		_	And the second		
LOG NO:	JAN	22		r r d.	
ACTION:					
FILE NO:					

KRL Resources Corp.

MM GROUP Stewart, B.C. N.T.S. 104A/4

Report on the 1991 Work Program by J. J. Watkins Consulting Geologist

1 - crais	S	UB-R	EC	OF	R der D	
		.IAN	1	7	1605	
М	.R. # V	ANCO		/EF	". \$ 7. B.C.	

GEOLOGICAL BRANCH ASSESSMENT REPORT 22,053

November 15, 1991

SUMMARY

The 1991 exploration effort on the MM Group concentrated on an area of airborne EM anomalies lying in good geology, and in the area of a high grade gold discovery from the previous year, the 518 Zone. A large part of the 1991 effort covered the newly discovered Hill Top Zone. The Hill Top Zone defines a prominent hill underlain by silicified and mineralized argillites, andesites and intrusive rocks on the east side of Victoria Creek gorge. A large gold and coincidental arsenic and antimony anomalies exist in the soils on the zone. Ground geophysics identifies the Hill Top Zone as having a high conductive background with alternating resistive zones, and a relatively high magnetic background. The highly variable chargeability and resistivity near surface may be masking any deep anomalies. The high conductive background is the result of a large volume of sulphide rich stockwork in both intrusive and bedded rocks that underlie the Hill Top Zone.

-2-

Fourteen diamond drill holes totalling 1848 metres were drilled. Best gold intersections came from within the Hill Top Zone; 0.578 opt Au over 0.40 metres and 0.563 opt Au over 0.65 metres. Wide intervals with anomalous concentrations of Au are reported; 544 ppb Au over 29.5 metres, and numerous anomalous sections were encountered. Drill results were poor in the area of the 518 Zone and from a geophysical conductor tested on Line 1000 North.

Grab samples from the Emperor mine dumps located on the south west side of the MM Group returned a best value of 2112 ppb Au with high base metal values.

The MM Group is well mineralized and additional work is needed to better define the geological setting to aid in the positioning of drill holes and trenches. TABLE OF CONTENTS

TITLE PAGE	1
SUMMARY	2
TABLE OF CONTENTS	3
INTRODUCTION	5
GEOLOGIC SETTING	5
PROPERTY DESCRIPTION	8
LOCATION, ACCESS AND PHYSIOGRAPHY	9
MM PROPERTY HISTORY	9
RESULTS	10
Geology	10
Ground geophysics	11
Soil geochemistry	12
Surface rock geochemistry	12
Diamond drilling	13
Phase 1	14
Hill Top zone	14
518 zone	16
Phase 2	16
Hill Top zone	16
Line 1000N anomaly	16
Drill holes geochemistry	18
DISCUSSION	18
RECOMMENDATIONS FOR FURTHER WORK	19
REFERENCES	20
STATEMENT OF QUALIFICATIONS	24
STATEMENT OF COSTS	(22

1

Page

-

-4-

्रि	LISTOF	FIGURES
-----	--------	---------

1. Location map	6
2. Geology map, Stewart area	7
3. Claim map	8
4. Au distribution in MM-1	14
5. Au distribution in MM-4	15
6. Au distribution in MM-2	15
7. Au distribution in MM-13	17

LIST OF TABLES

1. Property description	8
2. Correlation matrix of soil geochemistry	12
3. Diamond drill hole location summary	13
4. Correlation matrix of drill hole geochemistry	18

LIST OF MAPS

1. Geology 1:5,000	in pocket
2. Soil geochemistry Au 1:5,000	in pocket
3. Soil geochemistry As 1:5,000	in pocket
4. Soil geochemistry Cu 1:5,000	in pocket
5. Soil geochemistry Co 1:5,000	in pocket
6. Soil geochemistry Bi 1:5,000	in pocket
7. Soil geochemistry Sb 1:5,000	in pocket
8. Rock sample locations 1:5,000	in pocket

LIST OF APPENDICES

-

- 1. Historical information
- 2. Table of analytical results, soil
- 3. Analysis certificates, soll
- 4. Table of analytical results, surface rock

- 5. Analysis certificates, surface rock
- 6. Drill hole logs with tables of analytical results and selected element distributions
- 7. Analysis certificates, drill core
- 8. Diamond drill hole sections

INTRODUCTION

The Stewart area (Figure 1) is a major metal-mining district of the Canadian Cordillera. More than 50 properties in the area produced in excess of 5.6 million tons of gold-silver-lead-zinc ore between 1910 and 1968 (Grove, 1971). Presently the area is enjoying active exploration for a number of deposit types.

The MM Group of KRL Resources Corporation straddles the Portland Canal Fissure Zone, a major mineralized fault zone, and interesting stratigraphy at the top of the Hazelton Formation. Thirty to fourty percent of the property is underlain by intrusive rocks of several ages. Much of the property overlooks the town of Stewart 8 kilometres to the south and is well positioned for exploration and exploitation. A road, to the Durwell Mine, is 400 metres from the property boundary.

The 1991 field program was centred on the upper reaches of Victoria Creek. A 34 kilometre grid of cut-line was established and surveyed for geology, soil and rock geochemistry and geophysics. Fourteen diamond drill holes, totalling 1847.7 metres, were drilled.

GEOLOGIC SETTING

Rocks significant to the economic geology of the Stewart Mining Camp are Lower Jurassic Hazelton Group calc-alkaline volcanic and lesser sedimentary rocks, associated alkaline granitic rocks and related dykes (Figure 2). Minor limestone and thin bedded siliceous sediment overlie the volcanic rocks and mark the end of volcanism. Middle Jurassic Bowser Lake Group sedimentary rocks are in-folded along north-northwest trending synclinal axes, and are disrupted by north and northeast trending faults. Plutonic rocks include marginal members of the Coast Crystalline Belt.

Metallogenesis of the Stewart area can be related to repeated cycles of volcanism, sedimentation, and plutonism. Base and precious metal enriched vein deposits are by far the most common form of economic mineralization located in major shear zones and dike swarms. Massive sulphide deposits are conformable with volcanic and sedimentary units and thought to be exhalative in origin. The Eskay Creek deposit is of this class. Porphyry deposits are found in stocks.

1

.

MAJOR MINERAL DEPOSITS

EAST GOLD MINE	
SCOTTLE GOLD MINE	
DAGO HILL DEPOSIT	
BIG MISSOURI MINE (S-1 ZONE)	
SILVER BUTTE DEPOSIT	20100
INDIAN MINE	-
SEBAKWE MINE	
B.C. SILVER MINE	
SILBAK PREMIER MINE	•
RIVERSIDE MINE	
PROSPERITY AND PORTER IDAHO MINES	

LEGEND

Figure 2. Geology map Stewart area (from Aldridge, 1985).

PROPERTY DESCRIPTION

The MM Property lies within N.T.S. sheet 104A/4 in the Skeena Mining Division. Claim particulars are listed in Table 1 and the claim group configuration is shown in Figure 3.

Table 1. The MM Group.

Claim name	Record No.	No. of Units	Expiry Date
MM #100	1594	18	July 11, 2001
Lake 16	3139	1	July 23, 2001
Lake 17	3140	1	July 23, 2001
MM 2	3311	1	November 23, 2001
MM 3	3312	1	November 23, 2001
MM 5	3313	1	November 23, 2001
MM #1 Fraction	3314	1	November 24, 2001
MM #4 Fraction	3315	1	November 24, 2001
MM #6 Fraction	3316	1	November 24, 2001
Buck 709	3138	3	July 23, 2001
Dunwell 4 Fraction	5871	1	March 9, 2001
Buck	8034	12	October 5, 2001
Bulldog #3	8551	1	March 22, 2001
Bulldoa #2	8552	1	March 22, 2001
Bulldog #1	8553	1	March 22, 2001
Bulldoa	8554	1	March 22, 2001
Az	9143	12	November 5, 2001
Brit	9144	12	November 5, 2001
Ben Ali #5	9153	18	November 25, 2001

Figure 3. Property map, MM Group, Stewart, B.C. area.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Stewart area lies at the end of the Portland Canal in the rugged Boundary Ranges of the Coast Mountains of northwest British Columbia. The claim group covers the floor and steep slopes of the Bear River valley. The weather is generally mild year round, however a heavy snowfall in the winter, particularly at higher elevations, restricts exploration.

The MM property is located 8 kilometres north of Stewart . Highway 37A passes through the property along the Bear River and the Dunwell Mine road comes within 400 metres of the property boundary. A tent frame camp is established on the edge of an open meadow at elevation 730 metres immediately above Victoria Creek. Present access to the camp is by a 10 minute helicopter trip from Stewart and a walking trail from the end of the Dunwell Mine road.

MM PROPERTY HISTORY

Early discussions by B.C. Department of Mines geologists on the various prospects on the MM property form Appendix 1 of this report. The earliest recorded work is described in the 1908 annual report where reference is made to prospecting on the Main Reef vein. Other prospects are reported along the southern edge of the property and include the Victoria (Dandy), Tyee, Mayflower, Ben Ali, Emperor, Sunbeam and the Superior. Government reports of 1909 and 1911 describe a sample from the Tyee which returned 4.92 ounces per ton (opt) Au and 20.68 opt Ag, and samples from a 214 metre tunnel and short winze on the Main Reef vein that averaged 23.4 g/t Au. In 1925, a 7 ton shipment from the Main Reef vein returned 7 ounces Au, 20.68 ounces Ag, 4,915 lbs Pb, and 1,499 lbs Zn. Interest in the area waned after the late 1920's and most claims were allowed to lapse.

In 1980 Doug Hopper and associates staked the first claims of the group and dealt to Kingdom Resources Ltd, the predecessor company to KRL Resources Corporation. Kingdom Resources conducted a program of geochemical soil and rock sampling, geological mapping, prospecting, trenching, and locating and sampling of old workings in 1981, 1982 and 1983 (Hopper 1980 and Harris 1981, 1983, 1984).

-9-

In April of 1990 KRL Resources Corp. surveyed the property by airborne geophysics (Pritchard 1990). Fourteen kilometres of grid was cut, prospected and tested with YLF-EM, and resulted in the discovery of 518 Zone in the gorge of Victoria Creek at elevation 670 metres (Watkins, 1990).

RESULTS

Results of the 1991 program are summarized on Maps 1 to 8, and in geophysical reports by Yisser (1991a and 1991b). Analytical results are listed in the appendices.

Geology

The MM group covers the upper contact zone of the Hazelton Group volcanic and related sedimentary rocks. The Bitter Creek Quartz Monzonite covers the north west corner of the property. A body of granodiorite covers the southwest corner of the property and may be part of the Hyder Monzonite. Steep to moderate northwest dipping faults of the Portland Canal fissure zone project through the property. Prospects occur in faults cutting argillites and chert, and veins and stockworks in intrusive rocks.

Stratigraphic units strike predominantly north-northeast with moderate west dips. Intermediate volcanic rocks appear to overlie bedded argillites, cherts and sitstones, however stratigraphic relationships are not well understood, complicated by near concordant and steep dipping faults, and several types and ages of intrusive rocks.

Surface geology of the area studied in the 1991 program is summarized on Map 1. Identified in the field is a large area of strong hydrothermal alteration in the form of pervasive silicification of sedimentary and volcanic rocks lying east of Victoria Creek to 150 East where the zone appears to be bounded by a northeast fault. The alteration zone defines a topographic high and is referred to as the Hill Top Zone.

Several intrusive rock types are identified. Most obvious in the field are several ages of feldspar porphyry and altered feldspar pyroxene porphyry dikes and/or sills that strike north-south and appear to be part of the Portland Canal Fissure Zone (Grove, 1971). Several adits in Victoria Creek gorge are located at faulted contacts of these intrusive bodies. Highest grade gold mineralization encountered, in drill hole MM-13, are related to sheared veins cutting altered feldspar porphyry. Other mineralised intrusive rocks are massive, medium grained granodiorite that appears to grade to coarse grained, feldspar porphyritic granodiorite. Altered feldspar pyroxene porphyry may be a phase of

the granodiorite. The granodiorite and related rocks appear to be discordant bodies striking north-south but with a moderate west dip and/or north-west plunge. The strong pervasive hydrothermal alteration of the Hill Top Zone may be genetically related to the granodiorite. Best mineralization encountered in the granodiorite was a wide section averaging 544 ppb gold over 29.5 metres in drill hole MM-1. Not obvious on surface but seen in the drill core are fine grained, altered and mineralized rocks of an intermediate composition and commonly referred to as andesites. They could be in total or in part intrusive. Other intrusive rocks include altered lamprophyre dikes, fresh narrow diabase dikes, a large body of massive fresh, fine to medium grained diorite located along the east side of the grid area, and granitic bodies lying west of Victoria Creek gorge and probably related to the Bitter Creek monzonite.

More work is needed to better understand geological relationships.

Ground geophysics

Seventeen kilometres of line was surveyed using a large loop time domain electromagnetic (UTEM-3) system, and 22 kilometres surveyed with an EDA combined proton procession magnetometer and VLF-EM Omni Plus system (Visser, 1991a). An Induced Polarization (IP) survey consisting of 2.52 km of a dipole-dipole array on lines 400N, 500N, 550N, and 600N; and 1.72 km of a pole-dipole array on lines 600N, 700N, and 800N (Visser, 1991b) was carried out over the best part of the Hill Top Zone.

Results of the ground geophysical surveys were discouraging. No large conductors were identified at depth. Two strong near surface conductors on lines 900N and 1000N between 300W and 600W; and a small, strong conductor on line 200N immediately east of Victoria Creek were identified in drill core and on surface. A large portion of the surveyed area lying south of line 900N and east of Victoria Creek has a high conductive background with alternating resistive zones, and a relatively high magnetic background which correlates well with the Hill Top Zone. A highly variable chargeability and resistivity near surface is masking any deep IP anomalies.

Soil geochemistry

A total of 256 soil samples were collected. Large parts of the grid area are covered with thick bogs and steep hillsides with poor to no soil development. Analytical results of the soil survey are listed in the Appendix 2 and laboratory certificates in Appendix 3. A correlation matrix of the soil chemistry (Table 2) shows a positive correlation between gold and arsenic, and to lesser degrees between gold and other elements. The spatial and frequency distribution of Au, As, Bi, Cu, Co, and Sb in soils are plotted on Maps 2, 3, 4, 5, 6 and 7, respectively.

Cu	.097	.193	1		_						
Pb	.091	.216	.245	1		_					
Zn	.041	.055	.358	.271	1		_				
Sb	.058	052	.087	.049	.087	1					
Co	.040	.090	.367	.090	.374	.166					
As	.227	.006	.069	008	.032	.045	.096	1			
Bi	.106	008	.242	016	.074	.033	.107	042	1		
Mo	.029	.059	.106	.134	.099	.024	.114	.047	0.05		
	AU	AQ.	C U	۲D	ZN	50	CO	A\$	24	M O	

Figure 2. Soil geochemistry correlation matrix. Bold print indicates elements plotted on Maps 2 to 7.

Two populations of gold in soils appear to exist (see the frequency distribution of Au on Map 2) with the mean for the second population near 35 ppb. This second population defines an irregularly shaped area elongated north-south and centred more or less on line 600 N (Map 2). Similarly, a second population of arsenic in soils defines an anomaly coincident with the gold anomaly and larger in size (Map 3). The distribution of Bi, Cu, Co and Sb in the soil is less revealing (Maps 4 to 7).

Surface rock geochemistry

A total of 111 surface rock samples were analysed and their locations plotted on Map 8. Analytical results are listed in the Appendix 4 and the laboratory certificates in Appendix 5. The best analysis from the Hill Top Zone, sample number 840, returned 0.294 oz/ton Au and was drill tested in hole MM-1. High values in both base and precious metals were collected from mine dumps at the Emperor mine located on the claim group boundary. At the Emperor mine considerable lateral development was on steep dipping, north trending quartz rich veins with rich sulphide lodes. The best sample picked from the mine dumps (sample nos. 979 to 985) returned 7.56% Zn, 1045 ppb Au and 52.1 ppm Ag.

Diamond Drill Program

Fourteen, helicopter supported, diamond drill holes from 9 sites totalled 1847.7 metres. Drill holes are plotted on the accompanying maps and locations summarized in Table 3. Drill hole logs with analytical results and analytical certificates can be found in Appendices 5 and 6, and drill hole sections over the Hill Top Zone are in Appendix 7. Drill holes MM-1 to MM-9 were drilled early in the field season, and are referred to as phase 1 drilling. Phase 1 drilling was carried out with little field information. Drill holes MM-10 to MM-14 were drilled late in the field season, and are referred to as phase 2 drilling.

HOLE NO.	NORTHING (metres)	EASTING (metres)	ELEVATION (metres)	AZIMUTH	DIP	LENGTH (metres)	STARTED	FINISHED
MM-1	609 N	044 E	790	165	-55	110.60	20/7/91	21/7/91
MM-2	611 N	040 E	790	315	-55	121.50	21/7/91	23/7/91
MM-3	671 N	087 E	810	315	-65	120.90	23/7/91	24/7/91
MM-4	670 N	090 E	810	135	-60	136.35	24/7/91	25/7/91
MM-5	748 N	053 E	825	135	-60	136.35	25/7/91	26/7/91
MM-6	750 N	040 E	825	315	-60	100.00	26/7/91	27/7/91
MM-7	790 N	015 W	850	135	-60	145.75	27/7/91	29/7/91
MM-8	690 N	420 W	835	180	-70	104.55	29/7/91	29/7/91
MM-9	690 N	420 W	835	225	-60	90.60	29/7/91	31/7/91
MV-10	545 N	050 E	775	120	-70	244.80	19/9/91	22/9/91
MM-11	545 N	050 E	775	300	-55	91.50	23/9/91	24/9/91
MM-12	425 N	040 E	720	135	-70	153.90	24/9/91	26/9/91
MM-13	600 N	130 W	710	135	-60	189.40	26/9/91	29/9/91
MM-14	1000 N	540 W	800	135	-55	101.50	29/9/91	30/9/91

Table 3. Diamond drill hole location summary.

Phase 1 drilling

Hill Top zone

Drill hole MM-1 intersected a wide zone of gold enrichment (Figure 4), 544 ppb Åu over 29.5 metres with the highest concentration of 2415 ppb Åu over 1.5 metres all in a quartz + arsenopyrite+/- pyrite or pyrrhotite stockwork cutting massive, fine to medium grained granodiorite. Drill holes MM-3, -4, -5, -6, and -7 drilled northeast of MM-1 intersected short anomalous gold intervals. Weak gold enrichment occurs in hole MM-4 (Figure 5) in granodiorite and is similar to mineralized granodiorite. Hole MM-2 was drilled in the opposite direction to MM-1 and intersected wide spread silicification with scattered gold enrichment (Figure 6) and the hole boltomed in altered, arsenopyrite mineralized diorite.

Figure 5. Au distribution in drill hole MM-4

518 Zone

Two holes, MM-8 and MM-9, were drilled in the area of the 518 Zone. Metamorphosed hydrothermally altered rocks similar to parts of the Hill Top Zone and fresh granitic rocks were intersected in both drill holes. The holes probably tested the contact a ureole of an apophysis of the Bitter Creek monzonite. Altered mafic volcanic rocks in the bottom of hole MM-8 intersected disseminated mineralization reporting anomalous concentrations of Sb, Bi, Mo and Pb.

Phase 2 drilling

Hill Top Zone

Drill hole MM-10 was positioned to test for a possible continuation to depth of the gold enriched zone reported in MM-1. No significant mineralization was intersected in the hole, however scattered weak gold concentrations were encountered towards the top of the hole in intrusive rock (see drill hole section MM-10 & MM-11 in Appendix 8) and wide zones of arsenic enrichment throughout the hole. Drill hole MM-12, the most southerly hole drilled in the Hill Top Zone intersected wide intervals of disseminated and stockwork pyrrhotite mineralization in altered andesite and altered feldspar porphyry with only narrow and scattered weak gold-arsenic enrichment.

Drill hole MIM-13 is the most westerly hole drilled into the Hill Top Zone and it intersected numerous short intervals of gold enrichment (Figure 7). Here the best mineralization occurs in altered feldspar porphyry and not in granodiorite as in drill hole MIM-1. Best intersections are 0.578 oz/ton over 0.40 metres and 0.563 oz/ton over 0.65 metres. These two significant intersections occur within wider intervals reporting anomalous gold and associated trace elements. The 0.578 oz/ton Au intersection is part of a wider section of gold enrichment that averages about 0.20 oz/ton Au over 3.0 metres. The 0.563 oz/ton Au intersection is part of a wider section of gold enrichment that averages about 0.16 oz/ton Au over 3.65 metres. At least six other sections of anomalous gold were cut in the drill hole.

Line 1000N anomaly

Visser (1991a) identified two strong near surface conductors on lines 900N and 1000N between 300W and 600W. Drill hole MM-14 test this anomaly. The anomaly appears to be graphitic argiilites, however anomalous concentrations of silver, lead and zinc does report in pyritized argiilite and in altered feldspar porphyry dikes cutting argiilite.

Figure 7. Au distribution in drill hole MM-13.

1

6. Drill Hole Geochemistry

(

A total of 1,227 split core samples were analysed by ICP. Selected element distribution plots and tabled results are listed with the drill logs in Appendix 5.

Mutual correlation between the different elements analysed in drill core (Table 4) can serve to help identify the type of deposit likely to be present. In the area drill tested gold is associated with bismuth, arsenic, cobalt, silver and to a lesser degree copper. A similar association that presently comes to mind is the exotic arsenide minerals and their assemblages in the silver-rich ores of Cobalt, Ontario, and recognized world wide (Stanton, 1972).

Au	1											
Ag	.238	1										
Cu	.147	.376	1									
Pb	.027	.458	003	1								
Zn	013	.174	.003	.270	1	1						
Sb	020	.018	023	.088	014	1						
As	.439	.127	.046	.016	003	015	1	1				
Bi	.887	.286	.165	.044	008	016	.329					
Ni	014	095	130	.011	.032	.111	067	038	1]		
Co	.285	229	.286	.017	.038	.041	.533	.236	.187	1		
Mo	001	.048	.010	.163	.040	.033	.009	003	.162	.028	1	
W	012	.034	.034	.068	.525	025	014	.002	.018	006	.022	1
	ÂU	Âg	Cu	Pb	Zn	Sb	As	Bi	Ni	Co	Mo	W

Table 4. Correlation coefficient matrix of analytical results from drill core. Highlighted are significant element associations.

Platinum and palladium were analysed in selected samples from holes MM-1 and MM-2. The results can be seen at the back of Appendix 7. Weak enrichment in palladium occurs with a high of 16 ppb Pd.

DISCUSSION

The 1991 program concentrated on identifying economic mineralization associated with a cluster of airborne EM anomalies (Pritchard, 1990). Airborne anomalies appear to be the result of graphitic argiillites and/or possibly, as explained by Visser (1991b), the result of stockwork sulphides mineralization intersected in drill holes.

The property is well mineralized, but the economic significance of this mineralization is not understood. Needed is more work to get a better handle on the geological setting. Additional drilling should only follow such a geological evaluation. Further, the MM Group is well positioned with nearby road access and proximity to the town of Stewart that will result in value for exploration dollars spent.

A road onto the Hill Top zone may expose geological relationships needed to evaluate the properties potential at a lower cost than diamond drilling.

RECOMMENDATIONS FOR FURTHER WORK

The MM Group should be considered for additional work. Needed is a hard look at the geology. Recommended is a continued program of evaluation:

- 1. Geology including the mapping of the total claim group, and sulphide and host rock petrography.
- 2. Extend the existing grid to the east and carry out soil geochemistry, ground geophysics and geology.
- 3. Road construction onto the Hill Top zone and mechanical trenching.
- 4. Diamond drilling:

Hill Top zone: 4 drill holes totalling 800 metres 518 zone: 2 drill holes totalling 300 metres Emperor mine extension: 4 drill holes totalling 400 metres Other anomalies: 4 drill holes totalling 400 metres

Phase 1:

Line cutting: 12 kilometres @ \$600/km	\$7,200
Road construction	\$50,000
Geology: 60 days @ \$500/day	\$30,000
Technical assistances: 60 days @ \$200/day	\$12,000
Geophysics: 12 kilometres @ \$1500/km	\$18,000
Helicopter: 10 hours @ \$800/hr	\$8,000
Analysis: 300 soil & rock samples @ \$25/sar	nple \$7,500
Truck: 60 days @ \$75/day	\$4,500
Camp: 60 days @ \$300/day	\$18,000
Mobilization	\$3,000
Report	<u>\$3,000</u>
, Total cost for phas	e 1 \$161,200

Recommendations for further work continued.

Phase 2:

Diamond drilling: 2000 metres @ \$100/m	\$200,000
Helicopter: 20 hours @ \$800/hr	\$16,000
Supervision: 30 days@ \$500/day	\$15,000
Technical assistance: 30 days @ \$200	\$6,000
Chemical analysis: 300 samples @ \$25/sample	\$7,500
Truck: 30 days @ \$75/day	\$2,250
Mobilization	\$10,000
Report	<u>\$3,000</u>
Total cost for phase 2	\$259,750

Total cost for the proposed program \$420,950

REFERENCES

- Alldrick, D.J. (1985): Stratigraphy and petrology of the Stewart mining camp; in Geological Fieldwork, 1984, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1985-1, p. 316-342.
 - Budinski, D.R. (July 31,1990): Geology and exploration potential of the Cambria Project; MM, Rufus, Med and Med North properties, Stewart, B.C., unpublished report for KRL Resources Corp. by Orcan Mineral Associates Ltd.
 - Cavey, G. and Penner, D. (July 5, 1987): Report on the Stewart Area Property of Kingdom Resources Ltd., Stewart, B.C.
 - Dandy, (1990) Unpublished discussion of the geology of the Stewart area, Resident B.C. government geologist office, Smithers, B.C.
 - Grove, E.W. (1971): B.C.D.M. & P.R. Bulletin No. 58, Geology and Mineral Deposits of the Stewart Area, B.C.
 - Grove, E.W. (1986): B.C.D.M. & P.R. Bulletin No. 63, Geology and Mineral Deposits of Unik River-Salmon River-Anyox Area, B.C.
 - Harris, C. R. (Oct. 11, 1981): Report on 1981 Exploration, MM 100 Claim, B.C., N.T.S. 104A/4 for Kingdom Resources Ltd.
 - Harris, C. R. (Nov. 24, 1983): Summary Report on 1983 Field Work, Rufus and MM 100 Claim, Stewart B.C. for Kingdom Resources Ltd.
 - Harris, C. R. (May 20, 1984): MM 100 Claim Group, Stewart B.C., N.T.S.104A/4W for Kingdom Resources Ltd.)

- Hopper, D. (July 30, 1980): Prospecting Report for Assessment Purposes on the MM#100.
 - Pritchard R.A. (July 25, 1990): Dighem III Survey for KRL Resources Corp., Stewart, B.C., report #1088.
 - Sinclair, A.J. (1976): Probability graphs in mineral exploration, Association of Exploration Geochemists, Special Volume 4.

-21-

Stanton (1972): Ore Petrology, McGraw-Hill Book Company

1

.

- Visser, S.J. (1991a): UTEM Survey, Magnetics and VLF-EM on the MM Property, Stewart, B.C. for KRL Resources Corp.
- Yisser, S.J. (1991b): Induced Polarization Survey on the MM Property, Stewart, B.C. for KRL Resources Corp.
- Watkins, J.J. (1990): Report on 1990 fieldwork, MM Property, Stewart, B.C. for KRL Resources Corp.

STATEMENT OF QUALIFICATIONS

I, **John J. Watkins,** of 3527 South Island Highway, Royston, B.C., Canada, do hereby certify that:

- 1. I am a graduate of Queen's University, Kingston, Ontario (B.Sc. Honours Geology, 1972 and M.Sc. Geology, 1980).
- 2. I am a Fellow of the Geological Association of Canada and a Fellow of the Society of Economic Geologists.
- 3. To 1983, I was engaged in mining and mineral exploration in Canada for a number of companies, positions included mine geologist and senior geologist. Since 1983, I have been practising as a consulting geologist in mineral exploration, property development and deposit evaluation.
- 4. I supervised the work described in this report.
- 5. I have 150,000 common shares of KRL Resources Corporation held in escrow.

Respectfully submitted,

J.J. Watkins, M.Sc. November 15, 1991

Royston, B.C.

STATEMENT OF COSTS

GEOLOGICAL:		
J. WATKINS	29034.78	
M. TERRY	3274.20	
BLUE OX SERVICES	12181.95	
S. YOUNG	5350.00	
SALARIES		
J. DONALDSON	9625.00	
J. SWENARCHUK	9141.00	
F. LEMIEUX	4375.00	
S. EDWARDS	1125.00	
S. STANCHFIELD	1000.00	75,106.93
LINECUTTING:		16,375.00
TRAVEL COSTS.		
travel.board	23941.88	
vehicle expenses	5178.87	29.120.75
CAMP COSTS:		36,981.85
FIELD SUPPLIES:		22,147.24
GEOPHYSICS:		32,326.60
DIAMOND DRILLING:		133,747.49
ASSAY COSTS:		22,337.30
HELICOPTER:		47,363.64
MANAGEMENT FEES:		36 000 00
		50,000.00
TOTAL COSTS		451,506.80

1

.

APPENDIX 1

Historical Information

1

1909:

pages K65 and K66

Main Reef Mineral Claims.

To the northward over the hill from the Sunbeam claim, Ranch and Horseman have located the Main Reef No. 1 and No. 2, and the vein seen on these claims may be one of those noted on the Stewart Mining Com-

pany's property, as it is in the same line and has similar features. The claims are reached by a trail $1\frac{1}{2}$ miles from the Bear River valley, and are at an altitude of 1,300 feet above Glacier creek camp. A small creek has cut through the rock and shown up a fissure in a slate country rock. A tunnel 33 feet long has been run in on this fissure, which has a strike S. 75° E., a dip of 65° to the south, and is clearly defined, but is mostly filled with crushed slate, slightly impregnated with quartz, but where the quartz is in any quantity, it is heavily mineralised with iron pyrites and a little galena.

Some twisting and perhaps faulting of the strata has occurred along the line of the bed of the creek, as what appears to be the same vein is seen on the opposite bank 250 feet farther up the creek. Here a tunnel has been run in 30 feet on a fissure, which has the same features as noted on the other side, but the strike is S. 25° E. and the dip nearly vertical. A felsite dyke lies along the east side of the fissure.

The owners shipped four tons of ore from this tunnel, which gave them the following returns per ton :--Gold, 0.7 oz.; silver, 20.94 oz.; lead, 23 %. Such returns encourage further prospecting, in the hope that the filling of the fissure may change from crushed slate to ore, which it might do in a very short distance, as the crushing movement noted at this point may be purely local. Samples of galena and pyrites taken by the Government Assayer assayed as follows :--Gold, 0.3 oz.; silver, 51.2 oz.; copper, none; lead, 64.2 %.

Tyee.

This claim is owned by Bibeau & McKay, of Stewart, and was formerly the *Mother Lode*. It is situated about a mile above Glacier creek and 300 feet vertically above Bear river. An ill-defined fissure in a granolitic rock,*

about 3 feet wide, is filled with quartz and there are also a number of small stringers of quartz. An open cut 15 feet has crosscut this showing, and another short open cut 35 feet to the S. E. has been run into the ore body. The quartz is well mineralised with iron pyrites and in places a little copper. Samples of the quartz and pyrites taken by the Government Assayer gave rather astonishingly high values, as follows :--Gold, 4.92 oz.; silver, 20.68 oz.

1918:

Dage K77 This group, consisting of four claims—Mayfower, Trade Dollar. Kitty, and Mayfiower Group. Blaine—owned by H. P. Gibson, of Stewart, is situated about 1.000 feet above the Bear river on the east side, between Glacier and Bitter creeks. Along a small creek three or four veins of quartz and argillite, carrying pyrite, a little chalcopyrite. blende, and galena. are exposed in an argillite country-rock, termed the "Bitter Creek formation" by McConnell. A little work has been done by way of stripping and open-cutting, and

a crosscut tunnel of 20 feet, with a further drift of 6 feet on one of the veins exposed on the surface. The drift will have to be advanced about 40 feet to get under the surface showing, which consists of a vein, about 4 feet wide, of quartz and argillite. This is a fair showing and deserving of the continuation of the drift to get under it, further work depending on the results obtained. A few tons of ore, running about \$60 a ton in gold values, was taken from a small vein lower down the hill, showing that there are good values in the vein. There is a good foottrail from the railroad to the property and there would be no difficulty in getting ore down.

page N65

Mayflower Group. This group is comprised of four claims—Mayhower, Trade Dollar. Kitty, and Blaino--situated on the east side of Bear river between Glacier and Bitter creeks, and is owned by H. P. Gibson, of Stewart. The property has had some little work done on it by way of open-cutting and a short crosscut tunnel

driven, all of which were described in last year's Report. Recent work was done farther up the creek on the surface, with, I understand, satisfactory results. There is a good trail from the valley to the showings, over which ore could be packed.

1921:

11 1

page G65

This group consists of four claims—Dandy No. 1, Dandy No. 2, Star No. 1, Dandy Group. and Star No. 2—the first two being restakings of two of the claims of the old Main Reef group. The owner is Heine Horstman. of Stewart. The claims are situated on the east side of Bear river, about half-way between Glacier and Bitter creeks, at an elevation of 1.600 feet. There is a good trail to the old camp from the Bear River wagonroad, passing the Type cabin at 425 feet elevation and the Mayflower camp at 900 feet elevation. . The vein on the Dandy claims is about 4 feet wide, of broken-up argillite crossed with small quartz stringers, with a continuous small vein of quartz on the hanging-wall mineralized with zinc-blende and galena, principally the former. It lies in argillite country-rock on top of a greenish porphyry dyke about 40 feet wide. It strikes N. 30° W. (mag.) and dips 63° W., conforming with the strike and dip of the dyke.

The vein cuts diagonally across the creek and here shows only a seam of ore on the hanging-wall containing very little values. On the west side of the creek a tunnel was driven a considerable distance in the early days, but the mouth of it is now blocked up by a jam of debris in the creek, which has piled the creek-gravel over the top of the tunnel. This tunnel could not have gained much depth in a couple of hundred feet, as the surface above does not rise very rapidly. A shaft is said to have been sunk to a depth of 40 feet just inside the mouth of the tunnel, following a shoot of good ore from 12 to 14 inches wide all the way down, but I doubt it from the appearance of the rest of the vein exposed. However, it would not be a difficult undertaking to clear out the creek and get into the tunnel to unwater the winze. If there is a foot of \$75 ore, or even less, in the shaft, it will pay to mine and ship, as it is not over 2 miles down to the wagon-road and a 6-mile haul from there to the dock.

Tyee. This is one of the old properties worked on in the early days of the camp and is owned by Jim McKay and Charlie Bibeau, of Stewart. A shaft was sunk about 40 feet on a heavily pyritized vein, about 4 feet wide, of quartz and altered granite occurring in a granite stock. The ore carries some gold and silver values, but not enough to ship. The sulphides are too heavy to admit of sufficient concentration to raise the values to a shipping grade. A crosscut tunnel is now being driven by the owners to cut the vein, I should judge, a little lower than the bottom of the shaft and some distance to the north.

1

1922:

page N71

This group is situated about 1,000 feet above Bear river, on its eastern slope, Mayflower Group. Between Glacier and Bitter creeks. The four claims comprising the group are Mayflower, Kitty, Trade Dollar, and Blaine, owned by H. P. Gibson, of Stewart. A few tons of ore assaying \$60 a ton in gold values was shipped some years ago. This ore was obtained from a small vein of breeciated quartz and argillite lying in the Bitter Creek formation and showing that these veins contain good gold values. Higher up the hill some work has been done in stripping and open-cutting on three or four similar veins, a crosscut tunnel has been driven 20 feet, and a drift of 6 feet driven on the vein, as yet not finding important values. There is a fair surface showing in a 4-foot vein of quartz and argillite about 40 feet beyond the face of the drift. Because of the heavy overburden, drifting on the vein seems the best possible means of exploration.

1924:

page B64

The Dandy group consists of four claims—Dandy No. 1. Dandy No. 2. StarVictoria Mines,
No. 1, and Star No. 2—situated north of and adjoining the Dunwell group
and east of the Mayflower group. Early in the spring this property was
acquired by R. W. Martin and Eastern associates and some work done in the

bed of a deep creek cutting across the claims. The work consisted of open-cutting and a crosscut tunnel about 70 feet in length, showing some small mineralized quartz veins and silicified bands bedded with the slate formation.

Later a company was organized called the Victoria Mines, Limited, with a capitalization of \$500.000, divided into 500,000 shares, with the registered office at Victoria. This company started work late in the fall and up to the end of the year a crosscut tunnel had been driven £0 feet with the object of cutting any or all of the north-south series of veins prominent on the *Dunwell*, and which, according to the prospectus issued by the company, must necessarily extend into the company's ground.

 The North Line group includes three mineral claims and two fractions—North

 Emperor Mines. Line. North Line Fraction. South Line, South Line Extension. and Flat

 Ltd.
 Fraction—owned by James McKay. of Stewart. and situated north of the

Lakeview group. Last year the claims were honded to Gus Seiffert, who organized the North and South Line Syndicate in Vancouver on a basis of 300 units of a par value of \$200 a unit. To provide working funds 75 units were disposed of and work was started as early this spring as snow and trail conditions would permit. Under the supervision of Mr. Seiffert a very creditable amount and quality of work has been done this season, making a good start on a promising property.

The trail was put in passable condition from the *Lakcvicu* to the camp. Preliminary to starting development-work two log cabins were built, one 14 by 44 feet and the other 18 by 34 feet, for mess and bunk houses.

A great deal of surface work was done first in stripping and open-cutting at intervals of from 50 to 100 feet, this indicating a vein of from 7 to 14 feet in width. The vein has a quartz gaugue mineralized with galena, zinc-blende, and pyrite.

A crosscut tunnel was driven 120 feet. striking the hanging-wall of the vein at a depth of about S5 feet. A cut of 13 feet in length was then driven across the vein without reaching the foot-wall. A drift was driven north 40 feet and another 25 feet south, both in the hanging-wall of the vein. Both faces were in good ore when work was stopped early in the winter. While the ore on the average is not high grade, it will at least make good milling-ore, with the probabilities that there will be shoots of shipping-grade ore in it.

Mr. Seiffert has now incorporated the Emperor Mines. Limited, with a capitalization of 1.500.000 shares at \$1 each par value, with registered office in Vancouver, to take over the property. It is expected there will be no difficulty in proving necessary funds to proceed in the spring on a comprehensive plan of development. A trail will be recommended to the property from the *Lakeview* or whatever point is most advantageous.

1925:

page A86, A87 and A88

Emperor Mines, \$1,500,000, divided into 1,500,000 shares. Its registered office is in the Standard Ltd. Bank Building, Vancouver. The claims owned by the company are situated north of the *Lakeview* and were purchased from Jas. McKay, of Stewart, the

original staker. There are three claims and two fractions—North Line. North Line Fraction, South Line, South Line Extension, and Flat Fraction—known as the North Line group.

There is a first-class trail completed through to the *Lakeview* this year from the Bear River wagon-road. The portion from the *Lakeview* to the Emperor camp is in bad condition. A trail was recommended last year from the *Dunwell* road to serve the *Lakeview*, Emperor, and claims beyond to the *Sunshine*, but was only constructed as far as the *Lakeview*. It will in all probability be extended next season through to the Emperor camp, which is at 2,950 feet elevation.

The country-rock, I think, would be classed as tuff. The showing is a brecciated vein, composed of quartz and country-rock more or less mineralized with pyrite, up to 20 feet in width. On the hanging-wall side is a small quartz vein varying from a few inches to a foot in width, in which very good values have been obtained. The main portion of the vein, however, is low grade, probably averaging between \$10 and \$12 to the ton in gold and silver.

At an elevation of 3,130 feet the first tunnel was driven 120 feet, cutting the vein at right angles at a depth of about 80 feet. The vein here is 16 feet or more in width, as the foot-wall was not reached. Drifts were run north 50 feet and south 25 feet along the hanging-wall of the vein, which strikes N. 15° W. (mag.) and dips from 80° to 85° W.

As no further depth could be obtained in drifting on this level, it was decided to start a crosscut tunnel at 2,880 feet elevation, which would obtain a depth of about 330 feet on the vein, intersecting it several hundred feet south of the upper tunnel, in a distance of about 500 feet. This work was started in the spring of 1925 and had been driven about 25 feet by the end of July, through the overburden to the solid rock. This of course had to be timbered and was slow work. In the meantime a log building 16 by 32 feet, covered with corrugated iron, was built at the mouth of the tunnel, housing a machine-shop and a 220-cubic-foot air-compressor driven by a 45-horse-power Seffie semi-Diesel engine. An exceptionally fine camp has been constructed, the main building, built of logs, being 16 feet wide by 72 feet long, and containing a well-appointed kitchen 16 by 16 feet, dining-room 12 by 16 feet, bunk-house 16 by 30 feet, and a dry-room 14 by 16 feet equipped with shower-baths and hot and cold water. The bunk-house section contains eight double-deck iron beds with mattresses. Another log building, 14 by 42 feet, has three rooms, used as manager's residence and office. Everything is most convenient and comfortable and with a small addition to the dining-room could accommodate forty men.

The mining equipment includes 3,000 feet of rails, one water Leyner machine and three jackhammers, hoist. steel-sharpener, 2½ tons of machine-steel, 3,000 feet of assorted pipe, blacksmithing outfit. drill-press, a Cameron sinking-pump, two ore-cars, 10,000-gallon-capacity oil-tank, 150 drums of crude oil, etc.; in all a very complete equipment for extensive development.

Since the installation of the compressor good progress has been made with the tunnel. Early in October a 5-foot vein was encountered at 280 feet from the portal, well mineralized with zinc-blende and pyrite. About the middle of November the big vein was struck at 470 feet from the portal and crosscut for 21 feet. The vein here shows about the same as where crossed in the upper tunnel, the manager stating that it will average a milling-grade ore. It is being drifted on to the north to get under the point at which it was cut in the upper tunnel. A raise will there be run for prospecting and ventilating purposes. The drift will be approximately 400 feet and the raise 325 feet. While the information gained so far is not conclusive, it is sufficient to give important prospective merit to the property as a milling enterprise.

The advertising statement made early in the year that there were \$2,000,000 worth of ore in sight was of course unjustified and decidedly misleading.

Operations are under the very efficient supervision of G. Seiffert.

This company was incorporated in April of this year to acquire the ground Superior Mines, adjoining the Emperor holdings on the north, through which the Emperor vein Ltd. It is capitalized at \$500.000, divided into 1,500,000 shares, with the

registered office in Vancouver. The four claims, B.C., O. & H. No. 1, O. & H. No. 2, and Albert, were purchased outright from the owners, H. Horstman and associates. No attempt has as yet been made to explore the Emperor vein crossing this ground. A little work, consisting of shallow open-cuts and a 20-foot tunnel, has been done on a cross-vein at some distance from the Emperor vein and at 3.400 feet elevation. The showing here consists of some mineralization in small shear-veins lying on either side of a light-coloured, fine-grained dyke, the tunnel being on the foot-wall side of the dyke. High values in silver are claimed to have been

found and form the reason for driving the tunnel. The intersection of this wein with the main Emperor vein should be an interesting point for exploration-work.

1925 cont'd: pages A90 and A92

Victoria Mines,
Ltd.This company was incorporated in September, 1924, and is capitalized for
\$500,000, divided into 500,000 shares, with its head office in the Winch Building,
Victoria. The property is composed of the Dandy group—Dandy No. 1, Dandy
No. 2. Star No. 1, and Star No. 2—partially the old Main Reef property, lying
north of and adjoining the Damwell and owned by H. Horstman, of Stewart. Early in 1924 the

property was optioned by R. W. Martin and Eastern associates, who did considerable work in surface cuts and a tunnel of 70 feet. After the organization of the company work was begun on a crosscut tunnel at 1,400 feet elevation, intended to cut the northern extension of the *Dunvoell* series, if they extended so far. The tunnel was driven about 90 feet by the end of 1924.

In 1925 the claims were surveyed and further exploration-work was carried on under the management of A. Gaul, M.E. The old *Main Reef* vein (No. 1) was picked up on the east side of the creek, south of the old No. 2 tunnel. This vein was also traced north to the north-west corner of the *Dandy No.* 2 claim, a distance of several hundred feet. A shallow tunnel was driven on it, but did not get below the surface oxidation. Another was started 100 feet lower and driven 32 feet, leaving about 20 feet farther to go to cut the vein.

With the discovery of the vein and high-grade ore on the Sunbeam, adjoining the Dandy No. 1 claim on the south, the crosscut tunnel on the Victoria acquired great prospective importance. The Sunbeam vein was traced right up to the Dandy No. 1 south line; in fact, there is an open-cut about 6 feet from the line. Open-cuts were put in on the Victoria ground along the strike of the Sunbeam vein, which were unsatisfactory on account of the very heavy overburden and surface oxidation.

The No. 4 crosscut tunnel was advanced from 90 to 430 feet without cutting the Sundeam vein, though the last 50 feet shows a little mineralization and conditions similar to that vein. There is every probability of cutting the Sundeam vein within a short distance. At 246 feet from the portal a vein was crossed, which no doubt is the Main Reef or No. 1 vein exposed in the No. 2 tunnel, from which some ore was shipped in 1925. This was drifted on 11 feet to the north and 73 feet to the south. Mr. Gaul states that the south drift is looking promising.

The property has advanced from "possibilities" to "probabilities," but I suppose the outcome will be considered speculative until ore is actually encountered and developed in the crosscut tunnel.

This company was incorporated in May, 1924, with a capitalization of \$250.000. Silver Ledge divided into 1.000,000 shares of 25 cents each. Its registered office is in the Mining Co., Ltd. Central Building, Victoria. The company acquired the *Bull Dog* group, consist-

ing of Bull Dog and Bull Dog Nos. 1. 2, and 3, from H. A. Horstman, of Stewart. They are situated about a mile up the hill above Wards pass and north of the Dandy No. 1 of the Victoria Mines, Limited. I understand that a trail was built up to the showings from the Bear River wagon-road and some surface work done in tracing the vein, under the supervision of H. Horstman.

This group, consisting of the Mayfower, Mayfower Fraction, Mayfower Nos. Mayflower Group. 2. 3, and 4, is situated west of or down the hill from the Victoria Mines claims.

The group is owned by H. P. Gibson, of Stewart, who has had two men on exploration-work all summer. Mr. Gibson states that the work uncovered two new veins, one of which, striking east-west, was exposed for about 80 feet, showing from 1 to $1\frac{1}{2}$ feet of wellmineralized quartz, from which good assays were obtained. Another vein on the *Mayfower No.* 2 shows 6 inches of ore, assaying up to \$70 to the ton in gold, silver, and lead values, in a vein-filling several feet in width. The tunnel was also advanced a short distance. 1926:

pages A91 and A92

(See 1925 Annual Report.) This company was incorporated in 1924 with a capitalization of \$500,000, divided into 500,000 shares, with its registered office in the Winch Building, Victoria. A little more development was done in 1926 by way of extending the crosscut tunnel, which has for its objective the cutting to the northward extension of the *Dunnoell* vein, which has been traced up to the line between the two properties. The work has not yet succeeded in finding the vein.

Emperor Mines, Ltd.

(See 1925 Annual Report.) This company was incorporated late in 1924 with a capitalization of \$1,500,000, divided into 1,500,000 ahares. The registered office is in the Standard Bank Building, Vancouver. No mining has been done since the big vein was cut early last winter. The mineralization consists

mainly of pyrite in a brecciated quartz and greyish medium-grained rock about 20 feet wide. An independent sampling is said to have averaged \$12 a ton, or about a border-line milling-ore. A small vein showing some pyritization was encountered about 200 feet from the big vein. Short drifts were run each way; in the north drift the vein opened up to about 5 feet in width of promising-looking mineralization.

It is one of the best-equipped small properties in the country and is just at the interesting stage where all dead-work has been done and the exploration of the vein can be proceeded with. An average of \$12 a ton across 20 feet would seem to be sufficiently encouraging to attract development capital.

1927:

page C90

Emperor Mines, \$1,500,000, divided into 1,500,000 shares, the registered office being in the Standard Bank Building, Vancouver. The claims owned by the company Ltd. are situated north of the pkeview, or about straight up the hill from the Dunnoell. I do not believe anything has bet done on the property since late in 1925. The showing is a wide silicified ledge in argillite \ mineralized with small amounts of iron, lead, and zinc sulphides. Small specks of chalcopy, ite can be found and in one of the surface cuts a number of small patches of a fibrous mineral were observed, which may be jamesonite.

This company was incorporated in December, 1924, with a capitalization of

Very little work has been done on the surface, but several hundred feet of crosscutting has been done. At an elevation of 3,130 feet No. 1 tunnel was driven 120 feet to the vein, cutting it at 80 feet below the surface, and drifts were run both ways for 80 feet along the hanging-wall side of the vein. Sulphides are rather inconspicuous, except in the face of the south drift. where sphalerite and a little galena can be seen. Rather than continue drifting on this level, No. 2 tunnel was driven to intersect the vein about 300 feet south and 250 feet lower than No. 1 tunnel. This was driven 470 feet to the hanging-wall of the vein and continued another 83 feet, about 21 feet of which is ledge-matter. No drifting has been done on the vein from this tunnel. Samples taken in the crosscut indicate that the values are very low, running about 50 cents in gold to the ton, 1 to 3 oz. in silver to the ton, 3 to 7 per cent. zinc, and less than 2 per cent. lead.

A new vein is said to have been discovered higher up the hill, but as nothing has been done on it I did not examine it.

1S28:

pages C101 and C102

This company, with registered office in the Beaman Building, Stewart, was Mayflower Mining incorporated in March, 1928, to acquire the Mayflower group of claims, con-Co., Ltd. (N.P.L.). sisting of the Type. Maynower, Maynower Fraction, Maynower 2, 5, and 4, and the Alice Nos. 1, 2, 3, and 4 claims. The group is approximately 5 miles from

Stewart, on the east side of the Bear River valley. The cabin and showings are at about 300 feet elevation and are reached by a trail which leaves the road into the Ben Ali showings of the Dunicell property, a hundred yards or so before the road reaches the small creek flowing along · the foot of the mountain.

The main showing is a vein in the small stock of granitic material which contains the Ben Ali vein of the Dunwell property. Both veins are shear-zones in the granitic material, mineralized with quartz, pyrite, and chalcopyrite, and both are known to contain gold values. The Mayflower vein on the Tyee claim strikes north-west and dips at 65° to 70° north-east. It is exposed just behind the cabin for a distance of 50 feet or less. In the northerly cut it is about 12 feet wide. A shaft, now filled with water, has been sunk on the vein at the southerly cut,

leaving exposed only about 3 feet of the hanging-wall section of the vein. A sample of this 3 feet assayed: Gold, trace; silver, 3.2 oz. to the ton; copper, 1 per cent.

A few feet below camp elevation, in a small creek-bed, is the portal of a 120-foot crosscut tunnel driven towards the vein. Between 27 and 30 feet from the face is a well-mineralized vein, from which a 3-foot sample, taken along the south wall of the crosscut, assayed: Gold, 0.14 oz. to the ton; silver, 1.1 oz. to the ton; copper, trace. Near the face a small stringer was found drifted on to the right in a S. 60° E. direction for 21 feet. A third small vein was cut at the portal of the tunnel.

The samples taken show that gold is found in the vein in encouraging amounts, and it is possible that further exploration might discover better values than are recorded here. Some high gold values are reported from this zone in previous Annual Reports.

1934:

page B23

King. This group of fourteen claims is owned by J. Rochfort and associates, of Stewart, and adjoins the *Dunwell* on the north-east and lies northerly of the *Lakevicw* group. The claims embrace a 1934 restaking of the property of old Emperor Mines, Limited. The property is reached by a good trail branching from the *Lakeview-Dunwell* trail. Considerable underground work was carried out by the Emperor Mines, Limited, and the property equipped with necessary buildings at elevation 2.880 feet and efficient machinery for exploratory work. The property is referred to in the 1920, 1925, 1926, and 1928 Annual Reports and also in the Geological Survey of Canada Memoir 159, 1929.

The main showing consists of a well-defined quartz vein about 15 feet wide, strike about north 15 degrees east, dip 50 degrees west, apparently following a fault-plane between two dykes. The vein is generally sparsely mineralized with pyrite, some chalcopyrite, galena, jamesonite, and possibly a manganese mineral. The strike and dip of the vein are similar to the strike and dip of the siliceous argillites of the Bitter Creek series. The latter are intruded by numerous granitic and lamprophyre dykes.

Very little surface work has been done, but two crosscut adits have intersected the main vein showing good definition but sparse mineralization. A sample across 5 feet of the bestmineralized section of the vein on the east side of the lower crosscut at elevation 2,880 feet assayed: Gold. 0.04 oz. per ton: silver. 3.9 oz. per ton; copper, 0.1 per cent.; lead, 0.5 per cent.; zinc. 14 per cent. An old adit ("McKay") and cut southerly from the surface outcrop above the upper adit shows intense oxidation evidently derived from sulphide mineralization. Other showings are reported but were not examined.

In view of the good width and definition of this vein and the fact that the small amount of work, particularly on the surface, along the strike has not adequately prospected this structure for the possible occurrence of ore-shoots, it is considered to be worthy of further exploration. This could constructively be carried out by surface-trenching and open-cutting both north and south of the known outcrop.

1935:

page B26

Mayflower.— (See Annual Reports of Minister of Mines, 1918, 1922, 1925, 1928, 1930, and Geological Survey of Canada Memoir No. 159.) This group of eight claims, situated on the east side of the Bear river, is reached by a good trail about half a mile long commencing at a point about 6 miles by road from Stewart. In former years open-cuts and adits were excavated on showings in proximity to the cabin. In recent years a new discovery was made in an open-cut at elevation of 800 feet in a creek-draw several hundred feet south of the above work. In the late autumn further exploration of the property was taken over by Clay Porter, of Hyder, and underground operations commenced. 1936:

page 817

Mayflower.

This group of ten claims and fractions owned by H. P. Gibson, of Stewart, is situated on the east side of the Bear River Valley, about 6 miles from seaboard at the village of Stewart, Portland Canal Mining Division. The

southerly claims of the group are adjoined on the south by the northerly claims of the Dunwell Mines, Limited, and to the east the group is adjoined by the *Silver Ledge* group and Victoria Mines property. To the west the claims abut on the Bear River Valley bottom. The property is reached by the Bear River Motor-road from Stewart for 6 miles to elevation 200 feet, from where a trail switchbacks for half a mile up the 20-degree rocky slope of the mountain to the cabin at elevation 410 feet. The west slope of the mountain, along which the claims are located between 200 and 1,500 feet elevation, is thickly timbered with hemlock, cedar, and some spruce, and slopes through rock bluffs and ridges at an average angle of about 27 degrees to the Bear River Valley.

The claims were staked about twenty years ago and in 1928 the Mayflower Mining Company. Limited, was formed and carried out some underground exploration. Since that time intermittent exploration has been done by lessees and during 1936 some prospecting was done. The original discoveries were in the vicinity of the cabin, but about three years ago a new discovery was made several hundred feet southerly of these.

The rock formation of the locality is a small stock of granodiorite intrusive into argillite, tuffaceous sediments, and tuffs of the Bear River formation (lower Hazelton group). The exposed granodiorite occupies a strip aligned north-south, parallel with the Bear River Valley for a length of about 6,000 feet and a width of about 1,200 feet between the valley-bottom at 200 feet elevation to around 1,500 feet elevation. The granodiorite is generally phanerocrystalline with accessory biotite and hornblende. Major jointing strikes north 30 to 60 degrees west and dips steeply south, and minor jointing strikes north and dips steeply east.

The mineral deposit consists of quartz veins and lenses occupying joint-planes in granodiorite, locally sheared, and mineralized with pyrite, chalcopyrite, some galena and sphalerite. On the adjoining *Ben Ali* claim of the Dunwell Company a vein in the southerly section of the granodiorite stock, with similar mineralization as those on the *Mayflower*, contains good gold values and has been extensively mined. 1936: page B17

Mayflower Group. Plan and Section of Workings.

On the Type claim of the Mayflower group at elevation 410 feet and about 300 feet east of the cabin a series of open-cuts along the edge of a low bluff expose irregular and lenticular quartz veins and silicification mineralized with pyrite and some sphalerite in blebs and patches. In the most northerly cut a well-defined quartz vein well mineralized with pyrite is exposed, striking north 2 degrees east and dipping 65 degrees east. The vein is obscured by overburden to the north and by talus in the cut. In the southerly extension of the cut along the bluff two patches of quartz, 12 inches wide and well mineralized with pyrite, are exposed on the footwall side of a fault which strikes north-easterly and dips 60 degrees south-easterly. A sample across the most westerly quartz-pyrite patch assayed: Gold. 0.04 oz. per ton; silver, 2.6 oz. per ton; copper, nil. The vein or veins exposed in these cuts are probably faulted by "A" fault, which is exposed in the cut about 20 feet south of the most northerly cut. The surface
1936 cont'd:

page B18

exposures south of Fault "A" cannot be definitely correlated with the quartz vein in the north cut.

About 5 feet south of Fault "A" a quartzose shear 2 feet wide is exposed in a cut along the brow of the bluff. This strikes south 60 degrees east and dips 70 degrees south-westerly and is sparsely mineralized with pyrite. A sample across 2 feet in this exposure assayed: Gold, 0.04 oz. per ton; silver, 0.8 oz. per ton; copper, nil.

About 10 feet south-easterly of this a crescent-shaped cut exposes about 8 feet of siliceous replacement in granodiorite moderately mineralized with pyrite at the north side of the cut and apparently contained in a weak structure striking north-west and dipping steeply southwest. About 5 feet south of this cut siliceous replacement 3.5 feet wide, sparsely mineralized with pyrite, is exposed on the brow of the bluff. This structure strikes south 41 degrees east and dips 75 degrees south-west, and a sample across 3.5 feet assayed: Gold, trace; silver, 0.4 oz. per ton; copper, nil. A shaft adjacent to the crescent-shaped cut was filled with water. These structures have not been traced on the surface beyond the cuts where possible continuity is obscured by heavily-timbered and somewhat bouldery overburden.

At elevation 390 feet in the bed of a small creek 120 feet west of these cuts, an adit has been driven north 77 degrees east for 99 feet in granodiorite. At the portal a quartz vein 12 inches wide moderately mineralized with pyrite, striking north 15 degrees west and dipping 30 degrees north-easterly, is intersected. At 71 feet a quartz vein 2.5 to 4.5 feet wide well mineralized with pyrite and sparse galena and sphalerite, striking north 33 degrees west, and dipping 60 degrees south-westerly, is intersected. A sample across this vein, 4.5 feet wide on the south wall of the adit, assayed: Gold, 0.16 oz. per ton; silver, 5.2 oz. per ton; copper, nil. At 99 feet the adit intersects a quartz vein 14 inches wide, striking north 10 degrees west and dipping 70 degrees west. This vein is sparsely and irregularly mineralized with blebs and small patches of pyrite. A sample across 14 inches in the south wall of the adit assaved: Gold, trace; silver, 0.6 oz. per ton; copper, nil. This vein should junction with the second vein at about 50 feet south of the adit. At the north wall of the adit the vein is intersected by a fault striking north 28 degrees west and dipping 85 degrees south-westerly. This is cuite possibly Fault "A" exposed in the surface cuts. For some unknown reason the vein has been left unexplored in the south wall of the adit and the fault was drifted on for 36 feet, showing a few narrow patches of barren quartz. The working is then turned north 70 degrees east for 36 feet in barren granodiorite.

Several hundred feet southerly of these showings a new discovery was made in a deep creek-draw. This consists of a sheared quartz vein locally well mineralized with pyrite, chalcopyrite, some sphalerite and galena, striking north 66 degrees west and dipping 67 degrees south-westerly. The vein occurs in granodiorite close to the contact with the overlying volcanics of the Bear River series. The vein outcrops in the steep bed of a creek-draw and at elevation 800 feet an open-cut has been excavated on the showing. This exposes a width of 41 inches of sheared quartzose vein material, of which 18 inches on the hanging-wall is well mineralized. A sample across 41 inches at the bottom of the cut assayed: Gold, 0.2 oz. per ton; silver, 1.8 oz. per ton; copper, trace; lead, nil; zinc, 2 per cent.

Continuity of the vein above and below this showing is obscured by overburden and sliderock in the creek-draw, but at about elevation 1,500 feet an exposure of similar mineralization occurring in hybrid contact-rocks may possibly be correlated with the lower exposure. During 1935 some further exploration of this occurrence was carried out in an adit by a lessee. The results of this work are reported to have been discouraging.

In view of the good gold values in quartz veins similarly mineralized and occurring in the same granodiorite stock on the *Ben Ali* claim, adjoining the *Mayflower* on the south, further exploration of the *Mayflower* veins and detailed surface-prospecting of the *Mayflower* ground is warranted. 1913:

(

pages 42 and 43

The Main Reef.

This claim is situated about half a mile north of the Sunbeam and may possibly be on the same zone of fissuring. The vein explored is narrow, in places practically a single, well-defined line of fissuring, bordered by crushed slates. It overlies a large, westerly dipping dioritic dyke, which forms the foot-wall of the vein in portions of its course, and in others is separated from it by a few feet of argillite.

The vein or fissure has a general direction of N. 10° E. but curves slightly along its course, and it has a westerly dip of from 30° to 50°. It has been explored by a drift for a distance of 240 feet. Near the mouth a small ore-shoot up to 30 inches in width and about 40 feet in length was encountered, and light mineralization continues to the face. Near the end of the drift small bunches of galena in a calcite gangue occur in the fractured slates.

The ore consists of pyrite, galena, and blend in a calcite gangue. Four tons of picked ore, shipped, yielded:—

Gold, 0.7 ounce; silver, 20.94 ounces; lead, 23 per cent.

Several other showings on the claims have been prospected, one situated at the base of the same large dyke which underlies the main lead. This consists of 4 to 5 feet of silicified slates, mineralized with pyrite, blende, and some galena and chalcopyrite.

OTHER SHOWINGS IN THE VICINITY OF GLACIER CREEK.

Tyee.

The Tyee is situated on the Main Reef trail from Bear river at an elevation of 300 feet above the valley. The argillites here are cut by a granitic stock, and the showing occurs in fractured granite. The development work consists of a shaft, filled with water at the time of my visit, and an open-cut 40 feet to the north. Three feet of shattered and partially silicified granite, holding considerable pyrite and occasional bunches of chalcopyrite, are exposed in the cut. Annual Reports of the Minister of Mine, British Columbia

1965: page 52

> Emperor (Silver Arrow Mines Ltd.)*

> > 1

(56° 129° S.W.) Company office, 800, 789 West Pender Street, Vancouver 1. F. S. Hofman, president. The company holds 65 claims by record on the north side of Glacier Creek about 6 miles north of Stewart. Work at the claims during 1965 included prospecting and tracing surface min-

eralization. About 300 feet of the Emperor vein was traced and stripped, the old adits were cleaned out, and an old bunk-house rehabilitated.

[Reference: Geol. Surv., Canada, Mem. 175, 1935, pp. 113-114.]

1929:

pages 40, 41 and 42

TYEE GROUP

The claims of the Tyee group are at an elevation of 500 feet on the east side of Bear river between Glacier and Bitter creeks. The country rock is a stock of granodiorite intrusive into volcanic rocks. A quartz vein 1 to 5 feet wide and 75 feet long is exposed by a shaft and open-cuts. The vein strikes northwest, is vertical, and consists of quartz and sulphides in approximately equal amounts by volume. The sulphide is chiefly pyrite, but some chalcopyrite is present. A crosscut adit 60 feet below the vein-outcrop, has not been driven far enough to reach the vein. The vein matter is not of commercial grade, but locally assays several dollars per ton in gold.

MAYFLOWER GROUP

The Mayflower group is 1,000 feet above sea-level east of Bear river between Glacier and Bitter creeks and adjoins the Tyee group on the east. The country rocks are tuffaceous sediments and tuffs of the lower part of the Bear River formation. The stock of granodiorite on which the Tyee is located outcrops just below the Mayflower claims.

The workings consist of several open-cuts and three short adits. A shear zone 2 feet or less wide extends up hill in an easterly direction for 300 feet in the bottom of a small creek. The zone contains a quartz vein very sparsely mineralized with sulphide. Several quartz veins, individually a little wider than the one in the shear zone, join it and the adits have been driven along these branch veins. Two of the branch veins are 1 to 3 feet wide and are well mineralized with pyrite, galena, sphalerite, and chalcopyrite. The bare metals, however, are not present in sufficient quantity to constitute commercial ore.

Figure 7. Plan showing vein system on Mayflower group.

Figure 7 shows the location of the veins exposed on the Mayflower group.

1929 cont'd:

EMPEROR MINES, LIMITED

The holdings of Emperor Mines, Limited, are situated between Glacier and Bitter creeks at an elevation of 3,000 feet. A good deal of snow was on the ground at the time the property was visited and some of the opencuts were not visible.

The country rock is argillite of the Bitter Creek formation striking north and dipping west at moderate angles. Numerous dykes and sills of quartz diorite, gabbro, and lamprophyre occur intruding the argillite.

Two quartz veins occur on the property. The veins are parallel, 200 feet apart, strike north, and dip 50 degrees west. The more easterly vein is 6 to 30 feet wide and has been traced by open-cuts for 500 feet. The other vein is 6 feet wide, is not known on the surface, and only in one place underground. The veins consist chiefly of quartz and a little calcite and are sparsely mineralized with pyrite, galena, sphalerite, and jamesonite. The smaller vein is a single body, but the larger one in places where so it is widest consists of closely spaced quartz veins separated by argillite.

The quartz, like that in other veins in the vicinity east of the Portland Canal fissure zone, is habitually drusy. The ore minerals are disseminated through the vein, but not in sufficient quantity to constitute commercial ore.

The underground development consists of three adits driven in an easterly direction to cut the large vein. The upper adit is a crosscut for 125 feet where it enters the large vein. A drift follows the vein for 60 feet. A fault with strongly marked horizontal grooves is the east wall of the vein in this adit. The next adit 200 feet southeast and 10 feet lower than the upper adit is 30 feet long and is little more than a large opencut on the large vein. The lowest adit 650 feet southwest of the upper adit and 180 feet lower is 950 feet long and reaches the smaller vein at 520 feet from the portal and the large one at the face. On this adit a fault with horizontal grooves is the west wall of the smaller vein. This fault is west of, and parallel to, the one in the upper adit.

1935: pages 113 and 114

Emperor Mines, Limited (Locality 68)

References: Annual Report of the Minister of Mines, British Columbia, 1923, 1924, 1925, 1926, and 1927; Geol. Surv., Canada, Memoir 159.

The holdings of Emperor Mines, Limited, are situated between Glacier and Bitter creeks at an elevation of 3.000 feet. A good deal of snow was on the ground at the time the property was visited and some of the opencuts were not visible.

Prior to 1925 the holdings were referred to as the North Line group.

The country rock is argillite of the lower part of the Hazelton group striking north and dipping west at moderate angles. Numerous dykes and sills of quartz diorite, gabbro, and lamprophyre occur intruding the argillite.

Two quartz veins occur on the property. The veins are parallel, 200 feet apart, strike north, and dip 50 degrees west. The more easterly vein is 6 to 30 feet wide and has been traced by open-cuts for 500 feet. The other vein is 6 feet wide, is not known on the surface, and only in one place underground. The veins consist chiefly of quartz and a little calcite and are sparsely mineralized with pyrite, galena, sphalerite, and jamesonite. The smaller vein is a single body, but the larger one in places where it is widest consists of closely spaced quartz veins separated by argillite. The quartz, like that in other veins in the vicinity east of the Portland Canal fissures zone, is habitually drusy. The ore minerals are disseminated through the vein, but not in sufficient quantity to constitute commercial ore.

The underground development consists of three adits driven in an easterly direction to cut the large vein. The upper adit is a crosscut for 125 feet where it enters the large vein. A drift follows the vein for 60 feet. A fault with strongly marked horizontal grooves is the east wall of the vein in this adit. The next adit 200 feet southeast and 10 feet lower than the upper adit is 30 feet long and is little more than a large open-cut on the large vein. The lowest adit 650 feet southwest of the upper adit and 180 feet lower is 500 feet long and reaches the smaller vein at 270 feet from the portal and the large one at the face. On this adit a fault with horizontal grooves is the west wall of the smaller vein. This fault is west of, and parallel to, the one in the upper adit. 1935: page 130

Mayflower Group (Locality 70)

References: Annual Report of the Minister of Mines, British Columbia, 1918, 1922, 1925, 1928, and 1930; Geol. Surv., Canada, Memoir 159.

The Mayflower group is 1,000 feet above sea-level east of Bear river between Glacier and Bitter creeks and adjoins and lies east of the Tyee group. The country rocks are tuffaceous sediments and tuffs of the lower part of the volcanic member of the Hazelton group. The stock of granodiorite on which the Tyee is located outcrops just below the Mayflower claims.

Figure 11. Plan showing vein system on Mayflower group.

The workings consist of several open-cuts and three short adits. A shear zone, 2 feet or less wide, extends up hill in an easterly direction for 300 feet along the bottom of a small creek. The zone contains a quartz vein very sparsely mineralized with sulphide. Several quartz veins, individually a little wider than the one in the shear zone, join it and adits have been driven along these branch veins. Two of the branch veins are 1 to 3 feet wide and are well mineralized with pyrite, galena, sphalerite, and chalcopyrite. 1935: pages 148 and 149

Superior Mines, Limited (Locality 67)

Reference: Annual Report of the Minister of Mines, British Columbia, 1925.

Superior Mines, Limited, was organized in 1925 to acquire a group of claims on Glacier creek adjoining and lying north of the Emperor group. A little work was done on two, narrow, mineral bodies on the sides of a lightcoloured dyke. Good values in silver are reported.

Tyee Group (Locality 71)

References: Annual Report of the Minister of Mines, British Columbia, 1909 and 1921; Geol. Surv., Canada, Memoirs 32 and 159.

The claims of the Tyee group are at an elevation of 500 feet on the east side of Bear river between Glacier and Bitter creeks. The country rock is a stock of granodiorite that intrudes volcanic rocks. A quartz vein 1 to 5 feet wide and 75 feet long is exposed by a shaft and open-cuts. The vein strikes northwest, is vertical, and consists of quartz and sulphides in approximately equal amounts by volume. The sulphide is chiefly pyrite, but some chalcopyrite is present. A crosscut adit 60 feet below the veinoutcrop has not been driven far enough to reach the vein. The vein matter locally assays several dollars a ton in gold. 1935: page 150

Victoria Mines, Limited (Locality 69)

References: Annual Report of the Minister of Mines, British Columbia, 1909, 1921, 1924, 1925, and 1926; Geol. Surv., Canada, Memoirs 32 and 159.

The holdings of Victoria Mines, Limited, consist of the Dandy and Main Reef groups situated at the northern end of the Portland Canal fissure zone. The country rock is argillite of the upper part of the lower sediments of the Hazelton group. Volcanic rocks overlie the sediments on the lower part of the property and the lowest adit begins in volcanic rock. Two adits on the property are each 400 feet long. Seven others are individually 60 feet or less in length.

Several veins striking north and dipping west have been found on the property. The Main Reef vein is known to be at least 700 feet long and varies from 1 to 4 feet in width. It is exposed on the surface 100 feet above No. 2 adit, has been drifted on for 400 feet in No. 2 adit, and is crosscut by No. 4 adit 120 feet lower. The vein, therefore, is known to extend to a depth of 220 feet. In most places the vein is in contact with a narrow, fine-grained dyke. The vein consists of quartz mineralized with pyrite, galena, and sphalerite. In most places the vein is below commercial grade, but a small shoot of ore from which some ore has been shipped exists in No. 2 adit near the portal.

Another vein is crosscut by No. 4 adit. This vein is 3 feet wide, is associated with a narrow, parallel dyke. and consists of quartz sparsely mineralized with pyrite, galena, and sphalerite. The vein is not known elsewhere on the Victoria holdings. Several other quartz sulphide veins opened by short adits exist farther up the hill. Only one of these, No. 10, is shown on Figure 1. The veins are 1 to 4 feet wide and consist of quartz mineralized with pyrite, galena, and sphalerite. The two uppermost veins contain a little chalcopyrite and arsenopyrite, as well as the usual pyrite, galena, and sphalerite.

A 4-ton shipment of ore made in 1909 yielded 0.7 ounce of gold, and 20 ounces of silver a ton and contained 23 per cent lead. A 7-ton shipment in 1925 yielded 0.6 ounce of gold and 30 ounces of silver a ton and contained 35 per cent lead and 10 per cent zinc.

APPENDIX 2

Table of analytical results Soils

Soil	geochemistry
	,

,

Page 1 of 4

-

.

NORTHING	EASTING	Au	Ag	Cu	Pb	Zn	Sb	Co	As	Bi	Mo
1000	-340	20	0.8	133	40	183	7	24	51	2	4
1000	-320	1.0	0.5	53	26	86	ź	9	39	2	2
1000	-280	6.0	0.4	53	22	199	2	22	28	2	2
1000	-500	8.4	0.8	34	16	93	2	6	39.	2	3
1000	-480	19.2	0.5	74	29	123	2	19	71	2	8
1000	-400	13.2	1.5	90 50	22	200	2	20	53	2	5
1000	-260	10.4	0.8	29	16	76	2	4	24	2	4
1000	-240	25.2	0.3	20	3	212	2	13	5	2	1
1000	-140	8.8	0.7	45	19	100	2	8	39	2	5
1000	-80	10.5	0.6	34	33	57	5	3	23	2	5
1000		9.7	22	23 46	23	86	3	6	45	2	2
1000	õ	8.6	0.7	46	15	78	2	7	36	2	4
900	20	9.2	0.3	80	25	1282	2	15	9	3	4
900	40	12.2	0.7	52	21	118	2	4	22	2	10
900	60 140	12.2	0.4	116	26	148	2	23	58	2	3
900	180	8.3	0.5	47	33	110	3	ň	37	2	4
900	200	27.3	0.5	56	24	108	3	9	46	2	3
900	220	17.0	0.3	46	23	104	2	8	41	2	4
900	240	16.9	0.4	61	29	107	3	15	43	2	3
900	260	21.0	0.5	154	29	281	23	35	930	2	2
900	300	9.9	0.4	63	7	83	2	15	132	2	ĩ
850	0	16.5	0.2	22	19	79	2	5	28	2	2
850	50	6.1	0.3	114	18	101	2	7	25	2	4
850	100	21.5	1	75	19	105	22	11	44 47	2	2
850	180	14.6	0.6	57	23	85	2	8	36	2	2
850	250	1.5	0.2	17	10	71	2	ň	93	2	1
850	300	10.6	0.3	63	7	71	2	15	13	2	2
800	0	1.4	0.5	61	17	78	2	5	103	2	1
800	100	9.0	0.2	53	8	56	2	5	25 70	2	2
800	150	30.3	0.1	149	16	92	3	12	26	2	6
800	200	6.9	0.4	79	15	95	2	8	38	2	2
800	250	6.5	0.3	82	25	132	2	22	170	2	2
750	200	15.0	0.4	40	50	69 80	4	7	33 47	2	4
750	250	11.5	0.3	57	30	104	2	10	37	2	2
750	300	6.8	0.2	34	19	49	2	4	34	7	3
700	50	12.6	0.4	48	18	131	3	2	153	2	5
700	200	7.1	0.2	26	13	44 136	2	3	44 749	2	3
700	300	61	0.1	92	11	50	3	5	128	2	
650	0	23.6	0.3	54	16	55	2	4	130	2	3
650	50	6.6	0.3	105	20	176	4	32	186	2	5
650	60	7.2	2.2	141	12	56	2	3	306	2	4
650	300	36	0.2	123	6	53	2	8	32	2	1
600	0	26.5	0.8	39	22	62	5	4	234	3	้เรื่
600	20	37.5	1.4	219	19	87	6	4	170	4	3
600	40	47.6	0.8	141	18	105	7	6	827	2	7
600	160	45.9	01	74	30 22	84	- 9	5	36∠ 71	2	21
600	180	12.4	0.3	64	23	86	2	6	99	2	5
600	260	15.8	0.2	59	9	103	6	8	19	2	1
600	280	12.2	0.7	65	18	73	3	8	64	2	3
550	250	1.9	0.2	44	10	4 0 58	2	১ ∡	57	2	2
500	50	21.7	1.3	72	48	213	6	4	127	ž	ż
500	150	15.8	0.2	54	25	103	2	7	72	3	3
450	250	13.8	0.7	107	27	135	2	12	93	3	3
450 ∡00	300	3.8	0.2	84 54	22	62 101	10 T	5	59 70	2	4
400	20 60	19.8	0.5	103	28	131	9	12	55	2	5
400	100	56.8	0.9	68	33	76	ź	5	272	3	2
400	180	24.8	0.3	123	30	141	8	24	113	2	2
400	280	8.8	0.4	85	25	114	7	11	60 70	2	2
400	-400	13.0	0.5	91 31	31	40 56	2	4	72	10	0 12
950	-320	14.3	0.1	94	31	230	14	9	54	2	4
950	-240	5.9	0.4	22	33	158	7	9	36	2	3
950	-220	4.1	0.1	50	22	131	7	25	50	2	4
950	-200	6.3	0.1	51	24	103	12	15	47	5	3

Soil geochemistry

1

.

Page 2 of 4

-

NORTHING	EASTING	Au	Ag	Cu	Pb	Zn	Sb	Co	As	Bi	Mo
metres	metres	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
950	-180	13.6	0.1	47	29	67	9	8	47	5	9
950	-160	22.0	0.4	90	.30	212	2	20	20	7	6
950	-120	77	0.7	30 43	50	106	á	48	52	6	7
950	-100	15.2	04	43	31	94	ź	13	52	ž	ż
950	-80	7.6	0.1	43	29	89	3	9	53	6	5
950	-60	11.0	0.1	34	30	68	10	8	45	3	5
950	0	12.5	0.9	48	24	75	3	6	28	2	6
900	-260	11.5	0.1	88	27	93	11	21	49	2	3
900	-220	13.2	0.4	63	40	272	12	25	72	2	6
900	-180	16.9	0.1	54	33	83	8	11	58	3	5
900	-160	13.9	0.1	53	44	85	10	.9	130	2	5
900	-140	11.7	0.1	00	40	157	5	12	54	2	ć
900	-120	78	0.5	22	30	105	5	10	40	2	7
850	-280	35.1	0.1	79	30	443	16	20	62	2	5
850	-260	9.0	0.3	70	31	199	10	13	54	5	6
850	-220	5.6	0.2	49	32	134	17	11	50	2	5
850	-200	25.9	0.6	143	53	127	27	15	150	2	5
850	-90	22.5	0.1	97	43	150	17	22	55	6	7
850	-80	19.8	0.1	49	23	98	7	11	346	2	6
800	-260	16.3	0.1	40	35	105	4	10	113	5	10
800	-105	10.4	0.1	37	42	76	4	11	48	5	13
750	-330	7.0	0.4	36	33	91	5	13	48	3	12
750	-293	10.7	1.0	30	02 36	233	11	10	00 44	2	5
700	~260	27.0	0.1	29	34	72	3	11	257	2	ğ
700	-200	33.9	0.1	132	50	169	7	35	69	4	14
700	-160	36.8	0.1	72	41	114	16	9	378	4	7
700	-40	10.8	0.8	126	32	54	9	10	129	2	4
650	-290	42.7	0.7	63	46	153	10	6	367	4	10
650	-150	78.9	0.8	160	22	148	2	60	303	4	6
650	-110	33.3	2	175	9	53	2	4	367	3	2
600	-137	38.9	0.3	136	37	147	2	11	184	5	13
600	-80	241.5	0.6	122	55	70	2	2	525	5	7
550	-20	23.0	0.4	32	45	80 85	2	ి	312	4	4
500	-200	22.5	0.0	36	46	46	2	2	50	2	5
450	-260	21.9	2	50	37	94	2	48	79	2	3
450	~200	18.3	าโ	99	21	88	2	6	41	2	2
450	-110	22.1	0.2	38	19	63	ž	2	131	2	8
450	-80	27.8	0.6	31	32	51	2	6	423	2	5
450	-60	7.8	1.2	54	43	84	3	5	21	2	6
450	-40	19.9	0.4	49	27	74	5	4	61	2	6
400	~250	29.2	0.2	41	22	48	2	4	49	2	6
400	-220	5.5 15.0	0.7	41	20	120	ა ი	7	52 50	2	27
400	-1-0	18.7	0.2	55	23	138	2	7	42	2	3
400	-30	11.2	1.1	72	18	59	2	4	22	2	2
300	-220	12.6	0.7	80	34	138	2	10	41	ž	5
300	-160	13.8	0.3	18	26	63	2	5	26	2	5
300	-140	7.9	1	47	22	71	2	6	35	2	5
300	-25	17.7	0.5	26	29	50	2	4	61	2	5
300	0	11.4	0.2	26	15	56	2	5	54	2	6
200	-80	3.4	0.8	35	13	54	2	5	4/	2	2
200	-60	24.5	0.5	40	10	162	2	57	5Z 453	2	4
100	-100	11.2	0.1	42	18	95	2	4	180	2	17
0	-160	15.9	0.5	32	56	309	2	83	200	2	28
950	20	49.6	0.1	132	13	209	4	22	15	2	2
950	40	11.9	0.7	15	19	62	2	4	14	5	3
950	60	8.1	2.3	48	26	78	2	5	29	3	3
950	80	6.7	1.8	99	10	102	2	8	37	2	3
950	100	7.2	0.7	41	14	87	2	14	92	3	1
950	120	8.7	0.3	41	19	102	2	8	26	6	3
950	140	0.1 779	0.5	38	12	49	2	D L	25	4	5
950	200	57.0	1.1	40	17	72	4 2	0	10 7	3 7	1
900	300	5.0	0.2	36	20.	67	2	9 8	44	4	, 1
900	340	5.2	1.3	54	14	61	2	ž	8	5	2
900	380	6.7	0.1	83	29	109	2	16	126	3	7
900	420	5.4	1	220	18	102	2	9	36	5	15
900	460	17.7	2.3	328	721	218	3	9	64	3	3
800	320	7.1	0.1	66	21	157	2	13	92	4	1
800	360	13.4	1.9	206	28	374	3	34	321	4	15
800	400	3.4	0.3	156	18	197	2	12	60	6	3

(...

Soil	aeochem	istry

-

•

NORTHING	EASTING	Au	Ag	Cu	Pb	Zn	Sb	Co	As	Bi	Mo	
metres 800	metres 420	ppb	0.5	ppm 58	ppm 1 1	ppm 85	ppm 2	ppm	ppm	ppm	ppm	
800	440	3.4	0.2	351	9	74	ź	47	13	5 4	9	
800 700	480	6.3	0.2	321	17	112	2	16	62	3	3	
700	380	10.6	0.5	32 84	23	94 88	2	15	173	4 ⊿	4	
700	420	3.8	0.2	235	7	82	2	12	19	4	5	
700	440 460	5.5	0.4	33 74	10	43	2	4	18	6	10	
700	490	2.7	0.2	102	8	68	2	13	12	4	1	
700 600	500 360	3.3	0.1	71	10	56	2	5	10	3	6	
600	420	0.9	0.3	100	23	150	2	12	82 4	2	2	
600 600	440	7.9	0.3	55	37	77	2	6	47	5	8	
600	480	2.5 6.5	0.4	98 93	13	62 88	2	6 8	16 26	3	5	
600	500	11.4	0.5	238	7	67	ŝ	20	9	5	4	
500	470	6. 4 3.0	0.3	150	14	89 59	2	7	60	4	3	
500	480	4.3	0.9	119	12	55	2	6	4	6	3	
500 500	500 520	5.9 6.1	0.7	115	98	193	2	14	12	2	2	
400	340	1.0	0.1	59	11	118	2	7	293	2	1	
400 400	380 400	9.3 3 9	0.1	68 60	15	102	2	10	129	2	2	
300	20	7.1	0.1	40	18	545 69	2	4	36 67	8	1	
300 300	100	8.2	0.3	52	35	81	2	4	41	2	10	
300	240	22.6	0.2	55 60	22	96 93	2	14 9	2131	2	12	
300	350	14.6	0.1	61	21	82	2	7	103	4	š	
300	390	12.0	0.1	54 105	15	79 72	2	7	66 144	5	6	
200	40	16.0	0.6	60	50	284	2	7	82	2	19	
200	80 80	16.2	0.7	56 60	30 17	151	2	7	59	4	16	
100	40	11.5	1.4	65	50	71	2	9	119	2	6	
100	60 80	7. 4 8.4	0.1	22 61	14 24	75 86	2	1	12	2	1	
1600	140	11.0	0.9	70	16	60	2	7	38	2	13	
1500	BL 80	7.6	1.2	175	13	126	2	13	24	2	4	
1500	200	19.2	0.1	108	33	310	2	17	50	2	4	
1400	BL 20	9.5 36.0	0.1	44 77	23	86	2	7	28	2	7	
1400	120	10.1	0.4	93	32	129	2	12	40 40	2	4	
1400	140	12.6	0.8	63	16	77	2	6	35	2	5	
1400	200	8.9	1.1	o∠ 76	28	68	2	19 7	39	7	5	
1400	240	9.4	0.5	58	24	87	2	8	54	2	4	
1300	40	19.6	0.7	57	31	372 98	4 4	43	55	4	8	
1300	60	16.0	1	51	30	73	2	6	58	2	6	
1300	120	11.7	0.7	57 82	23	94 101	2	8	59	2	5	
1300	180	6.4	0.1	100	39	102	2	8	33	3	3	
1300	200 220	11.3	1.8	48	23	69 100	2	6	47	2	4	
1300	240	13.1	0.3	18	25	38	ź	6	57 39	2	5	
1300	260 BI	24.0	0.4	185	36	221	2	13	40	4	9	
1200	140	9.2 26.4	0.3	70	32 30	86 96	2	11	44 48	2	9 3	
1200	160	6.2	0.4	42	26	70	2	10	46	ź	5	
1200	200	6.0 9.5	0.7	58 80	31 44	92 117	2	12	49 30	2	13	
1200	280	10.5	0.4	138	27	99	2	35	31	2	6	
1100	540 BL	8.8 6.0	0.4 3.7	93 45	29 23	239 68	2	9	29	4	7	
1100	20	36.7	1.9	257	611	751	2	26	36	2	36	
1000	40 20	24.8 51 1	0.4	33	40	68 50	2	7	39	2	7	
1000	60	11.6	0.2	36	32	62	2	8	37	2	5	
1000	100	8.9	0.2	85	42	129	2	19	48	2	3	
1000	140	11.4	1.4	45 162	24	88 350	2	15	32 69	2	6	
1000	220	17.0	0.4	44	53	150	2	49	92	2	8	
1000	360	5.4 5.3	0.3	44 38	23	68 85	2	12	20	2	2	

Soil geochemistry

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$

1

Page 4 of 4

NORTHING	EASTING	Au	Aσ	Cu	Ph	70	Ch	<u>^-</u>	•	. .	
metres	metres	000	DDW	DDM	man	0.000		00	A3	81	Mo
1000	380	33.6	0.8	140	11	90	2	17	ppm T	ppm	ppm
1100	-560	11.6	1.8	108	30	90	5	15	27	4	5
1100	-520	20.5	1.8	79	37	154	ŝ	13	20	3	3
1100	-380	16.5	0.4	45	18	732	2	17	137	2	8
1100	-360	23.2	0.5	60	29	361	4	20	22	2	3
1100	-340	3.1	2.9	46	19	04	2	29	35	2	3
1100	-180	8.7	2.4	134	21	379	2	24	200	2	4
1100	-160	15.3	1	61	24	170	5	24	288	2	17
1100	-100	17.2	0.6	865	18	690	8	44	21	2	4
1100	-80	18.5	4.3	218	26	113	7	20	221	4	9
1100	-60	9.8	2.4	98	26	71	5	17	4/	4	19
1000	-620	11.8	0.7	41	27	65	ž	6	20	2	19
1000	-600	14.6	0.2	66	26	92	ŝ	13	57	2	4
1000	~580	10.7	0.2	68	31	71	रे	7	70	5	2
1000	-560	13.2	0.2	49	30	108	5	17	40	2	y Y
900	-600	15.5	0.1	19	11	36	ž	6	30	4	2
900	-580	25.8	0.1	42	26	39	ž	ă	50	2	2
900	-560	23.8	0.3	88	20	117	2	10	47	2	5
900	-520	21.2	0.3	50	26	84	4	13	40	2	3
800	-520	21.2	0.3	42	22	69	2	11	109	ź	2
800	-500	11.5	0.1	67	24	94	5	12	60	2	4
800	-480	16.5	0.2	60	22	93	ž	10	146	5	*
800	-440	7.8	0.2	37	16	59	5	à	45	Ś	2
800	-420	36.2	0.1	56	26	85	ž	á	50	5	ے د
980	-500	29.6	0.6	32	23	73	3	10	40	2	5
840	-500	34.1	0.1	66	22	93	2	12	48	2	3
820	-500	10.2	0.3	42	20	70	2	10	42	2	2
760	-500	8.0	0.1	37	20	87	3	18	41	2	4

APPENDIX 3

Analytical certificates Soil

1

KRL Resources Corp. FILE # 91-2514

 \sum

10N 340U 2 53 26 86 .5 17 9 401 4.80 39 5 NO 1 22 1.3 7 2 69 .33 .06 20 42 1.22 209 .07 5 3.15 .02 .15 10N 320U 2 53 22 199 .4 36 22 936 8.34 28 5 NO 1 8 .2 2 2 276 .15 .061 3 119 3.83 139 .26 2 5.36 .02 .21 	2					ppm	. X	ppm	ppm	ି 🗶	*	ppm	ppm	ppm	andd audi	ppm	ppm	ppm	ppn	X	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	
	1	.15 .08 .21	.02 .01 .02	5 3.15 2 3.55 2 5.36	.07 .11 .26	209 49 139	1.22 .87 3.83	42 36 119	20 11 3	096 042 061	.33 .11 .15	69 72 276	2 2 2	7 2 2	22 1.3 8 .2 8 .2	1 2 1	ND ND ND	5 5 5	51 39 28	4.84 4.80 8.34	1528 401 936	24 9 22	44 17 36	.8 .5 .4	183 86 199	40 26 22	133 53 53	4 2 2	10N 340W 10N 320W 10N 280W
																													-
· ·																													
																										7			
	,																												
. 4																				ł						,			

ACME ANAI	[A]	L LA	BORJ	ATOR	IES	I.TD	•	8	52 E	. HA	STI	NGS	ST.	vi	্য	ER I	s.c.	Ve	5A 1	R6	1	PHON	E(60)4)2	53-3	158	FAX	(6).5	3-17	16
AA	GEOCHEMICAL ANALYSIS CERTIFICATE <u>KRL Resources Corp.</u> File # 91-2816 Page 1 1022 + 470 Granville St., Vancouver BC V6C 1V5 Submitted by: JOHN J. WATKINS Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na																	A A													
							KR	<u>l r</u>	<u>eso</u>	urce	<u>s</u>	Corr	.	J	lile	#	91-	-281	L6	Pa	ige	1									١
		6.95					1022	- 41	70 Gr	nvill	e St.	, Van	couve	r BC \	V6C 11	/ 5 (Submi	tted	på: ٦	iohn J	. WAT	KINS									i (1997)
SAMPLE#	Mo DOM	Cu	Pb	Zn	Ag	Ni	Co	Min	Fe	As	U DOM	Au	Th	Sr DOM	Cď	Sb	Bi	V	Ca X	P X	La	Cr bom	Mg X	ßa com	Ti X	8 / DOM	ul X	Na X	K		u# ob
100 5000	<u> </u>	77	44	07		40		200	7 00		<u> </u>		<u> </u>			<u></u>	<u>, rr</u>	4/2	47	0/2	· · · ·	70				FF***			 		
10N 480W	8	74	29	123	5	27	19	1243	5.14	71	5	ND	ź	7	.7	ź	ź	148	.06	.043	13	50	.00	55	812 ·	35.0	5.	.02	.05	1 19	.4 .2
10N 460W	3	90	6	280	1.3	33	20	2962	6.13	34	5	ND	1	33	1.6	2	2	94	.52	.231	- 4	58	2.58	94	. 10	2 6.1	й.	.02	.20	1 22.	.1
10N 420W	5	50	22	98	. .5	19	9	581	6.08	5 5	5	ND	1	8	·2	2	2	91	.08	.042	12	32	.80	52	<u>81</u>	3 2.1	33.	.01	.08	1 13,	.2
10N 260W	4	29	10	76	••	ĴŪ	4	205	5.22	24	2	ND	1	11		2	2	269	.07	.042	6	41	.82	65	.	2 2.1	5.	.02	.09	1 10.	.4
10N 240W	1	20	3	212	3.3	23	13	1974	6.75	5	5	ND	1	18	.6	2	2	170	.31	.058	2	141	3.95	85	.21	2 6.0	9.	.04	.13 🖁	1 25	.2
10N 140W	5	45	19	100	3 . 7	16	8	550	7.50	39	5	ND	1	12	.3	2	2	99	.07	.065	9	35	.77	68	.07	2 3.6	4 .	.01	.04	1 8.	.8
10N 080W	5	34	33	57		13	3	145	5.54	23	5	ND	1	16		5	2	86	.03	.047		31	.19	57	07	3 4.0	8.	.02	.06	10.	.5
10W 040W	- 4	23 66	23	84		11 18		282	2.0Y	24	2	NU	1	12	- 4	2 7	2	127	.20	053	10	20 20	1.37	40	0.UB	6 6.4	ю. Ж	.02	.U7 🔅	1 Y. 1 12	.(7
	£	40	51			10	Ŭ	LOL	0.00		,	AD.	•	•			6	107	.04		ſ	40		07		4 4.1					
10N 000BL	- 4	46	15	78	-7	22	7	296	6.11	36	5	ND	1	6	.2	2	2	90	.04	.044	9	32	.77	56	.08	4 2.6	50.	.01	.05 🖉	1 8.	.6
900N 020E	4	80	25	1282	83 3 .	26	15	1610	7.51	9	5	ND	1	8	2.3	2	3	187	.11	.074	5	197	2.94	22	14	2 6.4	8.	.01	.03	1 9.	.2
900N 040E 1	10	52	21	118		11	- 4	541	7.35	22	5	ND		7	.8	2	2	501	.04	037	17	68	1.15	45	18	24.0	16. 	.01	.06	1 12.	.2
900W 060E	5	70	10	72		12	25 A	575	6.20	50 50	5	ND ND		21		2	2	227	.09	054	7	40	1.50	- 03 71	23	2 4.3	15. 12	.01 02	.07	12	if a
/00111402	•						Ŭ		0.120		-	NU	•			-	•				•			••		E 01.		. VL			
900N 180E	4	47	33	110	5.	22	11	3530	7.62	37	5	ND	1	9	.5	3	2	84	.06	.104	8	- 31	.80	71	.07	3 3.5	5 1 .	.01	.04 👸	18	.3
900N 200E	3	56	24	108	. .5	22	2	630	7.19	66	5	ND	1	10	.2	3	2	87	.12	-140	9	32	1.01	58	.07	4 2.1	33.	.01	.11	1 27	.3
900N 220E	4 7	40	23	104		25	8 15	021	1.24		2	ND	1	9	.2	2	2	111	.06	-055	10	- 35	.85	- 28 57	16 00	5 2.2		.01	.10	11/	,U
900N 260E	3	56	29	115	83	26	9	497	5.22	45	Ś	ND	1	10	Š. 5	ž	2	67	.11	.060	10	36	1.13	67	07	3 3.0)3 .	.01	.06	1 16	.6
	-										-		•			-	-		••••												
900N 280E	2	154	27	281	1.0	48	- 35	2872	3.96	930	5	ND	1	21	2.4	3	2	45	.37	.309	19	61	.42	66	.06	2 5.9	8.	.01	.05	1 21	.0
900N 300E		65	10	85		20	15	444	5.74	132	5	ND	1	29	.8	2	2	129	.43	.097	3	90	2.02	52	. 20	24.4	15. 12	.02	.16	2	.9 E
850N 050F	2	114	19	101		15	7	210	3.30	25	7	NU	2	14		2	2	130	.00	-USI	ž	20	1 60	37	27	261	י כו ע	.UI 112	ου. λη	1 10,	.5
850N 100E	4	75	19	106	1.0	18	11	864	5.44	4	ś	ND	ž	6	3	ž	ž	87	.04	.065	10	65	.86	70	.09	3 5.		.01	.06	1 30	10
											_	•	_	_		_	_														_
850N 150E	3	81	18	95		21	8	546	6.60	<u>47</u>	5	ND	1	7	.5	2	2	89	.06	.070	10	36	. <u>74</u>	53	. D8	2 2.1	58.	.01	.07	1 21	.5
02UN 160E	2	57	25	85 71	39 -	20		470	6.12	30	2	ND		10		2	2	75	.06	.058	10	151	2.08	20	.U/	33.0	22 A	.U1 .01	.U/ 8	A 14	.0 5
850N 300E	2	63	7	71		15	15	1011	5.87		ś	ND ND	-	23	7	5	5	177	. 17	138	5	- 95	1.82	70	21	23.	14	.02	.27	1 10	.6
SN OOOBL	1	61	17	78	8.S	11	5	388	.79	103	5	ND	i	7	.2	ž	Ē	25	.09	.097	8	30	.11	27	.05	2 2.4	5	.01	.02	1	.4
Su ofor						-	-	••••			_																				
SH USUE	4	30	17	69 E4	3		3	192	3.38	25	5	ND	1	12		Ž	Z	104	.09	-035	10	22	.8Z	- 47		2 2.	57 . :4	.02	.04	<u> </u>	.5
8N 150E	L L L	140	16	70 07		21	12	304 837	6.24	22	7	μD	1	27	• - C • K	2	2	100	. 17 . 16	170	11	136	1.64	40 54	- 2V 09	23.	71 . 61	.02	-14	1/30	3
8N 200E	2	79	15	95	88 4	18	8	526	6.70	38	ś	ND	ż	12	1.0	2	ž	144	.15	071	6	71	2.19	149	22	2 5.0	jz .	.03	.56	1 6	.9
8N 250E	2	82	25	132		29	22	2512	5.54	170	5	ND	ī	15	.6	ž	ž	66	.22	.077	8	37	.85	74	.07	2 2.	n i	.01	.10	6 1	.5
75.04 0000	_						-				-		-			-	-	45-			_							AT			
STANDARD C/ALL-S	10	40 50	13	69 134	72	12	- 6 - 32	474	6.18 3 02	33	5	ND p	1 30	23	88.5 17 5	2 16	2 20	135	.28	091	3	41 58	1.46	91 176	.23	23.	J.Š RS	.05	.55	17 54	.5 .6
		37	40		S		36	1044	3.72	200 9 10	20	0	37	75	11.47	- 14	20	JI	.40		16	50	.01	110	S=073	JC 1.			••• s		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ACRE AMALTTECAL Fe 🕺 Cď SAMPLE# Мо Cu ₽b Zn 🛛 🗛 Ni Co Mn As. U Au Th Sг Sb BÍ ۷ Ca P Сr Ba ΥR. La Mg B AL Na ĸ 🕷 Au* ppm ppm ppm ppm ppn: ppm ppm **PDm** Χ. ppn ppm X * X 2 X X ppm ppm ppa ppm ppm ppm ppn ppm. ppm ppm ppn X ppm ppb 14 750N 200E 3 42 50 80 .3 17 7 438 6.45 47 5 ND 2 .04 .031 30 72 .2 2 117 .84 5 2.22 .01 .22 2 5.5 6 4 8 5.80 750N 250E 2 57 30 104 .3 25 10 767 37 5 ND 2 7 .2 2 2 91 .06 .039 10 49 .97 56 .09 4 3.83 .01 .10 11.5 750N 300E 5 3 34 19 49 .2 9 4 119 3.72 34 ND -5 2 2 7 82 .03 036 26 .26 34 1 10 .05 3 2.50 .01 .07 1 6.8 5 48 18 131 4 15 7 213 4.36 153 5 ND 12 2 3 2 74 .18 .078 12 36 .71 39 7N 050E 1 .09 4 3.92 .03 .07 2 12.6 7N 200E 3 26 13 44 .2 17 3 183 4.26 44 5 ND 2 3 .2 2 2 136 .07 .029 5 45 .59 23 .21 3 1.08 .01 1 7.1 .09 7N 250E 2 70 24 136 30 22 2115 5.04 748 5 12 2 2 2 35 (31.2) ា ND 1 60 .18 .089 14 .98 65 .05 5 3.65 .02 .11 92 11 50 1 14 5 280 5.39 5 2 .2 3 7 45 .19 7N 300E 3 128 ND 6 2 144 .08 .035 53 1.13 .03 3 2.67 . 14 1 6.1 1 23.6 650N 0008L 3 54 16 55 .3 14 4 213 6.39 130 5 ND 3 20 .2 2 2 172 .20 .042 8 57 1.05 54 .25 3 3.82 .03 . 14 650N 050E 5 105 20 176 .3 5 26 .9 46 .07 24 32 3122 4.89 186 ND 1 4 2 52 .40 .213 10 42 .51 3 6.83 .02 .07 1 6.6 12 56 2.2 3 262 6.15 306 5 16 .2 2 57 1 7.2 650N 060E 4 141 6 ND 8 2 111 .14 .059 11 8 .50 31 4 5.64 .02 .11 650N 100E 10 71 .2 7 542 5.72 93 5 11 8 2 128 62 .85 49 .22 5 4.30 .04 5 10.3 1 62 16 ND 1 2 .08 .033 9 . 16 650N 300E 123 53 38 487 4.03 32 5 ND 5 .2 2 .06 026 5 72 1.27 27 .14 4 3.6 1 6 ÷1 8 1 2 109 3 3.63 .03 .05 3 26.5 1, 37.5 5, 47.6 39 22 62 -8 9 4.18 234 -14 6N 000BL 3 4 175 8 ND 4 8 .6 5 3 91 .06 .035 8 16 .42 30 4 1.49 .03 .08 6N 020E 3 219 19 87 1.4 11 4 215 4.39 170 12 ND 3 11 .6 6 4 66 .10 .055 12 36 .27 26 8.1E 3 5.73 .02 .07 5 2 47 6N 040E 7 141 18 105 8 15 6 437 18.02 827 ND 8 .7 7 2 187 .04 .044 5 57 1.93 .23 7 4.33 .02 .28 7,45.9 6N 060E 179 403 4 7.77 4 35 110 1.0 24 8 6.75 362 5 ND 3 13 1.0 9 2 134 .11 056 5 83 .71 37 ,19 .02 .10 6N 160E 21 74 22 84 20 5 244 5.14 71 5 ND 3 7 .2 2 176 .05 .032 12 53 .33 25 .22 4 2.84 .02 .05 2 5.9 .1 6 64 23 86 21 225 5 10 .2 6N 180E 5 .3 6 5.20 97 ND 1 2 2 85 .17 .047 14 43 .73 47 .06 4 3.12 .01 .07 12.4 59 9 103 5 3 27 6N 260E 1 .2 13 8 1122 5.34 19 ND 3 2 113 .37 153 10 49 2.15 50 8,14 2 5.81 .05 .26 5 15.8 6 6N 280E 3 65 18 73 27 19 8 313 7.48 64 5 ND 2 7 .2 3 2 121 .08 .047 9 39 .73 55 .09 6 3.00 2 12.2 .01 .08 6N 300E .2 .02 2 44 10 48 16 3 269 4.58 8 5 ND 2 10 .2 2 2 125 . 17 . 058 6 65 1.43 69 .22 2 2.27 .20 1 1.9 .26 .11 550N 250E 45 13 58 1.3 9 4 409 7.38 57 5 5 2 2 164 72 1.24 34 2 6.17 .02 1 5.3 1 ND 8 .2 .05 .042 8 5N 050E 7 72 48 213 1.3 14 4 287 5.94 127 5 ND 3 5 2 125 .05 .026 9 68 .40 41 12 2 5.92 .01 .05 2 21.7 .3 6 25 7 5 2 12 .2 .02 5N 150E 3 -54 103 .2 25 276 3.53 72 ND 2 3 77 .18 .065 12 38 1.04 54 .08 5 2.64 .09 10 15.8 5 7 450N 250E 3 107 27 135 .7 33 12 479 4.77 93 ND 2 .2 2 3 78 .06 .042 25 30 .82 96 .04 5 3.98 .02 .11 1 13.8 450N 300E .05 5 3.8 84 22 62 .2 16 5 520 6.35 59 5 ND 5 .2 10 2 133 .04 .027 14 60 38 21 6 3.58 .02 4 1 .64 2 54 33 4N 020E 5 101 3 17 6 205 3.02 70 5 ND 1 7 3 2 62 .08 .048 12 39 .61 38 .08 4 3.97 .01 .07 1 17.1 4N 060E 103 55 5 3 19.8 5 28 131 .4 34 12 462 4.11 MD 8 .2 9 2 47 .15 .080 22 29 .52 46 .07 4 4.68 .02 .07 1 <3 .01 4N 100E 68 33 76 9 11 5 218 5 10 2 3 18 .38 45 .13 2 6.91 .06 K 56.00 2 4.82 272 ND 4 54 .04 .038 8 4N 180E 30 .32 056 3 24.8 2 123 141 :3 48 24 1019 4.91 113 5 MD 2 17 1.0 8 2 62 16 37 .99 76 .06 8 3.66 .01 .09 3 8.8 4N 280E 2 85 25 . 704 60 5 2 12 7 2 122 7 82 1.87 38 -11 5 3.00 .03 .12 114 28 11 5.77 ND . Z .20 .058 4N 300E 13.6 91 9 46 88 **s**e 12 2 421 6.95 72 5 3 14 **8**2 174 90 1.14 25 2 5.98 .01 .07 8 ND 2 5 .04 .034 6 21 STANDARD C/AU-S 19 61 39 138 87.4 70 34 1066 4,00 43 21 6 40 53 18.6 15 18 56 .48 .092 40 59 .88 181 .09 33 1.95 .08 .15 11 51.2

4

KRL Resources Corp. FILE # 91-2816

AAA -

ACHE MILL'TTICAL Fe 🐰 Sr 🖁 Cđ ŤŔ SAMPLE No Cu Pb Zn Ag. Nf. Co Mn A. U Au Th-Sb ßi ٧ Ĉ. 2 La Cr Hg Ba AL Хa ĸ 16 Au* ppn ppm ppm **ppm** X DDR ppm ppm ppm ppm ppm **DDIE** ppm ppni X ppm **DCH** X ppm 🛞 DON X X X ppb ppm ppm PP# ppm. DDB 9 L950N 400M 12 31 31 56 12 109 9.65 72 -5 MD 3 4.9 2 10 152 .02 042 10 19 .26 44 2 2.80 .01 .05 13.6 ** 48 1.13 55 .01 L950N 320W 4 94 31 230 45 9 351 4.23 5 ND 2 7 .2 14 2 83 .14 058 16 8.10 2 4.83 14.3 88 .08 22 2 3 33 158 9 9 557 5.76 5 ND 2 7 2 85 .03 .029 8 20 .92 50 2 3.60 .01 L950H 240M 4 84 (I .12 38 5.9 4 50 22 131 22 25 1262 8.95 50 5 ND 3 1.3 7 2 278 .13 064 7 166 3.61 59 2.5 2 5.59 1950H 220W 848 6 .01 .19 23 4.1 37 L950N 200W 3 51 24 103 8 Q 41 15 643 5.84 5 HD. 2 11 2 12 5 132 .22 .084 11 78 2.54 62 2011 2 4.86 .01 .12 2 6.3 ,047 37 .07 .01 L950N 180W 9 47 29 67 11 8 199 6.15 \$7 5 ND 2 9 5 72 .04 17 15 .21 2 3.25 .05 13.6 5 35 34 15.5 5 3 9 .14 1092 20 27 .47 77 2 3.81 22.5 L950N 160W 6 90 212 22 20 1430 5.80 ND 4 10 6 61 8.613 .01 -09 3 25 70 7 .84 52 🖹 L950W 140W 6 56 31 104 87 16 551 7.42 5 ND 2 6 2 7 64 .10 055 10 17 176 2 2.64 .01 .06 14.7 9 62 04 7 43 50 106 241 17 48 8222 6.78 52 5 ND 5 6 13 6 76 .05 067 12 27 .49 2 3.19 .01 .08 7.7 L950N 120W 2 31 94 13 614 6.86 52 5 2 7 2 2 91 .04 .047 12 26 .85 57 840 2 2.38 18 1950N 100W 7 43 25 MD 7 .01 .09 15.2 L950N 80W 5 43 29 89 19 9 292 5.79 51 5 ND 1 7 12 3 6 77 .08 056 11 26 .88 46 (² 1 2 2.92 .01 .05 7.6 .38 0 20 58 L950N 60M 5 34 30 68 80 12 8 230 5.13 5 11D 4 4 2 10 3 120 .02 .020 14 20 2 3.58 .01 .05 2 11.0 35 213 40 24 75 10 195 3.99 5 ND 2 2 106 .03 .023 11 34 .49 12.5 L950W BL 6 9 6 26 5 2 3 2 1.96 .01 .06 29 .06 .031 5 88 27 93 28 21 750 7.45 5 ND 2 3 .8 11 2 226 8 122 2.64 56 8.27 2 5.15 .01 .09 11.5 L900N 260W 72 7 74 84 40 272 28 25 4036 5.55 5 NO .2 12 2 .09 ,128 17 37 .95 8 **1** 1 2 4.15 .10 .21 З. 13.2 L900N 220W 6 63 8 2 33 58 3 .10 2064 45 16.9 1900N 180M 5 83 15 11 720 6.79 5 3 7 97 10 22 1.06 .12 2 3.77 .01 .18 -54 ND 6 8 L900H 160H 5 \$3 44 85 24.1 17 9 372 5.54 8130 5 ND 4 5 .2 10 2 71 .06 .048 12 41 .77 39 09 2 4.94 .01 .07 1 13.9 7 5 27 .85 69 8.06 L900N 140W 66 40 157 26 12 711 7.61 008 5 ND 2 7 21:0 6 75 .07 .075 16 2 3.54 .01 .09 K170.0 21 54 40 37 .78 .01 1900H 120W 5 84 40 110 83 37 16 926 3.83 5 ND 4 7 .2 16 2 54 .11 2081 30 46 207 2 4.68 .07 2 11.3 2 8 **1** 5 7 30 105 212 12 9 409 6.04 5 HD 1 13 5 2 133 .12 .059 9 58 1.40 199 2 3.24 .01 .10 7.8 L900H 80M 33 6 <u>35.1</u> 2 9.0 L850N 280M 5 30 443 32 20 950 6.07 5 18 2 180 .23 075 9 65 2.13 89 -21 2 7.26 .03 .22 79 62 3 14 9 21 NO 3 54 2 3.53 33 13 590 4.94 5 5 75 13 33 .96 66 .07 .01 .09 L850H 260H 6 70 31 199 NO 2 8 .Ż 10 .09 .050 2 56 .10 **RE L900# 220W** 7 69 44 293 .2 29 27 4371 5.92 🕺 76 5 ND 6 7 .6 14 4 74 .09 110 18 40 1.03 * 07 2 4.27 .01 10.2 37 12 32 .2 13 5 2 9 °.2 17 Z .16 .078 14 19 .79 2 5.31 .01 .08 Ż. 5.6 L850N 220M 134 11 674 4.22 50 91 5 49 ND Ť 25.9 55 -08 L850N 200W 5 143 53 127 6 20 15 1203 5.07 ×150 5 11D 5 7 2 27 2 37 .12 084 30 21 .42 07 2 6.55 -04 Ť. 22.5 .11 L850N 90W 7 .74 60 2 5.34 .03 7 97 43 150 32 22 1688 6.66 8 T - S 5 HD. 4 17 6 59 .15 2104 19 24 1014 L850# 80W 49 23 98 26 11 307 5.86 346 5 .2 7 2 84 .13 .049 13 39 1.03 52 .07 2 3.03 .01 .07 2 19.8 ND 1 8 6 47 15 ŧŝ. 16.3 L800N 260M 35 7 .08 .048 11 27 .53 2 3.08 .01 .05 10 40 105 11 10 306 7.69 113 6 ND 5 1.0 4 5 118 ž 1 30 .11 L800N 105M 13 37 42 76 8 11 1116 7.18 48 5 11D 4 4 .4 7 5 52 .04 .043 25 11 .19 2 3.06 .03 .07 ŦĈ. 10.4 53 7.0 L750N 330W 33 13 609 6.90 48 5 NO 2 0 ġ 3 69 .08 .056 14 2 2.60 .01 .09 E 7 91 9 5 4 .46 36 . 221C L750H 293W .01 18.7 62 36 .01 2 10.26 .03 12 98 102 15 31 2082 2.89 65 5 3 7 .2 35 2 51 .11 176 15 66 .10 . 6 NO 13.3 L750# 220W 5 233 5 2 2 12 44 1.11 63 ×10 2 3.50 .01 .08 30 36 24 10 370 3.30 HD. 1 23 11 79 .44 .039 L700H 260H 5 18 2.14 29 34 .09 ŧ. 37.0 9 29 34 72 7 11 469 6.72 257 10 2 10 4 3 2 .12 .046 6 2 3.04 .02 266 3.5 L700N 200W 2 4.18 2 14 50 169 27 35 2038 7.76 69 5 ND 8 7 4 84 .09 .090 22 29 .54 63 .05 .01 .08 132 1 3 .1.6 36 11 (36.8 1700H 160W 7 72 41 114 9 263 5.91 378 5 3 .07 .042 14 41 .49 2 5.07 .01 .05 81 18 HD. 6 4 16 4 73 1700N 40W 10.8 4 126 32 -54 88 23 10 228 5.83 129 7 ND 3 7 ά. 9 2 95 .12 ,045 11 22 .34 29 .17 2 3.68 .01 .04 .48 .091 118 46.7 STANDARD C/AU-S 20 59 42 132 7.2 70 32 1041 3.96 41 15 6 40 50 18.5 15 22 55 . 40 58 .88 177 209 32 1.88 .06 .15

KRL Resources Corp.

Samples beginning 'RE' are duplicate samples.

Page 2

A A							<u> </u>			· · · · ·				Į														<u> </u>	A	٨	
	1 1 ₂₀ - 5							KRI	, Re	soui	ce	3 C	orp	•	FI:	LE	# 91	1-39	559							P	age	3	ACTE AN	LITICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Hn ppm	fe X	As ppn	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppn	TI S	BA ppna	l Na X X	K X	K K Ppm	Au* ppb	
LASON 2904	10	63	46	153	.7	14	6	581	4.33	367	5	ND	1	20	.3	10	4	127	.32	.039	8	47	1.06	91	.02	3 2.2	4 .01	. 14		42.7	
L650N 150W	6	160	22	148		22	60	2188	4.05	303	5	ND	1	12	887	Ž		54	.18	-125	14	49	.34	20 8	52	244	9 .VI 0 07	.05		8 8	Ľ
L650N 110W	2	175	9	- 53	2.0	8	- 4	365	6.94	367	5	ND	1		88 3	2	5	150	.09	474	47	07	1.00	40		54.0	5 .02 6 N1	12			ł
L600N 137W	(15)	136	- 37	- 147		43	- 11	292	3.09	184	5	ND	1	13		2	ふ	470	- 17	026	11	- 34 54	1.00	21		2 3.0	0 .01	.04		241.5	1
L600N 80W	7	122	55	70	.6	15	2	142	5.46	oo)	/ 5	ND	1	0		"	J	120	.00							2 010			. 900		r
		77	45	80		*	3	204	7.27	372	5	ND	1	8	2	2	2	113	.10	.046	7	- 34	.35	31 🖁	.22	2 2.0	9 .01	.00	5	23.6	
1500H 200H	1 1	20	105	85		12	8	373	2.00	56	5	ND	1	15		2	2	49	.15	058	12	- 37	.64	43	07	2 2.0	0.01	.08		22.3	
	1 2	40	24	47		8	- 4	120	6.05	49	5	ND	1	6	2.2	2	2	126	.04	.024	12	- 35	.29	40		4 Z.9	0.01	.00		26.9	
	م ا	36	46	46		8	2	103	.89) 850	5	ND	1	7	202	2	2	45	.06	.028	15	25	.36	50	- 10	3 Z.1	9.01	.00		21.9	
1450N 260N	3	64	37	94	2.0	14	48	6789	3.58	1 79	5	ND	1	17		2	2	60	.19	.092	11	30	.28	60 3	.UC	> >	0.01	- 04	• 2009	21.2	1
24200 acon	1										_		-						40			07	04			240	3 02	N	a 2003	18.3	
L450N 200W	2	59	21	- 88	1.1	18	6	545	6.10) 🛛 🐴	5	ND	2	13	833	2	2	119	.18	-UJZ		- 0.) 74	.70	27		2 7 7 2	6 .01	.0		22.1	
1450N 100W	8	- 38	19	63		7	2	145	8.15	81518	5	ND	1	- 4		4	4	142	.05	.UCC	7	20	- 11	24		2 2.8	5 .01	.0	5 2221	27.8	I.
L450N 80W	5	- 31	32	51	.6	7		241	7.17	423	5	ND	1	2	- 20 C	4	5	104	.03	077		20	22	25	28	33.6	8 .01	.04		7.0	
1450N 60N	6	- 54	43	84	1.2	9	5	Z64	7.67		ž	NO	1	?	- XX-2	 	2	124	.00	042	7	57	.37	25		2 2.8	7 .01	.0	(2001	19.9	
L450N 40W	6	49	27	- 74		15	4	239	10.85	/ 01	2	ND	2	•			2	164	.05		•			-						ě	
				/ 6		•		421	4 75	: 20	5	NO.	1	6	2	2	2	131	.04	-024	11	35	.30	41	.07	4 3.0	0.01	.0	6 🎆	29.2	
L400N 250H		- 41	22	40		12	-	420	7 7	1 22	ś	ND	2	Ģ		3	2	109	.06	.029	8	- 34	.50	39	.04	5 2.6	1 .01	.0	7 📖 1	6.6	
L400N 220W	4	41 54	22	120		22	7	727	3.4	50	5	ND	1	ģ	2	2	Ž	48	.13	166	- 14	- 34	.47	51	04	2 5.0	9.01	.0	7 📖 1	15.0	Į.
1400W 140W	1 1	50	27	127	- 60 - 3	20	7	416	5.2	1 22	5	ND	1	7	2	2	2	75	.07	4035	18	- 32	.55	49	09	2 3.4	6.01	.0	7	18.7	
	1 2	77	18	50		17	ż	278	4.8	22	- 5	ND	ź	4	2	2	2	61	.06	.042	- 4	65	.37	9	.12	2 6.4	8.01	.0	Z 🦗	§ 11.2	
LANNA JON	- -	14					•									ĺ.															
1300H 220H	5	80	- 34	138	7	23	10	231	3.0	5 241	5	ND	1	17	- 8 8 2	2	2	61	.27	1067	14	40	.64	04		3 7.	10 .UI		S 📖	12.0	
L300W 160M	5	18	26	63	1993	11	5	154	2.6	1 🛛 26	5	ND	1	7	2 2	2	2	107	.06	.02Z	13	_ Z7		01		36.	10. 01		Z 🛲	70	
L300N 140M	5	47	22	71	. 81.0	10	6	217	4.6	5 🛛 35	- 5	ND	2	5	- 200,2	2	2	- 99	.03	\$ 017	15	21	.18	40				1 .0	2000	17 7	
L300N 25W	5	26	29	50) 🛛 🛃	7	4	133	7.7	8 261	5	ND	1	3	- 200 Z	Z	Z	163	.02	S025	, y	20	.20	20 8/		2.1	M 01	i în	5 WW	11.4	
L300N BL	6	26	15	- 58) .2	8	5	159	4.1	2 🦷 54	5	ND	1	6	883	8 2	2	145	.05	• UZ4	10	10	+ 14	24		5 1.					1
							-			. 900	_							147	02	020		75	15	33	00	2 2.9	73 .0 1	ı .0	5 🎆	3.4	
L2008 80W	2	- 35	13	54		. 6	5	140	11.3	5 2000	2		1	3			5	52		2020	12	- 77	70	50	20%	5 3.	2 .01	i .0	6 🎆	24.5	1
LZOON 60W	1	- 45	22	64		17	5	Z18	3. Z	1 22	2	NU MU	2	13				2C 44	20	8022	10	35	.61	36	205	- 4 4.	17 .01	I .Ó	6 🎆	11.2	1
L100N 100W	4	66	19	16	: 3330	Z4	. 1	247	• • 12 • • • •	3 8973	2	100	2				2	212		071	10	80		39	83	24.	75 .02	2.0	17 🎆	📓 11.5	i i
1100W 60W	1 17	42	18	5 9		14	4	507	4.9	0 0100 100	2	NU Ma	4	. a 75			5	QR OR	.49	071	13	35	.45	169	07	2 3.	18 .01	I .O	6 🎆	15.9	1
LON 160W	28	52	56	505	' 📖	~~~	63	9201	0.7		, ,	HU.	• •			8		,0													
STANDARD C/AU-	s 18	57	37	12	6.8	65	31	963	3.8	6 38	18	6	37	50	18.2	<u> </u>	17	56	.44	.084	37	57	.81	173	.05	33 1.	74 .00	5.1		47.7	-

1

Samples beginning 'RE' are duplicate samples.

,

ACHE ANAL		LL	ABOR	ATO	RIES	LTD		8!	52 B.	HA	5tin	IGS S	T.	VA) VI	CR B	.c.	V6/	A 1R	6	P	HONI	E (60	4)253-3	158 FA	L (61	.33	-1716
AA									GE	OCH	emi	CAL	AN	A Ly	4I8	CE	RTI	FIC	ATE									
ŤŤ							<u>KR</u> 102	<u>L R</u> (2 - 47	esou 0 Gran	rce ville	<u>s C</u> St.,	Orp Yanc	• ouver	F BC V	ile 6C IV	5 # 5	91- ubreít	385 ted b	9 y: J0	Pa HN J.	ge Vatx	1 :INS						
SAMPLE#	No pps	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррпя	Кл рря	Fe X	As ppre	U ppni	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppnt	B i ppa	V ppnt	Ca X	P	La ppm	Cr ppm	Hg X	Ba Ti ppm %	8 AL ppn X	Na X	K X	V Au ^e pps ppb
950N 20E 950N 40E	23	132 15	13 19	209 62	·1 .7	43 5	22 4	1079 272	6.28 6.87	15 14	5	ND ND	1	27 3	.2 .2	4	25	129 188	.41 .02	.172	10 6	142 25	2.89	60 .14 30 .25	2 5.04	.02 .01	.17	1 49.6
950N 60E	3	48	26	78	2.3	12	5	240	7.08	29	5	ND	2	4	.?	2	3	111	.03	.051	7	42	.47	81 .07	4 3.28	.02	.06	1 8.1
950N 80E	3	99 41	10 14	102	1.8	16 34	- 5 14	689	6.09	37	5	ND ND	1	5		2	23	87 145	.04	.094	10	41 76	.96	38 .06 97 22	2 3.49	.02	.11 10	1 6.7
730N 100E	•	-,	14	0,				1421	0.41		•	NV	•			•		142	. 14		•	10						
950N 120E	3	41	19	102	3.	21	8	684	8.58	26	5	ND	1	6		2	6	138	.06	.059	7	62	1.58	49 19	2 3.45	.02	.09	1 8.7
950N 140E	2	38 40	15	49 81		12	0 6	440	8.97		25	ND	1	10	5	2	5	181	.04	.037	10	133	.87	40 11	2 2.3/	.01	- 15	1 0.1 1 37 8
950N 300E	i	36	17	72	Ż	14	9	370	8.19		5	ND	i	19	2.	ž	3	238	.27	.043	Ż	85	1.41	44 39	2 2.33	.02	.09	1 5.0
900N 320E	1	36	20	67	.5	16	8	470	6.36	4	5	ND	1	28	.2	2	- 4	227	.42	.079	3	82	1.46	- 44 - 34	2 2.23	.02	.14	1 6.4
900N 340E	2	54	14	61	1.3	22	7	299	7.57		5	ND	1	22	.2	2	5	167	.20	,036	2	154	1.22	62 .35	2 3.32	.02	.08	1 5.2
900N 380E	7	83	29	109	.	33	16	1067	8.68	126	5	ND	1	6	2°	2	3	111	.06	.058	8	- 79	1.45	52 .10	2 3.34	.01	.09 🐰	1 6.7
900N 420E	15	220	18	102	1.0	64	9	544	8.96	- 36	5	ND	1	11	୍ଦ୍	2	5	255	.12	.065	5	91	.96	39 31	2 2.03	.02	.03	5.4
900N 400E	3 1	320	21	157	÷6>∶ 1:	22 30	13	4//	8.50	07	5	ND	2	18	2	2	2	171	. 15	.007	5	321	3.02	61 26	2 5.60	.01	.15	1 7.1
ODON SECE	•	~							0.57				•			•	-				•	321	3172					
800N 360E	15	206	28	374	1.9	90	- 34	14595	5.22	321	5	ND	2	48	7.6	3	4	43	.82	.771	31	43	.34	141 .09	2 5.36	.0Z	.09	1 13.4
800N 400E	5	156	18	197		20	12	785	8.19	0U 27	2	ND	1	2	÷.	2	6	245	.09	.05/	2	147	2.84	28 23	2 4.06	.02	.21	
800N 440E	ő	351		74		77	47	1100	11.00	13	5	ND	1	10	2	ź		215	.29	105	4	251	3.34	42 24	2 4.60	.01	.08	1 3.4
800N 480E	3	321	17	112	.2	35	16	786	8.08	62	5	ND	1	4	Z	Ž	3	188	.12	.075	4	190	2.79	48 .27	2 4.96	.01	.08	1 6.3
700N 320F	4	32	16	94		77	15	818	5.69	174	5	ND	1	21	2	2	4	05	46	055	5	181	1.69	93 21	4 2.39	.03	.13	1 13.9
700N 380E	12	84	23	- 88	.ź.	17	8	416	4.98	82	5	ND	i	7	2.	ž	4	127	.11	.038	13	58	.82	45 18	2 3.44	.01	.09	1 10.6
700% 420E	5	235	7	82	.2	35	12	796	7.57	19	5	ND	1	34	.2	2	- 4	185	.61	.056	- 4	117	2.10	50 .24	2 4.30	.02	.09	1 3.8
700N 440E	10	33	10	43	4	13	4	265	5.13	18	5	ND	1	10	.Z	2	6	200	.08	.069	7	58	.54	51	2 1.61	.01	.07	5.5
700N 460E	1	74	13	117	3 .	29	22	714	5.84	37	5	ND	1	.46		Z	- 4	141	.59	. 150	4	124	2.54	57 .50	2 4.21	.05	.20	1 3.6
700N 490E	1	102	8	68	.2	22	13	381	9.29	12	5	ND	1	29	.2	2	3	138	.34	.084	3	141	1.67	78 .36	2 4.90	.01	.09 🖁	1 2.7
700N 500E	6	71	10	56	.t	11	5	616	6.90	10	5	ND	1	10	. 2	2	3	190	.24	.070	6	50	2.42	96 .31	2 3.58	.04	.27	1 3.3
600N 360E	2	69	23	105	3	24	12	643	6.05	82	5	ND	4	5	.	2	2	91	.04	.048	9	46	.95	76 12	Z 4.06	.01	.09	18.8
600N 440E	* *	55	37	77		18	۲۱ ۸	00/ 477	3.13 8.84	200 1	75	140 014	2	21 K	.	2	4	156	.55	. 044	10	200 50	£.14 .AL	54 10	2 2.65	.05	.07	1 7.9
							•	-22	0.04		•	~~~	•	Ŭ		-		120										
600N 460E	5	98	13	62		31	6	500	5.11	16	5	ND NC	1	19	2	2	3	162	.08	-043	5	65	1.36	70.23	2 3.04	.03	.37	1 2.5
RE 6001 TANE	2	75 70	23	104		22	12	490	6 12	20 20	2	UN All	5	2	2	2	2	120	.00. 20	-0248	8	- 73 74	1.44	76 33	2 0.3/ 3 1 12	.01	- IU &	1 12.5
600H 500E	4	238	7	67		43	20	737	10.24		5	NO	1	7	2	3	5	242	.05	062	ź	274	2.44	38 33	2 7.37	.01	.09 🖗	11.4
500N 340E	3	73	14	89		16	7	551	6.68	60	5	ND	i	42	.2	2	4	159	.21	.033	5	68	1.99	38 .26	2 6.80	.06	. 19	\$ 6.4
500N 470E	4	150	6	59		10	7	430	6.83		5	ND	1	14	2	2	4	160	. 13	105	5	61	1.37	65 .27	2 4 .84	.03	.15	1 3.0
500N 480E	3	119	12	55	9	10	6	432	7.23		5	ND	1	19	2. Z	2	6	171	.14	.071	5	56	1.45	64 .25	2 4.35	.04	. 16	4.3
STANDARD C/AU-S	18	56	38	134	6.8	71	33	1049	4.01	40	20	8	_ 37	53	18.4	16	18	54	.50	.092		58	.87	180 .09	32 1.90	.06	.15 🕺	11 45.2

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1-P4 SOIL P5 ROCK AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE

Samples beginning 'RE' are duplicate samples.

DATE RECETVED: ALLS 26 1991 DATE DEPORT HATLED: C. At. 10.

ģ.

Fe As U Cd Sb Bi Ti SAMPLE# Мо Cឋ Pb Zn Ag Ni Co Mn Au Th Sr 🏼 V Ca Þ La Cr Mg -Ba 🖄 8 AL Na K 🏼 ÛÊ. Aut 2 X Υ. DOR Ť. **DDR** 2 X 2 ppm DDm **DOM DDIN** DON DOM **DD** DOM DOG DDM. **ppn** DOIN ppm DON ppfil ppm ppm ppm DOR X ppn ppb 193 8.03 .09 .063 109 2.69 97 .24 .03 500N 500E 2 115 98 7 32 14 446 12 5 ND 4 10 .6 2 2 178 6 2 6.66 .40 5.9 5 2 122 1.33 49 .36 2 3.92 500M 520E 86 11 90 2.3 16 10 205 7.57 ND 2 16 7 2 204 .26 .049 2 .02 .08 1 6.1 7 5 17 2 2 72 .38 .076 26 2.10 57 **15** 4 6.75 1 59 11 181 28 535 4.51 293 MÔ 1 .2 9 .02 .13 400N 340E 88 B. 7.1 2 15 102 18 10 592 7.30 129 5 ND 4 8 .9 2 2 126 .09 .063 8 53 1.24 57 13 4 4.77 .02 400M 380E 68 .09 9.3 1 7 45 314 15 345 17 12 295 5.45 MD 2 8 .3 2 8 104 .09 .041 12 66 1.60 3 3.79 .03 1 3.9 400M 400E 1 60 .2 36 .12 67 .01 .040 33 33 5 54 12.89 5 3 7 2 2 173 9 .09 12 3 3.85 300N 20E 5 40 18 69 4 MD 4 .01 .04 7.1 41 5 ND 15 2 2 .24 .040 21 22 .31 76 3 3.32 .02 .06 300N 100E 10 52 35 81 .3 11 4 153 3.09 1 2 71 10 8.2 5 2 .02 45 ND 2 .08 116 5 5 .02 2 1.83 .01 300M 140E 12 33 22 96 .2 3 14 2157 29.01 2131 1 11 1.2 82 .02 87.8 5 25 93 9 428 6.59 ND 7 **`**2 2 2 93 .08 .049 12 36 .79 56 .09 5 4.22 .01 300N 240E 3 60 7 16 242 4 .05 1 22.6 5 5 2 2 .03 .033 48 .67 51 09 2 4.87 300N 350E 3 61 21 82 ् 15 7 306 5.85 103 ND 3 4 96 8 -01 .07 1 14.6 299 5 3 7 2 5 98 .06 .029 12 34 .86 45 (**1**1 3 3.68 .01 300N 380E 6 15 79 19 7 6.02 66 ND . 10 10.0 54 .6 129 5 2 1033 .18 .049 5 76 1.67 32 .21 2 4.78 300M 390E 105 10 72 ٩, 53 7 415 8.11 144 ND 2 17 ,3 2 .02 . 18 1 12.0 50 284 26 7 318 4.72 82 5 ND 2 11 .2 2 2 94 .11 .050 14 35 1.11 59 . 10 4 3.60 .01 .08 200N 40E 19 60 . 6 1 16.0 2 53 .01 200N 60E 16 56 30 151 .7 21 7 353 5.07 59 5 ND 2 8 .2 4 87 .06 .032 13 33 1.07 09 3 2.98 .08 18.2 17 23 8 444 5 9 2 2 90 .07 .051 15 41 1.15 48 9 3.47 .02 .07 200N 80E 6 60 102 .2 4.57 63 ND 1 .2 . 10 14.2 184 2 4.96 11.5 100N 40E 6 65 50 71 1.4 9 9 3.51 119 5 ND 1 11 .2 2 2 101 .10 182 16 42 .28 52 .07 .02 .05 55 5 2 2 5 12 42 .02 4 1.06 ¥ 7.4 100N 60E 22 15 75 3 .72 12 ND 10 .2 17 .12 .087 .04 .02 . 04 1 1 1 1 2 1.85 .02 2 2 29 .02 100N 80E 1 61 24 86 .9 4 122 .16 11 5 ND 1 9 .2 45 .10 .106 6 20 .02 .03 1 8.4 1 16 60 5 9 2 494 .06 .053 5 43 .26 61 .32 2 3.33 .01 .04 1 11.0 16N 140E 13 70 .9 9 7 151 12.90 38 ND 3 1.0 2 34 4 175 13 126 1.2 23 13 629 7.87 24 5 ND 2 19 .6 2 2 199 .15 .043 2 134 1.60 42 2 5.14 .01 .05 1 7.6 15N B.L. .07 .059 15N 80E 4 119 83 5 2 2 2 178 43 . 48 2 4.55 .01 .03 1 27.1 25 13 9 245 14.19 ŃÖ 3 10 296 14 60 .8 33 37 5 10 35 1.02 78 .07 2 3.62 .01 15N 200E 7 108 310 8 f 8 17 1401 6.59 50 ND 1 .6 2 2 77 .12 .107 17 .09 1 19.2 23 5 2 17 32 .35 41 .25 3 3.13 .01 1 9.5 148 B.L. 44 86 11 7 649 7.27 28 ND 8 4 2 123 .06 .056 .09 7 8 P 1 33 67 14N 20E 77 30 136 22 12 691 4.99 40 5 ND 1 8 ंड 2 2 67 .10 .080 14 .77 .07 2 4.22 .01 .08 1 36.0 4 1 14N 120E 32 129 28 40 5 7 4 4 .062 14 61 1.15 55 .09 3 4.26 .01 .08 2 10.1 4 93 14 709 5.81 ND 4 2 114 .10 14N 140E 5 63 16 Π .8 15 6 293 6.26 35 5 NO 7 .5 2 2 135 .06 .064 11 44 .36 40 . 08 2 2.81 .01 .04 1 12.6 1 14H 160E 37 5 2 7 74 .14 2149 50 1.25 56 .06 5 3.75 .01 .10 11.9 5 82 28 176 19 1806 5.04 39 ND 10 .6 14 1 2 8.9 14H 200E 5 2 .67 63 ×19 2 4.14 .01 2 76 13 68 1.1 11 7 356 8.97 31 ND 3 9 1.0 2 222 .10 2075 5 70 .06 87 54 14N 240E 58 24 16 5 ND. 5 5 1 4 2 91 .04 .076 12 41 .65 45 0. 3 5.00 . .01 .05 1 9.4 4 5 8 477 6.41 55 1.5 .33 157 13N 20E 8 201 31 372 7 44 43 1550 5.15 7 ND 1 20 4 4 77 20 48 1.09 85 .07 3 4.60 .03 .11 2 14.2 13K 40E 639 7.44 29 42 18 2 3.52 .01 19.6 9 57 30 14 10 2 2 141 .21 .080 9 1.20 .06 98 44 5 ND 8 2 13N 60E 6 51 30 73 1.0 11 6 287 11.22 58 5 Ю 4 5 2 2 240 .02 048 9 34 .33 50 .21 2 4.58 .01 .05 1 16.0 1218 13N 120E 23 2 28 60 2 2.57 .11 11.7 5 57 95 17 8 337 6.57 59 5 NO 1 6 2 162 .05 .040 10 .69 ×14 .01 8 9 RE-13N 20E 32 8 200 373 85 43 43 1542 5.20 55 5 ND 1 21 🖁 88.8 2 4 78 .33 154 19 47 1.08 84 07 7 4.58 .04 .10 1 9.3 13N 160E 82 26 101 7.15 51 5 .03 .049 54 54 .07 2 4.82 .01 .07 14.0 4 7 18 8 261 ND 3 5 9 2 2 115 11 .61 13N 180E 432 5.92 1 6.4 3 t00 39 102 14 8 33 5 HO 6 .5 2 3 88 .04 .051 11 46 .33 40 07 2 3.96 .01 .05 1 13N 200E 23 13 47 5 9 .06 .032 9 22 55 2 1.86 .01 .10 11.3 4 48 69 6 267 5.49 ND 88.**5**8 2 2 110 .32 .07 1.8 1 STANDARD C/AU-S 19 62 38 133 7.3 68 34 1035 3.91 42 18 7 41 51 17.5 18 22 59 .49 .095 39 56 .88 175 .08 34 1.91 .06 .15 11 46.3

.

1

1

FILE # 91-3859

Page 2

ACHE ANALTTICAL

KRL Resources Corp.

Samples beginning 'RE' are duplicate samples.

44	
ACHE AND VITCH	

N : 7

ACRE ARRETICAL																													ACHE	ANALYTICAL	
SAMPLE#	Мо ррп	Cu ppm	Pb	Zn ppm	Ag	N T ppm	Со ррт	Nn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sг ррл	Cd ppm	Sb ppn	B i ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppn	Ti X	8 Ppn	AL X	X	K X I	W Aut	
					0000					100000										9292											_
13N 220E	5	80	51	199	88 - 8	22	12	486	6.70		5	ND	2	7		2	2	76	.05	,049	11	43	.76	- 42	.06	3 :	5.53	.01	.06 🛞	10.1	
13N 240E	4	- 18	25	- 38	.3	9	6	92	4.98	- 39	5	ND	2	- 5		2	2	116	- 02	.026	10	- 19	.17	- 43	.05	3 '	1.74	.01	.03 🛞	🏽 🗱 13.1	
13N 260E	9	185	- 36	221		- 39	13	824	6.43	40	5	ND	- 3	8		2	- 4	- 54	. 10	158	- 24	- 34	-85	- 99	.04	- 4 /	4.94	.02	. 12 🏼	1 24.0	
12N B.L.	9	100	32	- 86	1.0	14	11	380	10.25	44	5	ND	1	7		2	2	102	.02	.064	8	62	.46	- 48	.06	2 3	3.07	.01	.03 🛞	🕷 9.2	
12N 140E	3	70	30	96	3.3	22	15	701	6.54	68	5	ND	1	7		2	2	- 86	.11	.058	10	- 36	.94	- 59	.05	8 2	2.50	.01	. 10 🖉	26.4	
																				- M.M.											
12N 160E	5	42	26	70		13	10	224	8.06	46	5	ND	2	- 4		2	2	144	.03	.041	8	35	.40	- 36	.07	2 2	2.45	.01	.05 🐰	t 6.2	
12N 180E	13	58	31	92	2.7	18	12	503	6.88	49	5	ND	2	- 4	.2	2	2	116	.03	.044	12	28	.28	- 46		2 3	3.28	.01	.05 🖉	1 6.0	
RE 11N 20E	38	265	609	770	2.1	99	27	4643	13.51	32	5	ND	4	- 4	3.2	2	2	342	.11	.267	25	113	3.02	28	.06	2	5.80	.01	.01 🖏	1 34:6	
12N 200E	3	80	44	117	2	22	14	832	4.88	39	5	ND	3	5	2.2	2	2	65	.05	.073	8	37	.91	39	.08	3	3.88	.01	.06 🖉	9.5	
12N 280E	6	138	27	99	82Z	25	35	1292	12.81	- 3 7	5	ND	ž	3	6	2	2	184	.09	.072	6	91	2.08	23	20	2	3.74	.01	.04 🛞	10.5	
	-										•		-	-		-	-				-								· · · 38		
12N 340E	7	93	29	239	8 . 4	25	9	276	6.78	29	5	ND	1	20	.6	2	- 4	77	.39	.045	11	27	.51	59	.09	2 /	4.03	.01	.05 🖉	× 8.8	
11N B.L.	12	45	23	68	3.7	9	9	151	7.20	29	6	ND	1	- 4	.2	2	Z	260	.02	.056	9	32	.43	- 43		2 2	2.47	.01	.03 🖉	1 6.0	
11N 20E	36	257	611	751	1.9	96	26	4608	13.14	36	5	ND	4	- <u>i</u>	2.9	2	ž	334	.11	.270	25	111	2.92	27	.05	2	3.61	.01	.01 🖉	1 36.7	
11N 40F	7	33	40	68	6	ō	7	315	6.96	30	5	ND	Ť	Ĺ.	3	2	ž	166	.02	054	11	28	.28	- 46		2	2.58	.01	.04 🛞	1 24.8	
10H 20E	5	222	22	50	5	19	14	243	8.70	21	5	ND	i	3	2	2	2	100	.03	.050	8	28	.37	30	.04	2	2.15	.01	.03 🖉	9 51.1	
											-		•	-		-	-				•										
10N 60E	5	36	31	62	2	12	8	179	7.98	37	8	ND	1	4	.3	2	2	132	.02	.054	7	31	.24	- 42	.07	2 2	2.15	.01	.03 🖉	🏽 🕇 11.6	
10N 100E	3	85	41	129	2	27	19	1535	7.76	48	5	ND	1	9	8.5	2	2	86	.10	.065	12	48	.95	97	.06	5 3	3.83	.01	.09 🖉	1 8.9	
10N 120E	6	45	24	88	2	25	15	587	5.03	32	Ŝ	ND	1	6		2	- Ž	93	.06	.053	12	35	.45	55	.04	3	2.78	.01	.06 🖉	1 6.9	
10N 140F	ž	162	23	350	12 A	58	23	2094	5.20	69	5	ND	1	38	1 7	2	2	61	.60	116	18	30	.72	93	.06	2	3.61	.02	.12 🕅	E 11.4	
100 2205	Å	44	53	110		21	49	3061	8.36	07	ŝ	ND	i	18	12	2	2	148	.33	074		87	.93	85	12	2	2.42	.01	. 12 🖉	17.0	
											-		•			-					-	•••							- T- 38		
10N 300E	2	44	23	68	33	6	12	322	13.36	20	5	ND	2	3	1.0	2	2	296	.02	.043	4	54	.95	38	33	2	3.14	.01	.03 🖉	1 3.4	
10N 360E	1	38	11	85	13	16	12	284	7.89	12	5	ND	ī	12	11	5	2	227	.11	.039	Ż	123	1.04	31	28	2	2.68	.01	.04 🖉	t 5.3	
10N 380E	Ś	140	11			24	17	568	4.57	7	ś	NO	i	21	88 k	5	5	100		067	Ā	51	.63	72	03	2	1.93	_01	.06 🖉	1 33.6	, .
STANDARD C/ALI-S	19	57	43	132	7.2	70	31	1050	3.97	- X 1	22	7	39	52	18.7	16	23	55	.48	.090	30	58	.88	178	.09	33	1.88	.06	. 15	11 51.3	
		_					_			- こうぞう 一天 単子 どう											/										

1

KRL Resources Corp. FILE # 91-3859

(19) - 3 A - 3 - 6 A

Page 3

Samples beginning 'RE' are duplicate samples.

AA	 A state Married 													ŧ.,											
ACHE MHALYTICAL								KRL	Res	our	cces	Co	rp.		FIL	æ #	91	-38	159						
SAMPLE#	Ho ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррл	Hn ppm	Fe X	As ppn	U Ppni	Au ppm	Th ppm	Sr ppni	Cd ppm	sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Hg X	Sa ppm	T (X
11N 560W	3	108	30	99	1.8	32	15	581	7.33	23	5	ND	1	48	.6	2	3	142	.31	.081	7	105	2.09	187	.16
11N 520W	8	79	37	154	1.8	21	13	611	9.09	137	5	ND	- 3	5	.6	5	2	146	.04	.053	7	88	1.22	55	. 16
11N 380W	3	45	18	732		35	13	550	5.88	22	5	ND	1	6		2	2	118	.07	.033	7	108	2.24	57	.08
11N 360W	3	60	29	361		31	29	1869	6.95	35	5	ND	1	11	.7	4	2	104	. 17	.078	11	45	1.53	63	.07
11N 340W	4	46	19	94	2.9	12	14	391	13.19	63	5	ND	2	4	.2	2	2	98	.02	.054	4	40	.27	64	.05
11N 180W	17	134	21	379	2.4	35	24	4125	4.97	288	9	ND	1	86	5.6	3	2	39	1.56	. 168	29	26	.26	116	.06
11N 160M	4	61	24	179	1.0	23	7	268	3.08	21	5	ND	1	11	.Z	2	2	60	. 14	,056	15	30	.99	- 68	_06
11N 100W	9	865	18	690		135	- 44	2974	9.03	221	\$5	ND	1	33	3.3	8	7	128	.63	.086	55	- 98	2.48	89	.06
11N 80W	19	218	26	113	4.3	31	20	1882	13.95	47	5	ND	1	15	1.2	3	7	177	.24	.102	13	- 51	.49	22	.03
11N 60W	19	98	26	71	2.4	29	17	350	14.96	28	5	ND	1	3	.5	5	3	192	.02	.100	5	75	.42	23	-04
10N 620W	4	41	27	65	.7	11	9	225	6.16	36	5	NĐ	2	3	.3	2	2	113	.02	.026	9	32	.30	42	.04
10N 600W	5	66	26	92	- 2	19	13	628	6.85	53	ŝ 5	ND	1	6		5	5	- 73	.04	-035	12	- 34	.73	56	.06
10N 580W	9	68	31	71	.2	11	7	213	5.39	38	Ś 5	ND	1	6	2	3	2	60	.09	.067	; 21	37	.32	- 44	.09
10N 560W	5	49	30	108	.2	22	13	456	8.00	49	5	ND	- 3	6		5	2	- 96	.05	.043	8	- 44	.79	- 48	.09
9N 600W	5	19	11	36	Ī	7	6	117	4.65	30	5	ND	1	5		2	2	142	.02	.026	10	17	.11	50	_07
9N 580W	5	42	26	69		14	9	233	7.27	50	5	ND	1	5		2	2	134	.06	.029	9	41	.49	43	.10

553

254

324

253

19

13 532

11

12 405

10

18

9 194

9

10

12 438

10

18 979 4.97

5.92

7.03

8.47

6.24

7.85

5.29

7.14

7.45

4

890 6.32

311 6.81

537 4.83

43

42

60

146

46

45

59

40

48

42

41

42

108

5 ND

5

5

5 ND

-5 ND

5 ND

5

5 ND

5 ND

-5

5

5 NÐ

18

ND

ND

ND

ND

ND

7 38

2

1

1

2

3

2 2

3

3

2

3

1

6

7

8

5

5

6

5

4

6

6

5 .2

5

54 18.4

.2

.2

.2 .2

.2

.3

.2

.2 .7

.2

5

Ż

2 72

2 103

2

2 93

2 61

2 108

2 92

2 115

2 76

2 104

2 86

19

57

4

2

5

2

5

2

Ž

3

2

2

3

2

17

64

121

.07

.03

.05

.03 .037

.05 .035

.056

.032

.11 .053

.08 .043

.03 .028

.06 .054

.02 .023

.03 .024

.06 .037

.48 .088

.030

39 .92

40 .37

47 .64

55 .85

37

33

39 .88

53 .59

48

56 .85

.91

.58

.49

13

9 32 .89

11

10

8

12

8 31 .41

9 45 .70

8

20

6

12

38

73

44

53

65 . 10

49

70

40 .08

48 .05

42 <u>12</u>

43

50 **11**

57 .08

174 .09

211

.09

.08

.08

.09

.09

Page 4

Na

.07

.01

.01

.01

.01

.03

.01

.01

.01

.01

.01

.01

.02

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

x

AL

2 4.98

2 4.70

2 4.01

2 4.16

2 3.86

2 5.02

3 2.38

2 3.53

2 2.57

2 4.39

2 2.69

4 3.19

2 4.32

6 2.86

3 1.75

2 2.57

4 5.40

4 2.56

2 3.65

2 4.37

3 5.44

2 5.16

2 2.66

3 5.69

2 3.34

2 3.72

2 5.97

2 3.37 .01

34 1.84 .06

×

8

* ppm ACHE ANALYTICAL

K

Χ.

.29

.08

.08

.08

.03

.05

.08

.04

.01

.02

.04

.06

.07

.06

.04

.05

.05

.05

.04

.06

.06

.05

.05

.05

.04

.05

.04

.06

. 15

🕷 Au*

1 11.6

1 20.5

1 16.5

1 23.2

1 3.1

18 8.7

15.3

1 17.2

18.5

1 9.8

11.8

14.6

1 10.7

1 13.2

15.5

1 25.8

1 23.8

1 21.2

1 21.2

11.5

16.5

1 16.6

1 7.8

1 36.2

1 29.6

1 34.1

1 10.2

1 8.0

11 45.4

ppni ppb

20 57 37 129 6.9 70 34 1025 3.89 STANDARD C/AU-S 18

Samples beginning 'RE' are duplicate samples.

88

50

67

60

56

32

66

3

3

4 42

4

2

3 86

3 37

6

5

3

2 42

4 37

9N 560M

9N 520M

BN 520M

8N 500M

8N 480M

8N 440M

8N 420U

RE 9N 560W

T.L.5W 980N

T.L.5W 840N

T.L.5V 820N

T.L.5W 760N

20 117

26

22

24

22

17 114

16

26

23

22

20

84

69

94

93

59

85

73

93

70

87

.3 25

.3 18

33

. K 17

.2 .2

.2 14

٦t)

.6

. 1 23

.3

8.

11

20

25

18

12

13

APPENDIX 4

Table of analytical results Surface rock

-

1

Surface rock analytical results

Page 1 of 2

.

-

-

SAMPLE	Au	Ag	Cu	Рb	Zn	Sb	As	Bi	NI	Co	Mo
NO.	opt/ppb	ppm	ppm	ppm	ppm 24	ppm 2	ppm 63	ppm 2	ppm 68	ppm R	ppm 1
825 827	0.001	0.5	100	7	27	2	5	2	56	13	ż
828	0.007	1,0	58	25	39	2	8288	6	10	12	1
829	0.005	1.0	200	84	109	2	42571	33	5	124	1
830	0.001	0.5	112	12	30 28	. 2	50	2	53	10	ż
832	0.002	0.9	395	150	363	4	18	ž	88	23	15
833	0.003	1.0	116	53	140	2	1863	2	14	24	1
834	0.001	0.5	174	8	44	2	79	2	83	26	5
835	0.041	0.5	118	20	40 28	2	551	20	112	16	2
837	0.001	0.2	40	4	65	2	63	2	6	9	1
838	0.001	0.9	135	15	163	2	30	2	48	12	1
839	0.001	1.1	356	10	61	2	438	2	43	13	2
840 841	0.294	147.4	47	49	207	2	190∠ 68	212	26	9	1
842	0.001	1.5	247	56	348	2	138	2	9	11	2
843	0.001	0.2	20	2	56	2	64	2	55	20	1
844	0.001	0.3	12	17	28	2	126	2	6	2	ן ז
845	0.002	1.4	117	20 19	20 58	2	25 40	2	28	12	5
847	11	0.7	233	้รั	31	ž	13	ž	82	22	6
848	8	1.3	139	29	126	2	39	2	46	24	2
849	14	1.0	91	4	62	2	6	2	55	33	1
851	30	3.5	176	2	32	2	1	2	34	34	3
852	8	0.4	40	5	38	2	9	2	36	36	1
853	49	0.4	243	3	35	2	154	4	32	32	3
854	2	1.5	185	43 7	60 48	2	3	2	35	35	3
856	20	0.9	201	6	43	2	3	2	42	42	21
857	7	0.6	487	4	35	2	5	2	82	82	6
858	12	0.6	75	2	59	2	10	2	31	51	2
859	15	1.0	90	19	76	2	2	2	30	30	36
861	6	0.5	109	4	28	2	2	2	37	37	2
862	14	0.5	105	4	21	2	14	2	59	59	2
863	5	0.6	70	22	39	2	10	2	24	24	। र
865	8 5	0.4	118	3	75	2	2	2	42	42	1
866	23	0.9	162	4	49	ž	5	2	41	41	2
867	15	0.6	168	7	90	2	48	2	92	92	3
868 860	37	0.7	23	2	103	23	16	á	18	18	6
870	6	0.3	12	2	62	3	2	ź	29	12	Ĩ
871	9	0.7	133	2	66	2	17	2	81	. 16	5
872	5	0.8	110	2	46	2	2	2	41	18	1
873	451	0.8	309	2	38	2	118	2	29	11	1
875	30	0.5	125	3	24	2	490	2	51	13	5
876	2	0.5	67	5	34	7	17	2	63	12	8
877	ა იკი კ	0.8 35.9	16020	0 4849	1369	201	3508	18	21	21	1
879	69	1.4	209	82	91	6	47	2	20	18	1
880	21	1.0	62	6	99	6	7	2	8	8	2
881	6	0.4	73	5	27	2	20	2	72	72	2
882	210	0.3	101	1030	601	3	45	2	72	72	2
884	7	0.5	52	11	132	2	16	2	77	77	6
885	87	1.2	459	5	61	7	74	2	9	9	2
886	25	1.2	422	15	43 74	ব	13	2	10	16	1
888	13	0.9	145	2	161	ž	13	2	40	40	i
889	4	1.0	109	12	43	13	15	2	27	27	3
890	4	0.9	174	12	55	14	10	2	34	37	2
891	2	0.7	171	4	20	4	2 3	2	86	86	6
893	∠ 5	0.5	90	4	28	3	2	2	34	34	ī
894	88	0.9	116	38	48	5	56	2	68	68	2
895	20	5.0	89	5	40	2	6	2	37	37	1
896 807	1	0.3	14 ∡0	10	35 ٦1	5 4	17	2	57	57	<u>∡</u> 8
898	1	0.4	83	12	41	7	25	2	32	32	Ĩ
899	2	0.9	119	8	50	7	4	3	39	39	1
900	1	0.9	180	13	48	5	48	2	22	22	2
901	, TT	0.8	35 Z	5	34	3	10	2	~	-	2

Surface rock analytical results

Page 2 of 2

.

~~

SAMPLE	Au	Ag	Cu	Рb	Zn	Sb	As	Bi	Ni	Co	Mo	w
NO.	opt/ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
902	682	0.8	234	3	63	7	177	2	31	31	t	2
903	2	0.4	17	2	72	9	8	2	6	6	2	3.
904	42	0.3	60	5	25	2	6669	2	66	66	22	3
905	123	0.2	51	51	86	6	752	2	6	16	١	3
906	42	0.5	91	91	37	8	663	2	30	10	1	3
907	29	0.8	178	178	18	2	1219	2	42	28	1	1
908	10	0.3	41	41	24	2	202	2	16	6	2	1
909	13	0.7	108	108	20	2	155	2	67	27	22	1
910	15	0.4	12	12	7	2	168	2	7	2	2	3
911	22	1.7	390	11	61	2	204	4	7	14	2	1
912	2620	3.7	662	42	46	2	323	31	4	22	3	1
913	17	0.4	144	10	29	2	22	4	12	7	3	1
914	6	0.6	121	7	27	2	51	2	67	15	8	t
915	6	0.6	225	5	27	2	292	2	70	13	2	1
916	3	0.8	24	25	136	2	24	2	4	5	1	1
917	12	0.4	130	5	40	2	28	2	20	9	6	1
918	1239	8.2	454	98	42	11	6656	60	6	23	18	T
919	34	0.6	124	6	39	2	80	2	23	16	4	1
920	3170	28.9	68	458	594	8	561	7	45	37	15	1
921	23	0.9	46	97	32	2	30	59	38	16	18	1
922	7	1.0	109	20	29	2	64	2	59	12	2	1
923	2	1.3	94	11	62	13	28	2	129	14	6	1
924	4	0.2	6	11	104	11	4	2	7	8	20	1
975	341	19.1	547	384	4.09%	2	4908	16	13	18	1	1
976	7	0.2	13	9	456	2	78	2	13	4	2	1
977	11	2.7	78	33	590	48	161	2	27	5	12	-1
978	70	5.9	99	2299	1262	11	105	2	25	7	17	1
979	1375	65.4	496	1857	35932	118	8062	30	25	15	4	1
980	429	8.1	168	298	3702	103	13513	4	19	8	2	1
981	1122	115.1	1373	3060	704	83	1779	43	20	8	5	1
982	2112	38.0	478	2045	24168	595	99958	44	27	67	3	1
983	451	44.9	257	1687	11693	56	2048	7	47	4	33	1
984	1045	71.3	99	12633	0.56%	115	10756	12	25	27	5	1
985	1749	52.1	410	9084	7.56%	136	3243	28	18	11	2	1

.

-

APPENDIX 5

Analytical certificates Surface rock

i, Diriz					102	2 - 4	(RL 70 G	Res ranvil	ourc le St.	: <u>es</u> , Var		orp. /er BC	V6	E 175	11's s	e ubml	#9 tted)1-2 by:	2228 John	3 VÁTI	INS	· · ·					•			
SAMPLE#	Мо Си ррт ррг	i Pb i ppr	Zn ippm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe X	As ppm	U ppin	Au ppm	th ppm p	Sr xpm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	τi X	8 Ppm	Al X	Ka X	K X	ų ppm	Au** oz/t
826	1 77	12	24	.3	68	8	190	1.27	63	5	ND	1 1	57	.9	2	2	27	1.80	.070	3	20	.23	14	.09	2	2.24	.21	.02	4	.001
827	2 100) 7	27	.5	- 56	13	171	2.62	5	5	ND	11	13	.9	2	2	38	1.24	.047	3	24	.45	24	.11	2	1.98	.30	. 10		.001
828	1 58	25	- 39	1.0	10	12	340	3.29	8288	5	ND	1	98	1.2	2	6	45	.82	.078	3	21	1.08	48	.06	2	2.15	.20	.24	2	.007
829	1 200	84	109	1.0	5	124	168	5.39	42571	5	2	4	45	2.4	2	33	53	.68	. 146	6	4	.79	21	.04	2	1.31	.09	.08	1	.005
830	1 112	! 12	38	.5	75	28	243	3.49	878	5	ND	12	20	1.5	2	2	44	1.88	. 144	2	62	.73	40	.09	2	3.01	.40	. 10	1	.001
831	2 83	6	28	.5	53	10	366	2.25	50	5	ND	1	30	.5	2	2	52	.75	.038	2	30	. 69	22	.12	2	1.04	.08	. 13	1	.002
832	15 395	150	363	.9	88	23	483	4 94	18	5	ND	1	28	4.3	- Ā	2	207	.65	.087	5	79	1.62	73	.24	2	1.59	.06	.94	1	.001
-813	1 116	53	140	1.0	14	24	605	4 77	1863	5	ND	21	67	2.3	2	2	97	1.22	.214	7	17	1.43	55	11	2	2.52	.16	. 16	3	.003
834	3 174		44	5	83	26	421	5.22	70	5	NO	1 2	14	2.1	2	2	138	1 23	134	2	31	1 63	47	17	- 2	3.49	33	1.12	្រភ្ន	001
835	2 10	20	46	.6	89	136	181	12.15	99999	5	2	1	27	2.5	Ž	28	33	.24	.021	Ž	11	.65	12	.01	2	.98	.02	.07	្រី	.041
874	2 118		28	2	112	16	262	2 01	551	5	MD	1	25	а. А	2	2	40	13	035	τ	75	50	12	07	2	01	00	15		001
817	1 1 41	i i	45			ö	R/R	6 31	57	ś	ND	10.1	n 2	1 6	2	5	07	1 15	230	10	1	1 28	<u> </u>	27	2	2 54	15	17	8.3	001
979	1 1 1 1 1 1 1	10	163		/ R	12	517	6 22	30	ś	ND	4 4	11	7 4	2	2	71	1 07	105		20	1.06	15	14		1 21		12	ैं।	001
970	2 354	10	61	1 1	43	13	228	3 04	/38	É	ND		72 -	1.0	2	2	57	04	122	1	40	04	14	11	- 5	1 78	13	10		001
840	4 47	1790	207	147.4	/ 12	27	724	2.39	1962	5	13	31	26	5.5	5	212	57	3.02	.112	5	19	1.21	35	.02	2	1.29	.03	. 16	2	.294
. 841	1 91	49	55	1.1	26	9	348	2.78	68	5	ND	2	16	.6	2	2	73	. 25	.047	3	34	1.49	23	12	2	1.32	.03	:07	1	.002
842	2 247	56	348	1.5	- 9	11	606	4.30	138	5	ND	1 1	03	5.0	2	ž	62	1.44	108	Š	Ū,	1.36	38	.21	2	1.81	.11	.07	1	.001
- 843	1 20) 2	56		55	20	512	3.65	64	5	ND	12	62	1.6	2	2	85	1.12	104	2	188	2.01	161	.18	2	3.15	.16	1.28	Ì	.001
844	1 1 12	17	28		6	2	139	.63	126	5	ND	1	14	.8	2	2	4	21	.013	2	8	12	6	.02	2	.24	.03	.03	ં i	.001
		,								-										1										

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

DATE RECEIVED: JUL 3 1991 DATE REPORT MAILED: July 8/91.

✓ ASSAY RECOMMENDED

ACHE ANAL AL LABORATORIES LTD.

852 E. HASTINGS ST. VAR IVER B.C. V6A 1R6 / PHONE (604) 253-3158 FAX (60-3253-1716

				:			1022	<u>K</u>	RL 70 Gra	Resenvill	our e St.	Ces		CD.	V6C 1	Fi. V5	le Submi	#9 tted	1-2 by:	421 John J	I. VAT	KINS							
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Hn ppn	Fe X	As: ppm	U ppm	Au ppm	Th ppm	Sr ppnt	Cd	Sb ppn	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B /	11 X	Na X	K X
847 1	6	233	· 3	31	.7	82	22	227	3.86	13	5	ND	1	112	.8	2	2	120	2.22	.081	2	45	.89	48	.15	2 3.	55 .	.29	.49
848	2	139	29	126	1.3	46	24	260	4.34	39	5	ND	1	226	1.0	2	2	- 52	2.04	. 153	2	21	.43	29	.08	22.	67 .	.33	.13
849	1	91	4	62	1.0	33	20	662	4.29	6	5	ND	1	111	1.1	2	2	125	1.39	.212	2	- 43	1.57	- 66	.16	2 2.	<u>49</u>	.28	.35
850 i	1 1	87	6	81	.3	15	13	503	3.32	5	- 5	ND	1	195	1.4	2	2	61	2.73	.178	2	18	.61	59	3 .11	3 3.	85 .	.58	.19
851	3	176	2	32	3.5	- 34	12	223	3.44	11.	5	ND	1	189	1.0	2	2	73	2.48	.115	2	21	.65	57	.12	2 3.	54	.39	.49
952 1/	1	۷۷	5	38	4	35	16	211	2 30	0	5	ND	1	185	. 8	2	2	46	2.40	.124	3	35	. 38	33	-11	3 2.	93 .	.43	.12
857		243	- í	35		32	8	204	3.11	154	, 5	ND	i	49	.6	ž	4	58	.66	.061	2	28	.87	71		2 1.	48	.13	.23
854	3	185	43	80	1.5	37	12	542	3.85	5	Ś	ND	1	- 38	1.3	2	3	92	.51	.182	3	- 39	1.31	50	. 10	2 1.4	48 .	.09	.21
855	3	486	. 7	48	1.5	35	47	390	7.67	3	5	ND	1	- 77	.4	2	2	94	.80	.099	2	- 34	.89	66	. 15	2 1.	?9 .	.21	.24
856	: 21	201	6	43	.9	42	17	384	3.65	3	5	ND	1	30	.3	2	2	109	.31	.077	4	34	1.51	54	.20	3 1.	45	.08	. 15
857 -	6	487	· 4	35	.6	82	24	497	4.58	5	5	ND	1	43	.8	2	2	99	.72	.117	3	88	1.97	66	. 19	3 1.	55	. 10	. 19
858 1/	2	75	2	59	.6	31	10	684	4.27	10	5	ND	1	22	.6	2	2	- 73	.23	.069	- 3	- 38	3.07	115	10	22.	82 ·	.06	.50
859 🔍	2	104	3	- 71	1.0	44	17	322	3.89	11	5	ND	1	224	.8	2	5	65	2.86	. 159	2	48	.64	62	.12	33.	63 .	.45	.35
860	. 36	[,] 90	19	76	1.0	30	15	570	4.14	2	5	ND	1	118	.7	2	2	66	1.41	.135	2	27	.95	45	. 10	22.	56	.27	.12
861	2	109	4	28	.5	37	20	332	4.57	2	5	ND	1	148	1.2	2	2	96	1.94	.226	Z	40	.86	29	-16	22.	58	.27	.10
867 .	1,	105	4	21	.5	50	10	251	2.28	14	5	ND	1	117	.2	2	2	29	1.09	.048	2	25	.63	59	.06	3 2.	31 .	.21	.35
863	1	70	22	39	.6	24	8	247	1.89	10	5	ND	i	59	.3	2	ž	38	.56	.048	2	27	.44	53	.08	2 1.	36 .	.14	.32
864	1 3	60	-4	61	.4	51	12	540	3.52	6	Š	ND	1	57	1.1	Ž	2	128	.61	.076	2	48	1.99	110	.25	22.	15	. 15	.71
865 1	Ī	118	3	75	.3	42	27	536	6.09	Ž	5	ND	1	165	2.4	2	2	119	1.63	.129	2	- 95	2.71	184	.26	24.	14	.34 1	1.90
866 😒	Ż	162	4	49	.9	41	23	511	3.96	5	5	ND	1	183	1.2	2	2	87	2.09	.176	2	70	1.40	53	.15	23.	23	.43	.20
867 🛩	3	168	7	90	.6	92	12	290	3.48	(48	5 5	ND	1	29	.7	2	2	98	.24	.048	2	54	.91	43	. 15	2 1.	22	.10	.21
868	5	129	12	60	7	60	25	409	3.91	6	ć Š	ND	1	92	1.1	2	2	81	1.04	.123	2	- 48	1.08	- 38	.20	11-1.	72	.11	.13
869	6	23	-2	103	.3	18	11	812	3.75	16	5	ND	1	139	.8	3	9	78	2.40	.084	5	- 33	1.96	61	.04	2 2.	20	- 14	.11
STANDARD C/AU-R	19	58	38	132	7.4	72	- 33	1053	4.01	43	- 23	7	- 38	52	18.0	15	- 21	- 57	.48	.091	- 38	- 55	.89	179	.09	32 1.	90	.06	. 15

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: ROCK

DATE RECEIVED: JUL 9 1991 DATE

PORT MAILED: (July 12/91.

K

M Au*

11

49 1

28 **1**8.

15 1

3

6

-14

5 1

8

5

23

15 št.

8 7

% ppm ppb

2

18 8

े¶ि -14

1 - 3

1 30

1 8

16 2

ŧ٤.

1

1 12

6**1**.

:10

1

ाः

1

影1: - 3

1 7 12 530

SAMPLE#	Mo	Ĉu	Pb	Zn pom	Ag	Ni	Co	Mn DDB	Fe	As	U	Au	Th	Sr DOM	Cd	Sb	Bi	V	Ca ¥	P	La	Cr	Ng X	Ba DOM	Ti	8	Al X	Na X	K	W.	Au*
870 871 872 873 874	1 5 1 4 1	12 133 110 333 309	2 2 2 10 2	62 66 46 29 38	.3 .7 .8 1.7 .8	29 81 41 5 29	12 16 18 58 11	1389 285 388 188 330	4.88 2.84 3.96 8.09 4.64	2 17 2 26551 118	5 5 5 6 5	ND ND ND ND ND	1 1 1 7 1	106 41 254 48 217	.2 .3 .7 .4 .8	3 2 2 3 2	2 2 2 11 2	96 67 84 89 128	.79 .53 1.95 .40 2.03	.177 .050 .125 .186 .174	4 2 2 16 2	128 39 76 3 46	3.11 1.08 1.34 .94 1.51	22 47 122 87 156	.11 .14 .14 .09 .18	2 2 2 2 2 2 2	3.55 1.37 3.87 1.24 4.25	.11 .13 .50 .06 .47	.05 .20 .52 .19 .75	1 2 1 2 1	6 9 5 451 22
875 876 877 878 ミュモ 879	5 8 18 1 1	125 67 119 16020 209	3 5 4849 82	24 34 35 1369 91	.5 .5 .8 35.9 1.4	51 63 88 21 20	13 12 15 21 18	208 429 284 1920 723	2.23 3.54 3.08 24.29 5.07	490 17 8 3508 47	5 5 5 5	ND ND ND 2 ND	1 1 1 1	39 15 60 12 236	.2 .2 .2 31.9 1.6	2 7 2 201 6	2 2 18 2	58 186 105 3 153	.52 .40 .83 .28 1.76	.052 .073 .103 .015 .217	2 3 6 2 6	34 72 53 18 21	.84 1.79 .66 .33 1.83	23 67 31 3 103	.10 .24 .13 .01 .19	3 2 2 9 2	1.21 1.85 1.17 .12 3.66	.12 .05 .12 .01 .30	.18 .47 .07 .01 1.01	1	30 7 3 2289 69
880 881 882 883 884	2 2 1 2 6	62 73 2970 101 52	6 5 1038 17 11	99 27 273 601 132	1.0 .4 6.3 .3 .5	8 72 72 72 72	18 7 12 6 5	500 166 687 155 278	5.31 1.80 4.82 2.06 1.16	7 20 445 45 16	5 5 7 5 5	ND ND ND ND ND	2 1 1 1	102 68 36 65 168	1.1 .2 5.4 6.0 1.2	6 2 27 3 2	2 2 2 2 2 2 2	165 29 47 49 11	1.32 1.23 .55 .73 3.46	.102 .043 .037 .056 .071	7 3 3 6	23 24 33 31 15	1.89 .22 .76 .33 .03	74 20 24 22 19	.24 .06 .11 .07 .06	2 2 2 2 3	3.52 .93 1.11 1.20 .96	.34 .08 .11 .17 .06	1.07 .10 .20 .16 .02	2 1 1 3	21 6 210 13 7
885 886 887 888 889	2 1 1 1 3	459 422 73 145 109	5 15 6 2 12	61 43 34 161 43	1.2 1.2 .4 .9 1.0	9 10 16 40 27	13 11 5 16 13	332 259 212 466 432	5.28 4.30 2.36 4.24 3.19	74 20 13 13 15	5 6 5 5 5	nd Nd Nd Nd Nd	3 4 2 1 1	63 99 35 244 97	.7 .8 .2 1.4 .4	7 3 3 13	2 2 2 2 2 2	165 114 48 74 50	.69 .97 .38 2.84 .61	.078 .085 .059 .180 .068	3 5 4 3	22 14 14 53 25	1.88 1.28 .88 1.02 .98	105 103 15 48 47	.27 .27 .08 .13 .09	2 2 2 2 3	2.84 2.39 1.07 4.81 1.78	.16 .18 .10 .59 .19	1.09 .63 .12 .08 .45	1.	87 25 5 13 4
890 891 892 893 894	2 1 6 1 2	174 113 171 90 116	12 4 7 4 38	55 26 20 28 48	.9 .7 .7 .5 .9	34 46 86 34 68	22 .26 15 10 23	487 314 170 332 506	3.82 3.98 3.56 3.04 3.30	10 2 3 2 56	5 5 5 5 5	ND ND ND ND	1 1 1 2	138 470 111 96 54	.4 .3 .2 .4 .5	14 4 3 5	2 2 2 2 2 2	123 83 76 46 66	.99 2.34 1.06 1.08 .70	. 102 . 134 . 048 . 038 . 075	4 4 3 3 3	24 21 43 22 27	1.65 1.05 .63 .42 .89	104 129 67 26 68	.20 .14 .09 .11 .11	2 4 3 2 2	3.15 4.17 2.28 1.90 2.04	.36 .57 .24 .12 .13	1.22 .71 .26 .10 .47		4 2 5 88
895 896 897 898 899	1 2 8 1 1	89 14 49 83 119	5 10 12 12 8	40 38 31 41 50	1.5 .3 .4 .6 .9	37 14 57 32 39	11 5 6 13 17	258 259 237 367 586	3.20 1.12 1.45 3.32 4.59	6 13 17 25 4	5 5 5 5	ND ND ND ND	1 1 1 1	39 224 53 132 180	.3 .4 .4 .5 .5	2 5 4 7 7	2 2 2 2 3	68 47 49 74 105	.59 1.95 1.30 1.80 1.69	.050 .163 .091 .074 .188	2 4 3 2 4	30 16 35 28 42	.85 .49 .17 1.09 1.41	91 51 18 88 40	.11 .13 .07 .17 .11	2 2 2 3 2	1.54 2.37 .70 3.86 3.15	. 16 . 46 . 11 . 49 . 29	.41 .20 .07 .80 .09	1 2 1 5 2	20 1 1 1 2
900 901 902 903 904	2 2 1 2 22	180 352 234 17 60	13 5 3 2 5	48 34 63 72 25	.9 .8 .8 .4 .3	22 4 31 6 66	7 14 12 7 15	389 310 455 1156 288	2.94 4.41 4.70 4.94 2.15	48 10 177 8 6669	5 5 5 5 5	nd Nd Nd Nd Nd	1 6 1 8 1	44 56 162 102 39	.5 .5 .9 .8 .2	5 3 7 9 2	2 2 2 2 2 2 2 2	91 77 183 87 87	1.10 .88 1.49 .95 .83	.107 .218 .190 .205 .072	3 13 2 15 4	30 2 35 6 41	1.42 .92 1.85 1.34 .27	34 88 151 88 27	.09 .21 .22 .24 .08	2 2 2 3 2	1.68 1.45 3.88 2.42 .69	.12 .13 .42 .13 .10	.23 .39 1.48 .32 .05	11233	1 11 682 2 42
STANDARD C/AU-R	18	61	39	133	7.3	71	_31	1096	4.00	43	18	6	41	53	18.7	15	20	57	.48	.090	40	58	.89	179	.09	34	1.96	.07	.15	11	451
	ICP - This	.500 LEACK	GRAM Is P/	SAMPI	.E IS . For	DIGE Mn i	ESTEC Fe si	NITE R CA I	H 3ML P LA C	3-1-2 R Mg B	HCL-I	HNO3- B W	H20 AND	AT S	75 DEI	G. C For 1	FOR NA K	ONE And	HOUR AL.	AND AU D	IS D etec	LUT	ED TO LIMI	10 : T BY	ML W	ITH N Is 3	IATER 5 PPM	•			,

	a succe	A Dest	ar Scient		•. •	an a' a'	n. Standi	Seleti		a sa	+ 4	•••••• ••••	1			. .		v.	∿•x _ ∿obé é		6365	· ·	ب ملحد م	. 	1)25			1985.			- 	* * * * 19 - 4 - 18
A A) (GEOC	HEMI	CA	l A			SIS	CE	RTI	FI	CAT	E					<u> As</u>					· · ·	Â	Å
								PDT:		01120		~~			÷ .	11	99 (q	8	1	015									194. 1			
						1022		670 G	ranvil	le St.	Var	COLV	er i l	ic v	C 1V5	L L L	≓ 1 domii	ted	±	IOHN 7		TKIN	is Is									<u>*</u> 1
	<u></u>			<u></u>				<u> 2007</u>		<u> </u>	9838.													93.3								<u>iligia</u>
SAMPLE#	Mo	Cu	РЬ	Zn	S y S	NT	Co	Hn	Fe	As.	U	Au	Th	Sr	S Cd	Sb	81	V	Ca	P	La	Cr	Mg	Ba	JU	8	AL	Na	K	1 N.	Au*	
	ppm	ppn	ppn	ppm	bbu	ppm	ppm	ppm		bb a	ppm	bbw	bbu	bbu	S PPM	ppm	ppm	ppm	X	X	ppm	bbw	<u>x</u>	ppn	5 X I	pu	X	<u>×</u>	X	ppm	ppb	
900A	2	93	31	37	4.4	. 17	183	492	10.75	30971-	6	4	4	18	2	7	68	131	.35	80000 81518	8	3	1.90	72	.05	2	1.85	.03	. 11	41	3600	
900B	3	220	4563	73	232.3	41	789	227	19.45	31899-	′ 1Ž	26	6	13	.9	ġ	436	25	.24	.092	8	22	.34	30	.04	9	.58	.03	. 19	113	19200	
9000	3	1559	798	444	68.0	/ 22	261	375	9.20	25853-	5	6	- 4	23	8.7	8	113	48	.49	163	8	12	.86	53	.05	3	1.01	.04	.18	3	5900	
9000	1 1	855	6250	9179	69.6	/ 41	11	1218	5.80	684	5	Ž	1	118	186.6	- 41	11	85	7.32	176	6	75	1.77	- 34	.06	2	1.93	.05	.26	81	440	
900E	2	68	69	40	4.8	113	476	174	17.92	31856-	9	ND	4	39	.s	226	32	44	.30	.044	2	33	.65	17	.03	8	.88	.09	.28	110	3700	
2000	.	201	22	77	2 A C	7	56	245	5 17	140544	5	ыn	7	67		5	15	45	40	728	15	L	87	77	no	τ	1 22	67	10		540	
9008	1 1	157	85	111	- X 1 7	24	60	224	6 62	301267	ίĘ.	1	5	20	8.9.4 8.2 A	5	17	2R	.07	071	ΞĘ.	20	81	50	AL.	5	1 17	10	16	18	2340	
9001	1 1	430	17	30		37	14	274	T 85	30120-	ĩ	มก	- ī	58	Y	5	- 1	76		084	ž	22	1 07	- 05	10	5	1.15	14	5/	X	550	
905	11	51	7	86	- 88 C - 2	- X	16	1443	3.05	752	Ē	20	- 1	75	200 - C	- -	2	116	1 22	125	- 7	21	1 20	01	15	2	2 50	14	20	22	122	
906	i	91	12	37	.5	30	10	487	3.21	663	5	ND	i	86	.2	. 8	Ž	73	.50	.056	2	40	1.52	46	.08	3	2.24	.14	.47	3	42	
			_												\$										÷.					2.0		
907	1	178	8	18	.8	42	- 28	261	3.31	1219	5	ND	1	172	.4	2	2	- 58	1.56	.069	2	56	.60	115	.08	2	2.27	.28	.24		29	
908	2	41	10	- 24	.3	16	6	359	1.21	202	5	ND	1	- 48	.6	2	2	12	3.62	.019	2	11	.21	- 15	.04	2	.45	.05	.06	1 1	10	
909	22	108	10	20	- 88-7.	67	27	394	3.08	155	5	ND	1	114	.6	2	2	132	2.99	.086	2	37	.54	21	.08	4.	2.99	.17	.41	10 t .	13	
910	2	12	_8	7		7	2	111	.67	168	5	ND	1	- 5	.2	2	2	- 5	- 14	.005	2	10	.05	7	.01	3	.10	.01	.02	3	15	
STANDARD C/AU-R	19	63	39	131	7.6	69	32	1065	3.92	42	22	6	-39	- 53	17.0	16	- 18	58	.48	.087	39	57	.88	175	.09	34	1.90	.06	.15	: 11	450	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 24 1991 DATE REPORT MAILED: (ply 30/91.

✓ ASSAY RECOMMENDED

ACME ANAL	<u>.</u>	<u>.</u>	LAB	ORAT	ORIE	5 5 1 /	TD.		852	E. Geo	HAS DCHI	TING EMI(ds s' Cal	r. v Anz	'AN ALY!	118	R B, CEF	C. TIF	V6A VICI	. 1R(ATE	5	PI	IONE	(604	1)25	3-31	58	FAX	(604		3-17	16
ťť]	<u>(RL</u>	<u>Res</u>	sou:	<u>. Ces</u> 022 •	<u>3 Co</u> 470	orp. Granv	iiie	F: st.,	lle Vanco	f S uver	1-3 90 96	1559 c 1v5	•	Pag	le :	L									
SAMPLE#	No ppm	Cu ppn	Pb ppm	Zn ppnii	Ag ppm	N 1 Ppm	Co ppin	Mn ppn	Fe X	As pps	U Ppm	Au ppm	Th ppn	Sr ppm	Cd Ppm	\$b ppm	B1 ppm	V ppm	Ca X	P ¥	La pp#	Cr ppm	Mg X	Ba ppm	ti X	B ppa	AL X	Na X	K X	iii PDM	Au* ppb	
911 912 913 914 RE 913	2 3 3 8 3	390 662 144 121 134	11 42 10 7 8	61 46 29 27 27	1.7 3.7 .4 .5	7 4 12 67 13	14 22 7 15 7	292 300 251 328 244	3.45 6.36 2.94 3.18 2.81	204 323 22 51 25	5 5 5 5 5	ND 2 ND ND ND	8 5 3 1 3	43 53 75 76 73	.9 .2 .2 .2 .2 .2 .2 .2 .2	2 2 2 2 2 2 2	4 31 4 2 2	54 90 72 99 70	.71 .80 .36 .88 .35	.174 .216 .117 .082 .114	15 12 9 4 8	4 5 56 6	.74 1.00 1.00 1.35 .98	35 66 51 84 46	.21 .21 .13 .13 .13	32422	1.15 1.45 1.13 2.21 1.10	.07 .09 .04 .27 .04	.13 .24 .08 .62 .07	1	22 2620 17 6 20	

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG 8A TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2-3 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

Samples beginning 'RE' are duplicate samples.

ACHE ANALTICAL

Cd Fe A. Th Sb P TÍ SAMPI F# Мо Cu Pb Zn Aa Ni Со Mn U Au Sr BÍ V. Са L.B. Ĉr Ma 68 £. AL. Ka K 💥 V Aut X X * x. 2 ppm DDM DDI DOM DOM COM DOM DOR DDM DOM DOM OOR DDB X DOM DOM DOG DOM DDM X X DOM DON DOM DOD .6 70 13 191 3.06 292 2 15 .2 2 2 57 .34 .052 41 .66 17 11 2.82 .06 915 2 225 5 27 5 ND 4 .06 6 7 zz 20 4 25 5 762 2.82 55 1.3 2 .97 .108 6 .93 68 2 1.31 24 136 .8 4 24 5 ND 46 .07 -04 .13 916 4 3 1 .2 16 ž 47 .15 .040 .93 .06 5 ż 23 917 6 130 5 40 .4 20 9 372 3.66 28 ND 8 2 .94 .03 .06 1 12 454 42 266 4.68 6656 5 ND 6 18 .6 11 60 40 .31 .108 14 5 .86 53 .D4 2 1.01 98 6 23 .05 1 1239 918 18 8.2 .09 ŝ 54 7 2 2 17 ND 32 3.42 .052 8 .92 .03 919 4 124 6 39 .6 23 16 645 4.47 80 1 11 2 .81 .04 . 10 1 34 594 6.1 7 15 .09 .006 2 13 14 920 15 68 458 28.9 45 38 100 6.42 561 5 2 1 3 8 .04 .01 2.10 ,01 .05 1 3170 .9 .2 47 22 267 4.66 6402 5 7 12 59 41 .31 .106 6 .85 54 RE 918 18 450 97 88.18 7 ND 18 14 .04 2 1.01 .05 .08 -30 64 72 .58 .068 16 364 2.07 25 Ż 67 32 5 2 2 29 .70 × 68 2 1.23 .12 23 2 46 20 38 ND 1 .34 921 ÷. 922 109 11 29 1.0 59 12 601 3.49 7 ND 1 95 .6 2 2 46 5.37 .094 2 36 .57 24 .09 2 2.18 .23 .22 7 6 1 14 316 2.53 28 ŝ 112 g 2 132 2.91 .073 ž 41 .56 25 .13 62 81.3 129 ND 1 13 2 3.32 .13 .20 923 20 94 11 1 2 35 3.89 .105 974 104 .2 7 8 763 3.60 4 5 91 .6 11 2 9 5 1.20 102 .03 2 1.93 .03 .22 1 4 1 6 6 ND 1 STANDARD C/AU-R 18 62 38 130 7.3 70 32 1033 3.93 43 19 6 40 51 18.4 16 19 56 .49 .089 38 58 .86 179 .09 31 1.92 .06 . 16 13 460

÷.,

Samples beginning 'RE' are duplicate samples.

KRL Resources Corp. FILE # 91-3859

A	NB AN	ICAL	- LAB	ORAT	ORIES	5 LTD	•		852	E. B	IASTI	NGS	st	• [•]	- TC	COUVE	R	3.C.	v	6 n _1	K6		PHO) HR (6U 4)25	3 -3	158	88 .	hi (6.74) 25 2	3-1119
										GEC)CHE	MIC	AL)	/ a		Y C	जर्भ	(I) (I)	[CA	t B													
									KRT	Res	our	Ces	C	OF			36	e	1. 9	1-4	640												
							102	2 -	470 0	irenvi	le St.	, Ya	ncou	ver	BC V	/6C 1V	•	Submi	tted	by: .		. U A	TKIN										╘
<u></u> 5/	MPLE#	Mo	Ĉu	Pb	Zn	Ag	Ni	Co	Kn	Fe	As	U	Au	Th	Sr	C	1 5	6 6 1	۷	Ca	P	t.	Сг	Ng	Be	31	ß	38	Na	K	Ű.	∧u≉	Zn
		ppm	ppn	ppn	ppm		ppm	ppm	ppm	<u>×</u>	ppn	ppm	ppm ;	ppm	ppm	PP	, pp	n ppn	ppm	X		ppa -	ppm	X	ppm		p n	<u>×</u>	X	*	PP n	ppb	<u>×</u>
9	75	1 1	547	384	37397	19.1	13	18	2072	23.31	4908	5	ND	1	17	857.1		2 16	118	.31	.059	2	21 2	2.96	12	.01	2	4.48	.01	.04		341	4.09
R	E 979	3	496	1746	35504	63.6	24	15	69	19.32	7920	5	ND	2	6	730.	2 11	9 28	10	.04	.006	2	5	.13	5	.01	2	.29	.01	.01		1463	-
9	76	Z	13	9	456		13	- 4	472	1.84	78	5	ND	1	38	9.		22	15	.78	.051	8	14	.42	26	.01	3	.73	.01	.04		7	•
9	77	12	78	33	590	2.7	27	5	292	3.00	161	5	ND	1	11	12.	6 4	6 Z	80	.17	.054	2	23	.87	42	0	Z	1.37	.01	.14		11	-
9	78	17	99	2299	1262	5.9	25	7	3345	3.67	105	5	ND	1	361	24.	5 T	1 2	- 41	6.44	1044	5	. 9	.55	29	SUT:	Z	.85	.01	.11		70	•
0	79	14	496	1857	35932	65.4	25	15	76	19.14	8062	5	ND	1	15	722.	811	8 30	4	.17	1004	2	4	.06	6	01	2	.15	.01	.01		1375	-
9	80	lż	168	- 298	3702	8.1	19	8	266	6.63	13513	5	ND	1	25	89.1	5 10	3 4	36	.48	138	. 3	12	.50	42	.01	2	1.37	.01	.18	i.	429	-
9	81	5	1373	3060	704	115.1	20	8	- 34	19.48	1779	- 5	ND	2	13	12.	<u> </u>	3 43	5	.10	.001	. 2	8	.04	3	D1	2	.09	.01	.01		1122	-
9	82	3	478	2045	24168	38.0	27	67	178	17.58	99958	5	ND	1	19	615.	59	5 44	- 14	.27	D41	3	9	.13	20	(01)	2	.57	.01	.11		2112	-
9	53	33	257	1687	11693	44.9	47	- 4	170	9.28	2048	5	ND	1	22	274 -	5 5	67	20	.30	-D19	Z	10	.10	17		2	.35	.01	.10		451	-
0	e/		00	12633	5000	212	25	27	100	17 77	10756	4	MD	4	76	178)) 	5 12	- 11	30	0.25	4	*	13	7		2	.26	01	.07	84	1045	56
0	85		410	9084	75872	52.1	18	11	4717	24.38	3243	Š	ND	i	18	1951	2 13	6 28	9	.28	003	ž	ĩ	.91	ż	101	ž	.34	.01	.01		1749	7.56
<u> </u>	TANDARD C/AU-	R 19	59	37	135	6.7	72		1076	4.00	<u> </u>	16	6	39	53	17.	B 1	4 19	57	.46	808	38	59	.87	183	05	33	1.92	.06	.14	M.	473	-

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECONNENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK ZN - REGULAR ASSAY. <u>Samples beginning 'RE' are duplicate samples.</u>

DATE RECEIVED: SEP 23 1991 DATE REPORT MAILED: Sept 26/91. SIGNED BY ... ACHE ANAL TCAL LABORATORIES LTD.

862

RASTINGS ST. VA WVER B.C V6A 1R6 PHONE (604) 253-3150 FAX (60 - 253-1716

70 Granville St., Vancouver BC V6C	s Corp. Fil	100000000000000000000000000000000000000	$EE \sim 6$
1V5 Submitted by: JOIN 4. WATKIN	e 1 91-4712 Page 1	:::::::::::::::::::::::::::::::::::::	EVEDINE CONTRACTOR SECOND

							1022	(* 4 7	0 Gr/	inv i Li	e St.	Уап	CÓUNC	r 80	VGC 1	172	Submi	tted	by: J	ICHN	1. WAI	KINS						<u> </u>			01820
SAMPL E#	No ppm	Cu ppm	Pb ppm	Zn ppn	Ad ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As PPR	U ppm	Au ppm	Th ppm	Sr ppm	Cd Acm	sb ppm	Bi ppm	¥ ppa	Ca X	P	La ppa	Cr ppm	Mg X	8a ppm	<u>N</u>	8 ppm	AL X	Ne X	K X	ppin	Au* ppb
1732 1733 1734 RE 1739 1735	3 1 1 2	438 335 100 103 244	44 10 24 4 20	64 40 35 42 38	3.0 1.5 1.8 1.8 1.7	30 29 5 3 4	45 13 25 10 6	419 338 651 622 338	5.74 4.32 2.40 4.59 3.10	4231 565 2686 	5 5 5 5 5	nd Nd Nd Nd	1 1 4 1	53 126 98 117 91	O N M M	4 6 2 3 2	84 83 5	63 87 44 89 50	2.36 2.74 5.45 3.38 2.45	.081 .210 .094 .251 .105	3 3 4 10 4	20 21 10 7 10	1.15 1.18 .94 1.10 1.02	74 59 40 210 81	.07 .10 .07 .27 .12	4 1 3 1 4 1 3 1 3 1	1.41 2.53 1.22 2.38 1.57	.07 .27 .06 .23 .13	.17 .19 .12 1.24 .18		140 75 520 5 31
1736 1737 1738 - 1739 1740	22222	222 249 647 107 249	7 7 5 3 9	29 32 41 42 43	.6 1.2 .6	3 9 17 3 9	3 7 12 9 15	267 267 421 624 466	2.86 3.61 5.09 4.65 5.55	22 295 32 6 32	5 5 5 5 5	ND ND ND ND	1 1 3 4 4	141 118 91 120 101	N.N.W.M.	2 2 2 2 2 2	3 4 6 2 4	51 59 73 90 82	1.92 1.44 2.53 3.37 2.04	-113 -102 -231 -253 -265	4 3 10 11 10	10 16 16 8 13	.92 1.07 .96 1.10 1.10	101 101 89 223 93	.19 .19 .21 .28 .23	3 3 4 2	1.69 1.78 1.73 2.41 2.12	.20 .21 .22 .25 .29	.19 .22 .31 1.26 .67		128 21 17 8 22
1741 1742 1743 1744 1745	1 1 2 2 2	201 390 367 272 578	54 56 4	39 38 32 39 2361	•7.7.7.8	2 3 8 6 37	14 15 13 11 31	530 443 352 468 335	4.92 5.07 5.07 4.51 5.50	13 3 J 35 3705	5 5 5 5 5	ND ND ND ND XD	4 4 5 1	113 95 78 97 55	12.22	2 2 2 2 8	3 4 5 4 6	82 81 74 84 58	2.66 2.60 2.09 1.96 1.77	.281 .278 .278 .285 .285	12 11 12 13 4	9 8 10 30	.98 .96 .88 1.05 .81	109 115 102 122 71	21 22 22 22 24	2322	1.86 1.68 1.53 1.66 1.19	.19 .16 .15 .21 .13	.37 .31 .31 .27 .47		58 12 10 7 140
1746 1747 1748 1749 1750	2 2 1 1 2	673 326 267 296 130	3 7 7 4 2	56 38 42 74 63	.8 .6 .1 .7 .3	4 3 1 1 2	17 19 14 14 13	401 367 446 847 662	6.30 6.32 5.83 6.79 5.95	41 42 16 26 26	5 5 5 5 5	ND ND ND ND	3 4 3 3 4	94 101 108 109 120		2 2 2 2 2	7 7 6 4 2	72 84 87 110 110	2.66 1.90 2.35 2.44 1.61	*****	10 11 10 9 11	9 9 9 5 6	.92 1.01 1.06 1.47 1.45	105 140 235 435 430	2322 29 31 33	3 2 3 4 5	1.69 1.96 2.11 2.90 3.00	.16 .19 .22 .21 .24	.33 .60 .87 2.35 2.06		95 34 86 92 9
1751 1752 1753 1754 1755	1 1 1 2	204 529 546 676 336	5 51 9 23 5	43 39 40 44 41		1 2 1 1 2	12 32 14 20 14	494 1070 431 379 358	5.12 6.75 5.85 6.70 5.28	11 633 10 161 107	5 5 5 5 5	hđ Nđ Nđ Nđ Nđ	3 2 3 2 2 2	69 146 73 68 66		2 2 2 2 2 2 2	4 7 6 9 6	91 74 85 74 95	1.65 6.56 2.50 2.32 1.68	NEXNE	10 11 11 9 10	6 9 7 9	1.30 1.15 1.25 .97 1.31	159 85 118 99 147	.24 17 21 21	22222	1.99 1.53 1.55 1.45 1.84	.11 .10 .11 .15 .16	.73 .30 .63 .34 .67		21 91 20 230 41
1756 1757 1758 1759 1760	2 1 3 1 2	272 287 399 325 178	8 5 3 2 5	46 31 87 42 61	95876	1 1 2 1 2	9 10 13 12 8	416 308 354 371 473	4.66 4.67 5.68 5.14 5.22		5 5 5 5 5	ND ND ND ND	3 2 2 3 3	70 56 68 68		222222	5 5 4 2	94 76 88 94 98	1.67 1.71 1.48 1.71 1.22	22220	12 11 10 11	7 8 17 8	1.24 .93 1.25 1.26 2.02	251 140 203 171 327	30 28 24 25 31	3 2 4 4 3	1.92 1.47 1.88 1.85 2.59	.17 .15 .16 .14 .16	1.02 .56 .71 .64 1.80		44 53 32 21 12
1761 1762 1763 1764 1765	1 1 1 1	144 168 96 177 246	3 2 3 2 3 3	37 37 46 38 34	35354	64 73 56 45 55	25 21 15 20 19	474 351 435 347 330	3.84 4.27 3.64 3.68 4.42	94 176 135 364 273	5 5 5 5	nd Nd Nd Nd	1 1 1 1	190 121 154 170 181		22222	2 4 4 6	77 85 82 81 71	3.33 1.64 1.91 1.95 2.13		22232	113 117 100 80 81	1.39 1.50 2.04 1.60 1.40	133 121 126 163 131	19 18 20 21	2 3 3 3 2	3.68 2.85 2.90 2.91 2.98	.48 .31 .28 .37 .40	.75 .85 1.11 1.25 85		11 36 45 69 106
1766 1767 Standard C/AU-R	1 7 18	169 67 61	5 2 40	33 15 133	4.7	59 73 70	14 8 33	352 351 1047	3.67 1.55 4.00	291 84 39	5 5 18	ND ND 6	1 1 36	101 43 54	18.4	2 2 15	6 2 19	88 51 55	2.50 2.74 .48	. 13 . 05 . 00	2 37 37	71 92 51	1.44	104 15 183	20 00 09	2 2 33	2.64 .98 1.89	.34 .10 .06	1.26 .20 .15	15	86 11 450

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 NCL-NH03-H20 AT 95 DEG. C FOR ONE HOUR AND 18 DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR NG BA TI B W AND LINETED FOR WA K AND AL. AU DETECTION LINET BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* AWALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples Regimping "Ref are duplicate samples.</u>

DATE RECEIVED: , D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYLRS SEP 25 1991 REPORT MATE.E
ACNE ANALYTICAL	LABORATORIES LTD.	852 E.	HASTINGS ST. VANC PHONE (604) 253-31	OUVER B.C. V6A 1R6 58 PAX(604)253-1716
ΑΑ	ASSAY CERTIN	FICATE		ΔΔ
TT	KRL Resources Corp.	FILE	# 91-2514R	TT
(SAMPLE#	Ag** oz/t	Au** oz/t	
	878 902	1.07	.086 .022	-
	AG** AND AL** BY FIRE - Sample type: Rock PU	ASSAY FROM 1	A.T. SAMPLE.	o rela

EIVED: AUG 12 1991 DATE REPORT MAILED: Hug 15/91. SIGNED BY.

APPENDIX 6

Drill hole log abbreviations Drill hole logs MM1 to MM14 Tabled analytical results Selected element distributions

Ċ

andesite And ait d altered ang angular ard argillite Asp arsenopyrite bd bedded, banded biotite biot bkn broken Ыd bleeched blk black brown bm bх breccia breccia stockwork bxwk calc calcite carbonate carb coarse grained cg chert ch chl chlorite cherty chty army creamy Ср chalcopyrite ct contact contacts cts Db diabase dio diorite dk dark dike dy end of hole EOH fine flow breccia fbx fds feldsper fine grained fg f flow faulted fit'd foi foliated FP feidspar porphyry fr fresh fractured frac frag fragment granodiorite Gď **odmas** groundmass go gouge grad gradational gran granular graph graphite gm green grey **g**Ty insitu in-situed intracalated intra intercalated inter intrusive intr irregular irreg lamp lamporphyre lower contact IC loc local 0 at

magnetite magn metamorphic meta medium grained ma mineralized min moderate mod mott'd mottled massive sulphide MS massive mev porphyry Ρ patchy pet perpendicular perp phenos phenocrysts Po pyyrhotite prob probable psuedo psuedomorph Рy pyrite pyroxene рух ä quartz OC. quartz carbonate ram'd ramified remnant rem rk rock acattered scatt sections 88C8 sediment sed sh shear sh'd sheered So primary foliation sandatone **85**t stra strong striy strongly stwk stockwork subang subangular subrd subround sulph sulphide tuff Т tc top contact texture tex thru throughout trachytic trac unif uniform unmineralized unmin very ۷ VEF variable very coarse grained vca ٧f very fine vta very fine grained voic volcanic wn vein vn'd veined vniet veinlet with w wk weak weakly wkly xc cross cut zenoliths zeno

) signifies small, minor, weak perallei

;

(

Location: 609m North 044m East 790m Elevation Azimuth: 165° Dip: -55° Length: 110.60 m Started: July 20,1991 Finished: July 21, 1991

Logged by: J J Walkins July 22 &23, 1991

Contractor: J T Thomas

- 0-3.03 Casing
- 3.03-4.45 **Diorite**: fresh, massive, fg, gradational to mineralation 2 % Py, quaryz veined with bleached halos.
- 4.45-4.85 Quartz vein: 70% bull Q w pat bl'd host, 7% Po, c'ts sharp @ 45°-50°.
- 4.85-5.70 **Altered sediment**: sil'd on 70% dk gry host, y f grained f yning w Py, lc sharp sh @ 25°.
- 5.70-6.15 **Sheared vein**: strong Q vein grading to bleached diorite with sharp lower bleaced contact at 45°, boxwork of narrow chlorite, 3% Py.
- 6.15-7.10 **Diorite**: fr, fg, (Py), lc grad to alt'd dio.

7.10-11.80 Altered Intrusive:

7.10-7.88: strg sil'd wif sulp stwk, narrow bl'd halos @ 45°-60°, lo bkn @ 60° 7.88-9.65: intense sil'd to chert, crmy gry, 3% patifg Py.

9.65 -11.80: sil'd & loc bl'd, bleached areas centred on sulp+chi pat & yns, ic sharp w intense sil.

11.80-12.73 Chert vein to 12.30, crmy gry w 10 cm Q vn @ lc w 2% Po, sh'd ser cts @ 35°. 12.30-12.73: vn related alt'n, 50% bl'd haloed w 5% nsulph vnlets and xc calc vnlets & grad to less alt'd fg dio.

- 12.73-15.65 **Altered diorite**: Strg skwk related bleaching w 10% remnant wkly alt'd dio, loc insitu frac w sulph+QC & scatt vnlet swarms sulph+QC, sulph 5%.
- 15.65-20.60 Sheared sediment: bkn fg w strg sil'd sections to chert, prob centred on 3cm calc box yn @ 30°, all imposed on f insitu stwk of dk gry ynlets, Ic sharp, bkn.

-2-<u>Drill Hole No. MM-1</u> cont'd

20.60-34.90 Diorite altered and mineralized diorite 20.60-20.95: Db dy? w some bl'd halos, 5% Py vnlets. 20.95-21.05: QC Asp w 20% chi pates, 10% suiph vnlets. At 21.3: 5cm QC+Asp vn at 60° w 0.5cm msv cg Asp. To 21.50: Bl'd and vf yn'd Asp. 21.5-24.45; mg-cg dio wk mod bl'd xc by scatt Q+Asp & Py+chl ynlets. 24.45-26.00: Strg bl'd & sulph vn'd at top 0.5m and bottom 0.5m. 10% chi yns all xc by chi+sulph ynlets, 5% total sulph. 26.00-32.80 mg-cg dio w 10-20% vnlets w bl'd halos w 10% Py+chl+l-magn vnlets. At 32.80: 5cm QC+Po(5%)(Cp) yns, 10cm bl'd halo at 30°. At 33.05: 3cm vn w 60% Po(Cp), 20%QC w some chi @ 45° w related ynlets to 34.90. 33.05-34.90: Alt'd dio w 30% bl'd Po(Cp) +chl vnlets @ 45°-60°, lc bkn. 34.90-35.10 **Chert**: sil'd sed, f bd perp to intrict, 3% f vnlets Q+Po(Cp), lc sh'd @ 60°. 35.10-35.75 Diabase dike: chilled cts @ 60°. Altered sediment?: fg, sil'd, (bd) @ 60° w diss Py, lc bkn. 35.75-36.20 36.20-36.90 Altered mafic dike: lamp? fg w chl psuedo maf phenos (bio?), f chl vniets, ic bkn. 36.90-39.10 Altered sediment: var So to 38.00, 10% Po(Cp) // to So, xc 1% Q+Py vnlets, 5% cg Asp best near other sulp. 38.00-39.10: sed? but y grad ct to intr, y sil'd, 5% Po(Cp) w wide bl'd halos, scatt Q+Po(Cp) vns to 1cm. 39.10-41.80 Altered intrusive: sed?, v bl'd w 10% Po(Q)(Cp) vnlets, diss Asp. 41.80-43.20 Diabase dike: fg, msv, 1% f vnlets Py, cts @ 60°. Mafic dike?: alt'd db?, 1mm alt'd maf phenos in fg gdmss, xc by 10% 43.20-45.60 Po(Cp)+QC+Asp ynlets w narrow bl'd haloes, biot? alt'd, ic sharp @ 30°. Altered sediment: sil'd, bl'd, strg carb, scatt 1cm Q(C) Py Asp(Cp) 45.60-46.10 vning @ 45°, lc bk'n. 46.10-47.55: Altered diabase: as before, ic sharp @ 30°.

Drill Hole No. MM-1 cont'd

- 47.55-49.90: Altered sediment: sil'd but med gry, fg, msv, bl'd, fabric @ 20°-30°, lc sharp 60°.
 47.55-48.40: chty w 5% Po(Cp)+(Asp) best to tc.
 48.80-49.90: <1% diss Po.
- 49.90-51.45: Altered diabase dike: wk bl'd (calc) vnlets, lc sharp @ 60°.
- 51.45-53.95: Cherty sediment: (ser), scatt QC vns to 1cm w Po(Cp), lc sharp ragged @ 70°-80°.
- 53.95-54.85: Altered diabase: loc bl'd. At 54.35: 5cm 50% Po(Cp)+Q vn @ 70°, lc sharp 80°.
- 54.85-56.20: Altered sediment: sil'd to crmy ch, So @ 75 to 55.15, 5% Po(Cp) to tc. At 55.15: 10cm bd dy @ 80°. Ic sharp @ 45°.

56.20-81.20 Altered graniodiorite: tc 10cm chill.
56.30-57.50: mod alt'd w 10% Po(Cp)(Q)(chl) vnlets to 0.2cm most @ 70°-80°.
57.50-58.50: strg bl'd w 15% Po(Cp)(Asp)(Q)(chl) stwk vnlets.
58.50-59.50: mod bl'd w 10% Po(Cp) vnlets.
59.50-66.00: mod to strg bl'd 10-15% Po(Cp) w Asp vnlets, (diss Asp) most @ 70°-80°, 5% pat Q vn to 5cm.
66.00-69.60: mod grad to strg bl'd, 10-15% Po(Asp) vnlets to stwk.
69.60-80.00: 20% Po(Cp) vn'd to 3cm, host in cg Gd, widest vns @ 30°-40°.
80.00-81.20: fg chill, 5% vnlets Po(Cp) most @ 75°.
Ic sharp vfg chill.

- 81.20-82.00: Cherty sediment So @ 60°, < 1% sulp, lc sharp @ 45°.
- 82.00-89.00: Altered granodiorite: cg, msv, 20% Asp+bl'd haloes to 1cm most @ 80°-90°, ic chilled over 30cm & sh'd @ 30°.
- 89.00-94.40: Altered granodiorite: no chill at tc, cg to 93.00 93.00-94.40: fg chill, 5% vnlets+bl'd haloes w Po(Asp), ic sharp sh'd w calc @ 30°.
- 94.40-99.90: Altered pyroxene porphyry: mod to loc strg bl'd w chunky 2mm mafic phenos now chl or biot, 10% Po(Cp) vning to 1cm most @ 30°-45°, lc sharp & calc rich @ 20°.
- 99.90-101.10: **Diabase dike**: f fds phenos, chilled cts, calc ynlets w bl'd haloes w (diss Asp) over 20cm, ic sharp @ 40°.

Drill Hole No. MM-1 cont'd

101.10-110.60: Altered feldspar porphyry with cherty intervals: scalt Db to 20cm, hl'd wk fabric @ 40°.

101.10-101.80: sil'd FP? w 20% crmy ch flooding best to cts, (Asp) to tc, lc sharp sh @ 35°.

101.80-104.30; bl'd FP, strg calc alt'd, wk hl'd faric @ 35°, 5% Po(Cp) pat w (vnlets), ic sharp sh @ 45°. 104.30-106.80: chty FP, ch grad to alt'd FP as before, 5% Po(Cp)

most in vnlets, some bl'd haloes to vnlets.

106.80-109.80: alt'd FP w chty intervals to .5m, bk'n w calc vnlets @ 40°, 5% Po(Cp) vnlets & pats.

110.60 END

	SAMPLE NO. 1077 1078 1079 1080 1081	FROM (m) 104.30 105.70 106.80 108.40 109.80	T0 (m) 105.70 106.80 108.40 109.80 110.60	WIDTH (m) 1.40 1.10 1.60 1.40 0.80	Au (ppb) 12 3 27 40 7	Ag (ppm) 0.5 0.2 0.5 0.2 0.2	Cu (ppm) 280 112 163 247 170	Pb (ppm) 8 3 2 4 3	Zn (ppm) 28 39 45 39 29	Sb (ppm) 2 2 2 2 2 2 2	As (ppm) 350 151 736 2093 66	Bf (ppm) 4 2 2 4 2	Ni (ppm) 80 30 77 57 101	Co (ppm) 25 8 17 19 14	Mo (ppm) 4 2 3 1 4	(ppm) 1 1 1 1 1 1
--	---	---	---	--	---	--	--	--------------------------------------	---	--	--	--------------------------------------	--	--	--------------------------------------	-------------------------------------

,

Č?

(C)

•

1

page 2 of 2

Drill Hole MM-1

ţ

.

ŧ

1.

 $\sum_{i=1}^{n}$

.

.

Location: 611m North 040m East 790m Elevation Azimuth: 315° Dip: -55° Length: 121.50 m Started: July 21,1991 Finished: July 23, 1991

Logged by: JJ Watkins July 24, 1991

Contractor: J T Thomas

0-0.7 Casing

- 0.70-6.30: **Altered sediment:** y strg pat sil, strg sil'd thru, bl'd w carb alt'd, 10% diss & yn'd sulp Po(Cp)+Åsp, scatt 1-2 cm Q yns in poss sh's @ 30°-40°, lc bkn.
- 6.30-8.45: Altered diorite: db? chilled cts, fg thru, 10% bi'd to scatt vnlet stwk, 5% Po(Cp), lc sharp @ 50° against chill.
- 8.45-14.10: Altered pyrxene porphyry to coarse grnodiorite breccia: subrd frags of var sizes & tex w zenos of host?, some frags mineralized w Po(Cp) in unmin host, 10% Po(Cp)+Asp most in bi'd vnlets @ 50°-60°, Ic sharp sh @ 20°.
- 14.10-14.30: Chert: sil'd sed? w 20% Po(Cp), ic sharp sh @ 30°.
- 14.30-16.55: Altered pyroxene porphyry: as before, 70% bl'd, 10% Po(Cp) most in vnlets @ 30° & 60°, ic sharp @ 60°.

16.55-38.60: Altered sediment:

16.55-20.20: strg bl'd thru & sil'd crmy gry, wk hl'd insitu frac, ser?
stwk, 5% sulp(Cp) vnlets & diss, lc sh'd @ 20°.
20.20-21.20: 60% bl'd w rem gry sil arg,. <5% sulp(Cp) in vnlets & diss.
21.20-22.80: bl'd & hl'd wk sh'd thru @ 40°, 3% diss & (vn'd) sulp, lc sh'd @ 40°.
22.80-31.80: 50% bl'd on wk to mod bl'd med to dk gry sil'd arg, 5% diss sulp & vnlets, rare thru vns, lc on flt go.
31.80-32.05: fit bx tc 2cm go @ 45°, ang crmy gry bl'd sil'd frags in 20% calc gdmss, lc sharp @ 45°.
32.05-38.60: 80% crmy gry sil'd arg w 20% pat rem blk arg, wk fabric @ 30°, not bl'd, < 1% vfg sulp, lc bkn sharp.

- 38.60-39.55: Altered diabase: Dio?, mod carb alt'd, (sulph vnlets) w narrow bl'd haloes, lc 2cm chill @ 70°.
- 39.55-40.80: **Altered sediment:** 80% sil'd sed, 20% blk sil'd arg, yn stwk w 5% yfg Asp, 40.20-40.80, wk sh'd thru hl'd @ 40°, lc sharp @ 20°.

-2-Drill Hole <u>No. MM-2</u> cont'd

- 40.80-41.5 0: Altered diabase: Dio?, as before, strg carb alt'd, <1% sulph in vnlets, ic vaque.
- 41.50-45.55: Altered: To 42.15: 60% sil'd crmy, 40% rem blk, 1% diss sulp. 42.15-42.95: strg QC alt'd, vn(s)?, 5% diss & pat sulp, ic sharp 1cm white Q vn @ 40°. 42.95-45.55: 50% sil'd crmy, 50% med grey sil'd arg, vn'd @ 70°-80°, 5% bl'd vniets w diss sulph, ic vaque.
- 45.55-46.50: Diorite dike: fg, msy, f fds laths, sil'd hard, cts sharp @ 45°.
- 46.50-46.70: Quartz yein? or sil'd Sed: crmy w 5% fg sulph, cts 45°.
- 46.70-47.35: Diorite dike: as before, @ 45°.
- 47.35-47.65: Quartz vein or sil'd Sed: crmy w 5% fg sulph, cts 45°.
- 46.75-48.20: Diorite dike: as before, @ 45°.

48.20-87.90: Altered sediment: crmy gry sil'd sections to 1.5m decreasing & med gry to blk fg sil'd.

48.20-49.65: cmy sil'd, 3-5% diss sulph, wk fabric @ 45°.

51.95-52.20: vn? white & crmy hard vig Q, 5% sulph.

52.20-58.80: 60% bl'd calc alt'd, 40% bik chty sed, bd @ 45°.

58.80-60.30: blk sil'd arg, carb alt'd thru, 5% fg sulph, some carb yns to 1cm @ 45°.

60.30-61.15: alt'd dy? or one bed of clastic, mg grad to fg, strg carb alt'd, crmy, yfg sulphs.

61.15-62.65: 50% blk chty & 50% carb alt'd clastic beds, bd @ 45°, 1% diss sulp.

62.65-63.95: blk chty, 3% diss Py?

63.95-68.70: sil'd & vn'd thru, 30% crmy sil vn'd w 5% Py thru, bd w med gry @ 45°, poss 10% alt'd mafic dykes to 10cm thru.

68.70-70.60: unif tex, crmy gry wf irreg vning, 2% sulp, ic sharp ragged.

70.60-78.90: 50% crmy sil'd wif irreg vinlets, 5% dk gry sil'd sed, some poss narrow mafic dykelets, more unif down hole, 3-5% Po(Cp)+f Asp? 78.90-79.85: strg sil'd & bl'd=carb alt'd,w 10% pat & vn'd sulp, ic sharp @ 60°.

79.85-81.20: mixed w bds of crmy ch, blk arg, alt'd mafic dykes?, all @ 60°.

81.20-83.40: sil'd & bl'd w 5% fg Asp in vnlets, lc 1cm carb sh @ 85°. 83.40-85.70: alt'd mafic dy?, strg carb alt'd, fg gran, sed?, 5% f vnlets w Asp?

85.70-87.90; crmy sil'd, chty, unif text, msv, 3% sulp in f vnlets ic vaque.

-3-Drill Hole No. MM-2 cont'd

87.90-121.50: Altered diorite: fg, 60-80% chty crmy sil'd but wrem fg mafic, 3% Asp as diss & vnlets, 3% Py better to depth. At 91.40: 3cm vn w 50% cg Asp & cored w white Q, @ 30°. At 101.70: 5cm ser sh @ 60°. 117.00-121.50: scatt narrow shs @ 20°-30°.

121.50 END

· · ·

ţ

1993 - S.

							•	_	-			Drill Hol	e MM-2	Pa	ga 1/2
NO. 1082 1083	FROM (m) 0.70 2.00	10 (m) 2.00 3.00	(m) 1.30 1.00	Au (ppb) 7 4	Ag (ppm) 0.4 0.5	Cu (ppm) 200 233	Рр (ppm) 2 3	2n (ppm) 31 54	Sb (ppm) 2 2	As (ppm) 111 6	81 (ppm) 4 2	N1 (ppm) 52 45	Co (ppm) 9 12	Mo (ppm) 7 7	W (ppm) 1 1
1084 1085	3.00 4.00	4.00 5.00	1.00	5 5	0.7 0.4	141 81	11 8	140 81	2	11	2	68 61	10 10	8 3	1
1086	5.00	6.30	1.30	8	0.5	85	8	27	2	8	3	70	9	2	i
1087	6.30 7. 3 0	7.30 8.45	1.15	5	0.5 0.5	144	6	58 52	2	29	2 5	6∠ 56	20	2	1
1089	8.45 9.50	9.50 10.50	1.05	14 51	0.7	368 380	2	35 37	2	22 48	2	44 36	13	2	1
1091	10.50	11.50	1.00	33	0.5	360	3	47	2	258	2	142	27	11	2
1092 1093	11.50 12.50	12.50 13.50	1.00 1.00	20 31	0.5 0.6	287 327	4 5	43 35	2	22 8	2 2	41 26	14 11	1	1
1094	13.50	14.50	1.00	242	0.9	503 307	4	49	2	450	5	43	19 12	5	1
1096	15.50	16.55	1.05	231	0.8	373	4	26	2	78	2	26	15	3	i
1097	16.55 18.10	18.10 19.00	1.55 0.90	17	0.4 0.4	148	ა 5	108 99	2	11 4	2	100 89	10	22	1
1099	19.00 21.20	21.20 22.80	2.20	22 12	0.5 0.4	132 123	5 2	38 23	2	13 5	2	116 88	16 13	4	1
1101	22.80	23.80	1.00		0.1	120	-	20	-	-	-	00			ż
1102	23.80 25.30	25.30 26.80	1.50	16	0.5	155	8 5	26 30	2	2	2	85 115	16	4	1
110 4 1105	26.80 29.80	29.80 30.80	3.00 1.00	9 13	0.5 0.4	190 156	3 2	28 31	2 2	6	2	108 85	12 10	4 3	1
1106	30.80	31.80	1.00	14	0.5	151	6	29	2	8	2	99	10	2	1
1108	32.80	32.80 34.30	1.50	12	0.3	97	2	26	2	5 8	2	97 -	11	2	1
1109 1110	34.30 35.80	35.80 37.30	1.50 1.50	14 13	0.2 0.2	96 86	2	27 26	2 2	18 16	2 2	103 108	13 13	2 2	1
1111	37.30	38.60	1.30	51	0.3	62	3	30	2	8	2	66	10	2	1
1113	39.55	40.80	1.25	18	0.4	90	6	19	2	8	2	56	10	3	1
1114	40.80 41.50	41.50 42.15	0.70 0.65	20 29	0.4 0.3	100 83	2 2	17 31	2 2	3 28	2 2	57 72	11 10	2	1
1116	42.15	42.95	0.80	8	0.3	98	3	22	2	12	2	88	13	3	1
1118	44.00	44.75	0.75	12	0.5	103	2	25	2	4	2	105	11	4	1
1119 1120	44.75 45.55	45.55 46.50	0.80 0.95	15 9	0.3 0.3	95 128	2 3	27 22	2 2	6 3	2 2	83 44	11 18	2	1
1121	46.50 46.70	46.70 47 35	0.20	8 7	0.4	84 121	2	20	2	7	2	56 51	15 21	3	1
1123	47.35	47.65	0.30	9	0.3	55	7	27	2	7	2	73	12	3	1
1124	47.65 48.20	48.20 49.65	0.55 1. 4 5	12	0.4 0.5	128 117	2 5	25 24	2 2	2 14	2	76 90	16 10	1	1
1126	49.65 50.90	50.90 51.95	1.25	20 15	0.4	107 95	2	39 24	2	12	2	108	14	33	1
1128	51.95	52.20	0.25	14	0.5	103	2	35	2	14	2	90	17	3	1
1129	52.20 53.20	53.20 54.70	1.00	11	0.3 0.4	108 104	2	31 29	2	18 8	2	99 79	14	4 3	1 1
1131	54.70 56.20	56.20 57 70	1.50	15 12	0.5	91 76	2	29 28	2	12	2	94 63	12	3 र	1
1133	57.70	58.80	1.10	7	0.3	93	2	35	2	28	2	104	10	6	1
1134	58.80 60.30	60.30 61.15	1.50 0.85	32 16	1.0	133	2 2	254 110	2 2	13	2	94 53	15 14	5	1
1136	61.15 62.65	62.65 63.95	1.50	16 13	0.8	101	2	62 106	2	4	2	72 77	14 13	4 5	1 1
1138	63.95	65.50	1.55	10	0.6	84	2	30	2	5	2	84	15	4	i
1139	65.50 67.00	67.00 68.70	1.50	10	0.8 0.6	123	2 4	37 22	2	3 5	2	64 75	14	3 3	1
1141	68.70 70.60	70.60 72.00	1.90 1.40	264 7	0.3 0.6	62 164	5 4	10 25	3 2	163 326	2	54 52	11 21	3 3	1
1143	72.00	73.50	1.50	3	0.9	314	4	22	2	7	2	30	23	i	1
1144	75.00	76.50	1.50	11	0.5	93 98	6	25	3 4	44	ź	55 51	11	3	1
1146 1147	76.50 77.50	77.50 78.90	1.00 1.40	15 7	0.4 0.6	62 153	4	17 31	23	29 5	2	74 94	9 20	4 3	-1
1148	78.90	79.85	0.95	9	0.4	99	4	27	2	19	2	47	15	3	1
1150	79.85 81.20	82.40	1.35	5 1	0.5	83	2	23	23	24	2	50	12	3	1
1151	82.40 83.40	83.40 84.60	1.00	106 35	0.4 0.3	129 116	23	21 15	2	3150 69	2	65 74	28 7	4	1
1153	84.60	85.70	1.10	15	0.2	142	2	5	2	34	2	48	8	2	1
1155	65.70 87.20	87.90	0.70	1	0.4	111	2	18	2	95 257	23	72	12	34	1
1156 1157	87.90 89.40	89.40 90.90	1.50 1.50	2 21	0.3 0.6	143 238	5 2	15 27	3 2	309 142	2 2	65 60	16 18	2 3	1
				1			_		-		-				

Drill Hole MM-2 Page 2/2

•

.

	۰.		
6			
1.1		÷ 1	
ί.		-	
×.,	· • .		

1

•

FROM	то	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	NI	Co	Mo	. W .
(m)	(m) 00.10	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
90.90	92.40	1.50	891	0.8	434	8	29	27	19312	12	52	59	2	1
92.40	95.40	1.00	4	0.7	316	6	35	2	187	2	28	13	2	1
93.40	94.40	1.00	264	1.0	577	6	32	3	2615	4	38	47	3	1
94.40	95.40	1.00	9	0.6	326	5	30	3	169	2	39	17	3	1
95.40	96.40	1.00	16	0.5	185	4	36	2	114	2	31	14	3	1
96.40	97.40	1.00	5	0.4	256	2	24	3	272	2	34	19	2	1
97. 4 0	98.40	1.00	220	0.6	286	4	29	3	909	5	35	31	.5	1
98.40	99.40	1.00	32	0.4	198	5	34	3	107	3	31	14	1	1
99.40	101.40	2.00	10	0.3	161	2	34	2	153	2	32	14	2	1
101.40	102.40	1.00	15	0.5	132	2	23	3	206	2	83	12	9	1
102.40	103.40	1.00	50	0.5	168	2	24	2	109	3	50	16	4	1
103. 4 0	104. 4 0	1.00	5	0.5	289	4	21	3	69	3	39	18	4	1
104.40	106.00	1.60	11	0.8	498	2	30	3	51	3	68	24	4	1
106.00	107.50	1.50	11	0.6	259	3	26	2	17	2	49	23	3	1
107.50	109.00	1.50	671	0.4	192	6	34	16	8109	9	29	36	2	1
109.00	110.50	1.50	24	0.5	298	2	42 ·	2	206	2	24	15	2	1
110.50	112.00	1.50	21	0.3	239	2	17	2	51	2	31	21	2	1
112.00	113.50	1.50	23	0.8	369	3	33	3	35	2	33	14	1	1
113.50	115.00	1.50	46	0.7	162	4	49	4	320	3	22	9	1	1
115.00	116.50	1.50	28	0.9	302	5	45	2	72	2	30	11	1	1
116.50	118.00	1.50	36	0.6	196	2	45	6	259	2	24	14	1	t
118.00	119.50	1.50	16	0.5	202	5	33	3	45	2	18	8	1	1
119.50	120.50	1.00	89	0.4	149	2	19	2	85	2	12	8	1	1
120.50	121.50	1.00	60	0.7	242	2	31	2	66	2	14	10	1	1
	FR0M (m) 90.90 92.40 93.40 95.40 95.40 96.40 97.40 98.40 99.40 101.40 102.40 103.40 104.40 105.40 107.50 109.00 110.50 112.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 119.50 120.50	FR0M T0 (m) (m) 90.90 92.40 92.40 93.40 93.40 94.40 94.40 95.40 95.40 96.40 96.40 97.40 98.40 99.40 99.40 101.40 102.40 103.40 104.40 106.00 107.50 199.00 1050 112.00 113.50 115.00 116.50 118.00 118.00 19.50 120.50 120.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FROMTOWIDTHAuAgCuPb(m)(m)(m)(ppb)(ppm)(ppm)(ppm) 90.90 92.40 1.50 891 0.8 434 8 92.40 93.40 1.00 4 0.7 316 6 93.40 94.40 1.00 264 1.0 577 6 94.40 95.40 1.00 9 0.6 326 5 95.40 96.40 1.00 9 0.6 326 2 97.40 96.40 1.00 5 0.4 256 2 97.40 98.40 1.00 32 0.4 198 5 99.40 101.40 2.00 10 0.3 161 2 101.40 100 50 0.5 168 2 102.40 1.00 15 0.5 132 2 102.40 100 15 0.5 132 2 102.40 100 50 0.5 168 2 103.40 100 50 0.5 168 2 103.40 100 50 11 0.6 259 3 107.50 109.00 1.50 671 0.4 192 6 109.00 1150 1.50 24 0.5 298 2 110.50 1150 1.50 28 0.9 302 5 116.50 1.50 28 0.9 302	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

C

(

1

-

Ô

Ć,

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

ŧ

 \bigcirc

Location: 671m North 087m East 810m Elevation Azimuth: 315° Dip: -65° Length: 120.90 m Started: July 23,1991 Finished: July 24, 1991

Logged by: J J Walkins July 25, 1991

Contractor: J T Thomas

- 0-2.12: Casing
- 2.12-2.60: Diabase: fr, mg-fg, lc w bl'd chill.
- 2.60-5.20: **Pyroxene porphyry**: pyx phenos=chl (biot), fbx?, lc yaque.
- 5.20-7.50: **Granodiorite**: mg, bl'd but not calc alt'd. 5.20-5.50: 70% Q w large angular shards of host, 3% sulph. 5.50-7.50: 3% scatt vnlets @ 20° of Py+Asp, ic bkn.
- 7.50-16.00: Andesite ?: fg, flow? w bl'd (sil'd) chilled flow cts, scatt diss Asp & pat Po(Cp) in sil'd intervals
 8.55-9.55: bkn thru by 20° fracs & centered on 10cm Q vn @ 10°, 5% diss Asp best to tc.
 At 14.85: 1cm Q vn w 10% cg Asp @ 30°.
 Ic bkn sh @ +l-10°.
- 16.00-16.55: **Altered granodiorite**: light gry, no carb, 10% Q vn'd w diss blk (tourmaline?) haloing vns, 3% f diss Asp, lc sharp @ 45°.
 - 16.55-17.15: Andesite: scatt alt'd pyx phenos, some bling (flow cts) w diss Asp, ic sh'd @ 25°.
 - 17.15-17.90: Andesite ?: sil'd, poss Q vn to 17.45, lc sharp sh @ 60°.
- 17.90-18.45: Altered granodiorite: as before, light gry wbik spots, bkn @ 40°, k vaque.
- 18.45-19.50: **Mafic volcanic (intrusive?)**: sil fl'd wrem host, prob walt'd mafic phenos, 3% diss & pat sulp, ic narrow sh @ 45°.
- 19.50-20.40: Altered intrusive: cg salt & pep tex'd walt'd shards or mafic phenos in light gry gran host, 1% vf sulph vnlets, ic sharp carb sh @ 20°.
- 20.40-22.00: Argillite + sandstone: sil'd: bd @ 40°, 5% py ynlets, 10% calc filled. fracs, lc sharp @ 80°.
- 22.00-23.65: Altered mafic: flow?, clasts?, wk-mod bl'd, carb alt'd, more sil to ic w poss chill, ic sharp ragged @ 80°, <1% diss sulph.

-2-Drill Hole No. MM-3 cont'd

- 23.65-26.30: Altered granodiorite: crmy gry, no carb, gran tex, 3% vfg sulph thru, some f Q vnlets @ 30°, lc fit'd @ 30°.
- 26.30-37.90: Argillite: graphitic, bkn.
 26.30-28.00: badly bkn wift bound tc, scatt vuggy Q(C) vns @ 10°, (bd) fg sst @ 75°.
 32.80-33.90: maf dy, peppered wif maf phenos, grn-dk grn, tc chilled & bkn, lc bkn.
 33.90-37.90: mafic?, bkn thru @ 40°-60°, 10-20% carb vn'd.
- 37.90-41.80: Altered intrusive: FP? Gd? mod sil'd, (carb alt'd) w some calc yning, scatt wk sh @ 30°-40°, 1% vfg Asp?
- 41.80-43.40: Altered andesite: int? fg, dk brn, loc sh'd & sil'd (sulph), lc vaque.
- 43.40-58.30: Intercalated mafic flows & siliceous sediment: w sil graph arg, mafic sections to dk grn w sharp c's to 50cm.
 45.50-45.70: flt bx?, ang arg+maf frags in 60% Q gdmss.
 51.30-55.00: mafic.
 55.00-56.20: graph arg.
 56.20-56.90: bl'd carb alt'd mafic w 5% pat+(vnlet) sulph, cts sharp @ 80°-90°.
 56.00-58.20: graph arg to more sill to lo.
 - 56.90-58.30: graph arg to more sil to ic.

- 58.30-63.95: Andesite + argillite: intracal, 60% sil arg, 40% mafic most to tc, 3% sulp vnlets best in sil sed, lc vaque. 59.25-59.95: bull Q vn @ 60°.
- 63.95-70.75: **Altered diorite**: mod carb, fg-mg, w vaque mafic phenos, 3-5% diss+vnlet sulp thru. At 65.10: strg 5cm sh @ 40°.
- 70.75-73.40: Sediment: sil chty, (bd) var, to 10% Py in scatt vnlets, lc sharp 45°.
- 73.40-74.40: Andesite: flow?, dk grn, mod carb w 5% yfg Py. At 74.00: 5cm sh @ 45°.
- 74.40-77.55: Sediment: sil'd, bd @ 40°-60°, 1-2% vfg sulph. At 77.00: 15cm QC vn @ 40° w 1-2% diss Py.
- 77.55-82.40: Mafic flow?: dk grn, mod carb, vfg sulp, scatt calc vnlets @ 60°, carb alt'd.
 78.15-78.50: vfg sil wtc carb sh @ 45°, lc sh'd @ 45°, 5% Asp w xc Po vnlets.
 80.30-80.90: as above w (sulp), ct sh'd @ 45°.
 lc carb sh @ 80°.

-3-<u>Drill Hole No. MM-3</u>cont'd

- 82.40-88.70: Sediment? mafic tuff? sil'd, fg, med gry grn to light gry, <1% to 3% diss+vf vnlet sulp best to lc.
- 88.70-93.90: Altered mafic flow?: dk grn to 91.00
 91.00-93.90: carb alt'd w loc meely tex.
 At 90.20: 1 cm Q+ 50% cg Asp vn @ 5°.
 Ic sharp sh @ 40°.
- 93.90-95.90: Sediment: chty, crmy, 3-5% fg sulp, lc sharp @ 80°.
- 95.90-98.10: **Mafic flow?**: mod sh'd w scatt crmy ch to 20cm. 97.50-98.10: strg sh w 50% calc @ 45° w narrow go.
- 98.10-111.70 Granodiorite?: msv, fg w meely tex sections, carb alt'd thru, 10% sulp vniets w bl'd haloes.
 106.05-106.95: crmy sil.
 110.10-110.75: as above but w sharp cts @ 80°.
 ic bkn w 10cm Q vn w 20% vcg Asp @ 40°.
- 111.70-113.70: Altered sediment?: fg med gry w distinct cts @ 70°, strg carb alt'd.
- 113.70-115.10: Altered mafic flow?: mafic phenos, strg carb, fg sulph.
- 115.10-115.90: Altered sediment as before, ic sh'd? @ 20°.
 - 115.90-120.90: Granodiorite: w sil'd intervals & meely tex, 1% diss sulp.
 - 120.90 END

Drill Hole MM-3 Page 1 of 2

C

SAMPLE NO. 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201	FR0M (m) 4.20 5.20 5.50 6.50 7.50 8.55 10.05 11.55 13.05 14.55 16.00 16.55 17.90 18.45 19.50 20.40 22.00 23.65 25.00	T0 (m) 5.20 5.50 6.50 7.50 8.55 10.05 11.55 13.05 14.55 14.55 14.55 17.15 17.90 18.45 19.50 20.40 22.00 23.65 25.00 26.30	WIDTH (m) 1.00 1.00 1.05 1.50 1.50 1.50 1.50 1.50	Au (ppb) 20 14 9 2 12 76 2 8 10 1010 119 4 1 34 1 5 2 2 2 2 1	Ag (ppm) 0.7 3.6 2.6 0.7 0.6 1.0 0.8 0.5 1.2 0.9 1.4 1.6 0.9 1.4 0.9 1.1 0.4 0.3 0.4 0.4	Cu (ppm) 212 621 333 226 199 636 297 238 285 343 265 247 254 93 217 274 135 64 124 103	Pb (ppm) 6 7 8 5 7 4 4 4 5 11 7 30 62 11 18 10 2 4 9 11	Zn (ppm) 32 44 40 39 25 58 25 26 35 40 27 63 134 33 47 61 112 37 28 30	Sb (ppm) 2 3 3 2 2 2 2 3 2 2 3 6 2 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	As (ppm) 99 125 20 22 78 782 71 95 209 564 55 9 13 222 47 38 11 40 7 13	8t (ppm) 3342434402453422222	Nł (ppm) 69 6 4 138 145 118 127 99 36 32 32 32 16 52 38 63 30 11 11	Co (ppm) 21 12 7 8 14 29 13 12 14 14 8 9 8 6 11 10 11 9 7 5	Mo (ppm) 1 1 2 3 3 2 3 1 2 4 2 6 2 2 1 1 5 2 2 1 1 5 2 2 2	W (ppm) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1202 1203 1204 1205 1206 1207	37.90 39.40 40.40 41.40 43.40 44.80	39.40 40.40 41.80 43.40 44.80 45.70	1.50 1.00 1.40 2.00 1.40 0.90	1 7 10 3 4 6	0.2 0. 4 0.8 0.5 0.5 0.6	62 122 182 90 90 107	4 12 17 33 10 11	34 31 37 81 28 41	2 2 2 3 2 3 2 3	5 23 78 44 88 87	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 9 16 57 67 73	5 5 10 7 11	2 1 3 5 2	1 1 1 1 1
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230	55.00 56.20 58.30 59.25 59.70 61.20 62.70 63.95 65.50 67.00 68.50 67.00 68.50 70.75 72.00 73.40 74.40 76.55 78.15 78.50 80.30 80.90	56.20 56.90 58.30 59.25 59.70 61.20 62.70 63.95 65.50 67.00 68.50 69.50 69.50 69.50 70.75 72.00 74.40 74.40 76.00 77.50 73.40 74.50 80.30 80.90 80.90 80.90	$\begin{array}{c} 1.20\\ 0.70\\ 1.40\\ 0.95\\ 0.45\\ 1.50\\ 1.50\\ 1.25\\ 1.55\\ 1.50\\ 1.50\\ 1.25\\ 1.50\\ 1.00\\ 1.25\\ 1.25\\ 1.40\\ 1.00\\ 1.60\\ 1.50\\ 0.60\\ 0.35\\ 1.80\\ 0.60\\ 1.50\\ \end{array}$	1 20 1 1 4 10 7 11 10 8 11 19 13 6 5 31 11 7 6 7 4 4 4	0.4 0.5 0.6 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.3 0.3 0.1 0.1 0.2 0.3 0.5 0.5 0.5 0.2 0.2 0.3 0.3 0.5 0.5 0.5 0.2 0.2 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	105 112 124 161 21 109 91 82 177 207 218 273 97 80 139 65 103 62 126 160 99 121	224242435232242322225	36 64 30 38 3 41 29 28 322 23 24 24 26 69 5 44	2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	150 7 97 813 58 67 51 29 199 106 103 114 208 30 23 1012 81 66 27 49 20 19 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	86 60 111 89 8 85 91 47 45 41 45 43 43 43 58 41 55 92 67 110 79	10 20 14 23 2 18 13 9 18 17 16 9 8 32 10 16 18 16 24 13 13	19 26 12 1 1 2 1 1 1 1 1 1 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1231 1232 1233 1234 1235 1235 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1244 1245 1244 1245 1248 1249	84.70 85.70 86.70 87.70 88.70 90.70 92.30 92.80 93.90 94.90 95.90 95.90 95.90 95.00 101.00 102.50 104.00 105.50 106.05	85.70 86.70 87.70 89.70 90.70 92.80 93.90 94.90 95.90 94.90 95.90 95.90 95.50 101.00 102.50 104.00 105.50 106.05 106.95	1.00 1.00 1.00 1.00 1.60 0.50 1.10 1.00 1.10 1.10 1.40 1.50 1.50 1.50 1.50 0.55 0.90	2 3 4 5 8 27 2 120 16 3 9 7 6 34 33 19 23 17 13 11	0.2 0.1 0.1 0.5 0.7 0.2 0.5 0.3 0.4 0.5 0.3 0.4 0.4 0.4 0.5 0.5	91 111 60 54 57 188 142 72 151 68 161 144 110 278 332 330 268 328 343 164	332422223422322222	35 20 18 275 927 38 17 30 927 36 37 15 335	222222222222222222222222222222222222222	40 20 31 18 3 2107 41 36941 184 30 35 295 113 23 56 4 144 2 21	2 2 2 2 2 6 3 5 2 2 2 2 2 2 2 2 2 4 2	135 97 80 63 27 28 30 38 32 43 52 60 61 29 34 26 82 69 61	10 8 - 7 16 10 57 7 9 17 14 15 18 19 17 24 22 11	1 1 1 1 1 1 1 2 1 2 1 2 1 1 2 1 2 0 3	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1

															Drill Ho	le MM-3	Page 2 of 2	
SAMPLE NO.	FROM (m)	TO (m)	WIDTH (m)	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Sb (ppm)	As (ppm)	Bi (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)	₩ (ppm)			
	1250	106.95	108.50	1.55	2	0.2	139	2	44	2	49	2	12	10	1	2		
	1251	108.50	110.10	1.60	10	0.5	344	3	59	2	260	4	20	16	-1	1		
1000	1252	110.10	110.75	0.65	2	0.4	134	3	33	2	3	3	17	6	2	1		
{ · · ·	1253	110.75	111.50	0.75	12	0.8	508	2	59	2	16	4	62	18	8	1		
N. 1	1254	111.50	112.00	0.50	5200	1.3	248	6	53	5	15274	75	58	15	13	1		
	1255	112.00	113.70	1,70	12	0.7	362	2	39	2	23	10	115	18	26	1		
	1256	113.70	115.10	1.40	9	0.4	240	2	60	2	9	2	25	19	4	1		
	1257	115.10	115.90	0.80	8	0.6	320	ž	42	2	3	2	119	19	26	1		
	1258	115.90	117.40	1.50	520	0.2	46	4	50	5	11136	3	23	18	· 7	3		
	1259	117.40	118.90	1.50	18	0.1	13	8	73	2	582	2	8	4	1	ł		
	1260	118.90	119.90	1.00	5	0.3	196	9	45	2	15	2	11	9	1	1		
	1261	119.90	120.90	1.00	8	0.3	796	5	36	2	104	6	9	8	1	1		

.

.

1

-

-

 $\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$

Ć.,

.

Ć

e de la State

(:

Ţ

C:

Ć

Ċ

1

.

Ŧ

Location: 670m North 090m East 810m Elevation

Azimuth: 135° Dip: -60° Length: 130.50 m Started: July 24,1991 Finished: July 25, 1991

Logged by: J J Walkins July 26, 1991

Contractor: J T Thomas

- 0-3.33: Casing
- 3.33-27.80: Mafic flows: w intra sed?, pillowed? w strg bling+sil'd pillow margins, scatt shs thru @ 30°.

3.33-4.45: fg mafic.

4.45-7.50: 80% dk grn-blk chty sed w 20% mafic (tuff?) @ 45°. 7.50-11.30: 90% mafic w 10% crmy ch, mod sil'd, not carb alt'd, 3% pat Po.

At 11.30; 10cm yuggy bkn Q,sh? @ 30°.

11.30-13.80: sil'd mafic? w shs @ 11.30, 12.40, 12.80, 13.20, 13.80 all @ 30°-40° w ser haloes.

At 11.50: 5cm bx yn wang sil frags @ 75°.

13.80-16.30: mafic w 10% bl'd sections.

16.30-16.60: cmy sil;'d w vfg sulp.

16.60-17.60: 70% crmy sil, 30% mafic.

17.60-18.70: mafic (sil'd).

18.70-24.25: 70% maric, 20% sil'd, 10% blk chty.

24.25-27.80: sil'd & bl'd (carb) mafic w 5% Po (Asp).

- 27.80-31.80: **Argillite**: blk, sil, graphitic, strg carb alt'd, 10% calc ynlets, to 5% diss. Py, lc grad.
- 31.80-35.30: Sedement: sil'd chty, light to med gry w (rem dk gry), vfg sulp, lo indistinct against chilled intr.

35.30-57.00: Granodiorite: mg-cg, msy w bl'd sects, scatt Po vnlets most @ 60°-70°.
35.30-36.40: chilled fg, sil'd, (calc), 10% Po vnlets w haloes.
38.70-39.40: 50% QC @ 45°, alt'd white, poss go @ lc.
45.90-46.50: bl'd w 10% chl seams to 1mm.
52.80-57.00: mg-fg FP?, (sil'd).
At 55.20: 10cm Q vn w 50% cg Asp w 5cm bl'd+diss Asp haloes @ 80°.
At 53.90: 5cm 30% Asp+ Po @ 80°.

57.00-75.40: **Altered mafic flow?**: w sil'd & chty intra. 57.00-60.40: 80% mafic, 20% sil'd. 60.40-62.15: 100% sil'd crmy w vfg sulph. 62.15-75.40: mod-strg sil'd w some crmy chty inter, (alt'd mafic), 2% sulp. -2-

· Drill Hole No. MM-4 cont'd

- 75.40-92.50: **Granodiorite**: mg-cg w scatt bl'd intra, msv, scatt chi seams thru. 75.40-76.00: fg chill & sil'd w 3% diss+vnlet Po. 88.30-85.50: 60% bl'd w wk carb alt'd, 5% Po vnlets. 91.70-92.50: chilled to fg w vfg sulph.
 - 92.50-99.45: **Mafic flow?**: w sil & chty intra, ch poor to lc, 5% diss+pat Po(Asp), lc sharp @ 80°.
 - 99.45-104.00: **Mafic Flow?**: dk grn wichlispots after mafic phenos, carb alt'd wi10% alc vn'd. At loichish @ 30°.

104.00-109.10: **Granodiorite**: as before w scatt calc vnlets. 104.00-105.10: fg chill, sil'd crmy w 2-1cm Q+cg Asp @ 60°, 5% Asp, 5% Po. 105.10-108.00: cg gd w 5% Asp pat+vnlets most @ 45°-60°. 108.00-109.10: fg gd, 5% Asp as diss+vnlets @ 60°. Ic carb sh @ 60°.

- 109.10-116.10: Mafic volcanic: 50% carb alt'd pat thru, 3% yfg Asp, lc bkn.
- 116.10-117.65: Altered: sil'd crmy w 10% mafic, 1% diss Asp, 3% Po, lc sharp @ 70°.
- 117.65-118.60: Maric riow?: carb all'd, 3% yrg sulph, ic sharp @ 70°.
- 118.60-119.85: Altered: sil'd crmy, f hairline fracs thru, 3% vfg sulph, lc sh'd 60°.
- 119.85-121.30: Mafic flow: micro FP, carb alt'd, f mafic phenos, 3% fg sulp, ic sharp 45°
- 121.30-124.85: Altered: crmy sil as before, 3% vfg sulp, ic sharp sh @ 70°.
- 124.85-128.90: Maric flow: 70% carb alt'd, 30% crmy sil, ic sharp sh @ 70°, vfg sulp.
- 128.90-130.00: Altered:80% crmy sil bx w 20% carb alt'd mafic, ic sharp @ 70°, vfg sulp.
- 130.00-133.60: **Mafic flow?**: carb alt'd, hazy chi stwk, 10% crmy sil, ic sharp sh 45°, vfg sulp.
- 133.60-134.30: Altered: crmy sil w 10% mafic, 5% diss Asp best to tc, lc sharp 60°.
- 134.30-136.35: Mafic flow?: msy, (carb alt'd), 3% Po pat+ yfg sulp.
- 136.35 END

Drill Hole MM-4 Page 1 of 2

.

SAMPLE NO. 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1298 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1311 1312 1313 1314 1315 1316 1317 1320 1321 1322 1323 1324	FR0M (m) 3.33 4.45 6.00 7.50 9.50 9.10.30 11.30 11.40 13.80 14.80 15.60 11.30 12.40 13.80 16.30 12.40 13.80 16.30 16.30 12.40 22.50 22.22 26.80 27.30 30.80 31.80 33.380 37.90 42.40 43.90 45.50 54.50 55.50 55.50 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 56.20 61.40 55.50 57.50 61.40 55.50 56.20 61.40 55.50 57.50 61.40 55.50 61.40 55.50 61.40 55.50 57.50 61.40 55.50 57.50	$\begin{array}{c} \text{TO} & (\text{ m}) \\ \text{4.45} \\ 6.00 \\ 7.50 \\ 8.50 \\ 9.50 \\ 10.30 \\ 12.40 \\ 13.80 \\ 16.60 \\ 17.60 \\ 21.50 \\ 22.50 \\ 27.80 \\ 22.50 \\ 27.80 \\ 23.02 \\ 25.50 \\ 27.80 \\ 31.80 \\ 32.80 \\ 33.30 \\ 37.90 \\ 40.90 \\ 43.40 \\ 43.90 \\ 44.40 \\ 43.90 \\ 45.40 \\ 45.40 \\ 51.50 \\ 57.50 \\$	WIDTH (m) 1.12 1.55 1.50 1.00 0.80 1.10 0.80 1.10 1.40 1.60 0.70 0.30 1.10 1.55 1.25 1.30 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	Au pp0 10 8 11 16 2 3 1 1 4 5 2 6 3 8 6 9 5 6 2 6 6 5 1 5 2 6 19 7 5 2 8 9 6 13 07 8 2 3 0 15 1 4 6 6 9 8 7 3 13 7 5 17 7 5 16 3 6 7 13 6 7 13 7 5 17 7 5 16 3 6 7 13 6 7 13 7 5 17 7 5 16 3 6 7 13 6 7 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Ag (ppm) 0.1 0.6. 0.7 0.3 0.7 0.3 1.04 0.2 4 4 5 2 7 6 3 5 2 6 4 4 5 3 9 8 7 3 3 4 0 0 7 9 1 10 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 2 0 5 2 0 0 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 2 3 3 2 0 5 2 0 2 0 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 2 3 3 2 0 5 2 0 2 0 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 2 3 3 2 0 5 2 0 2 0 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 4 5 3 3 3 3 2 0 5 2 0 2 0 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 4 5 3 3 3 3 2 5 2 2 2 3 1 1 0 2 3 3 2 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cu (ppm) 277 115 2539 117 2453 1453 269 117 2453 1455 66 200 182 2000 3524 165 81 2926 137 312 126 137 312 126 137 312 126 137 312 126 113 127 313 175 60 81 132 50 98 184 73 66 79 1104 38 1101 98 362 131 79 56 80 104 38 101 98 362 131 79 56 80 104 38 101 98 362 131 79 56 80 104 38	Pbm(ppm67596181252561121036776932763356523567137126627572533555222232264422	Zn () 97685281443238648143252644116624689992367990300457724233421194394225735725222333355723	sb m) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	As (ppm) 57 223 49 155 16 4 4 57 23 49 155 16 4 4 57 38 18 19 5 6 3 43 21 19 13 101 26 14 10 6 2 19 13 101 26 14 10 6 2 19 13 101 26 14 10 6 2 19 101 26 10 20 20 20 20 20 20 20 20 20 2	B1 (ppm22222222222222222222222222222222222	Ni (ppm 5 1135 4433 9133 445 15 6 9 6 5 5 6 43 1 7 14 6 2 44 7 14 1 1 1 19 1 4 2 9 2 2 3 5 3 2 2 1 3 1 2 2 13 5 7 8 8 7 7 7 5 4 1 5 6 2 4 6 9 9 8 3 4 2 10 1 1 1 10 1 4 2 9 2 2 3 5 3 2 2 1 3 1 2 2 13 5 7 8 8 7 7 7 5 4 1 6 2 4 0 9 8 3 4 2 10 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Com) 157162204400171994820617555937732115151307221151644511259922121212161190644716131196111111	Mom) (ppm) 2 2 4 1 2 1 1 1 2 2 2 1 3 2 3 3 2 3 7 8 1 5 2076 4 2 5 3 2 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 1 1 3 3 3 2 2 2 3 3 2 2 1 2 2 2	<pre> w (ppm) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>
1325 1326 1327 1328	81.50 82.50 84.00 85.50	82.50 84.00 85.50 86.50	1.00 1.50 1.50 1.00	5 8 3 3	0.3 0.3 0.4 0.2	129 114 139 62	2 7 2 3	44 52 52 94	2 2 2 4	56 151 17 12	2 3 2 3	4 2 1 2	8 14 9 11	2 2 1 3	1 1 1
1329 1330 1331 1332 1333 1334 1335 1336	91.70 92.50 93.50 94.60 96.10 97.60 98.10 99.45	92.50 93.50 94.60 96.10 97.60 98.10 99.45 100.60	0.80 1.00 1.10 1.50 1.50 0.50 1.35 1.15	14 6 12 12 6 6 12 11	0.4 0.2 0.3 1.0 0.3 0.4 0.3	165 97 134 184 431 84 95 193	3422222222	51 39 50 31 22 41 24 78	5 2 2 3 4 2 2 3	203 48 33 30 8 173 121 89	2 4 2 2 2 2 2 2 2 2 2 2 2	10 76 66 115 99 78 95 86	13 14 13 16 37 17 16 24	5 20 15 7 3 3 7 11	1 1 1 1 1 1 1

Drill Hole	MM-4	Page 2 of 2

SAMPLE	FROM	TO	WIDTH	Au	Aq	Cu	Pb	Zn	Sb	As	Bi	NI	Co	Mo	w
NO.	(m)	(m)	(m)	(ppb)	(ppm)										
1337	100.60	101.40	0.80	18	0.2	100	2	35	2	99	2	73	12	6	1
1338	101.40	103.00	1.60	15	0.4	133	2	76	4	27	2	65	19	1	1
1339	103.00	104.00	1.00	17	0.3	119	2	74	5	63	2	79	24	2	1
1340	104.00	105.10	1.10	102	0.6	127	3	38	2	6831	2	5	13	2	1
1341	105.10	106.00	0.90	13	0.9	246	5	44	3	896	2	2	11	2	1
1342	106.00	107.00	1.00	78	1.2	397	11	51	2	5151	2	4	18	1	1
1343	107.00	108.00	1.00	9	0.8	269	4	41	4	113	2	3	9	1	1
1344	108.00	109.10	1.10	8	0.4	99	3	42	4	386	2	6	5	1	1
1345	109.10	110.50	1.40	71	0.4	168	3	48	2	2916	2	40	18	1	1
1346	110.50	112.00	1.50	15	0.3	156	2	62	2	195	2	57	23	1	1
1347	112.00	113.10	1.10	22	0.2	161	2	44	3	19	2	55	15	1	1
1348	113.10	113.40	0.30	10	0.3	166	2	34	3	4	2	21	18	1	1
1349	113.40	114.90	1.50	17	0.0	152	2	45	3	66	2	50	20	1	1
1350	114.90	116.10	1.20	17	0.1	161	2	47	2	13	2	58	18	1	2
1351	116.10	117.00	0.90	16	0.2	239	2	50	2	35	2	32	13	3	1
1352	117.00	117.65	0.65	11	0.3	208	2	36	2	54	2	38	12	4	3
1353	117.65	118.60	0.95	7	0.5	264	3	170	2	2	2	25	23	1	1
1354	118.60	119.85	1.25	6	0.5	155	4	77	2	2	2	59	14	3	3
1355	119.85	121.30	1.45	5	0.4	189	2	50	2	2	2	39	18	1	1
1356	121.30	122.00	0.70	7	0.3	133	2	165	2	2	2	66	13	1	1
1357	122.00	123.80	1.80	4	0.3	175	4	99	2	2	2	70	13	3	1
1358	123.80	124.85	1.05	9	0.4	133	3	45	2	2	2	50	9	3	1
1359	124.85	125.80	0.95	10	0.4	191	2	25	2	2	2	15	11	2	3
1360	125.80	126.90	1.10	8	0.3	135	2	28	2	2	2	29	9	1	2
1361	126.90	127.00	0.10	55	0.1	158	2	45	2	1313	2	32	30	t	1
1362	127.00	128.90	1.90	18	0.2	185	5	45	2	319	2	46	18	1	1
1363	128.90	130.00	1.10	9	0.5	161	7	107	4	11	2	68	16	2	1
1364	130.00	131.50	1.50	16	0.2	212	2	40	2	35	2	51	19	2	2
1365	131.50	133.00	1.50	24	1.0	116	2	49	2	78	2	39	9	1	1
1366	133.00	133.60	0.60	178	0.2	135	5	53	2	450	2	42	14	1	1
1367	133.60	135.00	1.40	35	0.1	181	2	30	2	989	2	74	21	3	2
1368	135.00	136.50	1.50	10	0.1	174	2	126	2	16	2	38	20	1	1

· ·

 $\begin{pmatrix} e^{i\theta} & \\ e^{-i\theta} & e^{i\theta} \\ e^{i\theta} e^{i\theta} e^{i\theta} & e^{i\theta} \\ e^{i\theta} e^{i\theta} e^{i\theta} & e^{i\theta} \end{pmatrix}$

1

.

ţ

Location: 748m North 053m East 825m Elevation Azimuth: 135° Dip: -60° Length: 136.35 m Started: July 25,1991 Finished: July 26, 1991

Logged by: J J Walkins July 28, 1991

Contractor: J T Thomas

- 0-1.80 Casing
- 1.80-2.05: **Pyroxene feldspar porphyry dike**: msv, 5% bl'd haloes +vnlets, ic no chill sharp @ 80°.
- 2.05-10.20: **Mafic volcanic**: sil'd, fg, msv, 3% scatt Asp+Q vnlets. At 4.85: 10cm QC sh @ 60°, lc @75°
- 10.20-11.50: Granular dike: lamp? meely tex, carb alt'd, mot'd dk gry pats, 3% vfg sulp, cts sharp, lc @ 85°.
- 11.50-34.10: **Mafic volc:anic**: as before w bl'd+Asp+Q vnlets. 11.50-16.50: to 5% Asp in vn stwk. 16.20-17.55: 10% Asp in bl'd sec as stwk, 3% Po(Cp).
- 34.10-43.20: Sedement: sil'd, blk, msv, vaque bd w rip-up clasts, to 5% Py.
 35.50-35.70: trac tex dy? flow?
 At 42.45: 1cm carb sh @ 70°.
 42.70-43.20: crmy sil'd w carb vning @ 60°, 5% Po(Asp), lc sharp (carb sh?) @ 70°.
- 43.20-44.40: **Trachyte dike?**: w scatt calc vnlets, ic sh'd w QC vnlets, 3% diss sulph, ic sh'd w QC over 10cm.
- 44.40-48.80: Sediment?: blk sil, as before w sil'd secs.
 44.40-45.00: strg carb alt'd.
 45.00-45.90: blk sil sed w 40% f Q stwk, 3% sulp.
 45.90-48.80: blk sil sed w bl'd secs 7 10% f QC vns, 5% diss Py w pat Po(Cp), ic sharp 70°.
- 48.80-49.60: Granular dike : meely tex, wk carb, 3% diss+vnlet Po(Cp), ic sharp 70°.

49.60-66.20: Sediment: sil'd, fg, msy, med gry w some rem dk gry.
49.60-53.30: 2% Po?, 2% Asp in 5cm vn @ 85°.
53.30-53.70: Q(C) vn @ 80° w 1% diss Asp+Cp.
58.70-58.00: dk gry, msy, wk sil'd w 1-2% diss Py.
58.00-62.20: mod-strg sil'd, 10% calc vn'd, 3% diss sulp better to lc.
lc vaque.

(...

-2-Drill Hole No. MM-5_contid

- 66.20-68.50: Mafic flow?: pat carb, 2% Py, lc sharp @ 75°.
 - 68.50-74.50: Maric flow: bl'd carb alt'd, 3% fg sulph thru.
 - 74.50-96.20: **Mafic dike?**: w scatt bl'd secs, 3% fg diss sulph & Q vnlets. 83.00-84.50: bl'd, 20% QC vns @ 75°, 5% cg Asp, 3% Po. At 88.85: 10cm QC+chl w 50% Po(Cp) sh vn @ 40° w 10cm bl'd kc. 92.70-96.20: carb alt'd w meely gran tex, 5% vfg sulp, ic poss sh @ 45°.
 - 96.20-103.30: Sediment: crmy silld w some maric intra to to, 1-2% y fg sulp, lo sharp @ 45°.
 - 103.30-110.30: **Mafic dike?? Flow?**: wf mafic phenos, some fifds phenos, loc mod carb alt'd, 3% diss Py, 10% calc vn'd, lo sharp bkn.v
 - 110.30-115.25: **Mafic volcanic**: sil'd w scatt 10cm mafic dykes? of pyx P as above, lc grad.
 - 115.25-117.40: Mafic dike: as before w pyx P, carb alt'd, 2% diss Py.
 - 117.40-119.90: Mafic volcanic: sil'd as before, 3% Po(Cp), lc sharp @ 60°.
 - 119.90-124.15: Mafic flow: 10% crmy ch bds, 20% carb, 2% diss sulp.
 - 124.15-124.90: Chert: cmy, 2% diss suip, ic sharp @ 80°.
 - 124.90-125.75: Chert: 70% crmy ch, 30% mafic, 3% Po(Cp), ic sharp 80°.
 - 125.75-126.40: Mafic flow: as before, ic sharp @ 80°.
 - 126.40-128.90: **Chert:** crmy w hetrolithic chty bx, ang, clast supported, prob insitu bx, 3% vfg sulp, ic sharp @ 80°.
 - 128.90-130.40: Mafic flow: w 25cm QC vn @ 45°, lc bkn sh'd @ 60°.

130.40-136.35: Chert: 80% crmy ch, 20% intra mafic, (bd) @ 60°, 2% Po(Cp).

136.35 END

Drill Hole MM-5 Page 1 of 2

(

1

															,	
	SAMPLE	FROM	TO	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	Ni	Co	Mo	w
	NO.	(m)	(m)	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	1369	1.80	3. 30	1.50	12	0.3	144	2	45	2	2	2	55	21	2	1
	1370	3.30	4.80	1.50	12	0.5	146	5	142	2	2	б	33	20	Ť	1
	1371	4.80	6.30	1.50	9	0.2	123	2	102	2	2	2	41	15	1	1
	1372	6.30	7.80	1.50	13	0.5	82	3	75	2	2	6	23	14	1	1
	1373	7.80	9.30	1.50	12	0.1	71	2	156	2	3	2	28	16	1	1
	1374	9.30	10.20	0.90	10	0.2	106	3	342	2	17	2	28	16	1	1
	1375	10.20	11.50	1.30	14	0.1	58	3	42	2	3	2	9	8	1	1
	1376	11.50	13.00	1.50	17	0.2	75	9	69	3	3	2	24	15	1	2
	1377	13.00	14.50	1.50	60	0.3	106	3	897	2	7	4	35	17	2	1
	1378	14.50	15.50	1.00	13	0.4	110	2	91	4	5	2	44	15	2	Ŧ
	1379	15.50	16.20	0.70	20	0.3	178	2	31	2	16	2	15	14	1	1
	1380	16.20	17.55	1.35	185	0.4	119	5	39	2	35333	2	18	67	1	1
	1381	17.55	18.70	1.15	13	0.2	142	5	52	4	96	2	14	9	1	1
	1382	18.70	19.70	1.00	94	0.3	209	5	39	2	5602	2	21	19	1	1
	1383	19.70	20.70	1.00	124	0.3	143	2	43	2	6555	3	21	20	1	1
	1384	20.70	21.70	1.00	16	0.1	64	3	39	2	48	8	24	12	2	1
	1385	21.70	22.70	1.00	16	0.1	95	<u> </u>	41	2	58	2	35	14	1	1
	1300	22.70	23.70	1.00	15	0.4	163	3	70	2	39	2	32	18	2	3
	1307	23.70	24.70	1.00	27	0.3	124	5	66	2	33	5	36	18	1	1
	1300	24.70	25.70	1.00	13	0.4	93	2	59	2	13	2	24	17	1	2
	1309	25.70	20.70	1.00	13	0.1	50	4	/0	2	29	3	19	16	!	5
	1390	20.70	21.70	1.00	47	0.5	159	3	44	2	60	2	29	18	1	2
	1371	27.70	20.70	1.00	13	0.1	107	2	40	2	54	2	23	17		4
	1372	20.70	29.10	1.00	13	0.5	707	4	54	2	ວວ 45	2	19	13	1	
	1393	30 70	31 70	1.00	20	0.2	108	10	79	2	7747	2	19	14	1	1
	1305	31.70	32.70	1.00	10	0.7	110	4	70	2	17	2	70	10	2	2
	1396	32.70	32.70	0.70	11	0.3	114	7	31	4	70	2	39	19	2	7
	1390	32.70	34 10	0.70	17	0.5	80	2	30	2	110	2	42	15	1	37
	1398	34 10	35 10	1.00	10	0.1	102	2	49	5	110	2	70	15	4	د ۲
	1390	35 10	36.10	1.00	10	0.1	99		40	2	17	ŝ	30	10	4	5 7
	1099	50.10	50.10	1.00	,	0.2	00	2	00	(17	2	29	10	1	5
	1400	42 70	43 20	0.50	11	0.2	56	2	40	2	74	2	31	8	١	2
	1401	43 20	44 40	1 20	12	0.2	150	4	62	2	40	2	51 41	10	;	2
	1402	44 40	45.00	0.60	22	0.0	71	3	12	2	122	2	85	0	2	1
	1403	45.00	45 90	0.90	21	0.5	142	उँ	30	7	105	5	07	24	1	2
	1404	45.90	47.30	1 40	24	0.9	234	5	527	ά.	15	2	153	17	35	1
	1405	47.30	48.80	1.50	20	0.2	118	2	40	2	13	2	123	12	1	2
14	1406	48.80	49.60	0.80	48	0.4	285	2	45	3	37	2	51	20	1	4
2	1407	49.60	50.50	0.90	16	0.5	154	5	28	5	31	2	92	14	1	1
	1408	50.50	51.50	1.00	10	0.9	162	19	61	7	19	2	102	13	2	2
	1409	51.50	53.30	1.80	20	0.6	191	6	41	7	178	2	115	15	7	2
	1410	53.30	53.70	0.40	7	0.1	15	2	3	2	10	2	8	1	1	2
	1411	53.70	54.50	0.80	14	0.3	134	2	55	3	23	2	55	16	1	4
	1412	54.50	56.00	1.50	9	0.7	157	32	63	2	10	2	103	14	2	1
	1413	56.00	57.00	1.00	12	0.6	120	9	27	2	5	2	113	13	1	1
	1414	57.00	58.00	1.00	8	0.4	116	14	24	5	8	2	125	13	2	1
	1415	58.00	59.00	1.00	11	0.4	120	2	11	2	16	2	89	13	2	ł
	1416	59.00	60.00	1.00	17	0.1	112	2	17	2	17	2	136	12	2	4
	1417	60.00	61.00	1.00	16	0.2	108	2	18	2	47	2	102	10	1	2
	1418	61.00	62.00	1.00	11	0.3	113	3	20	2	42	2	105	12	1	1
	1419	62.00	63.00	1.00	9	0.4	143	11	19	2	74	2	187	17	1	1
	1420	63.00	64.00	1.00	10	0.3	73	9	21	2	25	2	86	8	1	2
	1421	64.00	65.00	1.00	8	0.5	135	6	22	4	14	2	90	16	2	2
	1422	65.00	66.20	1.20	9	0.4	236	2	26	2	606	3	131	14	30	1
	1423	66.20	67.50	1.30	9	0.4	170	2	36	2	135	2	71	16	7	1
	1424	67.50	58.50	1.00	4	0.2	89	2	47	2	6	2	31	10	1	1
	1425	58.50	70.00	1.50	3	0.2	123	2	20	2	13	3	88	13	3	1
	1420	70.00	71.50	1.50		0.2	113	2	14	2	65	2	95	10	5	1
	1427	77.00	73.00	1.50		0.2	120	2	30	2	4/	2	90	12	4	1
	1420	73.00	74.50	1.50	6	0.5	133	2	32	2	170	2	98	13	2	1
	1429	74.50	70.00	1.50		0.5	130	2	41 54	2	49	4	19	.7	1	1
	1430	70.00	77.50	1.50	0	0.4	130	7	50	2	220	2	10	13		1
	1431	77.50	19.00	1.50	34	0.3	1/5	2	52	2	4052	Ž	20	14		1
	1477	19.00	82.00	1.50	17	0.2	100	4	41	2	701	2	19	12		1
	1433	82.00	02.00 87.00	1.50	13	0.2	190	4	31	4	214	4	44	10	4	1
	1434	97.00	03.00	1.00	0	0.1	171	4	24	4	22	4	117	10	2	1
	1430	03.UU 84 E0	04.3U	1.50	12	0.2	131	4	31	4	4/4	4	35		4	1
	1430	04.30	03.30	1.00	y o	0.2	92	4	21	4	54	2	10		<u> </u>	1
	1437	00.00	07.00	1.50	y	0.2	143	2	42	2	19	2	18	10	1	1
	1430	01.00	00.00	1.00	y 10	0.3	150	2	40	2	1	2	15	13	1	1
	1439	00.33 80 FF	07.33	1.00	10	0.5	1/4	4	6 9	2	045	Z	64	51	Z	1
\$	1440	07.33	90.00	1.00	15	0.4	201	4	52	2	4/	2	23	30	1	1
	1441	90.00 01 EA	91.00	0.90	13	0.5	105	2	50	2	S	Z	27	20	1	1
	1442	91.30	72.70	1.20	19	0.0	105	4	64	2	5	Ž	28	16	1	!
	Cherl	72.1V	3 3.70	1.00	10	0.2	109	۷	47	ు	34	2	74	23	ు	4

.

Drill Hole MM-5 Page 2 of 2

18	
(
N	

(

7

SAMPLE	FROM	то	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	NI	Co	Mo	w
NO.	(m)	(m)	(m)	(ppb)	(ppm)										
1444	93.70	94.70	1.00	17	0.2	201	2	52	2	21	2	76	21	2	1
1445	94.70	96.20	1.50	15	0.3	287	2	47	2	27	2	103	21	3	1
1446	96.20	97.50	1.30	6	0.2	132	2	47	2	34	2	79	15	7	1
1447	97.50	98.50	1.00	7	0.3	132	6	49	2	15	2	97	13	8	1
1448	98.50	99.50	1.00	5	0.4	157	9	48	2	4	2	80	15	7	1
1449	99.50	100.50	1.00	9	0.8	148	32	78	2	21	3	62	11	7	1
1450	100.50	101.50	1.00	9	0.3	178	2	31	2	4	2	57	11	12	1
1451	101.50	102.75	1.25	8	0.2	166	2	37	2	2	4	72	13	4	1
1452	102.75	103.30	0.55	7	0.4	195	2	73	2	2	2	38	18	2	1
1453	103.30	104.80	1.50	7	0.6	341	4	71	2	2	2	54	30	2	1
1454	104.80	106.30	1.50	9	0.6	265	3	54	2	2	2	39	29	2	1
1455	106.30	107.80	1.50	9	0.4	241	6	68	2	2	2	60	25	3	1
1456	107.80	109.30	1.50	9	0.3	309	2	59	2	4	4	100	27	3	1
1457	109.30	110.30	1.00	17	0.1	249	2	49	2	3	2	49	17	5	1
1458	110.30	111.30	1.00	18	0.1	51	5	28	2	7	2	10	7	1	2
1459	111.30	112.30	1.00	28	0 1	48	4	36	2	6	2	21	8	1	ī
1460	112.30	113.30	1.00	12	0.1	56	ġ	33	2	2	2	19	ğ	i	i
1461	113.30	114.30	1.00	14	0.2	69	3	39	2	3	2	25	9	1	1
1462	114.30	115.25	0.95	19	0.4	90	Š	133	2	5	2	39	10	1	ì
1463	115.25	116.25	1.00	17	0.4	139	2	63	2	38	2	111	22	1	1
1464	116.25	117.40	1.15	10	0.3	152	2	48	2	67	2	186	29	2	1
1465	117.40	118.60	1.20	9	0.1	59	3	43	2	3	2	26	7	1	1
1466	118.60	119.90	1.30	10	0.2	54	4	28	2	3	2	13	5	1	1
1467	119.90	121.40	1.50	13	0.2	118	2	56	2	83	2	100	27	1	1
1468	121.40	122.90	1.50	16	0.1	45	2	42	2	136	2	135	18	1	1
1469	122.90	124.15	1.25	16	0.1	94	2	81	2	194	ž	155	23	1	1
1470	124.15	124.90	0.75	13	0.4	220	2	42	2	2	2	88	18	4	1
1471	124.90	125.50	0.60	10	0.3	312	2	68	2	5	2	35	21	4	1
1472	125.50	127.80	2.30	9	0.6	211	4	100	2	ž	2	60	17	6	1
1473	127.80	128.90	1.10	8	0.6	315	5	939	2	5	2	53	18	6	1
1474	128.90	130.40	1.50	29	1.7	555	2	580	2	6	2	48	18	2	1
1475	130.40	132.10	1.70	9	0.3	154	2	33	2	5	2	10	8	1	1
1476	132.10	133.60	1.50	16	0.2	147	2	47	2	7	2	46	8	5	1
1477	133.60	135.10	1.50	11	0.2	134	2	47	2	14	2	50	8	5	1
1478	135.10	136.35	1.25	11	0.1	144	2	57	2	35	2	70	17	6	1

.

ł

Ţ

 $\left(\begin{array}{c} \\ \end{array}\right)$

.

+

ŧ

Ć

Ć

ŧ

 $\left(\frac{1}{2} \right)^{-1}$

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

ţ

.

Ć

Location: 748m North 049m East 825m Elevation Azimuth: 315° Dip: -60° Length: 99.99 m Started: July 26,1991 Finished: July 27, 1991

Logged by: J J Walkins July 29, 1991

Contractor: J T Thomas

- 0-1.21: Casing
- 1.21-1.40: Altered sediment: dk gry, mod sil'd, 5% Py in vnlets & diss, lc bkn.
- 1.40-1.75: Mafic dike: fr, fds+pyx P, xc Py vnlets w 2mm bl'd haloes, ic sharp @ 45°
- 1.75-4.60: Altered sediment: msv, fg, med gry w blk secs, 5% xc Py vnlets w 2mm halos, scatt bl'd over 10cm, ic sharp @ 45°.
- 4.60-5.70: **Altered mafic**: mod gry, fg, meely tex, 5% Py(Cp) in vnlets+vfg diss sulp, ic sharp 70°.
- 5.70-6.70: Sediment: msv, fg, med gry, wk sil'd, 5% vfg vnlets w Po(Cp?), lc vaque.
- 6.70-7.15: **Altered sediment:** med to light gry, carb alt'd, 3% vfg sulp Po(Cp), lc sharp @60°.
- 7.15-9.80: Sediment: msy, fg, prob thick bd'd, med gry w scatt carb bl'd secs to 10cm, rem dk gry pats, 10% carb stwk, lc sharp @10°.
- 9.80-14.90: **Mafic flow?**: wf pyx & fds laths, 10% vnlets wbl'd 2mm haloes, 5% PyCp, scatt calc vns to 5cmm @ 40° & 60°, ic ragged.
- 14.90-16.40: Altered sediment: 70% sill'd crmy, 30% intra mafic, 20% irreg villets, 5% PyCp, ic marked by 1cm Q(chil) vn @ 80°.
- 16.40-20.20: Altered: strg carb, crmy gry w 10-20% chi thru, 5% vfg Asp, ic marked by 20cm bull Q.

20.20-29.40: **Mafic flow**: 20.20-21.20: fg, med gry, mod sil'd wirrg Q vnlets best to lc. 21.20-27.20: walt'd phenos, mott'd & stwk bling less to lc, 5% Py(Cp). 27.20-29.40: fg mod to strg sil'd, poss alt'd sed, 5% Py(Cp).

29.40-31.25: **Granite-like**: sil'd, crmy gry peppered w dk spots, 3%sulph (Cp)(Asp), lc bkn.

-2-<u>Drill Hole No._MM-6</u>cont'd

- 31.25-45.30: **Altered sediment**: fg msv, vaque bd, med gry w rem dk gry pats, 3% Po(Cp). 42.90-44.55: bkn thru by 20°-30° shs w 10% Po(Cp) best to to.
- 45.30-62.60: **Mafic volconic**: 10-20% bl'd pats, 5% Po(Cp). At 58.50: 10cm QC+chl sh @ 25° w 3% Po(Cp).
- 62.60-72.00: Altered sediment: sil'd w sil'd mafic intra.
 62.60-63,25: strg sil'd w 7% Po(Cp) best to tc.
 63.25-63.65: ram'd w QC+chl @ 80°, 5% Po(Cp) best at tc
 63.65-64.30: mafic, carb alt'd, 1% diss sulp.
 64.30-64.40: 50% sil sed, 50% mafic T? @ 60°, 1-2% vfg sulp.
 64.40-66.50: sil'd crmy w 10% whspy ser @ 70°.
 66.50-68.10: strg crmy sil'd, (ser?), wk chl? stwk, 1% diss sulp.
 68.10-70.00: msy med gry sil'd 1-25 diss & vnlet sulp.
 c sharp into bd'd T or sed @ 30°.
- 72.00-76.20: **Mafic tuff**: sil'd wintra sed? 50/50, 3% Po(Cp) asd pat & scatt ynlets, (bding) @ 45°, ic sharp @45°.
- 76.50-77.40: Mafic flow? dk grn, 10% carb vning @ 70°, 3% Po, k sharp @ 25°.
- 77.40-80.55: Altered sediment: crmy sil'd, wk ser to lc, (fol) @ 40°, 5% Po(Cp), lc grad.
- 80.55-83.10: **Maficflow?**: 70% dk grn w wk-mod ser+sil secs, pat strg carb alt'd, 5% Po(Cp), lc grad.
- 83.10-84.80: Altered maficflow?: mod-strg ser (sil'd), 10% QC pats, >5% Po(Cp), ic grad.
- 84.80-88.25: Mafic flow?: fg, med crmy, wk sil'd w 20% pat Q+ser w 7% Po(Cp) ynlets, scatt crmy sil, ic sharp @ 80°.
- 88.25-89.35: Altered sediment?: crmy, strg sil'd w 10% mafic, (bd) @ 70°-80°, 3% diss sulp, lc grad.
- 89.35-97.10: Mafic flow?: dk grn, in part meely tex'd, scatt carb alt'd, to 5% pat Po(Cp).
- 97.10-100.00: Sediment? .sil'd, fg, msv, pat ser, 5% Po(Cp) pat & scalt vnlets.
- 100.00 END

Drill Hole MM-6 Page 1 of 2

SAMPLE NO. 1479 1480 1481 1482 1483 1483 1484 1485 1486 1487	FROM (m) 1.20 1.75 3.25 4.60 5.70 6.70 7.15 8.65 10.15	T0 (m) 1.75 3.25 4.60 5.70 6.70 7.15 8.65 10.15 11.65	WIDTH (m) 0.55 1.50 1.35 1.10 1.00 0.45 1.50 1.50	Au (ppb) 13 15 15 15 15 15 10 7 9	Ag (ppm) 0.4 0.2 0.2 0.3 0.4 0.1 0.2 0.1 0.3	Cu (ppm) 141 165 132 148 144 63 131 124 159	Pb (ppm) 2 3 4 2 3 4 2 3 4 2 3 4 2 4	Sb (ppm) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2n (ppm) 43 49 50 26 94 25 42 42 42 54	As (ppm) 8 15 14 8 3 3 8 21 3	B1 (ppm) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N1 (ppm) 55 66 73 33 57 105 76 61 36	Cc (ppm) 26 19 17 20 18 17 14 12 27	Mo (ppm) 4 6 4 2 8 7 3 3 3 1	- γγ (ppm) 1 1 1 1 1 1 1 1 1 1 1
1488 1489 1490 1491 1492 1493 1494 1495 1496 1496	11.65 13.15 13.90 16.40 17.40 18.40 19.40 20.20 21.20 22.20	13.15 13.90 16.40 17.40 18.40 19.40 20.20 21.20 22.20 23.20	1.50 0.75 2.50 1.00 1.00 1.00 0.80 1.00 1.00	13 11 9 16 9 13 13 5 5 15	0.2 0.3 0.4 0.4 0.3 0.4 0.7 0.5 0.7	143 165 108 99 92 105 95 100 125 135	2 2 2 2 5 2 2 6 3 20 9	2222222275	54 89 51 78 72 35 36 52 69 35	2 4 10 9 7 9 5 6 5 8	222222	39 41 55 31 20 48 41 39 47 39	28 23 18 16 15 12 23 12 24	1 2 2 3 2 1 5 1	
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506	23.20 24.20 25.20 26.20 27.20 28.20 29.40 30.40 31.25 32.25	24.20 25.20 26.20 27.20 28.20 29.40 30.40 31.25 32.25 33.75	1.00 1.00 1.00 1.00 1.00 1.20 1.00 0.85 1.00 1.50	13 16 10 6 2 3 8	0.7 0.5 0.3 0.4 0.2 0.5 0.4 0.8 0.5	244 161 106 126 82 95 130 155 319	6 7 5 6 8 6 8 1 1 8	2 3 2 2 2 2 2 2 2 2 2 2 2	30 42 37 100 105 1434 94 49 173 795	672222222 222222222	2 2 6 5 2 2 2 2 2 2	35 44 32 36 28 69 12 13 119 111	23 23 19 20 10 9 6 5 13 16	1 2 3 2 6 15 3 2 26 26	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516	33.75 35.25 36.75 38.25 39.75 41.25 42.00 42.90 44.55 45.30	35.25 36.75 39.75 41.25 42.00 42.90 44.55 45.30 46.30	1.50 1.50 1.50 1.50 0.75 0.90 1.65 0.75 1.00	4 5 5 3 3 2 4 6 3	0.5 0.1 0.3 0.5 0.3 0.3 1.3 0.6 1.2	152 112 78 129 106 120 129 322 101 117	3 6 3 4 9 14 24 9 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1458 303 131 74 223 3176 390 2490 100 60	2 2 2 2 2 2 8 3 2 2	2222222	92 92 82 77 89 108 100 105 109 59	16 13 9 13 11 11 14 34 16 23	7 3 4 7 8 3 3 2 2	1 1 1 1 1 1 1 1
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526	46.30 47.30 48.30 49.30 50.30 51.30 52.30 53.30 54.30 55.30	47.30 48.30 49.30 50.30 51.30 52.30 53.30 54.30 55.30 56.30	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	4 9 6 21 10 4 24 6 3	0.7 1.0 0.9 0.9 1.2 0.6 0.1 1.0 0.6	90 142 144 183 118 130 132 83 134 87	2229266558	4 4 4 2 5 7 2 2 4 2	152 93 79 37 54 79 301 39 79 64	22222222222	5 2 3 3 2 6 8 2 5 3	72 54 35 28 38 83 46 34 25	20 25 23 27 24 24 25 11 23 19	 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536	56.30 57.30 58.30 59.30 60.30 61.30 62.60 63.25 64.30 65.40	57.30 58.30 59.30 60.30 61.30 62.60 63.25 64.30 65.40 66.50	1.00 1.00 1.00 1.00 1.30 0.65 1.05 1.10	3 4 1 2 4 11 4 35 7	1.0 0.8 0.5 0.5 0.5 0.5 0.5 0.3 1.0	146 200 173 74 126 148 115 130 110	8 6 3 8 4 9 13 19 3 8	1216 4 4 6 13 N N N N	68 45 42 257 63 54 44 76 63 71	2222262241	582324222	33 26 23 12 20 68 86 80 52 63	21 17 13 9 13 18 13 20 15 17	1 2 1 2 4 2 6 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546	66.50 67.30 68.10 69.10 70.10 71.10 72.00 73.00 74.00 75.30	67.30 68.10 69.10 70.10 71.10 72.00 73.00 74.00 75.30 76.20	0.80 0.80 1.00 1.00 1.00 0.90 1.00 1.00 1.30 0.90	3 5 2 3 2 1 2 6 2 5	0.1 0.3 0.5 0.3 0.2 0.1 0.1 0.2 0.1	122 107 124 85 100 90 92 113 105	5 11 5 6 9 8 9 6 6 5	222222222222222222222222222222222222222	50 42 45 40 44 35 42 41 35	24 76 2 38 2 2 8 18	22222222222	71 117 77 82 76 68 66 85 73	13 13 13 9 10 9 10 10 9	2 5 4 2 4 2 1 2 3 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1546 1547 1548 1549 1550 1551 1552 1553	75.30 76.20 77.40 78.40 79.40 80.55 81.55 82.20	70.20 77.40 78.40 79.40 80.55 81.55 82.20 83.10	1.20 1.00 1.00 1.15 1.00 0.65 0.90	5 4 3 4 8 6 5 4 7	0.7 0.4 0.3 0.4 0.1 0.2 0.1 0.7	132 145 71 128 103 99 225 273	5 2 8 6 2 4 9	2 3 2 2 2 2 2 2 2 2	56 89 49 48 54 36 46	4 2 23 11 2 2 41	2 2 2 2 2 2 2 9	81 83 68 87 64 30 74 50	14 20 10 16 12 15 25 31	2 1 2 2 1 4 3	1 1 1 1 1 1

Drill Hole MM-6 Page 2 of 2

	SAMPLE	FROM	70	WIDTH	<i>≜u</i>	Ag	Cu	₽b	Sb	In	÷.5	8 i	Ni	Co	Mo	÷¥
	NO.	(m)	(m)	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	1554	83.10	84.00	0.90	?	1.3	216	52	2	73	4 <u>6</u> 4	2	43	19	ó	1
	1555	84.00	84.80	0.80	ġ	2.0	168	34	2	465	101	5	33	24	2	.1
6	1556	84.80	85.80	1.00	6	0.6	245	4	2	66	138	5	43	24	3	١
(1557	85.80	86.80	1 00	1	0.1	210	2	2	47	9	8	53	23	3	1
•46	1558	86.80	87.50	0.70	7	0.7	126	7	2	59	8	2	25	16	1	1
	1559	87.50	88.25	0.75	5	0.5	120	2	2	49	4	2	27	10	2	1
	1560	88.25	89.35	1.10	6	0.6	81	17	2	60	6 2	2	41	14	7	1
	1561	89.35	90.50	1.15	б	0.2	160	3	2	55	4	5	19	18	1	1
	1562	90.50	92.00	1.50	2	0.1	15	2	2	83	2	2	5	15	1	1
	1563	92.00	93.50	1.50	3	0.1	14	2	2	91	5	2	5	15	١	1
	1564	93.50	95.00	1.50	2	0.1	54	4	2	75	2	2	5	16	1	1
	1565	95.00	96.00	1.00	2	0.2	22	7	2	99	2	2	5	17	1	1
	1566	96.00	97.10	1.10	4	0.5	34	2	2	56	2	2	7	18	1	1
	1567	97.10	98.00	0.90	4	0.4	34	4	4	14	3	2	61	4	4	1
	1568	98.00	99.00	1.00	6	0.2	76	8	2	22	2	2	54	8	5	1
	1569	99 00	100.00	1.00	5	0.5	244	2	2	27	2	2	70	21	3.1	1

.

1

Ċ

C is

.

(^s

1

.

•

Ţ

 (\mathbb{R})

.....

Location: 819m North 003m West 850m Elevation Azimuth: 135° Dip: -60° Length: 145.74 m Started: July 27,1991 Finished: July 29, 1991

Logged by: J J Walkins July 30 & 31, 1991

Contractor: J T Thomas

0-3.33 Casing

3.33-19.45 **Altered Mafic:** 3.33-7.30: mod sil'd, fg w hazy f fds, 10-15% vnlets w bl'd haloes most @ 30-45% 3% Po(Cp) ic grad

@ 30-45°, 3% Po(Cp), ic grad.
7.30-8.40: mod to strg bl'd, carb alt'd, 5% Po(Cp), ic grad.
8.40-10.20: (sil'd) mafic w 10-15%, bl'd haloes on vnlets most @ 30°-45, 5% Po(Cp).
10.20-13.00: mod to strg bl'd thru, 10% vn'd w 7% Po(Cp), vn'd @ 30°-45°.

13.00-13.80: wk to mod sil'd , 5% Po(Cp) in bl'd vnlets.

13.80-15.75: mod bl'd w 30% mott'd QC+chl, irreg bl'd yns, 5% Po(Cp). 15.75-17.00: wk bl'd w 10% bl'd ynlets, w 5% Po(Cp).

17.00-17.60: strg bl'd, 50% QC+chl, mott'd, 7% Po(Cp).

17.60-19.45: wk-mod bl'd w 20% irreg bl'd vnlets best to tc, 5% Po(Cp), lc sharp @ 70°.

- 19.45-20.50: Altered feldspar porphyry: strg carb alt'd, vaque cg intritex, msv, 5% diss sulp, ic sharp @ 70°.
 - 20.50-25.50: Altered mafic: fg w 30% bl'd (sil'd) secs to 30cm, 10% bl'd vnlets, 5% Po(Cp), lc sharp @ 70°.
 - 25.50-28.50: Feldspar porphyry dike: wk to mod sil, bl'd core to 1m, msv, vaque bd @ 70°, 2% Po(Cp) in vnlets, ic sharp @ 80°.
 - 28.50-36.60: Mafic volcanic: fg, msv, 30% mod-strg intra sil'd w carb, intra sed?, (bd) @ 70°-90°, 5% Po?Py(Cp) w some scatt MS to 1cm, scatt vnlets w bl'd halos, ic sharp 70°.
 - 36.60-37.50: Altered mafic?: msy, gran, (bd) @ 45°, strg carb alt'd, 5% fg sulph thru, lc sharp 50°.
 - 37.50-50.65: Altered mafic?: gran carb alt'd as before w 40% fg med to crmy gry, (sed?), cts from carb alt'd gran to fg grad, 3-5% diss & scatt vns Po(Cp).
 - 50.65-52.90: **Felsic intrusive**: granite-like, wk to loc mod ser, pat strg sil, peppered w blk flecks, 2% vfg sulp.

-2-Drill Hole No. MM-7 cont'd

52.90-66.50: Altered sediment: si'd, med to dk gry w some intra mafic T to 10cm, bd @ 45°-60°, 10-20% calc vn'd.
55.25-55.75: QC w 20% whispy chl @ 40°, 3% diss Py.
56.80-57.20: sil crmy gry, (ser), 20% irreg Q, 5% diss Py.
62.35-62.85: sil'd w sharp cts @ 60°, (ser), 3% Py.
65.20-65.75: mod sh'd w chl+calc @ 55°, ic ser sh @ 30°.

- 66.50-67.60: Altered: strg sil'd centered on 20cm calc+ chl vn @ 45°, 2% fg sulp.
- 67.60-71.30: Mafic flow?: msv, fg, cg to lc, 2% diss Py, lc sharp @ 60°.
- 71.30-73.00: Chert: crmy, prob intra flow, 2% diss Py, lc bkn.
- 73.00-74.25: Mafic flow?: carb alt'd, 20% ch, 2% diss Py.
- 74.25-75.20: Chert: gry as before, 2% diss Py, @ 74.75 5cm go @ 60°, lc @ 70°.
- 75.20-76.75: Mafic flow?: as before, (ser), 2% diss Py, Ic sharp 60°.
- 76.75-77.05: Chert: gry as before, 1% diss Py, Ic sharp 60°.
- 77.05-81.00: Mafic flow?: carb alt'd w 20% intra ch, 1% diss Py, lc calc+chl sh @ 70°.
- 81.00-81.50: Chert: gry as before, 1% diss Py, ic sharp@ 70°.

81.50-104.30: Intracalated mafic flow & chert:

81.55-83.55; mafic, carb alt'd. 83.55-84.00: crmy ch, 1% diss Py, ic icm sh @ 80°. 84.00-86.20: 70% sil'd & carb alt'd mafic, 10% crmy ch w 2% diss Py, 30% dk grn mafic, lc grad. 86.20-87.30: 20% crmy ch, 80% sil'd+carb alt'd mafic, 1% diss Py, lc calc vn (sh?) @ 80°. 87.30-88.20; carb all'd mafic w 10% crmy ch, 1% diss Py. 88.20-88.80: 70% crmy ch w 20% mafic, 10% pat Py. 88.80-90.10: carb alt d maric, 2% pat Py, ic sh'd @ 30° 90.10-94.00: sil'd & carb alt'd mafic, 5% Po(Cp) in frac w narrow bl'd halos. 94.00-95.00: carb alt'd mafic, msy, 10% strg bl'd w 5% PyPo, ic grad. 95.00-97.10: 70% crmy ch, 30% b'd & sil'd mafic, 3% Py pat. 97.10-98.00: carb alt'd mafic, 5% chl yning, 1% sulph. 98.00-98.80; crmy ch, sil'd mafic? in part, insitu frac w 3% Po(Cp). 98.80-104.30: carb alt'd mafic, scalt QC yn'd to Ic, bkn 101.50-104.30. lc vaque.

104.30-104.90: Mafic? flow?: sil'd, 10% Po in bd @ 60° w strg chl, lc vaque.

-3-<u>Drill Hole No. MM-7</u> cont'd

104.90-136.15: **Diorite**: Gd? mg-cg w fg sec, chl w scatt bl'd. 104.90-106.00: fg-mg. 112.50-114.00: dk grn, fg mafic. At 113.65: prob chill ct down hole @ 60°. 114.00-115.20: mod bl'd, (sulph). 117.70-119.00: sil'd w wk ser. At 117.85: 5cm carb sh @ 25°. 119.00- 136.15: mg (fg) chl+10% calc vning. At 119.70: strg chl+carb sh @ 70°. ic sharp @ 70° w no chill from cg dio.

136.15-145.74: Intracalated mafic flow & chert: mafic wintra crmy chigrad to blk arg wirem blk arg first at 142.70.
136.15-136.35: crmy ch, lc sharp sh @ 80°, no sulph.
136.35-136.70: mafic carb alt'd, lc carb sh 1cm @ 80°.
136.70-148.80: crmy ch, meta spotting to tc, vaque rem arg, wk bd @60°.
At 139.30: 10cm carb sh @ 40°.
148.80-141.30: mafic, carb alt'd, lc sharp 50°.
141.30-145.74: crmy ch grad to blk arg, bd @ 30°-45°.

145.74 END

(E.

Drill Hole MM-7 Page 1 of 1

	$\begin{array}{l} \text{SAMPLE} \\ \text{No.} \\ 1569A \\ 1570 \\ 1571 \\ 1572 \\ 1573 \\ 1575 \\ 1576 \\ 1577 \\ 1576 \\ 1577 \\ 1578 \\ 1582 \\ 1583 \\ 1584 \\ 1588 \\ 1589 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1599 \\ 1601 \\ 1602 \\ 1606 \\ 1606 \\ 1607 \\ 1608 \\ 1611 \\ 1612 \\ 1616 \\ 1616 \\ 1617 \\ 1619 \\ 1610 \\ 1611 \\ 1615 \\ 1619 \\ 1619 \\ 1619 \\ 1610 \\ 1611 \\ 1615 \\ 1619 \\ 1619 \\ 1610 \\ 1611 \\ 1615 \\ 1619 \\ 1619 \\ 1610 \\ 1610 \\ 1611 \\ 1615 \\ 1619 \\ 1610 \\ 1$	$\begin{array}{l} FR0M \\ (m) \\ 3.33 \\ 4.30 \\ 5.30 \\ 7.30 \\ 9.40 \\ 9.40 \\ 10.200 \\ 112.00 \\ 13.80 \\ 12.00 \\ 13.80 \\ 12.00 \\ 13.80 \\ 12.00 \\ 13.80 \\ 12.00 \\ 13.80 \\ 12.00 \\ 12.00 \\ 13.80 \\ 12.00 \\ 12.$	$\begin{array}{c} \text{TO} \\ (4.30)$	WIDTH (m) 0.97 1.00 1.00 1.10 0.80 0.80 1.00 0.80 1.00 0.85 1.00 1.20 1.00 1.20 1.40 1.40 1.40 1.40 1.40 1.00 1.00 1.0	Au (pp) 24 165537377274477723121112155214112311056738712176197011	Ag (ppm) 0.6770.0760.09860.889780.0000.0000.0000.0000.0000.0000.0		Pb (p65108118591316486768811989755891289711587811686959115669634)))	Zn (ppm) 46 60 704 31 64 85 60 103 66 75 44 56 75 72 22 20 10 20 56 44 10 20 20 20 20 20 20 20 20 20 20 20 20 20	зь рлилии и и и и и и и и и и и и и и и и и	As m) (ppm) 2 2 2 6 2 2 2 2 2 197 6 158 2 3 7 4 2 6 3 2 2 2 2 2 6 5 2 3 3 3 7 7 2 2 2 2 2 2 10 4 6 19 2 2 16 8 6 4	Bi (p222222222222222222222222222222222222	Ni (9332281229307492627930741551119026678536725329066611288174) 3332786293062793074155115986267853672534655346611288174	Copm9180316080496389813053348998139454447964544296111871164436 (999839983998194544479645412961118771164436	Mom) (ppm) 22232254445223212243522444433423416532144411211222222	W (ppm) 1 1 1 1 1 1 1 1 1 1 1 1 1
	1620	57.20 62.35	58.20 62.85	1.00 0.50	16 9	0.3	65 22	4	47 39	2	37 6	2	69 25	15 8	2	1
	1622	66.50	67.60	1.10	139	0.4	 86	2	19	3	1431	2	49	10	1	1
	1623	71.30	73.00	1.70	9	0.5	81	9	375	2	41	2	82	9	2	1
	1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641	88.20 88.80 90.10 91.00 92.00 94.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 90.00 100.90 100.90 101.90 104.30 104.90	88.80 90.10 91.00 92.00 93.00 95.00 96.00 97.10 98.80 99.90 100.90 101.90 102.90 104.30 104.90 105.90	0.60 1.30 0.90 1.00 1.00 1.00 1.00 1.10 0.90 0.80 1.10 1.00 1.00 1.00 1.40 0.60 1.00	15 96 67 16 26 4 8 11 16 19 37 0 7 6	0.9 1.1 1.1 0.7 0.9 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	223 265 245 180 137 185 229 53 61 14 94 94 107 99 205 146	52924933622222222222222222222222222222222	330 1260 105 62 36 56 87 52 82 96 64 88 74 73 78 89 40 69	22222222222222222222222222	12 23 22 22 23 22 8 11 48 47 39 11 28	2222222222222222222222222	81 49 50 65 66 98 108 64 36 65 71 57 35 30 35 36 24 35	36 19 20 15 15 31 21 10 8 10 8 14 21 16 20 18 8 20	2 2 3 3 3 1 3 3 3 1 1 5 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1
į	1642	114.00	115.20	1.20	2	0.4	30	4	219	3	3	3	5	11	1	1
X	1643	117.70	119.00	1.30	2	0.5	25	2	80	2	4	2	5	16	1	1

,

-

•

 $\left(\cdot \right)$

ţ

Ć.

•

.

 $\left(\left[\cdot \right] \right)$

(

(

(

(. .

 $(\cdot$

ŧ

•

 $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$

.

.

Location: 690m North 420m West 835m Elevation

Azimuth: 180° Dip: -70° Length: 104.53 m Started: July 29,1991 Finished: July 29, 1991

Logged by: J J Watkins July 31, 1991

Contractor: J T Thomas

- 0-1.82: Casing
- 1.82-27.75: Siliceous rock: strgly sil'd, protolith??, mafic volc? w intra ch, bd & frac controlled biotite thru, meta grade high, 1 to 5% diss Py thru.
 13.20-13.30: felsic dy, granitic, fg, @ 45°.
 14.05-14.20: felsic dy, granitic, fg, @ 45°.
 19.70-21.60: msy meta mafic, hornfelsed, tc sh'd 30°, lc sharp @ 45°.
 At 26.60: 5cm ox'd sh @ 40°.
 Ic grad.
- 27.75-30.60: **Monzonite**: cg, msv, < 1% diss Py. 30.10-30.20: cmy ch w sh'd cts @ 30°, no sulp.
- 30.60-34.50: **Mafic volcanic**: 80% hornfelsed mafic wimeta bl'd irreg Q+biot stwk, 20% crmy ch, lc ragged @ 50°.
- 34.50-35.90: Monzonite: cg, msv, <1% diss Py, lc sharp @ 60°.
- 35.90-49.80: **Intracalated mafic flow & chert**: hornfelsed, crmy ch, ynlets & stwk now biotitic, 3% diss Py, ic bkn @ 60°.
- 49.80-50.20: Granite: cg, FP, msv, biotitic, 2% diss Py, lc sharp @ 60°.
- 50.20-50.90: Metamafic volcanic?: sil'd, irreg vnlets+haloes, 2% Py, lc sharp @ 60°.
- 50.90-52.90: Metamafic schistose: @ 60°, biot-rich, mafic P?,3% diss Py.
- 52.90-53.20: Granite: cg, lc bkn sharp @ 60°.
- 53.20-54.40: Metamafic volcanic?: sil'd w crmy ch, biot-rich, 3% dissPy.
- 54.40-55.00: Feldspar porphyry granite: msv, 2% diss Py, lc sharp 40°.
- 55.00-68.20: Meta Intra Mafic+Ch: sil'd w crmy ch, bd'd @ 60°, 3% to loc 5%. Py(Po?), lc sharp @ 70°
- 68.20-68.55: Feidspar porphyry granite: msv, 2% diss Py, lc sharp 70°.

-2-Drill Hole No. MM-8 cont'd

- 68.55-98.80: Altered mafic volcanic: meta grade lower & same as earlier holes,dk green mafic decreasing to pervasive ser w sil'd secs, Po(Cp) to 3%.
- 98.80-104.53: **Altered mafi volcanic?:** as before but w scatt rem dk gry sed. 103.80-104.53: badly bkn, flt?
- 104.53 END

(

Drill Hole MM-8 Page 1 of 2

.

,

SAMPLE NO. 1643A 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662	FR0M (m) 1.82 3.30 4.80 6.30 7.80 9.30 10.80 12.30 13.00 14.05 14.05 14.05 14.05 14.20 15.70 17.20 18.70 19.70 21.60 23.10 24.60 25.10 27.10	T0 (m) 3.30 4.80 6.30 7.80 9.30 10.80 12.30 14.05 14.20 15.70 14.20 15.70 17.20 21.60 23.10 24.60 26.10 27.75	WIDTH (m) 1.48 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Au (ppb) 1 3 2 1 3 1 5 1 1 5 1 1 2 3 3 2 1 1 2 3 3 2 1 1	Ag (ppm) 0.7 0.8 0.6 0.8 1.3 1.0 0.5 0.6 0.8 0.7 0.8 0.7 0.8 0.7 0.8 1.2 0.7 1.5 1.0 0.6	Cu (ppm) 82 114 94 132 73 70 76 86 105 39 109 104 87 62 128 85 131 100 73 58	Pb (ppm) 12 6 6 10 122 43 5 5 8 6 6 20 8 28 10 6 80 25 3 15	Zn (ppm) 45 31 28 35 156 92 38 47 56 29 34 67 60 68 93 242 81 144 94	Sb (ppm) 2 2 <th>As (ppm) 5 5 5 2 4 12 6 6 4 3 5 4 2 7 6 4 8 5 13 3</th> <th>Bi (ppm) 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>Ni (ppm) 29 34 27 32 29 24 27 50 12 19 53 50 29 31 37 56 27 9 12</th> <th>Co (ppm) 12 17 16 18 9 9 7 15 3 7 17 14 9 20 9 24 15 9 8</th> <th>Mo (ppm) -7 2 2 2 2 2 2 2 2 2 1 1 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1</th> <th>W (ppm) 1 3 2 1 3 1 1 5 1 1 2 3 3 2 1 1 2 3 3 2 1 1</th>	As (ppm) 5 5 5 2 4 12 6 6 4 3 5 4 2 7 6 4 8 5 13 3	Bi (ppm) 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ni (ppm) 29 34 27 32 29 24 27 50 12 19 53 50 29 31 37 56 27 9 12	Co (ppm) 12 17 16 18 9 9 7 15 3 7 17 14 9 20 9 24 15 9 8	Mo (ppm) -7 2 2 2 2 2 2 2 2 2 1 1 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1	W (ppm) 1 3 2 1 3 1 1 5 1 1 2 3 3 2 1 1 2 3 3 2 1 1
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1699 1690 1691 1695 1696 1697	$\begin{array}{c} 30.60\\ 31.50\\ 33.00\\ 34.50\\ 36.00\\ 37.50\\ 40.50\\ 42.00\\ 43.50\\ 45.00\\ 44.50\\ 45.00\\ 45.00\\ 45.00\\ 45.00\\ 50.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.50\\ 55.50\\ 55.50\\ 56.50\\ 55.50\\ 56.50\\ 55.50\\ 61.00\\ 64.00\\ 65.50\\ 64.00\\ 65.50\\ 67.00\\ 68.25\\ 70.00\\ 71.50\\ 73.00\\ 74.50\\ 76.00\\ \end{array}$	$\begin{array}{c} 31.50\\ 33.00\\ 34.50\\ 36.00\\ 37.50\\ 39.00\\ 40.50\\ 40.50\\ 42.00\\ 43.50\\ 45.00\\ 44.50\\ 45.00\\ 45.00\\ 50.20\\ 50.90\\ 52.90\\ 53.20\\ 53.20\\ 53.20\\ 53.20\\ 53.20\\ 53.20\\ 55.60\\ 59.50\\ 61.00\\ 65.50\\ 61.00\\ 65.50\\ 67.00\\ 68.55\\ 70.00\\ 71.50\\ 73.50\\ 74.50\\ 77.50\\ \end{array}$	$\begin{array}{c} 0.90\\ 1.50\\$	214111311112387462109794825776916461	0.5 0.7 0.8 0.4 1.1 1.0 0.7 5.4 4.3 2.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	61 91 107 44 122 108 87 87 45 51 255 36 81 47 97 110 83 98 25 55 81 47 97 110 83 98 25 50 63 96 51 102 89 82 50 83 96 51 102 102 83 89 102 103 101 88 80 80 81 105 80 81 105 80 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 81 80 80 80 80 80 80 80 80 80 80 80 80 80	11 6 9 8 17 7 2 2 7 4 11 3 6 4 3 9 2 5 6 15 7 6 5 17 17 14 21 24 77 17 21 27 4 7	63 67 35 45 442 22 23 55 41 39 84 55 57 69 65 10 85 17 20 8 17 20 8 45 50 76 96 51 08 54 20 8 45 50 76 96 51 72 18 54 8 26 28 45 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 2 2 5 5 5 7 3 2 5 4 2 2 9 4 Z 2 4 2 4 13 7 7 8 8 200 2 8 3 2 9 7 15 14	232233222222222222222222222222222222222	35 37 41 35 36 58 21 38 62 14 48 25 52 09 92 90 58 09 54 61 32	11 20 22 8 18 14 20 9 11 17 11 0 7 17 22 11 40 4 5 12 3 12 13 4 11 26 9 13 8 5 18 10 9 13 18 10 9 11 17 11 0 7 17 22 11 40 10 9 11 17 10 7 10 9 11 17 10 7 10 7 1	2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715	77.50 79.00 80.50 82.00 83.50 85.00 86.50 88.00 90.10 91.40 92.50 93.50 94.50 95.50 96.50 96.50 98.50	79.00 80.50 82.00 85.00 85.00 89.10 90.10 91.40 92.50 94.50 95.50 96.50 97.50 98.50 99.50	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.10 1.00 1.0	7 17 6 1 5 9 6 4 5 1 4 7 2 9 11 6 1	1.0 1.9 1.0 0.6 0.5 0.8 0.9 0.7 1.0 0.8 1.2 1.6 4.0 3.4 2.1 2.4 3.7 1.4	76 96 75 89 81 90 108 117 84 88 101 121 122 60 66 137 119 121	29 71 18 9 13 14 12 17 43 27 39 68 516 48 77 699 53	50 865 97 80 120 129 80 375 93 108 135 91 332 413 1213 380 209	35 62 3 2 5 5 2 2 8 4 3 6 10 433 99 112 243 15	34 217 17 12 22 99 59 115 61 27 50 140 742 235 90 49 28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53 50 19 38 23 30 25 34 23 37 40 37 41 41 72 51 101 71	10 15 10 12 13 14 15 13 18 16 17 10 20 15 18 14	20 13 1 1 1 1 3 1 3 4 7 6 71 34 94 57	1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1

	SAMPLE NO. 1716 1717 1718 1719	FROM (m) 99.50 101.50 102.50 103.80	T0 (m) 101.50 102.50 103.80 104.53	WIDTH (m) 2.00 1.00 1.30 0.73	Au (ppb) 3 11 1 1	Ag (ppm) 1.1 1.5 2.3 1.1	Cu (ppm) 96 77 91 57	Pb (ppm) 66 188 283 85	Zn (ppm) 488 529 563 161	Sb (ppm) 57 70 75 46	As (ppm) 30 19 37 42	Bi (ppm) 2 2 2 2 2	Ni (ppm) 61 48 47 34	Co (ppm) 14 10 12 15	Mo (ppm) 34 4 9 7	₩ (ppm) 1 1 1 1
--	---	--	---	--	----------------------------------	---	-------------------------------------	---------------------------------------	---	-------------------------------------	-------------------------------------	--------------------------------------	-------------------------------------	-------------------------------------	----------------------------------	--------------------------------

Ô

,

Drill Hole MM-8

Page 2 of 2

(-

C_{itur}

Ŧ

•

1

Location: 690m North 420m West 835m Elevation Azimuth: 225° Dip: -60° Length: 90.60 m Started: July 29,1991 Finished: July 31, 1991

Logged by: J J Walkins August 14, 1991 Contractor: J T Thomas

0-17.50: **Metasilicified sediment**: super siliceous stwk & vn'd sed?, metasilification imposed on stwk of Q+bio+ Py(7%), wk pat ser, intervals of poss maficvolc, bd 45°-10°.

17.50-48.25: Metamafic volcanic: meta on alt'd mafic that is strgly sil'd grading to wk sil'd w the appearance of rem fg biotite.
20.45-20.85: alt'd fel dy w sharp cts @ 35°, 1-2% diss Py in molt pat w f white fds defining crse stwk.
34.80-36.50: poss biotite hI'd sh centered on 10-20cm bk'n section @ 35.40 sh'd @ 20°-30°.
At 36.50: first appearance of mg mafic.
At 41.80: first appearance of diss fg magn.
lc bk'n.

- 48.25-51.30: **Feldspar porphyry granite**: msv, mg-cg, scalt narrow shs @ 40°, 1% diss py, ic vaque @ 45°.
- 51.30-55.80: **Meta Mafic Yolc**: w wk Py(3%), diss magn, ic sharp irreg. 55.00-55.20: FP Granite dy @ 45°, tc sh'd @35°.
- 55.80-70.50: Feldspar porphyry granite: msv, 1% diss Py, rare scatt Q-rich sections to 20cm, diss magn, lc sharp @ 40° w 1cm bull Q vn.
- 70.50-74.60: **Metamafic volcanic?**: biot hl'd w 20% crmy ch, < 1% diss Py, 10% calc vning, diss magn, lc grad.
- 74.60-75.90: Feldspar porphyry granite: as before, cts grad.
- 75.90-78.50: **Metamafic volcanic?**: biot hi'd w 20% bi'd sections w biot stwk, <1% Py, diss magn, 5% crmy ch, 5% calc vning.
- 78.50-82.30: **Feldspar porphyry granite**: as before. 78.50-79.20: w mafic zenos in Q-rich gdmss, lc bk'n.
- 82.30-83.40: Metamafic volcanic?: as before, lc bk'n.
- 83.40-85.40: Feldspar porphyry granite: as before, lc grad.

-2-Drill Hole No, MM-9 cont'd

85.40-90.60: **Silicified mafic volcanic?**: strg sil'd crmy grey. To 88.50: 5% ynlet Po. 88.50-90.60: sil'd mafic (Po).

1

90.60 END

Ţ

(

SAMPLE NO. 1720 1721	FROM (m) 15.50 16.50	T0 (m) 16.50 17.50	WIDTH (m) 1.00 1.00	Au (ppb) 2 3	Ag (ppm) 0.8 0.5	Cu (ppm) 101 83	Pb (ppm) 23 7	Žn (ppm) 245 388	Sb (ppm) 2 2	As (ppm) 7 7	81 (ppm) 2 2	Ni (ppm) 34 39	Co (ppm) 12 13	Mo (ppm) 2 - 2	₩ (ppm) 1 1
1722	19.00	20,45	1.45	1	0.3	46	13	56	2	4	2	16	5	2	1
1723	20,45	20.85	0.40	2	0.2	20	11	18	2	2	2	11	2	3	1
1724	20.85	22.00	1.15	6	0.6	143	8	52	2	4	3	35	11	1	1
1725	33.80	34.80	1.00	1	0.4	92	5	.28	2	3	3	34	16	5	1
1726	34.80	35.50	0.70	1	0.4	82	4	29	2	5	2	56	17	17	1
1727	35.50	36.50	1.00	1	0.5	133	2	33	2	4	2	56	17	18	1
1728	36.50	37.50	1.00	f	0.4	80	2	42	2	3	2	29	11	2	1
1729	85.40	86.40	1.00	4	0.6	98	11	48	2	3	2	35	11	5	1
1730	86.40	87.40	1.00	1	1.0	154	36	40	2	28	3	32	11	2	1
1731	87.40	88.40	1.00	1	1.0	104	28	50	2	87	2	32	13	2	1

1

Drill Hole MM-9

Page 1 of 1

Location: 545 m North 050 m East 775 m Elevation Azimuth: 120° Dip: -70° Length: 244.80 m Started: Sept 19,1991 Finished: Sept 22, 1991

Logged by: J J Walkins Sept 23, 1991

Contractor: J T Thomas

0-1.51 Casing

- 1.51-7.45: **Altered Intrusive**: bleached with scattered 1-2 mm pseudo feldspar phenos, 1-2 mm mineralized fractures most at 30°-40° with bleached carbonate altered halos, scattered moderate silicified, to 5% Py(Po), 1-2% Asp, tr Cp., lower contact vague.
- 7.45-12.00: Silicified black argillite: with 10% calcite+quartz veining most at 65°, weak graphite on fracture surfaces, broken at 70°, trace sulphides, lower contact gradational.
- 12.00-13.55: **Altered sediment?**: bleached liht to medium grey, carbonate altered, 10% irregular quartz-carbonate veining, scattered remnant black argillite, vaque bedding at 60°, lower contact sharp broken at 50°.
- 13.55-20.40: **Massive diorite (granodiorite)**: fine grained, weak bleached, 1-3 mm Po+calcite veining most at 55° with strong bleached halos to 1 mm, 10% Po, lower contact (Ic) sharp with .5 cm calcite vein at 80°.
 - 20.40-22.45: **Argillite**: 60% black, silicified, 40% medium grey, 5% fine irregular calcite veining, 2% disseminated Py most to lower contact, lower contact (Ic) sharp against dike at 20°.
 - 22.45-23.75: Feidspar porphyry dike: fresh, contacts sharp at 20°, zoned feidspars to 5 mm.
 - 23.75-23.95: Argillite: as before, 3% Py, lower contact broken.
 - 23.95-24.70: **Altered intrusive**: intermediate in composition, bleached with moderate carboate thru, vaque feldspar clusters, 2% very fine Py, minor coarse Py, lo broken at 45°.
 - 24.70-26.45: Argillite: as before, broken thru at 60°, 20% grey silicious stockwork, 3% diss Py, ic sharp but ragged.
-2-

Drill Hole No. MM-18 cont'd

- 26.45-26.70: Altered intrusive: as before, trace of very fine Py, ic sharp broken at 70°.
- 26.70-26.95: Argillite: black, silicified, minor graphite, 1% Py, ic broken scharp at 70°.
- 26.95-27.25: Altered intrusive: as before, trace of very fine Py, Ic sharp broken at 70°.
- 27.25-28.25: Argillite To 27.50: black, silicified, broken at 70°, 5% Po. From 28.25: becomes strongly silicified with 10% Po in irregular patches and stockwork, 10% calcite, ic 1cm calcite vein at 80°.
- 28.25-42.60: Diorite: fine to medium grained, massive with bleached Po-rich veins most at 60° to 5mm, 10% Po, trace of Cp, ic fine grained over 1 m and broken sharp at 30°. At 34.20: 10 cm shear at 30°. At 36.80: 1 cm shear at 40°.
- 42.60-44.85: Argillite?: silicifiedm remnant dark grey sediment best to ic, carbonate altered, 1% Po, ic broken.
- 44.85-51.10: **Pyroxene porphyry intrusive?**: massive, pyroxenes now biotite altered, weakly bleached, 10% irregular calcite veining, 5% patchy Po, trace of Cp, ic hazy at 60°.
- 51.10-52.60: **Altered breccia**: creamy grey silicified fine grained with 20% grey stockwork, ic broken. 51.55-51.70: insitued fractured, strong carbonate altered.
- 52.60-59.55: Altered granodiorite: medium grained, massive, well developed vein stockwork most at 45-50°, distinct bleached halos on veins, veins to 5mm, veins calcite filled, Po and minor chlorite filled, ic vaque. At 58.95: 1 cm shear at 10-20° with quartz carbonate + 40% Asp.
- 59.55-61.70: Siliceous breccia: similar to 51.10-52.60 with intervals of strong carbonate altered groundmass, < 1% Py.
- 61.70-63.90: **Andesite?**: dark green, silicious, 5% irregular Po-rich veinlets with narrow bleached halos, 10% calcite veins., Ic sharp at 45°.
- 63.90-72.40: **Altered voicanic??**: fine grained, creamy grey, strong pervasive carbonate, metamorphic? sericite? spotted best from 68.10-72.40. At 66.10: 10 cm 40% Po in carbonate host, loos like intrafloe replacement of hyaloclastite, scattered creamy siliceous sections to 20 cm. 68.10-72.40:strongly altered flow breccia, Ic 5 cm carbonate shear at 40°.

72.40-125.70: Altered voicanic: strong local carbonate altered with sections of remnant dark green andesite?, scattered creamy siliceous sections. 74.00-77.00: weak grading to moderate carbonate rich foliation at 60° 80.20-81.00: meely textured with fine feldspars, irregular chlorite+ calcite +3% Po.

At 82.40: 10 cm creamy siliceous in 30 cm cherty section with 10% Po+ chlorite+ quartz carbonate veinlets to 0.5 cm.

85.60-86.00: cremy siliceous with weak sericite, 5% Po with carb veinlets. At 86.00: 1 cm carb shear at 80°.

90.10-91.60: creamy siliceous, carb altered to depth, 3% Po, trace Cp. 98.00-99.20; strongly silicified creamy grey with very fine grained Py. At 103.60; strong 5 cm carb quartz shear at 25°.

105.30-107.65: creamy silicified grading to bleached with carb alteration, trace Py, top contact (tc) sharp at 60°, at Ic 10 cm with 60% calcite veining at 80°.

107.65-110.50: dark green with 10% calcite veining + moderate pervasive carb.

110.50-111.15: altered intrusive?: silicified, weak chlorite in veins, vaque feldspar phenos, weak sericite, contacts sharp at 80°, <1% Asp in chlorite veins.

111.15-111.95: strong chlorite grading to strong pervasive carb, ic sharp at 60° against strong chlorite.

111.95-119.90; weak to moderate chlorite with scattered strong chlorite, 30% patchy carb.

119.90-120.15; calcite-rich vein with 20% strong chlorite fragments?, sharp contacts at 45°.

120.15-125.70: strong carb altered with remnant fresh andesite, could be pyroxene phenocrysts psuedomorphed with chlorite lc sharp at 80°.

- 125.70-136.70: Silicified unit: strong pervasive siliceous, dark to creamy grey, patchy carb altered, intervals to 1 m of dark grey siliceous stockwork, 2% patchy Po with rare chlorite+calcite veins with Po, Ic gradational.
- 136.70-153.70: Andesite: weak chlorite altered with creamy siliceous and bleached sections, 5-10% calcite veins, rare patchy Po <1%, Ic sharp with 10 cm calcite+quartz veins at 40°.
- 153.70-157.25: Silicified unit: strong creamy grey pervasive siliceous, 20% white quartz veinlets, 1% fine Py, 1% coarse Po, ic broken.
- 157.25-166.60: Andesite: dark green, chloritic with 30% moderate to strong pervasive silica, 20% irregular quartz veins, <1% patchy Po, ic broken.

-4-Drill Hole No. MM-10 cont'd

- 166.60-171.10: Altered andesite: moderate pervasive silicified, 10% irregular calcite veins, medium grey patchy remnant dark green andesite, 1% Po, trace Cp.
- 171.10-176.30: **Andesite**: dark green chloritic with 20% pervasive carb, <1% Po,local patchy slicification, ic broken.
- 176.30-177.20: **Fault**: broken and sheared at 30° best at to and ic, ic with gouge, host is light green grey with 20% calcite veins, 10% whispy chlorite, pervasive calcite, 1% P0, ic broken.
- 177.20-185.30: Silicified unit: strongly silicified, andesite?, no carb, massive, fine hairline fractures, 2% disseminated and fine fracture filled Po and trace Cp, lc gradational.
- 185.30-186.30: Andesite: dark green, fresh with 10% irregular calcite veining, 2% Pobetter to ic.
- 186.30-201.80: Silicified unit : andesite? medium grey to light grey, 10-20% white quartz veins with local in-situ breccia.
 187.70-188.20: broken and sheared at 30°.
 188.20-193.55: weak sericite, 2% patchy Po, fine Asp to 10% over 20 cm at 188.70 and 199.20.
- 201.80-204.30: **Andesite?**: medium green, moderate pervasive carb, 2% Po. 203.40-204.30: 10% coarse grained Asp, ic sharp shear at 30°.
 - 204.30-207.50: **Andesite:** silicified, creamy grey, weak sericite, 10% irregular quartz veins fractured through at 15°, 2% fine Py, lc distinct at 80°.
 - 207.50-220.90: **Andesite?**: fine grained with fine in-situ stockwork, weak sericite, weak to moderate silicified, 1% Po best to to, to broken sharp at 70°.
 - 220.90-224.20: Altered intrusive: strongly bleached with pervasive carb, silicified with hazy fine to medium grained intrusive texture. 2cm scattered round mafic xenoliths, 3% fine py, rare hairline Po veinlets.
 - 224.20-227.80: **Pyroxene porphyry**: dark green, altered pyroxene phenos to 1mm, fine feldspars, strong pervasive carb, 105 calcite veins, trace Py, Ic sharp at 40°.
 - 227.80-244.82: Silicified unit: probably andesite, light to dark grey, fine, weak in-situ fractured, moderate pervasive carb, 5% calcite veins, scattered quartz veinlets, 5% disseminated and patchy Po, trace Cp.

224.82 EOH

Dill Hole MM-10 Page 1 of 2

X. A.	

SAMPLE NO. 1732 1733	FROM (m) 1.51 2.50	TO (m) 2.50 3.50	WIDTH (m) 0.99 1.00	Au (ppb) 1 40 75	Ag (ppm) 3.0 1.5	Cu (ppm) 438 335	Pb (ppm) 44 10	Zn (ppm) 64 40	Sb (ppm) 4 6	As (ppm) 4231 565	B1 (ppm) 8 4	Ni (ppm) 30 29	Co (ppm) 45 13	Mo (ppm) 3 1	W (ppm) 1 1
1734 1735 1736 1737	3.50 4.50 5.50 6.50	4.50 5.50 6.50 7.45	1.00 1.00 1.00 0.95	520 31 128 21	1.8 1.7 0.6 0.8	100 244 222 249	24 20 7 7	35 38 29 32	2 2 2 2	2886 467 22 295	8 5 3 4	5 4 3 9	25 6 3 7	1 2 2	1 1 1
1738 1739 1740 1741 1742 1743 1744	13.55 14.50 15.50 16.50 17.50 18.50 19.50	14.50 15.50 16.50 17.50 18.50 19.50 20.40	0.95 1.00 1.00 1.00 1.00 1.00 0.90	17 8 22 58 12 10 7	1.2 0.3 0.6 0.4 0.7 0.7	647 107 249 201 390 367 272	5395456	41 42 43 39 38 32 39	2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 6 32 13 3 5 35	6 2 4 3 4 5 4	17 3 9 2 3 8 6	12 9 15 14 15 13 11	2 2 1 1 2 2	1 1 1 1 1
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760	27.25 28.25 29.25 30.25 31.25 33.25 34.25 35.25 36.25 37.25 38.25 39.25 40.25 41.25 42.00	28.25 29.25 30.25 31.25 32.25 34.25 35.25 36.25 36.25 37.25 38.25 39.25 40.25 41.25 42.00 42.60	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	140 95 34 86 92 9 21 91 20 230 41 44 53 32 21 12	0.8 0.6 0.4 0.7 0.3 0.5 2.3 1.4 2.4 0.8 0.9 0.5 0.8 0.7 0.4	578 673 326 267 296 130 204 529 546 676 336 272 287 399 325 178	4 3 7 7 4 2 5 1 9 3 5 8 5 3 2 5	2361 56 38 42 74 63 43 43 40 44 41 46 31 87 42 61	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3705 41 42 16 26 26 11 633 10 161 107 4 6 14 50 5	6776424769655542	37 4 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2	31 17 14 14 13 12 32 14 20 14 9 10 13 12 8	2 2 1 1 2 1 1 2 1 2 1 3 1 2	13 1 1 1 1 1 1 1 1 1 1 1 1
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787	44.85 46.00 47.00 48.00 50.00 51.00 52.60 53.60 54.60 55.60 57.60 57.60 59.55 60.60 61.70 62.80 63.90 65.00 65.00 65.00 65.00 65.00 65.00 65.00 71.00 71.80	46.00 47.00 48.00 50.00 51.00 52.60 53.60 55.60 55.60 57.60 59.55 60.60 61.70 62.80 63.90 65.00 66.00 67.00 68.00 69.00 71.00 71.80 72.40	1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00	11 36 45 69 106 88 11 24 12 241 49 515 13 16 59 54 313 56 10 390	0.3 0.5 0.4 0.4 0.4 0.1 2.1 1.7 1.6 1.9 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	144 168 96 177 246 169 67 492 539 552 324 409 840 155 89 73 135 245 87 168 100 207 228 293 182 293 182 217 235	3232352158116791116915112349225251	37 37 46 33 33 35 55 46 13 37 49 39 27 77 4 8 37 1 27 77 4 8 37 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94 176 135 384 273 291 84 192 103 482 978 292 4669 316 75 1262 29 8 2 12 2 19 26 8 212 2 19 26 8 24 250	2444662333613592232222222222222	64 73 56 55 59 78 3 3 1 1 2 1 56 24 4 98 80 118 20 20 5	25 21 15 20 19 14 8 14 11 20 11 25 8 14 16 14 6 14 8 13 18 19 14 14 28	11111732321422321565576694	1 1 1 1 3 3 2 1 3 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1
1788	80.20	81.00	0.80	13	0.3	191	4	38	2	22	2	35	14	1	1
1789	85.60	86.00	0.40	3	0.2	76 79	6 E	42	2	55	2	33	7 9	3	2
1790	105.30	106.30	1.00	1	0.21	199	5 18	52 42	2 2	59 14	2	40	•	2	1
1792	106.30	107.65	1.35	3	0.1	125	7	35	2	7	2	14	7	2	1
1793 1794	111.15	111.15	0.65 0.80	6 6	0.2	180	2 5	31 37	2	2	2	31	6 16	2	1
1795	119.90	120.15	0.25	9	0.1	22	2	39	2	205	2	47	12	2	1
1 796 1 797	125.70 126.70	126.70 127.70	1.00 1.00	5 8	0.1 0.1	177 191	2 4	21 33	2 2	18 38	2 2	18 98	12 15	16 240	2 2

Dill Hole MM-10 Page 2 of 2

$\left(\right)$	
N.	

														raya	
SAMPLE NO. 1798 1799 1800 1801 1802	FROM (m) 127.70 133.00 134.00 135.00 136.00	T0 (m) 128.70 134.00 135.00 136.00 136.70	WIDTH (m) 1.00 1.00 1.00 1.00 0.70	Au (ppb) 1 2 2 8 3	Ag (ppm) 0.9 0.5 0.2 0.1 0.4	Cu (ppm) 164 151 196 205 236	Pb (ppm) 4 5 2 2 4	Zn (ppm) 58 32 26 23 32	Sb (ppm) 2 3 2 2 2 2	As (ppm) 21 13 8 5 29	Bi (ppm) 2 2 2 2 2 2 2	Ni (ppm) 19 10 8 7 9	Co (ppm) 10 7 8 8 9	Mo (ppm) 23 3 1 1 4	w (ppm) 1 2 2 2
1803 1804 1805 1806	153.70 154.70 155.70 156.70	154.70 155.70 156.70 157.25	1.00 1.00 1.00 0.55	1 1 5 1	0.9 1.3 6.6 0.5	270 323 115 54	3 4 4 2	31 28 22 28	2 2 2 2	5 63 46 23	2 2 2 2	8 11 10 8	8 12 6 4	3 4 5 3	2 1 1 2
1807 1808 1809 1810	166.60 167.60 168.60 169.60	167.60 168.60 169.60 171.10	1.00 1.00 1.00 1.50	4 2 5 2	0.5 1.1 0.6 0.9	171 222 168 229	3 4 2 2	29 53 41 39	2 2 2 2	32 50 6 5	2 2 2 2	11 9 9 9	8 12 8 9	31 16 15 19	2 1 1 3
1811 1812 1813 1814 1815 1816 1817 1818	176.30 177.20 178.20 180.60 181.60 182.60 183.60 184.60	177.20 178.20 180.60 181.60 182.60 183.60 184.60 186.30	0.90 1.00 2.40 1.00 1.00 1.00 1.00	16 4 21 1 2 11 14 13	2.0 0.8 0.9 0.3 0.4 0.5 0.8	123 46 197 170 203 129 260 460	2 152 57 3 4 2 2 2	56 109 92 38 33 33 48 35	17 6 2 2 2 2 2 2 2 2	920 1031 1416 46 36 16 35 37	5 2 4 2 2 2 2 2 2 2	50 26 52 19 15 9 12 11	10 8 23 10 11 7 10 11	5 9 334 11 19 7 21 16	1 1 2 1 1 1
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843	186.30 187.30 188.30 190.30 191.30 192.30 194.30 195.30 196.30 196.30 197.30 201.30 201.30 201.30 202.30 204.30 205.30 206.30 206.30 207.30 222.00 222.00	187.30 188.30 189.30 191.30 192.30 192.30 194.30 195.30 196.30 197.30 198.30 200.30 201.30 202.30 204.30 204.30 205.30 206.30 207.30 208.30 222.00 223.00 224.20	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	3 5 151 10 7 9 14 13 20 20 26 18 5 150 62 4 11 5 5 2 6	3.4 1.4 0.6 0.7 2.7 1.5 1.4 1.3 0.7 1.5 1.9 0.4 0.5 1.9 0.4 0.5 1.9 0.4 0.5 1.5 0.4 0.5 1.5 0.4 0.5 0.7 0.5 0.4 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.5 0.7 0.5	353 290 196 138 29 208 418 267 178 404 181 299 183 229 183 229 125 75 142 126 146 146	5 46 86 4 4 5 5 4 4 60 8 4 4 8 36 5 2 5 4 9 8 2 2 5 2 2 2	1698 262 41 37 34 31 37 88 498 168 86 53 81 192 56 65 76 154 106 79 46 59 29 30 40	2 2 2 6 2 2 2 2 4 3 2 2 4 3 2 2 2 4 4 2 2 2 3 2 2	50 8 16625 233 234 144 53 6 478 14 5 148 26 8186 767 353 51 19218 6485 887 332 106 14 4 9	4 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 224 13 8 5 26 67 61 14 8 30 6 35 6 13 26 13 9 9 5 9 5 9	11 15 26 53 08 19 57 12 25 86 59 96	4 10 27 7 3 3 7 77 23 8 9 8 9 3 1 1 16 5 5 7 1 12	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1844 1845 1846 1847 1848 1850 1851 1852 1853 1854 1855 1856 1856 1857 1858 1859 1860	227.80 228.80 229.80 230.80 232.80 232.80 233.80 234.80 235.80 235.80 235.80 239.80 240.80 240.80 241.80 242.80	228.80 229.80 230.80 231.80 232.80 233.80 235.80 235.80 235.80 237.80 238.80 239.80 240.80 241.80 242.80 244.82	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	12 19 3 4 4 3 4 6 5 3 4 10 4 12 9 8 6	0.8 1.8 0.7 0.5 0.5 0.8 0.2 1.0 0.8 0.6 0.5 0.1 0.2 0.6 1.2 0.7 0.5	191 333 227 268 249 397 69 322 190 220 208 138 171 327 414 205 228	26242223422222232	60 112 112 46 27 48 39 74 51 27 48 30 37 444 36 21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 6 3 3 4 2 3 3 5 2 3 4 5 1 1 1 9 22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 59 64 36 52 47 1 67 56 48 38 57 89 84	12 22 12 12 16 3 13 8 11 9 9 9 14 22 14 16	8 12 10 28 8 10 13 14 11 9 13 18 6 7 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7

.

Location: 545 m North 050 m East 775 m Elevation Azimuth: 300° Dip: -55° Length: 91.50 m Started: Sept 23,1991 Finished: Sept 24, 1991

Logged by: J J Walkins Sept 25, 1991

Contractor: J T Thomas

- 1.82-8.40: **Argillite**: silicified, dark grey with light grey sections, bedded at 40-60°, 3% disseminated and fine veinlets Po, Ic sharp at 75°.
- 8.40-14.40: Diorite: massive, typically fine to medium grained, weak carb altered, to bleached chill over 20 cm, lc sharp at 80° with 5cm chill.
 8.90-9.45: 50% quartz+20% Po veins at 40°.
 At 10.60: 5 cm quartz+20% Po vein at 70°.
 At 10.95: tight shear at 35°, with 2% disseminated Po.
- 14.40-27.65: Argillite: silicified, black with grey intervals, broken parallel to bedding at 70°.
 16.97-18.18: 75 % lost core.
 18.18-21.21: 60% lost core.
 23.70-24.40: diabase dyke, fresh at 40°.
 24.90-25.00: 50% Po as massive veins to 2 cm at 70°.
 25.00-25.90: massive creamy silicified.
 At 27.20: 10 cm fault breccia at 45°.
 27.20-27.65: bedded chert at 45° with 5% Py.
- 27.65-32.80: **Feldspar porphyry dyke**: fine with fine feldspars through, scattered .5cm calcite+/-Po veinlets at 40°, ic broken. 31.40-32.00: strong silicified with 3% Py in narrow irregular fractures.
- 32.80-35.90: Argillite: black, massive, graphitic, with 20% calcite veins, <1% Py, lo bleached over 40cm and sharp at 70°.
- 35.90-42.30: Diorite: massive, fine to medium grained with 5% Po in scattered veinlets ~ to 10mm at 25°, local moderate pervasive carb.
- 42.30-54.20: **Argillite**: massive, black, graphitic, fractured parallel to bedding at 60°, 3% Py, 10% calcite veins. At 51.10: 10 cm fault gouge at 45°.

-2-Drill Hole No. MM-11 cont'd

- 54.20-78.40: Andesite: light to dark grey, fairly massive and uniform, with 10% silicified sections to 30cm with 3% disseminated Py, lc gradational.
 54.20-54.90: irregularly silicified with 20% calcite veins, 7% Po, trace Cp. 60.10-61.00: patchy silicified with patchy pervasive calcite, 7% patchy Po, most in 10% 1cm pquartz+carb+chlorite veins at 15°.
 71.00-72.00: 5% patchy Po with trace Cp with distinct silicified halos.
 74.10-75.55: silicified with 10% Po + trace Cp, best near carb-rich dyke from 74.5-74.7 at 60°.
- 78.40-81.60: Argillite: silicified, black, weak graphite, 15% fine calcite stockwork, <1% Py, 10% remnant black argillite with 3% Po, ic gradational.
 80.00-81.60: 60% white quartz crudely banded at 60°, cross-cut by rare .5cm quartz+Po veinlets.
- 81.60-91.50: Andesite: moderate silicified, pervasive scattered veinlets with 3% Po and trace of Cp.
 84.10-85.10: 5% Po with trace Cp, most in irregular veinlets.
 89.60-90.60: 7% Po with trace Cp patches with silicified halos.
- 91.50 END

Dill Hole MM-11 Page 1 of 1

,

														-	
SAMPLE	FROM	τo	WIDTH	Au	Aa	<u>Cu</u>	Ph	70	56	٨٥	D +		0	Ma	147
NO	(m)	(m)	(m)	(nnh)	(nom)	(000)	(000)	(0000)	(0000)	(00m)	(00m)	(0000)	(000)	(2000)	(0000)
1861	1.82	2.80	0.98	41	03	212	(ppiii) 2	20	2	(ppm) 21	(ppin)	(ppm) 20	(ppm)	(hhiu)	(1)
1867	2.80	3 80	1.00	188	0.3	212	2	23	2	760	4	40	15	4	1
1967	2.00	1.00	1.00	100	0.2	210	2	33	2	200	<u>ی</u>	49	15	2	1
1963	3.00	H.00	1.00	30	0.3	. 04	2	30	2	230	2	57	13	3	1
1004	4.00	5.00	1.00	20	0.5	110	2	35	2	37	2	84	18	3	1
1865	5.80	6.80	1.00	19	0.5	166	2	28	2	92	2	57	13	21	1
1866	6.80	7.80	1.00	18	0.6	128	7	465	2	16	2	104	14	2	1
1867	7.80	8.40	0.60	21	0.6	95	7	631	2	10	2	77	11	1	1
1868	8.40	8. 90	0.50	87	0.5	278	5	41	2	1544	3	4	14	1	1
1869	8. 90	9.45	0.55	440	2.6	1820	4	63	2	243	6	11	24	1	1
1870	9.45	10.50	1.05	38	0.5	197	3	46	2	31	2	3	11	1	1
1871	10.50	11.30	0.80	95	1.4	364	9	40	2	472	5	4	14	1	1
1872	2 4.9 0	25.00	0.10	260	3.9	679	3	19	7	3474	2	271	65	1	2
1873	27.20	27.65	0. 45	630	1.2	661	4	27	2	40	9	62	16	2	1
1874	31.40	32.00	0.60	35	0.7	257	3	51	2	23	2	41	16	1	1
1875	35.90	37.00	1.10	26	0.7	242	4	43	2	32	2	5	10	2	1
1876	37.00	38.10	1.10	21	0.8	208	5	47	2	22	2	2	10	1	i
1877	38.10	39.20	1.10	34	0.9	302	7	50	2	34	2	4	17	1	5
1878	39.20	40.30	1.10	20	0.8	208	5	46	2	4	3	2	11	i	1
1879	40.30	41.30	1.00	10	1.4	397	11	42	2	6	2	3	17	1	i
1880	41.30	42.30	1.00	17	1.3	304	22	58	2	2	2	7	12	2	i
1881	42.30	43.30	1.00	7	0.5	111	2	60	2	13	2	47	16	2	1
1882	43.30	44.30	1.00	7	0.7	94	5	3181	2	4	3	44	12	3	1
1883	44.30	45.30	1.00	4	0.6	97	2	75	2	2	2	50	13	ž	i
							-		-	~	-	00		Ŭ	·
1884	54.20	54. 90	0.70	9	0.5	122	4	35	2	33	2	47	18	1	1
1885	60.10	61.00	0.90	11	1.2	5 85	4	30	2	7	2	36	31	1	1
1886	71.00	72.00	1.00	5	0.4	200	3	34	2	3	4	38	14	2	1
1887	7 4 .10	74.50	0. 4 0	13	1.6	619	10	27	2	3	2	4 8	35	3	1
1888	74.70	75.55	0.85	5	0.6	205	3	26	2	8	3	42	19	4	1
1889	81.00	81.60	0.60	9	0.9	125	7	34	2	244	5	90	14	3	2
1890	84.10	85.10	1.00	4	0.3	112	2	25	2	6	5	59	14	3	1
				_											
1891	89.60	90.60	1.00	5	0.3	173	2	32	2	41	2	99	19	6	1

Location: 720 m Elevation 425 m North 040 m East Azimuth: 135° Dip: -70° Length: 153.90 m Started: Sept 25,1991 Finished: Sept 26, 1991

Logged by: J J Walkins Sept 27, 1991

Contractor: J T Thomas

- 4.30-11.60: **Altered granodiorite**: medium to fine grained, typical, irregularly silicified, 3% disseminated and hairline sulphide veinlets most at 45°. 10.9-11.6: 5% Po, trace Cp in bleached silicified contact zone, ic vague.
- 11.60-18.00: Altered andesite?: dark to light green with creamy patchy silicification, local flow breccia texture? 14.3-14.4: black argillite with 40% carbonate rich bands at 90°, interflow sediment?, patchy Py or non-magnetic Po, trace Cp.
- 18.00-33.20: Altered granodiorite: Similar to above, 25% silicified grey patches and haloes to irregular veins, fine veining with chlorite+ Po at 30° and 60°. 3-5% Po, (Cp), Ic sharp at 80°.
 28.6-29.6: mafic dyke, fine grained, fine pyroxene porphyry?, patchy weak carbonate.
 30.3-30.6: very fine grained mafic dyke at 60°, moderate chlorite.
- 33.20-34.80: Argillite: black, massive with 20% bleached sections, weak graphite, lc broken.
- 34.80-37.20: Altered granodiorite: as before, 5% Po in fine veinlets better to lc, lc broken.
- 37.20-44.30: **Feldspar porphyry**: massive, hazy feldspar phenos to 3mm in medium grey, fine grained groundmass, 1mm mafic phenos altered to chlorite, <1% fine Py, ic broken.
- 44.30-48.30: Argillite: black, massive, graphitic, 2% Po, lc ragged at 40°.
- 48.30-49.10: Feidspar porphyry: as before, 3% fine Py, ic at 75°.
- 49.10-49.70: Argillite?: black grading to grey silicified, 3% Po best to lc, lc sharp at 45°.
- 49.70-55.60: Feldspar porphyry: as before, 3% disseminated Py to 50.2, lc broken.
- 55.60-56.00: Silicified argillite?: silicified fabric at 75°, weak sericite, pervasive carbonate, lower contact sheared at 80°.

-2-Drill Hole No. MM-12 cont'd

- 56.00-56.40: Feldspar porphyry: fine grained, lc broken at 80°.
- 56.40-57.10: Altered intrusive?: fine grained massive, tan coloured, 3% patchy Py+chlorite+(Q), ic broken.
- 57.10-104.90: Altered andesite: medium green, 5% mottled creamy grey silicification, weak fabric at 75°, <1% fine Py, ic sharp at 45° against chilled FP.
 59.40-60.10: silicified creamy with 20% Po, (Cp).
 65.60-66.60: strong carbonate bleached, 5% patchy Po.
 70.3-70.6: FP dyke, 3% Po.
 80.00-81.10: creamy silicified, 5% patchy PyPo.
 At 86.20: 2 cm calcite filled fault breccia at 25°.
 87.40-91.30: 20% white quartz stockwork, 5% Po in stockwork, becomes strongly bleached to ic.
 101.80-104.90: strong creamy silicified, 5% Po veinlets.
- 104.90-116.00: Feldspar porphyry: as before, 2% disseminated Py best at contacts, Ic sharp at 70°.

116.00-117.70: Silicified andesite: cherty as 70% light grey bands, 3% Po, Ic broken.

- 117.70-119.00: Feldspar porphyry: medium grey siliceous groundmass, no sulphides, ic sharp 70°.
- 119.00-126.80: Silicified andesite: as before, cherty, 3% patchy Po best to tc, lo gradational. 124.80-126.80: 5% Po.
- 126.80- 131.80: **Andesite**: 70% remnant fresh dark green andesite with 30% silica flooding, 5% patchyPo with chlorite in silicified host, ic broken.
- 131.80-137.30: Silicified andesite: strong pervasive silicification with patchy strong carbonate, with 2% Po.
- 137.30-153.92: **Andesite**: as before with 40% remanant dark green andesite in silicified groundmass, 3% Po. At 143.40: 10cm silica and carb healed fault breccia at 40°.
- 153.92 **EOH**

Dill Hole MM-12

Page 1 of 1

SAMPLE	FROM	TO	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	Ni	Co	Mo	₩.
NO.	(m)	(m)	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1892	4.30	5.30	1.00	6	0.3	109	4	52	2	12	2	33	11	4	2
1893	5.30	6.30	1.00	4	0.5	217	6	43	2	2	2	5	11	2	1
1894	6.30	7.30	1.00	4	0.7	302	6	43	2	2	4	3	13	2	1
1895	7.30	8.30	1.00	6	1.1	444	5	46	2	4	2	7	17	2	1
1896	8.30	9.30	1.00	7	·0.9	374	5	35	2	2	3	5	14	2	1
1897	9.30	10.30	1.00	3	0.9	403	7	38	2	3	2	4	17	2	1
1898	10.30	10.90	0.60	7 -	0.8	347	8	37	2	2	2	4	13	2	2
1899	10.90	11.60	0.70	7	1.4	378	12	39	2	11	2	. 34	16	3	1.
1900	11.60	12.60	1.00	23	13	284	6	48	3	17	2	55	16	2	2
1901	12.60	13.60	1.00	16	0.5	278	. 2	34	2	50	7	65	28	1	ī
1002	13 60	14.60	1.00	6	0.0	210	5	54	5	11	ž	žà	14	2	1
1007	14.60	15.60	1.00	77	0.7	210	2	225	5		7	30	12	7	1
1903	15 40	16.00	1.00	55	0.4	474	2	62	2	12	5	34	21	1	
1904	10.00	10.00	1.20	1	0.6	707	7	02	2	10	4	27	17	1	1
1905	10.00	10.00	1.20	5	0.4	201	2	91	2	2	2	27	14		
1900	10.00	19.00	1.00		0.5	242	2	20	2	07	2	24	17	2	1
1907	19.00	20.00	1.00	9	0.6	219	ő	41	2	23	2	24	10	2	1
1908	20.00	21.00	1.00	8	0.3	200	0	- 54	2	2	2	21	19	!	
1909	21.00	22.00	1.00		0.5	282	5	46	2	2	2	21	17	1	1
1910	22.00	23.00	1.00	13	0.9	323	5	37	3	5	2	21	17	1	2
1911	23.00	24.00	1.00	3	0.6	265	9	38	2	8	2	30	15	1	1
1912	24.00	25.00	1.00	11	0.3	221	7	37	2	2	2	18	12	1	1
1913	25.00	26.00	1.00	10	0.5	274	6	33	2	2	4	18	11	1	1
1914	26.00	27.00	1.00	6	0.4	259	8	35	2	5	3	25	10	1	1
1915	27.00	28.00	1.00	7	0.3	228	5	35	2	8	2	38	14	2	1
1916	28.00	28.60	0.60	10	0.5	192	7	44	2	21	2	34	9	t	1
1917	28 60	29.60	1.00	28	0.3	233	2	46	2	5	2	33	14	2	1
1918	29.60	30.30	0.70	11	0.4	139	2	49	2	2	2	14	9	1	1
1910	27.00	00.00	0.10		0		-		-	-	-	• •	-		
1919	30.60	31.60	1.00	26	0.8	280	7	31	2	31	2	27	12	2	1
1920	31.60	32 40	0.80	14	07	306	13	37	2	29	2	27	11	1	1
1921	32 40	33 20	0.80	115	0.4	322	8	37	2	2138	6	27	51	i	i
	02.10	00.20	0.00		•		•	•	-		•	-	•	•	
1922	34.80	36.00	1 20	13	04	263	4	45	2	10	2	20	12	1	1
1027	36.00	37.00	1.20	10	0.4	365	5	51	2	60	ž	48	18	7	4
1920	50.00	57.20	1.20	19	0.9	500	•	51	2	09	5	-10		'	т
1024	48 30	49 10	0.80	6	01	28	4	20	2	2	2	10	7	2	5
1025	40.00	40 70	0.00	é	0.1	270	117	171	2	15	2	60	26	5	1
1925	49.10	49.70	0.60	°	0.0	210	115	ED	2	10	2	00	20	7	'
1926	49.70	50.20	0.50	3	0.1	44	12	52	2	2	2	14	11	3	2
1007	EC 40	E7 10	0.70	75	1.4	07	75	60	2	15	2	21	E	F	1
1927	30.40	57.10	0.70	22	1.4	9/	22	БŲ	2	12	2	21	5	5	1
	F 0.00	F0 40			~ 4			=0	~	• •	~	50	• •	-	7
1928	58.80	59.40	0.60	16	0.4	144	18	50	2	0	2	50	14	Ş	3
1929	59.40	60.10	0.70	6 4	2.3	952	/	48	2	14	3	47	52	D	1
				• •	• •		-		•	~ .	-	~~			~
1930	65.60	66.60	1.00	84	0.6	285	/	25	2	21	2	80	11	18	2
				~~		. = =	-		•		_			,	~
1931	80.00	81.10	1.10	20	1.0	157	2	223	2	30	2	83	10	6	2
				_			-		_	-	_		-	-	
1932	87.40	88.40	1.00	7	0.1	122	Z	27	2	3	2	19	5	3	1
1933	88.40	89.40	1.00	18	0.1	101	2	17	2	2	Z	7	4	1	1
1934	89.40	90.40	1.00	11	0.1	99	6	28	2	2	2	11	4	1	2
1935	90.40	91.30	0.90	97	0.1	116	2	114	2	315	2	50	11	6	2
														_	_
1936	101.80	102.80	1.00	144	0.6	204	4	24	2	24	5	65	11	3	~ 2
1937	102.80	103.80	1.00	85	0.6	157	5	40	2	21	2	49	9	2	1
1938	103.80	104.80	1.00	36	0.5	169	7	28	2	36	2	101	12	2	3
1939	104.80	105.90	1.10	10	0.1	27	5	62	2	9	2	21	10	3	1
1940	115.00	116.00	1.00	5	0.1	12	5	66	2	2	2	11	10	2	1
1941	116.00	117.00	1.00	13	0.5	161	8	42	2	49	2	112	15	3	1
1942	117.00	117.70	0.70	86	0.4	170	3	22	2	86	2	74	12	3	2
1943	119.00	120.00	1.00	6	0.1	81	2	15	2	46	2	80	11	4	1
1944	120.00	121.00	1.00	9	0.1	152	2	19	2	59	2	109	14	4	1
				-			-		-	~-	-				·
1945	124 80	125 80	1.00	8	07	191	2	9	2	23	2	155	14	7	1
1046	125.80	126.80	1 00	ň	04	173	5	10	5	26	5	104	12	5	2
1047	126.90	127 80	1.00	10	0.4	155	5	30	5	20	5	27	<u>م</u>	Š	1
1049	127 00	121.00	1.00	10	0.1	220	2	A6	2	21	5	21	11	<u>د</u> 1	1
1040	129.00	120.00	1.00	10	0.7	223	ź	40	<u><u></u></u>	14	5	21	6	1	1
1050	120.00	129.00	1.00	17	0.1	229	4	40 20	4	10	4	21	14	1	5
1930	129.00	130.00	1.00	21	0.5	313		20	4	14	4	70	10	י ס	4 2
1991	130.80	131.00	1.00	24	0.4	210	4	20	2	-10	2	50	12	2	2
1957	143 40	143 50	0.10	31	<u> </u>	378	٦	25	2	138	2	70	16	41	2
1992	170.70	1-10.00	0.10	51	0.0	550	5	20	4	100	4	10	.0	71	4

Ċ

,

Č

Location: 600 m North 130 m West 755 m Elevation Azimuth: 135° Dip: -60° Length: 189.40 m Started: Sept 26,1991 Finished: Sept 29, 1991

Logged by: J J Walkins Sept 30, 1991

Contractor: J T Thomas

- 1.80-5.95: **Feldspar porphyry**: massive with hazy feldspar phenos to 3mm, lo sharp at 60°.
- 5.95-6.80: Silicified andesite: 40% dark green remnat andesite in siliceous groundmass, trace sulphides, lc broken.
- 6.80-8.90: Feldspar porphyry: as before, ic vaque at 45°.
- 8.90-58.40: Silicified andesite: variably silicified with sections of dark green remnant andesite, scattered silicified argillite as possible interflow sediment, ic sharp at 40°, variable sulphide content of two types:

1. Most dominant is non-magnetic Po in veinlets with distinct narrow bleached haloes and as distinct patches in pervasively bleached sections, from 17.8-18.2: 30% massive non-magnetic Po in irregular stockwork culting bleached andesite with some fresh andesite remanants

2. From 13.3 scattered (5%) narrow 1-2 mm Q veins at 45° with disseminated PbS, Cp, Po?, best at 15.50: 5cm coarse crystalline quartz vein with 2% PbS, <1% Cp, and groundmass of silicified andesite with remnant andesite.

At 12.50: Q+Po healed shear at 60°.

At 30.0: 1cm Q vein with 5% Cp, 10% Po at 45°.

29.2-30.4: Strongly bleached creamy grey.

At 43.7: 5cm Q-Carb shear with 10% Asp, best on sheared contacts at 40°. 47.90-58.40: Strongly altered with imposition of another alteration assemblage related to cross-cutting vuggy quartz veins at 45°, strong pervasive silicification with chlorite+calcite+Po+(Cp) veinlets trending poorly at 35°, with distinct bleached haloes, remnant andesite throughout. Quartz veins at :

49.8-50.4: 90% white quartz, vaguely banded, minor very fg dull metallic needle crystals as vug fillings to 2mm.

50.4-50.5 and at 51.3. 5cm white yuggy quartz vein with yug filling of green sheeted silicate (chlorite?).

53.3-53.5: sheared quartz vein with 20% fracture filling of chlorite+3% Asp At 54.01: 1 cm similar to 50.4-50.5.

At 54.5: 5mm as above.

-2-Jala No. 14113

- <u>Drill Hole No. MM-13</u> cont'd
- 58.40-59.00: **Altered feldspar porphyry**: massive, silicified, with hazy medium grained feldspars, Ic sharp and very ragged against chilled fresh FP. At 58.5: 5cm vein at 80° with disseminated Po.
 - 59.00-60.10: **Feidspar porphyry**: fresh, massive, zoned 2mm feldspar phenos, lo ragged sharp with 1cm chill.
 - 60.10-67.20: **Altered pyroxene-feidspar porphyry**: Ic sharp at 80°. To 62.40: silicified and carb filled fractures with 2% Py. 62.4-65.4: grades to weak silicified with fine mafic phenos now chlorite, 2% Py. 65.4-67.2: strong patchy silicification associated with tight carb filled shears at 45°, 2% Py.
 - 67.20-72.90: Altered andesite: strong silicified with mottled grey on dark grey alteration haloes with chlorite +/- Po.
 - 72.90-73.80: Altered feldspar porphyry?: strongly altered, silicified with sericite, very fine cross-sutting calcite veins, broken through at 30°, ic sheared at 45°.
 - 73.80-80.30: Feldspar porphyritic granodiorite: possibly pyroxene porphyritic, distinct crystalline sericite pseudomorphing pyroxene phenos, ic sharp at 40°.
 - 80.30-86.10: **Altered feldspar porphyry:** silicified, creamy grey with 20% stockwork of calcite+chlorite+Po+(Cp) that becomes sheared to lc at 65°.

- 86.10-87.90: **Altered andesite**: weak stockwork of Po+chlorite with distinct narrow bleached haloes. 86.8-87.0: Q vein at 60°, 5% Po.
- 87.90- 89.00: **Pyroxene-feldspar porphyry**: massive hazy 2-3mm zoned feldspar phenos, pyx pseudo by sericite, ic carb shear at 45°.
- 89.00-98.50: **Altered feldspar porphyry:** strongly silicified, weakly carb sheared at 30-50°, 5% Po in calcite stockwork, ic sharp at 60°. At 91.6: 45° fine grained chill over 20cm, chilled down-hole. 95.0-95.8: very strong silicified to white quartz.
- 98.50-104.20: Silicified andesite: strong silicified, dark to medium grey, 25% bleached on Po+chlorite veinlets and patches, 3-5% Po+(Cp), lc sharp at 80°.

-3-Drill Hole No. MM-13 cont'd

104.20-189.40: Altered feldspar porphyry: silicified with vague feldspar phenos, strong silicified sections from 104.2-107.0, 108.2-108.6, 112.1-114.3. <1% sulphides in altered sections. At 109.6: 2cm carb+Q+20% Po vein at 60°. 116.00-120.00: strongly silicified with strongly carb altered sections, carb healed fractures at 40°. At 119.7: 10cm vein 30% massive Po, 20% vcg Asp at 30°. At 122.30: 10cm carb shear at 45°. 125.00-126.20: mottled silicified with 10% calcite veinles +5% Po+(Cp) At 126.20: 1cm Q vein with 20% vcg Asp at 30°. 126.20-131.80: strongly silicified cherty with 30% remnant andesite, 1% Po. 131.80-133.00; strongly silicified with 20% chlorite+Po(5%) stockwork. 133.00-136.50: bleached with 30% remnant andesite, calcite+Q+Asp+Po shears at 70°. 136.50-141.80; silicified with Q+chl+(Asp)+(Po) veinlets at 40-70°. 141.80-146.25: 20% silicified, 3% patchy Po. 146.25-146.70: 50% silicified as haloes to carb shears at 40°, with 10% Po. 151.70-159.00; mottled silicified with 20% strong bleaching around 2mm Po+calcite veinlets at 45°. 159.00-160.00: fine grained weakly mottled with patchy carbonate, 3% Po in calcite+chl veinlets. 160.00-160.30; broken Q yein at 45° with 5% cg Asp. 160.30-163.30; fg silicified, 3% fine Po veinlets, narrow bleached haloes. 163.30-169.80: 20% mottled silicified on dark green groundmass, 3% Po veinlets. 169.80-174.90; massive dark green with minor bleaching, 10% calcite veining, 1% Po. 174.90-177.50: strongly silicified to off-white, dark green specks thru (chl?), 3% patchy Po. 176.70-177.40: calcite shears banded at 45°. 177.40-177.90: strongly silicified, medium to mottled light grey, massive, 3% Po. 177.90-178.40: altered breccia?, light grey fine siliceous breccia in weakly jasperoidal groundmass, <1% sulphides. At 178.40: 5cm calcite-Po vein at 10°, 10% Po. 178.40-180.60; dark green, 10% weak silicified sections to 20cm, 5% Po. 180.60-186.50; strongly silicified creamy grey, mottled and spotted with chl, scattered hairline chl+Po(3%) fractures. 186.50-189.40: light grey fine grained silicified, no sulphides. 189.40 END

Ć

Dill Hole MM-13 Page 1 of 3

.

SAMPLE	FROM	TO	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	Nİ	Co	Mo	W
NO.	(m) 840	(m) 890	(m) 050	(ppb)	(ppm)	(ppm) 78	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1954	8.90	9.90	1.00	152	0.5	129	2	44	2	2	27	8	7		1
1955	9.90	10.90	1.00	144	0.8	247	2	42	2	19	4	6	14	i	Í.
1956	10.90	11.90	1.00	62	0.5	214	3	51	2	6	3	31	17	1	1
1957	11.90	12.60	0.70	19	0.8	165	2	61	2	3	2	34	19	1	1
1958	13 30	13.30	0.70	26	0.6	255	2	16	2	8	3	94	25	1	1
1960	13.80	14.30	0.50	85	12	425	2	48	2	<i>ত</i> ∠ र	5	90 35	20 16	1	2
1961	14.30	14.80	0.50	310	1.2	492	6	36	2	15	7	58	17	3	i
1962	14.80	15.20	0.40	67	0.7	308	3	48	2	54	5	73	14	2	1
1963	15.20	15.60	0.40	0.578 opt	2.4	189	20	21	5	174	807	30	12	3	1
1964	15.60	16.10	0.50	470	0.6	216	8	83	2	25	22	28	9	3	1
1965	17.10	17.10	0.70	280	0.6	251	2	37	2	20	6	29	14	2	1
1967	17.80	18.20	0.40	340	12	933	2	34	2	18	10	60	39	1	1
1968	18.20	19.20	1.00	27	0.5	256	2	54	2	24	2	49	28	1	i
1969	19.20	20.20	1.00	16	0.3	109	4	32	2	14	2	65	8	3	1
1970	20.20	21.20	1.00	15	0.4	140	8	41	2	56	2	89	10	1	2
1971	21.20	22.20	1.00	67	0.4	193	5	38	2	32	5	59	11	2	1
1972	23.20	23.20	1.00	9 7	0.4	100		30 56	2	5	2	30	12	2	1
1974	24.20	25.20	1.00	6	0.4	133	3	40	2	11	3	109	13	4	ì
1975	25.20	26.20	1.00	1740	0.8	202	11	115	2	76	62	75	11	5	1
1976	26.20	27.20	1.00	26	0.3	144	3	48	2	11	3	80	13	5	1
1977	27.20	28.20	1.00	17	0.4	147	5	39	2	29	2	67	10	3	1
1978	28.20	29.20	1.00	10	0.5	140	12	61	2	10	64	73	11	<u>১</u>	1
1980	30.20	31.20	1.00	22	0.8	155	4	36	2	19	3	35	10	2	1
1981	31.20	31.70	0.50	6	0.6	152	2	270	$\tilde{2}$	7	2	40	17	3	1
1982	31.70	32.20	0.50	149	0.8	249	2	70	2	90	9	62	14	20	7
1983	32.20	33.20	1.00	17	0.4	92	6	80	2	32	2	56	12	10	1
1984	33.20	34.20	1.00	1730	0.6	221	5	49	2	47	67	51	14	4	1
1985	34.20	35.20	1.00	14	0.4	222	4	57	2	78	ა ?	70	15	4	1
1987	36.20	37.20	1.00	54	0.5	185	5	42	2	96	3	63	16	5	1
1988	37.20	38.20	1.00	101	1.2	301	8	103	2	979	7	78	26	8	2
1989	38.20	39.20	1.00	16	0.4	179	8	58	2	68	2	39	9	4	2
1990	39.20	40.20	1.00	12	0.7	228	6	30	2	14	2	64	14	7	2
1991	40.20	41.20	1.00	13	0.4	134	6	43	2	167	5	40	8	2	1
1992	41.20	42.20	0.80	4	0.2	172	4	31 47	2	19	2	15	ठ 1 र	2	2
1994	43.00	43.50	0.50	12	0.5	216	5	42	2	29	2	74	14	10	2
1995	43.50	43.90	0.40	390	1.5	109	47	46	28	16047	4	65	63	7	ī
1996	43.90	44.50	0.60	15	0.5	261	10	284	2	47	3	47	13	6	1
1997	44.50	45.50	1.00	7	0.4	80	2	52	2	22	2	46	6	7	2
1998	45.50	46.50	1.00	4	0.4	266	4	32	2	16	3	5/	15	8	2
2000	47 50	48.50	1.00	7	0.6	144	25	40 36	2	63	2	40 57	10	5 7	2
2001	48.50	49.50	1.00	6	0.3	128	5	51	2	51	2	73	13	6	2
2002	49.50	50. 50	1.00	1600	5.6	397	67	60	4	21	73	37	9	3	2
2003	50.50	51.30	0.80	70	1.9	234	34	49	2	16	8	87	10	4	9
2004	51.30	52.00	0.70	98	1.0	177	14	43	2	30	5	60	10	3	2
2005	52.00	52.90	0.90	930	2.2	272	40	149	2	9	38	46	13	5	1
2000	53.90	54 60	0.70	1570	0.4	189	6	42	2	20	3	96	11	5	2
2008	54.60	55.60	1.00	4	0.1	228	3	36	2	5	2	36	13	6	i
2009	55.60	56.60	1.00	570	0.6	323	2	45	2	7	6	41	13	.2	2
2010	56.60	57.40	0.80	710	0.5	212	4	39	2	42	16	35	10	3	2
2011	57.40	58.00	0.60	6	0.4	212	2	27	2	8	2	41	11	3	1
2012	58.00	59.00	1.00	Э	0.4	191	9	51	2	11	2	21	8	2	2
2013	62.10	62.40	0.30	8	0.4	157	31	106	2	9	2	4	7	2	1
2014	62.40	63.00	0.60	4	0.4	71	12	87	2	4	2	4	8	2	2
2015	63.00	64.00	1.00	5	0.4	82	4	31	2	3	2	6	8	2	1
0016	(F 40	<i></i> .			~ ~		•	77	~	-		-			~
2016	65.40	65.30	0.90	86	0.8	191	8	56	2	5	4	5	4	1	2
2017	00.3U 67.20	68.00	0.90	0 4	0.4	125	2	50 ⊿7	2	5 46	2	5 55	0	4	2
2019	68.00	69.00	1.00	6	0.1	42	8	46	2	27	2	44	4	5	1
				_					-		_		_		
2020	72.90	73.80	0.90	5	0.7	142	22	38	2	6	2	8	6	1	1
2021	80.30	81.30	1.00	8	1.7	225	2	77	2	10	2	20	6	3	2
2022	8230	82.50	1.00	১ ∡	0.4 ೧.೩	60 00	১ ম	55 74	2	2	2	67	4 4	4 र	2
2023	83.30	84.30	1.00	5	0.0	103	2	61	2	2	2	ŕ	5	2	1
2421		0 1.00	1.00	~	Q. 2		-	Ψı	-	-	-	,	~	-	
				1											

Dill Hole MM-13

.

SAMPLE NO. 2025 2026 2027 2028 2029	FROM (m) 84.30 85.30 86.10 86.80 87.00	T0 (m) 85.30 86.10 86.80 87.00 87.90	WIDTH (m) 1.00 0.80 0.70 0.20 0.90	Au (ppb) 6 7 6 4 4	Ag (ppm) 0.8 1.0 1.0 0.9 1.7	Cu (ppm) 92 215 250 159 264	Pb (ppm) 2 9 3 7 46	Zn (ppm) 72 46 45 38 118	Sb (ppm) 2 2 2 2 2 2	A s (ppm) 2 2 2 2 2 2	8† (ppm) 2 2 4 2 2 2	Ni (ppm) 11 31 55 57 48	Co (ppm) 6 12 17 14 20	Mo (ppm) 4 10 9 19 7	W (ppm) 1 3 2 3 1
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2043 2044 2044 2044 2044 2044 2044 2045 2046 2047 2053 2055 2055 2056 2057 2058 2059 2060 2061 2065 2066 2066 2066 2067 2068 2069 2071	89.60 90.60 91.60 92.60 93.60 94.30 95.80 95.80 95.80 95.80 99.50 100.50 101.50 102.50 105.20 105.20 105.20 105.20 106.20 106.20 106.20 106.20 106.20 106.20 106.20 107.00 108.20 108.60 111.00 113.00 114.90 114.90 114.90 114.90 114.90 114.90 114.90 114.90 115.00 122.00 123.00 124.00 124.00 126.25	90.60 91.60 92.60 92.60 93.60 94.30 95.80 95.80 95.80 99.50 100.50 101.50 102.50 104.20 105.20 104.20 105.20 104.20 105.20 104.20 105.20 108.60 110.50 112.00 113.00 113.00 114.90 114.90 114.90 114.90 114.90 114.90 118.80 119.35 120.00 124.00 125.00 125.00 125.00 100.5	1.00 1.00 1.00 1.00 0.70 0.70 1.00	12 12 7 6 11 69 12 8 8 5 7 5 3 6 5 6 3 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 7 7 5 3 6 5 6 5 6 3 8 8 8 7 7 11 6 5 7 7 11 6 3 9 8 8 7 7 7 9 11 8 9 11 1 6 3 9 11 1 6 3 9 11 1 6 3 9 11 1 6 3 1 1 1 1 6 3 1 1 1 1 6 1 1 1 1	$\begin{array}{c} 1.6\\ 1.1\\ 1.6\\ 0.9\\ 3.8\\ 0.6\\ 1.4\\ 0.8\\ 0.7\\ 1.1\\ 0.9\\ 0.6\\ 0.3\\ 0.6\\ 1.3\\ 1.5\\ 8.2\\ 0.5\\ 2.9\\ 1.1\\ 7.8\\ 1.6\\ 0.7\\ 3.3\\ 0.5\\ 2.9\\ 1.1\\ 7.8\\ 1.6\\ 0.7\\ 3.3\\ 0.8\\ 0.7\\ 1.8\\ 0.7\\ 3.3\\ 0.8\\ 0.7\\ 0.3\\ 3.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.3\\ 0.8\\ 0.8\\ 0.7\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	248 271 375 180 186 400 5273 206 178 239 272 289 234 168 130 107 168 349 270 210 117 320 243 184 369 249 110 336 249 210 58 291 125 8	1791142087916118238384284139124542781191038697535555	152 31 327 338 34 410 47 54 30 98 129 43 96 99 99 430 24 80 23 27 85 38 36 46 99 07 90 72 48 02 35 78 56 53 83 66 99 07 99 129	222222222222222222222222222222222222222	$\begin{array}{c} 2 \\ 17 \\ 2 \\ 2 \\ 5 \\ 2 \\ 6 \\ 2 \\ 6 \\ 2 \\ 6 \\ 2 \\ 2 \\ 6 \\ 1 \\ 6 \\ 2 \\ 2 \\ 2 \\ 6 \\ 5 \\ 7 \\ 6 \\ 1 \\ 6 \\ 2 \\ 4 \\ 2 \\ 3 \\ 5 \\ 4 \\ 5 \\ 1 \\ 5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$	222226222222222222222222222222222222222	8 10 13 8 7 15 6 9 7 8 22 7 18 9 9 9 7 9 7 9 7 9 7 5 4 7 6 49 5 7 24 6 4 9 3 5 8 27 18 9 9 8 9 7 9 7 9 7 9 7 9 7 8 27 7 8 27 7 8 27 7 8 27 7 8 27 7 8 27 7 8 27 7 8 27 7 8 27 7 9 7 8 27 7 8 27 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	104 15 10 10 15 2 7 10 9 12 2 1 1 1 3 8 6 5 13 17 15 16 1 1 4 9 5 17 15 5 10 1 2 3 35 16 15 15 19 2 9 26 7	1 1 1 1 1 1 1 1 1 6 4 7 9 16 7 1 1 2 1 1 1 1 1 1 1 2 9 6 2 4 4 5 5 8 6 2 3 4 2 5 8	1 1 3 2 1 3 2 1 3 2 1 2 2 1 3 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 3 1 1 2 2 2 1 3 1 1 1 2 2 2 2 1 3 1 1 1 2 2 2 2 1 2 2 2 1 3 1 1 1 1 1 1 1 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2086 2087 2088 2089 2090 2091	131.80 132.50 133.50 134.50 135.50 136.50 137.50 138.50 137.50 138.50 140.50 141.80 141.80 141.80 142.80 144.80 145.80 146.25 146.25 146.70 147.50	132.50 133.00 133.50 134.50 135.50 136.50 137.50 138.50 138.50 140.50 141.20 141.20 141.20 141.80 142.80 143.80 144.80 143.80 144.80 145.80 144.70 147.50 148.40	0.70 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.0	7 8 59 9 24 13 117 18 6 5 7 8 16 10 5 12 8 8 7 9 9	0.5 0.4 0.9 0.6 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.2 1.4 1.0 0.7 0.9 0.5 0.8	209 179 227 206 230 228 105 265 105 86 85 94 144 496 129 352 313 387 208 379 339	2 3 8 9 11 27 3 2 4 4 4 3 3 3 60 7 2 2 2 3 6	11 552 30 54 94 23 24 24 22 22 22 22 22 22 22 22 36 39 32 36 48	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 4 1091 116 2990 175 8 2 2 2 2 6 44 2 9 15 141 4 29 37	2 2 10 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48 37 19 20 38 9 8 7 9 7 7 28 84 36 10 9 17 11 30	17 15 16 17 17 29 10 5 5 5 5 5 5 13 8 8 11 8 8 9 13 13	3 3 1 1 1 2 2 2 3 7 3 1 1 1 1 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1
2093 2094 2095 2096 2097	152.70 153.70 154.70 155.70 156.70	153.70 154.70 155.70 156.70 157.70	1.00 1.00 1.00 1.00 1.00	14 9 5 2 3	1.1 1.1 1.0 1.4 0.7	241 272 215 328 172	7 6 9 8 4	45 47 40 43 36	2 2 2 2 2 2 2	9 2 10 7 2	2 2 2 2 2	12 11 9 13 12	11 13 9 12 9	1 1 2 2	1 1 1 1 1

Dill Hole MM-13 Page 3 of 3

.

• .

.

SAMPLE	FROM	TO	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	81	Nİ	Co	Mo	W
NO.	(m)	(m)	(m)	(ppb)	(ppm)										
2098	157.70	158.70	1.00	4	0.7	- 263	2	25	2	2	2	10	12	1_	1
2099	158.70	159.70	1.00	5	0.5	183	10	68	2	2	2	33	14	2	1
2100	159.70	160.30	0.60	410	1.8	214	13	65	2	6745	16	41	63	3	1
2101	160.30	161.30	1.00	4	0.7	193	9	54	3	47	2	50	14	5	1
2102	161.30	162.30	1.00	3	0.6	180	7	65	2	6	2	51	15	4	1
2103	162.30	163.30	1.00	11	1.2	314	9	71	2	446	2	35	30	2	- 1
2104	175.90	176.70	0.80	4	0.4	101	4	29	2	- 23	2	9	6	1	1
2105	176.70	177.40	0.70	6	0.6	164	2	30	2	2	3	7	8	1	1
2106	177.40	177.90	0.50	23	0.7	335	2	36	2	177	5	57	22	5	2
2107	177.90	178.70	0.80	10	0.4	196	2	27	2	93	2	79	15	8	2
2108	178.70	179.70	1.00	6	0.7	383	2	34	2	149	5	36	18	2	5
2109	179.70	180.60	0.90	2	0.4	211	5	40	2	8	2	13	12	2	1
2110	180.60	181.50	0.90	2	0.6	360	2	74	2	12	4	19	22	1	1
2111	181.50	182.50	1.00	2	0.5	168	9	41	2	2	2	9	8	1	1
2112	182.50	183.50	1.00	1	0.4	116	5	26	2	2	2	8	6	2	1
2113	183.50	184.50	1.00	1	0.3	66	5	24	2	2	2	8	5	3	1
2114	184.50	185.50	1.00	2	0.3	72	2	25	2	2	2	8	5	2	1
2115	185.50	186.50	1.00	3	1.0	178	5	38	2	2	2	8	10	1	1

 $\left(\right)$

Location: 1000 m North 540 m West 800 m Elevation Azimuth: 135° Dip: -55° Length: 101.50 m Started: Sept 29,1991 Finished: Sept 30, 1991

Logged by: J J Walkins Oct. 2, 1991

Contractor: J T Thomas

0.00-4.24: Casing

4.24-66.20: **Argillite+intercalated flows**: black siliceous argillite bedded at 70-80°, with intercalated flows (intrusive?) of intermediate composition, thicker flows are coarse grained FP, argillite with possible tuffaceous interbeds. 12.30-14.00: Flow?dyke? intermediate fg contacts with cg FP core. 14.00-14.40: Black siliceous argillite.

14.40-15.10: Flow?dyke? as above.

15.10-17.90: well-bedded black siliceous argillite, 20% tuff, 5% fg Py.

17.90-18.70: strong pervasive carb altered with Q-carb increasing to Ic, 2% Py

18.70-19.50: black siliceous argillite, 5% Py

19.50-19.80; fg flow.

19.80-20.20: black siliceous argillite, fine clastic, some jasper.

20.20-21.10: grey siliceous argillite, 20% Q-carb, 1% Py.

21.10-21.40: flow.

21.40-24.20: black to medium grey siliceous argilite.

24.20-24.80: maric flow, ic sheared at 45°.

24.80-27.60: black to dark grey siliceous argillite.

27.60-27.90: fine lapilli volcaniclastic with felsic frags?, 5% Py.

27.90-30.40: black to medium grey siliceous argillite, bedded at 80°.

30.40-34.20: flow.

At 31.80: 5 cm carbonate shear at 50°.

34.20-37.80: medium grey siliceous argillite, 20% volcamic flows or frags to 10cm.

At 37.70: 5cm bed of felsic lapillistone at 80°.

37.80-38.00: flow, broken at 80°.

38.00-38.60: black siliceous argillite, broken at 80°.

38.60-39.00: flow breccia, broken at 80°.

39.00-54.40: intercalated argillite bands to 20cm decreasing in amount with depth.

54.40-55.00: Flow.

55.00-56.50: medium grey siliceous argillite, lc carb shear at 60°.

56.50-60.70: massive fg flow, weak carb altered, Ic sharp at 80°.

60.70-66.20: black siliceous argillite with some intercalated flow material, badly broken.

-2-<u>Drill Hole No. MM-14</u> cont'd

- 66.20-69.10: Pyroxene-feldspar porphyry: badly broken at 80°, 1% Py.
- 69.10-70.80: Siliceous argillite: grey.

 $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$

- 70.80-75.80: Feldspar porphyry: moderately silicified, broken, minor sulphides.
- 75.80-77.00: Siliceous argillite: medium grey, broken.
- 77.00-79.90: Argillite and intermediate dykes: 50% black to medium grey siliceous argillite, 50% bleached fine grained intermediate dyke. At 77.25: .5cm band massive Po at 80°. At 77.90: 1cm vein Q-carb with PbS and Asp at 80°. At 79.60: 1cm Q-carb vein at 40°, 10% disseminated Asp.
- 79.90-83.50: Pyroxene-feldspar porphyry: massive, weakly bleached to lc, lc broken at 80°.
 83.00-83.50: strongly silicified, 3% fine Py.
- 83.50-84.40: Argillite: black, banded at 80°.
- 84.40-88.30: **Altered intermediate dyke**: fg creamy with 3% disseminated Py, contacts sharp at 80°.
- 88.30-101.50: Intercalated black argillite and flows: 60% black argillite with 40% intercalated intermediate flows to 20 cm, all at 80°, trace of sulphides.

101.50 END

SAMPLE	FROM	то	WIDTH	Au	Ag	Cu	Pb	Zn	Sb	As	Bi	Ni	Co	Mo	w
NO.	(m)	(m)	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
2116	15.10	16.10	1.00	1	0.3	43	5	30	2	2	2	23	4	6	1
2117	16.10	17.10	1.00	5	0.7	81	8	27	2	19	2	59	14	18	1
2118	17.10	17.90	0.80	3	0.7	101	7	59	2	20	2	53	16	7	1
2119	17.90	18.70	0.80	4	0.7	82	7	51	2	50	2	35	16	5	2
2120	18.70	22.60	3.90	6	0.5	65	3	42	6	29	2	34	12	5	1
2121	22.60	23.90	1.30	6	0.6	93	7	39	11	26	2	64	13	29	1
2122	77.00	77.90	0.90	5	1.0	103	10	73	10	8	2	38	14	5	1
2123	77.90	79.00	1.10	27	13.2	161	212	121	71	203	2	43	20	4	1
2124	84.40	85.30	0.90	11	8.9	171	342	2321	90	162	4	67	17	4	1
2125	85.30	86.30	1.00	6	0.6	5 9	25	100	2	2	2	10	8	2	1

.

1

.

 $\left(\right)$

Dill Hole MM-14

Page 1 of 1

APPENDIX 7

.

.

.

Ć

1

Analytical cetificates Drill core

£ £							<u>KR</u>	<u>. r</u>	G <u>eso</u>	EOCI <u>UTC(</u> 1022	HEM] <u>95 (</u> - 47	[CA] <u>Corj</u> 0:gra	LAI D. nvill	NAL] e St.	11 File Van	3 CI	ERTI 91- r BC	CFI -29 V6C 1	CAT 40 Ivs	E Pa	ıge	1						l	
SAMPLE#	Ho ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppn	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd PPM	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppill	Cr ppm	Hg X	Ba ppn	TI Z	B Al ppm X	Na X	K X J	V Au ⁴ ppa ppt
1000	4	407	4	46	1.0	25	14	350	5.28	460	5	ND	2	69	1.3	z	2	108	1.44	.149	4	22	1.90	153	.17	2 2.53	.18	.80	1 5
1001	2	196	8	25	. 5	31	10	408	3.84	341	5	ND	3	48	8- ? -	3	2	79	1.52	.127	9	19	1.16	48		3 1.19	.09	.16	
1002		85	7	106	· · · · · · · · · · · · · · · · · · ·	55 70	11	420	3.37	35	5	ND	1	30	1.3	2	ź	102	.74	094	2	50	1.65	162	814	2 1.96	.06	1.18	814 - 14 819 - 13
1004	ż	176	ż	34	.3	21	5	339	2.87	138	5	ND	3	61	1.0	ź	2	82	1.89	. 123	9	21	1.32	77	.15	2 1.67	.16	.19	1 1
1005	2	317	9	43	1.0	3	18	390	4.20	1935	5	ND	7	97	1.2	2	2	83	2.91	.179	15	10	1.31	83	-14	2 1.81	.12	.21	1 37
1006	1	391	16	45	1.0	3	8	411	4.20	785	5	ND	6	79	1.6	2	2	82	2.73	.186	14	11	1.32	88	13	Z 1.76	.11	-19	1 30
1007	17	16/	155	230	2.2	40	15	677	3.10	5161	2	ND		1/1	5.3 1 n	10	2	7U 118	4.97	047	2	19	1.15	21	CUS.	2 1.51	.05	.20	1, 20
1009	Ź	422	6	40	1.7	14	17	312	4.70	2960	5	ND	4	68	1.1	ž	5	105	2.10	.176	10	24	1.61	97	.13	2 2.06	.15	.54	1 34
1010	1	333	7	38	1.2	3	9	306	4.91	282	5	ND	6	75	1.3	S	2	94	1.83	. 195	12	8	1.30	168	.22	2 2.01	.15	.63	1 51
1011	2	384	9	41	1.5	5	10	302	5.02	84	5	ND	7	79	1.8	2	9	- 91	1.64	_186	12	7	1.36	127	.20	2 2.06	.17	.50	2 70
1012		460	6 7	40	1.5	2	7	258	4.90	200	5	ND	5	105	3. 7 .	2	2	95 107	2.01	184	6	5	1.29	151	20	2 2.35	.21	.48	
1014) i	214	4	66	.3	2	9	378	4.76	27	5	ND	3	78	1.1	2	Ž	95	2.07	.173	8	10	1.78	149	.14	2 2.72	.16	.70	1 2
1015	1	410	7	37	.9	3	17	260	4.67	56	5	ND	5	78	1.1	2	Z	87	1.61	.198	11	9	1.24	165	. 18	2 1.91	.17	.56	1 3
1016		401	9	36	.9	3	8	302	4.67	49	5	ND	4	62	्री.उ	2	3	89	1.82	-182	10	15	1.29	136	8:17	2 1.86	.16	.37 🖗	្ស រ
1017		531	14	47	1.6	3	17	287	4.33	156	5	ND	5	69 57	31210 82 - 20	2	2	94	1.90	202	12	11	1.29	167 138	. 2Z	2 1.80	.10	74 🖗	
1019	Ź	536	12	57	1.6	14	8	404	4.41	132	Ś	ND	5	57	.9	2	2	87	2.40	.175	15	15	1.37	63	.17	2 1.68	.09	.15	ាំ
1020	1 1	98	15	86	.6	71	11	386	3.35	75	5	ND	1	42	1.1	9	2	117	.79	.061	2	51	1.85	187	.23	2 2.32	.17	1.13	1 1
1021	2	123	76	82	ି -9	68	11	508	2.89	45	5	ND	1	43	1.2	2	2	71	1.79	.074	3	41	1.46	.41	.10	2 1.47	.09	.20	1
1022		270	18	- 87 - 53		58 80	12	682 517	4.85	5505	2	ND 5	2	- <u>40</u>	81.4) 24×2×	2	71	201	1.74 2 AS	142	27	- 72 - 56	4.10	1/2	12	2 4.43	19	2.74	1 441
1024	2	407	15	28	1.3	9	5	399	3.73	35	5	ND	7	65		2	6	67	2.79	.181	13	7	1.24	73	.13	2 1.54	.15	.23	1 9
1025	2	437	107	163	4.8	17	15	559	4.23	1590	5	ND	6	· 84	2.6	2	10	66	3.68	171	9	11	1.48	42	.08	2 1.59	.09	. 16	1 42
1026	2	799	22	51	3.1	5	13	326	6.37	748	5	ND	4	70	្លាំ.0	2	10	75	2.24	187	10	7	1.23	68	. 14	Z 1.62	.14	.24	2
1027 1028		340	49	220	-;Z.Ų -;⊳:₹	. 15 01	10	- 748 - 576	4.02	15	5	ND	2	- 03 73	5.8: 1/1:	2	2	110	2.42	×111	13	46	1.30	225	- IY 77	2 7.50	.18	1.32	i ž
1029	i	229	6	53	3.3	66	19	488	4.22	265	5	ND	i	109	.8	2	2	146	1.52	143	Ž	45	1.82	263	.21	3 2.87	.26	1.29	1 2
1030	1	386	2	50	.5	35	19	426	5.58	105	5	ND	1	140	.9	2	2	139	1.95	182	2	24	1.82	244	. 19	2 3.07	.31	1.41	1 5
1031	1 1	253	2	18	- 224	49	10	321	2.54	103	8	ND	1	- 44	2	2	2	46	2.55	115	2	20	.52	37		2.79	.10	.12	1 5
1032		69 151		40 26		47 172	15	- 36/ 362	5.57	74	2	ND MD	1	98 28	8 8	2	2	111 #1	1.57	142) 0 087	2	- 22 - 48	1.79	201 42	10	2 1.20	<u>د</u> م.	.26	2 1
1034	1	115	6	34	.2	232	15	373	3.17	96	5	ND	1	33	.2	2	2	99	.36	.051	ž	44	1.70	171	18	2 1.89	.07	1.46	1 2
1035	1	117	2	41	_1	56	13	355	3.50	82	5	ND	1	91	.5	2	2	121	1.37	.156	2	67	2.03	213	.19	2 2.96	.27	1.38	1 8
STANDARD C/AU-R	21	62	42	131	87.4	72	32	1073	4.13	<u></u> 41	23	7	40	53	17.6	16	22	60	.55	.097	40	56	.97	184	<u>800</u>	34 2.01	.06	.14 🧕	<u> 11: 47</u>

ASSAY RECOMMENDED FOR CU PB 2N AS > 1%, AG > 30 PPM & AU D 1000 PPB. - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE.

DATE RECEIVED: JUL 28 1991 DATE REPORT MAILED: July 31/91. SIGNED BY.

ND

1

3 146

1039

6 428 3 95

ASSAY IN PROGRESS for Anz stopped

ACME ANALYTICAL	LAUCKATOKIUS	LTL
-----------------	--------------	-----

	1		
A TH A A TH TH I Y A S T.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
72 METER MENTER ALA		(* K. K.	 ачн. ю
GUOCHWITCUN		C LINA	

ACME ANALYI) 1 Un i	L LA	ואיייי	TOK	در ند ۵	LTL .	•	~	E		Å' 1 1	11.	- 1 .	\	-00	/ ·	J.C.	Salari	эн 1					. , 4	33 .	 i	 	- { - 1	1 2 2	T	• 3 - 1 -> -14
AA						i de la	a Alaa		G	EOC	IEM)	[CA]		1.	SI	5 C]	ERTI	FI	CAT	E							ili. Grada i			A	N
							KR	L R	eso	urc	<u>) 85</u>)		File	e #	91-	-29	71		age	1							- 1999 - 1995 - 19		
							1026					, van	+L			<u></u>	B 1		<u> </u>				<u>)::::::</u>		****		<u> - 1995</u>		<u></u>		
SAMPLE#	ppm mo	ppnit	ppm	2n ppm	Ag ppm	ppm	Со ppn	PP®	re X	AS ppm	U Ppm	ppm	ppm	sr ppm	ppm	ppm	ppm B1	v ppm	са Х	×	ppm	Ppm Ppm	Mg	ррл ррл	× 1	ppn	лі Х	N8 X	K	bbu	Au" ppb
1040	3	341	3	44	1.2	3	7	287	4.23	80	5	ND	5	54	.2	2	3	75	1.39	.224	15	9	1.04	121	.24	2 1	1.54	.15	.62	1	23
1041	5	368 335	4 24	- 49 - 51	3.1	6	27	- 374 - 361	4.99	2425	5	ND 2	5	147	.5	2	54	85 79	2.01	.236	14 17	8	1.21	106	:18 15	2	1.74	.14	.50	2071) 17	241
1043	3	261	8	54	3.0	5	20	366	4.77	1606	5	ND	7	65	.4	2	14	88	2.06	.267	17	10	1.21	130	.21	2	1.74	.14	.52	ાં	357
1044	3	273	15	51	4.1	3	33	530	4.44	3829	5	2	6	61	:.3	2	32	78	2.35	.241	14	7	1.17	68	.14	4 1	1.63	.09	.23		955
1045	2	383	8	56	3.8	5	14	622	5.49	1031	5	ND	5	85	.3	2	23	74	2.53	.212	13	11	1.25	70	. 15	2 1	1.76	.09	.22		777
1046	2	246	2	170	1.3	2	19	640	6.08	1018	5	ND	5	112	.2	2	5	85	1.81	.234	11	. 6	1.64	257	.21	2 7	2.81	.15	1.42		34
1047	2	527	4	54	3.8	4	13	613	5.19	748	5	ND	5	58	.6	ź	10	69	2.76	.217	13	10	.99	74	.16	ារី	1.46	.10	.23	aran Mata	123
1049	2	398	6	63	2.9	3	23	499	5.66	2575	5	ND	5	63	.2	2	9	93	1.81	.246	13	9	1.41	101	.16	2 1	1.97	.12	.56	1	273
1050	2	215	3	51	1.4	3	10	431	4.46	699	5	ND	5	101	.2	2	5	97	1.92	,236	12	7	1.27	215	.25	3 ;	2.17	.16	1.12	1	91
1051	2	368	3	51	2.5	3	36	420	6.14	6527	5	ND	4	93	.3	4	7	87	1.82	.184	11	5	1.19	120	.18	2 1	1.94	.16	.85	1	138
1052	2	278	4	61 69	1.9	53	20 37	1152	5.42	979 7544	5	ND ND	5	96 64	.5	23	3 14	80 98	3.12	176	11	6 5	1.3Z	128	211	52	2.23	.11	.68	1	42 515
1054	2	332	2	49	1.1	3	9	408	5.42	135	5	ND	6	63	.3	2	3	102	1.57	.268	13	7	1.28	171	.26	3	1.96	.14	.79	4	21
1055	2	447	2	43	1.5	4	39	340	6.96	4754	5	ND	5	52	_4	2	19	83	1.53	.226	13	6	1.09	116	.17	2 '	1.57	. 12	.62	::::::::::::::::::::::::::::::::::::::	850
1056	Ē	289	13	47	1.5	4	11	399	5.16	403	5	ND	ŝ	51	.4	2	22	91	1.73	.247	14	7	1.16	153	.25	Ž	1.63	.12	.73	1	787
1057	3	205	11	42	1.2	7	41	394	4.68	5663	5	ND	6	46	-4	2	18	77	1.82	.245	15	8 57	1.12	107	.17	2	1.46	.12	.49		913
1058	3	179	2	40	1.2	6	21	460	4.76	1308	5	ND	6	50	3	2	8	94	2.23	.258	14	7	1.43	121	.21	ž	1.82	.11	.70	1	326
1060	3	200	7	44	1 4	4	10	556	4 33	780	5	un	5	55	iste T	2	8	88	2 51	261	13	10	1 34	77	18	2	1 78	13	10	1	378
1061	2	210	6	44	1.2	- 4	22	471	4.49	2574	5	ND	6	58	5	2	32	90	2.40	248	13	8	1.34	106	.18	ž	1.77	.13	.55	៍ាំំំំ	1229
1062	3	195	5	41	.8	4	11	405	4.50	1431	5	ND	6	91	.4	2	4	97	2.23	263	13	2	1.29	213	.25	2 2	2.06	.20	1.06	1	238
1064	2 4	202	5	45	1.2	6	20 11	- 300 - 489	5.14	249	5	ND	5	73 63	5	2	3	92	1.81	242	13	12	1.32	101	.21	3	1.65	.14	.59		52
10/5	-	457	-	53		-		580	£ 77		-					-	-				•			3//			• 47	24			
1065	2	163	ź	51	.6	3	10	560	5.08	106	5	ND ND	- 4 . 5	112	2.	2	2	101	2.31	.225	11	7	1.43	284	.28	2	2.36	.20	1.52		116
1067	2	262	3	40	.8	3	10	407	5.27	164	5	ND	5	61	5	2	6	92	2.08	.259	13	8	1.22	146	.26	2 '	1.71	.13	.74	1	21
1068	3	216	3	41 इ.र	-6	22	11	399	4.65	444	5	ND	5	58 56	8825. Se či	2	4	76 63	1.81	.228	13	8 34	1.17	129	.25	2	1.65	.16	.73		17
	-		-				••				-		•			-	-				-					-					
1070 1071	2	300 523	3	36	1.0	29 31	16	307	4.20	202	5	ND	1	97 74		2	5	55	1.65	.230	5	41	.98	85 54	14	2 1	1.47	.19	.57		112
1073	2	170	Ž	47	1.5	23	13	615	4.37	115	5	ND	2	88	5	2	ź	89	4.13	192	8	35	1.32	176	.25	2	2.36	.21	1.54	1	22
1074	3	79	3	29	-7	118	10	378	2.78	33	5	ND	1	64	.6	2	4	106	1.61	.054	5	51	1.28	68	.18	3 2	2.26	.26	1.15		8
1075	2	20	2	20	6	13	48	240	2.57	2(30	>	ND	1	140	•••	2	د	58	1.51	.059	د	20	1.15	68	- 04	2 :	3.17	.42	1.12		
1076 Standard C/Au-R	2 18	225 56	2 36	38 133	.7 7.1	37 71	14 34	537 1044	4.12 3.96	391 40	5 22	ND 7	1 38	140 52	.6 18.6	2 16	3 19	75 55	3.89	.169 .090	3 38	72 58	1.28	50 175	.14 .09	33	2.62 1.89	.34 .06	.69 .15	1 12	23 462
		ICP	50	O GRA	M SAM	IPLE 1	S DIG	ESTE	D WIT	h 3ml	3-1-2	HCL-	HNO3-	H20 A	T 95	DEG.	C FOR	ONE	HOUR	AND I	S DIL	UTED	TO 10	I ML V	ATK W	IATER.			,		
		THIS		H IS		AL FO	R MN	FE S	R CA	P LA C	RMG	BA TI		AND L	INITE	D FOR	NA K	AND	AL.		TECTI	on li	MIT 8	IV IC	• 1S 3	PPH.					
		- SA	MPLE	TYPE:	CORE	UN RU	AU* A	MALY	SIS B	NPLEŞ Y ACID	LEAC	175 A 11/AA	FROM	10 GM	I SAMP	50 P LE.	rn k	~ _ ^	1	77 8											
DATE RECT	TVF	D:	.11.11 2	0 100	51 T	ነልጥፑ	859	- OP#	Ma 1	1.55	A	0	.1.		61	ONE	יש ח	Ľ	.1	em.	1 n +	NE	<u>, 160</u>		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			YEDE	
			306 6	., 173		*****	¥ت.			ا کانتانیہ ا	1.1	7	' 4	۰.	01	GNG	. 01	• • •	• • • •				u.LEU	1911 y	. #//10	,	111150		, Ngg		
												•	•							•	Y										

KRL Resources Corp. FILE # 91-2971

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca Y	P	La	Cr	Hg	Ba com	TI.	B	AL Y	Na X	K	Au*
	ppm	ppn	ppa	ppm	bhi	ppn	ppa	ppa		<u>httu</u>	P-P-IN	Phan	hhu	Геран	hhu	- Phu	Phan	Phan		<u></u>	РДан	- Pdrail		Рран	ing right 🗰	PPin			* 244	<u> </u>
1077	4	280	8	28	.5	80	25	236	4.22	350	5	ND	1	32	.6	2	4	45	1.08	.107	4	34	.57	11	,12	2	.74	.09	.17 1	12
1078	Z	112	- 3	39	.2	30	8	483	3.28	151	5	ND	1	111	S.4 -	2	2	- 79	3.80	.148	2	- 58	1.38	- 56	.12	2	2.66	.30	.80 1	3
1079	3	163	2	45	S.5	77	17	574	4.03	736	5	ND	1	141	.6	2	2	136	4.12	,119	- 3	82	1.51	87	6.15	4	3.74	.35	.93 1	27
1080	1	247	4	39	<u></u>	57	19	510	4.25	2093	5	ND	1	80	.4	2	- 4	96	3.24	160	2	- 94	1.42	- 46	.14	2	1.87	. 16	.31 🔆 1	40
1081	4	170	3	29	.4	101	14	241	3.56	66	5	ND	1	18	.5	2	2	101	.73	.041	3	75	.99	19	. 15	2	.97	.07	.16 1	7
										87 (Pr					2872.										999 C.					9
1082	7	200	2	31	.4	52	9	437	3.33	111	5	ND	1	79	§ 15	2	- 4	51	4.17	.099	2	29	.81	20	.10	2	1.87	.20	.21 🔆 1	7
1083	7	233	3	54	Š.5	45	12	560	4.33	886	5	ND	1	107	.6	2	2	38	5.46	119	3	12	.36	17	3.10	2	2.29	.32	.12 1	- 4
1084	8	141	11	140	2.7	68	10	572	3.15	11	5	ND	1	62	2.4	2	2	84	3.28	091	2	- 44	.87	18	-11	- 4	1.47	.15	. 18 1	5
1085	3	81	8	81	24	61	10	411	2.60	9	5	ND	1	52	1.4	2	2	72	2.22	.052	2	- 43	.83	19	.10	2	1.49	.15	.24	° 5
1086	2	85	8	27	.5	70	9	379	2.39	8	5	ND	1	31	.4	2	3	53	1.85	.036	2	- 36	.64	11	.08	4	.78	.05	. 16 🔣 1	8
																														5
1087	l z	115	2	58	. 5	62	19	543	5.04	6	5	ND	1	117	.2	2	2	133	2.49	.122	3	81	2.04	100	16	3	4.04	.33	.87 1	6
1088	2	144	6	52	5.5	56	20	357	5.59	29	5	ND	1	123	.6	2	5	121	2.40	.129	2	112	2.10	119	18	2	4.81	.36	1.31 🔅 1	5
1089	Ī	368	2	35	.7	44	13	354	4.57	22	5	ND	1	145	8.4	2	2	94	2.84	.142	3	- 48	1.37	50	.13	3	2.95	.30	.37 👘 1	14
STANDARD C/AU-R	21	59	37	131	7.2	70	29	1027	3.91	43	17	6	36	47	18.4	14	22	58	.47	.088	35	57	.88	174	.09	31	1.87	.06	.15 🔆 11	470

ACME ANALY	<mark>لا</mark>	L LA	BORA	TOR	ies	LTD	•	8	52 1	I, HA	STIN	igs	5T.	VAN		'ER	B.C.	V.	5 A 11	R6	P	ION	:(60	4)253-3.	L58 FA	X (60	13-	1716
KA									G	eoci	(EM)	(CAI	g ai	NAL	Y8I/	B CI	BRTI	FI	Cate	5							A	A
TT							<u>KR</u>] 1022	<u>i R</u> - 41	890 70 Gri	<u>urce</u> mvill	9 <u>8 (</u> e St.,	<u>Van</u>	<u>>.</u> couve	r BC	File V6C 1	≥ # vs	91- Submi	-30) tted	61 by: J	Pa DHN WA	ge TKINS	1					Ľ	Έ
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Nn ppm	Fe X	Ae ppa	U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppra	Ca X	P 2	La ppm	Cr ppm	Hg X	Ba Ti ppn X	BAL ppn:X	Ne X	K X pp	W Au* m ppb
1090 1091 1092 1093 1094	1 11 1 5	380 360 287 327 503	6 3 4 5 4	37 47 43 35 49	.6 .5 .5 .6	36 142 41 26 43	12 27 14 11 19	314 365 304 272 325	4.42 5.12 4.16 4.47 5.80	48 258 22 8 450	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	216 181 255 235 185	.8 1.2 1.2 .9 1.4	2 2 2 2 2 2 2 2	2 2 2 5	60 63 55 65 95	2.72 2.24 2.86 2.69 2.81	.171 .128 .161 .216 .172	2 2 3 4 2	46 98 66 29 38	1.09 2.10 1.05 1.01 1.12	115 .10 80 .09 122 .10 148 .10 147 .10	2 3.08 2 3.38 3 3.53 2 3.10 2 3.51	.37 .28 .39 .35 .36	.24 .51 .39 .39 .62	2 51 2 33 1 20 1 31 1 242
1095 1096 1097	2 3 22 3 4	307 373 148 122 132	4 4 3 5 5	39 26 108 99 38	.7 .8 .4 .5	22 26 100 89 116	12 15 10 11 16	302 331 452 303 640	4.13 4.01 3.23 2.89 3.89	19 78 11 4 13	5 5 5 5 5	ND ND ND ND	1 1 1 1	145 113 126 42 116	,9 1.0 1.6 1.0 .9	2 2 2 2 2 2 2	2 2 2 2 2	59 56 109 72 55	2.95 2.99 4.60 1.29 5.28	.139 .142 .106 .064 .074	2 2 2 2 2	29 25 49 43 33	.62 .52 .22 .59 .43	113 .09 74 .08 38 .06 26 .09 23 .06	2 2.35 2 1.61 2 1.22 2 .96 2 .89	.36 .24 .18 .14 .12	.26 .14 .12 .14 .14	1 40 1 231 1 17 1 16 1 22
1100 1102 1103 1104 1105	9 2 4 4	123 122 155 190 156	2 8 5 3 2	23 26 30 28 31	.4 .5 .6 .5 .4	88 85 115 108 85	13 16 16 12 10	1001 381 309 517 825	3.03 3.13 3.60 2.90 2.71	5 7 2 6 2	5 5 5 5 5	nd Nd Nd Nd Nd	2 1 1 1 2	263 154 83 129 210	1.0 .4 .7 .5 .4	2 2 2 2 2 2	2 2 2 2 2	47 60 49 58 42	10.16 2.77 2.02 4.07 6.71	.091 .093 .064 .068 .099	3 2 2 2 2	31 48 36 39 27	.21 .67 .56 .57 .33	23 .06 41 .09 34 .08 38 .07 27 .06	2 2.04 2 2.32 2 1.52 2 2.16 2 1.52	.19 .32 .18 .23 .16	.12 .33 .24 .29 .27	1 12 1 16 1 19 1 9 1 13
1106 1107 1108 1109 1110	3 2 2 2 2 2	151 108 97 96 86	6 2 2 2 2 2	29 18 26 27 26	.5 .3 .2 .2 .2	99 88 97 103 108	10 10 11 13 13	464 592 443 246 287	2.88 2.51 2.64 2.82 2.89	8 5 8 18 16	5 5 5 5 5	nd Nd Nd No Nd	1 2 1 1 1	192 173 149 49 74	.7 .2 .2 .6 .3	2 2 2 2 2 2	2 2 2 2 2	53 40 62 80 81	3.70 6.78 2.67 .72 .97	.087 .067 .071 .066 .052	2 3 2 2 2 2	33 26 39 47 44	.62 .55 1.09 1.41 1.02	26 .07 15 .06 57 .09 64 .10 68 .10	2 1.92 2 1.40 2 1.59 2 1.90 2 2.00	.18 .08 .13 .16 .22	.16 .13 .53 .76 .58	1 14 1 18 1 12 1 14 1 13
1111 1112 1113 1114 1115	2 1 3 2 2	62 197 90 100 83	3 2 6 2 2	30 27 19 17 31	.3 .4 .2 .4 .3	66 47 56 57 72	10 20 10 11 10	374 353 334 528 327	2.70 4.09 2.46 2.76 2.93	8 3 8 3 28	5 5 5 5	nd Nd Nd Nd	1 1 1 2 1	49 232 94 103 41	.3 1.2 .3 .3 .4	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2	68 60 65 38 83	.94 3.86 2.68 4.84 1.27	.054 .151 .070 .128 .061	2 2 3 2	41 43 48 31 46	1.01 .67 .55 .18 1.08	57 .09 77 .10 45 .09 26 .10 57 .12	2 1.74 2 4.28 3 1.63 2 1.45 2 1.65	.17 .56 .19 .23 .13	.57 .40 .30 .13 .81	1 51 1 17 1 18 1 20 1 29
1116 1117 1118 1119 1120	3 5 4 2 2	98 95 103 95 128	3 3 2 2 3	22 26 25 27 22	.3 .5 .4 .3 .3	88 92 105 83 44	13 11 11 11 18	392 272 342 371 378	2.90 3.19 3.04 3.11 4.40	12 7 6 3	5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	97 74 74 74 135	.9 .7 .6 .3 1.2	2 2 2 2 2	2 2 2 2 2 2	60 74 62 65 83	3.32 1.55 1.78 2.02 2.43	.082 .077 .053 .072 .149	2 2 2 2 2 2 2	44 52 40 47 35	.56 .69 .94 .71 .98	32 .07 42 .10 42 .09 38 .10 56 .11	2 1.87 2 1.57 2 1.55 2 1.42 2 2.67	.22 .18 .16 .13 .34	.27 .38 .51 .39 .39	1 8 1 8 1 12 1 15 1 9
1121 1122 1123 1124 1124 1125	3 2 3 1 3	84 121 55 128 117	2 2 7 2 5	20 13 27 25 24	.4 .5 .3 .4 .5	56 51 73 76 90	15 21 12 16 10	515 298 402 264 352	3.07 4.02 2.29 3.58 3.16	7 2 7 2 14	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	108 195 72 126 51	.4 1.0 .2 1.2 .2	2 2 2 2 2 2	22222	38 37 52 80 40	3.99 3.35 2.47 1.85 1.93	.073 .176 .056 .112 .084	2 2 2 2 2	31 46 41 60 35	.30 .51 .55 1.08 .28	19 .07 51 .08 20 .09 78 .12 16 .09	2 1.30 2 3.33 3 1.10 2 3.34 2 .86	.15 .49 .09 .37 .12	.13 .13 .08 .77 .09	1 8 1 7 1 9 1 12 1 11
STANDARD C/AU-R DATE RECI	18 SIVE	57 ICP THIS ASSA - SA DI	36 SO LEAC Y REC MPLE JUL 3	129 10 GR/ 11 IS 20MHEI 77PE	6.8 PARTI IDED F CORE	69 PLE I AL FO OR RO	31 S DIG R MN ICK AN AU* A REF	1051 FE SID COUNALY	3.98 D WIT R CA RE SA SIS B MA1	40 H 3HL P LA C MPLES Y ACID	18 3-1-2 R MG IF CU LEAC	7 HCL- BA TI PB Z H/AA	38 HNO3- B W N AS FROM 1 9	52 H2O / AND > 1%, 10 G /.	17.4 .195 .1911E , AG > 1 SAMP \$1	16 DEG. D FOR 30 P LE.	21 C FOR NA K PH 4	S4 ONE AND AU >	.48 HOUR AL. 1000	.092 AND IS AU DET PPB	36 DILU ECTIO	56 TED 1 N LIP	.79 10 10 111 89	177 .07 ML WITH WA ICP IS 3 G, J.WANG;	34 1.93 TER. PPM. CERTIFIE	.06 D B.C.	.14 1	2 <u>462</u> s

KRL Resources Corp. FILE # 91-3061

• .

1

																				_										
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Hn	Fe	As	U	Au	Th	\$r	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	8a	τſ	B	AL	Na	ĸ	Au*
1	ppn	ppm	ppm	ppm	pput	ppik	ppm	ppm	X §	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	X		ppm	ppn	X	ppm		ppni	<u> </u>	X	X spon	ppb
	_															-									972Q	-				
1126	- 3	107	2	- 39		108	14	346	3.45	12	5	ND	1	- 34	₩ •2	Z	2	88	.70	.051	3	68	1.09	37	21 0	21	1.17	.10	.51 3	20
1127	3	95	2	24	332	69	12	430	3.07 💈	6	5	ND	1	40	.2	2	2	53	2.19	.090	- 4	45	.57	17	81 8	2	.84	.09	.18 📰	15
1128	3	103	2	35	88 5	90	17	457	3.62 💈	14	5	ND	1	46	.2	2	2	60	2.66	.069	- 4	- 45	.75	- 19	.08	2	-86	.07	.07 🐘 1	14
1129	4	108	2	31		99	14	403	3.09 🕴	18	5	ND	1	40	3	2	2	71	1.26	.067	- 3	56	.98	29	.09	2 1	1.29	.11	.37 📰 1	11
1130	3	104	2	29		79	12	541	3.05	8	5	ND	1	70	.2	2	2	50	2.71	.075	- 3	39	.78	- 36	.10	2 1	1.48	.17	.33 🛛 1	13
• •									3																					Č.
1131	3	91	2	29		94	12	429	2.98	12	5	ND	1	69	2	2	2	65	2.30	.058	3	55	.81	49	.08	2 1	1.32	. 12	.40 801	15
1132	3	76	2	28	30 T.	63	10	627	2.56	800 - 1	5	ND	1	68	2	2	2	50	3.62	079	3	39	.62	27	.09	2	.99	.10	.29 801	12
1133	Ă	03	- 5	35		104	10	805	2.37	28	5	NO	- i	165	2	2	2	45	5.66	175	3	39	.87	35	07	2 1	. 65	14	28	7
1174	ž	133		254	849 A	20	13	457	2 70	84 - S	ŝ	ND		74	8 4 3	2	- 2	45	2 48	070	2	53	62	54	07	2	48	10	75 884	32
4175	2	102	5	110		57	42	453	2 74	88 K	é	ND			80 e.		2	41	3 04		Ē	37	17	14	ing:	- 2 -	1 10	74	12	16
1133	3	IUE	2	110		2.2	14	653	3.20			NU.	•		in the second second second second second second second second second second second second second second second	-	6		3.74		-		. 71			-				
			-			77		FOF	ŝ				4	60		2	-		2 00		L			52	800		67	10	то 🚟	14
1130	- <u>*</u>	101		20	88 B.	12	14	202	3.41 8		2	NU	, F	20	200 S.			91	2.00	.001		20	.00	22	30 - S	-	1.21	- 17		10
1137	5	- 93	Z	106		π	13	449	3.20 🖗	88 9 -	- 5	ND	1	- 56	STOL.	2	Z	83	Z.26	.075	- 4	- 64	.81	- 49	310	2	.65	.20	.5> 🛞 🕄	§ 15
1138	- 4	84	2	- 30	86	- 84	15	469	3.67 🖁	88 5 8	- 5	ND	1	52	.2	2	2	59	2.28	.069	- 3	- 44	.54	- 25	.09	4 1	1.23	-17	.18 🔆 1	§ 10
1139	3	123	2	37	38. S	64	14	649	3.71	883	5	ND	1	68	2	2	2	55	3.80	.063	2	42	.63	21	.08	2 1	1.28	.13	.28 🕺 1	10
STANDARD C/AU-R	19	58	36	139	7.3	70	32	1075	4.04	42	22	7	40	52	18.5	16	18	56	.50	.092	39	58	.87	181	.09	36 1	1.91	.06	.15 11	460

Page 2

ACNE ANA		AL	LABO	ORAT	ORIE	S L	FD.		852	B .	HAST	ING	3 ST	. vi	V	VER	B.C	•	V6A	1R6		PHO	NB (604)253	-315	;8 P	AI (sc 🗍	153-	-1716
										GEO	Che	MIC	AL)	ANA	L18	18 (CER!	FIF	ICA	te										
								RL	Res	our	ces	Co	rp.		Fi	1e	91	L-3	180	J	Page	e 1								
										10	22 •	470 G	ranvi	īle S	t., y	ancou	ver Bl	: V6C	: 1V5											
SAMPLE#	Ho ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppni	Hn ppm	Fe X	As ppm	U ppm	Au ppit	Th ppm	Sr ppn	Cd Ppm	Sb ppm	81 ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba Tí ppm X	8 ppm	AL X	Na X	K	Li Ppa	Au* ppb
1140	3	123	4	22	.6	75	13	383	3.62	5	5	ND	1	59	.2	2	2	67	2.12	.056	2	50	.73	19 .08	2	1.37	.15	.41		1
1141	3	52	5	10		54	11	794	1.88	163	5	ND	1	70	.2	2	2	15	6.42	.098	2	17	.21	9 .07	2	.73	.11	.04		264
1142	1	164	2	22		- 26 - 30	21	423	4.43 6.96	228 7	5	NU	1	- 65 - 81	3	2	5	- 02 - 45	3.04 4.04	080	2	22 22	.00	52 .JU 15 .09	2	1.37	.44	.DU 8		1
1144	ż	93	ž	25	80. S	33	10	381	3.20	9	5	ND	i	80	2.2	2	ž	75	2.01	.080	Ž	33	.87	46 .12	2	1.53	.18	.47	Ĩ.	13
	_		_								_		-			_					_				-			8		
1145	3	98	6	21	 5	51	11	709	2.80	44	5	ND	1	133	8- 2	3	2	43	5.52	1073	Z	24	.56	35 10	2	1.71	.21	.35		11
1140	3	153	2	31		- 74	20	700 523	4.76	5	5	ND	1	37	2	2	2	90	.80	-066	2	46	1.00	25 12	ž	1.26	.12	.50		7
1148	3	.99	4	27		47	15	609	3.24	19	5	ND	i	55	2.2	3	ž	60	3.11	.071	Ž	38	.92	9 .DZ	Ž	1.33	.11	.07	ŧ.	9
1149	3	130	4	37	.5	113	21	512	4.34	24	5	ND	1	120	.2	2	3	110	2.43	.141	2	133	1.34	31 .13	2	3.07	.34	.91		5
1150	3	83	2	23		50	12	824	3.08	9	5	ND	1	201	2	2	2	64	6.56	.089	2	50	.83	20 .07	2	2.58	.26	.40		1
1151	4	129	Ž	21	88. 6	65	20	545	3.20	3150	5	ND	1	43	.2	3	Ž	58	3.31	.096	2	42	.81	4 .04	2	.89	.06	.04		106
1152	4	116	3	15		74	7	580	2.21	69	5	ND	1	52	 2	2	2	31	4.72	.112	3	30	.49	4	2	.67	.06	.03		35
1153	2	142	Z	5	.	48		775	2.29	<u> </u>	5	ND	1	124		2	2	_3	9.40	.087	Z	6	. 14	2 .05	2	1.09	.11	.01		15
1154	, ,	159	2	18		80	15	250	3.37	7	2	ND	1	20	•4	2	4	24	1.28	. 130	3	43	.07	24 210	2	1.29	. 10	נו.		I
1155	- 4	111	2	19	3	72	12	255	2.43	257	5	ND	1	64	.2	2	3	46	2.22	.135	3	49	.70	16 .12	2	1.24	.17	.24		1
1156	Z	143	5	15	- 5	65	16	327	2.85	309	5	NO	1	90	.	3	Z	39	3.34	.131	Z	41 EE -	.60	Z1 .10	Ż	1.51	.23	.23		2
1157	2	258	2	27		6U 52	18 50	220	5.93	14Z	2	ОК 2		4/ 50	÷	27	12	77	.8/	.U/Y	2	77 78	1.21	30 07	*	1.02	- 10	. 14 (21 801
1159	5	316	6	35	2°2	28	13	256	4.50	187	5	ND	- 1	73	83	2	2		1.22	.090	2	40	1.27	66 16	2	2.19	.22	.92		4
	-		•								-		•			-	-	••			-				-					-
RE 1155	4	116	3	18		71	12	251	2.45	249	5	ND	1	65	.2	2	2	47	2.19	.133	3	50	.71	18 .12	2	1.25	-17	.25		1
1160	3	577	6	32	1.0	- 38	- 47	247	6.43	2615	5	ND	1	58	.	3		56	1.59	.094	Z	37	.91	18 .05	Z	1.53	-17	.12		264
1161	1 3	526 105	5	- 50		50		2/2	4.25	109	2	UN ND		0/ 70	2 .	5	2	00 85	1.85	104	2	23	1.09	40 (211) 75 (12)	2	1.04	.21	.70 8 77 1		16
1163		256	;	26		34	19	252	4.50	272	5	ND	-	70	2	3	2	53	1.55	144	2	57	1.02	28 .09	2	1.77	.22	.32	8	5
,	· ·		-	• •			.,				-		•			-	-				-				-					-
1164	5	286	4	29	.6	35	31	245	5.62	909	5	ND	1	72	.2	3	5	62	1.50	.104	2	43	.96	57 .10	2	1.79	.19	.65		220
1165	1	198	5	- 34	8 -5	31	- 14	287	5.20	107	5	ND	1	85	. 2	3	3	98	1.33	.139	2	45	1.59	74 317	2	2.42	.24	1.05		32
1166	2	161	Z	34		32	14	263	3.69	155	2	ND		11	.	Ž	2	4	1.51	.UYY 13E	4	- 24	1.44	10 .10	2	2.19	.24	1.14		10
1167		122	2	21	##	63 50	14	280	2.30	100	2	NO		52	85	2	2 7	67	4.16	123	5	50	.04 AT	36 12	2	1.30	.16	.65		50
		100	2	64				207		.07			•			•		01			•									-
1169	4	289	4	21	88 S	39	18	226	4.10	69	5	ND	1	42	88 3	3	3	50	1.42	.099	2	33	.66	24 .11	2	1.01	.13	.35		5
11/0	1 1	498	Z	30	**5	68	24	314	5.44	51	5	ND	1	67	<u>ې</u>	- 5	5	65	2.08	.116	- 5	22	.88	24 .13	2	1.49	• 17	. OU 8		11
1172	2	102	2	20 74	2 P	47 20	2) 74	32U 274	4,30	8100	7			101	8 5	16	2	00	1.70	117	3		.07 1 48	53 10	2	2.67	. 74	.05		671
1173	2	298	2	42		24	15	310	4.59	204	5	ND	1	121	22	2	2	102	1.45	118	2	30	1.96	104 17	2	3.20	.27	1.92		24
] -	-/-	-	7			•=				-		•			-	-				-				-					
1174	2	239	2	17	3.3	31	21	267	4.26	51	5	ND	1	112	.2	2	2	54	Z.87	.145	. 4	21	.59	48 .11	2	1.88	.28	.31		21
1175	1	369	3	33		33	14	340	4.64	35	5	ND	1	144	 2	3	2	80	3.10	-16Z	3	46	1.07	79 .12	2	Z.92	.36	.74		23
STANDARD C	18	58	40	132	7.0	69	35	1035	3.95	42	15	6	37	52	15.5	14	18	57	.47	.090	38	57	.87	177 8.09	- 34	1.8/	.06	. 15		431
				500		CANDI	e 10			1711 74	4	3 80		7 11 7 1				~ ~	-		10.0		N 70			- 0				

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

AA IL

.

ACHE MIALYTICAL																								200.000			·		MALTTICAL
SAMPLE#	No	Çu	РЬ	Zn	DA	NŦ	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	8 î	V	Ca 🖁	P	La	Cr	Hg	Ba 📰 🕄	8	AL	Na	K 🔣 🕊	Aut
	ppn	ppm	ppm	ppm	ppm	ppnt	ppni	ppm	X	ppm	ppm	рря	ppm	ppn	ppat	ppm	ppm	ppn	X (. X	ppm	ppm	<u> </u>	ppm 🚟 🏅	ppm	<u>×</u>	X	X ppa	ppb
							•	/ 77	* */		÷			47		,	7	447	211	426	7	14	1 07	41 10	τ.	1 00	08	A7	46
1176	1	162		49	8• <u>6</u>	22		4//	5./4	32U	2	ND		100		-	3	113	2.94 2	447	2	50	1.77	111	2	2 52	20	1 40	28
1177	1	302	2	42	8. 9	50		392	4.70		2	ND	-	107		6	2	73	T 42	87.×	ž	52	1 07	37 10	2	2.05	10	27	36
1178	1	196	Z	42 8	÷.	24	14	248	3.73	193	2	ND		100		2	5	72	3.02	308	ž	20	1.75	48 000	2	1 04	10	7 8	16
1179	1	202	2	33	<u>.</u>	10	-	437	2.77		2	ND		70		2	5	10	1 40	11.0	ž	12	88	47 DA	2	1.80	.21	.55	89
1180	1	149	2	18		12	0	170	2.70		3	NU	•	10		٤.	E	37							-				•
		2/2	2	71	÷.	44	10	787	7 47		5	ND	1	50		2	2	73	1.85	127	3	22	1.18	62 .11	2	1.81	.18	.70 1	60
1101		512	<u> </u>	17	2°2	0	21	415	1.05	00	Ś	ND	i	182	2	2	3	53	3.36	131	2	119	1.23	80 14	2	2.73	.32	.80	20
1102	-	621	7	11	3 K	Å	12	637	6.32	125	5	NO	3	73	200 S	3	3	53	4.66	131	- -	8	1.45	35 11	2	1.29	.03	.32 1	14
1186		777	Å	40	2 6	ž	· 7	400	4.50	20	5	NO	5	58		3	- Ā	78	3.64	219	7	8	1.31	21 .16	2	1.59	.07	.13	9
1185	ĩ	226	š	30	27	18	8	305	4.71	22	Ŝ	ND		65	2	3	2	79	1.32	. 162	9	- 14	1.54	47 .21	2	1.93	-1 4 .	.59	2
1105	-	220	-		22		-				-																		
1186	32	199	7	25		138	- 14	296	4.30	78	- 5	ND	1	- 99	2.Z	2	- 4	272	1.71 🖁	.144	6	113	1.07	96 .20	2	1.79	.23	.83 💓 1	12
1187	31	636	4	50	1.0	145	29	463	7.69	782	5	NÔ	1	75		- 3	- 3	273	3.29 🖗	. 130	3	112	1.50	43	2	1.99	- 14	.38 1	76
1188	Ž4	297	- 4	25	.8	118	13	398	4.68	876	5	ND	1	- 90		2	- 4	146	3.69	.132	- 4	- 71	.62	38	2	1.51	.22	.27	2
1189	26	238	- 4	26	.5	127	12	250	4.48	95	5	ND	1	65		2	- 4	243	1.46	.105	4	100	1.04	55 .16	2	1.73	.17	.49 1	8
1190	21	285	5	35	.6	99	- 14	322	5.06	209	- 5	ND	1	100		2	- 4	272	1.91	. 153	3	91	1.46	115 .20	2	2.68	.28	1.25	10
											_	_				_					-				-		45		1010
1191	- 24	343	- 11	40	1.2	93	- 14	376	5.32	564	5	2	1	67	- <u>-</u>	3	10	294	1.97		<u> </u>	117	1.52	/0 .10		2.14	. 12	.01 1	110
1192	4	265	7	27	.9	- 36	8	304	3.89	° @55	5	ND	1	50	- 	2	Z	64	2.29	.052	-	24	.0/	47	2	1.00	42	.20 1	117
1193	2	247	30	63	1.4	32	9	818	6.04		5	ND	1	- 69	÷.	2	- 1	102	2.04	. 233		70	2.30	00 .20	2	2.4/	. 15	11.	-
1194	6	254	52	134	1.6	32	, ş	776	4.65	15	2	ND	2	41		0	2	137	1.40	.130	5	22	2.21	40 . C I	2	1 00	201	11 1	74
1195	Z	93	11	- 55		16	0	5/4	2.35		2	NU	!	31		2	3	21	1.34 %	.033		C 1	.07		-	1.00			
4407		347	40	17		63	44	455	1 44		E	WD	4	110	2	7	4	67	2.18	162	3	83	1.40	42 16	2	2.40	.23	.23 1	1
1190		21/	10	41		76	10	504	3.00		÷.			5		7	2	96	4.83	201	Ĩ	51	1.30	19 16	ž	2.85	.03	.14	5
117/ BE 1107	2	252	28	45		77	0	844	6.21	12	ŝ		i	70	2	ż	3	168	2.12	269	5	52	2.39	78 .20	2	2.54	.13	. 15 📰	2
110A	11	135	20	112	2 Z	63	11	715	3.14		5	ND	i	179	1.5	2	ž	65	5.09	.105	3	35	.60	62 13	2	1.53	.23	.24 1	2
1199	5	64	ĩ	37		30	9	633	2.85	840	5	ND	<u>i</u>	133	.2	2	2	86	3.76	.102	3	37	1.12	67 .17	2	2.03	.22	.51 🚮	2
	-	•••	•			•	-				_																		_
1200	2	124	9	28	.4	11	7	333	2.46	5 2 2	5	ND	1	- 45		2	2	- 48	1.76	.050	- 4	- 19	,67	32	2	1.04	.07	. 14 1	2
1201	2	103	11	30	.4	11	- 5	394	2.33	i 🏼 13	5	ND	1	- 44		2	2	- 48	2.35	,D49	- 4	17	.83	23	2	1.18	06	.12	1
1202	2	62	- 4	34	.2	12	- 5	449	2.58	5 🔊 ا	- 5	ND	1	- 81	2	2	2	- 46	1.97	.061	- 4	18	.94	26 .05	Z	1.59	.13	.22	
1203	1	122	12	31		9	- 5	435	2.87	/ @23	5	ND	1	66		2	2	- 47	2.57	.061	- 4	19	1.01	20	2	1.58	-05	- 14	10
1204	1	182	17	- 37		16	6	471	3.60) 78	5	ND	1	- 74	- 3 -3	2	2	40	3.10	.058	6	17	1.04	28 .00	Z	1.30	•03	- 17	IU
4000	_							100	-			1.10		-			•		1 20		-	16	4 40	20 41	2	1.58	08	25	
1205	3	90	33	81	8 - -	- 57	10	525	5.01		2	NO		77	- W - Y	2	5	77	3.27	. 033	2	40	1.00	15 04	2	00	.05	15 1	1
1206	2	90	10	25		<u> 07</u>		TUCY	2.40		2			210	: 🔆	<u> </u>	2	72	4 40	044	- 1	- 14	1 78	40 12	5	1.74	09	.53	6
1207		10/	11	41	\$\$\$	75	11	0/3	3.30		2			- 33/ 472	. 1915	3	2	212	6.00 6 01	071	2	71	1.04	00 12	2	2.47	.21	.83	1
1206	ן יי	105	4	30		00 40	10	710	3.3		7		4	160		2	2	د ام ۸7	3.30	8130 ⁸	2	134	1.44	18 10	2	3.02	.35	.22	20
1647	⁴	112	2	04	*	00	ζU	113	3.30	•	3	πIJ	1	100		£	2				-				-			300	-
1210	24	124	L	٩ħ		111	14	587	3.64	07	5	ND	1	129) 🖉 🤰	2	2	196	2.89	. 107	3	84	.93	85 .11	2	2.12	.31	.71 1	1
1211	1 12	161	2	38		89	23	534	4.50	813	ś	ND	i	181	2	3	2	184	2.78	124	. <u>3</u>	75	1.54	99 17	2	2.51	.30	1.20	1
STANDARD C	18	57	38	132	7.0	70	32	1037	3.9	5 42	18	7	36	53	18.5	16	18	56	.48	.090	37	58	.88	176 .09	- 34	1.88	.06	.15 11	460
WITHDRAD G	1 10	21		132	S			1031																	_				

 $\mathbb{C}_{\mathbb{N}}$

KRL Resources Corp. FILE # 91-3180

Samples beginning 'RE' are duplicate samples.

Page 2

KRL Resources Corp. FILE # 91-3180

SAMPLE	Ma	Cu	Pb	Zn 🔍	a 1	II C	0	ln.	Fe As	U	Au	Th	\$r	Cd	Sb	Bi	v	Ca	D	1.0	Cr	Ma	Re Ti	R	41	N.	r 🖉		
	ppm	ppm	ppm	ppm p	я р	xa pp	m pg	2Mil	X ppm	ppm	ppm	ppm	ppm	ppa	ppn	ppn	ppm	X		ppm	PDR	ž	pon X	DON	Γx.	x	- ? @		nu
															<u> </u>			· · · · · ·		<u> </u>				· · · ·					<u></u>
1212	1	21	- 4	3 💥		8	2 36	52	.70 58	5	ND	1	1396	 2	2	2	7	27.33	.005	19	- 3	. 16	14 .01	2	.16	.01	.05 🏼		4
1213	1	109	2	- 41 🚟	2 8	85 1	6 69	28 4 ,	.08 67	5	ND	1	163	.4	2	2	110	3.01	.064	2	54	1.80	155 .13	23	i.11	.31	1.49 🖉		10
1214	2	91	2	- 18 🎆	3 9	21 1	3 3(BJ 2.	.84 💹 51	5	ND	1	63	.2	2	2	69	1.68	.045	2	34	.96	46 .08	Z 1	.25	.08	.25 🖉	2	7
1215	1	82	- 4	21 💹	2 (i4 -	9 20	6 3 2.	.69 29	5	ND	1	37	2.S	2	2	74	.74	.054	2	39	.99	88 .10	3 1	.21	.07	.35 🖉	×.	11
1216	1	177	3	47	3 (7 1	8 49	72 3.	.87 199	5	ND	1	146	••	2	2	117	2.41	.109	2	46	1.70	169 .13	2 2	.71	.27	1.05	2	10
1217	1	207	5	24	3 4	6 1	7 40	65 3 .	.61 106	5	ND	1	96		2	2	66	3.19	142	2	58	1.04	82 09	21	.70	.18	.20 🖉		R
1218	1	207	2	29 💹	3 4	1 1	6 54	46 3.	.68 103	5	ND	1	135	6	2	2	80	4.29	146	2	76	1.32	213 11	2 2	.21	25	772 🖉		11
1219	1	218	3	28 🛞	3 4	5 1	9 4	52 3	.54 8114	5	ND	1	109	2	2	5	64	3.43	8152	2	61	.00	110 10	21	71	21	· 74 🕷		10
1220	1	273	2	33 🎆	6 4	8 2	6 4	45 3	82 208	5	ND	1	103	80 P.		5	77	3 63	156	2	54	1 00	144 10	2 1	78	22	. 20 🖉		17
1221	i	97	2	22	1 3	7	9 27	73 2.	.84 30	5	ND	i	35	.2	Ž	Ż	70	.81	.041	2	35	.96	93 .08	2 1	.16	.07	.44	ł	6
1222	1	80	4	23 🖉	3 4	3	B 27	23 2.	.41 23	5	ND	1	46	2	Z	2	70	.89	.070	2	37	.75	129 .10	4 1	. 16	.09	- 57		5
1223	1	139	2	53 💹	1 4	9 3	2 62	29 4.	.57 1012	5	ND	1	188		2	2	151	3.95	8126	2	116	2.74	250 15	24	25	21	I RA 🕅		31
1224	1	65	3	24 💹	£ 5	8 1	0 25	51 2	.44 81	5	ND	1	67	2 Z	Ž	2	74	.93	045	2	35	1.07	105 08	21	71	17	77 🖉		11
1225	2	103	2	24 🚿	3 11	4 1	6 4	51 3	.00 66	Ś	ND	1	61	<u>چ</u> کھ	2	5	86	2 34	058	5	35	1 07	52 04	2 1	76	17	· 🖌 🖉		'7
1226	ī	82	Ž	36	25	5 1	8 8	24 3.	.68 27	5	ND	i	109	.	2	Ž	127	4.91	100	4	43	1.75	37 .09	2 2	.80	.25	1.09	Ť.	6
1227	2	126	2	26	2 9	2 1	6 65	593.	.65 49	5	ND	1	112	3	2	2	97	4.24	.049	2	53	1.46	42 08	22	.75	.26	.60		7
1228	1	160	2	79 📖	3 6	7 Z	6 103	51 5	.41 20	Ś	ND	1	159	8.6	Ž	2	170	4.91	120	ž	160	3.10	152 16	21	. 32	31 3	ŧ \$2 🕅	27 - C	ż
1229	2	99	2	35 💹	1 1	0 1	3 47	73 3	.27 19	5	ND	i	79	2 Z	2	2	133	2.03	050	5	50	1.62	80 12	2 1	0.0	37	1 26		- 7
1230	1	121	Š	4	2 7	9 1	3 5/	18 3	.42 13	ŝ	ND	- i	114		5	2	117	6 16	074	2	57	1 68	71 11	22	41	28	1 74		- 2
1231	i	91	3	35	Z 13	5 1	0 28	34 2.	.93 40	5	ND	i	78	.2	Ž	2	94	1.60	.066	2	42	1.52	90 .11	22	.25	.20	1.17	ł	Ż
1232	2	111	3	20	2 9	7 1	0 19	2 2.	.61 20	5	ND	1	40	2	2	2	80	.71	053	2	38	1.04	A6 08	21	.37	-16	_45		2
1233	1	60	2	18 🔍	1 8	0	8 19	24 2	.12 31	5	ND	1	42	2	2	2	56	.72	025	5	27	00	47 006	- 1 1	32	10	52 🖉		Ę
1234	1	54	- Ā	20 🐰	1 6	3	7 27	70 2	.27 18	5	MD	- i	20	2	5	5	65	1 25	040	2	11	1 12	74 07	21	73	16	- XO @	8 4	ž
1235	1	57	2	75 🚿	1 2	7 1	7 83	3 4	50	ŝ	NO	i	180	÷.	5	2	157	4 01	476	ī	68	2 71	275	2 3	202	32 3	ε Ζς 🖉		Ē
1235A	i	188	Ž	99	3 2	8 1	6 7	16 5.	.37 2107	5	ND	i	279	.8	2	6	183	3.99	178	3	81	3.12	160 .13	23	.94	.25	1.97	ŧ.	88
1236	1	142	2	27	3 1	0 1	0 58	373.	.42 61	5	ND	1	126		2	3	108	4.54	120	5	45	1.41	08 12	32	- 25	.20	. 90	2	27
1237	1	72	2	38 🏼	7 3	8 5	7 30	14 5	55 36941	Ś	2	1	.88	2	ž	56	84	1.84	000	5	48	1 27	52 06	2 2	42	26	67	°₹ 2	120
1238	1	151	2	38 🔍	2 3	2	7 3/	58.3	48 184	5	ND	i i	100	2	2	2	08	2.17	102	5	51	1 58	49 11	5 5	52	.25	1. 17 🖉	8 -	16
1239	3	68	3	17	2 1	3	7 30	10 1	83 30	ŝ	ND.	i	33		2		43	1 40	14.2	2	43	64	14 0.04	Ĩ	70	03	16 🖉		1
1240	2	161	4	30	5 5	2	9 57	rz 2.	.14 35	5	ND	i	47	.2	2	2	58	3.25	.043	ž	39	.82	14 .04	3	.96	.03	.21	i	9
RE 1237	2	70	2	24	6 3	6 5	3 23	23 5.	.26 34300	5	2	1	84	2	2	55	82	1.73	084	2	48	1.27	50 06	22	. 74	.26	.61	1 2	140
1241	t	144	2	92	3 6	0 1	7 76	43	.63 205	- F	NO	- i	92	\$\$\$.		- 2	154	2 01	105	2	01	2 02	54 30	2 2 2	64	18	81 🖉	8 T	27
1242	2	110	2	47 🔍	3	i i	1 7	23	.64 113	ŝ	ND.	i	177	20 R	5	5	148	5 44	118	ž	70	2 11	40 10	55	02	15	76 🖉		~
1243	1	278	3	70 🖤		0 1	5 5	10 1	36 27	Ē	NO	- i	110		2	2	115	3.40	0110		47	4 47	77 0 no	2 1	79		77		74
1244	i	332	2	36		4 1	8 53	57 4	.35 56	5	ND	ż	127	.3	Ž	2	106	3.51	.144	5	42	1.37	92 .10	2 1	.78	.13	.61	t	33
1245	2	330	2	37	4 2	6 1	9 50	19 4	.83	5	ND	1	144		2	2	135	x 12	177	*	10	1 62	135 11	, , ,	10	15	.76		10
1246	11	268	ī	15	6	2 1	7 1	52 3		ŝ	NO		04		2	2	123	2.60		Å	62	42	10 00	2	74		12	8	23
STANDARD C/AU-R	19	60	39	133 6	9 7	5 3	4 104	15 3.	.97 40	18	7	39	53	17.3	16	19	59	.42	090	40	57	.86	177 .08	32 1	.94	.06	.14	ii -	480

4

Samples beginning 'RE' are duplicate samples.

Page 3

KRL Resources Corp. FILE # 91-3180

Page

1

Samples beginning 'RE' are duplicate samples.

ACHE ANA	TICA	L	BOR	ATOR	IES	LTD	•	85	52 E	, HAI	5TIN	gs s	T.	۲- ۹(VIV	SR B	.c.	v 6	A 1R	16	- 	EONE	5(60	4)2 5	3-31	58 P	AX	504) 253-	-171	6
AA									G	eoch	emi	CAL	AN		818	CE	RTI	FIC	eate								85. 31 1) (3 2		A	
							KRI	<u>j R</u>	330	urce	<u>s C</u>	orp	•	F	ile	1	91-	331	3	Pa	ge	1									
	<u>,</u>					<u>.</u>	1022	* *(Usera		SL.,	Vanc	oliver	BC	/6C 1V	<u> </u>		tea	oy: Ju	JKN HA	ILINS		<u></u>								
SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag PPm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr Ppm	Cd pp#	SD ppm	Bí ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	1	ppm	x 1	ia X	× P		pb
1270	2	155	2	43	.4	33	17	495	3.18	573	5	ND	1	78	.2	2	2	49	2.98	.059	4	32	.94	45	.07	2 1.2	28 .0	06 .	.27	14	45
1271 1272	2	200	2	- 82 - 43	-2	14	19	424	5.73	58 18	5	ND ND	2	104	2	2	2	120	4.4y 2.04	-210	12	20 7	1.60	188	.29	2 1.9	··· . ·· .	10 1. 09 1.	. 22	1 1	25
1273	1	182	5	58	4	15	14	697	5.24	19	5	ND	1	102	.2	2	2	164	3.69	.236	4	22	1.83	322	.24	20 2.0	9	17 1.	.89 🐰		6
1274	3	200	6	36	-5	6	8	365	3.41	5	5	ND	4	39	.2	Z	2	117	1.67	.269	13	21	1.04	143	.23	3 1.3	19 .0	. 80	.63 🎡		3
1275	2	350	11	84	1.2	29	20	975	6.14	6	5	ND	1	77	.2	2	2	144	2.19	.078	5	31	1.89	159	.20	3 2.2	. 6	06.	.91	1	8
1276	3	124	12	58 01	-7	56 55	16 17	474	4.46 4.04	3	5	ND ND	1	59 88	27	2	2	153	.91 3.04	130	6	57 37	1.37	142 82	.21	3 1.4	2.1	IV . 11 .	.93		9 9
1278 -	ž	95	3	94	3	56	15	477	4.08	21	ś	ND	i	69	88 S	Ž	ž	121	2.18	109	4	51	1.60	207	.22	2 2.2	5	15 1.	.37	1	5
1279	3	81	6	43	.5	43	15	528	2.75	19	5	ND	1	84	.2	2	2	89	3.82	.136	3	74	1.20	- 47	-18	4 1.7	3.1	17.	.51	1	6
1280	7	292	17	22	1.2	51	25	455	6.43	13	5	ND	1	47	.2	2	2	35	3.54	.117	3	17	.34	10	.09	3.5	58 .(m r)8 .)5	.06	1 2	3
1281	8	136	10	- 26 - 26		57 14	37	439 - 266 -	2.33	2614	5	ND	1	- 35 - 35		ź	2		4.54	.077	3	14	.83	12	206	2 1.0	0.0	. 80	.05	1	6
1283	5	103	3	24	.2	36	7	460	2.71	10	5	ND	1	57	.2	Z	2	78	3.30	.047	2	27	.72	16	.09	4 1.1	8.	13	.26 🛞	1	5
1284	20	137	2	144	.4	102	13	813	3.75	6	5	ND	1	117	1.1	2	2	218	4.97	.096	Z	83	1.05	49	-12	4 Z.1	6.4	26.	.69	1	1
1285	27	143	7	711	.6	124	12	578	3.29	2	5	ND	1	73	7.9	Z	2	180	5.18	.106	3	69	.58	31	. 10	3 1.9	4.2	21.	.36	3	5
1286	26	122	6 7	546		117	11	540	5.06 1 00	19 71	5.	ND ND	1	75 27	3.9	2	2	187	4.75	2101 052	3	40	.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	©12 ©13	4 .9	// .1 16 .0	18. 18.	.)Y 🔅 . 17	2	6
1288	Ž	136	3	72	5	107	15	333	3.41	18	5	ND	1	32	.3	2	Ž	79	.74	-050	3	51	1.08	48	.12	3 1.1	9.0	8.	.44 🥘	1 1	19
1289	5	123	5	54	-3	91	13	364	3.30	85	5	ND	1	35	.3	2	2	106	1.95	2075	4	57	.92	75	.13	2 1.1	0.0	. 55	.54	1 1	17
1290	3	311	6	36	.9	14	10	340	4.37	389	5	ND	3	50		2	3	80	2.57	.186	12	9	1.03	54	.18	2 1.2	. 55)5 .	.29 🐰	1	5
1291	2	232	5	38		2	7	420	4.34	89	5	ND	3	85	.2	2	2	75	3.64	209	11	5	1.13	104 0	.23	31.5	66. 15. 10	18. V.	.59	1 1 s	2
1293	ź	114	5	59	3	2	11	589	4.58	333	5	ND	2	87	.2	ž	2	94	1.83	175	9	3	1.40	172	25	5 2.0	0.0		.86	1	9
1294	2	83	5	82	.3	2	15	761	4.87	177	5	ND	2	97	.2	2	2	9 9	2.45	.162	9	3	1.40	239	.28	6 2.3	8_1	10 1.	.26	1	6
RE 1290	-4		- 5	- 39	.,9	-13-		362	4.65	-432		ND	3	54 -	J	2 -	2	84	2.72	217	13 -	8	1.08	59 -	#19	2 1.3	iz .0	6.	.32 💮	1	4
1295	2	192	6	43		3	16	490	5.43	1096	5	ND	2	88	2	2	2	109	2.70	159	2	4	1.39	150	.23	4 2.2	4.1	16 1.	.10		13
1290	2	251 329	13	- 30 - 67		23	14 15	424	5.36	2032	5	ND	2	149 90	6	2	3	103	2.13	147	8	4	1.32	120	.20	6 2.3	4.1	12 1.	.76	1 2	27
1298	1	211	7	49	.7	2	11	471	4.81	49	5	ND	1	82	.3	2	2	94	2.68	142	8	4	1.16	123	.24	2 1.8	8.1	10 .	.69	1	8
1299	1	273	12	49	.9	2	12	458	5.53	17	5	ND	2	100	.2	2	2	108	2.84	.156	8	4	1.37	151	.25	4 2.4	4.1	15	.91 🥘	.	2
1300	1	313	6	50		1	5	382	5.07	67	5	ND	2	62		2	2	110	2.05	-163	8	3	1.45	126	.24	2 1.9	3.0)8. 	.69 🛞	1 9 4 45/	13
1302	2	1/5	2	45 70	1.0	5	49	347 : 847 :	2.81 6.95	21/0/	5	S ND	3	25 86	÷	10	25	103	2.40	213	10	1	1.34	397	30	4 2.4	8.1	12 1.	.96	124 10 124	11
1303	Ż	81	7	70	.3	ż	12	856	4.96	Ĩ7	5	ND	4	81	Ż	4	Ž	102	2.00	223	11	i	1,40	393	.31	4 2.4	2.1	10 1	.82	1	4
1304	2	331	5	44	1.4	2	17	316	5.14	4136	5	ND	5	67	.2	2	3	93	2.23	.241	12	2	1.39	79	.16	4 2.0	9.1	13.	.68	1 6	8
1305 STANDARD CALLER	2	250	7	35		13	12	368	4.63	21	5	ND	4	95	.2	4	2	99	2.32	.216	11	8	1.35	148	.22	32.6	9.2	26 1.	.09		2
		ICP THIS ASSA	50 LEAC	0 GRA	UM SAM PARTI IDED F	IPLE I AL FO	S DIG R MN I CK ANI	ESTED FE SR	WITH CA P E SAM	3HL 3 LA CR PLES I	-1-2 Mg B F CU	HCL-H A TI I PB 2N	NO3-H B W A AS >	20 AT ND L1 1%,	95 D MITED AG >	EG. C FOR 30 PPI	FOR (NA K A	DNE H AND A	-40 10UR A 1000 P	ND IS U DETI PB	DILUT	IED T	0 10 1 11 BY	ML WIT	H WA1 S 3 F	IER. PM.	~ <u>,</u>	<u> </u>	• • • •		<u> </u>

- SAMPLE TYPE: CORE

DATE RECEIVED: AUG 8 1991 DATE REPORT MAILED:

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Sampler Beginning 'RE' are duplicate samples.</u> REPORT MAILED: Aug 14/91. SIGNED BY.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

KRL Resources Corp. FILE # 91-3313

SAMPLE#	Ho	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba Ti	B /	AL .	Na	K 🛛 V	Aut
	ppm	ppm	ppa	ppm	ppa	ppm	ppm	ppm	X ppe	pm	ρρπ	ррт	ppm ppm	ppm	ppm	ppm	X {		ppm	ppm	*	pps 💹 🗶	ppm	X	X	X ppm	ppb
			•																								
1306	2	99	Ž	47	5	5	12	516	4.53	2	ND	6	108 .2	Z	2	94 3	2.52	.247	10	4	1.44	115 25	2 3.0	50	.42	1.6/	10
1307	Z	81	2	- 37	8 5	87	12	511	3.04 49	5	ND	2	85 .2	- 3	Z	π	2.26	.087	4	26	1.19	47 .18	3 Z.C	53	.25	.97	4
1308	1	84	- 3	52	2	82	16	1233	4.43 32	5	ND	1	170 .2	4	2	113 (6.05	.087	Z	111	1.48	100 238	Z 3.5	58	.29	1.80	6
1309	1	73	3	- 34	3	76	11	680	3.07 19	5	ND	1	127 .Z	Z	Z	106	4.53	.070	Z	41	.94	53 273	2 3.5	56	.38	.91	6
1310	- 3	66	5	22	3.5	- 74	9	728	2.41 24	5	ND	1	66 _2	2	2	49 4	4.59 ş	.042	2	41	.60	12 .06	2.5	75	.04	. 19 1	9
	_	-	_		2002	_				_				_	_		\$		_			3332				000	
1311	3	79	5	33	33	75	10	502	2.76 221	ş 5.	ND	1	61 2	2	2	63	2.99	.058	3	47	.98	22 .08	2 1.3	50	.07	.32	8
1312	3	61	- 5	- 34	.2	64	6	363.	2.36 346	5	ND	1	76 🔬 2	2	2	114	1.91 🖇	.D48	- 3	- 47	1.22	41 213	2 1.9	24	.23	.89 🔅 1	7
1313	2	104	2	32	885	71	14	418	3.20 19	5	ND	1	65 .2	2	- 4	91 3	2.44 🕴	.062	- 3	39	1.20	35 .12	2 1.5	53	.15	.69 1	31
1314	2	38	2	- 31	2	56	7	247	2.28 17	5	ND	1	- 43	2	2	106	.59	.048	3	- 46	1.54	78 316	2 1.7	79	.15	1.23 1	13
1315 -	2	61	2	- 31	-2	62	16	377	2.39 50	5	ND	1	89 22	2	3	91 3	2.76	.095	3	71	1.23	44 .16	2 1.6	56	. 19	.70 🔅 1	7
																	2007										
1316	3	101	3	- 29	.2	84	13	277	3.13 32	5	ND	1	42 .2	2	2	97	1.18 🖇	.058	- 3	47	1.14	49 .16	2 1.4	¥1	.12	-69 🔅 1	5
1317	3	98	2	24	3	90	11	246	2.68 755	5	ND	1	28 .2	2	2	75	.95 🖁	.049	4	51	.83	28 .09	2 1.0)3	.08	.31 🔆 1	17
1319	2	93	2	33	1	99	9	332	2.90 62	5	ND	1	46 .2	2	2	89	1.51 🖇	046	3	42	1.21	54 .12	2 1.7	70	. 16	.81 🔅 1	7
1320	2	62	6	39	St.	28	6	273	2.44 274	5	ND	1	46 22	2	2	62	.74	049	- 4	23	1.19	52 10	2 1.5	55	.12	.65	5
1321	1	131	- 4	54	2	43	11	324	3.54 628	5	ND	1	32 .2	2	2	94	1.08 🖇	061	3	49	1.37	69 12	2 1.4	19	.06	1.08 1	16
																	0000										
1322	2	79	- 4	52	.3	- 4	11	604	4.18 102	5	ND	4	43 .2	2	2	92 '	1.53 🖁	.251	17	6	1.13	105 .27	2 1.6	54 .	.08	.64 1	3
1323	2	56	2	72	3	2	11	742	5.35	5	ND	4	74 .2	2	2	100	1.80 🖁	.270	13	3 '	1.51	287 30	2 2.6	50	.13	1.84 🔅 1	6
1324	2	108	2	35	2	103	11	265	3.27 52	5	ND	1	46 .2	3	2	92 1	1.02 🖁	.040	3	47	1.39	51 .16	2 2.0)1 .	. 19	.79 1	7
1325	2	129	2	44	3	4	8	501	4.39 56	5	ND	2	99 2	Z	2	97 2	2.75 🖁	163	8	- 4 '	1.33	145 .23	2 2.1	11	.11	.91 🔆 1	5
1326	2	114	7	52	.3	2	14	669	4.90 151	5	ND	2	99 .2	2	3	90 2	2.07 🖁	171	9	5 1	1.36	132 .25	8 2.2	20	.09	.67	8
																	ŝ										
1327	1	139	2	52		1	9	939	4.29 17	5	ND	1	62 .2	2	2	84 2	2.77	148	8	6	1.19	28 .21	113 1.6	56	.06	.12 01	3
- RE 1323		52	2-	- 70	<u></u>	2-		729	5.20 10	- 5-	- ND-	4_	72		2	-98	1.77 🖗	260	- 13	-2-	1-50-	262	4 2:5	i6	. 13	1.79 -1	9
1328	3	62	3	94	.2	2	11	781	5.07 12	5	ND	2	98 2	4	3	89 '	1.55 🖇	183	9	3 '	1.84	311 .25	3 2.8	37 .	.09	1.83 🔆 1	3
1329	5	165	3	51	4	10	13	410	5.25 203	5	ND	4	96 .2	5	2	116 2	2.02	.220	9	14 1	1.71	149 .25	2 3.7	2	.44	1.94 🔆 1	14
1330	20	97	4	39	, 2	76	14	1000	3.14 48	5	ND	1	129	2	- 4	185 1	5.71 🖁	102	4	67	.82	91 315	2 1.5	iO .	.17	.99	6
1331	15	134	2	50	.2	66	13	656	3.96 33	5	ND	1	87 .2	2	2	149 2	2.97 🖁	174	6	- 75 °	1.35	178 .20	2 1.8	19	.18 1	1.36 🔆 1	12
1332	7	184	2	31	3	115	16	649	4.04 30	5	ND	1	130 .2	3	2	92 4	6.12 🖇	128	3	127	1.30	34 🛄 1	2 2.0)2	. 15	.43 🔆 1	12
1333	3	431	2	22	1.0	99	37	1133	6.75 🔆 8	5	ND	1	143 22	4	2	51 5	5.83 🖗	140	5	39	.72	27 .07	2.9	2.	.07	.39 1	6
1334	3	84	2	41	3	78	17	1018	2.79 173	5	ND	1	115 .2	2	2	98.4	4.68 🕴	049	3	72 '	1.43	68 .11	2 2.1	5.	.21	.95 1	6
1335	7	95	2	24	×.	95	16	740	2.39 121	5	ND	1	70 .2	2	2	62 4	4.14 🕯	062	3	43	.89	27 .07	2 1.0	3.	.06	.39	12
1336	11	193	2	78		86	24	850	6.09 89	5	ND	1	146 .2	3	2	184 3	3.57 🖇	184	- 4	204 1	3.07	171 .23	2 4.5	i0 .	.39	5.25 🐘 1	11
1337	6	100	2	35	2	73	12	930	2.63 99	5	ND	1	112 .2	2	2	73 4	6.69 🕯	061	3	40 '	1.38	66 11	2 2.3	4.	.21	1.18 🔆 1	18
1338	1	133	2	76		65	19	1257	5.34 27	5	ND	1	223 .2	4	2	146 5	5.74 🖁	141	3	135 2	2.53	219 .22	2 4.9	5.	.47 1	2.96 🔆 1	15
1339	2	119	2	74	3	79	24	938	4.82 63	5	ND	1	116 22	5	2	139 3	5.83 🖁	129	3	156 2	2.63	261 .23	2 3.3	4.	.22 2	2.87 🔆 1	17
1340	2	127	3	38		5	13	389	3.93 6831	5	ND	6	50 2	2	2	84	2.67 🖇	241	14	1	1.36	77 13	2 1.6	9	.07	.38	102
() X										
1341	2	246	5	44	.9	2	11	416	5.09 896	5	ND	4	69 _2	3	2	112 2	2.43 🖁	247	14	3 '	1.45	188 .24	2 1.9	7	.10	1.05 🔅 1	13
STANDARD C/AU-R	18	58	38	133	7.0	71	31	1046	3.78 38	20	6	38	53 19.0	15	19	57	.49	090	40	59	.89	178 .09	32 1.9	0	.07	.15 12	460

Samples beginning 'RE' are duplicate samples.

Page 2

-

KRL Resources Corp. FILE # 91-3313

Page

ACMB ANAL	A	l la	BOR	ATOR	IES	LTD		8	52 E	, HA	STIN	os s	T .	VAY		ER B	•c.	v 6	A 1	R6	P	HONE	E(60/	4)2:	53-3:	158 F	AX (sc	-7.53-1	716
									G	eoch	emi	CAL	AN	AL .	J I8	CE	RTI:	FIC	ATI	2									A	A
TT							KRI	<u> </u>	850	urce	<u>s C</u>	orp	•	E BC N	ile	; † ,	91-	339	9	Pa	ge	1								Ē
	<u></u>	<u> </u>	<u>Db</u>	7-		N 8		<u>Me</u>	6 B) 6		<u></u>	4	Th	<u> </u>		sh	••••••••••••••••••••••••••••••••••••••	<u></u> v	<u> </u>		<u></u>	<u> </u>	Ma	<u></u> Ra		<u> </u>		<u></u>	<u> </u>	
SAMPLEN	ppm	ppmi	ppm	pp#	ppn	ppm	ppm	ppa	X	ppie	ppm	ppm	ppn	ppm	ppa	ppm	ppin	ppm	X		ppm	ppn	X	ppn	ż	ppm	X	X	X ppm	ppb
1350	1	161	2	47	.1	58	18	586	3.60	13	5	ND	1	100	.5	2	2	95	3.14	.128	3	109	1.85	236	.18	2 2.0	15 .1	9.	79 2	17
1351 1352	3	239 208	2	50 36	.2	32 38	13 12	459 269	3.67	35 54	5 5	ND ND	1	71 35	·7	2	2	83 43	2.51	.080	2	38 34	1.30	68 9	.08	2 1.3	6. 16.1	18 .) 16 .)	35 1 04 3	16 11
1353	1	264 155	3	170 77	.5	25 59	23 14	550 438	4.98	2 2	5	ND ND	1	140 65	2.1	2	2	132 100	3.32	.137	2	31 53	1.67	205 77	.19	2 2.9	i0 .2	251. 15.	13 1 32 3	7
1354		190	-	50		20		E/0	3.87		E	No		147		-	-	111	2 07	475	-	47	1 #7	451	10	2 2 2	is :	24	an 4	E
1356	i	133	2	165	3	66	13	423	3.22	2	5	ND	1	53	1.5	ź	2	108	2.75	.067	3	57	1.21	68	13	2 1.	6.0	9	24 1	7
1357 - 1358	3	175 133	- 4	99 45	2	70 50	13 9	342 339	3.11 2.64	2	5	ND ND	1	67 63	.3	2	2 2	87 84	2.11 2.24	,058 ,065	4	44 37	.92 1.07	81 80	13	2 1.0	16 - 1 12 - 1	15 .	27 1 26 1	9
1359	2	191	2	25	.4	15	11	293	2.97	2	5	ND	2	155	.6	2	2	63	2.77	.079	6	20	.88	139	.11	4 2.0	63	54 .	54 3	10
1360	1	135	2	28	.3	29 12	9 30	283	2.84	30	5	ND	1	106	.5	2	2	76 148	2.20	.068	5	28 68	1.08	97 210	.12	2 1.0	3 .2	20 .	57 2 02 1	8 55
1362	1	185	Š	45	2	46	18	519	3.38	319	5	ND	1	134	5	2	2	87	4.03	.110	2	83	1.51	189	.16	2 1.9	5.1	19	76 1	18
1363 1364	2	161 212	7	107 40	.5	68 51	16 19	656 513	3.29 3.84	11 35	5 5	ND ND	2	138 127	.9	2	2	116 101	4.55	.081 .115	23	90 113	1.93	190 196	15	2 1.0	18 .1 18 .1	11 1. 22 .	06 1 78 2	9 16
1365	1	116	2	49	.1	39	9	744	3.46	78	5	ND	1	108	.9	2	2	105	4.35	.111	2	126	1.98	204	.16	2 2.4	9.1	15 .	77 t	24
1366	1	135	5	53	.2	42 74	14	725	3.65	450	5	ND	2	98 47	.9	2	2	98 44	3.66	.104	3	91 54	1.82	193	-15	2 2.0	18 .1 14 1	15 . N7	81 1	178 35
1368	- 1	174	Ş	126	<u>i</u>	38	20	641	4.49	16	5	ND	1	118	.5	2	Ž	122	2.65	116	Ğ	66	2.06	230	.18	2 2.	0	21 1.	22 1	10
1369	2	144	2	45		55	21	496	4.74	2	5	ND	1	165	T.U	Z	2	109	2.42	.109	2	89	1.49	152	•14	2 2.4	9 .4		61 1	12
1370 1371	1	146 123	5	142	.5	33 41	20 15	621 528	5.14	2	5	ND ND	1	229 131	2.8	2	6 2	97 92	4.63	-141 -074	2	52 38	1.47	109 205	,13 ,16	2 3.4	3.	52 .' 29 .	56 1 77 1	12 9
1372	Ī	82	3	75	.5	23	14	649	3.70	2	Ş	ND	2	155	1.1	2	6	67	2.88	.090	2	23	1.09	199	.15	2 2.9	ю. К. З	56 . to	62 1 70 1	13 12
1374	1	106	3	342	.2	28	16	559	4.41	17	5	ND	t	186	3.5	2	2	101	2.02	.074	2	36	1.43	160	.15	2 3.4	5.3	59	79 1	10
1375	1	58	3	42	.1	9	8	563	2.87	3	5	ND	1	227	.5	2	2	32	2.70	.086	2	16	.65	112	.06	4 2.	27 .2	24 .	28 1	14
1376 1377	1	75 106	93	69 897	.2	24 35	15 17	598 622	4.16	37	5	nd ND	1	168 128	1.2	32	2	79 87	3.11 3.17	.094	2	32 56	1.25	117 88	.13	2 2.9	7 .2 7 .2	51 . 51 .	39 2 67 1	17 60
1378	2	110	Ž	91		44	15	668	4.50	5	5	ND	1	116	1.3	4	2	116	3.09	.069	2	55 30	1.49	190	.14	2 2.	16 .1 18 .2	26.	75 t 81 t	13 20
1319			-					412	4.30			40					-		3.10									·	,,	105
1381	1	119	5	59 52	ż	18 14	- 67 - 9	388 406	5.22	37333 %	5	NO NO	1 - 1	110 97	.	4	2	83 96	2.38	.065	Ž	29	1.42	50 92	16	2 2.	N .	19.	40 56 1	13
1382 1383	1	209 143	4 2	39 43	.3	21 21	19 20	452	4.65	5602 6555	5	ND ND	1	111	- <u>7</u>	2	23	95 115	2.53	120	2	32 39	1.75	115 163	, 10 14	2 2.	12 .1 19 .1	20. 28.	47 1 95 1	94 124
1384	Ż	64	3	39	.1	24	12	618	3.85	48	5	ND	ī	187	.5	Ž	8	102	3.28	108	ž	36	1.65	225	.15	2 3.	9	28 .	77 I	16
RE 1380		- 112	· 5	37		16	63	377	4.98	27191	5	ND	1	105	.5	2	2	78	2.85	.056	2	21	1.35	82	.07	2 2.	5 1 - 2	19.	44 1	198
STANDARD C/AU-R	18	57 57	2 37	41 127	6.8	55 67	14 28	743 995	5.50 3.90	58 36	- 5 18	ND 7	1 35	186	17.6	15	19 19	91 54	4.90	.155	37	75 56	1.89	169	.08	33 1.	<u>.</u>	05 .	13 13	450
		1 CP	• .50)0 GR/	UN SAMI	PLE I	S DIG	ESTE	D WIT	1 3HL 3	-1-2	HCL-H	NO3-1	120 A	r 95 o	EG. C	FOR	ONE I	HOUR	AND IS		ITED 1	ro 10	ML V	ITH WA	TER.				

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPS - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u> Aug 16/91

DATE RECEIVED: AUG 13 1991 DATE REPORT MAILED:

·Mm 1.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY.

44

KRL Resources Corp. FILE # 91-3399

SAMPLE#	Ho	Cu	Pb	Zn	Ag	Ni	Co	Hn com	Fe X	As	U	Au	Th	Sr	Cd	Sb Domi	Bi	V	Ca ¥	P La X Dom	Cr	Mg	Ba	TJ T	B AL	Na X	K	W Au*
	PP	Phan	PP:	PP	2002000	PT					PPro	PP	P-P-IN	P7***	<u></u>	P7	PP**	PP		<u></u>			<u></u>		PP-m			<u>9 7 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -</u>
1386	2	163	3	70		32	18	921	5.11	39	5	ND	1	138		2	2	140	4.47 11	5 2	74	2.11	266 🎆	12	2 3.20	.22	. 86 🖗	28 P
1287	1	124	ī			36	18	548	5 00		ŝ	NO	i	156				123	2 42 0	55	62	1 73	233	16	2 3 40	31	85	27 yr
1207		01	2	sõ		24	17	672	5 42	840	ś	MD		152		5	2	139	1 40 017	28 5	20	2 06	174	27	2 3 73		1 35 🖗	88
1300		73	2	- 27		40	44	700	J.76		ž			470		5		130	4 44 0		70	3 55			2 3.13		• • • • • 8	
1389		30	4	70		19	10	700	3.31		2	NU		120		4	2	147	1.04 200	28 5	41	2.33		20	3 4.30	. 20	1.22	
1390	1	128	3	44		24	18	212	4.01	OU.	2	NU	1	155		2	٤	77	3.00 SIL	X 4	26	1.42	- 117 💥	10	ده. ۲ ک	. 43	🛞	86 ×
			-								_					_	-		📖	÷.			🏼				&	. 2005
1391	1	93	2	- 46		23	11	407	3.66	34	5	ND	1	101	33	2	2	- 86	2.18 400	4	30	1.38	158 🎇	17	2 3.09	.23	.52 🛞	<u> 1</u> 3
1392	1	107	- 4	- 54		- 19	13	558	4.79	53	5	ND	1	110	333	2	2	119	2.52 00	6 2	- 34	1.93	248 🎇	21	2 3.23	.23	.72 🛞	<u>// 1</u> ?
1393	1	79	- 3	60	88 , 2	- 19	- 14	468	4.42	65	- 5	ND	1	117	.2	2	2	120	1.90 07	0 2	- 37	1.73	275 🛞	20	2 3.29	.26	.75 💥	SE 25
1394	1	108	19	78	387	- 44	13	1015	3.89	3342	5	ND	1	106		2	2	70	7.49 11	5 2	42	1.34	152 🎆	09	2 1.85	- 12	.45 🐰	* 4 3
1395	2	110	- 4	37	3 3	39	14	499	3.94	20132	5	ND	1	60	2	2	2	77	2.11 07	9 2	31	1.18	84 🖏	11	2 1.91	.15	. 17 🛞	#E 11
																				22								
1396	1	114	3	36		42	15	453	3.43	38	5	ND	1	82	2	2	2	63	2.61 07	2	32	.91	232 🖉	14	2 1.80	. 18	. 50 🚳	83 tí
1107	1	80	2	10		44	15	413	1 04	811A	Š.	ND	i	305			2	104	2 58 1	23	70	2 24	311 8	17	25.08	50	1 45 🖗	88 i
1377		107	2	28		7.9	41	4/5	1 58	Sen.	é	ND	-	127		5	-	07	7 10 002	78 5	40	1 /7	170	12	2 3.00			
1370	1	102		70	38 S.		- 17	714	3.30					424		-	2	73	J. 10 501	S (77	4 /7	12.8		7 4 66	- 36	· 70 🛞	
RE 1403		194	2	. 20		22		(50	2.01		2	NO.		121		2	~	37	4.04 21	2 (1.43	/70 3		2 1.00	. 14	.29 💥	2016 19 2016 1
1399	1	60	2	eu	88 5	24	10	ODA	3.04		2	ND	1	140		ſ	2	102	1.99 200	6 4	40	1.04	- 4 JU 🛞	IX.	2 3.31	.32	1.33 🛞	22 X
			-				•			<u>2002</u>	-					-	-		🕅	× .			🖉					##
1400	1	56	2	40	2 - 2 -	31	8	609	2.61	74	5	ND	1	64	.5	Z	2	65	2.38 100	E Z		1.16	୨୦ 🎇	12	5 1.67	.05	.25 🛞	<u> 2</u> 11
1401	1	150	- 3	62	 6	61	19	844	4.64	40	5	ND	1	160	.9	2	2	118	3.93 👔	2 2	138	2,18	100 🛞	14	2 3.33	.21	.31 🛞	<u> 17</u>
1402	7	- 71	- 3	12	2	85	9	680	1.78	122	8	ND	1	119	 2	2	2	47	7.74 213	<u>78</u> 5	35	.30	- 14 🎇	07	3.55	-08	.04 🛞	<u> 17 (j. 17</u>
1403	1	142	- 3	39	88 S.	97	24	732	4.82	8105	5	ND	1	155	1.2	7	2	101	4.15 👯	38 2	35	1.45	66 🖏	10	2 1.91	. 14	.24 🛞	2 2 2 1
1404	35	234	5	527	.9	153	17	744	5.01	815	7	ND	2	205	5.8	3	2	313	5.14 1	9 2	122	1.12	110 🏼	11	Z 1.80	.21	.61 🐰	×1 2/
																			800	<u> </u>								
1405	1	118	2	40	22	123	12	411	2.84	13	5	ND	1	83	3	2	2	93	1.86 04	78 2	50	1.03	62 🖗	11	2 1.81	-19	.48 🛞	2 2(
1404	1	285	2	45		51	20	547	E 43	8. 77	ŝ	MD	i	210	44	ī	2	110	3 57 81	28 7	72	1 81	243	18	2 3 05	51	08 🕺	1 II II II II II II II II II II II II II
1407	1	154	Ē	28		02	14	452	1 27	8.7 f	Ę	10	i	130		Ē	2	0.	3 42 804	ž,	18	. on	77 🖉	10	2173	10	51	876 V
1/08	2	142	10	41		102	17	490	2 90	8. de 1	É	ND		1.30			2	01	2 15 0	2	50	1 12	71 🕅	44	2104	21	52 🕅	88 ii
1406	5	102	17			146	10	546	3.00	A 70	2	ND		110				494	3.13 200	26 2 Al 3	-0	1 77			7 4 76	-61		2010 - 10 2010 - 10 2010 - 10
1409		121	0			115	12	202	4.00		2	NU	1	103		f	۲	100	2.01 303	-	00	1.33	- 7 1 💥		2 1./4	- 12	.00 🛞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			-	-		-				882	-		-			-	•	-	📖	×.	-	• •	•				~ ~ *	. 622
1410		15	2		28 K	5		2076	.58	<u></u>	2	MD	1	1008	89 - 2	2	2	7	25.50 .00			- 10	X 🚿	UT	4 .12	.02	.00 🛞	84 .'
1411	1	134	Z	55	88 B I	55	16	849	4.29	23	5	ND	1	208		- 3	2	153	3.97 11	2 Z	70	1.97	Z60 🐰	16	2 3.13	.30	1.49	8 1 1
1412	Z	157	32	63		103	- 14	398	3.65	10	5	ND	1	97	20 - 5	2	2	103	1.58 00	8 2	- 54	1.19	- 74 🏼	18	3 1.78	- 19	.54 🖉	
1413	1	120	9	- 27	 6	113	13	507	2.98	38 S.	5	ND	1	- 72	363	- 2	2	63	2.16 0	5) 2	39	1.32	- 30 💥	08	3 1.47	-09	.33 🏽	<u> 17</u>
1414	2	116	- 14	24		125	13	420	3.02	8888	5	ND	1	80	×.	5	2	89	1.48 👯 🛈	9 4	67	1.19	- 47 🎇	11	3 1.30	.11	.47 🏽	
										3 1000																		
1415	2	120	2	11		89	13	841	3.36	316	5	ND	1	111	2 Z	2	2	64	4.49 .08	9 2	42	.96	22 🕅	06	2.99	.07	.28 🛞	#E 1'
1416	2	112	2	17	100 f	136	12	404	2.97	2017	5	ND	1	80		2	2	93	1.46 05	8 2	61	1.20	71 🕅	11	3 1.72	. 16	.58 🕺	84 1 7
1417	1	108	2	18	200 ž	102	10	847	2 61	201 P	5	M	i	106		- 2	2		4.13	2 7	36	1.06	4 🖗	08	3 1.49	. 11	.31 🖗	2 1í
1618	1	113	ī	20	100 Z	105	12	611	2 88	27 ×	Ē	MO	i	70		5	5	76	1 09		50	1 31	- 1 8 🖗	ng	3 1.54	. 15	50 🕷	28 i
1410		163	11	10		187	17	301	1 07	852	Ĩ	20	-	13		5	2		1 07 80	6 5	10	1 05	77 🖉	04	1 08	05	27	
	•	143		17		101		201	3.45			-		JC		5	4		1.01 (0)	× *	37	1.03	20		5.70	.43	•••	
1420	•	77	•	34		04	-	207	9 99			Line.		74		•	-	60	• 14 3	- 1			- <u>-</u> 💥		4 OF	64	- <u>10</u> 🕺	1) 1) 1)
1/01		13	y	21	88 Z	00		343	2.66	8 ()	2	NU	1	- 30		<pre></pre>	Ļ	50	1.40 303		2/	.07	- <u>6</u>	UQ Ad	· · · · ·	.00	. 17 8	
1961 87400400 8/4	2	155	0	22	28 B	40	16	259	3.18	21 S	ž	NU	Ţ	- 24		4	- 5	55	2.07 .00	5 Z	35	.82	70 💥	02	2.19	.05	. 14 🐰	26 ,- ¹
STANDARD C/AU-R	17	62		159	<u> </u>		31	1098	4.00	<u></u> 42	15	6	40	52	18.9	14	21	57	.50 0	<u>9 40</u>	59	.85	18Z 🕅	UY.	35 1.99	,06	.12 🛞	<u>ar 47</u>

Samples beginning /RE/ are duplicate samples.

4

Page 2
AA

KRL Resources Corp. FILE # 91-3399

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	\$r	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba Tí	B	AL	Na	K L	Au*
	ppa	ppm	ppm	ppa		ppm	ppm	ppm	<u> </u>		ppm	ppm	- ppm	ppn		рря	ppn	ppm			Ppm	ppm			ppa				<u>bbo</u>
1422	30	236	2	26		131	14	753	4.79	506	5	ND	1	93	2	2	2	276	3.33	125	3	106	1.25	52 10	2	1.44	- 14	.36	9
1423	7	170	2	36		71	16	823	6.77	35	5	ND	1	115	882 ·	2	2	125	4.71	315	3	46	1.65	42 12	3	2.00	.16	.67	Ö
14.76	· 1	80	2	47		31	10	571	1.24 8		ŝ	ND	i	104	5	2	ī	126	2 35	183	ž	47	2.26	03 18	Ī	2 06	.24	1 35 88	
1464		121	5	20		80	17	1.04	7 14 8		é	NO	÷	60		2	2	20	2.32	nen	ž	57	4 03	71 245	5	1 74	10	20	÷.
1423	2	147	5	42		00	10	014	3.71		, i	ND		174		5	2	41	2.40	442		73	70	10 000	2	1.20	. /0	44 2000	8 J 8 7
1420	2	113	2	14		73	10	719	2.01		2	ΝŲ	•	110		2	2	04	0.19		3	41	./0	17	2	1.01;	.07	. 10 888	
		404	•	-					*	<u>.</u>	-			490		•	-		~ /-		-			334	•				
1427	•	120	2	- 20	200 5	90	12	590	3. <i>c</i> y 🛞		2	ND	1	135	2	2	2	110	3.42	3008 100		61	1.40	2/ 316	Ę	2.13	.18	. <u>n</u> 🔊	§ IJ
1428	Z	135	- 3	- 32	200 S	98	15	374	5.46 🛞	176	5	ND	1	66	89 2	Z	2	- 99	1.43	039	2	46	1.52	74 10	- 4	Z.02	.17	.51 🔅 🚺	6
1429	1	158	2	- 41		- 19	- 9	480	4.36 🛞	49	5	ND	1	155	Z	2	2	111	2.48	156	5	33	1.82	228 18	- 4	3.30	.38	1.51 🛒	š 4
1430	1	135	6	56	88 . 49	- 16	13	583	4.66 🛞	530	5	NÐ	1	147	.2	2	2	121	2.62	172	- 4	28	1.98	224 17	2	2.89	.26	1.66 📖	8
1431	1	175	- 3	52	3	20	- 14	513	4.73 🖌	52	5	ND	1	160	,2	2	2	112	2.94	165	3	27	1.99	128 .12	5	3.31	.37	1.69 🖉	34
																													Ő.
1432	1	168	2	41	2	19	12	455	4.27	7818	5	ND	1	132	2.2	2	2	104	2.40	150	- 4	42	1.88	108 14	- 4 :	2.93	.27	1.24	26
1433	2	190	2	37	2	64	16	542	4.46	214	5	ND	1	145	2	2	2	94	2.90	113	- 4	35	1.73	109 12	3	2.78	.28	1.37	i 13
1434	3	81	2	24	Ш.	117	10	270	2.69	55	5	ND	1	83	Z.	2	2	94	1.11	040	2	51	1.16	83 17	3	2.22	.27	1_22	6
1435	2	131	5	31	200 ž	35	11	074	2 62 8	748	ŝ	MD	i.	204	805	5		01	7 44	APO	ī	43	1 42	38 810	2	2 12	25	57	í 15
1/3/	2	02		31		18	7	340	3 03	54	ś	ND	i	155	887.	5	5	60	2 16	148	- 2	26	1 43	104 12	7	1 12	78	1 72	Ö
0.61	.	76	-			10	ľ					NW	•			•	-	,,	2.10		-	20	1.00			J. 16			. .
4/77	•	1/7	2	13		40	10	(80	۵ ۲۲ 🐰	40	*	200	•	200		-		107	3 07		2	*7	4 00	•14 MAZ		7 /E	70	4 77 🔍	i a
1437		14.2	~	74		10	10	407	••••		2			207		~		107	2.71		- 2	21	1.00	140 0010	<u> </u>	3.93	.37		
1458	1	150	2	AU.		15	15	473	?. {{	<u>88</u> .	2	NU	1	1/1	<u>\$</u>	2	2		2.1	<u> 1916</u>	2	22	1.77	140 10	_ <u>_</u> _	2.85	.31	1.74	× 7
1439	Z	1/4		- 42		- 64	- 31	433	2.22		2	ND.	1	154	-4	2	Z	151	1.86	1046		92	1.90	14/ 316	2	2.73	.21	1.7	8 18
1440	1	257	- 4	- 52		23	30	700	8.18 🐰	47	5	ND	1	174	.Z	2	Z	188	3.38	.221	- 3	25	Z.08	163 .22	3	3.01	.30	2.22	15
1441	1	165	2	- 58	88 5	27	· 20	1031	5.87 🐰	88	5	ND	1	276	8.Z	2	2	161	7.53	.168	- 4	114	2.16	197 .21	- 4 :	3.58	.37	1.99 🛞	8 13
																													8
1442	1	106	2	- 64	3	28	16	703	5.41 🛞	6	- 5	ND	1	220	 2	2	2	143	3.60	.222	- 4	69	2.33	275 .21	3	4.17	.49	2.41 📖	19
1443	3	169	2	- 47	2	71	23	550	5.42 🖗	34	5	ND	1	150	2	3	2	130	3.69	.188	- 3	145	2.34	169 20	- 3	3.03	.27	1.31 🔍	š 15
1444	2	201	2	52	2	76	21	573	5.60 🖗	21	5	ND	1	130	2. Z	2	2	134	3.05	151	- 3	121	2.49	270 .20	3	2.81	.18	2.08 🔅 1	17
1445	3	287	2	47	3	103	21	523	5.85 🕷	27	5	ND	1	174	.2	2	2	140	3.65	190	- 4	114	2.41	211 21	2	3.17	.32	1.94	8 15
1446	7	132	2	47	2	79	15	482	4.15 🐰	34	5	ND	1	135	2	2	2	138	2.99	125	3	91	2.38	131 20	2	2.76	.24	1.64	6
	•		-			•••	•••		Ň		-		•			-	-				-				-				
1447		132	6	40	80 e	07	13	0AF	3 61 🕷	15	5	ND	1	07	2	2	2	112	1 45	056	4	71	1 84	1 83 812	2	2 41	.22	1.18	87
1448	7	157	ă	10		80	15	577	z oe 🐰	8.6	ž	ND.	÷		80 J	5	5	121	3 74	090	7	80	1 97	104	- 5	2 08	15	1 24 884	ŝ
1440	7	1/0	722	70		47	11	331	J.70 %	88.	2	MD		71	2.	5	Ę,	111	2.34	0000		75	4 40	78 2046		4 83		74	ŝ
1447		140	22	74		20		021	2.22		2	AU No		1			2		3.10	013	2	16	1.00	20 12		4 70	.00	.20	
1430	12	1/0	4	<u></u>	201 - C	21	11	271	3.04 🛞	÷.	2	NU		46	. -	4	4	440	.84	.042	- 1	4(1.30	02 00	÷	1.37	-00		
1451	- 4	100	2	57		72	15	375	5.54 🛞	82	5	ND	1	51	8 Z.	Z	- 4	110	1.47	.U42	2	20	1.32	150 318	•	1.57	.15	אט.ו	
	_		_						8		_		-		282	-	_								_				
1452	Z	195	Z	73		38	18	688	4.Z6 🐰	2	5	ND	1	127	,Z	2	Z	144	4.39	\$143	6	63	1.69	147 .21	Z	1.98	.17	1.14	
1453	2	341	- 4	- 71		- 54	- 30	695	5.68 🚿	82	- 5	ND	1	205	.2	2	2	146	3.40	194	6	104	2.54	201 .23	5	3.18	.29	2.32	7
1454	2	265	- 3	- 54		39	29	682	5.26 🛞	2	5	ND	1	198	2	2	2	136	3.34	.214	6	82	2.15	144 22	6	2.83	.28	1.91 💓	9
RE 1450	14	185	2	- 33	3	59	12	292	3.16 🐰	83	5	ND	1	- 44	2	2	2	- 99	.86	.044	5	- 48	1.45	85 👯 16	- 3	1.44	.09	.73 💓	8
1455	3	241	6	- 68		60	25	621	4.85 🖏	2	5	NO	1	159	2	2	2	127	3.92	168	6	92	1.94	203 22	3	2.34	.21	1.68 📖	9
								-	8							÷		-					-						8
1456	3	309	2	59		100	27	611	5.94		5	ND	1	135	802 2	2	4	190	4.34	131	4	100	2.50	212 .22	- 4	2.98	.28	2.46 📖	9
1457	5	249	2	49		40	17	635	4 40 8		ŝ	ND	i	160	× 2	2	2	162	4. 61	170	6	61	1.98	126 10	3	2.96	.33	1.83	Ś 17
STANDARD C/AIL-P	10	61	37	131	7 8	60	32	1032	3 04 8		1.	7	10	57		14	18	50	2.01	-	70	47	84	178 000	35	1 .95	07	15 11	664
				1471				1446	<u></u>	7.10	19		37			19	19		.=0		37			IT SAVE					

Samples beginning 'RE' are duplicate samples.

ł.

Page 3

ACHE ANALYTICAL ACT ANALYTICA P La Xi ppmi Mo Cu Pb Zn Ag NE Co Ħn fe 🏽 U. Au Th Sr Cđ Sb. Bi Ca Cr Mg Ba T AL Na ₭ 🛞 U. Au# SAMPLE# Ż. X X DOT DOIL DOOT DOR pon DDff ppnt X pon ррт PDm ppm DDM ppm **DDU** x **PDm** DDIR **DDI** X ppm ppb PO/fi DOR 350 1.96 2.44 067 17 1.07 4 1.81 . 19 ND ,3 .41 .2 .2 Ê **%1**1 456 2.26 ND 3.03 2070 57 1.31 2 2.00 .18 .66 .1 507 2.15 3.65 .061 57 1.00 93 310 3 1.67 .17 .62 ND .2 475 2.40 .2 Z 3.05 069 44 1.19 96 .11 4 1.68 .15 ,67 ND 10 714 3.20 ND 1.1 3.08 .074 49 2.04 **%10** 2 1.99 .09 .24 É 22 867 3.67 7.71 126 237 2.44 MD .2 2 2.66 .14 1.35 192 2.44 371 .3 558 3.81 .2 4.90 2139 2 3.14 .24 1.68 ND .2 7 447 2.81 2.44 087 26 1.74 2 1.84 .09 .45 f ND .2 2.81 .06 2 1.31 .13 .11 ŧ. żΖ. 363 2.02 NO 18 1.11 .2 764 4.14 .2 4.54 124 204 2.78 .22 2 3.10 .18 1.67 NO .18 1.26 905 2.63 .2 9.98 101 231 2.05 . 18 2 2.52 MD .2 .2 Ż 999 4.81 332 3.91 335 š1. ND 5.24 123 -20 2 3.87 .15 2.66 102 15 . 485 4.06 2.24 .053 71 1.31 3 1.22 .06 .45 ŧ. ND .2 49 1.92 . 18 2 2.03 .14 1.02 Z 600 5.20 ND 3.22 116 139 3.19 084 71 1.53 . 16 17 519 4.50 .6 2 1.45 .11 .44 Ľ. NO .6 18 605 4.31 133 3.78 .092 73 1.66 2 1.59 8.4 . 16 .06 .69 ND 96 2.39 **1**4 .06 1.7 18 1162 4.10 MD 6.1 127 11.48 096 2 2.30 .79 .3 8 356 2.87 NO .2 Ż 57 2.20 .069 16 1.20 .07 2 1.47 .15 .13 .3 .12 3 1.61 .06 .2 8 964 3.36 6.19 103 49 1.67 .28 ND 3 1.76 .z 668 2.84 ND .2 4.11 2079 54 1.53 . .12 .68 1. 17 821 3.85 5.08 .066 138 2.30 198 . 1Z 2 2.75 .18 1.63 .t. ND .3 26 491 4.82 .2 .3 4.64 137 68 1.04 .14 2 3.88 .46 .53 .4 ND 3 2.45 .24 .2 19 408 5.18 ND 1.37 2085 55 1.41 117 3317 .86 .2 17 474 4.30 .2 2.32 .054 52 1.24 2 2.22 .17 .73 ND .3 4 2.27 398 4.34 .4 3.25 198 .69 .32 .22 ND .4 .91 13 .23 529 4.77 3.72 .066 3 1.86 .49 NO 1.2 ŧ έť .22 2 .99 .10 713 2.83 ND 7.31 3103 .03 .95 ×12 .2 701 3.92 .2 4.88 065 2 1.83 .17 .50 ND 44 1.24 .Z 3.26 .063 **8 15** 2 2.68 .27 .61 .1 588 4.21 ND 27 550 5.83 3.83 161 51 1.58 2 4.18 .44 .77 ND .3 .2 620 5.78 Z .Z 4.30 174 82 1.66 ×15 2 4.51 .44 .68 ND 66 1.65 3 4.44 .36 787 5.47 5.98 166 .14 .47 1.0 ND Ż 646 5.20 ND .3 3.37 115 54 1.31 121 2.14 2 3.24 .37 .70 .4 929 4.44 .8 38 .99 .06 2 3.90 .49 .26 6.24 ,080 ND RE 1487 50 1.57 117 .45 .76 Ť. 550 5.79 ND 3.81 316t 5 4.17 :3 .07 943 4.34 ND 1.0 6.15 100 44 1.14 4 3.87 .47 .33 15 809 4.31 4.74 .063 .84 3 1.77 .21 .06 ND .2 .06 STANDARD C/ALI-R 135 7.2 32 1087 4.03 51 18.9 .88 177 .09 .50 .092 35 1.91 .06 .16 🛞 **11**

<u>Samples beginning 'RE' are duplicate samples.</u>

KRL Resources Corp. FILE # 91-3399

Page 4

44

KRL Resources Corp. FILE # 91-3399

¥

ACHE MINL TTICAL																															
SAMPLE#	Mo	Cu	Pb ppm	Zn pp#	Ag	Ni ppm	Co ppm	Mn ppa	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V mqq	Ca X	P	La ppm	Cr ppn	Mg	Ba ppm	TI X	B ppm	AL X	Ha X	K X	V. ppa	Au* ppb
	+		<u> </u>					<u> </u>	ž.		<u> </u>									- Alexandre											
1494	2	95	6	36		41	12	907	4.24 🕺	S. 5	5	ND	1	223		2	2	- 35	7.40	.042	2	- 33	.55	- 16		2	1.50	.16	.07		13
1495	1	100	3	52		39	23	696	5.58	6	5	ND	1	259	8 . 2	2	2	98	4.33	202	2	69	1.45	179	817	3	3.74	.42	1.18		5
PF 14964	1	132	7	33		38	24	543	5.44	S. 5	5	ND	1	263	2	2	2	74	4.38	188	2	60	1.15	147	317	2	3.73	.42	.78	886	12
1406	5	125	20	69	200 S	47	12	802	3.86	S. 5	5	ND	1	164		7	2	70	6.60	116	3	39	.68	- 33		2	1.63	.20	.21		5
1496A	i	135	9	35	X	39	24	554	5.48	8	5	ND	İ	261	.2	5	Ž	75	4.53	. 193	3	61	1.17	148	.16	2	3.77	.41	.78		15
1497	1	244	6	30	2.7	35	23	556	6.26	6	5	ND	1	224	.2	2	2	88	4.75	. 195	2	58	1.28	122		3	3.44	.35	.79		13
1498	2	161	7	42	×5	- 44	23	526	6.01		5	ND	1	189	2.42	3	2	110	3.11	197	- 3	108	1.87	- 117	. 18	2	3.79	.32	1.40		16
1499	Í 3	106	7	37	88 S	32	19	413	5.11	2	5	ND	Ť	190	3.3	2	6	88	2.64	218	- 3	65	1.43	125	815	2	3.43	.32	.96		16
CTANDADD C/ALL-P	18	57		132	A 0	70	32	1038	3.05	27.	17	7	37	49	18.7	15	18	56	-48	090	37	58	.88	177	2D9	- 33	1.88	.06	. 15	20 43 .	480

Samples beginning 'RE' are duplicate samples.

ACIAB ANT.I		L LA	BOR	ATOR	IES	LTD	•	8	52 E	- HA	STIN	iGs	st.	VÞ	< Tv	ER I	s.C,	- ve	6A 1R6	:	PJ	IONE	(604	1)253-31	58 FAI	(6r	53	-1716
44							KRI	L R	G eso	EOCH Urce	EMI S C	CAI	. Al).	NAL. I	.318 ?ile		SRT] 91-	-35	CATE 58	Pac	re :	1						
							1022	- 47	70 Gra	nvitti	sc.,	Varx	couve	r BC	V6C 1\	rs :	Submi	tted	pa: John	N	WATK	INS						
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Hr. ppni	fe X	As ppm	U ppn	Au ppm	Th Ppm	Sr ppm	Cd PPN	Sb ppm	Bi	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba Ti ppm X	B AL ppn X	Na X	K X p	VE Au* pre ppb
1500 1501 1502 1503 TRE 1508	2 6 15 3 2	126 82 82 95 117	5 6 8 6 7	100 105 1434 94 283	.3.4.2.5.8	36 28 69 12 93	20 10 9 6 13	643 1283 814 303 447	5.22 3.33 3.14 2.40 3.10	22 22 2	5 5 5 5 5	ND ND ND ND ND	2 2 1 3	232 255 120 99 48	1.3 1.2 11.0 1.2 3.0	2 2 2 2 2	5 2 2 2 2 2	113 56 141 48 88	4.77 13.50 5.28 2.02 2.02	143 100 078 052 063	54554	84 25 50 12 47	1.90 .67 .83 .65 .97	82 .16 31 .09 36 .12 32 .08 47 .13	2 4.52 3 2.42 4 1.64 5 1.68 5 1.15	.49 .24 .20 .22 .09	.78 .21 .18 .13 .26	2 6 1 10 1 6 1 6 1 5
1504 1505 1506 - 1507 1508	2 26 26 7 3	130 155 319 152 112	8 11 8 3 6	49 173 795 1458 303	.4 .8 .5 .5 .1	13 119 111 92 92	5 13 16 16 13	394 816 903 581 421	2.32 4.31 4.85 4.30 3.02	~~~~~	5 5 5 8	ND ND ND ND ND	4 5 2 1 1	81 104 150 82 45	.6 2.4 8.0 12.5 2.6	2 2 2 2 2 2 2	2 2 2 2 2	47 237 260 140 84	3.42 .(4.72 . 5.41 . 2.59 .(1.97 .(054 109 123 095 062	5 8 6 4 2	12 83 91 71 45	.57 .86 1.05 1.27 .96	23 .08 40 .14 66 .14 60 .18 45 .13	5 1.36 4 1.62 3 1.94 2 1.64 5 1.10	.15 .23 .20 .15 .09	.09 .17 .41 .41 .27	1 2 1 3 1 8 1 4 1 5
1509 1510 1511 1512 1513	3 4 7 8 3	78 129 106 120 129	6 3 4 9 14	131 74 223 3176 390	.1 .3 .5 .3 .3	82 77 89 108 100	9 13 11 11 14	1040 860 1275 1422 476	2.12 3.21 2.70 3.25 3.36	2 5 2 2 8	5 5 5 5 5	nd Nd Nd Nd Nd	1 3 5 3 1	151 210 342 305 81	1.6 .8 2.9 37.0 4.5	2 2 2 2 2 2	22222	58 102 89 66 119	6.93 .(6.56 .(10.18 . 10.18 . 1.21 .(067 061 118 133 063	5 6 6 2	32 47 37 34 57	.74 1.30 .72 .69 1.28	23 .09 26 .12 41 .10 17 .09 54 .17	3 .76 2 1.31 4 1.21 3 1.20 2 1.74	.05 ,07 .11 .07 .18	.14 .22 .22 .12 .43	1 5 1 3 1 3 1 3 1 2
1514 1515 1516 1517 1518	3 2 2 1 1	322 101 117 90 142	24 9 2 2 2	2490 100 60 152 93	1.3 .6 1.2 .7 1.0	105 109 59 72 54	34 16 23 20 25	523 442 717 734 697	7.53 3.72 5.00 4.42 6.19	43 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	, 1 1 1 1	82 63 241 226 195	31.7 1.2 1.2 2.1 1.4	2 2 2 4 4	2 2 4 5 2	70 81 90 113 140	2.97 .(1.11 .) 5.29 . 3.53 . 3.29 .	044 040 134 111 144	3 3 6 3 2	38 39 87 157 102	1.01 1.10 1.44 2.35 2.61	10 .14 28 .13 64 .15 88 .16 57 .16	2 1.79 5 1.37 2 3.35 2 3.86 3 4.03	.05 .10 .40 .40 .38	.10 .23 .29 1.05 1.18	1 4 1 6 1 3 1 4 1 4
1519 1520 1521 1522 1523	1 1 2 1	144 183 118 130 132	2 9 2 6 6	79 37 54 79 301	1.0 .9 1.2 .6	46 35 28 38 83	23 27 24 24 25	640 525 454 468 480	5.28 5.82 5.66 5.88 4.83	22232	5 6 5 5 6	nd Nd Nd Nd	2 1 1 1	172 240 285 275 254	.7 .5 .7 1.1 6.6	4 2 5 7 2	3 3 2 6 8	110 87 116 154 69	5.63 . 4.94 . 3.54 . 3.20 . 5.03 .	144 163 195 183 161	6 4 4 3	66 38 27 52 68	1.90 1.16 1.33 1.88 1.09	68 .14 66 .13 53 .16 47 .17 66 .15	4 3.32 2 3.41 2 3.32 3 4.51 4 3.69	.32 .53 .51 .61 .62	.47 .32 .47 1.19 .42	1 9 1 6 1 21 1 10 1 4
1524 1525 1526 1527 1528	2 1 2 1 1	83 134 87 146 200	5 5 8 8 6	39 79 64 68 45	.1 1.0 .6 1.0 .8	46 34 25 33 26	11 23 19 21 17	326 552 539 669 491	3.51 5.44 4.47 5.75 5.10	22222	5 5 5 5 5 5	ND ND ND ND	1 1 2 2	65 200 291 242 283	.6 1.0 1.3 .9 .8	2 4 2 2 6	25328	63 115 83 124 101	.86 .0 3.13 . 3.59 . 4.18 . 4.68 .	055 155 181 172 186	2 4 5 6	35 41 36 62 42	.96 1.91 1.26 1.96 1.45	71 .12 59 .16 74 .13 68 .15 75 .13	2 1.88 5 3.52 4 3.30 3 4.50 6 4.66	.16 .35 .42 .55 .69	.73 1.13 .47 1.05 .65	1 24 1 6 1 3 1 3 1 3
1529 1530 1531 1532 1533	2 1 1 2 4	173 74 126 148 115	3 8 4 9 13	42 257 63 54 44	.6 .5 .7 .5	23 12 20 68 86	13 9 13 18 13	490 497 627 756 402	4.43 3.22 4.29 5.70 3.77	22226	5 5 5 5 5	ND ND ND ND	1 2 1 1	221 172 205 230 117	,9 5.3 1.3 1.1 .4	4 4 6 3 2	2 3 2 4 2	67 54 91 128 90	4.41 3.03 .1 4.35 4.19 1.58 .1	106 073 116 148 057	5 4 6 3 2	49 26 36 58 52	1.30 .95 1.34 1.85 1.20	55 .09 39 .07 55 .11 65 .14 27 .13	4 3.71 3 2.62 5 3.22 2 3.50 5 1.68	.51 .38 .47 .42 .17	.62 .43 .39 1.02 .41	1 4 1 1 1 2 1 6 1 11
1534 1535 Standard C/Au-R	2 6 19	130 110 57	19 3 38	76 63 128	.5 .1 7.3	80 52 64	20 15 32	750 657 938	4.18 3.32 3.83	2 2 40	5 5 20	ND ND 8	1 1 37	175 136 49	.9 .7 17.2	2 2 18	2 2 21	113 121 57	3.60 .1 3.30 .46 .1	095 107 090	3 2 37	125 85 57	1.98 1.43 .80	76 .14 60 .13 171 .08	2 2.84 2 2.27 34 1.72	.28 .25 .07	.95 .75 .14	1 4 1 35 12 470

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Semples bestming 'RE' are duplicate samples</u>.

Hoy 20 91 BIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: AUG 16 1991 DATE REPORT MAILED:

44

KRL Resources Corp. FILE # 91-3558

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr	Cđ	Sb	Bi	٧	Ca	P	La	Сг	Hg	8a TI	8	AL	Na	K	W A	
	ppm	ppm	ppm	ррл	PP	pµm	ppm	ppin	<u> </u>	<u>ppm</u>	ppn	ppm	topm :	2.5.00	ppm	ppm	ppm			bhu	ppm		hha 🐘 🐱	Phan	_		<u>^</u>	Pierre Pierre	0
1534	5	167	8	71	4 0	63	17	1111	3.78	8	ND	10	131		2	2	136	6.75	113	7	69	1.85	16 .09	4 2.	.74	.24	.76 🕷		7
1537	2	122	š	50		71	13	774	2 52 22	Š	MD.	1	57		5	5	72	3.60	076	Ś	43	1.17	14 08	21	84	18	37 🕅		ż
1520	Ē	107	- 11	42		117	13	721	2 71 77	Ĩ	NO	÷	52		2	5	76	3 66	052	ź	20	1 30	13 802	Ā 2.	00	17	- ĩn 🏼		ŝ.
1220	,	17/		72		77	47	717	7 40		10	1	96 3 85 3		5	5	107	7 44	007	Ĩ	47	1 50	10 312		197 110	75	- 		5
1539		124	2	43			13	121	3.07	2		- 2	02			4	107	3.00		2	77	4 40	77 200		/00 /E	.33	.01		-
1540	2	65	0	40		82	y	000	2.75		NU	2	74		6	۲	- 14	3.71	5U33	2	47	1.10	YU , CC	• «.	.43	. 29	.74 💥		2
1541	4	100	9	44	.2	76	10	602	2.83 38	5	ND	3	120		2	2	99	3.11	.085	- 4	59	1.43	41 .10	4 2.	.82	.29	.57 📓		2
1542	2	90	8	35		68	9	540	2.39	5	ND	2	61	889 4	2	2	65	2.89	053	2	- 43	.95	23	22.	.03	.19	.35 🏼		1
1543	t	92	9	42		66	10	522	2.62	Š 5	ND	1	67		2	2	5 8	2.60	.065	2	- 48	1.10	27 .09	4 2.	.61	.25	.40 🏼		2
1544	2	113	6	41	2. Z	85	10	577	3.10	5	ND	3	92 3		2	2	76	3.26	059	2	48	1.14	32 .09	4 3.	.10	.26	.58 🛞		6
1545	3	105	6	34	888£	73	ġ	590	2.84 18	8 7	ND	1	57		2	2	64	3.62	2053	2	45	.98	15 807	2 1.	.88	.14	.30 🐰		2
12-22	-		-	•••			•					•			-	-	- •		\$7387 2	-		•••				•••	🕅		-
1546	2	132	5	56	31. T	81	14	640	4.19	5	MO	3	102	.9	2	2	108	4.41	.087	5	119	1.71	60 .10	4 3.	.90	.28	.83 🐰	1	5
1547	1	145	2	89		83	20	897	5.22	Š 5	ND	2	143		2	2	132	5.64	118	3	180	2.86	121 213	5 5.	.90	.46 1	1.93 🖗	86	4
1548	3	71	Ā	39		68	10	404	2.38	9	ND	3	30	88 Z -	3	Ž	61	2.23	.054	2	49	.93	17 .06	41.	.16	.06	. 15 🐰	88	3
1540	5	128	Ā	10		87	16	487	3.38 27	ŝ	MO	ī	54		2	2	77	2.98	084	3	53	1.03	25 09	31	57.	. 16	.22		Ā.
1550	5	103	ž	18		~~	12	504	3 04 31	÷	NO.	;	- 44		2	5	60	3 A7	000		40	1 10	20 809	21	81	17	26 🐰		Ř
1550	٤	105	v	40			16	374				~			•	-	0,	3.01		-		,				•••			•
1551	1	- 99	2	54	88 . 2	30	15	787	3.45	Š 5	ND	5	222		2	2	137	7.25	178	7	58	2.06	77 10	4 6.	.44	.70 1	1.15 🖏		6
1552	4	225	4	36	80 Q	74	25	726	6.00	5	ND	2	278	.9	2	2	69	8.49	144	5	162	.86	55 411	34.	.74	.47	.32 🐰		5
1553	3	273	ġ	46	20 7	50	31	704	6.57	ŝŝ	ND	õ	231		ž	- Ģ	113	6.43	169	9	102	1.53	83 11	3 3.	.89	.36	.54 🐰		4
1554	Ā	214	52	73		23	10	1181	4.03 444	ŝ .	ND.	2	137		2	2	120	8.55	128	Ā	60	2.66	16 210	2 2	.81	.09	.07 🕅		7
1555	2	140	84	145	33 A	- 11	24	021	5 40 Min	ĩ	- MA	7	07		5	Ē	178	TRS	84748	š	74	2 17	10	2 1	.07	.15	. na 🐰		ò
	-	100		405				721				-			-	-	120	2.02								•			•
1556	3	245	- 4	66		43	24	479	6.65 130	85	HD	2	126		2	5	120	3.21	169	5	70	2.05	96	22.	.67	.24	.45 🐰		6
1557	3	210	Ź	47		53	23	473	6.28	5	ND	1	187	1.0	2	8	115	4.58	204	7	82	2.03	114 317	24.	.09	.50	1.09 🏽		1
1558	1	126	ž	50	20 7	25	16	613	4.42	ŝ	ND	ģ	123		ž	Ž	128	4.99	8138	14	25	2.01	118 14	3 2.	.61	.23	.84 🛞		7
1550	;	120	2	10		27	10	540	3 44 200	8	ND	ò	08			5	124	4 10	84248	15	27	1.61	A1 014	2 1.	89	. 16	. 48 🛞		5
1540	5	101	17	40	2012 -	21	14	340	7 44 84		NID	.	40		5	5	5	3 11	8081 8	Ť	28	07	14 13	21	. 22	.11	ີ່ດຈຶ່		6
1300		101		QU				320	J			-	07		2	2	16	J. 11			24	.,,			• 2.6	•••	· * / 8		•
RE -1556	. 3	239	. 5	54	800 S.	43	25	460	6.42 +200	ŝ 5	ND	1	124	t.o	2	2	117	3.16	164	6	69	2.02	87 815	· 2 Z.	.57	.23	.45 🕅	81 B	5
1561	Ĩ	160	3	55		19	18	490	5.89	6	ND	Ż	70	88. 6 -	2	5	175	2.64	\$100	5	30	2.57	95 24	2 3.	.08	.24	1.13 🕷		6
1562	(i	15	5	83		Ξ.	15	786	5 50	8 ē	ND	5	141		5	ź	184	3.80	Suge S	7	21	2.65	00 827	2 3.	.03	.32	1.80		2
1543		12		01		é	15	207	\$ 20	8 6	100	Z	128			5	170	3 17	nag	ż	23	2 30	141 270	23	. 44	.27	1.08 🖗		3
1505		82	<u> </u>	71		É	44	822	1 on	Ĩ		- 7	114		5		177	5 25	00770	1	10	2.37 2 nt	150 22	22	54	11	55 🖗		2
1204		24	•	13		2	10	0,2	4.7 0		NU		114		2	£	194	5.0	SUCO :	•	17	2.03	137 3464			• • •			
1565	1	22	7	99		5	17	822	5.67	Š 5	NO	3	104		2	2	175	2.03	108	8	22	2.52	83 35	2 3.	.32	.18	1.30 🖗		2
1566	;	34	2	54	200 5	7	18	565	5.44	i i		ŝ	73	20 B	2	2	169	2.90	103	7	20	2.11	76 29	3 2	.32	-15 °	1.04 🖗		4
1567		11	ž	14		41	Ĭ	550	1 04	2	10	7	58		ĩ	5		4.72	200°	, ž	18	.21	14 810		. 65	.15	.06 🖉	8 1	4
1548		- 74	- 1	22		57		170	3 24			Å	20	223	-	2	69	2 14	007.0		20	1.0	14 00	2	at	13	07 8		Å
1500		10			86	74		4/0	6.40	82		•	07	888 S -	5	4	477	4.11			67 80	4 07		- 34	.73 41	- 13	52 8		Ĕ.
1307	1 11	244	2	27		74	21	209	3.2V		MD	1	10		2	2	15/	1,0/	SVDC)	4	20	1.07	07 .13	Z 1.	.03	. 64	., . 8		-
STANDARD C/AU-R	ZO	59	35	. 131	7.5	68	- 31	1010	3.83	23	7	40	52	17.5	16	18	57	.50	,093	40	57	.92	168 .08	32 1	. 85	.07	. 13 🥈	12 4	64

•

Samples beginning 'RE' are duplicate samples.

1

Page 2

A INB A	TICA	L, LJ	BOR	ATOR	IES	LTD	•	8	52 E	. Ha	STI	IGS	6T .		COUV	'ER I	B,C.	v	5 a 1 1	R6	P	HON	E(60	4)25	3-31	.58 FA'	<u></u>	4)253-	1716
							K PI	. P	G esoi	EOCI	IEM]	ICAI		×	9818 Fila	8 C)	BRT] Q1.	(FI) -37	C ati 21	l Da	ne	7							
										1022	- 47	0 Gra	nvill	e St.	, Van	-π COUVE	r BC	V6C 1	vs		9-	•							
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn sppm	Ag ppm	N S ppm	Co ppm	Mn. ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	\$r ppm	Cd Ppn	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Hg X	Ba ppm	Ti X	BAL ppn X	Na X	K X pr	W Aut m ppb
1569A 1570 1571 1572 1573	9 2 2 2 3	83 98 112 94 154	6 5 10 8 11	46 60 70 74 31	.6 .7 .7 .6 .7	93 33 23 27 88	19 18 20 13 16	519 639 679 581 516	4.18 4.95 5.14 4.15 5.29	9 2 2 2 6	5 5 5 5	nd Nd Nd Nd	1 1 1 1	91 195 195 169 110	.3 .3 .4 .8 .3	2 2 2 2 2 2	2 2 2 2 2	161 86 80 79 44	1.30 2.49 3.07 3.17 3.59	-088 -215 -249 -270 -191	5 6 7 8 7	74 54 44 39 48	1.39 1.56 1.36 1.23 .63	161 147 88 69 20	.27 .19 .12 .16 .11	2 2.10 3 2.81 2 2.39 2 2.34 3 1.45	.18 .27 .23 .23 .18	1.20 1.15 .53 .26 .10	1 24 1 1 1 6 1 5 1 5
1574 1575 RE 1579 1576 1577	2 2 4 5 4	169 171 147 92 116	8 5 9 13	64 84 61 50 64	.9 .8 1.0 .6 .8	16 22 66 79 73	20 18 16 10 14	562 673 709 432 582	5.79 5.50 6.70 3.58 4.79	2 2 2 2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	186 184 185 49 98	.4 .7 .7 .6 .5	2 3 5 2 2	2 2 2 2 2 2 2	105 119 71 82 117	2.95 3.15 4.44 1.94 2.51	.164 .151 .217 .076 .096	5 5 4 5 4	16 44 38 73 76	1.09 1.33 1.12 .83 1.20	124 140 109 40 69	.2D .21 .12 .17 .20	2 2.62 2 2.63 4 3.10 2 1.02 2 1.81	.30 .25 .31 .08 .16	.70 .88 .74 .17 .38	1 3 1 7 1 2 1 3 1 7
1578 1579 1580 1581 1582	4 4 5 2 2	126 149 105 147 155	11 6 14 8 6	60 60 100 53 46	.8 .9 .7 .8 1.0	110 67 84 59 32	19 16 13 18 19	573 702 776 766 638	5.42 6.73 4.22 5.02 5.54	2 2 19 27 6	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	133 184 133 176 162	.3 .4 1.6 .6 .2	5 6 6 5	2 2 2 2 2 2	79 71 54 79 99	3.04 4.42 6.60 5.21 4.08	.129 .220 .104 .087 .105	4 4 2 3	70 39 37 63 35	1.26 1.12 .65 1.27 1.27	105 105 28 60 82	.14 .13 .10 .10 .10	2 2.38 2 3.11 2 2.22 2 2.83 2 3.18	.21 .31 .17 .27 .35	.44 .73 .24 .63 .75	1 7 2 2 2 7 1 4 2 4
1583 1584 1585 1586 1587	3 2 1 2 2	172 133 126 12 312	7 6 8 8 11	87 86 87 63 75	1.2 .8 .8 .1 1.2	36 32 27 9 30	18 11 23 10 25	591 679 953 635 802	5.13 4.62 7.02 3.32 7.42	156 28 2 3 7	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	127 124 148 191 111	1.1 .9 .6 .4 .6	5 3 5 3 6	3 2 2 2 2 2	73 111 153 40 132	4.15 3.29 2.85 3.29 3.28	.073 .091 .244 .082 .184	2 3 5 16 5	34 45 36 19 55	.88 1.38 2.11 1.22 2.02	36 81 154 127 107	.10 .21 .24 .02 .21	2 2.40 4 2.67 2 3.19 2 1.52 2 2.87	.31 .26 .26 .05 .21	.21 .78 1.60 .31 .97	1 27 1 7 1 7 1 2 2 3
1588 1589 1590 1591 1592	4 3 5 2 2	181 121 142 19 16	9 8 9 7 5	54 44 55 46 177	.8 .6 .7 .5 .6	77 124 71 5 5	23 23 14 8 9	578 728 689 600 431	6.46 5.15 4.84 4.07 4.33	4 2 6 3 2	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1 1	145 185 97 153 135	.6 .3 .3 .4 2.5	4 3 2 2 2	2 2 2 2 2 2 2	110 51 113 72 65	3.29 4.32 1.35 1.75 1.50	108 084 064 122 111	3 4 3 9 5	64 68 55 9 9	1.32 1.15 2.16 1.31 1.25	101 80 114 95 85	.20 .11 .19 .26 .22	2 2.83 2 2.09 2 2.24 2 1.96 2 1.83	.27 .14 .14 .18 .20	.78 .74 1.36 .20 .18	1 1 1 2 1 11 1 1 1 2
1593 1594 1595 1596 1597	4 4 5 3	28 71 134 162 92	5 8 9 12 8	103 147 64 50 105	.7 .6 .8 .7 .6	11 51 79 80 62	9 8 13 19 14	510 759 573 512 612	4.22 3.42 4.76 5.45 4.27	2 2 2 2 2 6	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	156 146 137 80 103	1.0 1.9 .3 .4 .7	2 2 2 2 2 2	2 2 2 2 2 2	77 62 107 99 101	1.39 3.47 2.82 2.12 2.12	.108 .089 .103 .077 .069	7 5 3 2	13 46 53 55 62	1.26 1.11 1.31 1.29 1.78	140 64 90 83 137	.26 .12 .17 .12 .18	2 1.94 2 1.69 2 2.16 2 1.68 2 2.48	.21 .19 .21 .14 .16	.81 .60 .72 .64 1.32	1 1 1 5 1 5 1 2 1 1
1598 1599 1600 1601 1602	4 2 3 4 1	107 95 109 121 153	9 7 11 15 8	199 538 72 129 522	.6 .7 .7 .7 .9	86 27 28 45 23	16 14 14 17 19	567 652 713 713 1632	4.25 4.82 4.75 5.26 6.02	52333	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	174 148 107 149 180	2.3 7.3 .2 .9 6.0	5 4 4 3 3	2 2 2 2 2 2	95 106 118 128 108	3.30 2.54 2.86 2.74 11.40	.093 .096 .082 .107 .099	3 3 3 3 2	88 36 39 71 33	1.53 2.00 1.85 1.87 .89	118 141 89 140 37	.17 .22 .20 .20 .19	2 2.93 2 2.95 2 2.54 2 2.90 2 1.80	.27 .32 .27 .36 .24	1.13 1.49 .89 1.42 .17	1 4 1 1 1 1 1 2 3 3
1603 1604 Standard C/Au-R	6 5 18	114 139 59	17 8 39	4710 101 133	.7 .6 6.9	56 47 71	16 14 34	725 615 1045	4.39 4.76 3.98	7 2 41	5 5 17	ND ND 7	1 1 37	96 68 52	56.7 .6 18.3	5 3 14	2 2 18	128 133 55	2.77	.070 .066 .090	3 3 37	49 49 59	1.26 1.51 .89	82 132 177	.18 .19 .09	2 1.71 3 1.69 34 1.89	.17 .16 .06	.62 .89 .15	24 1 1 1 11 480
		ICP THI ASS - S	50 S LEAI Ay Rei Ample	DÛ GR. Ch is Commei Type	AM SAM PARTI NDED I CORE	IPLE I AL FO OR RO	IS DIG DR MN DCK AN AU* A	ESTE FE S ID CO NALY	D WIT R CA I RE SAI SIS B'	H 3ML P LA C HPLES Y ACID	3-1-2 R MG IF CU LEAC	HCL- BA TJ PB Z H/AA	HNO3- B W N AS FROM	H20 / AND > 1% 10 gi	AT 95 LINITE , AG > 4 SAMP	DEG. D FOR 30 P	C FOR NA K PM & <u>Sampl</u>	AND AU 2 es jo	HOUR AL. 1000 eginni	AND 19 AU DE1 PPB ng /RE	S DILL Tectio	JTED W L11	TO 10 MIT BI Licete	ML WI r ICP e samp	TH WA IS 3 Les.	TER. PPM.			

DATE RECEIVED: AUG 21 1991 DATE REPORT MAILED: 1/ 19 27 91.

the second second second second second second second second second second second second second second second s

KRL Resources Corp. FILE # 91-3721

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppn	Ni ppm	Co Ppm	Mn ppm	Fe As X ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P La X ppm	Cr ppna	Hg X	Ba Ti ppm X	B AL ppm X	Na X	K X	N N	lu# ppb
1605	3	145	11	2058	.5	42	15	606	4.44 2	5	ND	1	68 2	4.5	2	2	85	2.43 .05	3 2	38	1.23	92 .11	2 1.52	.13	.41		10
1606	2	97	8	166		35	14	681	3.76	5	ND	1	153 🖇	2.2	2	2	80	3.56 07	18 2	53	1.56	153 12	2 2.46	.24	.78 🕅		5
1607	ĩ	138	Ā	04		43	21	752	5 32	5	ND	- i	105	4.6	5	2	125	3 40 811	5 2	68	2.11	178 16	6 3 56	35	07 🖇		Ā
1409	;	100	ě	19/		43		1174	2 42	É	100		707 8	37A -	5	5	42	40 34 247		74	00	72 00	3 1 00	27	16		ž
1006		100		104		02		1120	3.13	2			303			Ę	52	10.34 -17	X 1		.70	14 300	3 1.77	. 23			4
1609	4	79	Y	304		28	D	1010	2.10 2	,	WD	1	200	•••	2	2	20	y.47 .12		22	.09	Y	4 ./0	-05	.00		3
1610	1	115	5	292	6	30	21	1090	5.12 10	5	ND	1	261	3.0	2	2	147	5.32 19	5 3	46	2.27	136 13	5 4.12	.44	1.06 🖗		8
1411	· •	112	ō	1708	200 X .	46	21	1048	1 78 21	, Ř	MD		108 1	10 1	2	2	100	4 40 812	5 2	111	2 23	154 14	3 3 30	20	1.10		7
1617	. <u>.</u>	475	- 24	1522		74	40	974	1 10 22	Ě	ND	5	407 4	161	5	5	107	3 68 019	2 7	90	2 27	104 842	3 2 71	18	66		12
1012	ç	123	21	1522		70	10	010	4.4U 000	2		2	107 3		-	5	102	2.00 .00		07	2.27		3 2.71	. 10	.77		12
1613	1	85	15	520	. 5	51	17	1416	4.12 0019	>	ND	1	100 §	2.2	2	2	89	5.48 .08	<u> </u>	74	4.41	4/ 8231	2 2.40	- 15	. OX 🛞		11
1614	1	39	6	116	.3	11	7	738	2.14 2	5	ND	1	67		2	2	35	2.40 .05	6 3	11	1.08	14 .05	5 1.56	. 16	.31		7
1615	z	74	6	81		28	11	925	2.95 2	5	ND	1	70	.8	2	2	46	3.01 .05	0 2	18	1.34	17 .07	3 1.94	. 18	.56		6
1616	Z	103	9	101		78	16	878	3.50 16	5	ND	1	55 🖁	141	2	2	82	2.46 .05	1 2	40	1.52	20 8311	2 1.77	. 15	.67 🕺		19
1617	2	72	6	50	3	81	14	1264	3.30 2B	5	ND	1	113 🕴		2	2	89	4.21 07	8 2	63	1.76	36 12	2 2.06	. 16	.93 🖗		7
1618	2	- An	ž	51	388 T -	57	13	1367	7 77	ŝ	MO	÷	302			2	104	6 51 10	2 2	84	1 81	54 12	5 3 00	26	1.04 8		10
1610	5	77		77		47	2	1.007	1 0/	, i	ND		260 8		5	5	20	2 47 04		44	64	34 75	2 4 77	14	22		44
1019	۲	22	-	23	200 +6	14	0	009	1.74	,	нD	•	279		٤	2	20	3.0/ 204			.70	20	5 1.11	. 10	. .		••
RE 1624	2	207	6	292	.9	76	35	825	5.63 11	5	ND	1	86	3.1	2	2	82	6.11 10	4 3	84	1.59	105 212	3 1.53	.06	41 🖇	883	10
1620	2	65	4	47	388.3	69	15	838	3.10 37	5	ND	1	336		2	2	73	2.98 .06	2 2	48	1.30	30 0011	4 2.02	.17	.63 🖗		16
1421	1	22	7	20		25		501	2 07	Ē	MD		RC S	•		5	11	1 44 00	2 7	20	1 27	27 00	5 1 05	16	43 8		0
1021		22		37		10		271				-			-	5	77	F FF 07		27	4 02	- 37 OAE	/ 4 73	- 00	74 8		470
1022	1	80		19		49	10	884	2.49 1431	2	NU	!	YO		2	2	- 20	2.22 .03	<u>(</u>] 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.92	21	4 1.32	.09			139
1623	2	81	9	375	8 . 5	82	9	602	2.02 41	5	ND	1	- 44 0	2.5	Z	Z	55	2.21 .04	5 3	55	1.04	48 .09	2 1.05	.ഗ	. 15 8	les I	Ŷ
1626	2	222	.5	330	o	81	36	870	6 00 312	5	ND	1	82	Z Z	2	2	84	A 10 11	2: 4	88	1.68	116 🕅 🕄	3 1.50	.06	. 45 🖞		15
1425	2	265	<u></u>	100		20	10	800	E A1 2017		10		- 0C 3		5	5	4/4	/ 2/ 54/	2 7		2 40	443 236	2 3 80	17	14		6
1023		203	~ ~ ~	1200		47	19	690	3.71	2	NU	<u>'</u>	- 12 3	Y.C	2	2	141	4.24 .14	2	02	2.07	102 3321	2 2.00	. 12			
1626	- 3	245	- 19	105	શ્રીક્રી_	50	20	200	4.95 🔅 3		ND	2	45 §		Z	2	90	2.48 211	2 B	60	1.82	21 219	9 1.79	.05	- - 2 §		0
1627	- 3	180	12	62		65	15	- 439	4.79 2	5	ND	2	28 🔅	.5	2	2	- 97	1.07 107	1 7	70	1.80	58 🤶 18	4 1.73	.07	.38 🖇		6
1628	3	137	4	36		66	15	460	3.87 2	5	ND	1	29	.5	2	2	69	1.95 .06	85	59	1.26	21 .13	5 1.14	.04	.12		7
1629	3	185	9	56	.9	98	31	512	5.20 2	5	ND	1	43	.8	2	2	75	2.88 .07	1 4	69	1.52	22 .11	2 1.30	.05	. 15 🖁	1	16
1630	1	229	3	87	6	108	21	772	5.56 2	5	ND	1	49	_9	2	2	129	2.64 14	3 4	183	3.35	68 8218	2 2.97	. 10	.48 🖇	3884	2
1631	Ť	- 45	ž	52		64	10	502	7 4A 88 7	, E	ND	- i	20	1	5	5	107	07 07	5 6	70	2.21	0 817	2 1.95	_07	. 06 🕺		6
1677	5	40		85		24		502	7 00 000		415	-	41		5	5	100	/ /3 45	~ E	17	3 78	34 0018	2 2 27	10	12		ž
1632	2	07	2	02	88 8 2.	- 30		004	2.07 C	2	NU		04	-2		<u> </u>	140	9.46 312		41	2.30	20 210		. 10	- • • • • · · · · · · · · · · · · · · ·		
1655	3	53	2	96	33 .2	65	10	814	4.48 Z	5	ND	3	69	-8	2	Z	146	3.69 .10	10 4	126	3.39	42 234	2 3.01	.09	.20		•
1634	11	61	2	64	.3	71	8	583	2.43 8	5	ND	2	51	.5	2	2	96	3.71 .09	1 6	84	1.59	29 .13	3 1.39	.07	.24	1	11
1635	15	114	2	88		57	14	929	4.30 811	5	ND	1	70 🔇	-7	2	2	194	5.90 12	4 4	143	Z.72	66 316	2 2.54	.09	.45 🕺		16
1636	1	94	2	74	88.3	35	21	760	4.98 48	5	ND	2	72		2	2	134	3.09 12	8 4	91	2.60	230 .23	2 2.70	.10	.8 0 🕺		16
1637	i i	04	2	77	100	30	16	802	4 97 47	Ē,	ND	ī	101	6	2	2	143	3 72 41	1 4	70	2.53	282 25	2 3.44	.20	1.40		19
1638		107	5	70		25	20	OOL	E 17 220			-	84	4 6	5	5	167	4 72 247	2	97	2 67	167 26	3 2 00	11	RO		37
1020		107	2	10		33	20	703	J. 12 39	2	NU	1	00	1 . V	2	E	143	0.25 (1)		မာ	£.03	101 .20	J 2.77		.07		
1639	1	- 99	2	89	.3	36	18	963	4.90	5	ND	1	116	8	2	2	147	5.16 .14	3 4	91	Z.46	307 .28	2 3.41	.17	1.45		10
STANDARD C/AU-R	18	57	- 38	133	6.6	69	31	1050	4.06 39	20	6	39	52	18.8	16	19	55	.47 .09	3 37	58	.90	187 .09	34 1.92	.05	<u>. 15 §</u>	13 4	460

Samples beginning 'RE' are duplicate samples.

ł.

ACHE AN	- ICA	LA	BORI	TOR	IES	LTD		. 8	52 E	. на	STI	168	6 T.	VIN	couv	er i	8.C.	. V	6 a j	K6	jel og te l State (1995)	HOM	IE (0(J 4) 2	53~3	156 r	~ (4	u a j z	ر د ر .	110
AA									G	eoci	iem]	[CA]	A	£ ,	318	C	3RT]	[FI	Cat	e 👘									A	A
							<u>KR1</u>	<u>; R</u>	850		<u>98 (</u>) <u>.</u>	r 80	File	; †	91- Sidmi	-37	80	P	age	1								È
		<u></u>	<u></u>	<u></u>		<u></u>										<u></u>		<u></u>			<u>.</u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>		
SAMPLE#	No ppna	Cu ppn	Pb Ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Nn ppm	Fe X	As PPm	U ppna	AU ppm	Th ppm	Sr ppn	Cd ppn	SP PDM	Bi ppm	v ppm	Ca X	P X	La: ppm	Cr ppm	Mg X	Ba ppm	×11 X	ppm X	Na X	K X	pbw	Au* ppb
1640	2	205	2	40	.6	24	8	433	3.94	2	5	ND	1	79	.2	2	3	71	2.04	.065	3	50	1.41	72	.11	2 2.34	. 19	.87	1	7
1641		146	2	69 210	1	35	20	934	5.59	- 8 - 7	5	ND		117	4 Z	4 7	4	137	4.22	3140 081	4 5	22	2.54	238	24	2 3.30	.20 14	2.65		6
1642		25	2	80	85	5	16	1266	5.92	4	5	ND	1	5	2	2	2	102	3.73	1054	ž	16	2.29	18	19	2 2.59	.02	.07		ž
1643A	Ż	82	12	45	.1	29	12	372	2.94	5	5	ND	3	54	.5	2	2	69	1.24	.082	4	27	.76	34	.11	3 1.53	. 16	.22	t	1
1644	Z	114	6	31	.8	34	17	528	4.33	5	5	ND	1	99	.2	2	4	128	1.80	.161	4	86	1.10	55	. 19	5 2.92	.29	.80		3
1645	2	94	6	28	.6	27	16	522	4.02	5	5	ND	1	55	.3	2	2	83	1.25	143	4	81	1.12	43	17	2 2.00	.19	.39		3
1646 _	2	132	10	35	30 S	32	18	356	5.25	2	5	ND		61		2	4	62 33	1.30	0154 01/1	- 5 7	.30 23	.75 94	32 27	212 08	2 1.54	. 18	-23		2
1648	2	70	43	92	1.0	24	9	577	3.15	12	ŝ	ND	1	17	1. 7	2	2	35	.67	.042	3	22	1.23	28	.07	2 1.31	.05	.20	i	3
1649	1	76	5	38	.5	27	9	615	2.18	6	5	ND	1	43	.2	2	2	56	1.15	.069	4	29	.98	30	.13	3 1.55	.11	.28) (1
1650	1	86	5	47	.6	27	7	1141	2.97	6	5	ND	1	66	.3	2	2	67	2.73	. 094	5	26	1.22	83	.23	3 1.95	.06	.72		1
1651	1	105	8	56	-8	50	15	538	3.59	4	5	NO	3	151	88 .3	2	2	71	2.12	2110	6 E	69 78	1.14	107	21	3 3.21	.33	1.09		5
1652	2	- 59 109	6	29 34	.7	12	5 7	359	1.52	5 5	5	ND	1	112		2	2	58	1.76	.070	5	45	.62	40	.12	2 2.02	.17	.26		i
1654	16	104	20	67	.8	53	17	559	3.41	4	5	ND	1	141	4	2	4	143	2.71	.104	6	68	1.09	35	.20	3 3.62	.32	.33	1	1
1655	2	67	28 28	00 68		20	14	765	2.76	7	5	ND	1	26	÷.	2	2	58		-058	- Z	31	1.34	21	09	2 1.54	.07	16		1
1657	1	128	10	93	1.2	31	20	978	6.13	6	Š	ND	1	28	5	3	4	153	.91	.187	4	29	2.35	81	.25	2 2.49	.05	1.26		2
1658	1	85	6	39	-7	37	9	452	2.49	4	5	ND	1	51	.3	2	2	56	.89	.040	4	49	.73	30	.11	3 1.31	. 10	.17		3
1659	2	131	80	242	1.5	56	24	699	4.91	6	5	ND	1	76	1.4	2	4	84	1.32	. 128	6	77	1.41	83	.20	2 2.00	- 17	.76		3
1660	2	100	25	- 81 - 177	1.0	27	15	477	4.69	S 5	5	ND	1	72	89.5 8404	2	2	67	1.28	.105	4	44	1.12	- 39 18	13	2 1.80	.17	.50		2
1662		58	15	94	6	12	8	628	4.52	3	5	ND	i	47	1.7	ź	ź	45	1.47	.079	4	50	1.32	20	.10	2 1.41	.08	10		i
1663	Ż	61	11	63	.5	35	11	420	2.85	3	5	ND	1	56	.5	2	2	60	1.72	-091	4	35	.75	28	.11	2 1.11	. 10	. 18	1	2
1664	1	91	6	61	.7	37	20	523	4.94	3	5	ND	ľ	132	-3	2	3	98	2.60	.231	5	51	1.27	110	.21	2 2.20	.21	.70		1
1665		107 44	9	87 11	.8	42	22	494	5.62	2	5	ND MD	1 5	119 70	, D Z	2	2	101	2.21 RA	147	6 16	40 Q	1.30	32 51	27	2 2.13	- 15	.07		1
1667	2	122	17	50		35	18	315	4.56	5	5	ND	í	69	5	2	3	65	1.07	.097	4	30	.99	37	11	2 1.80	1	.28		1
RE 1663	2	59	11	64	.5	36	12	395	2.69	4	5	ND	1	57	.5	2	2	61	1.76	.093	5	34	.77	29	.11	2 1.14	10	.19	1	2
1668	2	108	27	48	1.0	36	14	439	3.97	5	5	ND	1	47	.3	2	3	83	.95	.103	4	37	1.06	65	.19	2 1.61	.11	.37		1
1669		101	2	52	.6	45	20	466	4.68	5	5	ND	1	99	-2	2	2	87 50	1.26	152	6	び	1.66	58	22 10	2 2.5	.2	1.55		5
1671		00 70	7	42	3	20 28	9	415	2.94	3	7 5	ND	2	91	88 3	2	2	- 2 7 51	1.42	065	5	31	1.10	128	18	3 2.6	.21	.84		i
1672	i	82	8	28		31	11	329	3.28	2	5	ND	ĩ	88	.2	2	2	38	1.56	.073	4	30	.78	38	.12	3 1.9	.18	.19	1	1
1673	1	81	Ş	24	.4	38	17	301	3.02	5	5	ND	1	134 125	.2	2	2	62	1.70	.075	4	49 28	.78	77 40	.13	2 2.50	.2	5 .58		1
STANDARD C/AU-P	18	57	39	26 131	6.7	20 70	33	1028	2.02	39	7 19	NU 7	36	53	18.7	14	18	57	,48	088		23 58	.87	176	.09	34 1.8	.06	5.15	13	480
					<u> </u>										<u></u>						<u> </u>								2012 - TAV	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL, AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

91. DATE RECEIVED: AUG 22 1991 DATE REPORT MAILED: HN9 27

KRL Resources Corp. FILE # 91-3780

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	A9 ppm	Ni ppm	Со ррт	Hn ppm	Fe X	As ppm	U Ppm	Au ppm	Th ppm	Sr PPM	Cd PPM	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba Tj ppm X	BAL ppm %	Na X	K X 1	W Au xxm pp	r Ib
1675 1676 1677 1678 RE 1682	1 1 1 1	45 51 255 165 39	4 11 11 3 8	26 35 58 56 39	.2 .4 .9 .8 .3	23 14 44 48 13	10 7 17 22 4	361 466 610 508 424	2.10 2.56 6.18 5.34 2.10	22942	5 5 5 5 5	nd Nd Nd Nd Nd	2 2 1 2 1	100 106 154 147 37	.2 .3 .7 .5 .3	2 2 2 2 2	2 2 2 2 2 2 2	55 49 98 112 42	1.55 1.77 3.09 2.16 1.02	.064 .056 .116 .139 .067	44564	32 23 85 99 22	.70 .85 1.51 1.60 .80	138 .14 104 .14 91 .16 58 .21 49 .09	4 2.10 2 1.88 5 3.43 2 3.28 2 1.48	.17 .13 .25 .30 .09	.40 .53 .41 .84 .35	1 2 2 2 1	3 8 7 4 8
1679 1680 1681 1682 _ 1683	1 1 1 1	36 81 47 39 72	6 4 3 9 2	44 130 49 38 44	.2 .4 .5 .3 .5	12 35 25 12 50	11 14 10 4 15	367 525 564 432 461	2.96 3.90 3.16 2.00 3.76	22424	5 5 5 5 5	nd Nd Nd Nd	4 1 3 2 1	99 106 57 34 167	.2 1.0 .2 .2 .3	2 2 2 2 2 2	222222	51 63 60 39 69	.80 1.38 .99 .95 1.92	.082 .067 .071 .061 .099	7 3 5 4 4	15 44 26 24 61	.84 1.47 1.23 .76 1.07	116 .25 125 .15 146 .20 50 .08 110 .16	2 1.22 2 2.80 2 1.82 2 1.37 4 3.44	.12 .16 .10 .09 .40	.47 .78 .48 .35 .63	1 1 1 1 1 1 1 1	6 2 0 9 7
1684 1685 1686 1687 1688	1 6 3 2 1	97 110 102 83 69	5 6 15 7 6	55 35 50 37 46	.6 .7 .6 .3 .6	39 49 32 29 30	12 13 12 13 14	401 447 559 528 601	2.94 2.85 3.50 2.33 3.62	13 7 7 8 8	5 5 5 5 5	nd Nd Nd Nd Nd	1 2 2 1	64 125 92 61 97	-4 -3 -5 -3 -4	2 2 2 2 2 2	2 2 2 2 2 2	52 51 61 58 75	1.08 2.45 2.61 1.67 1.72	.052 .066 .092 .061 .071	3 5 5 5 3	32 37 30 29 44	.86 .77 1.26 .94 1.16	41 .10 39 .07 32 .07 20 .07 69 .14	4 1.88 2 2.64 3 2.04 2 1.53 2 2.08	.17 .22 .13 .12 .19	.28 .24 .26 .16 .55	1 1 1 1	9 4 8 2 5
1689 1690 1691 1692 1693	1 2 1 3 2	82 75 30 63 96	5 17 17 14 142	49 36 35 61 350	.5 .7 .2 .3 1.7	25 28 10 29 45	11 12 6 9 13	534 623 450 458 895	3.13 3.03 2.22 2.56 4.05	20 10 2 8 32	5 5 5 5 5	nd Nd Nd Nd	3 2 6 1 2	40 127 60 80 99	.4 .3 .3 .6 5.1	2 2 2 8	2 2 2 2 2 2	54 42 47 44 53	1.27 3.76 1.78 1.60 2.89	.055 .070 .069 .057 .103	4 5 11 5 7	25 33 13 22 37	1.24 .85 .89 .92 1.69	43 .05 34 .04 50 .15 30 .07 60 .05	2 1.39 3 1.73 2 1.07 4 1.65 3 1.80	.07 .13 .07 .14 .07	.24 .20 .11 .22 .42		7 7 6 9 1
1694 1695 1696 1697 1698	1 34 11 1 20	105 102 114 132 76	21 21 43 77 29	118 75 224 108 50	1.0 1.1 1.0 .9 1.0	44 65 31 32 53	18 15 18 15 10	668 728 1096 888 780	3.84 3.04 3.82 3.89 2.34	9 17 15 14 34	5 5 5 5 5	nd Nd Nd Nd Nd	2 2 1 2 2	166 54 97 97 79	1.5 .8 3.1 1.3 .6	3 6 3 33 35	2 2 2 2 2 2	52 130 70 76 128	2.61 1.92 3.62 2.69 2.91	.110 .071 .090 .079 .056	8 6 7 5 7	35 27 26 46 41	1.07 1.10 1.54 1.73 1.11	104 .09 37 .05 45 .06 62 .07 36 .01	2 2.27 4 1.32 2 1.88 2 2.24 2 1.24	.22 .07 .11 .11 .04	.43 .22 .25 .38 .22	1 1 1 1	6 4 6 1 7
1699 1700 1701 1702 1703	13 1 1 1	96 75 89 81 90	71 18 9 13 14	865 97 80 120 120	1.9 1.0 .6 .5 .8	50 19 38 23 30	15 10 21 12 13	784 786 959 584 872	3.26 3.43 5.08 3.44 3.49	217 17 11 12 22	5 5 5 5 5	nd Nd Nd Nd	3 2 1 1 2	156 130 150 86 100	13.2 .9 .7 1.3 1.2	62 3 2 5 5	2 2 2 2 2 2	61 36 101 53 53	3.57 2.87 3.27 2.45 3.21	.059 .087 .104 .079 .096	7 8 5 5 5	25 17 86 24 42	1.04 1.22 2.37 1.41 1.40	38 .01 61 .01 59 .04 82 .02 36 .03	4 1.31 3 1.59 3 2.43 3 1.47 3 1.65	.01 .03 .07 .03 .05	.21 .28 .31 .21 .25	1 1 1 1 1	7 6 1 5 9
1704 1705 1706 1707 1708	1 3 1 13 4	108 117 84 88 101	12 17 43 27 37	129 80 375 93 108	.9 .7 1.0 .8 1.2	25 34 23 37 40	14 15 13 13 18	725 622 914 896 756	3.49 4.01 3.58 3.31 3.87	99 59 115 61 27	5 5 5 5 5	ND ND ND ND	2 1 1 1	99 102 116 119 86	1.1 .6 5.1 1.0 1.3	2 2 8 4 3	2 2 2 2 2	55 65 59 59 71	3.07 2.28 3.67 3.28 2.15	.093 .069 .085 .064 .073	7 6 5 4	29 40 23 29 50	1.39 1.16 1.62 1.40 1.74	36 .03 23 .06 34 .02 32 .02 44 .05	3 1.78 2 1.52 3 1.69 2 1.50 2 1.79	.07 .09 .04 .05 .06	.29 .15 .27 .20 .38	1 1 1 1 1	6 4 5 1 4
1709 1710 Standard C/Au-R	7 7 18	121 122 56	39 68 37	135 91 135	1.6 4.0 7.3	37 41 70	16 17 32	950 2125 1036	3.57 4.62 3.92	50 140 43	5 5 20	ND ND 6	1 1 40	89 176 51	1.8 1.4 18.5	6 10 18	2 2 19	45 34 55	2.28	060 .074 .089	4 5 39	16 32 58	1.82 1.81 .87	81 .01 42 .01 175 .09	3 1.57 2 1.03 34 1.91	.03 .02 .06	.23 .19 .16	1 1 1 11 49	7 2

Samples beginning 'RE' are duplicate samples.

ł

Page 2

KRL Resources Corp. FILE # 91-3780

Pag

SAMPLE#	No	Cu	Pb	Zn	Ag	Ni	Co	Nn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Ma	Ba		8	AL	Na	YU	Ard
	ppm	ppa	bba	ppa	ppm	ppm	ppm	Ppm	<u>×</u>	ppm	bb w	bbw	ppm	ppm	ppm	ppm	ppm	Ppm	*		ppm	ppm	X	ppm	i k	ppm	X	ž	X DOR	pob
1711	6	60	516	332	22	65	10	2054	2 77	7/3		LID.																		
1712	71	66	48	413	57	72	20	2325	4.01	275	2	ND ND		101		433	Ž	18	5.10	.049	5	15	1.67	46	201	2	.79	.02	.28 1	19
1713	34	137	77	1213	52	85	15	1230	3 00	00	5	ND		193	 **`₽		Ž	88	5.55	.101	6	21	1.53	71	.01	4 1	.08	.01	.36 2	9
1714	94	119	699	380	37	101	18	1200	4 41	20	2			177	36.3	112	Ž	25	2.70	.055		23	.92	39	.01	2 1	.07	.02	.30 3	11
1715	57	121	53	209		71	14	797	1.01	35	2			123	8.224 Saomo	243	<u> </u>	145	3.55	.087	7	Z7	1.35	53	\$ 91	21	.44	.04	.37 🔅 1	6
				/		••		101	4.03	20		NU)	+	94		15	5	93	2.45	.095	6	25	1.30	45	.01	15 1	.38	.06	.33 1	1
1716	34	96	66	488	4.0	61	14	1986	3.67	30	5	ND	1	150	7.2	57	2	7/	1 54	DEZ.	E	40	4 78				-	~	WX	_
1717	4	77	188	529	1.5	48	10	1943	2.66	10	ŝ	ND	. i	144	8.2	70	5		4.31	.030	2	17	1.20	42	2	10	· <u>e</u>	.04	.26	3
1718	9	91	203	563	2.3	47	12	1710	3.07	37	5	80	i	144		75	5	10	7.13	-000	, e	14	1.30	51		2	-65	-01	-27	- 11
1719	7	57	85	161	1.1	34	15	1592	2.49	42	ŝ	ND	i	268	2 0	16	2	15	2,42	000		45		- 44		- <u>-</u>	.02	.01	·S 1	1
1720 -	2	101	23	245		34	12	572	3.05	7	š	ND	i	54	ः ि1ः≇	2	2	10	1 00	.045	2	12	. 72	57	8001 07	<u> </u>	.బ	.01	.2 1	1
										883 E -	•		•			"	2	37	1.09	.033	•	20	.01	22		3.1	.72	.11	. 50 1	2
1721	2	83	7	388	.5	39	13	609	3.34	7	5	ND	1	64	3.2	2	2	45	1.05	052	4	37	70	76	8 AG	5.1	08	17	1/ .	-
1722	2	46	13	56	.3	16	5	400	1.48	4	5	ND	1	48		ž	2	26	1.28	055	2	26	6R	25	500	R 1	10	. 1.3		
1723	3	20	11	18	.2	11	2	127	.87	2	5	ND	13	15	Ż	ž	ž	5	.35	005	2	11	.09	12	.	2	- 10 TC	.00	. 10	
1724	1	143	8	52	.6	35	11	535	3.01	4	5	ND	1	109	3	2	3	48	1.61	052	ž	36	05	- A0		2.2		20		2
1725	5	92	5	28	.4	34	16	507	3.14	3	5	ND	2	91	.2	ž	3	73	1.33	097	5	46	1.06	48	212	12 1	.43	10	- 46	D 1
													_		882 - 1	-	-				-	40			ite e		. , ,	. 17		,
RE 1/21	2	85	- 4	395	6	40	13	609	3.42	7	5	ND	1	65	3.2	2	2	45	1.04	.052	4	36	.93	75	. 89	5 1	OR	.13	34 1	•
1726	17	82	- 4	29	4	56	17	480	4.62	5	5	ND	1	81	.2	2	2	146	1.52	.092	5	73	1.73	78	21	2 2	36	10	01	4
1/2/	18	133	2	33	 5	56	17	578	4.12	- 4	5	ND	1	99	.2	2	3	137	1.92	.083	Ĩ.	82	1.52	85	22	33	38	. 37	1 02	;
1728	Z	80	2	42	-4	29	11	685	3.45	3	5	ND	2	45	.2	2	2	70	1.11	078	4	43	1.69	103	24	2 2	61	15	1 07	5
1729	5	98	-11	48	.6	35	11	461	4.03	3	5	ND	2	42	.2	2	2	79	.83	.077	5	41	1.43	176	26	2 1	55	.10	.61 1	2
1730	2	15/	74	10							_		_		8 d.															-
1731	2	124	30		1.0	32	11	358	3.71	28	5	ND	2	35	2	2	3	- 5t	1.00	.063	5	35	.78	48	.14	13 .	.92	.10	.16 1	1
STANDARD CALLE	10	42	28	177	1.0	52	13	413	3.26	87	5	ND	2	46	.2	2	2	60	1.50	.069	6	39	1.23	38	12	5 1.	.18	.08	. 19 1	1
STANDARD C/AUSK		06	41	137	7-4	12	52	1148	5.92	42	18	7	39	52	19.0	16	18	59	.50	.099	41	60	.91	183	. 10	32 1.	.87	.07	.17 13	510

Samples beginning 'RE' are duplicate samples.

• • •

ACNE A	TICA	L. LA	BOR	TOR	IES	LTD		8	52 E	. HF	STI	ds	ST.		COUV	ER I	B.C.	. VI	6 a 1	R6		рнон	ie (61	D 4) 2	53-2	3158 FA	X 14	n4) 253	-1716
								4.40	G	eoci	irvi	[CAI	i Ai		181	3 CI	ara)	FI	CAT	e									
							101	R	680	urc	es (Corr).		File		91-	-47	12	P	age	1						ſ	
							1022	- ()	70 Gra	nvill	e St.	, Yan	couve	r BC	V6C 1	៴៵៎៲	Succeifi	:ted	by:	ichn .	I. LA T	kins							<u>-</u>
SAMPLE#	Mo	Cu	Рb	۲n	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bĺ	V	Ca	P	Le	Cr	Ng	Ba	e ti	B Al	Na	ĸ	N Aut
	ppm	ppa	ppi	ppm	PP B	ppi	ppi	ppi	<u>×</u>	PPA	ppm	ppm	ppm	ppm	<u>PP4</u>	ppm	ppm	ppm	<u>x</u>		bb u .	ppm	*	ppm		ppn X	X	X p	n ppb
1732	3	438	44	64	3.0	30	45	419	5.74	6231	5	ND	1	53	.,9	4	8	63	2.36	.081	3	20	1.15	74	.07	4 1.41	.07	. 17	1 140
1733		335	10	40	1.5	29	13	338	4.32	2886	5	ND	1	126	3	6	4	87	2.74	210	3	21	1.18	59 40	10	3 2.53	.27	.19	1 75 1 520
	2	_103	4.		3			-622	4.59		5-	ND		-117-	÷.	<u> </u>		-89	3:38	-21	-10-	7	1:10-	-210		5 2.38	23	1:24	1 - 5 -
1735	1	244	20	38	1.7	- i - 4 -	6	338	3.10	467	5	ND	1	91		2	5	50	2.45	105	4	10	1.02	81	. 12	3 1.57	-13	.18	1 31
1736	2	222	7	29		3	3	267	2.86	22	5	ND	1	141	2.	2	3	51	1.92	113	4	. 10	.92	101	. 19	3 1.69	.20	. 19	1 128
1737	2	249	7	32	.8	9	7	267	3.61	295	5	ND	1	118		2	4	59	1.44	-102	. 1. 3	16	1.07	101	. 19	3 1.78	.21	.22	1 21
1738 -	2	647 107	5	41		17	12	421	5.09	56	5	ND ND		91 120		2	2	73 90	2.55	253	10 11	10	.yo	223	28	4 2.41	.2	1.26	1 1/ 1 B
1740	2	249	9	43	.6	9	15	466	5.55	32	5	ND	4	101	2	ž	. 4	82	2.04	265	10	13	1.10	93	.3	2 2.12	.29	.67	1 22
17/1	1	201	5	30		7	14	530	4.07	812	5	MD	4	113	2	2	x	82	2.66	281	12	0	.98	109	21	2 1.86	. 19	.37	1 58
1742	1	390	- 4	38	₹.	3	15	443	5.07	3	5	ND	4	95	.2	Ž	- ŭ	81	2.60	278	11	8	.96	115	.22	2 1.68	.16	.31	1 12
1743	2	367	5	32	-7	8	13	352	5.07	5	5	ND	4	78	2	2	5	74	2.09	278	12	8	.88	102	.23	3 1.53	.15	.31	1 10
1744	2	2/2 578	6 4	39 2361		37	11 31	408	4.51	3705	5	ND ND	2 1	97 55	30.9	2	6	- 84 - 58	1.70	105	13	10 30	.81	71	.16	2 1.00	.13	.27	13 140
			_								-					-	_					-						_	
1746	2	673	37	56 38		4	17	401	6.30	41	5	ND ND	3	94 101	.6	2	77	72 84	2.66	. ZZ 283	10 11	9	.92 1.01	105- 140	25	3 1.69	. 16	.33	195 134
1748	1	267	7	42	4	1	14	446	5.83	16	Ś	ND	3	108	2	Ž	6	87	2.35	270	10	9	1.06	235	.29	3 2.11	.22	.87	1 86
1749	1	296	4	74	-7	1	14	847	6.79	26	5	ND	3	109	-2	2	4	110	2.44	.259	9	5	1.47	435	.31	4 2.90	.21	2.35	1 92
1750	2	130	2	బ		2	1.5	004	2.92	2D	2	MD	4	120		2	۷	110	1.01	600	11	0	1.47	430	8.00 1	3 3.00	. 24	2.00	• •
1751	1	204	5	43	.5	1	12	494	5.12	11	5	ND	3	69	.2	2	4	91	1.65	.259	10	6	1.30	159	.26	2 1.90	.11	.73 💹	1 21
1752]]	529	51	39	2.3	2	32	1070	6.75 5.85	633	5	ND	23	146	2	2	7	74 88	6.56 2 50	202	11	97	1.15	- 85 - 118	.16	2 1.55	.10	.50	1 91
1754	li	676	23	44	2.4	1	20	379	6.70	161	5	ND	2	68	.	ž	ÿ	74	2.32	.27	9	ģ	.97	99	.21	2 1.45	. 15	.34	1 230
1755	2	336	5	41	.8	2	14	358	5,28	107	5	ND	2	66	.2	2	6	98	1.68	.308	10	9	1.31	147	.27	2 1.84	. 16	.67	1 41
1756	2	272	8	46	.9	1	9	416	4.66	4	5	ND	3	70	.2	2	5	94	1.67	.296	12	7	1.24	251	.30	3 1.92	.17	1.02 💹	1 44
1757	1	287	5	31	.5	1	10	308	4.67	6	5	ND	2	56	.2	2	5	76	1.71	.273	11	8	.93	140	.28	2 1.47	.15	.56	1 53
1758	3	399	3	- 87 - 42	-5	2	13	354	5 14	36	2	ND MD	23	68 88	3 3	2	2	88 04	1.48	204	10	17 8	1.25	171	25	4 1.85	. 10	.64	1 21
1760	Ż	178	5	61		2	8	473	5.22	5	5	ND	3	60	.2	2	2	98	1.22	.257	11	- 4	2.02	327	.31	3 2.59	.16	1.80	1 12
1761	۱.	144	٦	37		64	25	47L	3.84	10	5	MD	1	100	2	2	,	77	3.33	156	2	113	1.39	133	19	2 3.68	.48	. 75 🕷	1 11
1762	i	168	ź	37	×.s	73	21	351	4.27	176	5	ND	i	121	2	2	- 4	85	1.64	116	2	117	1.50	121	.18	3 2.85	.31	.85	1 36
1763	11	.96	3	46	-3	56	15	435	3.64	135	5	ND.	1	154	.2	2	4	82	1.91	157	2	106	2.04	126	.20	3 2.90	.28	1.11	1 45 1 40
1765		246	23	- 36 - 34	2	42 55	20 19	330	4,42	273	5	ND ND	1	170	2	2	6	71	2.13	184	2	81	1.40	131	19	2 2.98	.40	.85	1 106
			-								-		_			_	-				-			402			7/	1 34	4
1767		169 67	5	- 33 - 15		59 73	14 8	352 351	3.67 1.55	271	5	ND MD	1	101 43	2	2	6 2	- 55 51	2.70	052	23	92	.54	104	.06	2.04	. 54	.20	1 11
STANDARD C/AU-R	18	61	40	133	6.7	70	33	1047	4.00	39	18	6	36	54	18.4	15	19	55	.48	.089	37	59	.89	183	.09	33 1.89	.06	. 15	12 450

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNQ3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples Regiming 'RE' are duplicate samples.</u>

DATE RECEIVED: SEP 25 1991 DATE REPORT MAILED: Sept 21/91. .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED B

KRL Resources Corp. FILE # 91-4712

i i S Qilari

				_												~								_			×		200120		
SAMPLE#	Мо	Cu	Pb	Zn	A	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	τı,	B	AL	Na	ĸ	M A	u r
n († 1	· ppm	ppa	ppm	ppm	PPT	ppm	ppm	ppm	*	ppm	ppm	bbu	ppm	ppm	ppn	ppm	ppm	ppm			ppni	ppm	X	bbu	1	ppm	<u> </u>	<u> </u>	X p	P	<u>po</u>
														/=					2 01		47	· .	4 AE	40			. 77	00	- 3 E 🎆		20
1768	- 3	492	15	57	2 1	8	14	426	4.44	192	5	щO	4	42	ાન્દ	2	2	12	2.04	<u> 11 - 1</u>	14	0	1.05	07	610	2		.07	. 		27 / E
1769	2	539	8	59	17	- 3	11	375	3.97	132	5	ND	5	56	1.0	2	- 3	83	2.13	\$185	15	1	1.41	<i>(</i> y	. ZU	2	1.24	.09	. <u>റ</u> 🏼	20	47
1770	- 3	552	11	- 58	1.6	- 3	10	305	3.76	103	5	ND	5	53	1.0	2	3	76	1.57	\$17D	13	10	.94	- 96	19	Z	1.36	.11	.55 🛞	3	41
1771	2	324	16	- 46	11	1	21	291	4.17	482	5	ND	- 4	57		2	6	75	1.68	§ 187	12	1	.83	- 81	8.19	2 1	1.26	.10	.23 🎆	2 I	23
1772	1	409	47	61	2.9	1	20	435	4.13	978	5	ND	3	49	88 .5	2	13	73	2.51	2157	10	1	.97	56	.16	2 1	1.38	.08	.13 🎆	(1) 24	41
	·																		- 1	2003	, 1				****						
1777	4	840	10	53		2	11	320	5.27	202	5	NO.	6	82	44	2	5	65	1.90	166	- 12	- 12	.77	46	-16	2	1.62	.19	. 16 📖	3	49
		577	+2	57		5	10	310	7 97	108		wh.	<u>_</u>		Same Sec.	ā		76-	1.50	\$174	-42-				20		1-40-		:34 🎬		39
		-313.				4		1.14	2 71	126				95		2	ò	40	2 31	466	- 10	1	1.06	. 37	10	2	2.08	.21	. 17 💹	2 5	15
1774	2	132					2	410	3.13	242	2	100	5	20		5	5	74	7 74			25	1 38	10		5	1 01	14	24 🞆	878 -	13
1775 -	2	89	10	- 47		12	8	048	3.13	<u>910</u>	2						5		3./4		5	4	4 74	71	80 .	5	3 EL	40	- E. W		14
1776	3	- 73	9	- 34		- 36	14	1416	3.55	37 D	5	ND	1	164		2	Z	68	(.59	SUDC	2	00	1-21	- 34	8.00	~ ~ ~	2.24	+ 17			10
																					_					_				. See	_,
1777	2	135	15	- 69	88 5	20	16	1114	4.25	1262	5	ND	1	176	88.8	2	- 3	- 96	3.97	144	- 3	41	1.96	69	8 13	2	5.62	.50	1.41		20
1778	1	245	11	43		24	14	1367	3.79	29	5	HD-	1	169	1.2	2	2	- 84	4.32	\$134	2	- 46	1.38	- 64	.12	2	5.37	.37	1.37 🎆	2	9
1779	Ś	87	2	19	2 - C	64	6	1234	2.01	8	5	ND	1	137	8 5	2	2	58	4.24	2059	2	78	.82	45	.08	2	1.97	.07	.44 🏼		5
STANDARD C/ALL-P	18	57	78	124	7 0	71	30	200	3.00	21	16	6	36	50	18.5	16	20	56	.46	.083	35	59	.84	173	.09	33	1.83	.05	.14 👹	13 4	60
JIANUARU C/AU-K	10			,24	<u></u>																	_				_		·			

Samples beginning 'RE' are duplicate samples.

ACME AN	'I CAI	L LA	BOR	ATOR	IES	LTD	•	ं द	52 E	• чА	sT1)	••••	8 4 . See		COB .	. 19.32	u u u j Secos		ess 1911 - San	Kanala sal	tel stale s	90,705	la shekele		(varata		1.2			1.1	avert -
££							<u>KRI</u> 1022	<u>; R</u> - 41	G) <u>8901</u> 0 Gra	EOCI IIC(nvill	HEM] B <u>B (</u> e St.	ICÀI <u>Cori</u> , Van	L Al D. COUVE	N. 1 r BC	BIB File V6C 1	5 C) e f v5	ert: 91- Submi	IFI -47 tted	CATE 92 by: J0	Pa HN J.	ge watk	1 1 NS									
SAMPLE#	Ho ppm	Cu ppm	Pb ppm	Zn. ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	7h ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPM	Ca X	P X	La ppn	Cr ppm	Hg X	8a ppm	Tİ Z	8 ppm	AL X	Na X	K X	V ppn	Au# ppb
1780 1781 1782 1783 1784	6 5 7 6	168 100 207 228 293	3 4 49 2 2	20 27 77 27 34	.3 .2 1.1 .6 .8	89 98 80 114 108	14 8 13 18 19	647 345 746 402 535	3.80 2.24 4.65 4.93 4.86	2 12 2 19 26	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	101 39 70 83 113	.2 .2 .8 .5 .3	22222	2 2 2 2 2 2	74 85 60 57 49	3.41 1.14 3.94 2.56 4.00	.087 .087 .086 .178 .195	2 2 2 4 3	61 69 52 42 34	.86 1.01 .72 1.02 1.10	81 90 29 76 62	.08 ,13 .09 .09 .08	3 1 3 1 2 2 1 3 2	.70 .12 .94 .83	.10 .07 .06 .16 .19	.35 .41 .10 .49 .60	1 2 1 1 2	14 3 13 5 6
1785 1786 1787 - 1788 1789	6 9 14 1 3	182 171 235 191 76	5 25 31 4 6	8 370 81 38 42	.8 3.7 2.5 .3 .2	82 100 205 35 33	14 14 28 14 7	712 1233 817 316 724	3.65 3.33 3.47 3.37 2.40	8 24 250 22 55	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1 1	152 200 108 90 103	.2 2.5 .6 .8 .5	2 2 2 2 2 2 2	2 2 2 3 2	13 61 95 98 78	6.33 7.92 4.63 1.61 4.43	.134 .176 .211 .161 .100	4 3 5 2 3	16 57 90 30 29	.18 .36 .44 1.24 1.21	3 22 14 141 21	.04 .06 .05 .15 .12	2 2 1 2 1 2 1 3 1	.78 .31 .20 .91 .44	.03 .05 .03 .19 .08	.02 .10 .05 .48 .10	1 1 1 1 2	10 390 440 13 3
1790 1791	3	78 199	5 18	32 42	.2	61 40	8 11	348 443	2.11 2.94	39 14	5	ND ND	1	39 65	.2 .3	2	2	90 62 	1.90 2.31 2.20	.104	25	39 33 20	1.16	14 16 	.08 .07	21 21 21	.23 .39	.06 .07	.13 .10	1	6
1792 1793	2	125 126	7	35 31	.1	14 12	7	396 374	2.62	7 2	5	ND ND	1	159 84	.6	2	Ž	80 60	3.47 1.67	.130 .093	5	25 19	1.D1 1.17	36 17	-09 -07	3 2 2 1	.50 .80	.27 .17	.23 .18	Î	3
1794 1795 1796 1797 1798	2 2 16 240 23	180 22 177 191 164	5 2 2 4 4	37 39 21 33 58	.2 .1 .1 .9	31 47 18 98 19	16 12 12 15 10	691 1286 462 478 540	3.54 2.27 2.56 3.05 3.13	2 205 18 38 21	5 5 7 5	nd Nd Nd Nd	1 1 1 1	114 185 78 83 95	.8 .5 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	105 56 75 482 75	4.65 14.47 2.47 1.52 1.79	.133 .045 .082 .115 .079	4 2 4 3	66 126 22 36 20	1.38 1.76 .79 1.08 .99	54 50 36 60 34	.13 .08 .08 .13 .09	2 2 2 1 2 1 2 1 2 1 2 1	.61 .93 .10 .55 .58	.27 .05 .11 .15 .14	.65 .55 .30 .58 .31	11221	6 9 5 8 1
1799 1800 1801 1802 1803	3 1 1 4 3	151 196 205 236 270	5 2 2 4 3	32 26 23 32 31	.5 .2 .1 .4 .9	10 8 7 9 8	7 8 8 9 8	362 367 301 305 367	2.75 3.09 2.99 3.09 2.35	13 8 5 29 5	5 5 5 6 5	nd Nd Nd Nd	1 1 1 1	125 105 143 88 99	.3 .2 .2 .5 .3	3 2 2 2 2 2	2 2 2 2 2 2	58 54 56 59 48	1.77 2.42 1.52 1.15 3.62	.067 .061 .061 .061 .067 .084	2 2 2 2 4	11 10 11 16 11	.90 .73 .74 .93 .56	35 27 34 29 16	.07 .07 .07 .07 .08	3 1 2 1 3 1 3 1 5	.63 .43 .68 .58 .84	.16 .15 .22 .15 .06	.28 .17 .28 .24 .08	12222	2 2 3 1
1804 1805 1806 1807 1808	4 5 3 31 16	323 115 54 171 222	44234	28 22 28 29 53	1.3 6.6 .5 .5 1.1	11 10 8 11 9	12 6 4 8 12	327 287 330 396 426	3.11 1.66 1.61 2.25 2.80	63 46 23 32 50	5 6 5 5	nd Nd Nd Nd	1 1 1 1	49 31 41 99 55	4.6.2.4.5	2 2 2 2 2	3 2 2 2 2	59 39 47 60 49	1.60 1.18 1.01 2.86 2.31	-086 -069 -081 -086 -072	2 3 2 2 2	15 18 12 14 17	.64 .48 .84 .86 .68	14 13 23 44 11	-07 -05 -06 -09 -06	4 2 4 1 3 1 3	.92 .72 .10 .67 .87	.07 .06 .07 .19 .06	.08 .06 .10 .35 .05	1 1 2 2 1	1 5 1 4 2
1809 1810 1811 1812 1813	15 19 5 9 334	168 229 123 46 197	2 2 152 57	41 39 56 109 92	.6 .9 2.0 .8 .9	9 9 50 26 52	8 9 10 8 23	458 459 669 702 789	2.94 2.42 3.74 2.81 4.32	6 5 920 1031 1416	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	62 64 215 106 106	.2 .3 .7 .8 .9	2 2 17 6 2	2 2 5 2 4	63 58 93 56 81	1.82 2.56 4.74 2.86 2.65	.074 .072 .104 .075 .098	3 3 4 3	14 14 84 42 38	1.10 .85 2.33 1.80 2.40	34 36 10 6 10	.08 .08 .11 .05 .04	3 1 2 1 2 2 2 1 2 2	1.35 1.01 2.53 1.92 2.52	.07 .07 .02 .03 .03	.16 .13 .09 .08 .08	1 3 1 1	5 2 16 4 21
1814 1815 Standard C/AU-R	11 19 19	170 203 64	3 4 40	38 33 132	.3 .3 7.4	19 15 72	10 11 32	280 195 1043	2.78 2.35 3.97	46 36 42	5 6 18	ND ND 8	1 1 41	43 31 53	.6 .2 18.5	2 2 19	2 2 21	56 48 62	.81 .63 .49	.074 .076 .094	2 3 40	21 19 61	1.27 .96 .89	52 12 177	.05 .01 .09	2 1 2 1 33 1	.47 .07 .90	.06 .05 .07	.29 .07 .13	2 1 11	1 2 480

ICP - ,500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

DATE RECEIVED: SEP 29 1991 DATE REPORT MAILED: Out 1/91.

į

AAA MARKA MARKATIKA

KRL Resources Corp. FILE # 91-4792

1

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr DOM	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	TĮ	8	AL	Na	K	W A1	 J#
	P.P	FM					PP	PP ^{***}			ppan,		P-P-III		- hdau	PT	P7-0					- Populari		PP-II		- Habau			- M	<u> </u>	~
1816	7	129	Ž	33	.4	9	7	221	2.48	16	5	ND	2	35	.2	2	2	50	.61	.069	4	19	1.06	20	.02	7	1.21	.06	.11		11
- RE-1820		273	83-					- 709	- > 2U>	<u> </u>	2 -	ND		70-	-2:8	······		90	5:18	-195		42.	1:24			8	1:43-			4	-6
1817	21	260	Z	48		12	10	345	3.89	<u> </u>	5	ND	1	58	<u> 3</u> 13	2	2	89	1.29	3103	6	- 26	1.49	- 49	8.07	- 4	1.69	.05	.30 🛞	1 '	4
1818	16	460	2	- 35	8	11	11	309	3.68	37	5	ND	1	69	2 .	2	2	46	1.77	057	5	18	.90	23	.02	6	1.12	.07	. 13 🕺	1 1	13
1819	4	353	546	1698	3.4	23	11	809	4.62	50	5	ND	1	70	17.8	2	4	92	2.43	.083	4	43	1.81	62	.10	4	2.03	.07	.33	7	3
1820	10	290	86	262	1.4	20	15	663	4.70	8	5	ND	1	66	2.6	2	2	84	3.57	.097	4	39	1.15	32	.10	6	1.34	.08	.17	1	5
1821	27	196	4	41	6	24	32	381	5.43	16625	5	ND	1	54	2	6	2	118	1.50	116	3	30	1.27	38	00	7	1.52	. no	. 77 🚟	1 19	51
1822	7	138	4	37	6	13	6	309	2.66	233	5	ND	1	37	2 g	2	ž	44	1 07	066	Ā	22	06	15	S 07	Å	1 17	08	07 80	1	in
1823 -	- T	82	5	34	88 T		5	325	2 17	276	Ē	ND	-	1.9	7	2	2	14	1 80	050	ž	20	20	12	6	ž	4 04		- in 🕅	al ' Man	7
1824	ž	70	É	71		Ē	ź	320	1 00	8 4 4 Z	é				8 . .	5	5	70	1.00	- 0.0		20	.00	70		2	1.00	-07	- IV SS		5
1064	3	37	2	51		2	2	369	1.00		2	NU	1	4.2	- - -	۲	۲	47	1.40	- 002	2	21	.02	20		ſ	1.11	.07	•11 23	(제) (전)	У
1825	7	208	4	37	.7	26	10	414	3.49	53	5	ND	1	69	2	2	2	70	2.74	060	5	27	.94	24	10	4	1.14	.07	.08	1 1	14
1826	17	418	4	88	2.1	61	18	552	5.21	6	5	ND	1	68	6	2	2	147	2.19	098	5	55	1.44	20	20	7	1.41	06	.06	4	13
1827	23	348	60	494	2 7	67	10	840	5 02	47A	5	ND	1	128	5.0	Ā	- 2	120	4 7R	- 044	ž	107	1 74	15	8 1 2		1 66	03	07		27
1828	8	267	Ŕ	168	ें द	61	15	727	4 71	312	Ē	ND	4	73	4 2	7	2	114	3 10	077		74	1 44	11	47	ž	1.00	.05	.01 SS	4 4 4 5	20
1920	ŏ	170	ž	94	880. E 1	1/		477	7.11	888 -	Ē			57			2	70	1.00	2404	7	- 10	4 73		⊗≉147: ⊗inaz:		4 67	.00			
1067	7	170	4	00		14	0	022	2.42	2	2	нD	1	22		2	۲	70	1.92	\$ 10] : \$	4	24	1.32	20		0	1.33	.00	- 14	4	;U
STANDARD C/AU-R	19	58	43	133	7.1	71	32	1052	4.02	41	16	6	38	52	18.9	16	19	57	.48	.092	39	59	.89	179	.09	37	1.90	.06	.15 1	1 51	10

Samples beginning 'RE' are duplicate samples.

ACME ANA	- TAI	LLA	BOR	TOR	IES	LTD	•	8	52 E	E. HAS	STIN	GS S	s r	VP	JVE	RB	.c.	V6	A 1F	26	P	HONI	5(60	4)25	3-3	158 FAJ	(6 ^r	×,253-	716
AA-									G	EOCH	EMI	CAL	AN	A	. 18	CE	RTI	FIC	ATE									A	A
							KR	<u>L R</u> - 47	eso 70 Gr	urce anville	<u>s C</u> St.,	orp Vanc	ouver	F BC V	ile 6C 1V	; # 5 S	91- ubmíti	479 ted b	3 γ: J0	Pa MN J.	ge WATK	1 INS						T.	Ľ
SAMPLE#	Mo	Cu	РЪ	Zn	Ag	<u>alan</u> Ni	Co	<u>Hn</u>	fe Fe	As	U	Au	<u>th</u>	Sr	Cd	SÞ	Bi	۷	Ca	P	La	Cr	Mg	Ba	TI	B Al	Na	K 🥼 F	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	рря	X	ppm	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppn	<u> </u>	<u> </u>	ppm	ррп	<u>x</u>	ppm	*	ppm X	<u>×</u>	% ppr	ppb
1830	8	404	4	53	1.4	8	8	837	3.05	148	5	ND	1	226	.2	2	2	45	8.23	.067	4	15	.97	15	.06	2 1.27	.02	.15	26
1831	9	181	18	81	1.3	30	10	986	3.65	26	5	ND	2	120	3	4	2	69	3.24. 0.05	.091 084	. 5	67	1.72	18	.05	5 1.95	.02	.13	18
1832	2	- 94 - 20	50 E	192	1.0	40) (7	1062	2.30	767	2	NU		123	· · · · · · · · · · · · · · · · · · ·	2	2	62	4.36	079	Ž	42	1.66	2	.05	5 1.73	.02	. 12	31
1834	1	183	2	65	1.0	15	14	878	4.63	353	ś	ND	i	98	.2	2	Ž	129	3.76	.168	4	25	1.94	22	.13	2 2.03	.06	.22	- 5
			_								_					_	-				_						~~		
1835	1	304	5	76	1.5	21	22	998	6.83	30219	5	ND	1	133		2	2	185	5.54	193	2	31	2.45	42	.22	2 2.02	.07	. JO (15)	12
1856	16	120	49	104	1.0	33 52	47 28	1043	3.02	6485	5	ND		112	5	2	2	87	4.50	077	5	76	1.49	6	.08	2 1.62	.02	.09	62
1838 ~	5	25	2	79	8	16	8	675	2.52	887	5	ND	3	53	3.	ż	2	52	1.76	.050	4	23	1.39	15	.06	3 1.63	.05	.13	42
1839	5	75	2	46	.4	13	6	482	2.20	332	5	ND	3	40	.2	2	2	59	1.64	.052	5	23	1.06	11	.07	2 1.22	.05	.10	© 11
	7	1/7	E	50	1940 - 1940 -	40		976	7 09	104	5	ND	1	166		z	2	120	6 01	001	4	741	2 30	102	22	2 2 . 29	. 13	1.00	<u>े</u> 5
1840	1	192	2	27 20	: . .	07	0	408	2.47	100	ŝ	ND	3	65	.2	2	2	48	3.08	.042	5	24	.78	20	.07	3.97	.05	.14	5
1842	i	146	2	30	.7	ś	, 9	365	2.32	4	5	ND	3	42	.2	Ž	2	51	1.47	.043	Ŝ	14	.73	19	.07	6.98	.06	.11 💮	2
1843	2	62	Ž	40	.3	9	6	394	2.49	9	5	ND	3	86	ું .2	2	2	62	1.31	.051	5	19	1.30	50	.08	2 1.85	.12	.35	6
1844	8	191	2	60	.8	40	12	1143	3.43	5	5	ND	1	89	.2	2	2	66	6.33	.071	5	37	1.04	54	. 10	2 1.36	.10	.55 🚿	12
18/5	12	ररर	6	113	1.8	50	22	1037	4.86	6	5	ND	1	104	2	2	2	111	3.56	.093	5	39	1.19	106	. 15	2 2.43	.28	.99	19
1846	10	227	ž	112	.7	59	12	929	2.74	3	5	ND	1	50	1.0	2	Ž	60	3.11	.076	8	52	.65	51	.11	2.74	.05	.22	3
1847	28	268	- 4	- 46	.5	64	12	757	2.87	3	5	ND	1	58	.2	2	2	67	2.73	.067	7	38	.81	50	:14	2 .90	.07	.30	4
1848	8	249	2	46	.5	36	12	559	2.85	- 68 4	5	ND	2	65	- - 2	2	Z	107	2.17	.092	6	39	1.16	28	. 15	2 1.20	.07	-14 333 14 333	4
1849	10	397	2	27		52	16	687	5.51	- X - 4	2	ND	1	76		2	2	41	3.02	.072	"	34	,00	27		2.10	.01		
1850	13	69	2	48	.z	42	3	736	1.42	3	5	ND	2	61	.2	2	2	43	3.36	.093	10	37	.66	37	11	3.70	.06	.16	4
1851	14	322	3	39	1.0	71	13	568	3.50	। 🎎 🎖	5	ND	1	42	.2	2	2	68	2.24	.079	8	47	.76	22	. 13	3.74	.04	.05	6
1852	11	190	4	- 74	ି କା	61	8	499	2.16	5	5	ND	2	- 34	.6	2	2	81	1.97	.080	10	64	.86	30	215 12	2.11	.05	.05	2) 7 7
1853	9	220	2	51	- 0.0	67	11	200	2.79	2	2	ND	2	40		2	2	- 86 - 66	2.15	- 007	8	20	.04	15	13	3.67	.04	.08	4
1034	13	200	2	21	•••	20	,	433	£.41		,	NU	6	40		•					•					• •••			
1855	18	138	2	48		48	9	657	3.54	24	5	ND	2	° 87	.2	2	2	124	2.90	.087	5	57	1.34	59	-14	2 1.49	.11	.68	10
1856	6	171	2	30		38	9	464	3.02	: 15	5	ND	1	65	.2	2	2	53	2.32	.068	5	29	.89	25	.08	Z 1.20	.08	.21	E 4
1857	7	327	2	37	.6	75	14	753	4.01	1	5	ND	1	99	.	Z	2	81	3.41	.074	0	49	1.02	20	6	2 1.33	- 15 03	. JU	
1858	6 4	414	2	444	1.2	87	22	957	2.39		2		1	61	3. j.	2	2	- 05	4.23	059	0 6	40	1.25	16	13	2 1.19	.05	.07	8
1039		203	2	50		07		011	3.31			NU	•			-	-				-						•		2
1860	6	228	2	21	S.5	84	16	547	3.47	' 22	5	ND	1	74	.2	2	2	82	2.25	.051	6	49	.81	59	.13	2.99	.09	.31	6
1861	2	212	2	29	3	68	13	227	3.67	' 💹 61	5	ND	1	62	3	2	ž	79	1.08	.051	2	39	1.01	31	315 44	2 1.91	.21	.02	10 41 11 19 2
1862	2	218	Ž	35	- 2	49	15	350	3.63	368	5	ND	1	66 12/	3	2	5	107	1.09	13/	2 7	/Y 52	1.44	20	14	6 1.73 5 1.37	.11	.33	56
1864	2	110	2		2	77 R4	15	- 207 - 556	6.70 6.64	37	5	90	, i	30	2	2	2	95	.45	.053	4	43	1.76	122	21	4 2.01	.10	1.52	1 26
	ן ו		4					220					•	44		-	-											000	
RE-1860	6	- 224	- 2	21	<u></u> S	83		-544	3.46	22	<u>\$</u>	ND-				2	2	- 81	2.21	.050		48	.80	59	-14	2 1.00			1 <u>9</u> 110
1005 STANDARD CYALLAN	2	166	2	28	5	57	13	318	2.83	92	5	ND	1	24 52	18 0	2 15	2	- 78 50	.¥5 28	.081	4 40	49 58	. 74	42	09	33 1.87	.06	15	1 460
THREARD L/AUT	1 17	00	- 40	121	Fa -R(07	26	1034	- 3.76	• ె:: " = 6	. 19	Ģ		22	- 1₩+Z ≷	12	19												

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 29 1991 DATE REPORT MAILED:

ACME I	TICAI	LA	BORI	TOR	IES	LTD	•	- 8	52 E	. HA	STIN	IGS	ST.	,,	COUV	ER I	B.C.	ve	6A]	LR6]	PHOP	ТЕ (6 C	04)2	53-3	158	FA	-	4)253-	1716
AA							PDI		G	EOCI	IEMI		. A	a a a da a a	Y81 8 Fil	3 C1	BRT]	[FI(CAT	E D	300	1							4	A
							1022	- 4	<u>eso</u> 70 Gra	invill	e St.	, Van	couve	r BC	V6C 1	≂ # V5	Submi	tted	by:	JOHN 1	. WAT	KINS								
SAMPLE#	No ppn	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Nn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca X	P X	La ippm	Cr ppm	Hg X	Ba ppm	Ti X	B ppm	Al X	Na X	K W X ppm	Au* ppb
1880 1881 1882 1883 1884	2 2 3 3 1	304 111 94 97 122	22 2 5 2 4	58 60 3181 75 35	1.3 .5 .7 .6 .5	7 47 44 50 47	12 16 12 13 18	379 1094 1134 1062 889	4.45 3.55 3.44 3.56 3.64	2 13 4 2 33	5 5 5 8	HD HD ND ND ND	5 1 1 1	57 196 117 121 155	.6 .5 20.4 .5 .7	2 2 2 2 2 2 2	2 2 3 2 2	87 103 106 105 111	1.72 4.84 3.41 3.54 5.02	.173 .075 .066 .079 .103	15 2 2 2 2	7 103 38 38 65	1.14 1.40 1.34 1.28 1.24	55 30 43 60 30	.20 .12 .14 .14 .13	2 1 2 2 2 3 2 3 2 3 2 3	.61 .64 .89 .85 .15	.09 .22 .41 .49 .34	.16 1 .24 1 .69 1 .88 1 .46 1	17 7 4 9
1885 1886 1887 1888 1889	1 2 3 4 3	585 200 619 205 125	4 3 10 3 7	30 34 27 26 34	1.2 .4 1.6 .6 .9	36 38 48 42 90	31 14 35 19 14	428 303 740 523 575	7.20 3.52 8.87 5.11 3.09	7 3 3 8 244	5 5 5 5	ND ND ND ND ND	1 1 2 1 1	120 46 100 58 60	.8 .4 .7 .4 .3	2 2 2 2 2 2 2	2 4 2 3 5	61 64 32 54 61	4.26 1.05 6.42 3.47 3.33	.093 .080 .091 .073 .055	2 2 2 2 2	23 24 18 28 42	.72 .96 .42 .58 .60	67 45 15 16 19	.13 .14 .06 .08 .08	23 21 2 21 21 21	.36 .53 .95 .19 .07	.44 .17 .06 .12 .11	.41 1 .44 1 .05 1 .11 1 .11 2	11 5 13 5 9
1890 1891 1892 1893 RE 1898	3 6 4 2 2	112 173 109 217 344	2 2 4 6 7	25 32 52 43 36	.3 .3 .5 .9	59 99 33 5 4	14 19 11 11 13	302 240 403 416 241	3.26 3.75 3.75 4.44 4.01	6 41 12 2 2	5 5 5 5 5	ND ND ND ND	1 1 3 3	35 25 67 70 107	-2 -5 -5 -2 -7	2 2 2 2 2	5 2 2 2 3	80 123 77 74 71	1.62 .79 1.67 1.39 2.13	.075 .081 .148 .194 .151	2 2 8 10 6	35 53 19 6 3	1.04 1.61 1.02 1.05 .72	28 25 50 50 35	.11 .16 .17 .19 .16	2 1 2 1 2 1 2 1 2 1 2 2	.35 .58 .78 .75 .20	.13 .10 .17 .14 .26	.43 1 .65 1 .25 2 .13 1 .36 1	4 5 6 4 7
1894 1895 1896 1897 1898	2 2 2 2 2 2	303 444 374 403 347	6 5 5 7 8	43 46 35 38 37	.7 1.1 .9 .9 .8	3 7 5 4 4	13 17 14 17 13	453 433 295 274 242	5.13 5.86 4.12 5.18 4.07	2 4 2 3 2	5 5 5 5 5	nd Nd Nd Nd	2 1 1 2 2	126 92 104 76 109	.7 .7 .5 .6 .4	2 2 2 2 2 2	4 2 3 2 2	93 84 64 64 71	1.89 1.83 2.35 1.65 2.15	.195 .153 .148 .145 .153	8 6 5 4 5	3 6 4 5 4	1.10 1.09 .55 .73 .72	102 66 42 33 34	.20 .17 .18 .15 .16	2 2 2 2 2 2 2 1 2 2	.63 .31 .09 .71 .22	.24 .18 .23 .18 .27	.42 1 .20 1 .12 1 .17 1 .39 2	4 6 7 3 7
1899 1900 1901 1902 1903	3 2 1 2 3	378 284 278 93 219	12 6 2 2 2	39 48 34 54 225	1.4 1.3 .5 .4	34 55 65 39 32	16 16 28 14 12	176 186 285 583 624	3.69 3.36 4.84 3.18 3.43	11 17 50 11 12	5 5 5 5	ND ND ND ND	1 1 1 1	105 125 176 216 226	.8 1.0 .6 .9 2.0	2 3 2 2 2	2 2 3 2 3	28 39 72 65 56	2.55 2.11 2.29 4.66 6.26	.130 .105 .128 .130 .164	3 2 2 4 5	14 32 61 31 12	.14 .29 1.02 1.09 .61	22 32 106 72 50	.10 .13 .15 .12 .10	2 1 2 1 2 2 2 3 2 3	.76 .78 .86 .66 .88	.23 .28 .40 .42 .48	.12 1 .17 2 .59 1 .77 1 .43 1	7 23 16 9 33
1904 1905 1906 1907 1908	1 1 2 1	434 251 242 219 200	7 3 2 8 6	62 41 36 41 34	-6 -4 -5 -6 -3	34 27 22 24 21	21 17 14 18 19	345 303 334 316 242	5.03 3.95 3.18 3.75 3.98	10 2 6 23 2	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	167 190 112 210 247	.8 .7 .3 1.0 .6	2 2 2 2 2 2	2 3 2 2 2	73 77 62 63 66	3.02 2.27 2.51 2.61 2.55	. 163 . 153 . 164 . 158 . 164	2 2 3 2	28 36 17 21 22	.76 .93 .76 .71 .73	43 79 36 72 86	.12 .14 .11 .13 .13	2 3 2 3 2 2 2 2 2 3	.14 .23 .30 .63 .24	.40 .45 .23 .32 .40	.41 1 .59 1 .24 1 .38 1 .46 1	11 5 7 9 8
1909 1910 1911 1912 1913	1 1 1 1	282 323 265 221 274	5 5 7 6	46 37 38 37 33	.5 .9 .6 .3 .5	21 21 30 18 18	17 17 15 12 11	273 240 314 243 259	4.03 3.90 3.69 2.79 2.76	2 5 8 2 2	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	222 202 237 222 186	1.1 .7 .7 .8 .5	2 3 2 2 2	2 2 2 2 4	77 70 69 49 52	2.11 2.21 2.83 2.32 2.37	.168 .180 .159 .165 .166	2 3 3 2 2	21 16 23 16 15	.90 .70 .81 .45 .52	99 48 58 57 53	.14 .13 .13 .12 .12	2 3 2 2 2 3 2 2 2 2 2 2	.00 .73 .10 .63 .44	.35 .37 .40 .34 .33	.71 1 .25 2 .37 1 .21 1 .21 1	7 13 3 11 10
1914 1915 Standard C/Au-R	1 2 19	259 228 63	8 5 44	35 35 132	.4 .3 7.1	25 38 75	10 14 33	296 398 1045	2.59 3.38 3.98	5 8 39	5 5 24	ND ND 6	1 1 40	154 151 53	.6 .4 17.2	2 2 16	3 2 18	53 63 60	2.42 2.52 .48	.173 .182 .091	2 2 39	29 55 55	.57 .94 .88	41 32 177	.12 .13 .09	2 2 2 2 33 1	.34 .64 .90	.32 .27 .06	.13 1 .10 1 .16 11	6 7 464

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY 1CP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

DATE RECEIVED: OCT 2 1991 DATE REPORT MAILED:

KRL Resources Corp. FILE # 91-4863

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag PPm	Ni ppm	Co ppm	Mn ppm	fe X	As ppm	U Ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Hg X	Ba Ti ppm X	B AL ppm X	Na X	K X	ppm	Au* ppb
1916	1	192	7	44	.5	34	9	421	2.40	21	7	ND	3	200	.5	2	2	58	3.15	.166	3	74	.98	61 .12	3 3.26	.45	. 18	- 1	10
1917	2	233	2	46	.3	33	14	467	3.57	5.5	5	ND	2	293	.7	2	2	98	3.51	.170	5	70	1.25	151 19	2 4.86	.60	.83	1	28
1018	ī	139	ž	49		14	9	446	3.21	2	5	ND	1	275	6	2	2	56	2.35	.099	Ä	40	.90	185 12	2 4 44	.61	89	ંા	11
1010	2	280	7	31	េ្តីខ្ល	27	12	307	2 08	31	Ā	ND	1	130	2	2	2	54	2 60	154	2	32	55	66 11	2 2 35	31	18	i i	26
1920	Ĩ	306	13	37	.7	27	iī	298	2.78	29	7	ND	i	187	7	2	Ž	45	2.84	155	2	43	.51	104 .11	2 3.07	.47	.29	<u> </u>	14
1921	1	322	8	37	.4	27	51	319	3.87	2138	5	ND	1	215	.6	2	6	84	2.79	.161	Z	41	.96	139 .13	2 3.91	.59	.43	1	115
1922	1	263	4	45	4	20	12	428	3.41	8010	6	ND	1	213	8.	2	2	85	3.20	162	2	36	1.02	114 13	2 4.20	.54	.66	S 1 -	13
1923	7	365	5	51	9.9	48	18	614	3.76	69	6	ND	2	167	SS.3.	2	3	57	3.84	159	3	36	.90	64 .09	2 2.44	.29	. 16	64	19
1024	2	28	ž	20	1	10	7	263	2.01	2. 2.	5	ND	1	65	2 2	2	2	34	1.23	062	Ā	28	.81	97 15	2 1.42	.23	30	ς.	6
1925	5	270	113	171	.8	60	26	645	5.29	15	5	ND	i	129	1.9	2	3	167	3.55	.084	3	114	1.30	111 .16	2 3.47	.36	.62	1	6
1926	3	44	15	52	1	14	11	288	2.64	2	5	ND	1	62	.3	2	2	44	1.00	.069	S	42	. 89	85 .16	2 1.44	. 18	.25	2	3
1927	5	97	35	60	1.4	21	5	660	1.93	15	5	ND	1	54	.2	2	2	24	3.59	.097	2	25	1.12	29 .08	2.83	.05	.09	(E. 1 -	35
1928	5	144	18	50	4	50	14	306	2.32	6	5	ND	1	78	.2	2	2	63	1.76	113	2	37	.58	55 16	2 1.23	.23	.15	3	16
1929	6	952	7	48	2.3	47	32	292	6.98	14	5	ND	1	127	.5	2	3	63	2.35	.105	2	42	.42	146 15	2 2.25	.33	.32	1	64
1930	18	285	7	25	. 6	80	11	349	3.26	j 21	7	ND	1	90	.3	2	2	44	2.99	.111	2	37	.48	45 .07	2 1.44	.13	.20	2	84
1931	6	157	2	223	1.0	83	10	560	2.60	30	5	ND	1	68	3.5	2	2	87	2.92	.064	2	60	.97	61 .09	2 1.39	. 13	.38	2	20
1932	3	122	2	27	1	19	5	411	2.01	3	9	ND	1	132	: .2	2	2	53	3.12	.050	- 3	25	.96	59 .08	2 2.68	.29	.55	1 1	7
1933	1	101	2	17	·· .1,	7	4	263	1.64	ST 2	5	ND	1	82	.2	2	2	42	1.59	.050	2	17	.55	44 .07	2 1.54	.21	.35	1.	18
1934	1	- 99	6	28	1	11	4	718	2.24	- 21 21	5	NÐ	2	90	.2	2	2	60	3.87	.050	- 3	14	1.11	9 10	2 1.85	.07	. 10	2	11
1935	6	116	2	114	•1	50	11	535	2.52	315	5	ND	1	48	1.0	2	2	77	2.69	.091	2	60	.79	27 .11	2 1.26	. 18	.28	2	97
1936	3	204	4	24	.6	65	11	196	2.34	24	5	ND	1	34	.5	Z	5	50	1.13	.055	2	32	.48	10 .12	2.75	.11	.13	2	144
1937	2	157	- 5	40	.6	49	9	286	2.05	21	5	ND	1	43	° .8	2	2	51	1.47	.055	2	30	.72	9 .08	2.85	.08	.15	860 1 .	85
1938	2	169	7	28	.5	101	12	375	2.55	36	5	ND	1	46	7	2	2	78	1.53	.054	- 3	45	1.07	27 0:11	2 1.35	- 16	.33	3 3 -	36
1939	3	27	5	62	1	21	10	594	3.14	9	5	ND	1	104	·6	2	2	61	2.39	.077	8	33	1.27	71 .05	2 1.86	.13	.24	<u> 1</u>	10
1940	2	12	5	66	-1	11	10	778	3.29	2	5	ND	1	104	.6	2	2	56	2.96	.082	8	30	1.32	62 .09	2 2.00	.10	.33	1	5
RE 1936	3	204	6	22		65	11	194	2.32	26	5	ND	1	35	.2	2	3	50	1.12	.055	2	33	.47	10 .12	2.75	.11	.12	2	129
1941	3	161	8	42		112	15	348	2.61	49	5	ND	1	39	· .6	2	2	90	.89	.054	2	46	1.18	47 (11)	2 1.52	.13	.52	1	13
1942	2 3	170	- 3	22	- 4	74	12	355	2.17	86	5	ND	1	-43	3	2	2	63	1.70	.045	2	39	.76	22 .08	2.95	-09	.28	<u> </u>	86
1943	4	81	2	15	1	80	11	290	2.14	46	5	ND	1	42	.4	2	2	76	.92	,048	2	45	.94	35 3.11	2 1.64	. 16	.56	1	6
1944	3	152	2	19	-1	109	14	312	2.61	59	5	ND	1	48	.7	2	2	85	.96	-055	2	50	1.05	70 .11	2 1.93	.18	.62	1	9
1945	7	191	2	· 9	7	155	14	231	2.74	23	5	ND	2	24	.2	2	2	116	.63	.057	2	71	.99	36 .08	2 1.17	.07	. 19	1	8
1946	5	173	2	10	4	104	12	266	2,47	26	5	ND	1	35	5	2	2	91	.93	.052	2	55	.76	49 .10	2 1.10	11	,22	2	6
1947	2	155	2	30	ି .1	27	9	455	3.61	2	5	ND	1	67	<u>88</u> 4	2	2	85	1.33	.092	2	- 31	1.18	101 12	2 2.08	.27	.66	1	10
1948	1	229	2	46	4	21	11	446	4.24	21	5	ND	1	76	7.	2	2	109	1.24	143	2	30	1.44	89 .15	2 2.42	.27	.62	1	12
1949	1	229	2	· 48	1	21	9	405	4.19) 16	5	ND	1	84	9	2	2	112	1.38	. 150	2	71	1.49	73 .14	2 2.64	.28	.63	<u></u> 1_	19
STANDARD C/AU-R	19	64	43	132	7.5	76	33	1042	3.96	44	22	8	41	53	17.6	16	21	60	.48	.090	40	57	.88	177 .09	31 1.93	.06	. 15	11	462

Samples beginning 'RE' are duplicate samples.

Page 2

[}]₂ **₽**

ACME ANALY	៊ុក្តុ	LA	BORA	TOR	IES	LTD	•	8	52 E	. на	STIN	IGS	ST.	VAN	est v	ER I	s.c.	V	5 a 1	R6	1	PHON	E(60	94)2	53-3	158 F	AX (6	042	53-1	716
AA		. •			- - -		·. ·	n It N te State	G	EOCI	IEMI	CAI	L Al	VAL.	1	3 C)	ERTI	(FI)	CAT	E									A	N
							<u>KR1</u> 1022	<u>, R</u>	eso 70 Gra	urce	es (Van	D. couve	r 8C	File V6C 1	≥ # v5	91- Submi	-49 tted	12 by:	P John J	age . WAT	1 Kins							Ŀ	Ľ
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B A ppm	Na K X	K X	ppn W	Au* ppb
1950 1951 1952 1953 1954	1 2 41 4 1	373 216 338 78 129	4 4 3 13 2	28 38 25 57 44	.5 .4 .6 .8 .5	16 30 70 10 8	16 12 16 9 7	225 355 835 1216 295	3.55 3.35 3.03 2.75 2.84	12 40 138 11 2	5 5 5 5 5	nd Nd No Nd Nd	1 1 2 1 2	81 138 110 276 131	.2 .6 .7 1.1 .7	2 2 2 2 2 2	2 2 2 7	50 83 223 49 33	1.63 2.23 7.62 5.52 1.79	.145 .147 .127 .083 .083	3 3 5 5 5	23 45 89 30 19	.60 1.12 1.05 1.36 .78	24 78 19 113 82	.08 .11 .15 .09 .08	2 1.50 2 2.99 2 2.18 2 2.03 2 1.5	.18 .38 .09 .10 .18	.11 .49 .19 .19 .22	2 2 2 1 1	21 24 31 8 152
1955 1956 1957 1958 1959	1 1 1 1	247 214 165 233 361	2 3 2 2 3	42 51 61 16 22	.8 .5 .8 .6 .7	6 31 34 94 93	14 17 19 25 28	307 349 356 195 260	4.60 4.10 4.82 4.39 4.47	19 6 3 8 52	5 5 5 5 5	nd Nd Nd Nd Nd	3 1 1 1	72 107 178 316 247	1.2 1.5 1.7 1.0 .8	2 2 2 2 2 2	4 3 2 3 2	101 109 73 19 42	1.35 2.59 4.07 4.33 4.03	.079 .113 .145 .102 .099	5 3 5 2 2	15 54 32 39 67	1.23 1.59 .84 .33 .66	126 153 103 18 68	.22 .20 .13 .07 .11	2 1.8 2 2.9 2 3.3 2 3.5 2 3.0	5 .19 .20 5 .30 5 .13 7 .19	.34 .76 .34 .05 .26	1112	144 62 19 26 60
1960 1961 1962 1963 1964	1 3 2 3 3	425 492 308 189 216	2 6 3 20 8	48 36 48 21 83	1.2 1.2 .7 2.4 .6	35 58 73 30 28	16 17 14 12 9	425 253 366 189 189	4.94 3.99 4.16 2.24 2.44	3 15 54 174 25	5 5 5 5	NÐ ND 13 ND	1 1 2 1 2	86 64 83 47 55	1.8 1.0 1.7 .7 1.7	2 2 5 2	5 7 5 807 22	99 73 128 40 41	2.52 1.85 1.47 1.19 1.39	.160 .097 .090 .091 .088	5 3 4 5	101 63 95 51 18	1.78 1.01 2.06 .61 .62	57 52 148 39 63	.12 .15 .19 .09 .10	2 2.3 2 1.3 2 2.8 2 .8 2 .8 2 1.1	.18 .14 .22 .10 .14	.43 .35 1.22 .20 .33		85 310 67 17700 470
1965 1966 1967 1968 1969	2 1 1 3	251 334 933 256 109	2 2 2 2 4	37 195 34 54 32	.6 .7 1.2 .5 .3	29 41 60 49 65	14 17 39 28 8	237 254 195 389 220	3.57 4.15 8.33 5.73 2.08	20 17 18 24 14	5 5 5 5 5	nd Nd Nd Nd Nd	2 1 1 1 1	118 147 208 139 81	.7 3.1 2.9 2.6 .8	2 2 2 2 2 2	6 5 10 2 2	77 95 52 149 55	1.76 2.26 2.78 2.36 1.88	.117 .131 .104 .144 .087	6 5 3 3 6	35 47 38 86 53	.96 1.16 .61 2.07 .76	135 166 103 157 70	.15 .19 .12 .26 .16	2 2.1; 2 3.2 2 2.8 2 4.4 2 1.6	2 .19 7 .33 1 .16 -27 5 .20	.49 .81 .40 1.55 .25		280 154 340 27 16
RE 1965 1970 1971 1972 1973	1 1 2 1 2	261 140 193 188 159	2 8 5 3 4	37 41 38 36 56	.5 .4 .4 .4 .5	30 89 59 30 38	14 10 11 16 12	243 246 293 244 244	3.54 2.68 2.77 4.07 3.05	18 56 32 5 10	5 5 5 5 5	ND ND ND ND	2 2 2 2 2 2	121 24 74 96 110	1.2 1.1 1.1 1.3 1.2	2 2 2 2 2	6 2 5 2 2	77 90 56 61 48	1.71 .64 2.27 1.59 2.13	.119 .038 .078 .148 .093	5 2 6 5	34 66 37 25 36	.97 1.31 .83 .73 .61	137 56 66 68 85	.15 .15 .15 .13 .11	2 2.1 2 1.2 2 1.4 2 1.6 2 1.6	.22 .07 .14 .14 .18 .21	.66 .19 .22 .23 .27	1 2 1 1	250 15 67 9 7
1974 1975 1976 1977 1978	4 5 3 3	133 202 144 147 140	3 11 3 5 5	40 115 48 39 61	.4 .8 .3 .4 .5	109 75 80 67 73	13 11 13 10 11	274 310 262 252 258	3.20 2.36 2.70 2.54 3.11	11 76 11 29 10	5 5 5 5 5	nd Nd No Nd	2 1 1 2	63 159 116 33 77	.9 2.4 1.1 .6 1.0	2 2 2 2 2	3 62 3 2 2	75 28 67 66 57	.98 3.50 2.13 1.21 1.76	.050 .076 .071 .059 .077	4 6 4 6	51 29 58 55 43	1.29 .34 .78 .90 .72	96 45 86 49 73	.16 .09 .14 .14 .13	2 1.8 2 1.6 2 1.9 2 .9 2 1.3) .14 2 .15 1 .15 7 .07 4 .13	.52 .11 .34 .19 .21	11211	6 1740 26 17 10
1979 1980 1981 1982 1983	3 2 3 20 10	176 155 152 249 92	12 4 2 2 6	61 36 270 70 80	.8 .4 .6 .8 .4	79 35 40 62 56	17 10 17 14 12	258 287 408 576 481	2.63 2.87 4.66 3.62 2.21	200 19 7 90 32	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	77 114 132 236 243	1.2 .6 3.4 1.6 1.5	2 2 2 2 2 2	64 3 2 9 2	36 44 114 63 44	2.83 1.97 2.35 5.91 6.05	.076 .086 .172 .131 .103	5 5 6 5 5	32 39 52 26 30	.39 .85 1.34 1.08 .52	19 66 173 117 77	.11 .10 .19 .14 .10	2 .8 2 2.0 2 2.7 2 2.1 2 1.7	1 .08 3 .17 4 .23 8 .13 1 .14	.06 .30 .79 .56 .28	111771	1480 22 6 149 17
1984 1985 Standard C/Au-R	4 4 19	221 180 57 1CP	5 4 39 50	49 37 129	.6 .4 7.2	51 61 71	14 13 33 IS DIC	337 286 1033	3.27 3.47 3.88 D WIT	47 78 40 H 3ML	5 5 21 3-1-2	ND ND 7	1 1 38 HNO3-	186 68 52 H20	.9 .6 18.8	2 2 15 DEG.	67 3 19 C FOR	60 77 55 ONE	4.21 1.33 .47 HOUR	.107 .084 .088	4 38 15 DIL	37 41 59 UTED	.75 1.23 .89 TO 10	87 74 173	.13 .18 .09	2 1.7 2 1.4 33 1.8 (ATER.	4 .13 7 .12 9 .06	.23 .29 .15	1 13	1730 22 490

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND ALC AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples/Depinning 'RE' are duplicate semples.</u>

x 9/91.

DATE RECEIVED: OCT 4 1991 DATE REPORT MAILED:

KRL Resources Corp. FILE # 91-4912

	Mo	Cu	Pb	20	Aa	Ni	Co	Mo	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Са	P	La	Cr	Ma	Ba	Ti	B AI	Na	r ü	Å1.1*
	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ррп	*	*	ppn	ppm	*	ppm	×	ppm X	X	× ppm	ppb
1986 1987 1988 1989 1990	7 5 8 4 7	222 185 301 179 228	6 5 8 8 6	52 42 103 58 30	.5 .6 1.2 .4 .7	70 63 78 39 64	15 16 26 9 14	299 309 357 375 365	3.37 2.99 4.32 2.39 3.40	25 96 979 68 14	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	91 98 64 241 64	.2 .3 .9 .7 .2	2 2 2 2 2	2 3 7 2 2	98 53 145 35 67	2.27 2.70 2.01 3.86 1.31	.079 .085 .052 .141 .066	3 3 2 5 4	48 48 63 28 35	.65 .67 1.41 .47 .71	104 79 120 50 32	.13 .10 .15 .08 .13	3 1.58 2 1.43 3 1.59 2 2.04 3 1.15	.14 .13 .13 .20 .16	.23 1 .18 1 .33 2 .12 2 .08 2	14 54 101 16 12
1991 1992 1993 1994 - 1995	7 2 8 10 7	134 74 172 216 109	6 4 6 5 47	43 31 47 42 46	.4 .2 .6 .5 1.5	40 15 50 74 65	8 5 13 14 63	417 307 401 296 1546	2.48 2.06 3.16 3.00 3.38	167 19 13 29 16047	5 5 5 6	nd Nd Nd Nd Nd	2 3 1 1 1	153 91 126 116 209	.8 .2 .5 .4 1.0	2 2 2 28	3 2 2 2 4	55 38 83 109 44	2.43 1.38 1.73 1.83 11.86	.072 .041 .075 .066 .062	4 3 4 7	30 9 56 47 27	.66 .83 .81 .68 .70	73 60 75 107 32	.10 .07 .14 .16 .03	2 2.19 3 2.29 2 2.23 3 2.24 2 1.05	.26 .19 .21 .18 .04	.30 1 .36 2 .42 2 .57 2 .15 1	13 4 5 12 390
1996 1997 1998 1999 2000	6 7 8 5 7	261 80 266 336 144	10 2 4 2 5	284 52 32 45 36	.5 .4 .4 .6 .4	47 46 57 48 57	16 6 15 16 9	568 389 271 368 295	2.71 1.97 4.02 4.44 2.31	47 22 16 102 63	5 5 5 5 5	nd Nd No Nd Nd	1 1 1 1	320 140 39 76 84	4.9 .9 .5 1.3 .8	2 2 2 2 2	3 2 3 2 2	42 55 131 139 62	7.83 3.27 .89 1.30 1.98	.144 .108 .064 .088 .054	5 5 3 3 3	25 44 49 35 31	.30 .89 1.30 1.71 .71	70 47 98 207 52	.08 .12 .18 .21 .13	2 2.94 3 1.63 2 1.48 2 2.44 3 1.28	.13 .17 .20 .23 .13	.19 1 .19 2 .42 2 .97 2 .29 2	15 7 4 11 7
2001 2002 2003 2004 2005	6 3 4 3 3	128 397 234 177 272	5 67 34 14 40	51 60 49 43 149	.3 5.6 1.9 1.0 2.2	73 37 87 60 46	13 9 10 10 13	519 502 443 468 670	3.09 2.46 3.06 2.32 3.75	51 21 16 30 9	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	151 137 52 60 76	.9 1.5 .6 1.1 3.7	2 4 2 2 2	2 73 8 5 38	80 36 79 61 94	3.76 4.32 1.82 2.25 2.68	.083 .079 .056 .062 .073	4 3 3 4 5	49 20 38 33 44	.99 .45 1.15 .88 1.78	97 35 25 40 74	.15 .06 .10 .06 .10	2 2.44 2 .95 2 1.15 2 1.09 2 1.86	.15 .07 .09 .11 .14	.59 2 .12 2 .13 9 .18 2 .32 1	6 1600 70 98 930
2006 2007 2008 2009 2010	6 5 6 2 3	295 189 228 323 212	101 6 3 2 4	76 42 36 45 39	8.4 .3 .5 .6 .5	74 96 36 41 35	12 11 13 13 10	473 304 277 282 257	2.99 2.40 3.36 3.38 3.00	20 28 5 7 42	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	82 56 84 137 128	2.0 .7 .7 1.4 1.1	2 2 2 2 2 2	41 3 2 6 16	71 86 84 74 69	3.02 1.64 1.38 1.88 1.25	.084 .053 .072 .138 .066	5 4 3 6 3	48 43 31 50 26	1.04 .90 1.13 1.06 .92	51 43 116 199 155	.10 .12 .20 .18 .18	2 1.18 3 1.03 2 1.83 2 2.09 2 1.59	.12 .16 .18 .28 .29	.27 2 .26 1 .45 1 .34 2 .28 2	1370 15 4 570 710
2011 2012 2013 2014 2015	3 2 2 2 2	212 191 157 71 82	2 9 31 12 4	27 31 106 87 31	4 4 4 4	41 21 4 4 6	11 8 7 8 8	239 286 438 285 230	3.23 2.83 3.23 3.64 3.59	8 11 9 4 3	5 5 5 5 5	nd Nd Nd Nd Nd	1 2 3 3 3	117 105 102 182 205	1.3 1.0 1.4 1.1 _8	2 2 2 2 2 2 2	2 2 2 2 2 2	59 55 47 55 56	.90 1.08 2.11 1.46 1.31	.049 .065 .096 .095 .095	3 5 10 7 8	23 16 16 6 6	.86 1.00 .99 1.01 .95	120 . 84 . 50 . 208 . 236 .	.15 .14 .17 .19 .22	2 1.41 2 1.63 2 1.82 2 1.98 3 2.06	.24 .24 .08 .24 .28	.49 1 .18 2 .13 1 .27 2 .44 1	6 5 8 4 5
2016 2017 2018 2019 2020	1 2 4 5 1	141 125 101 42 142	8 5 5 8 22	36 30 47 46 38	.8 .4 .2 .1 .7	5 55 44 8	4 6 9 4 6	297 286 336 324 292	2.26 2.51 1.99 1.01 1.98	3 3 46 27 6	5 5 5 5 5	nd Nd Nd Nd Nd	3 3 1 1 2	134 175 98 105 76	.6 .9 .6 .7 .9	22222	4 2 2 2 2 2	46 45 67 25 24	1.74 1.91 2.38 3.15 1.85	.090 .091 .101 .073 .051	6 8 6 5	5 13 32 18 8	.84 .84 .91 .36 .64	125 164 89 34 42	.13 .16 .13 .07 .04	3 1.35 3 1.66 2 1.65 2 .91 3 .90	.15 .23 .14 .08 .12	.22 2 .27 1 .23 2 .09 1 .15 1	86 6 4 5
RE 2016 2021 Standard C/Au-r	1 3 18	131 225 62	11 2 37	35 77 134	.9 1.7 7.6	4 20 69	5 6 30	305 925 1030	2.28 2.15 3.90	2 10 43	5 5 22	ND ND 7	2 1 39	129 87 52	.3 1.2 18.4	2 2 16	3 2 19	46 20 57	1.89 4.45 .47	.089 .037 .087	6 3 38	5 13 57	.84 .71 .87	116 63 175	.14 .02 .09	2 1.30 4 1.36 33 1.87	.13 .10 .07	.15 2 .32 2 .14 13	103 8 480

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

ACTE AMALYTICAL

KRL Resources Corp. FILE # 91-4912

SAMPLE#	Mo	Cu	Pb	Zn	Ag ppm	Ni	Со	Min ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	8i ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	AL X	Na %	K 7 F	W /	Au* ppb
2022 2023 2024 2025 2026	4 3 2 4 10	68 90 103 92 215	3 3 2 2 9	35 36 61 72 46	.4 .8 .9 .8 1.0	6 7 7 11 31	4 4 5 6 12	447 329 390 489 504	1.60 1.77 2.19 1.92 3.33	2 2 2 2 2 2 2	6 7 5 5 5	ND ND ND ND ND	3 3 2 1 1	56 66 63 52 101	.2 .2 .5 .5 .3	2 3 2 2 2	2 2 2 2 2 2	24 36 45 34 77	2.03 1.46 1.23 1.84 2.48	.048 .050 .052 .055 .063	3 4 4 3 2	11 12 14 21 35	.55 .67 .79 .72 .77	39 41 41 44 65	.02 .05 .06 .04 .09	3 2 3 3 2	1.18 1.27 1.46 1.23 1.64	.11 .13 .18 .14 .22	.17 .18 .19 .17 .18	2 1 1 3	5 4 5 6 7
2027 2028 2029 2030 2031	9 19 7 1 1	250 159 264 248 271	3 7 46 17 9	45 38 118 152 31	1.0 .9 1.7 1.6 1.1	55 57 48 8 10	17 14 20 10 14	346 372 591 472 294	4.45 3.29 4.81 3.01 2.63	8 2 2 2 117	9 5 5 5 8	ND ND ND ND ND	1 1 1 1	71 49 66 62 49	.3 .9 1.6 .3	2 2 2 2 2 2	4 2 2 2 2	122 69 135 66 54	1.42 1.53 1.77 2.47 1.75	.098 .030 .075 .068 .073	2 2 4 3	48 42 53 19 19	1.09 .75 1.51 .95 .72	114 53 116 23 21	.17 .08 .17 .05 .05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.62 .97 1.75 1.32 .92	.18 .07 .14 .16 .16	.60 .17 .40 .09 .09	2 3 1 1	6 4 12 12
2032 2033 2034 -RE 2038 2035	1 1 1 1	375 180 186 217 400	11 4 2 10 20	33 27 33 46 38	1.1 .6 .9 1.3 3.8	13 8 7 7 15	15 10 10 11 15	280 360 373 446 478	3.87 3.26 3.74 3.46 5.18	2 2 5 5	5 5 5 5 5	NÐ ND ND ND	1 2 1 1 1	37 73 119 92 90	.5 .3 .4 .5	2 2 2 2 2	2 2 2 2 6	61 50 56 63 61	1.43 2.43 3.07 1.12 3.17	.086 .067 .077 .083 .071	2 3 3 2	18 12 11 20 13	.76 .93 .74 .95 .73	10 20 24 68 31	.06 .06 .07 .07 .05	2 2 2 2 2	.89 1.59 1.71 1.43 1.27	.11 .12 .14 .15 .08	.07 .22 .15 .20 .09	1 3 2 2 2	7 6 11 5 69
2036 2037 2038 2039 2040	1 1 1 6	56 273 206 178 232	8 7 9 16 11	33 45 41 107 47	.6 1.7 1.4 .8 .7	6 9 7 8 23	2 7 10 9 21	1112 863 429 421 445	2.07 3.00 3.24 2.69 5.06	2 6 2 6	5 8 5 5 5	ND ND ND ND ND	1 1 2 1 1	150 70 92 114 190	.2 .3 .6 1.6 .4	2 2 2 2 2	2 2 2 2 2	50 59 61 48 108	6.64 3.40 1.08 4.53 2.67	.060 .069 .078 .060 .200	2 4 3 2 6	14 13 22 13 37	1.26 1.19 .92 .68 1.31	58 32 80 52 131	.03 .04 .07 .05 .15	22242	1.61 1.67 1.41 1.37 3.03	.04 .05 .16 .15 .31	.14 .13 .21 .18 .85	1 3 3 2 1	12 8 5 7
2041 2042 2043 2044 2045	4 7 9 16 7	239 272 289 234 168	8 2 3 8 3	25 34 30 39 28	1.1 .7 1.0 .9 .6	27 18 39 69 98	22 21 21 15 13	306 331 322 330 256	4.21 4.33 4.04 3.88 2.96	2 2 6 13 6	6 5 5 5 5	ND ND ND ND ND	1 1 1 1	173 148 151 73 32	.4 .5 .2 .4 .2	2 2 3 2	2 2 2 2 2	53 68 60 132 100	3.01 3.20 3.05 1.47 .60	.185 .198 .158 .079 .045	5 7 4 2	25 21 26 49 48	.52 .68 .69 1.27 .97	44 55 76 81 60	.10 .11 .11 .15 .12	3 3 2 2 2	1.87 2.13 2.10 1.37 .97	.21 .24 .24 .10 .07	.19 .34 .33 .51 .36	22213	8 7 7 5 3
2046 2047 2048 2049 2050	1 1 2 1 1	130 104 107 168 349	8 4 2 8 4	31 29 34 43 69	.6 .3 .6 1.1 2.3	9 7 9 17 14	8 6 5 13 17	285 405 340 387 1044	2.51 2.57 2.15 3.40 5.36	2 2 6 35	5 5 5 5 5	ND ND ND ND	1 1 2 2 2	47 36 50 57 118	.4 .2 .3 .4 .6	2 2 2 2 2	2 2 2 2 2 2	42 43 39 62 74	1.29 1.14 1.42 1.04 9.46	.055 .056 .055 .075 .047	3 3 5 3 3	18 14 14 29 25	.75 .97 1.17 1.34 1.24	12 17 14 28 33	.06 .05 .03 .08 .05	2 3 2 2 2	1.16 1.21 1.52 1.64 1.39	.07 .13 .11 .16 .08	.09 .09 .12 .34 .14	1 1 1 3 1	6 5 6 3 8
2051 2052 2053 2054 2055	1 1 1 1	504 449 270 202 120	13 9 12 4 5	96 49 59 254 48	3.1 2.5 1.8 1.2 .7	6 7 5 4 7	15 16 11 14 9	711 562 744 661 449	4.91 5.18 4.40 4.97 3.75	78 61 7 6 28	5 5 8 8	nd Nd Nd Nd	1 1 2 1	81 105 142 126 48	1.0 .4 .7 2.6 .3	2 2 2 2 2	2 2 2 2 2 2	132 129 155 145 87	2.86 2.78 3.44 2.32 1.13	.107 .101 .108 .102 .070	7 6 8 7 4	19 20 23 24 16	1.62 1.46 1.86 1.62 1.37	60 104 58 88 53	.21 .23 .23 .23 .14	2 2 4 3 2	1.82 1.95 2.56 2.44 1.69	.12 .16 .16 .17 .11	.16 .37 .20 .35 .23	1 2 2 2 2	8 7 11 6 3
2056 2057 Standard C/Au-R	2 9 20	117 320 65	4 27 39	30 62 131	.5 2.2 7.0	6 49 69	5 17 31	452 715 1037	1.89 4.80 3.92	4 2 42	9 5 24	ND ND 6	1 1 39	47 95 54	.3 .4 17.6	2 2 15	2 2 21	37 112 61	2.65 .47	.054 .121 .089	3 4 41	10 56 55	.68 1.61 .86	35 43 179	.05 .15 .09	2 2 34	1.04 1.80 1.90	.09 .12 .06	.15 .13 .15	1 2 12	4 8 490

SAMPLE TYPE: CORE, Samples beginning 'RE' are duplicate samples.

1

Page 3

Å

ACHE MALE VIICAL

KRL Resources Corp. FILE # 91-4912

• .

Page 4

ACHE ANALYTICAL

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

ACME AN	TICA	L LA	BOR	ATOR	IES	LTD	• a •	8	52 I	. HA	STIN	GS	ST.	~ 7	 :0UVI	SR B	.c.	V6	A 15	26	P	HONI	5(60	4)25	3-3	158	FAT		1)25	3-17	16
AA									G	Eoch	EMI	CAL	AŇ	لاست	818	CE	RTI	FIC	ATE								n perse S				
							<u>KR</u>	<u>6 R</u>	<u>eso</u>	<u>urce</u> 1022	<u>s C</u> - 470	<u>Orp</u> Gran	wille	r St.,	'11e Vanc	# ouver	91- BC V	495 60 11	5 5	Pa	ge	T									
SAMPLE#	No ppm	Cu ppm	Pb ppm	Żn ppm	Ag ppm	Ni ppm	Co ppm	Nn Ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ті %	B ppm	Al X	Na X	K X	.V ppm	Au* ppb
2070 2071 2072 2073 2074	5 18 3 3 1	155 178 209 179 227	25 25 2 3 8	67 129 19 11 552	1.3 .8 .5 .4 .9	102 107 48 37 19	26 17 17 15 16	347 808 364 329 823	4.01 4.08 4.06 3.53 5.24	11409 22 2 2 2438	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	38 63 67 78 130	.2 .2 .2 .2 .2 .2 4.2	12 2 2 2 10	6 2 2 3 3	61 99 42 32 83	.72 1.51 2.54 2.10 2.76	.039 .071 .071 .080 .146	3 4 2 2 2	46 67 21 16 23	.63 1.07 .40 .29 1.35	55 130 79 57 71	-07 -15 -12 -14 -09	2 21 2 2 2 2 2	.79 .38 .83 .79 .61	.13 .14 .14 .16 .27	. 18 . 44 . 13 . 10 . 32	1 1 1 1	310 11 7 8 59
2075 2076 2077 - 2078 2079	1 1 2 1 1	206 230 228 105 265	9 11 27 3 2	30 54 94 23 19	.6 .8 .6 .3 .4	19 20 38 9 8	16 17 17 29 10	540 959 697 315 268	4.26 5.28 3.89 2.03 2.79	4 1091 116 2990 175	5 5 5 5 5	ND ND ND ND	1 1 2 2	151 143 159 122 145	.2 .2 .6 .3 .2	2 2 2 2 2 2	2 2 3 2	56 116 98 33 41	3.49 3.90 3.32 2.37 2.09	.148 .150 .138 .047 .051	3 2 2 3 4	41 29 77 10 17	.77 1.86 1.86 .67 .55	66 136 132 70 63	-10 -13 -14 -05 -06	2 2 2 2 2 3 2 1 2 1 2 1	.00 .82 .15 .69 .82	.29 .18 .27 .21 .26	.39 .61 .90 .37 .35	1 1 1 1	9 24 13 117 18
2080 2081 2082 2083 2084	1 2 2 3	105 86 85 94 144	4 4 3 3	24 24 23 22 25	.3 .4 .3 .3 .2	7 9 7 7 28	5 5 5 13	363 375 411 382 521	1.91 2.12 2.02 2.14 3.00	8 2 2 6 4	5 5 5 5 5	nd Nd Nd Nd	2 2 3 1	149 134 79 116 153	.2 .2 .3 .4 .2	2 2 2 2 2 2	2 3 2 2 2	39 39 41 42 71	2.23 1.75 1.53 1.95 3.95	.052 .051 .055 .057 .128	4 4 4 3	13 11 10 16 23	.55 .62 .63 .61 .87	69 82 39 47 64	.07 .06 .07 .08 .14	2 1 2 1 2 1 2 1 2 2	.68 .81 .12 .31 .00	.26 .25 .23 .23 .23	.26 .30 .17 .22 .35	1 1 1 4	6 5 7 8 16
2085 2086 2087 2088 2089	7 3 1 1	496 129 352 313 387	3 60 7 2 2	22 129 36 29 39	1.4 1.0 1.0 .7 .9	84 36 10 9 17	38 8 11 8 8	443 889 440 312 383	8.03 2.93 4.33 3.52 4.46	44 2 9 15 141	5 5 5 5	nd Nd Nd Nd	1 1 1 1	75 133 171 179 111	.7 1.4 .8 1.0 1.0	2 2 2 2 2 2	2 2 2 2 2	62 84 68 80 72	2.08 3.25 1.76 1.95 2.82	.121 .114 .112 .118 .096	3 2 3 3 3	32 38 16 12 12	.74 1.05 1.03 .97 1.20	85 44 74 85 33	.13 .13 .12 .12 .09	2 1 2 2 2 2 2 3 2 3	.24 .16 .73 .06 .52	.16 .23 .37 .42 .17	.55 .34 .87 .72 .44	1 1 1 1	10 5 12 8 8
2090 2091 2092 2093 2094	1 3 1 1	208 379 339 241 272	2 3 6 7 6	32 36 48 45 47	.5 .8 1.2 1.1 1.1	11 30 11 12 11	9 13 13 11 13	472 445 560 402 529	3.59 4.41 3.92 3.21 3.71	4 29 37 9 2	5 5 5 5	nd Nd Nd Nd	1 1 1 1	148 122 192 158 145	.8 .3 .9 1.4 1.4	2 2 2 2 2 2 2 2	3 2 2 2 2	72 74 62 52 58	2.06 2.42 3.72 2.46 2.17	.103 .091 .107 .101 .101	3 2 3 4 4	18 27 13 12 13	1.09 1.27 .88 .69 .89	63 47 63 83 55	.12 .12 .09 .09 .08	2 2 2 2 2 2 2 1 2 2	.81 .31 .50 .88 .07	.35 .24 .31 .32 .25	.96 .52 .30 .37 .27	1 2 1 1	7 9 9 14 9
-RE 2091 2095 2096 2097 2098	3 1 2 2 1	412 215 328 172 263	4 9 8 4 2	36 40 43 36 25	8 1.0 1.4 .7 .7	30 9 13 12 10	13 9 12 9 12	460 463 464 431 337	4,48 3.05 3.59 2.72 3.11	35 10 7 2 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	127 131 158 164 189	1.0 1.2 .7 1.1 1.7	2 2 2 2 2 2	2 2 2 2 2 2		2,38 2.75 2.30 2.57 2.47	.091 .105 .112 .093 .109	3 4 3 4	28 16 13 14 9	1.29 .95 .89 .76 .65	48 64 77 36 87	-11 -09 -10 -08 -08	2 2 2 2 2 2 2 2 2 2	.38 .10 .03 .09 .46	.24 .21 .24 .22 .38	.55 .32 .32 .25 .41	2 1 1 1	5 2 3 4
2099 2100 2101 2102 2103	2 3 5 4 2	183 214 193 180 314	10 13 9 7 9	68 65 54 65 71	.5 1.8 .7 .6 1.2	33 41 50 51 35	14 63 14 15 30	401 541 563 441 560	3.05 4.25 3.46 3.31 4.46	2 6745 47 6 446	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	127 68 63 70 92	1.2 1.8 .8 .2 .7	2 2 3 2 2	2 16 2 2 2	56 85 89 64 49	2.34 1.83 1.80 1.79 3.46	.086 .088 .073 .078 .072	2 2 2 2 2 2	29 36 38 32 33	.71 1.57 .98 .67 .58	73 69 35 58 43	.13 .10 .16 .16 .16 .12	2 1 2 1 2 1 2 1 2 1	.81 .87 .12 .94 .19	.23 .12 .11 .10 .13	.30 .50 .21 .16 .16		5 410 4 3 11
2104 2105 Standard C/Au-r	1 1 18	101 164 60	4 2 41	29 30 129	.4 .6 7.2	9 7 68	6 8 34	486 528 1074	1.83 2.42 3.88	23 3 42	5 5 18	ND ND 8	2 2 38	121 138 52	.5 .9 19.0	2 2 16	2 3 20	39 39 56	2.77 3.75 .48	.055 .052 .086	5 4 38	11 12 60	.62 .66 .85	45 31 179	.06 .06 .09	2 1 2 1 33 1	.45 .47 .92	.18 .16 .06	.25 .26 .16	1 1 13	4 6 490
		ICP THIS ASSA	50 LEAC Y REC	IO GRA H IS	M SAM PARTI IDED F	IPLE 1 AL FO OR RO	S DIG Ir Mn Ick An	ESTEL FE SI	NITI R CA F RE SAF	I 3ML 3 LA CR IPLES I	-1-2 MG B/ F CU	HCL-H A ti PB ZN	NO3-H B W A As >	20 AT ND L1	95 D MITED AG >	EG. C FOR 30 PP	FOR (NA K /	DNE H AND A J > 1	OUR A	IND IS	DILU ECTIO	TED T N LIM	0 10 1 11 by	ML WI ICP	TH WAT	TER. PPM.					

ACHE AMALYTICAL

KRL Resources Corp. FILE # 91-4950

elle de

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	C	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B Al ppm %	Na X	K I X pp	ł Aut+ n ppb
2106	5	335	2	36	.7	57	22	913	3.78	177	5	ND	2	180	.2	2	5	66	6.7	.074	2	60	.99	26	2002 2011	3 1.80	. 16	-30	23
2107	8	196	ž	27	4	79	15	982	3.35	03	5	ND	Ĩ	181	.2	2	2	66	6.6	5 .071	3	77	.58	27	.08	2 1.63	. 11	.33	10
2108	Ž	383	- Z	34	7	36	18	1057	3.93	149	ŝ	ND	ż	197		2	5	43	6.0		2	25	.80	26	.06	2 2.15	. 18	.35	6
2109	Ž	211	ŝ	40	4	13	12	593	3.98	8	5	ND	1	184	.2	2	2	76	3.4	126	·	16	1.32	71	12	2 2.91	.36	.93	2
2110	1	360	2	74	.6	19	22	768	5.99	12	5	ND	i	213	.8	2	Ž	154	3.8	5 174	2	24	1.96	217	.18	3 4.32	.49	1.76 8.83	i: Ž
			-			•					-				28 L					973.997 973.973								1. A.	
2111	1	168	y y	41	ંંગ	ž	8	485	2.89	20 2 -	2	ND	1	193	2	2	4	- 64	2.4	-152	2	25	1.04	84	- I)	2 2.25	.21	.20	2
2112	Z	116	2	26	() 4	8	6	334	2.07	Ζ.	5	ND	2	122	-2	2	2	40	1.69	051	5	13	.61	43	06	2 1.48	.19	.22	
2113	- 3	66	5	Z4		8	5	331	1.63	<u>-</u> 2	5	ND	Z	120	Z	Z	Z	42	1.π	.054	5	12	.59	40	.06	6 1.54	.20	.2Z	1
2114	2	72	2	25	.3	8	5	394	1.61	2	5	ND	2	110	Z	Z	Z	- 45	2.04	- OSZ	5	12	.61	32	- 06	3 1.44	.18	.ZZ	2
2115	1	178	5	38	1.0	8	10	383	2.47	2	5	ND	2	73	.3	2	2	37	1.3	.050	5	18	.69	44	.06	4 1.16	.12	.19 [191	3
RE-2110		-83	7-	48-	<u></u> 8		15-	-612	3.34	43-	5				2	- 6	-2-	82	2.39				-1.40-	49	<u></u>		- : 16		3
2116	6	43	5	30	3.3	23	4	456	1.60	2	5	ND	Ż	78	.2	2	2	66	1.91	055	3	28	.80	80	.09	4 1.24	. 12	.40	í 1
2117	18	81	8	270	7	59	14	692	3.01	19	Š	ND	ī	117	3.9	õ	ž	178	2.70	.061		56	1.33	85	.11	5 2.50	.27	.99	5
2118	7	101	7	59	7	53	16	644	3.76	20	ŝ	ND	1	76	5	6	ž	118	2.0	.070	6	55	1.37	56	10	4 2.02	.18	.92	3
2119	5	82	7	51	.7	35	16	638	3.43	50	5	ND	i	79	.5	6	ž	85	2.43	.086	4	42	1.45	43	11	5 2.02	.16	.70	4
					Č.															digen.									(
2120	5	65	3	42	.5	34	12	791	2.67	29	5	ND	1	107	2	6	Z	- 84	3.6	.069	2	- 36	1.35	- 36	.09	4 2.02	.17	.53 🔅 1	6
2121	29	93	7	39	.6	64	13	499	3.06	26	5	ND	1	96	.3	11	2	207	1.74	.065	- 4	64	1.04	53	.11	3 2.07	.21	.70	6
2122	5	103	10	73	1.0	38	14	494	3.28	8	5	ND	1	91	.8	10	z	61	1.46	206Z	3	40	1.00	82	.12	3 1.81	.21	.47	5
2123	4	161	212	121	13.2	43	20	2084	5.84	203	5	ND	1	220	2.3	71	ž	41	5.60	101		22	1.59	48	.02	3 1.27	.01	.43	27
2124	4	171	342	2321	8.9	67	17	1358	3.59	162	5	ND	i	101	36.8	90	4	54	3.84	.076	3	43	1.65	57	.05	2 1.73	.07	.69	. 11
2125	-	50	75	100		10		17/7	7 00		-			*		-	-	74	7 / 7	1999 1000	. ,	12	4.57			7 7 74	47	70	
6167 07400400 0 (41) 0	20	39	25	100		10	70	1242	5.00	<u> </u>	5	UM T	1	75	1.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	71	3.4/	.094	- 4	15	1.24	13	.00	3 2.01	.17	.37	
STANDARD C/AU-R	20	29	45	122	: 1.5	70	32	1110	4.04	÷ 42	18		51	26	10.5	16	21	- 28	. 47	1089	- 59	29	.00	1/8	<u>୍ର</u> .୦୨	36 1.95	.06	. 15 < 1 <u>1</u>	490

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

KRL RESOURCES CORP.

1022 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5

Page Nu :1 Total Pages :2 Certificate Date: 03-SEP-91 Invoice No. :19120820 P.O. Number :

Project : Comments: ATTN: SEAMUS YOUNG CC: JOHN J. WATKINS

**

				CERTIFIC	ATE OF ANALYSIS	A912	20820	
SAMPLE DESCRIPTION	PREP CODE	Au g/tonne						
1005 1007 1009 1011 1018	207 294 207 294 207 294 207 294 207 294 207 294	< 0.07 0.21 0.48 1.10 0.07						
1023 1025 1041 1042 1043	207 294 207 294 207 294 207 294 207 294 207 294	4.32 0.55 0.14 3.15 0.34						
1044 1045 1046 1047 1048	207 294 207 294 207 294 207 294 207 294 207 294	1.23 0.89 < 0.07 1.16 0.07						
1049 1050 1051 1053 1055	207 294 207 294 207 294 207 294 207 294 207 294	0.21 0.07 0.14 0.34 0.62						
1057 1061 1063 1075 1080	207 294 207 294 207 294 207 294 207 294 207 294	0.55 2.88 0.21 0.07 < 0.07						
1094 1141 1142 1154 1158	207 294 207 294 207 294 207 294 207 294 207 294	0.21 0.14 < 0.07 < 0.07 0.55						
1164 1172 1176 1187 1190	207 294 207 294 207 294 207 294 207 294 207 294	0.41 0.62 0.07 < 0.07 < 0.07						
1191 1211 1223 1235A 1237	207 294 207 294 207 294 207 294 207 294 207 294	$ \begin{array}{r} 1.16 \\ < 0.07 \\ < 0.07 \\ < 0.14 \\ 3.63 \end{array} $	ı				x	
L	<u>Ii</u>	.	L I I	, I	CERTIFICATIO	" That	/Vm	\mathcal{N}

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

RL RESOURCES CORP. าโร 1022 - 470 GRANVILLE ST. VANCOUVER, BC V6C 1V5 Page Num. Total Pages Certificate D. 3-SEP-91 Involce No. 19120820 P.O. Number :

i.

.

Project : Comments: ATTN: SEAMUS YOUNG CC: JOHN J. WATKINS

**

	HONE: 604-984-	0221	C	ERTIFICA	TE OF AN	ALYSIS	A912	0820	
SAMPLE DESCRIPTION	PREP CODE	Au g/tonne							
254 255 258	207 294 207 294 207 294	7.67 < 0.07 0.34							
					,				,
						CERTIFICATIO		100	Aler and

ACME ANALYTI	CAL LABORATORIES LTD. ASSAY CERTIFIC	852 E. HAST Phot CATE	CINGE ET, VANCOUVER NE(604)253-3158 FA	B.C, V6A 1R6 X(604)253-1716
TT	KRL Resources Corp.	FILE # 9	1-2971R	TT
	SAMPLE#	Ag** oz/t	Au** oz/t	
	1042 1044 1045 1047 1053	.07 .12 .10 .06	.077 .033 .025 .036 .016	
:	1055 1055 1056 1057 1061 STANDARD AG-1/AU	.03 .04 .01 .04 -1 .99	.027 .030 .025 .063 .098	

AG** AND AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE PULP

ACME ANALYTIC	AL LABORATORIES LTD. 85	2 E. HASTINGS ST. VANCOUVER B.C. PHONE(604)253-3158 FAX(604	V6A 1R6)253-1716		
AA	ASSAY CERTIFICA	TE			
LL <u>KRL Resources Corp.</u> FILE # 91-4712R					
_	SAMPLE#	Au** oz/t			
	1734 1774 STANDARD ALL-	.013 .015			
	AU** BY FIRE ASSAY FROM 1	A.T. SAMPLE.			
DATE RECEIV	ED: OCT 1 1991 DATE I	REPORT MAILED: Oct 2/91 EONG, J.WANG; CERTIFIED B.C. ASSAYERS			
	1				

ASSAY CERTIFICATE

KRL Resources Corp. FILE # 91-4793R

SAMPLE#	Au** oz/t	
1869 1873	.011	· · · · · · · · · · · · · · · · · · ·
STANDARD AU-1	.099	

AUT BY FIRE ASSAY FROM 1 A.T. SANPLE. - SAMPLE TYPE: CORE PULP

DATE RECEIVED: OCT 2 1991 SIGNED BY

DATE REPORT MAILED: Out 4,91

. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE KRL Resources Corp. FILE # 91-4912R

	n an an an an an an an an an an an an an	그 아이는 아이는 것 같아요. 이 것 이 같은 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아요. 것 같아요. 것 같아요. 것 같아요. 것 같아요. 것 같아요. 것 같아요. 것 같아요.
	SAMPLE#	Au**
		oz/t
	1960	.003
	1961	.002
	1962	.002
	1963	.578
	1964	.012
	1975	.048
	1979	.053
	1984	.063
	2001	.001
	2002	.074
	2003	.017
	2004	.006
	2005	.025
	2006	.039
	2007	.001
	2008	.001
	2009	.008
	2010	.024
	2063	.563
	2064	.001
	2065	.004
	2066	.006
	RE 2066	.004
	STANDARD AU-1	.097
	AU** BY FIRE ASSAY FROM 1 A - SAMPLE TYPE: CORE PULP Samples beginning (RE' are o	.T. SAMPLE. duplicate samples.
DATE RECEIVED:	OCT 9 1991 DATE RE	PORT MAILED: (10/91
SIGNE	D BY. C. Kung D. TOYE, C.LEO	NG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATOR	PREC	IOUS N Corp.	852 E. METALS FILE	HASTING PHONE (S ANAL # 91-:	SS ET. VANCOUVER B.C. V6A 1R6 504)253-3158 FAX(604)253-1716 YSIS AA 2814R2 L
	SAMF	PLE#	Pt** ppb	Pd** ppb	
	MM1 MM1	#4 #5	1 2	1 10	

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU > 1000 PPB. - SAMPLE TYPE: CORE PULP

DATE	RECEIVED:	AUG 13 199	1 DATE	REPORT M	AILED: Any 15/91
	SIGNE	d by	D.TOYE, C.	LEONG. J.WANG: (CERTIFIED B.C. ASSAYERS
				• • • • •	

1

GEOCHE	M PRECIOUS I	852 B. METALS	HASTINGS PHONE (60 SANALY	87, VANCO 4)253-3151 SIS	UVER B.C. 8 Fai(604	V6A 1R6)253-1716	
	ources Corp.	_ FILE	# 91-28	15R2		ŤŤ	
	SAMPLE#	Pt** ppb	Pd** ppb				
	900A 900B	1	1 1				

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU > 1000 PPB. - SAMPLE TYPE: ROCK PULP

DATE REPORT MAILED: Aug 15/91 DATE RECEIVED: AUG 13 1991 SIGNED BY.

1

ACME ANALYTICAL LABORATORIES L' GEOCHEM PREC KRL Resources	TD, 852 10US MET. <u>Corp.</u> F:	E. HAST PHON ALS AN LE # 9	CINGS ST. VANCOUVER B.C. V6A 1R6 IB(604)253-3158 FAX(604)253-1716 ALYSIS AA 1-2228R L
	PLE# Pt Pl	* Pd* ob pp	* b
835 836		1 1	1 2

Ć

1

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU > 1000 PPB. - SAMPLE TYPE: ROCK PULP

DATE RECEIVED:	AUG 13 1991	DATE REPORT MAILED	: Ang 15/91
BIGNE	D BY. C. Mary.	•D.TOYE, C.LEONG, J.WANG; CERTIFIE	B.C. ASSAYERS

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU \gg 1000 PPB. - SAMPLE TYPE: ROCK PULP

DATE REPORT MAILED: Ang 15/91 DATE RECEIVED: AUG 13 1991 SIGNED BY.

ACME ANALYTICAL LABORATORIES LTD.	852 E. HASTINGS ET. VANCOUVER B.C. V6A 1R6 Phome(604)253-3158 FAX(604)253-1716
GEOCHEM PRECIOUS	NETALS ANALYSIS
KRL Resources Corp.	FILE # 91-2940R2
SAMPLE#	Pt** Pd**
· · · · · · · · · · · · · · · · · · ·	ppb ppb
1008	1 6
1009	
, 1018	3 9
1034	1 6
1036	2 6

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU > 1000 PPB. - SAMPLE TYPE: CORE PULP

DATE REPORT MAILED: Awy 15/91 DATE RECEIVED: AUG 13 1991 SIGNED BY.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 **GEOCHEM PRECIOUS METALS ANALYSIS** FILE # 91-2971R2 KRL Resources Corp. Pt** Pd** SAMPLE# ppb ppb 1042 3 1 1047 1 1 1061 3 1 1074 5 2

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. ASSAY RECOMMENDED FOR AU

1000 PPB. - SAMPLE TYPE: CORE PULP

DATE REPORT MAILED: Hug 15/91 DATE RECEIVED: AUG 13 1991 SIGNED BY . D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS
A A	GEOQUEN DDE		PHONE (604) 253 SANAI VOIC	-3138 FAX (604) 253-171
44	KRL Resource	SIGUS METAL <u>8 Corp.</u> FILE	# 91-3061R	
	SA	MPLE# Pt** ppb	Pd** ppb	
	10 10 11 11	91 4 97 1 10 4 33 3	2 8 7 16	
10 GRAM S - SAMPLE DATE RECEJ	SAMPLE FIRE ASSAY AND ANALYSIS TYPE: CORE PULP IVED: AUG 13 1991 SIGNED BY	S BY ICP/GRAPHITE FURNA DATE REI	CE. ASSAY RECOMMENDER PORT MAILED: J.WANG; CERTIFIED B	FOR AU = 1000 PPB. <i>Aug</i> 15/91 .c. assayers
		1		
:				
м. П. Д				

APPENDIX 8

(

 $\left(\begin{array}{c} \\ \end{array} \right)$

1

Drill hole sections: 425 North 600 North 670 North 750 North 820 North MM-10 & MM-11

