V/10 V +	<u>η</u> υ.
	

ASSESSMENT REPORT

GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILLING

SUB-RECORDER	PORPHYRY CREEK PROPERTY
RECEIVED KARI	N 3, LADY DIANA 1-4, LADY DIANA 6,
JAN 24 1992	BEAR, KLIYUL, EMER 1-9, AND FINN 1-4 CLAIMS
M.R. # \$	OMINECA MINING DIVISION

NTS:

94C/5,12 94D/8,9

LATITUDE: 5 LONGITUDE: 1

56°29'N 125°58'W

OWNERS: TECK CORPORATION TOTAL ENERGOLD CORPORATION

OPERATOR: TECK EXPLORATION LTD.

WRITERS: J.R. TOOHEY (Teck Exploration Ltd.) P. CARTWRIGHT (Pacific Geophysical Ltd.) S.J. HOFFMAN (Prime Geochemical Methods Ltd.)

TABLE OF CONTENTS

INTRODUCTION 1
LOCATION AND ACCESS 1
PHYSIOGRAPHY AND VEGETATION 1
CLAIMS STATUS 1
EXPLORATION HISTORY 3
REGIONAL GEOLOGY 3
PROPERTY GEOLOGY (See Figure 4) 4 Takla Group 4 Croydon Creek Stock 4 Kliyul Creek Pluton 5 Davie Creek Stock 5 Alteration 5 Structure 6 Mineralization 6
GEOCHEMISTRY 7
GEOPHYSICS
DIAMOND DRILLING 8
CONCLUSIONS 10
RECOMMENDATIONS 10
STATEMENT OF COSTS 11
WRITER'S CERTIFICATE

LIST OF TABLES

PAGE

TABLE 1	CLAIMS STATUS	2
TABLE 2	DIAMOND DRILL HOLE SUMMARY - RAVEN GR	ID 9
	LIST OF FIGURES	
FIGURE 1	LOCATION MAP	Following Page 1
FIGURE 2	CLAIM MAP	In pocket
FIGURE 3	ACCRETED TECTONOSTRATIGRAPHIC TERRAN BRITISH COLUMBIA	ES OF Following Page 3
FIGURE 4	GEOLOGICAL SUMMARY	In pocket
FIGURE 5	DRILL HOLE LOCATIONS - RAVEN GRID	In pocket

APPENDICES

- APPENDIX 1 Companion Report Entitled "Soil Geochemical Assessment Report -Porphyry Creek Property" by Dr. S.J. Hoffman of Prime Geochemical Methods Ltd. (Bound separately).
- APPENDIX 2 Companion Report Entitled "Report on the Induced Polarization, Resistivity and Magnetic Surveys on the Porphyry Creek Property" by P. Cartwright and M. Cormier of Pacific Geophysical Ltd. (Bound separately).
- APPENDIX 3 Drill Logs
- APPENDIX 4 Drill Core Assay Certificates

INTRODUCTION

This report documents field exploration work carried out on the Porphyry Creek property by Teck Exploration Ltd. between July 10 and September 9, 1991, including:

- 1) collection of 2829 soil and talus fines samples,
- 2) 89.1 line kilometres of combined induced polarization, resistivity and total field ground magnetic surveys, and
- 3) 457.19 metres of diamond drilling.

LOCATION AND ACCESS

The Porphyry Creek property is located 215 km NNE of Smithers, B.C. (See Figure 1). It lies to the west of Lay Creek, between Aiken and Johanson Lakes. The Omineca Mining Access Road passes within 3 km of the NE corner of the property. The driving time from Ft. St. James is approximately 6 hours. A gravel airstrip at Johanson Lake, 23 km to the NW, accommodates medium-sized wheeled aircraft. The flying time from Smithers is approximately 1 hour.

PHYSIOGRAPHY AND VEGETATION

The physiography of the area is characterized by broad glacial valleys rising steeply to rugged peaks and ridges ranging in elevation from 2,000 to 2,300 metres. Numerous well-developed cirques host small receding alpine glaciers. Thick glacial drift and alluvium mantle the valley floors. Higher elevations are typified by large percentages of bedrock exposure on rugged spurs separated by gullies with thick aprons of loose blocky talus.

Treeline is at about 1500 metres elevation. Alpine grasses and stunted shrubs vegetate the higher elevations. Lower valley slopes are forested with stands of spruce and balsam.

CLAIMS STATUS

The property consists of 20 contiguous 4 post claims and one fractional claim, comprising a total of 311 units (see Figure 2 and Table 1). All of the claims are owned by Teck Corporation and Total Energoid Corporation.

TABLE 1 - CLAIMS STATUS

CLAIM NAME	RECORD NUMBER	OWNERSHIP	UNITS	EXPIRY DATE
KLIYUL	1581	TECK CORPORATION	20	DEC 19,1993
BEAR	1997	TECK CORPORATION	12	AUG 24,1993
KAREN 3	2263	TECK CORPORATION	8	OCT 29,1993
LADY DIANA 1	3999	TOTAL ENERGOLD CORPORATION	12	JUL 28,1993
LADY DIANA 2	4000	TOTAL ENERGOLD CORPORATION	18	JUL 28,1993
LADY DIANA 3	4001	TOTAL ENERGOLD CORPORATION	9	JUL 28,1993
LADY DIANA 4	4002	TOTAL ENERGOLD CORPORATION	15	JUL 28,1993
LADY DIANA 6Fr.	4003	TOTAL ENERGOLD CORPORATION	1	JUL 28,1993
EMER 1	11787	TECK CORPORATION	20	APR 28,1999
EMER 2	11788	TECK CORPORATION	20	APR 28,1996
EMER 3	11789	TECK CORPORATION	20	APR 28,1997
EMER 4	11790	TECK CORPORATION	20	APR 28,1999
EMER 5	11791	TECK CORPORATION	20	APR 28,1999
EMER 6	11792	TECK CORPORATION	20	APR 28,1999
EMER 7	12453	TECK CORPORATION	16	AUG 20,1996
EMER 8	12454	TECK CORPORATION	8	AUG 20,2001
EMER 9	12455	TECK CORPORATION	12	AUG 20,1991
FINN 1	12993	TECK CORPORATION	20	FEB 16,1992
FINN 2	12994	TECK CORPORATION	10	FEB 16,1992
FINN 3	12995	TECK CORPORATION	20	FEB 16,1992
FINN 4	12996	TECK CORPORATION	20	FEB 16, 1992

EXPLORATION HISTORY

Exploration activity in the area dates back to the 1930's when Cominco explored lode gold showings at Porphyry Creek, Croydon Creek and nearby Granite Basin. A forest fire in 1938 destroyed Cominco's Croydon Creek camp and work in the area was subsequently halted. The period 1946 to 1948 saw renewed interest, leading to the discovery and staking of the Shell and Soup prospects comprising magnetite-chalcopyrite-Au skarns and veins located immediately west and northwest of the present Porphyry Creek property. These showings have been explored intermittently up to recent years.

In 1963, Rio Tinto discovered porphyry Mo mineralization at Davie Creek, a minor tributary of Porphyry Creek. The claims were abandoned in 1964 following a short drill program. During the early 1970's the area was actively explored for porphyry Cu-Mo mineralization by a number of companies. UMEX held claims covering the Raven prospect and Stellac staked the Sarah claims to the south. Both of these old prospects are included in the present Porphyry Creek property. BP has held ground in the surrounding area since the mid-1970's.

Teck staked the Davie Creek porphyry Mo prospect in 1978. The property was explored in joint ventures with Chevron (1979) and Getty Resources (1981-83), the final result being a drill-indicated resource estimated at 100 million tons grading $0.1\%MoS_2$. Teck resumed exploration on the property in 1990 with a new focus emphasizing the alkaline porphyry Cu-Au potential. The 1990 program involved reconnaissance mapping at a scale of 1:10,000, prospecting, and contour soil sampling. A 25 line-km grid ("Raven Grid") was placed over the old Raven showing and was soil sampled and mapped late in the 1990 field season.

REGIONAL GEOLOGY

The Porphyry Creek property lies within the tectonostratigraphic terrane designated Quesnellia by Wheeler, et al (1988). Quesnellia extends as a narrow NNW-trending belt over most of the length of the Canadian Cordillera (See Figure 3). It is an assemblage of Upper Triassic to Lower Jurassic island-arc submarine volcanics and comagmatic subvolcanic intrusions represented in the Omineca region by the Takla Group volcanic/volcaniclastic succession and by early phases of the Hogem batholith.

The NNW-striking Pinchi-Ingenika fault system lies 14 kilometres to the west of the property (See Figure 4). It juxtaposes Quesnellia with rocks of Stikinia. Quesnellia is bounded 3 kilometres to the east of the property by the NW-striking Lay Creek fault which separates it from the Cassiar Terrane. These two major fault systems merge 50 kilometres to the northwest drawing Quesnellia rocks into a narrow sliver.

The regional structural fabric is dominated by these two major fault systems and in a more local sense by the N-striking Dortatelle fault. Less prominent NE-striking faults are also an important element of the regional structural pattern.

PROPERTY GEOLOGY (See Figure 4)

The property is underlain by rocks of the Takla Group intruded by a variety of alkaline and calc-alkaline plutons.

Takla Group

The Takla Group is a thick conformable succession of subaqueous volcanic, volcaniclastic and sedimentary rocks ranging in age from Upper Triassic to Lower Jurassic. In the Porphyry Creek area, the Takla Group comprises approximately equal proportions of volcanic and sedimentary rocks. The dominant volcanic lithology is grey-green porphyritic andesite to basalt flows containing phenocrysts of either hornblende pseudomorphic after pyroxene, or zoned plagioclase or both, in a dark aphanitic groundmass. The flows appear massive, are thick-bedded (up to 100 metres thick) and the sequence lacks distinctive marker strata. Within the volcanic sequence are found lesser flow breccias and toward the top of the sequence are minor tuffs and agglomerates.

The sedimentary part of the sequence comprises thin- to medium-bedded greywackes consisting almost entirely of volcanic-derived sediment, and much less abundant limestone, black carbonaceous argillite and siltstone, not of volcanic derivation.

Croydon Creek Stock

This composite pluton comprises the oldest intrusive suite exposed and covers a large area in the south half of the property. The average composition is that of hornblende diorite with equal proportions of the two essential constituents-hornblende and plagioclase. However, rocks of varying texture and with varying proportions of hornblende and plagioclase intrude each other in an intricate and complex fashion, resulting in a complex of dyke-like bodies and inclusions. There is a definite order of intrusion with the oldest varieties being the most mafic and younger rocks progressively more feldspathic.

The following intrusive sequence has been documented:

- 1. Hornblendite, pyroxene hornblendite and actinolite amphibolite.
- 2. Feldspathic hornblendite and appinite (up to 15% feldspar).
- 3. Medium-grained appinite (15-25% feldspar).

4

- 4. Pegmatitic appinite and hornblende diorite (15-40% feldspar).
- 5. Fine-grained appinite (20% feldspar).
- 6. Medium-grained appinite and hornblende diorite (40-50% feldspar).
- 7. Fine-grained hornblende diorite (50% feldspar).
- 8. Coarse-grained hornblende diorite (50% feldspar).
- 9. Fine- to medium-grained hornblende diorite (50-80% feldspar).

These rocks are all cut by crowded monzonite porphyry dykes which appear to be late stage differentiates of the dioritic magma. The crowded porphyries are characterized by lath-shaped phenocrysts of plagioclase and lesser hornblende in a fine-grained groundmass of plagioclase and k-feldspar with mafics.

Rocks having similar compositions, textures and interrelationships intrude the Takla Group volcanics in the northeast corner of the property (Raven Grid area).

Kliyul Creek Pluton

The northeast margin of this intrusive body is exposed in the southwest corner of the property. It comprises leucocratic quartz-rich rocks ranging in composition from quartz diorite to granodiorite. They are light grey, medium-grained equigranular and composed essentially of quartz, plagioclase, k-feldspar, and biotite with minor muscovite.

Davie Creek Stock

This small stock is a composite of quartz-rich intrusive varieties ranging in composition from quartz-monzonite to granodiorite. Most varieties are porphyritic with ovoid quartz phenocrysts. Some have plagioclase and less abundant biotite phenocrysts as well. Several varieties of compositionally-similar dykes cut the main stock and the country rocks in its immediate vicinity.

Alteration

The volcanics and the intrusive rocks of the Croydon Creek Stock and Davie Creek Stock have been variably affected by potassic and propylitic hydrothermal alteration. Potassic alteration, as potassium feldspar replacement, is most pronounced within and immediately surrounding the Davie Creek Stock where it is moderate to intense and locally pervasive. It is less pronounced in the volcanics and rocks of the Croydon Creek Stock but occurs sparingly as stringers and fracture-controlled disseminations of potassium feldspar and as fresh brown biotite replacing hornblende. Weak pervasive chloritization is a ubiquitous feature of the volcanics, diorite and monzonite. Weak to moderately-intense fracture-controlled epidotization occurs widely throughout the same rocks. Other manifestations of widespread propylitic alteration in these rocks are the occurrence of calcite veinlets and broad zones of pyritization.

<u>Structure</u>

The predominant structural orientation in the Porphyry Creek area is NW. At least 6 important NW- to WNW-striking faults cross the property. Most are traceable for several km beyond the property boundaries. They show up to 1.3 km of left-lateral displacements of diorite and monzonite intrusive contacts.

Subordinate faults striking N and NNE are also important structural features but show lesser lateral displacements. Most of the faults on the property are characterized by 1- to 15-metre wide zones of intense shear foliation and gauge attended by chloritization and carbonatization.

Mineralization

The following forms of mineralization have been discovered on the property to date:

- 1. High-grade Au-bearing quartz-chalcopyrite-pyrite fissure veins (eg Croydon veins explored by Cominco in the 1930's). They have thus far been found to be narrow, erratic and discontinuous.
- 2. Moderate- to high-grade chalcopyrite and Au-bearing magnetite calc-silicate skarn deposits hosted by limy tuff horizons within the volcanic sequence (eg. the Soup skarn horizon which extends onto the SW corner of the property and similar skarn mineralization in the vicinity of Bloom Cirque).
- 3. High-grade chalcopyrite-and Au-bearing magnetite-pyrite-pyrrhotite fissure vein deposits hosted by andesite as at the Shell prospect at the western edge of the property.
- 4. Calc-alkaline porphyry Mo-Cu mineralization occurring as disseminations, fracturefillings and quartz-veinlet stockworks throughout and confined to the Davie Creek Stock. Considerable scheelite is found in pan concentrates from streams draining the Davie Creek Stock.
- 5. Alkaline porphyry Cu-Au mineralization comprised of broad zones of disseminated and fracture-filling pyrite and chalcopyrite hosted by volcanics, diorite and monzonite (eg. Bloom Cirque, Raven Grid, and Porphyry Creek valley).

6. High-grade Au-bearing quartz-carbonate-chalcopyrite veins hosted by major shears (eg. Croydon Ridge).

GEOCHEMISTRY

A 60 kilometre cut line grid ("Porphyry Creek Grid") was established in the southeast part of the Porphyry Creek drainage in 1991 (See Figure 4). The grid lines are spaced 100 metres apart with a station interval of 25 metres. A total of 2401 B-horizon soil samples were collected from the grid. Sample locations corresponding to picketed grid stations were marked by orange flagging upon which was affixed the sample number.

A small (3.6 kilometre) compass and topofil controlled grid was established in Bloom Cirque for the purpose of soil sampling (See Figure 4). The line spacing is 100 metres and the sample station interval is 25 metres. Soil samples on this grid totalled 159 and sample locations were marked in the same fashion as for the Porphyry Creek Grid.

An additional 269 contour soil and talus fines samples were colleted in a reconnaissance geochemical survey of the FINN claims which were staked in February of 1991. Parallel traverse lines were spaced 100 metres apart in elevation and samples collected on 50-metre intervals.

In all three surveys samples weighing approximately 0.5 kg were collected using shovels. They were taken at depths of between 10 and 50 cm, depending upon the degree of soil development and depth of the A horizon. The samples were placed in gusseted wet-strength kraft envelopes and shipped to Rossbacher Laboratory in Burnaby, B.C. where they were oven-dried and screened to minus 80 mesh. The minus 80 mesh fractions were analysed for 32 elements by ICP following aqua regia digestion and for Au by Atomic Absorption.

The geochemical data were submitted to Prime Geochemical Methods Ltd. who performed statistical data analyses, produced dot-plot style maps depicting element concentrations and provided a geochemical interpretation of the results.

A report on the data evaluation and interpretation by Dr. S.J. Hoffman is attached as Appendix 1. Included are sample location maps, element distribution maps, certificates of laboratory analyses and completed field note forms.

GEOPHYSICS

All of the geophysical work carried out on the property in 1991 was contracted to Pacific Geophysical Ltd. of Vancouver. They completed combined induced polarization, resistivity and total field ground magnetic surveys amounting to 25.75 line kilometres on the Raven Grid and 63.35 line kilometres on the Porphyry Creek Grid (See Figure 4). Appendix 2 contains a report by Pacific Geophysical Ltd. which includes detailed descriptions of the instrumentation and survey specifications, data presentation in the form of pseudosections and plans, and interpretation.

DIAMOND DRILLING

J.T. Thomas Diamond Drilling Ltd. of Smithers, B.C. were contracted to drill 3 holes totalling 1500 feet (457.19 metres). They provided a JT 600 heliportable drill rig and BQ Thinwall equipment. The drilling was carried out between August 30 and September 4, 1991.

All of the mineralized core was split and submitted to Rossbacher Laboratory in Burnaby, B.C. where it was assayed for Cu and analysed for Au by Atomic Absorption. A total of 161 core samples were taken, the average sample length being 3.05 metres. The remaining core is stored in wooden core boxes at the respective drill sites.

All three holes were targeted on a coincident chargeability and Cu soil geochemical anomaly in the Raven Grid area. The holes were widely-spaced and located in such a way as to provide a broad cursory test of the potential for a large (eg 250 mt) porphyry Cu-Au deposit.

Table 2 is a drill hole summary listing the grid coordinates, depth, azimuth and inclination of each hole. The drill hole locations are shown in Figure 5. Drill logs appear in Appendix 3 and the core assay and analytical certificates in Appendix 4.

The drilling encountered porphyritic and esitic and basaltic flows and flow breccias, intrusive bodies of porphyritic hornblende diorite and crowded monzonite porphyry, and late andesite porphyry dykes. With the exception of the andesite porphyry dykes, all of the lithologies showed varying intensities of potassic and propylitic alteration and were mineralized with disseminations and fracture-fillings of pyrite and lesser chalcopyrite. Copper grades in the range of 0.02-0.08% were returned. The higher concentrations of chalcopyrite are associated with intense fracture-controlled epidote alteration and the occurrence of hydrothermal magnetite in the form of veinlets and localized disseminations.

TABLE 2

DIAMOND DRILL HOLE SUMMARY - RAVEN GRID

HOLE	COORDINATES	INCLINATION	AZIMUTH	DEPTH
91-R-1	50+00N/95+00W	-45°	352°	152.40m
91-R-2	53+50N/92+00W	-45°	172°	149.65m
91-R-3	50+25N/91+50W	-45°	082°	155.14m

CONCLUSIONS

- 1. Geologic mapping has identified the property setting as a high-level subvolcanic intrusive environment. A differentiated alkalic magma series comprising small stocks, plugs and dykes of diorite and monzonite intrude and are comagmatic with overlying volcanics.
- 2. The property lies within an area of strong Cu and Au metallogeny. These are important Cu and Au lode prospects peripheral to the property and numerous bedrock occurrences have been located during property-wide prospecting programs.
- 3. Limited drill testing of one coincident geochemical and chargeability anomaly on the Raven Grid failed to intersect economically significant grades of Cu and Au.
- 4. Numerous other targets await further exploration and drilling, including two broad areas of coincident geochemical and chargeability response in the Porphyry Creek area and an area of high-contrast Cu and Au geochemistry in Bloom Cirque.

RECOMMENDATIONS

- 1. Further exploration work is warranted and recommended.
- 2. The 1992 exploration program should entail the following:
 - a) follow-up of outstanding soil geochemical anomalies in order to locate, expose and characterize the bedrock sources;
 - b) extension of the Porphyry Creek grid to close-off existing anomalous trends;
 - c) detailed rock-chip sampling in the Bloom Cirque area to characterise the grade distribution of exposed mineralization; and
 - d) cursory drill testing of prioritized targets thus generated.

STATEMENT OF COSTS

 Field salaries: P.L. Grexton, T. Berger, R. Smallwood, J. Bacon, E. Ronyecz, J. Weber I. Sommerville, P. Griffoen, P. Baulne 	\$ 123,244.55
Geological Consultant-Project Management and Supervision:	0.500.40
J.R. Toohey	9,590.48
Pacific Geophysical Ltd.	66,836.00
J.T. Thomas Diamond Drilling Ltd.	33,597.85
Bear Mountain Exploration Service Ltd.	82,478.38
Prime Geochemical Methods Ltd.	1,654.59
Nadir Mapping (Topographic base maps)	4,251.50
Pegasus Professional Services (Terrain Analysis)	4,619.73
Aircraft Support: Pacific Western Helicopters Central Mountain Air Northern Thunderbird air	103,762.82 4,858.55 1,065.90
Rossbacher Laboratory (assays and geochemical analyses)	45,735.13
Equipment and Supply Purchase	50,930.81
Equipment Rental	7,080.03
Groceries and Camp Supplies	28,641.51
Expediting Smithers Expediting Russell Transfer	2,246.46 4,589.20
Freight Charges	12,268.18
Truck Rentals	6,036.89

Fuel	3,199.37
Travel Costs	7,365.94
B.C. Telephone	328.80
Maps and Reproductions	2,688.12
Report Preparation: J.R. Toohey Pacific Geophysical Ltd. Prime Geochemical Methods Ltd.	2,412.85 5,938.50 4,162.57
TOTAL	<u>619,584.71</u>

WRITER'S CERTIFICATE

I, Jeffrey Robert Toohey, of 27-39752 Government Road, Squamish, British Columbia, do hereby certify that:

- I am a consulting geological engineer with offices at the above address. 1.
- 2. I am a graduate of Colorado School of Mines, Golden, Colorado, U.S.A. (B.Sc. Geological Engineering, 1984).
- I am a graduate of Queen's University, Kingston, Ontario (M.Sc. Geology Mineral 3. Exploration 1986).
- I am a member in good standing of the Association of Professional Engineers of 4. British Columbia.
- 5. I have been engaged in mineral exploration in British Columbia, the Yukon and Northwest Territories, Saskatchewan and the Western United States since 1974.
- I supervised exploration work carried out on the Porphyry Creek property in 1991 6. and am the writer of the foregoing report.

Jeff Joe Lun J.R. Toohey, M.Sc. R. Eng.

January 27, 1990

APPENDIX 3

DRILL LOGS

DIAMOND DRILL HO	LE	LO	G									Pao	le 1 of	3
Image: Constraint of the second of the se	AT	SU Be	N RVEY baring		Property Location Coord Collar Elev Collar Date Started Date Completed	0 <i>R PH</i> 75 9 N E <u>AU</u> 5 <u>AU</u>	VRY 2 4 c / 50 t 00 5 t 00 1850 6, 30 6, 31	<u>2REEK</u> 12 0 <i>N</i> 0 <i>W</i> <u>metre</u> , 1991 , 1991		lole No Bearing nclinati ength Core Si Logged	at collar on at co ze By	91-R Ilar 152.4 9 Thu . TOQ	2-1 352° -45° 10 met 5 hall 4EY	/=
LITHOLOGY, ALTERATION, MISC.	Depth	GRA L	APHIC OG	MINERA	LIZATION	RECO ^V Run	/ERY %	Sample	A	NALY	TICAL		1	вох
0-1.51 Overburden 1.51-6.63 PA Plag, phenos in aphanihic dk grey ground mass, phenos o.5-5 mm. Not altered. 6.63-8.30 HD Med. Grouped w/ coase cub. honblood 6.63-8.30 HD Med. Grouped w/ coase cub. honblood 6.63-8.30 HD Med. Grouped w/ coase cub. honblood 9.43-11.95 HD Epidoke an Anchores 1.132-2.35 MP Migh Anchore density apidole 12.55-15.57 HD of Anathin on Anchores, famili contact at 15.57 ore \$ 17 15.57-22.49 PA As above 12.55-22.65 HD as obore 12.55-22.65 HD as obore 12.55-22.65 HD as obore 15.57-22.65 HD as obore 12.55-22.65 HD as obore	5			Not mine PY, Cpy, man Not minera 5-15% PY, 5-10% PY, 5-10% PY, 8-7% PY, Not mine 7-15% py significa	analized I on fractures Mizea Mitor CPY mitor EPY mitor Sunt CPY mitor CPY mitor Sunt CPY mitor Sunt mitor Sunt mito			2/ #5/ 2 3 4 5 60 7 8 9 60 1 2 3 4 5 6 7 8 9 70 70	6.43 8.34 9.43 119 11.95 12.5 12.55 15.5 22.49 228 23.54 249 23.54 249 33.51 34.3 33.51 34.3 34.92 35.4 39.42 42.4 42.47 13.7 43.78 44.6 42.47 18.9 43.90 54.9 51.95 51.4	1.67 1.67 2.52 5 5 6 7 7 7 7 7 7 2.60 7 7 2.60 7 2.60 5 7 7 2.60 5 4.05 5 3.10				
34.36 35.17 MP Endole Venilels 35.47-38.98 HD Muscraus epidok - py verickets Irregular guartz-py-cay-at stringer (0) 38.90 38.98-43.78 MP 43.78-44.67 HD 44.47-48.90 MP Vague contact (0) 44.67 48.90-49.70 AA	40 40 45 50			2-6% py 3-5% py 3-5% py 1-2% py 5-12% py	, no goy , no goy V. mmor goy , ho goy			1 2 3 4 5 6 7 7 9 9 21480	58.05 58.8 58.89 60.0 60.04 64.0 64.00 67.1 77.10 78.1 73.15 75.5 75.59 77.4 78.64 81.7	9 0.84 1.15 9 3.96 0 3.96 0 3.00 0 3.00 5 3.05 9 2.44 2 1.43 4 1.62 9 3.15				

Page 2 of 3

LITHOLOGY ALTERATION MISC	Depth	Th GRAPHIC MINERALIZATION REC		RECO	VERY	ANALYTICAL							
	50	ι	10	G		Run	%	Sample	Interval to	width			BOX
- 49.70-53.87 PA Plag. phenos 0.5-2mm			TΤ	T	5-10% py minor			21481	81.79 85.34	3.55			
					but significant apy locally				85.34 88.39	3.05			
54.00 - 54.95 AA	55-				5-10% py, Minor Cpy				88.39 91.44	3,05			$\neg \neg$
_ 54.95-58.05 MP epidok-py stockwork	-				2-8% py, minor gpy	├			91.44 94,49	3.05			
weakly developed.			\square						94.49 97.54	3.05]]
= 58.05-58.89 AA weak cpidote development	ea:		\square	<u> </u>	7-12% py, MASON GAY				97.54 101.50	3.96			
- 58.89-7202 MP Patchy weak epidole						I ⊢			101.50 13.63	2.13			
- development, quartz-py-mt-cpy reinlet	=				4-8% py, minor but				103.63 16.68	3.05			_ =
- @ 61.50 core \$ 12° and @ 71.35	65 -				significant cpy				14.68.09.73	3.05			1 –
									109.13 1.10.96	1.13			_ _
	-								10.86 14.36	0.50			1 7
	70_								11.36 114.60	3.24			
	-				·				114,60 11585	1.25			
	_								15.85 18.41	2.62			
— . 	75 -								18.47 120.40	1.93			
- TTAD TALE UD Frie- to madien method			++	+	Call and and				120.40 123.74	3.34			
- 77.65- 78.24 B PUMEROVA OV VENILA	=		++						123.74 129.40	4.66			
	80		$^{++}$	+	Q-IFOL AV MINOT CAY				128,40 131.06	2.66			
- QA 95- BZ 27 R MACCING a then itsi			┼┼						131.06 134.11	3.05			1 7
-		1			7-10% py ; Wind 4				134 11 137.38	3.27			
- B3.37-87.34 HD Hornblande phenos	95 -		Π		7-10% py, minor cpy]⊢			137.38 139.98	2.60			7 4
- 0.5-3 mm	<i>²⁵</i> –								139.98 141.33	1.35			1 =
- 97.24-1/1/150 AA	1=		++						41.33 43.30	2.03			1 1
- appanitic ground mass, quaite phenos	90 -	}			2-4% BY, MINOR COV	1⊢			143.36 45.69	2.33			
- euh-subh 0.5-5 mm plag phenos sub-								ſ	14569 149.35	3.66			1
anh 1-10 mm								21506	19.35 152.4	3.05			1 1
_	ac -					1							1 7
	100-	1										1 1	1 1
	=											1 1	1 -
	100 -					16				1		1 1	ᅱᅴ
-										1		1-1-	
101.50-106.49 MP Epidole and K-spar	_		Π		5-7% AV CAY 05					1		1 1	
- altoption assoc. w/ fractures 5% K-spa	ma -	}			fracture fillings assoc.					1		1 1	-1 -1
-		1			w/ epidate, pyrite					t		1 1	1 1
106.19-110.86 AA Intense coldate alteration	-		П		7-15% PV MINOR CON					1		1	1 -
- on fractures, weak potaty k-foldspar alteration	100 -											<u>+</u> +	ㅔ 긔
	<u>ــــــــــــــــــــــــــــــــــــ</u>		++	_				<u> </u>	<u> </u>	1		++	
- 11/3/ - 11/ 72 P Take a Auchor contailed			++		2-60% My minor CPY			 		1		<u> </u>	
- epidotization. Mt in vendet @ 114.73		•			3-5% PX , MMOT CAY			 		t		┼──┼──	비양되
114.13-115.85 MP	⁷⁷³		H		1-E+ PY			1		<u> </u>		++	
````````````````````````````````	-	ł		1	3-5% PY	11				1		+	-1 2
- 118.47-128.40 MP Epidok & K-K-14 altontion	120-		++	+	3-10% py, significant Cpy	1F						11	1 1

												Page	<u>, 3</u>	_ of	3
LITHOLOCY ALTERATION MISC	Depth	GRAPHIC LOG				RECO	VERY	ANALYTICAL							
Ernologi, Allekanon, Misc.	120			3	MINERALIZATION	Run	%	Sample	Interval to	width					BOX
			Π		ASSOC. W/ disseminated	E									
					mt.	F									
						E									E
- 128.40-128.53 Fault Care & 15°	/90 -		++	 		F									
					4-TOG DY MINOT GPY	E									
-	126														
- 137.39-137.57 Fault Core & 35°						E									
- 13757-139,98 MP	40				2-4% py, minor apy										
			\square	—	- 70/	E									E
- style as above, some mt wiepidok					3-1% py minor cpy	F									
on fractures	=					E									
	150					F									
-152, AD EOH															
	155					E	· ·								
						E									
	_					E									
	=					F									
						E									E
=	=					F									=
						E									
	=					F									
						E									E
						F									
		}				E				 					<u> </u>
						E				<u> </u>					(0 B
						E									デ ボ
		1				E	<u> </u>								1
	=					IE									Ľ

DIAMOND DRILL HO	LE	LOG									Pa	ae 1 of	3
Image: Composition of the second s	Depth	SURV Bear	VEY ring	Inclination	Property Location Coord Collar Elev Collar Date Started Date Completer	N N E AU	VRY 94 0 53+ E 12+00 16. 3/ 16. 3/	CREE 12 12 0N 0N 09 19 19 19 19 19 19 19 1	<u>2</u> н в іп і С	ole No. earing at actination ength ore Size ogged By	<u>9</u> /-, collar at collar <u>149</u> <u>8</u> Q 77 , <u>7</u> 20	R - 2 172 - 45 65 m 45 Wa	· · · · · · · · · · · · · · · · · · ·
LITHOLOGY, ALTERATION, MISC.	Depth	GRAP	HIC G	MINERA	LIZATION	RECO' Run	VERY %	Sample	AI Interval		CAL		вох
<u>0-4.30</u> Overburden <u>4.30-17.24</u> B <u>17.24-37.04</u> MP Weak to moderate <u>cpidote Olteration - Aacture</u> <u>controlled</u> . <u>37.04-37.20</u> Fault core 2 45°	30 			2-7% p)	×			21507 B 9 10 11 12 13 14 15 16 17 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 23	4.30 4.57 4.51 6.10 6.10 7.32 7.32 4.30 17.24 8.61 17.24 8.61 17.24 8.61 21.64 24.64 21.64 24.64 21.64 24.64 24.58 27.63 31.09 35.60 35.60 37.03 31.09 35.60 35.60 37.03 31.62 42.67 42.67 452.0 45.20 47.85 47.85 47.16 47.16 54.25 55.86 55.96 55.96 57.13 55.96 57.13 55.	0,27 1.53 1.22 3.04 4.27 2.6/ 1.37 2.6/ 1.37 3.05 3.05 3.05 3.05 2.53 2.53 2.65 1.31 5.09 1.21 1.09 1.21 8			
<u> </u>	40			2-10% f	2 Y			29 30 31 32 33	59.13 (41.26 (41.26 (43.41) (43.41) (46.45 (46.45) 70.41 70.41 73.46	2.13 2.15 3.04 3.96 3.05			11 DDH:
- 45.20-49.16 MP Moderate epidote And K-feld alkegtion-fracture controlled				4-15% py	l, mrite gy			54 35 2:536	73.46 72.50 76.50 79.55 79.55 91.99	3.04 3.05 2.44			R-2

Page $\underline{-2}$ of $\underline{-3}$

	Depth	GR	GRAPHIC	MINERALIZATION	RECOVERY		ANALYTICAL							
LITTOLOGY, ALTERATION, MISC.	50		LO	G		Run	%	Sample	Interval to	width				BOX
- 49.16-54.25 B Intense fracture	_		TT	T	8-12% M	-		21537	81.99 84.43	2.44				
controlled emplote alteration	-	-				E		39	0443 88.70	427				
		1	\square	1				29	80 Th 9/4/	2.76				
- 54.25-55.86 pg plagiaclase phones	33 _		\square		3-12 % 04			10	0146 01-1	1 20				
55.86-56.95 MP X-HERA AIRCRANDA	-]	-+-+	+	E-13% py, mind cpy	F		+0	21.76 71. 14	7 27				-1 -1
- 56.95-63.41 PB Up to 20% plag.	-	4			3-12 % BY			41	91.74 94.11	2.31				
phenos	60	1						42	94.11 97.24	3.13				
		1						43	97.84 10.58	2.74				-1 -1
								44	10.30 102.11	1,53				┦╶┦
- 63.41-94.11 MP Moderate to locally-	65_	1.			2-7% py			45	102.11 103.94	1.83				-1
- intense epidok and K-feld		- ·						46	103,94 15.98	3,04				-1 -1
alteration.	_]						47	106.98 109.54	2.56				
	70 -	1		1				48	109.54 111.41	1.87				
-	-	-						49	11.41 12.09	0.63				
		1						50	112.09 113.08	0.99				
		-						51	113,09 116.13	3.05				
	75-	1						5z	116.13 119.18	3.05				1 7
-	-	4				1-		53	119.18 122.23	2.05				\neg
		1	11	1				KA	17 73 175 17	2.04				
	80	-							ar 27 100 2	205				
		1						35	120 0- 191 22	3.05				-]
·····	-	-	.						28.32 31.31	3,05				
	85-	1							131.37 139,4	3.04				-1
	=								34.4/ 137.3	2.92				-1 -1
	- 1	-						- 59	137,33 140.5	3.18				_ -
	90-	1						60	40. 5/42.95	2.44				\neg
	-	-						61	142.95 146.91	396				
	_	1						62	46.91 48.10	1.19				_
	lar-		-+-			}⊢ .		63	148.10 149.4	1.55				
- 94.11-102.11 B Zones of intense	- 29	1			4-3% DY									
enidate alteration strong epidote -	-	-				1E								
- purile stockwark system	100-	1				16								7 -
- MILL STOCKHULK OFSTOR	100	1								1	1			
ing it ing out here in the set		7	-++			1-								-11 -1
- 102. 11-109. 34 MP LOCALLY - OFFICISE	=	1			5-10% 01						<u>├</u>			- -
HALL ALL ALL ALL ALL ALL ALL ALL	105	-				1⊢			├ ──-					
- K-tCIQ 41toration, Minior Mit	=	1							<u>├</u> ─-		├ ──- 			ᅴᅴ
	-	-						{├	↓	 				- _
	1/0=	1	-+-	+					↓		┥──┤			
- 109.54-122.23 B Some narrow	-	-				IL I			├	 	<u> </u>			
epidote-pyrike veinkets. Zonc	=	7			2-3% py	1F	L			I				- l @ ğ
- of intense pervasive epidote	115-									L				비논리
- alteration 114.25-114.98	-	-												_ ^
]E								N
	20-	-				1-]						

												Page	3	of	3
	Depth	GR				RECO	VERY		AI	NALY	TICA	L.	،L		
LITHOLOGY, ALTERATION, MISC.	120	Ľ	ÖG		MINERALIZATION	Run	%	Sample	Interval to	width					BOX
	╢Ξ					E									
- 122.23-137.33 MP	125_				2-7% py										
	1 =					E									
	- <u>130</u>					E									
	135					E									
	╢					E									
- 137.33-148.10 PB Augite phenas	40-				4-12% py										
	1 =					1E									
	- 145					Ē									
- 148.10-149.65 MP	150=			_	1-2 % py										
						F									
						上									
						Æ									Ξ
						Æ									
	$\frac{1}{2}$					E									
	1 Ξ				· · · · · · · · · · · · · · · · · · ·	1E									
	1 =					拒									
	1 =					IE									
	1 =					拒									
	╢──					<u>I</u> <u></u> −									
	╢Ξ					F									OL-
] =					E									R.Z
	71 =					1F									'-

DIAMOND DRILL HO	LE	LOG							-	5
TECK CORPOR LEGEND Crowded Monzeoni & Ma Porphyritic plagoda hormbeach Maszili PB Bg.so It B	AT	SURVEY Bearing	Inclination	Property Location Coord Collar Elev Collar Date Started Date Complete	N _5 E _9 SE	RY C. 94 C 11 50 11 50	<i>REEK</i> H <i>112</i> B <i>5 N</i> In <i>7W</i> La <i>2, 1991</i> La	ole No earing at coll iclination at c ength ore Size ogged By	Page 1 of 9/-R-3 ar 092° ollar -45° 155.14 m 1000000000000000000000000000000000000	
LITHOLOGY, ALTERATION, MISC.	Depth	GRAPHIC	MINERA	LIZATION	RECO	VERY	Al		L	вох
0-9.75 Overburden 9.75-19.00 B Well-developed stockwork of narrow epidote- pyrite veinlets 19.00-40.70 MP Fracture-controlled cpidok and K-feld alteration, locally intense	5 10 15 20 25 30 35 42		4-10% p	ey			$\begin{array}{c} 215 \ 64 \\ 9.75 \\ 3.11 \\ 4.63 \\ 66 \\ 1463 \\ 1707 \\ 67 \\ 1707 \\ 1900 \\ 134 \\ 1007 \\ 1900 \\ 134 \\ 1007 \\ 1900 \\ 134 \\ 1007 \\ 1900 \\ 134 \\ 1007 \\ 1900 \\ 134 \\ 1007 \\ $			
- 41.81-44.25 MP - 44.25-45,61 PB - 45.61-51:58 MP Marrow 944+2 Vens - With py-mt, intensitying condoce - With py-mt, intensitying condoce	45		2-4% p	γ >γ			89 73 15 76.20 90 74.20 78 94 91 78.94 81.79 92 31.19 44.43			орн: 9/- R-3

Page ____ of ____

	Depth GRAPHIC][;	MINERALIZATION	RECO	VERY		AI	NALY	TICA	۱L			
LITHOLOGY, ALTERATION, MISC.	50	Ľ	OG		WIINERALIZATION	Run	%	Sample	Interval to	width				BUX
	-							21594	87.48 90.53	·				
51.58-54.08 PB			11-	-11	6-12% py			95	90:53 93 58					
	-		++					96	93.59 98.62					
FARQ 155.14 MP	- 25				3-5% by moior COV			97	96.62 100.00					
	-							99	100.00 103.02					
	=	1						99	103.02 106.04					
	a							21600	106.07 109.12					
	-							1	109.12 112.11					
		1				1F ·		2	112.17 15.52					
	65							3	115.52 18.57					
								4	110 57 171.97					
	_ =	1				1F		5	12192 120.9	1				-1 -
	70							4	12401 122 12	1				\neg
	=					1F		7	120 12 121 11	-	<u> </u>			
	_							2	121 06 1201	1	+	 	tt	- -
	3 –	-				亡		a	121 11 127 11	+	+		t	-1 -
	- 11					1F		1 10	12716 1100	;	+	<u> </u>	tt	
	=					仁			14 00.2	1	+		<u>├──</u>	-1 =
	80_	-				╢───			149.2/145.2	<u> </u>	+		╉───┼──	
	=	1				-∏-		1/2	43.20 46.3	1	+	+	+	
	. -	-				七		- 3	146.30 41.1	<u>'</u> }	+	+	+	-1 =
	85 -	-				-Th		14	49.15/52.9	1	+	 	╂───╂──	
	4 =	1				1		21615	5740 25.14		+	+	╉───╉──	
	1 -	-				1L		╢────		+	+			-l I
	90_	1						∦		+		 	╉───╂──	
-	. -	-				上		II		+				
	1 -	1				-IF		J	+	+	<u> </u>	 	┥──┤──	_ =
-	95-	1				F			 		+		┽	
	- ``	-	111			上		II	l	+	+		₋	
		1				1		J		+		+	<u> </u>	
	100 -	1				ll_		J	I		+	+	+	!
-	-	-				╢─		J						_ _
]] =	1				JF		J			1	1	↓↓	
	-	-				上		J	1				↓↓	
	1/25-	1												
-	1 -	1												=
	1,,, -	7				71-								
	- ′′ <u>°</u>	1												
	-11 -	-				112		1	1		T			0 B
	- -]	1				ΉF		1	1	+	1	1	1-1-	-1 ~ ž
	115-	-							1	+	1	1	+	
	- -	1				HF			+	+	+	1	1-1-	
	- 11	_		i i		上			+	+	+	+	+	- W
-	120				ll			ال	1	1	1	1	1	

.

Page _3_ of _3_

				RECOVERY		ANALYTICAL									
LITHOLOGY, ALTERATION, MISC.	120		.OG		MINERALIZATION	Run	%	Sample	Interval to	width					ROX
	-					-									-
	11 -					E			•						
	1/25-					E									
						F									
	1 =	1													T
	130 -					E									
]					-									
] =	1				F									
	135	1				E									LL
	-	-				E I				ļ					11
] =	1				-									-
-	140 -	1													
-		-				E									
	_ =	1				-									
-	45	1				F									
	1 =	-								+					_
	4 -	7				E									
	150-	1													
· ·	-11 =	1								+					
	- -	-					<u> </u>								_
155.14 EOH	155		<u> </u>			IF-									
	4 =	1													
	- -	-		i											_
	160_	7				}		<u> </u>							
	- _	1									+				_
-	-11 - 2	-								+	+				
	- 11	-				{┝				+					·
	-11 =	1													
	-11 -	1					<u> </u>			+	1				=
		-								1					
	-11 -	7				1-									
	-11 :	1				1F	<u> </u>	1	1	1					-
	- 1	-													-
	- -	7				1		1	1			1			
E	- :	7				1F		1		1					
	-11	1							1						
	-11 -	-				1E		1							ØB
	-11 - 3	7				1⊢) <u>}</u> =
	-11 -	1													Ø
	- 11	-]L									Ú.
E	7 :	-]⊢									

APPENDIX 4

DRILL CORE ASSAY CERTIFICATES

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 960-175 SECOND AVE. KAMLOOPS, B.C. Project: 1384 Type of Analysis: Assay

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	91253
Invoice:	20404
Date Entered:	91-09-12
File Name:	TEK91253
Page No.:	1

- K !	SAMPLE NAME				
	21451	0.06 60		ųu	
۱	21452	0.07 90			
A	21453	0.02 30			
A di Sa	21454	0.07 70			
A	21455	0.06 30			
٨	21456	0.07 40			
٨	21457	0.07 40			
٨	21458	0.05 10			
٨	21459	0.08 10			
٨	21460	0.01 5			
٨	21461	0.02 5			
A [2]	21462	0.02 5	· · ·		
A .	21463	0.05 20			
A	21464	0.03 5			
An Dilli	21465	0.06 10	ي. مەلەر بىلىق		
A	21466	0.03 5			
4	21467	0.02 5			
	21468	0.04 10			
A	21469	0.06 5			
A	21470	0.04 5			
A -	21471	0.05 5			
A	21472	0.05 5			
A 👘	21473	0.04 5			
Α	21474	0.06 10			
A I II	21475	0.05 20			
A	21476	0.06 5			
A	21477	0.05 10			
A	21478	0.04 5			
A	21479	0.04 5			
٨	21480	0.03 5			
A Children	21481	0.02 5			
A	21482	0.01 5			
A	21483	0.02 10			
Α	21484	0.04 10			
A	21485	0.08 20			
٨	21486	0.06 70			
٨	21487	0.01 30			
٨	21488	0.04 120			
٨	21489	0.03 20			
٨	21490	0.06 10			

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 960-175 SECOND AVE. KAMLOOPS, B.C. Project: 1384 Type of Analysis: Assay 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	91253
Invoice:	20404
Date Entered:	91-09-12
File Name:	TEK91253
Page No.:	2

PRE		% PPB				
IX	SAMPLE NAME	Cu Au AA				
٨	21491	0.03 5		 	·	<u> </u>
A	21492	0.03 5				
A	21493	0.04 10				
Α	21494	0.05 80				
A	21495	0.06 5				
٨	21496	0.06 30				
A	21497	0.07 30				
A	21498	0.08 170				
A	21499	0.03 20				
8	21500	0.02 10				
A	21501	0.04 20			· .	
A	21502	0.03 10				
A	21507	0.02 40				
A	21508	0.03 90				
8	21509	0.02 100				
8	21510	0.03 10				
4	21511	0.02 10				
	21512	0.02 30				
A	21513	0.03 5				
A.	21514	0.04 5				
A	21515	0.02 5	й. С		1. St. 1.	
A	21516	0.04 10				
A.	21517	0.03 5				
A .	21518	0.03 5				
A	21519	0.04 5				
A .	21520	0.03 5				
A .	21521	0.04 5				
A	21522	0.07 20				
л	21523	0.03 10				
A •	21524	0.04 50				ja ve
^	21525	0.07 10				
^ •	21526	0.03 5				· · · · · · · · · · · · · · · · · · ·
•	21527	0.03 5				
Ņ,	21528	0.03 5				· .
A .	21529	0.04 5				
A .	21530	0.03 5				
A .	21531	0.01 5				
٨	21532	0.01 10				
A .	21533	0.02 20				
۸	21534	0.02 20		 		

Monsbaal CERTIFIED BY

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 960-175 SECOND AVE. KAMLOOPS, B.C. Project: 1384 Type of Analysis: Assay 2225 Springer Ave., Burnaby, British Columbia, Can. V58 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	91253
Invoice:	20404
Date Entered:	91-09-12
File Name:	TEK91253
Page No.:	3

IX	SAMPLE NAME	Cu A	1 AA					
\	21535	0.02	10		 		<u></u>	
l I	21536	0.01	5					
	21537	0.01	5					
	21538	0.01	10			. *		
i	21539	0.01	ר ז					
	21540	0.04						
•	21542	0.05	40					
	21543	0.03	30					
	21544	0.02	20					
	21545	0.04	10		:			
r ⁱ	21546	0.04	20					
ι. E	21547	0.04	5				· · · ·	
V . (* 1	21548	0.06	30				÷	
i	21549	0.03	50			· .		
1	21550	0.02	20					
	21551	0.04	20					
	21552	0.05	10					
•	21553	0.06	5					
•	21554	0.02	20					
	21353	0.01	10				· ·	
•	21550	0.02	10				· · · ·	
	21558	0.01	10					
	21559	0.06	20	· · ·				
•	21560	0.04	10					
۱.	21561	0.06	10					
l I	21562	0.05	30					
	21563	0.01	5					
	e de la companya de l							
				1 . ¹¹ . 1		1.1 1.1		
	··· -		1.1			:		
. <u>.</u> .				1				
			· · ·					
					 	·····		
							$\overline{\Lambda}$	\circ \mid
					(CERTIFIED) вү.: /	shad
							I TRI	

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 960-175 SECOND AVE. KAMLOOPS, B.C. Project: 1384 Type of Analysis: Assay 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	91268
Invoice:	20418
Date Entered:	91-09-18
File Name:	TEK91268
Page No.:	1

PRE		8	PPB				
FIX	SAMPLE NAME	Cu	Au				
•	21564	0.06	10				· · · · · · · · · · · · · · · · · · ·
A	21565	0.07	20				
A	21566	0.06	30				
A	21567	0.05	10				
A [21568	0.03	20				
A	21569	0.03	10				
٨	21570	0.03	5				
٨	21571	0.03	20				
A	21572	0.03	20				
٨	21573	0.03	10				
A	21574	0.03	5				
. .	21575	0.02	20		i		
	21576	0.02	5				
. A	21577	0.03	5				
· A	21578	0.03	5				
A	21579	0.03	5				
Ą	21580	0.02	10				
•	21581	0.03	20				
•	21582	0.07	5				
	21583	0.03	5		and the second second		in the state of the state
	21284	0.03				· · · · · · · · · · · · · · · · · · ·	
. A .:	21585	0.04	10			in the second	
<u>^</u>	21580	0.03	20				
_ ∧ -	2158/	0.02	10				
· A ·	21588	0.02	5			· ·	un nie unwervoern - Grene
<u>^</u>	21589	0.02	2				
<u>^</u>	21590	0.02	2				
2	21071	0.02) c				
2	21372	0.02	5 E				
. n	21373	0.02	10				
. n	21374	0.02	10				
2	21373	0.02	- 40 E			· · ·	
	21507	0.02	10				
	21508	0.01	5	· ·			
	21500	0.01	10				
	21600	0.02 0.02	ς				
Å	21601	0.02	5				
Ă	21602	0.02 0.02	20				
Å	21602	0.02	20				

Associat CERTIFIED BY

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 960-175 SECOND AVE. KAMLOOPS, B.C. Project: 1384 Type of Analysis: Assay 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate: Invoice: Date Entered: File Name:	91268			
Invoice:	20418			
Date Entered:	91-09-18			
File Name:	TEK91268			
Page No.:	2			

PRE FIX	SAMPLE NAME	% Cu	PPB Au					
A A A A A A A	21604 21605 21606 21607 21608 21609 21610 21611	0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03	5 20 5 20 10 5 10		· · · · · · · · · · · · · · · · · · ·			
A A A	21612 21613 21614 21615	0.03 0.03 0.02 0.02	5 5 5					
· ·				. *				
					 CERTIFIED B	х :Д	600	bach

