the gneiss dome.

One large Phase 3 antiform has been mapped straddling the Jordan River valley. The axis of this fold plunges moderately to the south, dipping steeply to the east (Fyles, 1970).
2.2 Copeland Group Geology (King Fissure Deposit - Figure 4)

The King Fissure Deposit lies within a southeasterly trending, southwesterly dipping syncline with an overturned southern limb, known as the Copeland synform (Fyles, 1970). Folding is open and concentric at the western end, but tightens considerably towards the east. The synform has approximate dimensions of 2.5 km long by 0.8 km wide. Stratiform massive sulphides are seen on both limbs of the fold. Several zones within the deposit have been established by Riley (1961); the West, Cliff, and East zones as well as the newly named Northeast and Lake zones were examined during the 1991 fieldwork.

2.2.1 Lithology

Rock units 4, 5, and 6 are present in the King Fissure Deposit area. At the bottom of the sequence, Unit 4 grey-green gneiss, quartzites and quartz-biotite schists, form virtually inaccessible cliffs along the overturned southern limb of the deposit. Commonly weathering to grey and black, these rocks are unusually rusty above the Cliff Zone.

Above Unit 4, the Unit 5 basal marble is commonly less than 1 m thick. In gradational contact with the basal marble is the extrusive carbonatite (Unit 5c). Best exposures of the carbonatite occur in the Cliff and Northeast zones. In the Cliff zone the carbonatite is approximately 5 m thick and almost entirely tuffaceous in nature. Rare fragments less than 2 cm in size tend to occur along discrete horizons. Repetitive centimetre-scale interlayering of fine and medium grain sizes indicates several episodes of deposition. In the Northeast zone, the carbonatite is highly fragmental and reaches 10 m in thickness. Poorly sorted, matrix-supported fragments up to 25 cm in size form approximately 20% of the volume, and are interpreted to be indicative of a proximal source vent. Light rare-earth element content is markedly higher in the Northeast zone samples than in the Cliff zone samples, particularly with respect to Ce , La, and Nd .

Discontinuous medium to coarse grained amphibolite layers are often present within the immediate carbonatite stratigraphy, and probably represent metamorphosed basic volcanics and related intrusives (Hoy, 1987). Amphibolite samples KF-1 and KF-2 from the King Fissure deposit are chemically similar to basic metavolcanic rocks near Blais Creek in the Cottonbelt area (Hoy, 1987, p. 19).

The marker marble, Unit 5 m , ranges from $3-10 \mathrm{~m}$ in thickness, is composed almost entirely of coarse-grained white calcite, and may also be of exhalative origin.

Above the marker marble lies feldspar-porphyroblastic grey mica schist with lesser calc-silicate schist. This unit is uniformly non-descript, notable only in that it directly underlies the massive sulphides.

The massive sulphide horizon (Unit 5s) can be traced throughout the entire King Fissure deposit with the exception of talus and snow covered intervals. Greatest known primary massive sulphide thicknesses occur in the west and Cliff zones. Mineralogy consists mostly of fine to coarse grained pyrrhotite, sphalerite, galena and pyrite, often within a siliceous or calcareous matrix. Massive barite occurs with sulphides in the Northeast and West zones. More detailed descriptions of the massive sulphides and barite are presented in section 2.2.3.

Directly overlying the sulphide horizon are more grey mica schists and calc-silicate gneisses, in turn overlain by interlayered quartzites and mica schists (Unit 5q). The quartzites are generally white to tan coloured and have welldeveloped micaceous partings. Most of the mica is muscovite, although a green (fuchsite?) mica is often present.

Biotite schist layers become more prevalent upsection, leading into biotite-sillimanite schist and quartzite of Unit 6 occurring in the core of the Copeland synform. This highly tectonized and locally migmatitic unit weathers to a strongly Feoxidized surface. Chaotic ptygmatic folding is common, and displacement along foliation planes may be significant, but is difficult to measure.

Several northerly trending biotite-lamprophyre dykes cut through the deposit, particularly in the central and eastern regions of the Copeland synform. Often occurring in swarms, the lamprophyres weather to a dark brown colour, with fine grained biotite and subordinate amphibole within an aphanitic groundmass. Thickness of individual dykes ranges from $<0.5 \mathrm{~m}$ to 3 m .

2.2.2 Structure

The King Fissure Deposit lies within a southeasterly trending, southwesterly dipping syncline with approximate dimensions of 2.5 km long by 0.8 km wide. The fold has been named the Copeland synform by Fyles (1970).

The Copeland synform is open and concentric in the western end, but tightens considerably to the east. In the western end, an anticline superimposed on the keel of the Copeland synform has created a "W" shaped folding pattern, effectively raising the structural level of the keel and establishing easterly plunges to folds. Structural measurements in the West zone indicate that the Copeland synform plunges approximately 30° towards 150° (Fyles, 1970). The central antiform, plunging more steeply than the Copeland synform, diminishes in magnitude towards the east, at some point disappearing entirely as three fold axes coalesce into one. Near this point on the surface a major northerly trending fault zone, known as the Camp fault, cuts across the synform with a dextral offset of approximately 20 m . This late structure may be related to stress created at the junction of the earlier folding. East of the Camp fault the Copeland synform is assumed to have a near horizontal keel.
East of the King Fissure Deposit, structural mapping indicates that fold axes in Unit 4 rocks plunge approximately 15° to the west (Fyles, 1970).

On $244+00 E$ on the East zone grid, massive sulphides on each limb of the Copeland synform are approximately 150 m apart. Geological mapping and magnetic survey data indicate that the closure of the synform probably lies under talus and thick bush cover between $L 27+00 \mathrm{E}$ and L29+00E (Figures 8 \& 9).

Exploration on the King Fissure Deposit is focused primarily on stratiform base-metal massive sulphides (Unit 5s) which occur near the top of the Unit 5 carbonate sequence. The sulphide horizon is well exposed along both limbs of the Copeland synform. Numerous trenches and shallow adits occur in the Cliff, East, and Northeast zones.

Cliff Zone:

In the Cliff zone, massive sulphides range from 1.5 m to $>3 \mathrm{~m}$ thick. A vertical zonation within the massive sulphide layer is recognizable; at the base is a dark weathering $0.2-1.0 \mathrm{~m}$ layer of mostly sphalerite and galena, with minor pyrrhotite. This is overlain by $0.5-2 \mathrm{~m}$ of rusty weathering, massive, fine-grained pyrrhotite containing eyes of grey quartz and fine grained sphalerite and galena. A representative of this type of mineralization is photographed in Fyles (Plate XV, 1970).

Above the pyrrhotite-dominant middle layer is a $0.2-1.0 \mathrm{~m}$ siliceous horizon hosting coarse grained pyrite with galena, sphalerite, and minor pyrrhotite. This siliceous upper layer is most easily distinguished by its abundant pyrite and light grey to white weathered surfaces. Brecciation and footwall sulphide stockworking were noted in the Cliff zone. Barite has not been recognized.

East Zone:
In the East zone, massive sulphide layers are approximately $0.5-1.0 \mathrm{~m}$ thick, consisting mostly of sphalerite and galena with lesser pyrrhotite and pyrite within a siliceous matrix. Barite has not been noted. On the north limb (near the north end of East zone grid L25+00E) is a pyrrhotite-rich zone containing wallrock breccia fragments. This zone is similar in mineralogy and appearance to the middle layer of the Cliff zone massive sulphide unit. Multiple layering over an interval of 3 m occurs on the north limb. The extrusive carbonatite layer is present in the East zone but has not been sampled.

Northeast Zone:
In the Northeast zone there are up to three massive sulphide layers separated by calcareous and siliceous layers with barite, . spanning a total interval of $1.5 \mathrm{~m}-3.0 \mathrm{~m}$. Three sulphide layers, intersected in diamond drill holes drilled by Bralorne Pioneer Mines Ltd., were previously interpreted to be structural repetitions of the same unit.

Small sulphide replacements and mantos occur adjacent to late structures in the Northeast zone.

The well-exposed extrusive carbonatite layer is locally highly fragmental and reaches approximately 5 m in thickness. Fragments exceeding 25 cm size were noted. Two carbonatite samples from the Northeast zone were relatively enhanced in light rare-earth content compared to the Cliff zone.

West Zone:
Massive sulphide mineralogy in the West zone consists of galena, sphalerite, pyrite, and pyrrhotite. The massive sulphide layers display several important characteristics. Perhaps most highly notable is the occurrence of massive barite interbedded with the sulphides. The light grey coloured barite is medium to coarse grained and contains a fine mesh-work of galena. One section of six massive sulphide layers plus barite was measured to be 4.5 m thick. The mineralized horizon contains highly brecciated lenses with $<1 \mathrm{~cm}-10^{+} \mathrm{cm}$ wallrock fragments in a massive sulphide and barite matrix. Flow textures are visible around breccia fragments which often display an internal foliation and are slightly elongated parallel to layering. The breccias are thought to have formed below areas of slope instability during sulphide deposition. Near these breccia zones is an underlying sulphide stockworking. This stockworking, along with brecciation, multiple layering, and the occurrence of barite are indicative of proximity to sulphide venting.

The extrusive carbonatite occurs in the West zone but has not been sampled.

Lake Zone:

Mineralization in the Lake zone is distinct in that the sulphide layer has a unique mineralogy and does not exceed 1m in thickness. Galena, sphalerite, pyrite and minor greenockite are dominant with pyrrhotite being notably absent. An emerald greencoloured silicate mineral, found intimately associated with the sulphide layer in the Lake zone, was recently identified as gahnite, a zinc-bearing spinel (Hoy, pers. comm., 1991). This mineral also occurs in the sulphide layer at the cottonbelt deposit (Hoy, 1987) and in the metamorphosed early Proterozoic $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Cu}$ Saxberget deposit in Sweden (Vivallo and Rickard, 1990).

The extrusive carbonatite is well exposed in the Lake zone, but was not sampled.

Summary:
The King Fissure Deposit has previously been described as being formed by replacement of an impure marble (ex. Riley, 1961). The writers of this report suggest a sedimentaryexhalative (sedex) origin. Supporting evidence includes multiple layering of barite and sulphides, and footwall stockworking adjacent to brecciated zones within the massive sulphides. Sulphide deposition and widespread amphibolite intrusions within a thick metasedimentary sequence are indicative of episodic basinal subsidence during an extensional tectonic regime.

KING FISSURE DEPOSIT SUMMARY OF ASSAY RESULTS 1991 SAMPLING PROGRAM						
Sample	Zone	Type	Pb (\%)	Zn (\%)	Ba (\%)	Ag (g/t)
CZ-1	Cliff	1.0 m chip	29.80	25.70	0.01	324.0
Cz-2	Cliff	2.0 m chip	2.26	12.20	0.45	29.0
EZ-1	East	dump grab	12.90	5.70	0.01	87.5
EZ-2	East	talus grab	3.90	18.90	0.01	57.5
EZG-1	East	0.5 m chip	6.50	9.24	0.78	62.6
EZG-2	East	0.5 m chip	0.83	5.79	0.42	11.0
EZG-4	East	1.0 m chip	46.70	3.65	0.73	375.0
EZG-5	East	1.0m chip	5.45	12.30	3.81	61.8
NEZ-1	Northeast	1.5 m chip	10.40	2.25	21.54	71.5
NEZ-2	Northeast	1.5m chip	2.05	2.74	1.45	18.9
NEZ-3	Northeast	1.0m chip	14.20	0.19	43.53	78.2
NEZ-4	Northeast	1.0m chip	3.30	9.50	3.25	29.3
WZ-1	West	2.0 m grab	1.20	11.35	0.89	15.7
WZ-2	West	2.6 m chip	8.10	1.70	40.92	68.8
CF-1	Camp fault	grab	79.20	1.22	0.005	132.0

2.3 Frisby Group Geology

The Frisby Group is underlain by units 1-6 (Figure 3). Units 4, 5, and 6 outline a large synform having an overturned southern limb and a warped axial plane dipping to the south and southeast. The fold, which trends across the Jordan River, is similar to the Copeland synform and has been informally named the Frisby synform. Grids on Frisby Ridge were established over areas indicated on regional maps to be underlain by Unit 5, and in particular the marker marble (Unit 5m).

The overturned south limb of the Frisby synform is repetitively folded along the top of Frisby Ridge, resulting in complex outcrop patterns. A massive sulphide layer (unit 5s) up to 1 m thick was traced intermittently for 1.2 km in the Big Slide zone. The extrusive carbonatite (unit 5c) is present throughout the explored Frisby Ridge area.

2.3.1 Lithology

Frisby Ridge North Grid (Figure 29):
The Frisby Ridge North Grid covers favourable Unit 5 stratigraphy on the Frisby 1 claim. The lowermost (structurally highest) stratigraphy, outcropping in the northeastern region of the grid, consists of interbedded calc-silicate schists and quartz-biotite schists. Stratigraphically above this lies the extrusive carbonatite, which subcrops near TL 37+00E, 78+00N. The carbonatite contains rare, small (<2cm) breccia fragments, and appears highly recrystallized; a sample from this location was highly anomalous in Ce (488.0 ppm), La (304.0 ppm), and Nd (150 ppm). Thickness of the carbonatite is impossible to determine at this location. Above the carbonatite are poorly exposed quartz-biotite and calc-silicate schists, in turn overlain by the marker marble (Unit 5m). The marble, averaging 5 m thickness, weathers white to light grey and is coarsely recrystallized. Where not exposed, the marble can often be traced by following sinkholes. Marble in the western region of the grid contains scattered $0.5-3 \mathrm{~cm}$ crystals of beige-coloured scapolite. Scapolite within marble in the Monashee Complex is indicative of deposition under hypersaline conditions common in restricted lagoons and tidal flats (Hoy, 1987). Above the marker marble lies feldspar-porphyroblastic quartz-biotite schist and calc-silicate schist. The uppermost stratigraphy exposed on the grid consists of fine to medium grained, well-bedded, brown to grey quartzites and quartz-mica schists. Graded bedding and cross-laminations are visible in quartzites outcropping in the northwest area of the grid. Minor amphibolite sills(?) are present in the southwest corner of the grid, stratigraphically underlying the marker marble. The sulphide horizon was not found in the North Grid area.

Frisby Ridge South Grid (Figure 15):
The Frisby Ridge South Grid covers favourable Unit 5
stratigraphy on the Frisby 2 and Frisby 3 claims. The
stratigraphic sequence and rock descriptions are similar to those on the North Grid, with a few notable exceptions. Scapolite was not noted in the marker marble, and garnets are more common in the stratigraphically underlying schists.

The extrusive carbonatite-marker marble sequence is well exposed in cliffs around TL $36+50 E, 64+00 \mathrm{~N}$, where the carbonatite is estimated to be $2-3 \mathrm{~m}$ thick.

Two carbonatite samples from the South Grid contained similar amounts of light rare-earth elements to samples from the Cliff zone on the King Fissure Deposit. The sulphide layer was not found in the South Grid area.

Big Slide Zone (Figure 11, 12, 14):
In the Big Slide zone the favourable unit 5 stratigraphy, including the extrusive carbonatite (Unit 5c), marker marble (Unit 5m), and massive sulphide layer (Unit 5s), is well exposed in cliffs (Figure 12). On the Big Slide grid in the southern end of the zone, highly deformed, grey calcareous schists outcrop both above and below massive sulphide exposures.

South Frisby Ridge:
Traverses in this area did not locate the favourable Unit 5 stratigraphy where indicated on regional geological maps. Samples of pyritic quartzites from old trenches were not anomalous (FRS-SL1, SL2).

2.3.2 Structure

The dominant structures on Frisby Ridge are repetitive Phase 1 folds with southerly dipping axial planes. The folds plunge at low angles towards $070-110^{\circ}$, and are best outlined by the marker marble (Figures 3, 15, and 29). Shallowly dipping limbs combine with relatively gentle topography along the ridge top to create sinuous outcrop patterns. Complex folding with thickened hinge zones is visible in cliffs along the west side of the ridge. A northeasterly trending, southerly dipping thrust fault cuts across Frisby Ridge near BL $52+00 \mathrm{~N}$, and is most likely related to the larger Frisby Ridge fault a short distance to the south (Figure 3). The fault area is marked by a large area of brecciation, silicification, and ankeritization.
2.3.3 Mineralization

Massive sulphides (Unit 5s) outcrop at the base of cliffs along the western edge of Frisby Ridge in the Big Slide zone (Figures 11-14). Mineralogy consists of massive sphalerite, galena, pyrrhotite, pyrite, and marcasite in a siliceous or calcareous gangue. Coarse green amphibole crystals are locally intergrown with the massive sulphides.

No massive sulphides (Unit 5s) were noted in the Frisby Ridge North or South Grid areas. This, combined with the decreased thickness of the carbonate units and presence of scapolite in the marker marble, suggests shallow water deposition, distal from sulphide and carbonatite sources.

Silicification and quartz veining containing minor chalcopyrite and malachite occur within complexly folded Unit 5m marble in the South Grid area. A sample of this material contained $0.48 \% \mathrm{Cu}$ and 460 ppb Au (sple FRS-CU1).

3.0 Geochemistry

3.1 Copeland and Frisby Groups Rock Geochemistry

Significant results from massive sulphide and extrusive carbonatite samples have been summarized in previous sections. Additional rock samples taken from fault zones, veins, and distinctive stratigraphic units were analyzed by ICP and whole rock methods. These results, along with those from past exploration programs, will help form a geochemical database for depositional environment modelling and comparison with other mineral deposits.

3.2 Frisby Group Soil Geochemistry

A soil geochemical survey totalling 173 samples was conducted over the Frisby Ridge South Grid. Samples were collected from the red-brown "B" Horizon, which was usually well developed between $10-20 \mathrm{~cm}$ depth, and placed in standard kraft paper soil envelopes. Lab preparation consisted of drying then sieving samples to -80 mesh. All samples were analyzed at Acme Labs of Vancouver, B.C., by ICP methods for 35 elements; a summary of the analysis procedure is included with results in Appendix 3.

Nine elements representing a base-metal plus rare-earth element suite were examined in detail: they are $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Ba}$, Sr, La, Y, Nb, and Sc. Extreme high values were discarded from the data base before statistical analysis.

	Pb ppm	$\begin{aligned} & \mathrm{zn} \\ & \mathrm{ppm} \end{aligned}$	Ag ppm	Ba ppm	Sr ppm	La ppm	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{ppm} \end{aligned}$	Nb ppm	Sc ppm
\# samples	173	173	173	169	172	172	173	172	172
Mean value	24.4	83.2	0.14	603	214	43.5	22	19.5	9.94
Maximum value	153	715	0.6	977	505	105	87	104	30.2
Minimum value	2	31	0.1	235	132	14	9	3	5
Std. Deviation	15.7	58.1	0.08	138	56	15.5	9.24	9.36	3.03
Variance	249	3376	0.0	18959	3141	242	85.4	87.6	9.22

Values above the mean plus one- and two standard deviations were considered possibly and definitely anomalous, respectively. Each element was contoured separately (Figures 16-24, 26-28).

Lead anomalies, with thresholds of 40 ppm and 56 ppm , are well constrained. Distribution of anomalous Zn (141ppm, 200ppm) and Ag ($0.3 \mathrm{ppm}, 0.4 \mathrm{ppm}$) is more widespread, with many apparently random single sample anomalies throughout the entire grid area. Barium (741ppm, 878 ppm) and strontium ($270 \mathrm{ppm}, 326 \mathrm{ppm}$) display similar distribution patterns, with several anomalies scattered in the southern half of the grid. Lanthanum (59ppm, 75ppm), ytrium (31ppm, 40 ppm$),$ niobium (29ppm, 38 ppm), and scandium (13ppm, 16ppm) all exhibit similar distribution patterns. Of these elements, Nb and Y show the greatest dispersion, while Sc shows the least.

Two multi-element anomalies exist on the Frisby Ridge South Grid. The first, bounded by $L 65+50$ and $L 63+50 \mathrm{~N}$, consists of Pb , $\mathrm{Zn}, \mathrm{Ag}, \mathrm{Sr}, \mathrm{La}, \mathrm{Y}, \mathrm{Nb}$, and Sc. The anomaly trends approximately 060° with dimensions of 250 m long by 50 m wide, and is open both to the east and west. While the extrusive carbonatite (Unit 5c) outcrops within the anomaly area, no appreciable sulphides were noted during geological mapping and prospecting. The combination of base-metal and rare-earth element constituents of the anomaly indicates that the sulphide horizon and the extrusive carbonatite are probably within 50 m of each other.

The second multi-element soil anomaly on the Frisby Ridge South Grid, occurring between L66+25N and L68+50N, consists of La, Y, Nb, and Sc. With dimensions of approximately 375 m long by 30 m wide, the anomaly forms a rough "S" shape.

The westernmost finger of the anomaly, seen in the distribution of Y and La, is interpreted to be a downslope dispersion effect. The anomaly is successful in tracing the carbonatite for 150 m north of the last outcrop in the area.

A single sample anomaly lies at BL $35+00 \mathrm{E}, 53+50 \mathrm{~N}$. The sample is highly elevated in Pb (153 ppm), Zn (715 ppm), La (1048 $\mathrm{ppm})$, $\mathrm{Ba}(1098 \mathrm{ppm}), \mathrm{Y}(67 \mathrm{ppm}), \mathrm{Nb}(1125 \mathrm{ppm})$, and $\mathrm{Sc}(127.7$ ppm) content. Although no massive sulphide or carbonatite outcrops were noted, the favourable sulphide-host carbonate stratigraphy occurs within 50 m of the sample location.

4.0 Geophysics

Magnetic and VLF-EM surveys were conducted over grids on both the Copeland and Frisby groups. Instruments used were a Scintrex MP2 magnetometer and a Ronka EM-16 VLF receiver. Readings were taken at 25 m intervals along grid lines and recorded in a field notebook. When time permitted, or anomalous zones were encountered, readings were taken at 12.5 m intervals. For each magnetic survey, readings were taken at a base station at intervals throughout each day. Significant diurnal variations requiring correction occurred only during the Cliff Zone survey on the King Fissure Deposit. Corrections for diurnal variation were calculated by graphing the diurnal variation as a function of time, then interpolating appropriate correction factors for each reading. The Seattle VLF transmitting station was used for all VLF-EM surveys.

4.1 Copeland Group

A magnetic survey was conducted over the Cliff Zone grid, while both magnetic and VLF-EM surveys were run on the East Zone grid. Data for the East Zone was interpreted separately by a consulting geophysicist, D. R. MacQuarrie. The complete interpretation is supplied in Appendix 6.

4.1.1 Magnetic Surveys

For the East Zone (Figure 9), a contoured plan of the relative magnetic values reveals a possible fold closure between. L27+00E and L29+00E. Such a structure, consistent with geological mapping, would be the eastern closure of the Copeland synform, although definition is limited with the 100 m spaced grid lines.

Three probable pyrrhotite concentrations have been identified at the north end of $L 25+00 \mathrm{E}$, at $9+87.5$ to $10+00 \mathrm{~N}$ on $L 26+00 E$, and at BL $10+00 \mathrm{~N}$ on L27+00E. These zones are near surface with interpreted widths of $10-15 \mathrm{~m}$, based on the $1 / 2$ width of the magnetic profile. On L27+00E, L30+00E, and probably L25+00E, magnetic highs coincide with positive fraser filter VLFEM anomalies, suggesting that the pyrrhotite is massive over reasonably continuous distances (MacQuarrie, Appendix 6).

Magnetic data from the Cliff Zone grid (Figure 7) required correction for diurnal variation. Corrected values are still widely varied from one station to the next, and as a result the entire survey should be regarded with some caution. The plan map was contoured using relative values of $100,200,500, \& 1000$ gammas above the mean. Single station and spurious anomalies were discarded. A 200 m long positive anomaly at the southern edge of the grid between L10+00E and L12+00E corresponds to mapped exposures of pyrrhotite-rich massive sulphides. As the anomaly diminishes to the west the sulphide layer, with pyrrhotite becoming subordinate to sphalerite, is covered by snow and ice. At the eastern end of the anomaly the sulphide layer becomes covered by ice and glacial debris. The north-central part of the grid contains widely varied readings with extreme lows and highs. This area is underlain by Unit 6 rusty biotitesillimanite schist with lesser quartzites and amphibolites. These extremes appear to be suppressed in the northeast part of the grid where Unit 6 is covered by snow and ice.

4.1.2 VLF-EM Survey

On the East Zone Grid, a Fraser filtered plan map of the in phase \% data reveals a 300 m long, arcuate conductor at the north ends of $L 26+00 E$ and L27+00E (Figure 10 and Appendix 6). The conductor is open to the north. While coinciding with massive sulphides observed on L27+00E, much of the conductor is over stratigraphy directly below the massive sulphide horizon. Possible disseminated sulphides below the massive sulphide layer are indicated (MacQuarrie, Appendix 6).

4.2 Frisby Group

4.2.1 Magnetic Survey

A magnetic survey was conducted over 0.485 km of grid in the Big Slide zone (Figure 13). Readings were taken every 5 m along grid lines, and no corrections for diurnal variation were required. Test readings taken directly over massive sulphide exposures were magnetic lows (<57931 gammas). Contours of standard deviations from the mean show a 150 m long linear anomaly extending southwest along the projected strike of the massive sulphide layer. The anomaly consists of 2 magnetic lows (<57931 gammas) separated by a magnetic high (>58012 gammas), and is open to the southwest.
4.2.2 VLF-EM Survey

A 3.0 km VLF-EM survey was conducted over the southern portion of the Frisby Ridge South Grid (Figure 25). Results do not reveal any significant anomalies or trends.

5.0 Recommendations

5.1 Copeland Group

In the Cliff Zone, a channel sampling program of the massive sulphides is recommended to complement a comprehensive diamond drill program. Drilling should systematically test downdip width and grade continuity of the zone.

In the East zone, a well-controlled grid with 50 m spaced lines should be established. Work on the grid should include the geophysical surveys recommended by D. R. MacQuarrie (Appendix 6) in conjunction with detailed geological mapping and sampling. Compilation of these surveys will assist in planning of a diamond drill program. This drill program should be designed to thoroughly test the keel area of the Copeland synform for potential tectonic thickening.

The Northeast zone warrants detailed geological mapping, sampling, and geophysical surveys. This program should be conducted as an extension of grid work in the East zone.

The West zone, with the thickest known exposures of massive sulphides plus barite, warrants aggressive exploration. A program of detailed sampling, geological mapping, and geophysical surveys is necessary to define drill targets.

The Lake zone warrants detailed geological mapping, sampling, and geophysical surveys.

The extrusive carbonatite layer is present throughout the entire King Fissure Deposit, and as yet is poorly understood. Geological mapping, detailed sampling, and petrographic studies are required to better understand the distribution and economics of Nb plus light rare-earth elements present.

Reported sulphide showings in the North Copeland ridge area remain unexplored and should be located and evaluated.

In the Big Slide zone, massive sulphide exposures merit further geological mapping, detailed sampling, and geophysical surveys. The zone remains unexplored southwest to the Jordan River. Surface exploration in this area should begin with establishment of a cut-line grid followed by geological mapping, rock and soil sampling, and geophysical surveys. Cost-effective access may be made possible by upgrading and extending the old pack trail from the road along the Jordan River into this area.

The first South Grid soil geochemical anomaly, bounded by $63+50 \mathrm{~N}$ and $65+50 \mathrm{~N}$, should be re-examined and sampled. The area was anomalous in Pb, Zn, and Ag , and is underlain by the massive sulphide host stratigraphy. The area of the highly anomalous soil sample located at $53+50 \mathrm{~N}$ on the Frisby Ridge baseline should also be examined and sampled in detail.

On the Frisby Ridge North and South grids, the extrusive carbonatite layer merits further evaluation as per that recommended for the King Fissure area.

6.0 ITEMIZED COST STATEMENTS

COPELAND GROUP

Wages:

T. Clarke, geologist (Aug. 23-28, Sept. 6-9) 10 days @ $\$ 200 /$ day
$\$ 2,000.00$
J. Laird, prospector (Aug. 23-28, Sept. 6-9) 10 days @ $\$ 200 /$ day
$\$ 2,000.00$

Food \& Accommodation:
2-man camp (Aug. 25-27, Sept. 7-9)
8 days @ \$25/day \$ 200.00
Hotel (Aug. 23, Sept.6) \$ 138.79
Food/meals (Aug. 23-28, Sept. 6-9) \$ 449.16

Transportation
Truck rental (Aug. 23, 28)
$1200 \mathrm{~km} \times \$ 0.25 / \mathrm{km}$ \$ 300.00
gas, highway toll \$ 118.91
Helicopter charter (Aug. 24-28, Sept. 7-9)
5.5 hours @ $\$ 700 /$ hour $\$ 3,850.00$

Geophysical Equipment Rental:
Scintrex MP-2 Proton Precession Magnetometer
and Geonics EM-16 VLF-EM Receiver (Sept. 1-14)
0.5 month @ $\$ 1,836.00 /$ month $\$ 918.00$

Geochemical Analyses:
Min-En Labs:
7 samples assayed for $\mathrm{Ag}, \mathrm{Ba}, \mathrm{Pb}, \mathrm{Zn}$
@ \$29.75/sample \$ 208.25
8 samples assayed for $\mathrm{Pb}, \mathrm{Zn} @ \$ 13.25 /$ sample $\$ 106.00$
2 samples assayed for Ba @ \$10.00/sample \$ 20.00
17 sample prep. @ \$3.75/sample \$ 63.75
1 rock geochem. 31 element ICP @ $\$ 6.00 /$ sample $\$ 6.00$
2 geochem. F @ $\$ 4.50 /$ sample $\$ 9.00$
7 geochem. 26 element major ICP @ $\$ 13.50 /$ sample $\$ 94.50$
1 rock geochem. Ag @ \$2.50/sample \$ 2.50
Acme Labs:
3 sample prep. @ $\$ 3.25 /$ sample $\$ \quad 9.75$
3 samples analyzed for 35 element ICP@ $\$ 6.50 /$ sample\$ $\quad 19.50$
3 Au analyses by acid leach @ $\$ 5.00 /$ sample \$ 15.00
1 Cu assay @ $\$ 7.50 /$ sample 7.50
Chemex Labs:
9 assay prep. @ \$4.35/sample 39.15
9 whole rock + immobile element analyses
@ $\$ 28.00 /$ sample 252.00
4 rock samples analyzed for light rare-earth elements plus ultra-trace 19 @ $\$ 55.50 /$ sample \$ 222.00
sub-total \$ 1,074.90G.S.T. \$75.24
Total lab costs \$ 1,150.14
Report preparation, drafting, supplies $\$ 1,500.00$

FRISBY GROUP

Wages:T. Clarke, geologist (Sept. 9-29)
21 days @ $\$ 200 /$ day $\$ 4,200.00$
J. Laird, prospector (Sept. 9-29)
21 days @ \$200/day $\$ 4,200.00$
M. Andrews, geologist (Sept. 14-29)
15 days @ \$160/day $\$ 2,400.00$
Food \& Accommodation:2-man camp (Sept. 9-13)5 days © $\$ 25 /$ day$\$ \quad 125.00$
3-man camp (Sept. 15-20, 22-27)12 days @ $\$ 35 /$ day$\$ \quad 420.00$
Hotel (Sept. 14,21, 28) $\$ \quad 346.97$
Food/meals (Sept. 10-29) \$ 911.94
Transportation:
Truck rental (Sept. 6, 28, 29)
2400 km x $\$ 0.25 / \mathrm{km}$ $\$ \quad 600.00$
gas, highway toll \$ 237.92
Helicopter charter (Sept. 10-28)
5 hours @ \$700/hour $\$ 3,500.00$
Geophysical Equipment Rental:
Scintrex MP-2 Proton Precession Magnetometer and Geonics EM-16 VLF-EM Receiver (Sept. 15-30)
0.5 month @ $\$ 1,836.00 /$ month $\$ \quad 918.00$
Geochemical Analyses:
Min-En Labs:
2 rock sample prep. @ \$3.75/sample \$ 7.50
2 rock geochem. 31 element ICP @ $\$ 6.00 /$ sample \$ 12.00
2 rock geochem. Au (fire) @ \$7.25/sample \$ 14.50
Acme Labs:
173 soil samples analyzed for 35 element (ICP)
@ $6.50 /$ sample \$ 1, 124.50
173 soil sample prep. @ \$1.00/sample 173.00
26 rock sample prep. @ \$3.25/sample 84.50
26 samples analyzed for 35 element ICP
@ $\$ 6.50 /$ sample \$ 169.00
26 Au (acid leach) @ \$5.00/sample 130.00
2 geochem. Au, Pt, Pd @ \$8.50/sample $\$ \quad 17.00$
2 Cu assays @ $\$ 7.50 / \mathrm{sample}$
$7 \mathrm{~Pb}, \mathrm{Zn}$ assays @ \$10.50/sample 73.5015.00
1 Zn assay @ $\$ 7.50 /$ sample 7.50
Chemex Labs:
4 sample prep. @ \$4.35/sample 17.40
4 whole rock analyses @ $\$ 28.00 /$ sample 112.00
4 rare-earth 10 plus ultra-trace-19 analyses
@ \$55.50/sample 222.00
sub-total $2,179.40$
G.S.T. 152.56
Total lab costs 2,331.96
Report preparation, drafting, supplies $\$ 1,500.00$

7.0 BIBLIOGRAPHY

Currie, K. L. (1976):
Notes on the Petrology of the Nepheline Gneisses near Mount Copeland, British Columbia, G.S.C. Bull. 265, 28pp.

Fyles, James T. (1970):
The Jordan River Area near Revelstoke, British Columbia, B.C. Dept. of Mines and Pet. Res., Bull. No. 57, 64 pp.

Hoy, T. (1987):
Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks in the Mount Grace Area, Frenchman Cap Dome, Southeastern British Columbia. B.C. Min. of Energy, Mines, and Pet. Res., Bull. 80, 99 pp.

Hoy, T. and Brown, R. L. (compiled by, 1980):
Geology of Eastern Margin of Shuswap Complex, Frenchman Cap Area, B.C. Min. of Energy, Mines, and Pet. Res., Preliminary Map 43.

Parrish, R. R., and Scammell, R. J. (1988):
The age of the Mount Copeland Syenite in Gneiss and its metamorphic zircons, Monashee Complex, southeastern British Columbia. In Radiogenic Age and Isotopic Studies: Report 2, G.S.C. Paper 88-2, pp. 21-28.

Riley, C. R. (1961):
The River Jordan Lead Zinc Deposit, Revelstoke Mining Division, B.C., Trans. Can. Inst. Min. Met., Vol. 64, pp. 268-272.

Vivallo, W., and Rickard, D. (1990):
Genesis of an Early Proterozoic Zinc Deposit in High-Grade Metamorphic Terrane, Saxberget, Central Sweden. Economic Geology, Vol. 85, pp. 714-736.

Wheeler, J. O. (1965):
Big Bend map-area, British Columbia 82M (east half). Geol. Surv. Canada Paper 64-32, 37pp.

APPENDIX 1

QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Tiro Clarke, hereby certify that:

1. I am a Geologist residing at 301-357 East ind Street, North Vancouver, British Columbia, V7L 1C6
2. I am a graduate of the University of British Columbia with a B.Sc.(Hon.) in Geology and Oceanography, 1988.
3. I have practised geology since 1986, and mineral exploration geology continuously since graduation.
4. I personally conducted or supervised fieldwork described in this report.
5. I currently own 500 shares of First Standard Mining, Ltd., purchased in 1990. I do not plan to acquire or receive any other interest, direct or indirect, in First Standard Mining Ltd. or the Jordan River Property.
6. I consent to the use of this report, or excerpts therefrom, in any prospectus, statement of material facts, or compilation as required by First Standard Mining Ltd..

Dated at Vancouver, British Columbia, this fth day of December, 1991.

I, James W. Laird, hereby declare that:

1. I reside and maintain a business office at 3869 Mount Seymour Parkway, North Vancouver, B.C., V7G 1C4.
2. I am a self-employed prospector and mining exploration contractor and have been so full-time for 11 years.
3. I have completed the B.C. Department of Mines course "Advanced Mineral Exploration for Prospectors", 1980.
4. I am a member in good standing of the Canadian Institute of Mining and Metallurgy and the B.C. and Yukon Chamber of Mines.
5. I have extensively explored the Kootenay-Revelstoke area for mineral deposits for several years, and am very familiar with the geology and mines thereof.
6. I currently own 3500 shares of First Standard Mining, Ltd., purchased in 1990.

Dated at Vancouver, British Columbia, this Eth day of December, 1991.

STATEMENT OF QUALIFICATIONS

I, Martin Andrews, hereby certify that:

1. I am a geologist residing at $203-2105$ West 7 th Street, Vancouver, British Columbia, V6K $1 \mathrm{X9}$.
2. I am a Graduate of the University of British Columbia with a B. Sc. in Geology (1989).
3. I personally conducted fieldwork described in this report.
4. I do not hold, nor plan to acquire or receive any interest, direct or indirect, in First Standard Mining Ltd. or the Jordan River Property.
5. I consent to the use of this report, or excerpts therefrom, in any prospectus, statement of material facts, or compilation as required by First Standard Mining Ltd..

Martin Andrews, B. Sc.

APPENDIX 2

ROCK GEOCHEMISTRY RESULTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1 T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
FAX (604) 980-9621

SMITHERS LAB.:

3176 tallow road
SMITHERS, B.C. CANADA VOU $2 N O$
TELEPHONE (604) 847-3004
FAX (604) 847-3005
Asser Certificate
1V-0967-RA1
Company:
LAIRD EXPLORATION
Date: SEP-0S-91
Project:
JORDAN RIVER
Atta: JAMES LAIRD
He hereby certify the following Assay of 7 ROCK samples submitted AUG-30-91 by J.LAIRD.

\qquad
certified by

ISP - . 500 gram sample is digested with 10ml hclo3-hno3-hf at 200 deg. C to fuming and is diluted to 10 ml with diluted aqua regina. this leach is PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR \& MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ISP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: OCT 91991 DATE REPORT MAILED:
Ot M 11
SIGNED BY. :id.tOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL ANALYSIS CERTIFICATE
James. H. Laird. FILE \# 91-4986 3868 Mt . Seymour Parkway, North Vancouver BC V7G IC4

SAMPLE\#	$\begin{aligned} & \hline \text { Au* } \\ & \text { ppb } \end{aligned}$	$\begin{array}{r} \hline \hline \text { Au** } \\ \text { ppb } \end{array}$	Pt** ppb	Pd** ppb	$\because \Omega=\frac{\mathbf{u}}{\square}$	$\begin{array}{r} \mathrm{Pb} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \% \end{array}$
FRS-1	7	-	-	-	-	-	-
FRS-2	2	-	-	-	\% ${ }^{-}$	-	-
FRS-3	2	-	-	-	$\triangle \triangle$	-	-
FRS-4	4	-	-	-	A	-	-
FRS-5	4	-	-	-	„	-	-
FRS-6	11	-	-	-	$\because=$. 11	2.87
FRS-7	20	-	-	-	\%	. 30	3.86
FRS-8	11	-	-	-	\#	. 51	6.92
FRS-9	4	-	-	-	$\triangle \triangle$	-	-
FRS-10	2	-	-	-	/	-	-
FRS-11	4	-	-	-		-	-
FRS-12	2	2	1	1	$\triangle=$. 26	2.92
FRS-13	16	-	-	-		1.29	3.50
FRS-14	34	-	-	-	$\ «$ al	. 76	32.25
FRS-15	77	-	-	-	«	. 74	16.23
FRS-16	23	-	-	-	.32	-	-
FRS-17	4	4	1	1	ת"\#\#	-	6.89
FRS-CU 1	460	-	-	-	. 48	-	-
FRS-QV 1	10	-	-	-	\%	-	-
FRS-FZ 1	7	-	-	-	\A4』	-	-
FRS-SL 1	7	-	-	-	\#\#	-	-
FRS-SL 2	21	-	-	-	$\stackrel{\text { ans }}{ }$	-	-
RE FRS-CU 1	390	-	-	-	/s.	-	-
FRN-1	5	-	-	-	\/als.	-	-
FRN-2	5	-	-	-	\sim	-	-
FRN-3	3	-	-	-	+	-	-
CF-CU 1	20	-	-	-	1.19	-	-
CZ-FZ 1	3	-	-	-	$\triangle \triangle$	-	-
KF-4	5	-	-	-	-	-	-
FB-1	3	-	-	-	-	-	-
STANDARD AU-R	480	465	483	494	$\triangle 85$	1.36	2.39

- SAMPLE TYPE: ROCK

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: OCT $919 q 1$
SIGNED BY...

MIN

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1 T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
FAX (604) 980-9621
LABORATORIES
(DIVISION OF ASSAYERS CORP.)
SMITHERS LAB.:
SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

3176 TATLOW ROAD

SMITHERS, B.C. CANADA VOJ $2 N O$
TELEPHONE (604) 847-3004
FAX (604) 847-3005

Sompeny:
Project:
Attn:

IAIRD EXPLORATION JORDAN FTVEF FRODECT IG71 JAMES LAIRD

Date: OCT-18-91

He hereby certify the following Geochemical Analysis of 9 ROCK samples submitted OCT-09-91 by JAMES LAIRD.

Sample	AUFFIRE	AG	F
Qumber	FFE	FFM	FPM

EZ5-1 21
E7G-2 13
E20-3 4
E25-4 128
E2G-5 59
CZ-2 61
CF-1 23
132.0
WZ-1 19
WZ-2 76
30

COMP: LAIRD EXPLORATION
PROJ: JORDAN RIVER PROJECT 1991
ATTN: JAMES LAIRD

FILE NO: 1V-1261-RL1
DATE: 91/10/22

* ROCK * (ACT:F26)

Chemex Labs Ltd.

Analytical Chemists ${ }^{*}$ Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia Canada V7J 2C1
PHONE: 604-984-0221

To: LAIRD, JAMES W
3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4
roject :
Comments: Certificate Date: 22-OCT-9 Invoice No. P.O. Number

CERTIFICATE OF ANALYSIS A9123055

SAMPLE	$\begin{aligned} & \text { PREP } \\ & \text { CODE } \end{aligned}$		A1203 8	BaO 8	CaO	Fe203	120 8	MgO $\%$	MnO $\%$	Na 20 $\%$	$\begin{array}{r} \text { P205 } \\ \text { q } \end{array}$	SiO2 8	$\begin{array}{r} \mathrm{Ti} 02 \\ \% \end{array}$	$\begin{array}{r} \text { LOI } \\ \text { \% } \end{array}$	TOTAL $\%$	$\begin{array}{r} \text { Cr } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	Rb pqm	Sr ppm	Ppm	$\begin{array}{r} 2 \mathrm{r} \\ \mathrm{ppm} \end{array}$
Cz-CB1	208	294	13.87	0.45	18.06	5.09	2.18	3.30	0.03	0.97	0.04	41.37	0.51	12.49	98.35	81	12	120	544	26	88
C2-CB2	208	294	13.57	0.12	22.03	4.38	1.86	3.07	0.04	2.32	0.08	33.56	0.48	17.25	98.75	68	17	100	751	23	87
Cz-GA1	208	294	18.68	0.03	5.56	20.35	1.49	1.75	0.64	0.62	0.38	44.30	0.75	0.32	94.86	327	16	82	100	60	467
ERN-CB1	208	294	10.29	0.26	24.35	4.99	1.60	4.42	0.26	2.96	0.38	29.13	0.36	19.04	98.04	48	122	67	3390	27	166
FRN-SMB1	208	294	$0.10<$	<0.01	37.66	0.12	0.02	2.55	0.02	< 0.01	<0.01	28.42	< 0.01	29.91	98.84	22	< 5	< 5	237	<5	20
FRS-CB1	208	294	4.99	0.07	36.74	1.86	0.74	3.93	0.04	0.79	0.09	18.93	0.19	29.70	98.05	25	16	32	749	12	54
FRS-CB2	208	294	11.50	0.30	30.93	3.63	1.09	3.54	0.05	1.28	0.08	26.78	0.33	20.52	100.05	30	18	56	793	16	100
KF-1	208	294	$13.90<$	<0.01	9.86	11.30	0.55	9.82	0.11	1.20	0.81	46.40	1.69	1.90	97.55	594	67	13	56	27	179
Kr-2	208	294	15.58	0.34	9.71	11.02	2.39	6.69	0.20	2.08	0.43	43.35	1.89	2.00	95.68	218	72	65	857	29	178
Kr-3	208	294	15.75	0.06	0.28	0.79	6.61	0.11	0.02	3.18	0.38	74.32	0.02	0.38	101.90	81	< 5	162	210	19	38
Kr-5	208	294	10.85	1.33	7.83	7.08	8.89	6.07	0.14	0.56	1.60	44.84	1.12	9.07	99.37	201	43	183	3860	50	611
NE2-CB1	208	294	14.01	0.17	17.39	3.35	1.43	4.12	0.12	4.18	0.13	38.37	0.43	14.36	98.06	47	80	64	1575	17	90
NE2-CB2	208	294	9.56	0.23	24.45	4.02	1.20	4.48	0.32	3.82	0.37	29.16	0.30	21.08	98.99	22	146	66	2570	22	94

Chemex Labs Ltd.

Analytical Chemists ${ }^{\circ}$ Geochemists ${ }^{\text {• Registered Assayers }}$
212 Brooksbank Ave., North Vancouver
British Columbia Canada V7J 2C1
PHONE: 604-984-0221

TO: LAIRD, JAMES W.
3868 MT. SEYMOUR PARKWAY
NORTH VANCOUVER, BC
V7G $1 C 4$ V7G 1C4
Project : Comments:

Page Number
:1-A Certificate Date: 18-NOV-91 invoice No. : 19123057
Account

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: LAIRD, JAMES W.
3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Page Number Total Pages
:1-B
Certificate Date: 18-NOV-91 invoice No. : I9123057
$\begin{array}{ll}\text { P.O. Number } & \text { Account } \\ \text { :HDI }\end{array}$

Project :

 Comments:CERTIFICATE OF ANALYSIS
A9123057

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER. B.C. CANADA V7M 1 T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
FAX (604) 980-962 1

SMITHERS LAB.:

SPECIALISTS IN MINERAL ENVIRONMENTS
3176 TATLOW ROAD
SMITHERS, B.C. CANADA VOJ 2NO
TELEPHONE (604) 847-3004
FAX (604) 847-3005

Asser Certifisete

1V-1261-XA1

Company:	LAIRD EXPLORATION
Frojert:	JORDAN FIUER FFOUECT 1791
attr:	JAMES LAIFD

Date: DEC-02-91
Copy 1. Leipd Emfldation, horth vancolver, BC.

He hereby certify the following Assay of 8 ROCK samples submitted OCT-09-91 by JAMES LAIRD.

Sample
$A B$
AS
Number
g/tonne
0./ton

$E Z G-1$	62.6	1.83
$E Z G-2$	11.0	.32
$E Z G-G$	5.2	.15
$E Z G-4$	375.0	10.74
$E Z G-5$	61.8	1.80
$C Z-2$	29.0	.85
$W Z-1$	15.7	.46
$W Z-2$	68.3	2.01

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
212 Brooksbank Ave., North Vancouver
PHONE: 604-984-0221

CERTIFICATE
A9123055

LAIRD, JAMES W.
Project: JORDAN RIVER
P.O.\# :

Samples submitted to our lab in Vancouver, BC.
This report was printed on 25-0CT-91.

Code 1000 is used for repeat gold analyses It shows typical sample variability due to coarse gold effects. Each value is correct for its particular subsample.

To: LAIRD, JAMES W.
3868 MT. SEYMOUR PARKWAY
NORTH VANCOUVER, BC
V7G 1C4

Comments:

CERTIFICATE	A9123057

LAIRD, JAMES W.
Project: JORDAN RIVER
P.O.

Samples submitted to our lab in Vancouver, BC. This report was printed on 24-0CT-91.

SAMPLE PREPARATION		
$\begin{aligned} & \text { CHEMEX } \\ & \text { COOME } \end{aligned}$	NUMBER	DESCRIPTION
298 288	8	Sample split from other certif NAA encapsulation/irradiation

The 32 element ICP package is suitable for
trace metals in soil and rock samples Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al $\mathrm{Ba}, \mathrm{Be}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Ga}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Sr}, \mathrm{Ti}$ T1, W.

APPENDIX 3

ROCK SAMPLE DESCRIPTIONS

py	pyrite
po	pyrrhotite
sp	sphalerite
gl	galena
ba	barite
qtz.	quartz
biot.	biotite
mssx	massive sulphides
tr.	traoe

	SAMPLE DESCRIPTIONS COPELAND GROUP - KING FISSURE DEPOSIT
Clitr zone	
CZ-1 1.0 m chip	Massive sulphide; sp-gl-py-po rich basal layer underiain by mssx stockwork breccia; overlain by several metres of finegrained po, py, sp, gl with breccia fragments.
CZ-2 2.0 m chip	Massive sulphide layer; po, sp, py, and gl; fine grained with breccia fragments.
$\begin{aligned} & \hline \text { CZ-CB1 } \\ & 1.0 \mathrm{~m} \text { chip } \end{aligned}$	Extrusive carbonatite tuff-breccia
$\begin{aligned} & \hline \text { CZ-CB2 } \\ & 1.0 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Extrusive carbonatite tuff-breccia
$\begin{aligned} & \hline \text { CZ-FZ-1 } \\ & 1.0 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Coarse py crystals in qtz-ankerite-calcite altered late fault zone.
CZ-GA1 grab	Skarny contact zone between amphibolite sill and thin marble layer; large pinkish-red pyralspite garnets, qtz, blot., and others.
Cartzono	
$\begin{array}{\|l\|} \hline \text { EZ-1 } \\ \text { dump grab } \\ \hline \end{array}$	Massive sulphide layer; gl, sp, po, py; easternmost exposure of southern limb mssx; old workings, possibly caved adit.
$\begin{array}{\|l\|} \hline E Z-2 \\ \text { talus grab } \\ \hline \end{array}$	Massive sulphide layer; sp, gl, po, py; north limb.
$\begin{aligned} & \text { EZ-3 } \\ & \text { grab } \\ & \hline \end{aligned}$	2m qtz. vein in biot. schist.
$\begin{aligned} & \text { EZG-1 } \\ & 0.5 \mathrm{~m} \text { chip } \end{aligned}$	Massive sulphide layer; po, py, sp, gl; north limb.
$\begin{aligned} & \text { EZG-2 } \\ & 0.5 \mathrm{~m} \text { chip } \end{aligned}$	Massive sulphide layer; po, py, sp, gl; north limb; 25m east of sple EZG-1.
$\begin{aligned} & \text { EZG-3 } \\ & 1.0 \mathrm{~m} \text { chip } \end{aligned}$	Disseminated po in calc-silicate schist and marble.
EZG-4 1.0 m chip	Massive sulphide layer; gl, sp, po, py in old trenches near west end of south ridge on East Zone ridge.
$\begin{aligned} & \text { EZG-5 } \\ & 1.0 \mathrm{~m} \text { chip } \end{aligned}$	Massive sulphide layer; coarse "buckshot" textured py, po, sp, gl; north limb.
Northoast zone	
$\begin{array}{\|l\|} \hline \text { NEZ-1 } \\ 1.5 \mathrm{~m} \text { chip } \\ \hline \end{array}$	Massive sulphide layer (hanging wall); ba, gl, sp, py, po; face of an old shallow adit.
$\begin{aligned} & \text { NEZ-2 } \\ & 1.5 \mathrm{~m} \text { chip } \end{aligned}$	Massive sulphide layer (footwall); po, py, sp, gl, ba; contiguous with sple NEZ-1.
$\begin{aligned} & \hline \text { NEZ-3 } \\ & 1.0 \mathrm{~m} \text { chip } \end{aligned}$	Massive sulphide layer; ba, gl, sp, po, py; central ba-rich core layer within mssx.
$\begin{aligned} & \hline \text { NEZ-4 } \\ & 1.0 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Massive sulphide layer; po, sp, py, gl, ba in an old open cut; 10 m west of NEZ-1,2,3 on same horizon.
$\begin{aligned} & \text { NEZ-CB1 } \\ & \text { 3.0m chip } \end{aligned}$	Extrusive carbonatite tuff-breccia with minor biot. schist and marble; down-section from NEZ-1,2,3,4.
$\begin{aligned} & \text { NEZ-CB2 } \\ & 3.0 \mathrm{~m} \text { chip } \end{aligned}$	Extrusive carbonatite tuff-breccia with minor schist and amphibolite layers; same location as 1990 sipes JLR-8,9.

COPELAND GROUP - KING FISSURE DEPOSTT(continued)	
West zone	
WZ-1 2.0 m grab	Massive sulphide layer; coarse dark sp, py, gl, ba; sulphide layers vary from 0.3-2.0m width with up to 6 layers observed over 4.5 m max. width. Interlayers include barite, marble, and siliceous schist.
WZ-2 2.6 m chip	Massive sulphide layer; coarse grey ba, gl, sp, py, po, and minor cp with wallrock breccia fragments.
Miscellaneous	
CF-1 0.3 m grab	Subcrop; massive sheared gl with minor sp and cp; coated with manganese stain, cerussite, and tr. malachite; pods(?) of mssx within lamprophyre dyke swarm in Camp fault.
$\overline{\mathrm{CF}-\mathrm{CU} 1}$ talus grab	Malachite stained chalcopyrite stringers in quartzite.
$\begin{aligned} & \mathrm{KF}-1 \\ & 0.75 \text { m chip } \end{aligned}$	Coarse grained, well crystallized amphibolite sill(?); downsection and west of sple NEZ-CB2.
$\begin{aligned} & \mathrm{KF}-2 \\ & 1.5 \mathrm{~m} \text { chip } \end{aligned}$	Fine-grained streaky layered amphibolite sill(?); approx. 100 m upsection from KF-1.
$\begin{aligned} & \mathrm{KF}-3 \\ & \mathrm{grab} \end{aligned}$	Tourmaline-bearing granitic pegmatite.
$\begin{aligned} & \mathrm{KF}-4 \\ & \text { grab } \end{aligned}$	Pyrrhotite-bearing qtz-calcite breccia in late fault zone.
$\begin{aligned} & \text { KF-5 } \\ & \text { grab } \end{aligned}$	Biotite lamprophyre dyke.

SAMPLE DESCRIPTIONS FRISBY GROUP	
Big Sildo zone	
$\begin{aligned} & \text { FRS-1 } \\ & 2.0 \mathrm{~m} \text { chip } \end{aligned}$	Gossanous calc-silicate wallrock adjacent to massive sulphide layer; prob. stratigraphic hangingwall, now structural footwall.
FRS-2 2.0 m chip	Contiguous to, and same description as FRS-1.
FRS-3 2.0 m chip	Contiguous to FRS-2; same description as FRS-1.
$\begin{aligned} & \hline \text { FRS-4 } \\ & 2.0 \mathrm{~m} \text { chip } \end{aligned}$	Contiguous to FRS-3; same description as FRS-1.
$\begin{aligned} & \text { FRS-5 } \\ & 2.0 \mathrm{~m} \text { chip } \end{aligned}$	Contiguous to FRS-4; same description as FRS-1.
$\begin{array}{\|l\|} \hline \text { FRS }-6,7 \\ 0.5 \mathrm{~m} \times 0.5 \mathrm{~m} \text { panel } \end{array}$	Massive sulphide layer; po, py, sp, gl, and marcasite.
FRS-8 $0.5 \times 1.0 \mathrm{~m}$ panel	Massive sulphide layer; po, py, sp, gl, and marcasite.
$\begin{aligned} & \text { FRS-9, } 10 \\ & 1.0 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Same description as FRS-1-5; hanging wall and footwall adjacent to FRS-8.
$\begin{aligned} & \text { FRS- } 11 \\ & 0.2 \mathrm{~m} \times 2.0 \mathrm{~m} \text { chip } \end{aligned}$	Grey carbonate layer adjacent to FRS-8,9,10; stratigraphic footwall.

SAMPLE DESCRIPTIONS FRISBY GROUP (cont.)	
$\begin{aligned} & \text { FRS-12 } \\ & 0.3 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Massive sulphide layer; po, py, sp, gl, intergrown with coarse green amphibolite.
FRS-13 0.3 m chip	Massive sulphide layer; po, py, sp and gl within siliceous layer.
FRS-14 talus grab	Massive sulphide layer; large talus blocks broken off showings near FRS-15; coarse sp, po, py, gl, and marcasite.
$\begin{array}{\|l\|} \hline \text { FRS-15 } \\ 1.0 \mathrm{~m} \text { chip } \\ \hline \end{array}$	Massive sulphide layer; coarse sp, po, py, gl, and marcasite; isoclinally folded with thickened hinges.
$\begin{array}{\|l\|} \hline \text { FRS-16 } \\ \text { grab } \\ \hline \end{array}$	Malachite stained cp stringers in quartzite.
FRS-17 talus grab	Massive sulphide layer; po, py, sp, gl; intergrown with coarse green amphibolite.
$\begin{aligned} & \text { FRS-FZ1 } \\ & \text { grab } \end{aligned}$	Brecciated low-angle fault zone; strongly silicified and ankeritized with minor graphite and pyrite; brecciation visible for several 100's metres along ridge.
$\begin{aligned} & \mathrm{FB}-1 \\ & \text { grab } \\ & \hline \end{aligned}$	Disseminated pyrite in biotite schist.
FR-1 talus grab	Malachite coated cp stringers in quartzite.
$\begin{aligned} & \text { FR-2 } \\ & \text { grab } \end{aligned}$	Quartz-ankerite; probably late fault breccia.
South Fieby Ridge	
$\begin{aligned} & \text { FRS-SL1 } \\ & \text { grab } \end{aligned}$	Fine-grained py in gossanous quartzite; site of old trench near northwest corner of a small lake.
FRS-SL2	Same as sple FRS-SL1; several 100's m west along strike, near larger lake; more old trenches.
Nomberm	
$\begin{aligned} & \text { FRN-1 } \\ & \text { grab } \\ & \hline \end{aligned}$	Py and po in qtz-calcite veins in schist approx. 1 m above carbonatite layer.
FRN-2 0.5 m chip	Py and po in siliceous fine-grained schist; 1m below carbonatite layer.
FRN-3 0.5 m chip	Same as FRN-2, approx. 2.5 m west.
$\begin{aligned} & \hline \text { FRN-CB1 } \\ & 0.75 \mathrm{~m} \text { chip } \\ & \hline \end{aligned}$	Extrusive carbonatite tuff-breccia; same location as FRN-1,2,3
$\begin{aligned} & \text { FRN-SMB1 } \\ & \text { grab } \end{aligned}$	Scapolite-bearing white marker marble.
South Crid	
$\begin{aligned} & \text { FRS-QV1 } \\ & \text { 1.0m chip } \\ & \hline \end{aligned}$	Rusty qtz. vein cross-cutting carbonatite and biot. schist.
$\begin{aligned} & \text { FRS-CU1 } \\ & 3.0 \mathrm{~m} \text { chip } \end{aligned}$	Quartz vein stockwork in folded marble with widespread malachite-coated chalcopyrite stringers.
FRS-CB1 1.5 m chip	Extrusive carbonatite tuff-breccia with interlayered biot. schist, marble, and amphibolite.
$\begin{aligned} & \text { FRS-CB2 } \\ & 1.5 \mathrm{~m} \text { chip } \end{aligned}$	Extrusive carbonatite tuff-breccia with dissem. phlogopite mica.

APPENDIX 4

SOIL GEOCHEMISTRY RESULTS

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { pppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pp} \mathrm{n} \end{array}$		$\begin{gathered} \text { Ag } \\ \text { ppm } \end{gathered}$	$\underset{\sim}{\mathrm{Ni}}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$M n$ ppm	$\begin{gathered} \mathrm{Fe} \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} U \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pp} \boldsymbol{m} \end{array}$	$\begin{aligned} & \text { Cd } \\ & \text { ppN } \end{aligned}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	P_{1}	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Mg} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \\ \hline \end{array}$	$\frac{\mathrm{Ti}}{\boldsymbol{x}}$	$\begin{array}{r} \text { Al } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{array}{r} W \\ \text { ppm } \end{array}$	$\begin{gathered} 2 r \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Sn } \\ \text { ppm } \end{array}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	Sc
$170+25 N 37+20 E$	4	5	10	45	. 1	3	4	359	2.40	2	10	ND	4	209	. 4	2	2	39	. 82	. 117	21	13	. 36	416	. 32	6.80	1.99	1.47	2	110	1	20	13	1.0	6.9
L70+25N 37+30E	2	13	2	42	. 2	1	4	310	2.59	2	9	ND	5	189	. 7	2	2	36	. 66	. 092	14	10	. 34	374	. 27	5.85	2.27	1.40	2	100	1	14	11	. 7	5.0
L70+00N 34+50E	3	13	12	49	. 1	6	5	370	2.35	2	11	ND	5	211	. 3	3	2	41	. 84	. 157	21	18	. 45	488	. 33	6.35	2.14	2.25	2	98	2	18	14	1.1	6.9
L70+OON 35+00E	4	19	19	69	. 1	19	9	657	3.13	4	5	ND	9	185	. 8	2	2	55	. 80	. 188	37	35	. 93	590	. 32	6.15	1.68	3.63	2	39	3	23	21	1.5	9.4
L70+00N 35+50E	4	20	11	68	1	10	8	547	3.00	2	6	ND	8	242	. 5	2	2	52	1.09	. 203	31	29	. 72	580	. 32	6.75	2.16	3.13	2	46	3	21	20	1.6	8.2
L70+00N 36+00E	4	14	16	55	. 1	7	6	382	1.91	2	5	ND		209	. 2	7	2	30	1.12	. 242	21	15	. 53	244	. 21	6.74	1.59	. 98	2	44	1	17	11	1.0	5.8
L70+00N 36+50E	2	10	23	73	. 2	17	8	491	2.96	7	8	ND	8	241	. 5	4	2	55	1.13	. 216	33	34	. 89	573	. 34	5.99	1.79	2.44	9	48	2	22	21	1.5	8.1
L70+00N 37+00E	1	22	11	53	. 1	9	6	419	1.85	2	5	ND		250	. 2	3	2	33	1.15	. 284	20	15	. 61	243	. 22	8.02	1.80	1.09	4	35	1	15	7	. 9	8.3
L69+90N 37+25E	2	24	14	55	. 1	4	6	432	2.55	2	11	ND	7	255	. 2	2	2	35	1.09	. 141	21	16	. 48	440	. 29	7.65	2.14	1.46	2	110	1	20	11	1.0	7.7
L69+50N 34+50E	4	9	20	63	. 1	11	6	385	2.62	10	9	ND	6	211	. 2	5	3	58	1.00	. 226	28	34	. 73	562	. 34	6.22	1.54	2.24	2	72	1	18	18	1.5	8.5
L69+50N 35+00E	2	6	24	61	. 2	9	7	456	2.84	4	10	ND		257	. 2	2	2	87	1.55	. 078	35	43	. 76	702	. 52	6.02	1.66	2.61	2	39	1	24	27	1.9	10.9
L69+50N 35+50E	3	20	29	69	. 1	17	8	461	3.47	3	12	ND	12	217	. 5	4	2	59	1.03	. 182	45	43	. 76	645	. 37	7.13	1.53	2.37	2	48	2	28	23	2.1	9.8
L69+50N 36+00E	4	16	12	59	. 4	12	7	421	2.49	2	11	ND		250	.3	2	2	46	1.12	. 229	24	23	. 63	430	. 29	6.73	1.81	1.65	2	60	2	18	14	1.3	7.5
L69+50N 36+50E	3	19	19	55	. 1	9	6	390	2.19	3	12	ND	5	570	. 6	6	2	39	1.10	. 103	24	18	. 47	598	. 34	6.47	2.24	2.22	2	94	2	22	17	1.8	6.9
L69+50N 37+00E	1	8	16	49	. 1	7	6	256	2.73	2	7	ND	8	167	. 4	2	2	53	. 55	. 154	31	35	. 78	534	. 32	6.52	1.25	3.82	2	46	1	13	13	1.3	7.5
L69+OON 34+50E	1	12	16	51	. 1	14	5	351	3.78	2	5	ND		177	2.3	2	2	65	. 75	. 050	37	39	. 71	694	. 37	6.11	1.56	3.74	2	20	1	22	21	1.7	8.9
L69+00N 35+00E	1	17	13	53	. 1	15	6	308	2.81	2	6	ND	9	177	1.6	2	2	57	. 69	. 110	40	33	. 65	646	. 32	5.70	1.55	2.94	2	38	1	24	19	1.6	8.2
L69+00N 35+50E	2	17	24	60	. 1	13	7	462	3.25	2	5	ND	11	188	. 6	2	2	49	. 90	. 119	33	33	. 60	567	. 32	6.49	1.52	2.37	2	50	2	29	18	1.7	8.7
RE L69+50N 36+50E	2	14	21	52	. 3	2	5	342	2.04	2	12	ND	6	249	. 5	2	2	37	. 97	. 082	21	16	. 43	588	. 33	5.55	2.25	1.81	2	96	2	22	17	1.6	6.1
L69+OON 36+00E	2	11	21	51	. 1	3	5	343	3.32	9	8	NO		210	. 9	2	2	46	. 88	. 116	31	22	. 39	589	. 35	6.72	1.73	2.65	6	63	2	29	20	1.7	7.7
L69+00N 36+50E	2	13	34	54	. 1	5	5	293	2.38	2	5	ND	8	198	1.1	2	2	34	. 79	. 135	35	20	. 44	609	. 27	6.17	1.94	2.64	3	52	1	29	19	1.9	6.3
L69+00N 37+00E	2	13	17	53	. 2	10	5	332	2.12	2	5	NO		267	1.1	2	2	48	. 91	. 079	36	28	. 54	891	. 34	7.71	2.72	3.97	2	55	,	26	24	2.5	8.0
L68+50N 34+50E	2	39	19	89	. 1	32	13	876	5.47	2	5	ND	13	162	1.4	2	2	100	. 84	. 266	59	94	1.46	549	. 44	7.85	1.19	2.20	2	31	3	17	18	1.1	14.1
L68+50N 35+00E	1	18	12	57	. 1	14	6	346	2.77	2	5	ND		218	. 8	2	2	62	. 95	. 084	39	36	. 77	633	. 35	7.21	1.63	3.12	2	34	1	18	16	1.7	8.9
L68+50N 35+50E	3	24	10	46	. 3	13	5	265	1.64	2	9	ND	6	135	. 4	2	2	34	. 61	. 195	23	24	. 43	235	. 17	5.60	. 84	. 83	.	34	1	14	12	1.0	6.5
L68+50N 36+00E	3	22	20	57	. 3	3	6	337	2.56	2	8	ND		214	.5	2	2	40	. 85	. 143	29	21	. 44	532	. 27	6.08	1.68	2.07	2	55	3	22	17	1.6	6.4
L68+50N 36+50E	3	19	22	59	. 4	7	6	360	3.23	2	10	ND	5	232	. 6	2	2	43	. 94	. 154	17	16	. 50	464	. 35	5.76	2.07	1.49	2	99	2	17	14	. 9	6.1
L68+50N 37+00E	2	12	27	56	. 1	5	7	317	3.65	2	6	ND	10	175	. 6	2	2	58	. 89	. 031	42	37	. 53	727	. 34	6.36	1.26	2.99	2	27	5	31		2.5	7.7
L68+00N 34+50E	4	18	38	70	. 1	17	9	412	4.22	6	6	ND		6177	. 2	2	2	90	. 89	. 070	28	47	. 83	492	. 49	6.15	1.09	1.69	2	44	5	13	21	1.1	9.8
L68+00N 35+00E	2	16	43	89	. 1	24	12	471	3.16	9	5	ND	9	183	1.0	2	2	83	1.46	. 128	42	53	. 90	624	. 38	8.24	1.08	2.70	2	24	4	22	24	1.9	9.6
L68+00N 35+50E	4	33	36	112	1	62	21	727	3.96	2	8	ND	18	167	3	2	2	60	1.53	. 114	105	67	1.29	705	. 35	6.17	1.17	3.27	2	11	5	87	30	3.6	11.4
168+00N 36+00E	2	16	18	92	. 1	18	9	366	2.12	2	11	ND	12	241	1.0	2	2	55	1.15	. 191	74	44	. 96	690	. 35	. 7.19	1.68	2.34	2	48	2	48	21	2.6	10.4
L68+00N $36+50 \mathrm{E}$	1	19	21	92	. 1	23	10	356	2.63	2	13	ND	10	248	1.3	2	2	64	1.17	. 203	67	44	1.01	617	. 35	7.92	1.63	2.12	2	46	. 1	44	18	2.1	11.0
L68+00N 37+00E	2	17	11	67	. 2	17	8	371	3.44	5	8	ND		6251	1.7	2	2	70	1.10	. 195	24	39	. 81	409	. 34	4.13	1.52	1.64	2	41	- 1	10	14	. 8	8.4
L67+50N 34+50E	1	23	24	88	. 1	20	12	824	4.13	2	5	ND	10	184	1.8	2	2	74	. 82	. 182	43	50	. 95	553	. 36	67.49	1.21	2.56	2	38	1	16	18	1.3	10.2
L67+50N 35+00E	4	33	23	102	. 3	30	14	658	4.64	2	10	ND		196	. 2	2	2	96	. 94	. 244	33	70	. 99	564	. 42	28.60	1.14	1.79	2	47	3	13	21	1.2	11.6
L67+50N 35+50E	3	27	24	148	. 1	49	21	630	4.05	2	8	ND	11	223	1.0	2	2	100	1.56	. 224	61	82	1.44	661	. 44	8.56	. 99	1.72	2	25	3	31	33	2.3	15.0
STANDARD HFC	23	61	46	147	7.5	103	51	1303	3.76	43	16	7	38	60	20.0	17	20	80	. 64	. 120	39	110	1.21	219	. 08	\% 2.16	. 07	. 15	11	5	17	8	5	. 2	6.0

ICP - . 500 gram sample is digested with 10ml hClo3-hno3-hf at 200 deg. C to fuming and is diluted to 10 ml hith diluted aqua regia. this leach is PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, $2 R \&$ MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM.
AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO FLMING.
SAMPLE TYPE: SOIL Samples beginning 'RE' are duplicate samples.

Samples beginning 'RE' are duplicate samples.

Samples beginning 'RE' are duplicate samples.

Samples beginning 'RE' are duplicate samples.

APPENDIX 5

EAST ZONE VLF-EM DATA

King Fissure Deposit - East Zone VLF Survey Inphase Response											
$11+50 \mathrm{~N}$	L23400E	L23+60E	L24+00E	125+00E	126+00E	127+00E	L28+00E	L29+00E	L30400E	L31+00E	$11+50 \mathrm{~N}$
	-6	-10			-23				18	8	
					-22				18	8	$11+25 \mathrm{~N}$
$11+25 \mathrm{~N}$	-3	-6	-7		-12				13	10	
				-3	-9				18	9	
$11+00 \mathrm{~N}$	0	-2	-1		-3				18	9	11+00N
				0	3				18	15	
$10+75 \mathrm{~N}$	1	0		3	2				20	13	$10+75 \mathrm{~N}$
			1	5	5				19	12	
$10+50 \mathrm{~N}$	2	0	$0 \quad 4$		6	-27			20	10	$10+60 \mathrm{~N}$
			25		$2-28$				18	5	
$10+25 \mathrm{~N}$	7	7	210		$2-19$				19	5	$10+25 \mathrm{~N}$
			-2	8	0 -22				17	0	
10+00N	-3	-4	0	7	$\begin{array}{ll}-4 & -20 \\ -7 & \end{array}$		-4	4	15	0	10+00N
			-3	8			0	2	16	-3	
9+75N	-10	-15	-5	12	-5	4	5	. $\mathbf{- 3}^{3}$	9	2	2+76N
			-11	2	-4		7	-1	0	11	
$9+60 \mathrm{~N}$	-12		-10	-9	-6	3	9	0	7	8	9+50N
			-9	-14	-4		0	-5	-2	1	
9+25N	-9		-11	-13	1	6	-3	-3	0	5	$9+25 \mathrm{~N}$
			-12	-9	4		-7	-6	-5	0	
9+00N	-6		-12	-5	6	-6	-8	0	1	1	8+00N
			-13		10				0	4	
8+75N	-5		-10	-4	10	1	-2	0	-4	-8	8+75N
			-9		10				-15	-20	
$8+50 \mathrm{~N}$			-8	-2	9	-5	-3	-3	-14	-28	$8+50 \mathrm{~N}$
			-6		12				-12	-20	
$8+25 \mathrm{~N}$			-8	0	13	1	3	-3	-15	-15	8+25N
			-8						-10	-13	
$8+00 \mathrm{~N}$			-5	5	9	4	2	-3	-2	-11	$8+00 \mathrm{~N}$
			-4		8				-6	-5	
$7+75 \mathrm{~N}$			-2	8	8	10	3	-2	-1	-10	$7+75 \mathrm{~N}$
			1		9				2	-11	
7+50N	.		0	7	13		0	-1	6	-14	7+50N
			3		8				3	-30	
7+25N			-3	10			3	1	5	-24	$7+25 \mathrm{~N}$
			3					2	40		
7+00N			-2	13			4			17+00N	

	King Fissure Deposit - East Zone VLF Survey Quadrature										
	123400E	L23+50E	12400E	L2S+00E	120+00E	127400E	LZa+00E	L29+00E	L30400E	131+00E	
$11+50 \mathrm{~N}$	24	23			19				26	23	11+60N
					16				28	23	
$11+25 \mathrm{~N}$	20	24		17	15				31	26	$11+25 \mathrm{~N}$
				16	16				30	27	
$11+00 \mathrm{~N}$	15	14		18	14				30	30	11+00N
				16	18				32	30	
$10+75 \mathrm{~N}$,	15	15		16	17				33	32	$10+75 \mathrm{~N}$
			26	19	18				36	30	
10+50N	19	18	26	15	19	19			37	34	10+50N4
			17	12	18	21			35	33	
$10+25 \mathrm{~N}$	20	35	15	10	19	24			36	35	10+25N
			18	6	15	25			38	37	
10+00N	17	16	14	4	12	28	30	36	36	40	10+00N
			13	9	12		32	33	38	40	
9+75N	11	38	8	14	12	32	34	35	40	39	9+75N
			8	-4	14		35	33	40	39	
9+60N	10		7	-10	16	38	37	31	37	38	9+60N
			7	-9	16		40	29	36	37	
9+25N	16		7	-5	17	25	28	30	35	39	$9+25 \mathrm{~N}$
			6	1	16		22	26	36	40	
9+00N	18		6	7	20	14	18	24	35	40	8+00N
			6		24				40	39	
$8+75 \mathrm{~N}$	20		9	12	21	15	16	27	39	40	$8+75 N$
			9		23				39	38	
$8+50 \mathrm{~N}$			11	12	28	18	20	28	38	39	8+50N
			12		26				38	39	
$8+25 \mathrm{~N}$			13	17	29	18	22	20	38	40	$8+25 \mathrm{~N}$
			14						40	39	
$8+00 \mathrm{~N}$			14	20	28	18	18	18	32	39	8+00N
			16		26				31	38	
$7+75 \mathrm{~N}$			18	22	28	22	23	23	35	40	7475N
			18		31				38	40	
$7+50 \mathrm{~N}$			18	23	30		22	26	40	40	7+50N
			16		24				40	40	
7+25N			19	22			23	32	38	38	$7+25 \mathrm{~N}$
			20								
$7+00 \mathrm{~N}$			21	26			28	35	40		7+00N

APPENDIX 6

EAST ZONE GEOPHYSICAL INTERPRETATION

TO: First Standard Mining
ATTENTION: Mr. Tiro Clarke 301 - 357 East 2nd St.. North Vancouver, B.C., V7L 1 C6

Dear Sirs: RE: KING FISSURE DEPOSIT GEOPHYSICAL SURVEYS
This letter will confirm that I was requested by Mr. Clarke to review geophysical data from the King Fissure deposit, East Zone. The following data was supplied:

1) VLF-EM in phase and quadrature $\%$ data, Ronka EM16:
2) Total Field Magnetic data, Scintrex MP2 magnetometer;
3) Geology, preliminary plan map at scale 1:2,500

INTERPRETATION

VLF - EM Survey
The massive sulfide bands noted on the geology map are striking approximately perpendicular to the line drawn between the survey location and the VLF-EM transmitter in Seattle, Washington. This orientation results in minimum electromagnetic coupling which decreases the potential amplitude of any crossovers thereby negating much of the usefulness of the survey technique. More useful data would have been obtained using a transmitter location nearer on strike with the sulfide bands - for example Cutler. Maine.

In order to further interpret the VLF data, a contoured plan map of the Fraser filtered in phase \% data was completed, Figure 1. With this technique, conductors are indicated by positive values, and topographic and geological noise are generally suppressed.

The data contours reasonably well indicating an arcuate conductor located at $11+00 \mathrm{~N}$ on the north end of L26E, bending around to the baseline on L27E and then westerly toward $9+00 \mathrm{~N}$ on L25E. This feature does not generally correlate with the observed massive sulfide bands nor with any noted distinct geological unit, and is not closed off by survey data to the north and north east. The generally high quadrature values relative to the in phase values are typical of poor conductors in a highly resistive host rock. It may be related to an area of increased conductivity or perhaps disseminated sulfide mineralization.

The most promising fraser filter anomaly occurs on L27E at between stations $9+62.5 \mathrm{~N}$ to $10+12.5 \mathrm{~N}$, and correlates well with the mapped massive sulfide bands at L27E 10+00N and locally anomalous magnetic responses.

The anomalous highs in the south east corner of the grid, in an area noted covered by a "snow/ice field" do not appear to be of any geological interest and are probably related to changes in bedrock topography.

MAGNETIC Survey

The contoured plan of relative magnetic values is shown as Figure 2. The values were calculated by subtracting 57,955 gammas (the average total field magnetic value for all the observed stations) from each station. Profiles of relative magnetic value and fraser filtered VLF-EM were plotted for L25 to $27 E$ and L30E. figures 3a to 3d.

Given the generally wide line spacing (100 metre) for the data and a narrow target (sulfide bands are generally less than 10 metres wide), the data contouring was biased in the direction of the mapped strike of the massive sulfide bands. Further surveying with a 50 metre line spacing will be required to confirm the validity of the interpretation.

In general the data exhibits a fairly high geological noise background with readings varying 20 to 50 gammas between stations - fairly typical for metamorphic rocks of this type and indicating variable magnetite content.

With the exception of the anomalous high values (greater than 200 gammas) concentrated in a tight "fold structure" in the central to north western part of the grid and likely related to sulfide (pyrrhotite) mineralization - the magnetic data does not appear to differentiate between the geologic units mapped as calc silicate gneiss or quartz biotite schist.

The observed "fold structure" appears consistent with the geological observations of Mr. Clarke, that is sulfide bands (variable pyrrhotite/sphalerite/galena) occupying two limbs of a tight, recumbent fold with an axial plane oriented approximately at 130 to 147 degrees. The sulfide band occupying the southern limb of the fold appears to dip to the west south west.

Probable pyrrhotite concentrations in the bands occur on the north end of L25E (>1000 gammas), at BL $10+00 \mathrm{~N}$ on L27E (884 gammas) and at $9+87.5$ to $10+00 \mathrm{~N}$ on L 26 E (675,1064 gammas). Each of these zones is near surface with widths of 10 to 15 metres based on the $1 / 2$ width of the magnetic profile. On L27E and L30E, and probably on L25E, these magnetic highs correlate with a positive fraser filter anomaly, suggesting the pyrrhotite is massive over reasonably continuous distances.

CONCLUSIONS AND RECOMMENDATIONS

The survey has successfully demonstrated the usefulness of both magnetic and VLF electromagnetic techniques to outline the massive sulfide bands.

Further magnetic surveying on a 50 metre grid line spacing is recommended to fully outline and define the trace of the pyrrhotite mineralization. The grid should be expanded particularly to the north and north west. As this data is being acquired, further VLF - EM data, using Cutler, Maine should be obtained. My preference would be to use an instrument which measures field strength rather than dip angle, such as Scintrex IGS VLF (this instrument can measure and store both magnetic and VLF data).

The strongest fraser filter anomaly occurs on L27E near the BL, in the "nose" area of the interpreted fold. This strong response is probably more related to the strike direction of the sulfides rotating around to an increased coupling orientation, rather than to increasing conductivity in the sulfides.

On completion of the magnetic survey, a detailed low frequency horizontal loop electromagnetic survey, such as GENIE SE-88 should be carried out over noted magnetic highs to determine the precise location, width, conductivity and dip of the sources. The GENIE is particularly useful in areas of rough topography due to its general insensitivity to topography and station spacing accuracy.

Respectfully submitted,

Douglas R. MacQuarrie Geophysicist
enclosures
Dmq 11101

CERTIFICATE

I, Douglas R. MacQuarrie, certify that:

1. I am a Consulting Geophysicist with offices at 704 850 West Hastings Street, Vancouver, B.C., V6C 1E1.
2. I am a graduate of the University of British Columbia with an Honours degree in Geology and Geophysics (B .Sc., 1975).
3. I have been practising my profession since 1975 and have been active in the mining industry since 1971.
4. I am an active member of the British Columbia Geophysical Society.
5. This report is based on fieldwork presented to me by Mr. Tiro Clarke. I have not visited the property.

November 1, 1991
Vancouver, B.C.

Douglas R. MacQuarrie B. Sc.

relative mag and fraser filter vlf

relative mag and fraser filter vlf

PROFILES L26+00 E EAST ZONE

relative mag and fraser filter vlf

APPENDIX 7

FRISBY RIDGE SOUTH GRID VLF-EM DATA

FRISBY RIDGE SOUTH GRID
VLF-EM DATA
(in phase \% $)$

$\left.\begin{array}{c}\text { FRISBY RIDGE SOUTH GRID } \\ \text { VLF-EM DATA } \\ \text { (quadrature) }\end{array}\right]$

22,029

\qquad
lock above background
Suspect readings above background

First Standard Mining Ltd. JORDAN RIVER PROPERTY

CLIFF ZONE GRID CORRECTED MAGNETICS
 (TOTAL FIELD IN GAMMAS)

Revelstoke M.D.	Scale: 1:2,500	N.T.T.: $82 \mathrm{M} / 1 \mathrm{~W}$
	Date: Nov. 1991	Figure:
Drafted By: T.C.	By: T Nov., 1991	7

