LOG NO:	JAN 22	· · RD.
ACTION:		
ż		

FILE NO:

MINERAL EXPLORATION REPORT GEOLOGICAL/GEOCHEMICAL/GEOPHYSICAL/PROSPECTING VEN#1 MINERAL CLAIM 1990/1991

SUB-RECORDER RECEIVED										
JAN	16	1992								
M.R. #										
VANCOUVER, B.C.										

ESCONDIDO RESOURCE CORPORATION NITHI RIVER PROJECT OMINECA MINING DIVISION BRITISH COLUMBIA NTS: 93F/15

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,061

PREPARED BY: DATE: RE: JOHN A. CHAPMAN, P.ENG. NOVEMBER 1991 "ASSESSMENT REPORT" TO BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

TABLE OF CONTENTS

ŧ

INTRODUCTION	2
SUMMARY	2
PROPERTY INFORMATION DESCRIPTION PHYSIOGRAPHY ACCESS	3 3 3
EXPLORATION HISTORY	3
CURRENT MINERAL EXPLORATION PROGRAM OBJECTIVE THEORY EQUIPMENT PROCEDURES RESULTS DISCUSSION	4 5 5 6
CONCLUSIONS	6
RECOMMENDATIONS	7
STATEMENT OF COSTS	8
STATEMENT OF QUALIFICATIONS	9

APPENDICES

- A: ANALYSES OF ROCK AND SOIL SAMPLES
- B: TOTAL FIELD MAGNETIC READINGS (GAMMAS) FROM RECONNAISSANCE MAGNETICS SURVEY
- C: SOIL GEOCHEMISTRY, CONTOUR MAPS: COPPER, MOLYBDENUM, ZINC, SILVER
- D: SP PROFILE FROM RECONNAISSANCE SURVEY
- E: VLF-EM CONTOURS FROM RECONNAISSANCE SURVEY
- F: BASE MAP OF SURVEY AREA WITH GEOLOGICAL AND PROSPECTING DATA

INTRODUCTION

Escondido Resource Corporation's Nithi River project, consisting of the Skip 1,2,4 and the Ven#1 mineral claims (76 units), is located in central British Columbia near the town of Fraser Lake.

The project area received extensive exploration during the 1960s, by major mining companies, for its porphyry copper and molybdenum potential. Significant induced polarization (IP) and soil geochemical anomalies were identified, with documented recommendations to drill, but with the introduction of punitive mining taxes by the Provincial government of the day the area was abandoned without drill testing.

In preparation for project review Escondido staff entered most of the old 1960s IP and soil geochemical results, generated by Anaconda American Brass Limited, Amax Exploration Inc. and Mercury Exploration Ltd. into a computer system, and has generated new composite maps.

Escondido geological staff decided that the most effective exploration program in 1990/91 would be one of reconnaissance considering the extensive clear-cut logging that has been conducted over the project area since the 1960s exploration. Attempts were to be made to locate old (1960s) IP lines, trenches, claim lines etc. that may assist in accurately locating recommended 1960s drill targets. There was also the potential to discover previously unidentified rock outcrop on new roads and in clear-cuts, even though earlier reports mentioned thick glacial cover over most of the project area.

Escondido conducted general exploration over a large portion of the project area; activities included prospecting, geological, geophysical and geochemical reconnaissance traverses. The work was conducted between June 17, 1990 and November 1, 1990. Additional work was done on the Ven#1 mineral claim during October 1991.

The work created no disturbance, as all off-road traverses were on-foot, no trees were blazed, and no surface soils were disturbed other than very small samples for geochemical analysis.

SUMMARY

Access to the Nithi River project area is excellent with several new logging roads crossing some principal drill targets identified by 1960s exploration. Travel time from Fraser Lake to the centre of the property is only 30 minutes, by automobile.

The current exploration program, on the VEN#1 mineral claim, was designed to check an area in the NW quadrant of the claim where Mercury Explorations Limited had defined a strong IP anomaly during a 1969 regional survey.

Figure 1

The 1991 program was successful in that the 1969 IP anomaly was supported by other anomalies including: metals in soils, VLF-EM and SP. The results indicate a possible metal zoning related to a porphyry copper system whereby the anomalies may represent a zinc (and other sulfides) rich shear zone.

Further work is warranted and recommended on this interesting mineral target.

PROPERTY INFORMATION, DESCRIPTION:

The Nithi River property is located in the Omineca Mining Division, British Columbia on NTS map sheet 93F/15 at latitude 53d 57m and longitude 124d 50m. The property is centred in the valley south of Nithi Mountain, some 12 km south of Fraser Lake, British Columbia. The Endako molybdenum mine is located 25 kilometres west of the property. See Figure 1 for general location information.

Escondido is the recorded owner of the Skip 1 (20 unit, 11943), Skip 2 (20 unit, 11967), Skip 4 (20 unit, 11969) and Ven#1 (16 unit, 12753) mineral claims, by way of Option Agreement with Gary Kurz, Fraser Lake, B.C. See Figure 2 for information on mineral titles and outline of 1990/91 exploration area on the Ven#1 mineral claim.

PROPERTY INFORMATION, PHYSIOGRAPHY:

The topographic relief is moderate throughout the claim area, ranging from 2400 feet in the valley to 4300 feet on the mountain tops. Vegetation is variable depending upon soil conditions and southerly exposure. Sparse pine and grasses are common on glacial outwash sands on south slopes. The valley bottom is marked with several "kettle" lakes and in some areas, with a near-surface water table, the deciduous vegetation is abundant. North slopes have good stands of spruce, bu⁺ in some areas contain heavy "windfalls".

PROPERTY INFORMATION, ACCESS:

The property may be accessed along the Nithi River valley from the East end of Francois Lake, or from Highway #16 at Lejac via good mainline logging roads for 20 kilometres. Reference B.C. Forest Service 1:20,000 scale maps 93F.096 and 93F.097.

EXPLORATION HISTORY:

Anaconda American Brass Limited, Amax Exploration Inc. and Mercury Explorations Ltd. independently conducted geophysical, soil geochemical, mapping and trenching in the late 1960s, on mineral lands now encompassed by Escondido's Nithi River project. Much of their work is available in the form of assessment reports on file with the B.C. Ministry of Energy Mines & Petroleum Resources, Geological Branch.

ı.

Significant soil geochemical and IP anomalies were identified, and drilling recommended. However, the properties were abandoned by the companies in the early 1970s, without completing the recommended drilling, when the Provincial government introduced punitive mining taxation.

IP anomalies identified by Mercury Exploration include: (1) a 3650×600 metres, anomaly trending northeasterly across the Skip 2 mineral claim, and (2) a smaller but much stronger anomaly in the west half of the Ven#1 mineral claim. A 1500×600 metre polymetallic soil geochemical anomaly was discovered by Amax, and is located in the northwest quarter of the Stir 4 mineral claim. This anomaly is supported by IP anomalies delineated by Amax. Scattered polymetallic soil geochemical anomalies discovered by Anaconda are located in the north half of the Skip 1 mineral claim.

CURRENT EXPLORATION PROGRAM, OBJECTIVE:

The objective of the current exploration program was to locate and explore the IP anomaly in the west half of the Ven#1 mineral claim (reference Assessment Report 2368). Escondido planned reconnaissance geophysics and geochemical surveys in the area of the 1969 IP anomaly, and general prospecting, in preparation for planning advanced stage exploration programs.

The identified Topley quartz monzonites, quartz diorites and granites in contact with Ootsa rhyolites, dacites and tuffs within the project area, in conjunction with the positive 1960s exploration results, indicate the Nithi River property has the potential to host a porphyry copper/molybdenum, porphyry copper/gold and/or a massive sulfide deposit.

CURRENT EXPLORATION PROGRAM, THEORY:

The copper and molybdenum soil anomalies identified by Amax and Anaconda in the 1960s indicate a possible porphyry copper/molybdenum source. This conclusion is supported by coincident IP anomalies on the old Amax area. Also, elevated zinc and lead values in Amax's and Anaconda's 1960s soil samples could indicate zoning around a porphyry system, or on the other hand massive sulfides within the Ootsa volcanics. No gold assays, on soils or rock, were reported in any of the 1960s work.

Within the Nithi River property glaciation has mechanically created a complex mix of surface materials, that is further complicated by metal ions being transported in water. The resulting mechanically transported and hydromorphic soil geochemical anomalies will lead the explorationist to the general area of interest, but only geophysics, trenching and drilling will locate the metal source.

CURRENT EXPLORATION PROGRAM, EQUIPMENT:

Access to the project area was by automobile; traverses were conducted on foot. The equipment utilized on reconnaissance surveys included: a Geometrics G816 proton magnetometer for measuring total field magnetic intensity, a Phoenix VLF-2 unit and a locally manufactured Self Potential unit.

CURRENT EXPLORATION PROGRAM, PROCEDURES:

The reconnaissance surveys were conducted with compass and pacing, with frequent reference to the 93F/15 topographic map 1:50,000 series, for control and orientation. Three principal survey lines were established (see Appendix F) for prospecting and reconnaissance surveys with VLF-EM unit, Magnetometer, SP unit and soil sampling. Stations were established at 25 meter or 50 meter intervals and marked with ribbon.

The VLF-EM survey was conducted using the Seattle transmitter. The weather was clear so the signal was clear and strong (no lightning interference). See Appendix E for tabular and plotted data from the VLF-EM survey.

The reconnaissance survey with the magnetometer was not used as the instrument was not functioning correctly (see note 3 in Appendix B).

Surface soil samples were taken in the "B" soil horizon, which was fairly well established and readily identifiable in the survey areas (see Appendix C).

Analyses on soil samples was conducted by Acme Analytical Laboratories Ltd., Vancouver, B.C. (30 element ICP) and MinEn Laboratories, North Vancouver, B.C. (selective geochemical analysis). Reference Appendix A.

CURRENT EXPLORATION PROGRAM, RESULTS:

The IP anomaly identified in 1969 by Mercury Explorations Limited (Assessment Report 2368) has been further defined by the current reconnaissance surveys conducted by Escondido's crew in 1990 and 1991.

Three low order VLF-EM anomalies occur in the two 1991 traverse lines that cross the 1969 IP anomaly. SP supports (maximum potential of -98 mv) the VLF-EM cross-over from +11 to -14 between stations 4+00W and 6+00W on Line 2 (see Appendix D). Also, on Line 1 (downslope from Line 2) at and near Station 5+75W, zinc in soils (maximum 1448 ppm) are highly anomalous. Copper (71 ppm) and silver (0.6) are modestly anomalous within the same area.

5

Highly altered quartz monzonite float in the vicinity of Stations 6+25W and 7+50W on Line 2 are of geologic interest. A small rock outcrop at Station 2+25W on Line 2 yielded a sample of andesite that was high in pyrite and anomalous in copper. This rock, if extensive, may be the source of the IP anomaly. See Appendix A for a description of rock samples.

Mr. Way reported on his 1990 Line traverse, north/south at west boundary of the Ven#1 mineral claim, as follows, "A prospecting traverse was completed on the Line. No outcrops were noted but surface cobbles were studied for lithology type, alteration and mineralization. Volcanic rocks display propylitic alteration with considerable epidote principally along fractures. Pyrite content varies from 1% to 5% and appears both disseminated and fracture related. Epidote with minor pyrite often envelopes hairline fractures across 1 cm, and several directions of fracturing can be seen in a single specimen, frequently. Neither chalcopyrite nor molybdenite were observed in the volcanic surface cobbles. Surface cobbles of intrusive rocks, principally monzonites, display potassium feldspar alteration which largely occurs as envelopes of pink orthoclase about multidirectional hairline fractures. Very low volume pyrite is sometimes associated but neither chalcopyrite nor molybdenite were noted. The orthoclase replacement veinlets commonly are 2 cm to 4 cm in width. Because relative uniformity of cobble types exists and few erratic specimens were observed, it is believed that the cobbles examined are close to source and are reasonably representative of underlying bedrock.

CURRENT EXPLORATION PROGRAM, DISCUSSION:

Results of the 1990/91 reconnaissance exploration program were encouraging. The coincident, or near coincident anomalies (IP, VLF-EM, SP, metals in soils) at, and near, Station 6+00W on Line 1, Station 2+25W on Line 1 and Station 4+50W on Line 2, are all significant.

The results indicate a possible metal zoning related to a porphyry copper system whereby the anomalies may represent a zinc (and other sulfides) rich shear zone. The Nithi Mountain molybdenum deposit is within 3 kilometers, so the Ven#1 anomalies may even be a zoned outer-limit of that large porphyry system.

CONCLUSIONS:

Based upon the 1960s mineral exploration and Escondido's 1990/91 reconnaissance surveys, the Nithi River project is worthy of receiving additional exploration to define possible mineral targets for trenching and drilling.

RECOMMENDATIONS:

The mineral target identified on the Ven#1 mineral claim should be explored further to expand and refine the various anomalies, with a view to developing mineral targets for trenching and drilling.

The next stage of exploration should contain the following elements:

- (1) Extend survey Line 1 and Line 2, 100 meters to the west and to the east.
- (2) Establish additional east/west lines between the present lines (at 75 meters north of Line 1), at Line 1 plus 75 meters south, and at Line 2 plus 75 meters north.
- (3) Conduct a magnetics survey on all lines.
- (4) Conduct an SP survey on all lines (redo Line 2).
- (5) Conduct soil sampling on all stations not previously sampled, and analyze samples using 30 element ICP.
- (6) Try some handtrenching to expose bedrock in areas where overburden seems thin (Line 2).

ŧ

STATEMENT OF COSTS:

Mob/demob	\$ 300
Personnel (note 1)	1,550
Meals & accommodation	220
Equipment rental	100
Field supplies	100
Sample analyses	450
Report preparation	550
TOTAL EXPLORATION EXPENDITURES	\$3,270

Note 1: The field crew included: John A. Chapman, B.Sc., P.Eng., Mining Engineer; Barry Way, B.Sc., Geologist; Gary Kurz, Field Assistant (Surveyor). A total of 5 mandays was spent on the project.

8

ŧ

STATEMENT OF QUALIFICATION:

I John Arthur Chapman of the City of Surrey, British Columbia, Canada hereby certify as follows:

I am a mining engineer residing at #30 1725 Southmere Cr., Surrey, British Columbia and,

I graduated with honours in Mining Technology from the British Columbia Institute of Technology, June 1967 and,

I graduated with honours in Mining Engineering (B.Sc.) from the Colorado School of Mines, January 1971 and,

I am a Professional Engineer registered in the Province of British Columbia since 1973 and,

I have practised my profession continuously since 1973 in Canada, United States and Philippines and,

I hold an indirect interest in the Nithi River property, through my major shareholding in Escondido Resource Corporation, which is the subject of this report and,

I am the author of this report, which is based upon work on the Nithi River project, which I personally supervised during 1990 and 1991.

John Arthur Chapman, B.Sc., P.Eng.

APPENDIX A

ı

ACMB ANALYTICAL	, LAB	IOR	\TO	RIE	s l J.	TD . . A.	C)	8 nap	52 I G man	с. в ЕОС <u>Мј</u> 902	AS: HE <u>ni</u>	MIC MIC nq 526 L	SAL	Al IV nder	VAN NAL <u>ice</u> : St.,	COU YSI 9 Var	Fi S	CE CE le rer B	C. RTI # C V6	V61 FIC 91- 3 199	A 11 ATE 515	R6 8	P	PHO age	NE (604)25	3-3	158	PA	I (6	04)2	53-1 A /	716
SAMPLE#	Mo ppm p	Cu Spm (Pb opm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe X	As ppn	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P X	La ppm	Cr ppm	Mg X	8a ppm	11 X	8 ppm	Al X	Na %	K X	Ppm	Au** ppb	Pt** ppb	Pd** ppb	
HR91-03 HR91-05 HR91-09 HR91-09 HR91-10 HR91-11	1 5 19 6 45	15 9 24 10 35	8 9 2 4 3	43 108 80 51 32	.1 .1 .1 .1 .1	6 7 5 4 2	5 6 3 4 1	290 719 476 352 85	1.37 2.12 1.68 1.36 1.04	6 2 14 2 2	5 5 5 5 5	ND ND ND ND ND	10 10 12 14 10	63 24 23 23 21	.2 .3 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 37 21 19 8	-58 -45 -34 -32 -10	.055 .095 .058 .073 .039	13 25 22 19 23	8 9 7 3 3	.39 .20 .46 .48 .02	47 90 127 73 55	.10 .04 .11 .06 .01	2 2 2 2 2	1.04 .83 .76 .68 .44	.13 .04 .06 .04 .01	.19 .08 .22 .20 .05	1	5 3 61 2 2	1 1 2 3	1 1 2 1	
VEN91-03 VEN91-04 RE HR91-09 MC91-01 MCK-MS1 MCK-MS1	2 1 19 1 19 1 4	112 181 27 28 38	2 2 3 2 7	65 107 78 107 36	.1 .2 .1 .1 .1	32 28 5 109 29	15 24 3 31 5	573 835 479 882 175	3.16 4.27 1.69 5.34 1.76	2 2 12 2 13	5 5 5 5 5	nd Nd Nd Nd	1 1 11 1 2	129 99 24 68 17	.2 .2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	66 74 21 99 17	1.12 1.09 .35 3.17 .25	.092 .131 .058 .188 .055	4 3 21 4 11	38 22 7 118 20	1.41 1.92 .48 2.45 .18	254 188 128 465 116	.28 .30 .11 .40 .02	3 2 2 2 2 2	2.51 2.79 .78 2.99 .51	.21 .18 .06 .04 .01	.86 .89 .21 1.42 .13	1 5 1 1 2	11 5 125 2 13	1 2 1 2 5	2 2 1 2 2	
MCK-MS2 MCK-MS3 STANDARD C/FA-10R	1 1 19	21 9 58	2 2 36	103 90 135	.1 .1 7.4	84 8 75	27 13 33	760 819 1102	4.87 4.44 4.02	2 2 36	5 5 17	ND ND 7	1 2 40	104 28 52	.2 .2 18.5	2 2 15	2 2 19	100 75 55	4.68 .60 .49	.179 .084 .088	5 3 39	66 10 59	2.08 1.50 .90	331 423 184	.31 .23 .09	2 2 32	2.66 2.35 1.87	.07 .08 .07	.83 .78 .15	1	2 2 454	3 2 452	2 2 459	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: OCT 18 1991 DATE REPORT MAILED:

J.A. Chapman Mining Services FILE # 91-5158

Page 2

CHE ANALITICAL

	SAMPLE#		Mo	Cu ppm	РЪ ррт	Zn ppm	Ag ppm	Ni ppm	Со ррп	Min ppm	Fe X	As ppm	U PPM	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	AL X	Na X	K X	W ppm	Au** ppb	Pt** ppb	Pd** ppb	
1	uc01-01	Housed	3	10	8	52		21	14	513	5.42	8	5	ND	4	75	2	2	2	90	.63	. 110	25	37	.76	130	15	2	1.48	.03	.08		2	1	1	
1	4501-12	LAKE	3	10	12	82	<u></u> ,	13	8	316	3.29	2	5	ND	13	33	2	2	ž	62	.46	.118	20	20	.45	162	.15	2	1.88	.03	.07	- 1 -	1	1	1	
ł	HS01-131		1	10	.5	130	ैंद्र	13	Ř	415	3.48	2	5	ND	4	41	<u>_</u> 2	2	2	66	.48	196	14	25	.40	190	15	2	1.98	.02	.08	1	3	1	1	
	(0+25			22	7	65	1	19	ŏ	1522	2.91	2	5	ND	ż	77	.3	2	ž	49	.76	.132	11	24	.30	257	.10	5	.98	.02	.23		4	1	1	
i	0+75		2	19	7	77	ંડ	14	8	1022	3.04	2	5	ND	2	67	.2	2	2	50	.55	.145	10	23	.30	217	.11	3	1.17	.02	.16	1	1	2	1	
1			-		·																	- 478888 38.0000														
	1+25		2	17	7	98	.4	17	9	1490	3.02	2	5	ND	1	-96	.2	2	2	- 46	.72	.214	11	25	.26	345	.09	3	1.23	.02	.18	ी	3	1	1	
5	1+75		1	20	6	86	_4	15	9	1354	2.88	2	5	ND	1	- 77	.2	2	2	45	.63	.150	10	22	.27	259	.10	- 4	1.21	.02	.23	1	5	1	1	
	2+25		1	21	7	85	.4	15	9	697	3.09	2	5	ND	3	54	.2	2	2	55	.50	.119	12	- 24	.33	143	. 13	2	1.28	.02	.13	1	2	1	1	
E, 1	2+75		5	55	9	- 77	.2	16	10	894	3.70	- 4	5	ND	2	63	.2	2	2	63	.56	.029	16	29	,37	97	.14	2	1.37	.03	.13	885 . -	3	1	1	
$_{\rm r}$ N	3+25		2	29	9	108	.4	13	9	1085	3.01	2	5	ND	1	62	.2	2	2	49	.61	.065	10	21	,29	151	.11	3	1.12	.02	.16	89 1	4	1	1	
-												23	_				영상		_				_				- 1999	-					_			
•	3+75] 3	32	10	71	.3	12	10	850	3.31	2	5	ND	2	57	-2	2	2	52	.51	.039	8	21	.30	113	. 10	<u> </u>	1.21	.02	.14	1	2	1	1	
3	RE 1+75		2	22	6	80	्,5	14	9	1311	2.74	2	5	ND	1	- 74	.2	Z	2	43	.60	.139	10	20	.26	Z42	.09	3	1.14	.02	.15		2	1	1	
ラ	4+25		2	27	11	198	:3	12	10	1150	3.14	3	5	ND	1	86		: Z	2	46	.79	.107	9	19	.30	163	.09	5	1.29	.02	-14	- 1	2	1	1	
1	4+75		3	28	11	142	.3	11	8	1142	2.53	2	5	ND	1	120	8	2	2	38	1.26	.141	7	18	.24	185	208	5	.98	.02	.13	- SI	3	1	1	
İ	5+25		4	26	8	215	•4	10	8	1264	2.31	2	5	ND	1	86	1.5	2	2	57	.95	.111	8	17	.26	165	.09	4	.88	.02	.18		2	1	2	
[1				40			40	• /		7 70					400	47.2		2	12			44		74	37/	- 1000 - AG	. ,	4 77	62	10		2	4	4	
1	15+75		°	\Box	10	1448		12	10	4740	3.30	4	2	NU	i	110	12.0	2	2	42	1.14	+ 121	10	40	.21	204	.09		1.33	.02	15		2		2	
1	6+25		4	51	y y	108	2.2	12	13	1707	2.94	2	2			112	· · · •	2	5	46	57	074	10	19	.37	102	- 40	: 4	1 02	.01	10			4	4	
İ	0+/3		2	23	ð	120		14	11	1470	2.10	27	2		1	00		2	2	47	. 27	.020	10	21	.21	200	10		1.02	.02	. 17			1	4	
	(1+2)		1.2	30		170		70	10	1040	J.	2	17	NU Z	2	67	10 5	15	17	53	.00	.020	13	23	.34	172	-10	7/	1 90	.U2	12	- 1995. - 1997	1	142	1	
1	STANDARD	C/FA-JUR	19	60	41	130	1.2	70	-34	1003	3.00	-4Z	17	0	41	32	10.2	: 12	11	21	.47	. 090	40	20	.00	172	.07	: 04	1.00	.00	. 14	<u></u>	430	402	400	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

ENVIRONMENTS LABORATORIES

(DIVISION OF ASSAYERS CORP.)

705 WEST 15TH STREET NORTH WINCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Geochemical Analysis Certificate OV-1758-SG1

Company: ESCONDIDO	RESOURCE	CORP.			Da	te: DEC-04-90
Project)				Copy 1.	ESCONDIDO RESOURCE	CORP., VANCOUVER, BC
Attn: BARRY WAY			•			

He hereby certify the following Geochemical Analysis of 30 SOIL samples submitted NOV-24-90 by BARRY WAY.

N2+50N 4 .5 9 4 N3+00N 1 .2 12 1 N3+50N 3 .7 22 2 N4+00N 1 .6 16 1 N4+50N 1 .5 9 1 N5+00N 1 .4 11 1 N5+00N 1 .4 11 1 N5+00N 1 .4 11 1 N5+00N 1 .9 .7 .2 N4+00N 1 .7 .9	Sample Number	AU PPB	AG PPM	CU PPM	MO PPM	PB PPM	ZN PPM	and an an an an an an an an an an an an an
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N2+50N	4	.5			an an an an an an an an an an an an an a		
N3+50N 3 .7 22 2 N4+00N 1 .6 16 1 N4+50N 1 .5 9 1 N5+00N 1 .4 11 1 N5+00N 2 .7 2 N6+50N 2 .7 2 N6+50N 1 .7 27 N6+50N 1 .7 27 N7+50N 2 .4 18 5 N7+50N 2 .4 18 5 N8+00N 4 .6 13 1 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+50N 2 .6 14 1 N10+50N 2 .6 42 2 N11+50N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 1 .7 15 2 N12+50N 1 .7 15 2	N3+00N	1	.2	12	1			
N4+00N 1 .6 16 1 N4+50N 1 .5 9 1 N5+00N 1 .4 11 1 N5+00N 2 .9 27 2 N6+00N 1 .4 17 1 N6+50N 1 .9 29 5 N7+00N 1 .7 29 N8+50N 1 .7 29 N8+50N 1 .7 19 2 N8+50N 1 N10+50N 2 8 12 1 N10+50N 2 8 12 2 N10+50N 2 6 14 1 N12+50N 1 1 N12+50N 1 N12+50N 1 .	N3+50N	3	.7	22	2			
N4+50N 1 .5 9 1 N5+00N 1 .4 11 1 N5+50N 2 .9 27 2 N6+00N 1 .4 17 1 N6+50N 1 .9 29 5 N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+00N 4 .6 13 1 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+00N 1 .7 16 1 N10+50N 2 .8 17 1 N11+00N 1 .7 17 1 N11+50N 2 .6 42 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N13+50N 1 .7 15 1 N14+00N 2 .8 10 1 N14+50N </td <td>N4+00N</td> <td>1</td> <td>. 6</td> <td>16</td> <td>i</td> <td></td> <td></td> <td></td>	N4+00N	1	. 6	16	i			
N5+00N 1 .4 11 1 N5+50N 2 .9 27 2 N6+00N 1 .4 17 1 N6+50N 1 .9 29 5 N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+50N 1 .7 29 6 N8+50N 1 .7 19 2 N9+00N 4 .6 13 1 N10+00N 1 .7 19 2 N10+00N 1 .7 16 1 N10+50N 2 .8 17 1 N11+50N 2 .6 14 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .7 15 2 N14+50N 1 .6 22	N4+50N	1	.5	9	1			
N5+50N 2 .9 27 2 N6+00N 1 .4 17 1 N6+50N 1 .9 29 5 N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N10+50N 2 .6 42 2 N12+50N 1 .7 15 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+50N 2 .8 10 1 N14+50N 1 .6 22 1 N14+50N 1 .6 22	N5+00N		. 4	11		شور الدي برية مانيا بلي بإلى الما عام الذي ماني اللي . مانيا الدي برية مانيا بلي اللي المانيا المانيا الماني ال		fairs gans that with must star star and so
N6+00N 1 .4 17 1 N6+50N 1 .9 29 5 N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+50N 1 .7 19 2 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+50N 2 .8 17 1 N10+50N 2 .6 14 1 N10+50N 2 .6 14 1 N10+50N 2 .6 14 1 N11+50N 2 .6 14 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .7 15 2 N12+50N 1 .7 15 1 N13+60N 2 .8 10 1 N14+50N 1 .6 22 1 15-10	N5+50N	2	.9	27	2			
N6+50N 1 .9 29 5 N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+00N 4 .6 13 1 N8+50N 1 .7 19 2 N7+00N 1 .6 12 1 N8+50N 1 .7 19 2 N7+00N 1 .6 12 1 N10+50N 2 .8 17 1 N10+50N 2 .6 14 1 N11+50N 2 .6 14 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238	N6+00N	1	.4	17	1			
N7+00N 1 .7 29 6 N7+50N 2 .4 18 5 N8+00N 4 .6 13 1 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N10+50N 2 .6 14 1 N11+00N 1 .7 17 1 N11+50N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 1 .7 15 2 N12+50N 1 .7 15 2 N13+60N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+60N 2 .8 10 1 N14+50N 1 .6 22	N6+50N	1	. 9	29	5			I
N7+50N 2 .4 18 5 N8+00N 4 .6 13 1 N8+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+00N 1 .7 16 1 N10+00N 1 .7 16 1 N10+50N 2 .8 17 1 N1+50N 2 .6 14 1 N12+50N 1 .7 15 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253	N7+00N	1	. 7	29	6			
NB+00N 4 .6 13 1 NB+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N11+00N 1 .7 17 1 N11+50N 2 .6 14 1 N12+50N 2 .6 42 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253	N7+50N	2	4	18				
NB+50N 1 .7 19 2 N9+00N 1 .6 12 1 N10+00N 1 .7 16 1 N10+50N 2 .8 17 1 N10+50N 2 .8 17 1 N10+50N 2 .6 14 1 N11+50N 2 .6 14 1 N12+50N 2 .6 14 1 N12+50N 4 .8 12 2 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1002 .6 21 65 253 15-1003 .7 17 72 279 <tr< td=""><td>N8+00N</td><td>- 4</td><td></td><td>13</td><td>1</td><td></td><td></td><td>۲, P</td></tr<>	N8+00N	- 4		13	1			۲, P
ND-1001 1<	N8+50N	1	-7	19	2		1	
N10+00N 1 .7 16 1 N10+00N 1 .7 16 1 N10+50N 2 .8 17 1 N11+00N 1 .7 17 1 N11+50N 2 .6 14 1 N12+50N 2 .6 14 1 N12+50N 4 .8 12 2 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .7 15 2 N13+60N 2 1.0 27 1 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1001 .9 18 .62 246 15-1002 .6 21 .65 253 15-1003 .7 17 .72 279 15-1004 .7 19 .65 259	NQ+OON	1	т, К	12	1			2 2 2
N10+50N 2 .8 17 1 N11+00N 1 .7 17 1 N11+50N 2 .6 14 1 N12+50N 4 .8 12 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+60N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 .65 259	N10+00N	1	.7	16	1			n K
N11+00N 1 .7 17 1 N11+50N 2 .6 14 1 N12+50N 4 .8 12 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+60N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+60N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 .65 259	N10+50N	·	 g	17				[
N11150N 2 17 17 1 N11+50N 2 6 14 1 N12+00N 4 .8 12 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 1 .5 15 1 N13+50N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 .62 246 15-1002 .6 21 .65 253 15-1003 .7 17 .72 279 15-1004 .7 19 .65 259	N11+00N		.0	17				
N11100N 1		2	. /	1.4	1			
N12+00N 7 10 12 2 N12+39N 2 .6 42 2 N12+50N 1 .5 15 1 N12+50N 2 1.0 27 1 N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259	NICTOON .	2		17	- -			
N12+50N 1 .5 42 2 N12+50N 1 .5 15 1 N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259	NICLTON	ن. ــ	.0	12	÷			
N12+50N1.5151N13+00N21.0271N13+50N1.7152N14+00N2.8101N14+50N1.622115-10001.03223837415-1001.9186224615-1002.6216525315-1003.7177227915-1004.71965259			. O 					
N13+00N 2 1.0 27 1 N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259 65	N12+50N	1	.5	15	1		50 - C.	
N13+50N 1 .7 15 2 N14+00N 2 .8 10 1 N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259	N13+00N	2	1.0	27	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N13+50N	1	.7	15	2			1
N14+50N 1 .6 22 1 15-1000 1.0 32 238 374 15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259	N14+OON	2	. 8	10	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N14+50N	1		22	1			
15-1001 .9 18 62 246 15-1002 .6 21 65 253 15-1003 .7 17 72 279 15-1004 .7 19 65 259	15-1000		1.0	32		238	374	
15-1002 .6 21 65 253 3 £ 15-1003 .7 17 72 279 15-1004 .7 19 65 259	15-1001	1	.9	18		62	246	23.
15-1003 .7 17 72 279 15-1004 .7 19 65 259 0	15-1002		.6	21		65	253	335
15-1004 .7 19 65 259 ATT	15-1003		.7	17		72	279	12.95
	15-1004		.7	19		65	259	1450

Certified by

MIN-EN LABORATORIES

6

LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS TELEPHONE (604) 980-6814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB .:

TELEPHONE/FAX (604) 847-3004

<u>Geochemical</u>	Analys.	<u>is Certificat</u>	te	0V-1758-SG5

	<u>1 </u>	سي مدي العور ماي الدي .	وكالم المركب المجرب المجرب المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد		
COMPARY: ESC	ondido Resourci	ECORP		Bator	DEC-04-00
Brainste	김 지지 않는 것 같은 것은 것을 가지 않는 것을 많이 했다.		이 승규는 이 가슴 깨끗하는 것을 하는 것을 하는 것을 수 있다.		DFC-04-30
LL O'LEL LE		and the second second second second second second second second second second second second second second secon	Copy 1.	ESCONDIDO RESOURCE CORP	. VANCOUVER, BC
Attn: BARR	Y WAY A WAY	man in the Station	5 🔊		· · · · · · · · · · · · · · · · · · ·
		말 눈 눈 눈 가 잘 봐 봐요	1. A A A A A A A A A A A A A A A A A A A		
				14	

He hereby certify the following Geochemical Analysis of 5 SOIL samples submitted NOV-24-90 by BARRY WAY.

Sample Number	AG PPM	CU PPM	PB PPM	ZN PPM	 A second sec second second sec
G4+20W 0+60S G4+20W 0+90S G4+20W 1+20S G4+20W 1+50S	.7 .5 .4 .2	20 16 6 13	22 19 17 25	122 100 89 135	Davel GRD west
N9+50N	.3	<u>.</u> 9	18	69	MITHI - VEN CLAIM, SOILS

Certified by 181

MIN-EN LABORATORIES

L

NITHI RIVER PROJECT, 1991 ESCONDIDO RESOURCE CORPORATION SOIL SURVEY RESULTS, VEN#1 MINERAL CLAIM

EAST (m)	NORTH (m)	Mo (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)
				<u> </u>	
100	250	4	9		0.5
100	300	1	12		0.2
100	350	2	22		0.7
100	400	Ţ	16		0.6
100	450	1	9		0.5
100	500	1	11		0.4
100	550	2	27		0.9
100	600	1	17		0.4
100	650	5	29		0.9
100	700	6	29		0.7
100	750	5	18		0.4
100	800	, 1	13		0.6
100	850	2	19		0.7
100	900	1	12		0.6
100	1000	1	16		0.7
100	1050	1	17		0.8
100	1100	1	17		0.7
100	1150	1	14		0.6
100	1200	2	12		0.8
100	1239	2	42		0.6
100	1250	1	15		0.5
100	1300	1	27		1.0
100	1350	2	15		0.7
100	1400	1	10		0.8
100	1450	1	22		0.6
1025	510	4	22	65	0.4
975	510	2	19	77	0.5
925	510	2	17	98	0.4
875	510	1	20	86	0.4
82 0	510	1	21	85	0.4
775	510	5	55	77	0.2
725	510	2	29	108	0.4
675	510	3	32	71	0.3
625	510	2	27	198	0.3
575	510	3	28	142	0.3
525	510	4	26	215	0.4
475	510	6	71	1448	0.6
425	510	4	51	708	0.5
375	510	5	23	125	0.3
325	510	2	36	81	0.2

APPENDIX A

Ł

DESCRIPTION OF ROCK SAMPLES VEN#1 MINERAL CLAIM, OCTOBER 1991

VEN91-1 (outcrop @ 30 meters north of Station 7+50W on Line 1)

<u>Quartz Monzonite Porphyry</u> containing large Kspar phenocrysts. Pink alteration of Kspar may indicate a secondary origin - also there is minor chlorite alteration of biotite and hornblende. The hornblende grains are strongly magnetic, suggesting contained magnetite. Hornblende and biotite are equivalent in abundance.

VEN91-2 (outcrop @ Station 3+50W on Line 2)

<u>Quartz Monzonite</u> moderately altered with chlorite and sericite evident. Chlorite alteration is rimming hornblende. Hornblende is more abundant than biotite. Hornblende grains are weakly magnetic, suggesting minor contained magnetite. Some pyrite (<1%) is contained in disseminations.

VEN91-3 (outcrop? @ Station 2+25W on Line 2)

<u>Andesite</u> that is highly siliceous and weakly magnetic. Contains >2% pyrite in fractures and disseminations. Sample may contain some chalcopyrite - very fine grained. Surface of this rock weathers a very rusty brown.

VEN91-4 (outcrop? in old trench 175 meters west of Station 7+50W on Line 2)

<u>Ultra fine grained diorite</u> with abundant epidote. Very fine sulfides that are probably pyrite. Sample scratches readily with a needle.

APPENDIX B

ı

NITHI RIVER PROJECT, VEN#1 CLAIM MAGNETICS SURVEY, OCTOBER 14, 1991

APPENDIX B PAGE 1 OF 2

L L

STATION	TIME	GAMMAS	COMMENTS
LINE 1:			
0+00W	11:37	57400	*** See note 3 ***
0+25W		57450	
0+50W		57450	
0+75W		57700	
1+00W	11:40	57500	
1+25W		57450	
1+50W		57450	
1+75W		57700	
2+00W	11:45	57550	
2+25W		57500	
2+50W		57450	
2+75W		57500	
3+00W	11:50	57550	
3+25W		57400	
3+50W		57450	
3+75W		57550	
4+00W	11:55	57450	
4+25W		57500	
4+50W		57450	
4+75W		57450	Andesite porph. flt.
5+00W	12:05	57500	
5+25W		57550	
5+50W		57400	
5+75 W		57400	
6+00W	12:09	57400	
6+25W		57400	
6+50W		57450	
6+75W		57400	
7+00W	12:14	57450	
7+25W		57450	
7+50W		57300	
LINE 2:			
0+00W	13:24	57400	
0+25W		57600	
0+50W		57400	
0+75₩		57500	
1+00W	13:19	57700	
1+25W		57400	
1+50W		57400	
1+75W		57500	
2+00W	13:12	57700	
2+25W		57400	Outcrp. VEN91-3
2+50W		57600	_
2+75W		57500	
3+00W	13:00	57450	
3+25W		57600	
3+50W		57500	Outcrp. VEN91-2
3+75W		57500	

Page 2 Nithi River Project, Ven#1 Claim

STATION	TIME	GAMMAS	COMMENTS
4+00W	12:53	57400	
4+25W		57300	
4+50W		57500	
4+75W		57500	
5+00W	12:48	57500	
5+25W		57500	
5+50W		57550	
5+75W		57700	
6+00W	12:43	57400	
6+25W		57500	Qtz. Mnz. flt. intense alt.
6+50W		57500	-
6+75W		57600	
7+00W	12:37	57450	
7+25₩		57600	
7+50W	12:30	57400	Qtz. Mnz. flt. intense alt.

Note:

(1) The magnetic readings represent the Total Magnetic Field in Gammas.

ŧ

- (2) Field crew included: Sydney Wilson, geologist; Gary Kurz, field assistant; John Chapman, mining engineer.
- (3) The instrument, a Geometrics Model G816 proton magnetometer, appeared to be giving faulty (flat) readings. Upon return to Vancouver Mr. Paul Cartwright of Pacific Geophysical inspected the instrument and confirmed there was a faulty circuit in the unit. <u>Therefore, the above magnetics survey readings are</u> useless and cannot be plotted.

APPENDIX C

....

ŧ

NOTE: SOIL SURVEY BY: J. CHAPMAN, BARRY WAY. SAMPLE ANALYSIS BY MIN-EN & ACME LABORATORIES. MAP REFERENCE: ORIGIN OF GRID IS LOCATED AT THE FOLLOWING UTM COORDINATES: 5979710mN/374850mE UTM.

APPENDIX C COPPER IN SOILS

NOTE: SOIL SURVEY BY: J. CHAPMAN, BARRY WAY. SAMPLE ANALYSIS BY MIN-EN & ACME LABORATORIES. MAP REFERENCE: ORIGIN OF GRID IS LOCATED AT THE FOLLOWING UTM COORDINATES: 5979710mN/374850mE UTM.

APPENDIX C MOLYBDENUM IN SOILS

NOTE: SOIL SURVEY BY: J. CHAPMAN, BARRY WAY. SAMPLE ANALYSIS BY MIN-EN & ACME LABORATORIES. MAP REFERENCE: ORIGIN OF GRID IS LOCATED AT THE FOLLOWING UTM COORDINATES: 5979710mN/374850mE UTM.

APPENDIX C ZINC IN SOILS

`:

NOTE: SOIL SURVEY BY: J. CHAPMAN, BARRY WAY. SAMPLE ANALYSIS BY MIN-EN & ACME LABORATORIES. MAP REFERENCE: ORIGIN OF GRID IS LOCATED AT THE FOLLOWING UTM COORDINATES: 5979710mN/374850mE UTM.

APPENDIX C SILVER IN SOILS

APPENDIX D

L Contraction

NITHI RIVER PROJECT, VEN#1 CLAIM SELF POTENTIAL SURVEY, OCTOBER 14, 1991 ESCONDIDO RESOURCE CORPORATION

.

APPENDIX D PAGE 1 OF 1

ı.

	SELF POTENTIAL	
STATION	(MILLIVOLTS)	<u>COMMENTS</u>
TTNE 2.		
DINE 2:		
	-22	
	-21	
1±0057	-36	
1+00W	-38	
1+20W	↓ 1	
1+30W	-20	
2+00M	-20	
2+00W 2+25W	-20	Small outgrop VENG1-3
2+2JW 2+50M	- 15	Small Outclop, VENSI 5
2+30W 2±75W	- 0	
2+7.5W 2+0.0W	-13	
3+00W 3+35M	- 0	
3+50W	- 2	Small outgrop VENG1-2
3+30W	- 2	Small Offerop, Ardaraz
	- 0 -21	
4+00W 1+25m	-31	
4+2JW 1450W	-29	
4+30W 4+75W	-61	
5+00W	-01	
5+00W 5+25W	-23	
5+25W 5+50W	-20	
5+75W	-25	
5+75W 6+00W	-40	
6+25W	-34	Otz. Mnz. flt. ints. alt.
6+50W	-32	gezt mizt fiet, incot after
6+75W	-41	
7+00W	- 8	
7+25W	-19	
7+50W	-23	Otz. Mnz. flt. ints. alt
7 · 5 • 11	23	Zeas smas tress thess are:

ESCOLDIDO RESOURCE CORPORATION

APPENDIX E

ı

NITHI RIVER PROJECT, 1991 ESCONDIDO RESOURCE CORPORATION VLF-EM SURVEY RESULTS, VEN#1 MINERAL CLAIM APPENDIX E TWO PAGES

ł

EAST (m)	NORTH (m)	VLF-EM	VLF-EM	VLF-EM FRASER FILTERED
1050	660	-1		
1025	660	-1	-2	0
1000	660	-1	-2	U
975	660	- 1	-2	-4
930	660	10	13	-19
900	660	10	20	- 18
875	660	10	20	- 4
850	660	12	24	-3
825	660	13	25	-3
800	660	14	27	-4
775	660	15	29	-3
750	660	15	30	Ō
725	660	14	29	2
700	660	14	28	4
675	660	11	25	7
650	660	10	21	9
625	660	6	16	11
600	660	4	10	9
575	660	3	7	5
550	660	2	5	2
525	660	3	5	0
500	660	2	5	0
475	660	3	5	-8
450	660	10	13	-14
425	660	9	19	-4
400	660	8	1/	3
375	660	с 0	10	1
305	660	ס די	15	1
300	660	, 9	15	0
	000	2	10	
1050	510	2		
1025	510	3	5	
1000	510	4	7	- 5
975	510	6	10	-5
950	510	6	12	-7
925	510	11	17	-12
900	510	13	24	-6
875	510	10	23	6
850	510	8	18	9
825	510	6	14	14
800	510	-2	4	16
110	510	U	- 2	4
/ 3 U 7 3 K	510	U I	U	- 3
725	510	⊥ २	1 /	
100	210	5	7	3

675	510	7	10	-10
075	510	<u> </u>	10	-10
650	510	7	14	- 4
625	510	7	14	-1
600	510	8	15	-2
575	510	8	16	-2
550	510	9	17	-5
525	510	12	21	-7
500	510	12	24	-2
475	510	11	23	6
450	510	7	18	12
425	510	4	11	12
400	510	2	6	8
375	510	1	3	1
350	510	4	5	- 6
325	510	5	9	-8
300	510	8	13	

i

NITHI RIVER PROJECT, VEN#1 CLAIM, FRASER FILTERED VLF-EM ESCONDIDO RESOURCE CORPORATION, 1991

NOTE: VLF—EM SURVEY BY: JOHN CHAPMAN INSTRUMENT: PHOENIX VLF—2 MAP REFERENCE: ORIGIN OF GRID IS LOCATED AT THE FOLLOWING UTM COORDINATES: 5979710mN/374850mE UTM. TRANSMITTER STATION: SEATTLE, WASHINGTON APPENDIX E

APPENDIX F

•

i. i

EAST (METERS)

NITHI RIVER PROJECT, VEN#1 CLAIM BASE MAP: SURVEY AREAS

NDTE: UTM COORDINATES FOR ORIGIN (0,0) OF THIS MAP ARE 5979710mN/374850mE UTM.

APPENDIX F