APPENDIX A: DIAMOND DRILL LOGS AND CERTIFICATES OF ANALYSIS PART II: J91-13 to J91-21

To Accompany 1991 SUMMARY REPORT

on the

UNUK RIVER PROJECT (Unuk and Coul Claim Groups)

SKEENA MINING DEVELOP GICAL BRANCH NTS 104B/9 and 104B/15 SSMENT REPORT

Owners. Malcolm Bell, Clive Ashworth, Granges Inc.

Operator: GRANGES INC, 2300 - 885 WEST GEORGIA STREET VANCOUVER, BC V6C 3E8

FEBRUARY 3, 1991

A.J. O'DONNELL

GRANGES EXPLORATION LTD	
DIAMOND DRILL LOG	

;'

	UNI	IK RIVER PROSE	CT PAGE OF 15
HOLE No.		COUL 3 GLAIM	
591-13			
PURPOSE		· · ·	
FURFUSE			
1 - TO TEST	STRATIG RAPHY		
L - TO TEST	RESISTIVITY LOW ANT	D CHARCEABILITY H	GH
LOCATION JEFF GRID;	GROUND ELEV.	BEARING	TOTAL LENGTH
3+04E, 12+97N	501m	270	135.33
DIP	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
- 45	NONE	95.69	95.69
LOGGED BY DATE	CONTRACTOR	CORE-SIZE	DATE STARTED
G.ALLEN SEPT. 29-	J.T. THOMAS	Β. Q.	DATE COMPLETED SEPT. 28
SUMMARY LOG	· · · · · · · · · · · · · · · · · · ·	L	<u> </u>
0-2.74 CASING		•	
2.74-12.37 INTERMEDIA	TE TO FELSIC FLOW?	(LAPILLI TUFF To 1	FINE- GRAINED THEF?)
12.37- 15.90 INTERMEDI			
15.90-16.15 INTERMEDI	_		
16.45-16.89 INTERMEDIA	HE LAPILLI TUFE	<u>.</u>	
16.19- 27.27 INTERMEDIA		GRAINED TUFF TO	TVFF BRECCIA OR
AMYGOALO	DAL FLOW		
17.27 - 32.87 INTER MEDIA	TE ANYGDALDIDAL CO	ARSE - GRAINED TO	LAPILLI TUFF
32.87-36.51 SANDSTONE	FING GRAINED TUFF	ACEOUS SEDIMENT	
36.58- 4202 ARGILLITE	SILTSTONE, STRI	NICCA ZONE	
12.02 - 43.20 INTERMEDIA	TE FINE TO MEDIUM	- GRAINED TUFF	·
43.20 - 66.00 ENTERMEDI	HTE TO FELSIC AMYGO	ALDIDAL LAPILLI TUFF	TO TUFF BRECCIA
66.00 - 70.60 INTERMED.	ATE TO FELSIC FINE-	GRAINED TUFF	;
70.60 - 95.40 INTERMEDI	ATE TO FELSIC AMYLO	LOIDAL LAPINE TUFF	TO TUFF BRECCIA
05.40-07.65 INTERMEDIA			
87.65-93.27 INTERMEDY			TURFACEOUS SEDIMENT
		N NEXT PAGE)	
SIGNIFICANT HINERALIZED	- ·		1.00
. B6. 6- 87.25 - 3-49	to pupite and 3270 g	embrich - brown apt	Munite in quarty -
87.65- 94.45 - 7-8	2 punte m ingula	strunging and mass	ie to 2 cm. Trace
pinh	ist - brown sphali	inte.	
			· · · · ·
		· · · · · · · · · · · · · · · · · · ·	

		GRANGES EXPLORATION LTD	PAGE	2		₩F {	5
HOLE No.			L				
591-				<u>.</u>			
INTERVAL	C. LOSS	LITHOLOGY	۲. د		S	Μ	Α
0-2.74		CASING	·	D			
	1			A 517	-	-	-
				-r	-	-	-
			h				

Γ L

		_		_	f				
	0-2.74		CASING		[]	1		l I	
		_	C/GAR	•		ł		i	
						_ .		-	
-			· · ·						
									1
				_			1_	_	L
				_	-•				ſ
						1	1		
							1		1
~	2.74			-	-	_	2-37	_	ſ
	2.74-		INTERMEDIATE TO FELSIC FLOW (?)	1	(と		2-37. 19	l	
	12.37		(LAPILLI TUFF TO FINE - GPAINED TUFF?)		ដ	:_ ·	177	l	L
			· · · · · · · · · · · · · · · · · · ·	-	<u> </u>	-		-	Γ.
_	ļ		minum blue - any relativity soft apparentic		رد		~	1	
			volcane rock with row anyaduly up to	_	_5	_	5	_	- 5
					•	-	17.1		
			2 mm he not me a presental applicance		×	•			1
~			in signal intervale but this man be precented	_			141	i _	L
			Il mata: t. t. t. t. t. t.						
			from porting to much provide the fine-		۲ I		14	l .	1
-			grained chlority rimming fragmints with later		_M	_	121	-	F
1		-	But he have a chiff of another		W		1/ 1		1
			he will and with and there building .	·	~ .⇒		1 /	1	1
				-	_ 6	-	14	-	L
			953-9.8 - white quarty - continues stringer zone	•					
		_	1. J. J. C. Walter of the state of the second				1	ľ	
			· · · · · · · · · · · · · · · · · · ·	· _ ·	. <u> </u>	<u> </u>	42		L .
							11/3	2 ⁵⁹	
	· · · · ·						1 A		
				-		-	- 1	-	- 10
									1
				•					1
				· -	- 1	<u> </u>	·	-	F
						4 3	171		1
					1		17/		1
				- 1	- [-	-	· _	\mathbf{F}
	12.37-15.90		INTERMEDIATE (?) AMYGDALOIDAL LAPILLI TUFF	1					
			TO TUFF BRECCIA.		거		15"		
				· — ·	-9	-	12	-	F
			Black angular aphanitic fragmente (argillity ?)		. 0	1.4	1.(1		
			up to I can and medium blue - gren to black				()		
- 1				·••• ·	-		7	-	r
		. ÷-	annyadoladal pragmente up to 30 cm a forent		1		K. 1	•	
			prairies datic groundmass. Some ponte groundmassers				4/ I		
				-	71	1	171	_	- 15
-					12	11	[\j]	ſ	
			clear, average 2-3mm, celute and chlorite.		/_ <u>~</u>]V	74			L
			/ 0	-	- 74.I		42.17	-	F
					17/		لنتن	ſ	l
	15.90-16.45		INTERMEDIATE MEDIUM - GRAINED TUFF	_ 1	/_ I	_	2.1	\sim '	L
				-	ابر _	-	$\langle \mathcal{N} \rangle$	Г I	
F ł		—ł	Dark guy chloritie (?) fin to medun -grained tiff		<u> </u>		استسسا	1	
			·	_		-	1-3-1	1-	Ł
-	5-16.89		INTERMEDIATE LARILLI TUFF		_?		トケイ	> /	C BLOCHTE,
ł	J				£		,×	1	merre
h			Don't grunich - grey to black fragments in a chlorite-	_	£	-		l - /	PYRITE
1	Т	T	cality matrix, Sam colliform chlorite durdosid.				191	\mathbf{i}	STRINGEL
너		-+	anaris manus, men comprise carriera.		- F		27	1	Zone
ļ				-	_ 1	_ 1	721		- 20
· [1	チャー		-
ł			· · · · · · · · · · · · · · · · · · ·		- I			1	1
- 1						-			
-									

	GRANGES EXP	LORATION	TD
C	GRANGES EXP	DRILL LO	G

PAGE 3

0F *15*

HOLE No.

[

J91-13

- - - 0	MINERALIZATION ALTERATION	SAMPLI	FROM	то	W10Ti	Au	Ag g/t	Аs pp=0	Sb ppm		
						11					
		 	ļ		 		ļ	1	ļ		Į
•		ļ	<u> </u>						 	ļ	
		 		I	ļ		 	_		[
-					ļ					<u> </u>	
-	2.74.12.37. Sporadie 2-37. pyrite	<u></u>				5	 	 	4		
•	protominantly in morrise in weats	<u> 191-13-1</u>	3.23	5.00	1.47	2		13	1		<u> </u>
-	Prices fonts		5.00	6.44	1 47			10	4		
. 5		-	1.00	0.77	1.77	->		10	1		i
. J		3	6.47	9.07	1.55	6		18	3		<u> </u>
				0.02		<u> </u>					
		4	8.02	3.45	1.43	5	<u> </u>	19	6		
								<u> </u>	1		
•		5	9.45	10.0	0.55	7		14	6		
										_	
_		6	10.00	11.26	1.26	5	0.2	19	10		
_					ļ						
-		7	(1.26	12.37	1.11	2	0.1	15	7		<u> </u>
. /0			10.10					7.0			ļ
e.		5	12.37	13.37	1.00	5	0.1	30	10	•	
•		a	132-7		1.07	4	12	33	Ŧ		
•	12.37 - 15,90 - 4-5 ° pyrite profining Ho		(3.37	14.40	1-05	4	0.2	22			
-	along stringing to 1 cm at 60° cd and	/0	14.40	15.90	1.60		0.2	07	7		
-	in doucing matrix.			10.70	1:20	7	5.2	V F	. r		
		11	15.90	16.09	1.99	7	0.2	06	2		
•					5.77			<u> </u>			
-		12	16.89	17.58	0.69	5	0.2	07	4		
15											
•	15.90-16.45 - 519. P. jute	13	17.58	10.60	1.02	5	0.3		5		
• •											
	16.45-16.89- 2-37. fracture-related printe	14	18.60	19.46	1-06	5	0.1	07	Ζ		
•								:			
	16.89 - 17.58 - 7-87 fin - grained printe along	15	19.66	20.53	0.87	4	0.3	23	10		
	fortune and stringers associated with chlority		_								
	and cality.]	
-	17.50-18.29 - 1-27 desermented gynte.				{	· · ·					
	16.23-19.66 - 3-52 purch along chlorite									-+	
20.	17.56-18.29 - 1-27 disseminited gyrite. 18.29-19.66 - 3-57 pyrite along chlorite Calcite stringue. 19.66-20.53-7-87 in precis filling along with calcite and chlorite.						<u>.</u>		<u> </u>		
	al it all loli										
	mongwith calatiand Chloriti.	1_				{			l l		

GRANGES EXPLORATION LTD

4

PAGE

4

OF 15

HOLE No.

L

-

591-13	1.40		· · · ·		.	r	.
INTERVAL	C. Loss	LITHOLOGY	بد د		S	Μ	A
16.89-27.27		INTERMEDIATE TO FELSIC FINE- GRAINED TUFF TO TUFF BRECCIA OR AMYGDALDIDAL FLOW		5/2		7-87. 17	
		TO TUFF BRECCIA OR AMYGDALDIDAL FLOW Midium When guy soft fine grained marine	-	- A - ,	-	1-47. 97	
		grading into line grey massive apprentic	-	4.2	-		
		volcance with sponadic zones of anyadule ing		.	-	1	
*		possibly a tuff buccia.	-	-	-	/-1	
		- 20.5 - Chlante calale pyre Alingue zone White abile stingue to 1 cm 60 to	-	·	-	<. -	
		- independent to an axis, stringer selvages commonly - limit with 1 mm - 1 an block chlorite and pyrite in		_	_	ί - γ	
	•	liande to 5 mm. Chlorite - pyrite - caliete seguna.				571	
)		Some parts of unit have an approxance of a conser- opained clastic with inight shoped consolid	-	20	-	τų V	C1-2
		light guy anygdalided frequente up to 10 an with	-	4		$\langle \cdot \rangle_i$	
		darke gring sime or matrix. Could be an attenation	-	-	-		
27-27-		ENTERMEDIATE, COARSE- GRAINED TO LAPILL, TUFF	-	-	-	-	
32.87		50% miling libre - grey expanitic subrounded to	-	-	-	`рү 	- -
		<1 cm-5 cm. Smaller programite, time of mm	-			¥- 5-82	-
		chloute anyodule. Langer fragmente have anyodule to 5 mm. Mature to the ligilli		-7		~	1
		in a dark grun fine - grand chloritie (?)	_	, X	_	1-27. 97	
32.87-36.58		SANDSTONE FINE- GRAINED TUPFACEOUS		5			
		SEDIMENT	-		-		
·		andstone (marine) grading into darle guy	-	-	-	1-74. 17	- -
	-	siltetons on angillouins sidiment (tiff ?). Minu dale our lithis programments to 1 cm.	-		-	5-12. 94 61	
)	-	Cradational contact with orgillite down hale		- <u>2</u>	_	R	- -
2.50-42.02	-	ALGILLITE SILTSTONE STRINGER ZONE		-	- 1	ア	
	╡	artumised black angillite and blue-grug siltation. Poorly budded. Two ate of attingue bith 30° CA.	-	_	X ANKSY	· _	
	-	36.58-38.4 - Questy conformate projecte atringen 30.4 - 40.9 - Producina the questy and minor call stringent	50				

PAGE 5 OF 15

HOLE No.

591-13

20-	MINERALIZATION ALTERATION	<u> </u>	E FROM	<u> </u>	WIDTH	000	Ag g/t	As ppm	S6 ppm	 	
		16	20.5	22.00	<u>, 1.+7</u>	3	0.Z	10	4	<u> </u>	╇
	20.53 - 26.60 - 5 ponadie 2-4% pryrite in			 			ļ	 			╀
	coleite flooded buccisted intervale -	17	22.00	22.98	0.98	17	0.3	16	2		╀
		18	22.98	23.48	0.50	3	0.4	33	6		+
		19	23.48	24.76	1.28	2	0.Z	09	2		╞
		20	24.76	25.65	0-89	6	0.2	06	3		╞
5 -		21	2565	26.60	0.95	3	0.2	19	7		
	26.60 - 29.53 - 5-77. pyrite as about and dissuminated in chloriter groundmose in	22	26.60	27.27	0.67	4	0.3	50	8		
	dapille tuff.	23	27.17	28.40	1.13	3	0.3	5B	13		╞
	28.53 - 31.46 - 17. Lissiminated pyrite.	24	28.40	29.53	1.(3	4	0,2	43	7		╞
	31.46- 32.87- 5-82 pute in ingula stringers to 2 cm and ingula masers	25	29.53	30.60	1.07	4	0.1	15	2		
	to im.	26	30.60	31.46	0.86	8	0.1	30	5		
	32.87 - 35.95 - 1 - 27. provite; disseminited	17	31.46	32.06	0.60	2	0.4	306	7		
ľ		70	32.06-	37.07	0.81	3	0.1	120	6		\vdash
	35.95 - 36.58 - 3-470 fine grained										
	pyrite as above	29	32.87	<u>3437</u>	1.50	<u>4</u>	0.2	27	2		
	36.58-38.4 5-0° pyrite in Crathle buccin / stringer zone. Calcite- pyrite stringens to 5mm at all	30	34-57	34.97	0.60	7	0.2	58	4		_
Ţ	pyrite stringers to 5 mm at all angle to com axis.	_21	34.97	35.95	0.98	4	0.1	32	2		
-	any in the true .	32	35.95	X.58	0.63	2	0.2	51	6		
		33	36.58	37.53	0-95	2	9.2 .	65	9		
	38. A - 41.18 - <17. pyinte.	34	\$7.53	39.15	1.62	3 (<u>).</u> 2	17	9		
		35	39.15	40.62	1.47	5	22	16	z		
+		-+			•	<u> </u>		-+			

[

C

L ((

FAGE 6 OF 15 HOLE No. 391-13

INTERVAL	C. L055	LITHOLOGY	*		S	M		
	-	40.62 - 40.90 - Buden con minon gange. FAULT Drientetion unclear.	-	ן ז-ק א-	Sec. 1	217 87 11 11	-	-
42.0z - f3.20		INTER MEDIATE FINE TO MEDIUM- CRAINED TUFF Medium gruy fine - grained similie (?) weakly	-	{2A,B	¥-			
		foliated tuff with 10-15? dash guy graine to 2 mm.	-	شحسا		17	- <u>-</u> Si -	
4 <u>3.20-</u> 66.0		LAPILLI TUFF TO TUFF BRECCIA: Mytthe matium blue-guy to place	-	2/3 2(+)	-	5-72	-	-
		legilli taff to tuff buccia. Fragmente romae from «Imm to 20 cm +, from black to	-		-		-	
		to anyaddoidd. Prokie very internetice.	-	-	-		_	
)		43.2- 50.43 - Fragments are predominantly black	-	_	-	[-	67.97 -	
		47.0- 47.8- Questy - carbonate stringer zone.	-	-	-	2-32 (Y	-	
		50.43-66.0- Fragments predominantly medium here grey. Open spaces in metric fulled with black deforte and white quarty District	, 1		بندار مورد ا	• - • .	-	-
		black sime of chlorite in filled words .	*	-	4.	••	-	-
			-		_	- · - ·	-	-
			-	-	-	-	-	_
			-	_		-	-	-3
		·	-	-	-	- 2-4%	-	_
			-		-	ex.	-	-
			-	-		-	-	
			-		-		-	-6
							_	. 6

PAGE 7

OF 15

HOLE No.

	MINERALIZATION ALTERATION	зам ріе	FROM	то	HIOTH	Au DDD	Ag g/t	As ppm	56 ррм	
Ţ	40.90. 41.80 - 8-10% pyrite in bands	36	40.62	40.90	0.28	2	0.3	28	07	
╞	and mosene to 2 cm wide at 60° cA.	 		<u> </u>			┨	+		
┢	Associated with calif	37	40.90	42.0Z	1.12	16	a1	92	08	
	41.80- 43.3 <17. pyrite	ĴВ	42.02	4 3.20	1-18	4	0.1	52	21	
F	43.3-47.0- 5-7% pyrite; fracture-filling with collicter discummented in matrix.	39	43.20	44.20	1.0	16	2.5	840	11	
╞			44.20	45.20	1-0	8	0.4	52/	14	
		41	45.20	46.20].0	4	0.4	260	13	
	47.0-47.8- 6-87. pyrite in host rock to strugue.	42	46-20	47.00	0.8	5	· .	304	7	
	47.8 - 55.5 - 2 - 3 % fine - grained pyrite in	43	47.00	1 7.80	0.8	4	 	123	4	
ľ	matriz.	1 4	4 7.80	49.1B	1.38	4		6Z	5	• •
ļ		45	49./8	50.43	1-25	1	0.3	416	.11	
		46	50.43	51.82	1-39	1	0.5	37	8	
		47	51.8z	53.33	1.51	5.	0.4	35	7	
		48	53.53	54.78	1.45		0.3	34	12	
F		<u>19</u>	54.78	<u>55.5</u>	0.75	3	0.5	55	4	
F		50	55.53	56.60	1.07	1	0.3	23	2	
	55.5 - 65.6 - Sporadic 2-4% pupite in fracture and disseminated in	51	56.60	57.62	1.02	1	0.2	20	4	
	the groundmass, weal concentrations	52	57.62	<u>58.74</u>	1.12	(7	0.3	26	6	
	up to 7-8.7. anna 20cm.	53	58.74	59.92	<u>1-19</u>	5	0.5.	27	9	
F		5.4	59.92	61.42	1.50	3	0.3	27	Z	
	· · · · · · · · · · · · · · · · · · ·									·
+					· .					

					<u></u>]
		GRANGES EXPLORATION LTD	e e	·				
<u>)</u>			PAGE	8		DF I	5	
HOLE No					_			
391-13								
INTERVAL	C. L055	LITHOLOGY	* 3	L	S	Μ	А	- 6
·	+		-	2/3	· ·	2-46 17	52	
	1		-	2/3-7(~	· -	-	-	-
	+	62.18-62.4 - TAVET, Brolam com. Minon gouge.		<u> </u>	6	1 1	-	F
	+	60° CA. 62.7- Elattered anyadules . SI ? SO ?	5.2					I
				-	- Έ	、 -	-	-
	+	· · · · · · · · · · · · · · · · · · ·		-	· -	->	-	
		65,60-66.0- Pulvinged rock - compact your. FAULT	4					
		70° CA.	1-	-		 176	-	-65
66.0-70.6	+	INTERMEDIATE TO FELSIC FINE- CRAINED TUFF	-	سیسر مر	i či	1% 17	··	-
		- redium gruy to blue- gruy relativity soft		2/3 A	-	_	_	_
· · · · · · · · · · · · · · · · · · ·	-	stringers to 1 cm at 30° cg.				•		
		stringer to 1 cm at 30° cg.	-	-	~	-	-	-
	-		_	_	_	-	_	
70.6 -		INTERMEDIATE TO FELSIC AMYCDALOIDAL	-	-]	-		-	-70
85. <u>fo</u>		LAPILLI TUFF TO TUFF BRECCIA	-	12	_	-	5:-2	
		silicous annadelaidel (20-25% simm- 10)		-2E1		17.		
		fragminte up to 20 cm in a fine - grained	-	רה א	-			
	+	tuffocione ranky bidded matrix. Amygdalaidal	-	-	-	-		
		Armyodules calify onether and minor chlorite.				•		
			-	-	-	-	-	
	┨╌╴┨	76.5-88.4 - Broken Cone 76.65-79.07 - Pulvinged rock. Coner. FAVLT. 60°CA.	50		-	·-	- -	75
		70.05-79.07 - Pulminged rock. Gouge FAVET. 60°CA.	73	:				
	╞╌┨		-	-	х ⁻	⁻ .	- [
	╏╌╏		-	- [<u>`</u> -	-	- -	
<u></u>			_		2_]	·_	_	
)	╞─┦			. 1	4.5	•		
			-	-	1-1	- [- -	
	П		_	_ k	<u>}</u>	- 1		80
	┢╌┨			. : • k				

ſ

÷

-	÷

PAGE 9 OF 15

HOLE	No
------	----

[

C E

					•		· ·			.		
		MINERALIZATION ALTERATION	SAMPLE	FROM	та	ыюти	Au Dob	Ag g/t	As pp=>	S6 ppm		
	60 -		55	61.42	62.96			0.3	29	5		
Γ			56	62.96	61.28	1.32	5	0.3	25	6		
			57	64.28	6560	1.52	3	0.4	25	2		
					66.00			0.2		2		
- +	65-				67. <u>A</u>			5.0	6	2		
		65.6-69.34 17. pyrite.	60	67.4	68.56	1.16	/	0.Z	4	5		
-			61	68.56	<u>69.34</u>	0.78	4	0.2	3	4		
		69.34-69.80 - 5% pyrite in choledary and calife flooded buccia	62	69.31	69.60	0.46	4	0.3	6	2		
		Charcedony and calenty flooded bruces.	63	67.80	70.60	0.80	4	0.1	4	2		
		69.8 - 85.9 <17. pyrite.	64	70,60	71.96	1-36	z	0.2	9	2		
_	70 -											
						-						
-					-		· .					
						,						
_												
	75-				· .							
-												
									· · · ·			
]	
												-+
• ••	80-											
			I	I	ļ	- 1	1				1	1

HOLE Na. J91-13 INTERVAL	L 055							
	\$ 50							
INTERVAL	\$50							
	ت ن	LITHOLOGY		÷.	L	S	Μ	A
		<u> </u>	<u></u>	-	2 ×		~12 PY	56-2
					6-1	-	<u> </u>	-
			<u>.</u>		-7 -5-	-	-	-
				-	_ ·		• •	-
				-		.·		
			٤		-	-	-	—
5.40 - B7.65	INTERMEDIATE BRECCIA	TO FELSIC LAPILLI TO	IFF TO TUFF		-	-	-	_
	Midium qu	on to blue- grenz me	adnatily soft	1				
	aphanitic ma	saine volcanic frogs	ente to		-2-5	0.1	47-17 X/3	3-4%
	Unit distinct L	with colecte any of	ale to Smin ,		- E(~)	Service Zana C		3L -
	guinal lack of	amygduly.			x		ير اير د ا	_
.65-95.27	IN TERMEDIATE	(?) FINE TO COARSE		4	3 A-c		7-27. 44	5:-2
		UFFACEOUS SEDIMENT	т с стала т		- "		5.	-
	Mottled blas	de to midium one	y moderately			-	5	-
	of coares- cria	ind tuff have an	unadatoidat	-			١Ĉ	
	fragmente to	3 cm. Foulted alon	g lover contact.				Σ	-
					-	-`	4	-
·		······································		1 -	-	_		_
		<u></u>		-			SI	
	94.45-95.27 -	FAULT. Broken com. 3	strand 20-45°CA.	1-	· •• ·	15,0	2	-
	- Quarty - con	bonate stringers and par	Ill ca.	-		<u>}</u> _]	-22	
27-115.63	INTERMEDIATE	TO FELSIC AMYGDA	LOIDAL FLOW	-	۲. س_	. I	2-42	
	midium belie		assive to		ିନ୍		۳	- [
·	many Thirly	bounded massive vo	leanin rock		-	:-	-	-
	95.27 - 106 -	8 - Annyadelle none.	could be a fine -	1 - 1	· · ·]	-		_
<u> </u>	106.8-115.63	- 5-15% <1 mm to	1 cm calute :		· · [

PAGE 11 OF 15

HOLE No.

L

(e

[

C

				·			r	r	.	r	
80 -	MINERALIZATION ALTERATION	5л MPLE	FROM	то	MIDTH	Au ppb	Ag g/t	As ppm	Տե բթու		
Ū											
		·									
		65	<u>84.4</u>	859	1.50	Z	0.4	7	5		<u> </u>
85-	85.9. 86.6- 47. pupite in male Calcite - chlorite flooded forecia.	66	85.9	86.6	0.70	1	0.4	36-	5		
*	86.6- B7.25 - 3-47. pyrite. Trace to Ver. pinkish - brown sphalinte	67	86 .6	87.25	0.65	۷,	0.2		4		
	86.6- B7.25 - 3-47. pyrite. Trace to V27. pinkish - brown sphalints in quarty - controvate chlorite etugus up to 3 mm wide.			87.65			0.2		6		
	B7.25- B7.65- 37. disseminated pyrite.			98.60 89.53			0.5 0.4	3z 14	2 3		
k 70-	87.65-94.45-7-87. prite in miguler aturious and messes to 2 cm assist	70		90.59			0.3		3		
*	87.65-94.45-7-87. pyrite in ingula sturigue and messes to 2 cm associety with calcute. Some discumsted pyrite. Traces pinked - brown sphalinite.	72		91.60		1	0.2		15		
	V		91.60	92.6=	1.00	7		114	5		
	94 AC 25 17-1 22 0 t	74	92.60	9360	1.00	4		104	8		
5-	94.45- 75.27-1-2° printe.	75	93.60	94.45	0.85	6		223	4		
) - (95.27-124.7 - Spondie 2-42 fin - grained printe along practices, dissuring	I,		95.27		5		26	4		
	manyadule and some inigular	_	_	96.82			0.1	07 70	2		
				98.a. 99. 48	·	/	0.1 0.2	28	5 3		
	· · · · · · · · · · · · · · · · · · ·			100.90			0.Z		Z		
°0 -											
]	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG PAGE 12 OF 15 HOLE No. 591-13 C. L055 INTERVAL S LITHOLOGY Μ А * J - 100 2-47 Ν Ĺ. ۴Y _w _ _ ۴ ٩_ _ _ _ _ ---•-----_ - -------_ - 1 -- 105 _ _ ----------_ 7 -.... _ --- 110 _ _ -_ -------- 115 115.63-INTERMEDIATE TO FELSIC FINE TO COARSE-126.7 GRAINED TUFF 2 ium to dark أتم grained 40 Coard 4 _ 40' ch " Looles til 418 75 - Condita bedded 6.63opradue into anygolatoridal port. Could till but --118.75-1267 - Fine to coarse- grained tuff with all clustic texture. Hitmogeneous. Fragment to ice _ _ 120 _ -

PAGE 13 OF 15

HOLE No.

100-	MINERALIZATION	ALTERATION	SAMPLE	FROM	то	ыютн	Au Dob	Ag g/t	As ppm	S6 ppm		
			81	100.90	102.35	1.45		0.1	07	3	1	1
			82	102.35	103.68	1.33	5	0.4	04	2		╞
		······	83	103.60	105.23	1.55	4		10	3		╀
	·				106.68	 		0.1	05	2		Ŧ
	· · · · · · · · · · · · · · · · · · ·											Ì
05	······································				/09.2+			0.1	08	<u> </u>		+
	······································		86	108.20	109. <u>73</u>	1.53	4	0.2	10	2		╞
			87	609.73	111.30	157	6	0.1	.10	2		F
			88	111.30	112.78	1.48	4	0.3	14	7		Ļ
				1(2.73	114.30	1.52	4	0.2	12	 4		╞
		······	90	14-30	15.63	1.33	4	0.Z	12	3		F
				15.63	117.20	1.57	6	0.3	14	5		L
			92	117-201	18.75	1.55	z	0.2	16	5		
	·		93 (18.75	20.07	1.32	5	0.2	4,	7		╞
			-									\square
	······································											
15											;	E
		<u> </u>									·.	
		* *										
	· · · · · · · · · · · · · · · · · · ·											
												·
20-										-+	{	

	_		<u></u>	· ·				- 1
-			s de mar					
~ 1		GRANGES EXPLORATION LTD ME HAR AND A CONTRACT OF THE SECOND DRILL LOG	1919 1929					
				2 (* 2		а. Поред П	r	
-			PAGE			₩F _ 	5	1
HOLE No.			•					
591-13					•	·.		1
INTERVAL	LOSS	LITHOLOGY SECTION			6			
			5	L	5		A	
-	+			1		2-42		+ 124
-	-			ι	•• - •	ру -	-	\mathbf{F}
	•					1		
-						-	-	F
·	+				. :	1	_	F
	+		1		l. I			1
			- T	-	-	/-	-	- ·
	_]`				_	- 125
	+							
	┼─	126.7 - Gradational contact.	-	-	-	~	-	╞
			- ·			1		
1-4-131.74		ARGILLITE, SILTSTONE TUFFACEOUS SEDIMENT		77		•7 - 	-	ſ
		Thinly interleded black angillite and	- 1	<u> </u>	₹ 7	a.	-	-
·		is gradational across 1-2m metry and may			¥]	ey.:		
		In tuffocione sidiment.			\$°	2	-	ŀ
·					-	2	-	- 130
.		130 - Gooded lucks and load casts suggest tops	65	••••• •	94 at 194			
·		atom hole	50-	۱ .	~ -	-	-	-
*	•	127.6-128.9 - Clastic sediment with coosse-grained			×		-	-
	.	frogrante to (cm flattered (?) (rig - up claste?)			ζ.,			
·		15-20% vin tim - grained popite (relacement?)	-	1	(~	-	-
· · · · · · · · · · · · · · · · · · ·		Could be substide - rich programte.			2 9			
			5				-	-
131-74-		FAULT ZONE, ARGILLITE	10	_		-	-	- 135
135.43		Black thinky laminated angulity. Bytam core		L. 0	н. і	35.5	3	
		Publle. Minor gouge	·* =·**			- [- 7	-
		<u> </u>	·· _		_	_	_	-
			· .					
			. - (•	-	-	
					1.1400 - 14 (~]75 - 1-1		<u> </u>	
							-	
-) I			1 .				1	
	Ť		7 7 î			•	÷ F	

PAGE 15 OF 15

HOLE No.

MINERALIZATION ALTERATION	SAMPL	FROM	то	ыюти	Au	Ag q/t	As ppm	56 ppm		
	94	120.07	121.58	1.51	17	g/t 0.1		6	┨╴┫	
		1				<u> </u>				
	95	121.50	12306	1.40	4	0.4	22	6		
					ľ					
	96	123.06	124.60	1.54	2	0.3	52	7		
								· · · ·	 	
	97	124.60	125.52	0.92	7	0.2	<u> </u>] 7	 	
			 	··				 		
	28	125.52	126.7	1.18	<u> </u>	0.2	50	8	┞╼╌┠	
	90				7			6	┦╴┨	
126.7-127.6- 2-39 1: 11 +	- 19	146.7	127.6	0.90	<u>د</u>		.40	0		
126.7-127.6- 2-32 die and fracture related printe.	100	1776	128.20	5.0	ç		94	13		
		1-1.0	1 - 0 - 20	<u></u>			<u> </u>			
27.6 - 128.9 - 7-82 very fine-granned pupite predominantly in fragments Possible sulphide fragments	101	128-20	128.90	0.70	3	0.1	107	17		
pupito predominantly in fragmente										
Possible sulphide pragmente	102	128.90	130.40	1.50	2	0.2	43	3		
28.9-135.53 - 17. printe	103	170.40	131.90	1.50	7	0. <u>3</u>	119	4		
	/04	31.90	13340	1.50	<u> </u>	0.3	#8-	2		
		32.40	134.80			17		z		
		77.40	124.60	1.40	~	0.2	10			
	106	3400	135.5	0.78	2	0.1	10	Z		-
				<u> </u>						
										_
				-+						
		-				}		<u> </u>		-
· · · · · · · · · · · · · · · · · · ·					-					
				†						
						Ì		T T		
	i ,	ł	1		1	ſ		1	- T -	

ALL C				G	ranc	lea	Inc	. PROJI	ј Ест	UNI	אנ	RIVI) ER 1	34	FJ	LE	# 9) 1-4	906			ني. Page		4	
SAMPLE#	Ко ррт	Cu PP11	Pb ppm	Zn Ag ppm ppn	الا ۱۳۹۹	Со ррл	Mn ppn	Fe As X ppm	U PPM	Au ppm	Th ppm	n\$ Irqq	Cơ pọm	Sb ppm	81 ppm	V ppm	Ca X	P X	La ppm	Cr K ppm	Ba Ti 4 ppm %			K X pp	V Au
J91•13-1 J91-13•2 J91•13•3 J91•13•4 J91-13-5	3 1 1 1	8 8 7 7	6 8 7 10 9	143 .1 104 .1 98 .1 56 .1 30 .1	1 2 1 2 3	91 81 8	154 956	4.35124.57103.96123.28193.1514	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	227 221 280 235 303	.4 .4 .4 .4 .4 .4 .4 .4 .4	4 4 8 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 20 16	12,48 12,55 16,45 11,93 13,49	.138 .114 .148	5 6 5 6 4	8 2.3 6 2.4 4 2.3 3 3.8 3 3.7	5 91 .01 5 99 .01 0 82 .01 1 95 .01	2 1,15 2 1,40 2 1.06 2 .82	.04	,10 ,10 .07 .09 .09	
191 • 13 • 6 191 • 13 • 7 191 • 13 • 8 191 • 13 • 9 191 • 13 • 10	1 5 7 4	8 42 7 9 11	11 13 9 6	65 ,2 78 ,1 65 ,3 56 ,2 85 ,2	3 4 5 4 4	19	090 856 697	5.11 19 4.07 15 7.59 30 7.75 33 6.78 17	5 5 5 5	ND ND ND ND ND	1 1 1 1	224 256 174 136 158	.4	10 7 10 7 7	~~~~	23 23 23	11.95 12.98 8.73 6.96 7.39	138 117 131	5 6 4 5	4 3.1 7 2.19 9 1.4 8 1.5 9 3.70	1 75 .01 2 84 .01 8 60 .01 7 55 .01		.03 .03 .03 .03	.07 .07 .06 .06 .06	
J91-13-11 J91-13-12 J91-13-13 J91-13-14 J91-13-15	1 3 2 11	1 6 11 10 10	6 7 5 3 9	24 .2 55 .2 143 .3 158 1 156 .3	1 3 1 2 6	5 8	817 592 101	3.15 6 7.29 7 6.57 8 6.29 7 9.31 23	5 5 5 5 5	ND ND ND ND	1 1 1 1	374 145 110 148 133	,2 .3 .3 .3	2 4 5 2 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 31		. 111 . 231 . 177	4 3 9 7 5	1 5.5) 7 2.13 13 1.4) 10 .79 8 .60	114 .01 58 .01 147 .04 174 .03	2 .90 3 1.00 3 1.79	.02 .02 .11 .09 .04	.02 .05 .13 .15 .07	
91 • 13 • 16 91 • 13 • 17 91 • 13 • 18 91 • 13 • 18 91 • 13 • 20	3 1 6 3 1	10 11 9 6 7	4 7 9 11 4	263 .2 135 .3 464 .4 161 .2 111 .2	1 4	10 1 10 1 7	114	6.97 6 9.08 33 5.35 9	5 5 5 5 5 5	НD ND ND ND ND	1 1 1 1	151 152 135 108 250	.4 .2 .4 .2 .3	4 2 6 2 3	2 2 2 2 2 2 2	29 13 18	6.60 6.66 6.80 5.05 14.45	237 133 225	8 9 4 8 6	12 .87 11 .98 7 .50 11 .86 4 2.29	186 .04 198 .04 78 .01 125 .02	4 1,70 4 2,31 3 .76 2 1,21	.10 .11 .04 .08	.17 .18 .08 .15	1
91 • 13 • 21 91 • 13 • 22 91 • 13 • 23 91 • 13 • 23 91 • 13 • 24 91 • 13 • 25	274 43	6 4 18 3 2	9 2 6 9 8	135 .2 131 .3 51 .3 91 .2 60 .1	2 4 5 3 2	12 1	504	2.61 58 9.75 58	5 5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	180 156 143 149 232	.3 4354	7 8 13 7 2	2222222222	16 12 13 11	10.34 9.55 8.65	.160 .108 .104 .094	5444	5 3.03 10 2.63 6 3.12 3 3.71 4 3.59	75 .01 49 .01 43 .01 53 .01	2 1.09 2 1,36 2 .99 2 .81 2 .69 2 .65	.03 .03 .03 .02 .02	.10 .06 .04 .03 .03	
91 • 13 • 26 91 • 13 • 27 91 • 13 • 28 91 • 13 • 29 91 • 13 • 30	4 14 4 1 1	463 49	4 10 6 8 6	71 .1 1757 .4 163 .1 81 .2 58 .2	4 22 15 2 7	11 1 59 1 39 1 6 1 13	387 1 277 058	3.86 30 3.83 306 5.51 120 3.46 27 6.96 58	55555	Ю О О О О И О	1 1 1 1		.4 1.3 1.5	5 7 6 2 4	2222	10 16 12	14.65 9.67 7.50	.113 .125 .070 .051 .016	54223	1 4.66 7 4.50 7 3.42 5 4.12 22 2.10	97 .01 35 .01 50 .01 79 .01	2 .79 3 .95 2 .60 2 1.60	.02 .02 .03 .02 .01	.03 .05 .03 .02 .05	
91-13-31 91-13-32 91-13-33 91-13-34 E J91-13-30	2 2 4 1 1	6 3 1 3 10	6 4 11 5 7	27 .1 96 .2 19 ,2 38 .2 60 .2	7 13 6 3 7	12 1 3 2 1 1	315 491 213 704 208	5.69 51 9.80 45	5 5 5 5 5	םא סא סא סא	1 1 1 1	53 210 262 245 16	N5233	2 6 4 9 5	2222222222	9 9 -	1.92 10.06 16.94 13.12 .46	.008 .014 .022	2	14 1.34	41 .01 61 .01 52 .01	4 1.81 3 .95 2 .39 3 .18 2 .18 3 1.67	.01	.05 .02 .02	
91-13-35 91-13-36 TANDARD C/AU-R	1 4 19	2 6 64	5 7 36	140 .2 248 .3 138 7.3		31	539 216	2.52 16 4.06 28 3.98 39	5 5 19	ND ND 8	1	228 203 53 1	,6 1.3	2 7 17	2 2 19	4 1	.40 17.28 9.13 .50	.020	2 2 2		58 .01 138 .01 52 .01	3 1.67 2 .39 2 .33	.02 .01 .01	.08 1 .04 1 .05 2	

÷

.

1

Samples beginning 'RE' are duplicate samples,

·····

	 ر ز	.		ז ר 	Gra	.nge)	Inc	• PR	() OJE) CT :	ישאט		IVER 1	34	ר (FI	LE	# 91-4	906	r	-1 r	Page			
SAMPLE#	Но ррл	Cu ppm	РЬ ррл		Ag	N1 ppm	Co ppm	Hn ppm	Fe X	As	U ppm	Au ppm	Th	Sr Cd	Sb ppm	81 ppm	V	Ca P X X	La ppm	Cr Hg ppm %	Ba T(2.000	W AU*
J91-13-37 J91-13-38 J91-13-39 J91-13-40 J91-13-41	16 2 25 16 14	4 6 11 9 9	17 5 10 15 10	38 118 72 83 885	.1 .1 .5 .4	17 5 40 21 20	17 18 108 50 49	467 626 696	10.75 5.45 18.60 12.87 10.54	92 52 848 321 258	5 5 5 5 5	ND ND ND ND	1 2 1 1 1	48 .2 78 2 61 3 90 2 83 3.9	13 8 21 11 14	2 2 2 2 2 2	5 19 19 27	1.12.066 2.23.096 1.66.072 3.08.094 3.81.124	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 .55 7 1.99 15 1.18 17 1.25 10 1.17	20 .01 59 .01 11 .01 20 .01 25 .01	4 .34 3 1.64	.01 .01 .03 .03	.07 .11 .04 .04 .03	1 16 1 4 1 16 1 8 4 4
J91-13-42 J91-13-43 J91-13-44 RE J91-13-49 J91-13-45	12 3 1 8 5	10 13 10 7 9	9 8 9 3 11	247 80 69 40 113	.4 .3 .3 .4 .3	18 16 13 6 8	52 40 28 12 20	1195 752 410 534 386	10,67 6,80 5,33 8,51 4,01	304 123 62 53 46	5 5 5 5	ND ND ND ND	1 1 2 1 2	81 .8 221 .2 76 .2 99 .2 73 .2	13 7 4 11 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 22 12	3.89 .198 5.20 .139 2.15 .157 3.34 .137 2.13 .173	2 4 4 4	9 1.35 20 1.27 10 1.03 14 .45 9 .80	25 .01 29 .01 44 .01 24 .01 49 .01	4 .78 2 .83 3 .86 5 .58 3 .68	.02 .03 .03	.03 .04 .07 .06 .07	1 5 1 4 1 4 1 2 1 1
J91-13-46 J91-13-47 J91-13-48 J91-13-49 J91-13-50	4 6 3 9 3	10 9 11 8 5	6 7 6 3 4	80 50 113 41 67	.5 .4 3 5 3 5 3	7 8 10 6 4	19 19 24 13 11	479 409 460 555 907	9.04 6.53 6.94 8.92 4.10	37 35 34 55 23	5 5 5 5 5	ND ND ND ND ND	2 2 1 1	75 .2 73 .2 98 .2 99 .2 148 .2	11 8 7 12 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 16 13	2.10 ,215 2.24 195 3.02 ,208 3.28 ,141 4.07 189	4 5 4 7	13 .64 8 .56 7 .61 16 .46 7 .74	32 .01 40 .01 36 .01 23 .01 80 .01	3.75	.04 .03 .03	.12 .11 .09 :06 .09	
J91-13-51 J91-13-52 J91-13-53 J91-13-54 J91-13-55	3 2 1 3 3	8 5 10 9 8	4 2 6 6 4	93 89 81 89 147	.2 .3 .5 .3 .3	8 4 3 5 4	18 12 11 13 15	787 667 852 984 925	3.96 5.03 7.16 5.41 5.46	28 26 27 47 25	5 5 5 5	00 01 00 01	1 1 1 1	113 .2 181 .2 180 .2 145 .2 126 .2	24642	~~~~~	34 29 23	3.75 .185 5.35 .167 5.33 .138 4.14 .166 3.62 .149	7 5 3 6 5	7 1.00 14 1.36 7 1.27 6 .93 13 1.03	86 .01 59 .01 40 .01 63 .01 62 .01	3 1.29 3 1.35 3 1.31 2 1.15 3 1.52	.03 .03 .03	.09 .06 .05 .08 .07	1 1 1 17 1 5 1 3
J91-13-56 J91-13-57 J91-13-58 J91-13-59 J91-13-60	2 3 1 1	5 7 7 11 11	4 9 5 8 5	75 142 119 139 131	.3.4.2.2.2	2 3 3 2 2	10 8 11	1038 1217 844 879 1488	5.17 5.18 5.24 5.18 5.48	25 25 11 6 4	5 5 5 5	NO NO NO ND	1 1 2 1 1	227 .2 236 .2 150 .2 136 .2 248 .2	5 6 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 25 21	7.69 .109 8.31 .130 3.89 .153 4.50 .149 7.81 .167	3 4 5 5 5	5 1.22 6 1.39 14 1.32 6 1.01 6 2.47	52 .01 68 .01 48 .01 62 .01 88 .01	2 .91 4 .50 2 1.46 4 .81 4 2.15	.02 .02 .02 .03	.04 .07 .08 .11 .08	1 5
J91+13-61 J91-13-62 J91+13-63 J91-13-64 J91-13-65	1 1 1 1	4 17 7 8	3 13 2 5 7	137 152 89 94 245	23124	1 3 2 3 5	18 12	1489 1270 1267 1177 658	5.04 8.03 3.99 2.69 3.04	3 6 4 9 17	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 2	233 .2 132 .2 182 .2 282 .2 174 1.3	2 4 2 2 3	2 2 2 2 2 2	35 63 38	7.81 162 5.50 129 7.26 176 9.27 055 5.84 120	6 3 7 3 4	7 2.59 8 1.95 6 2.52 8 1.97 8 1.35	100 ,01 44 ,01 77 ,01 99 ,01 75 ,01	5 2.25 5 1.25 2 1.83 2 .91 6 .45	.03 .04 .03	.08 .06 .04 .03 .07	1 4 1 4 1 2 2 2
J91-13-66 J91-13-67 J91-13-68 J91-13-69 J91-13-70	7 3 2 3 1	8 6 5 3	10 5 8 6 2	475 942 208 250 54	42254	7 6 7 6	19 18 10 21 14	729 865 956 643 713	7.26 5.48 6.21 13.27 7.65	36 40 20 82 44	5 5 5 5	ND ND ND ND	1 1 1 1	104 2.6 172 4.4 151 .8 89 .3 100 .2	5 5 4 6 2	2 2 2 2 2 2	16 21 29 26	4.45 , 161 6.62 , 131 5.89 , 134 2.83 , 104 4.00 , 073	3 3 2 2	5 2.03 9 2.17 5 2.56 8 1.74 11 1.94	32 .01 34 .01 33 .01 12 .01 21 .01	4 .31 3 .40 3 .63 6 1.07 4 1.39	.03 .03 .03 .02	.08 .05 .05 .05 .02	2 1 5 4 1 1 1 2
J91-13-71 J91-13-72 STANDARD C/AU-R	1 6 18	5 5 63	3 9 38	65 244 138 7	.3 .2 7.3	5 11 74	16 25 32	567 562 1078	4.73 7.15 4.04	29 60 41	5 5 17	N0 N0 8	2 1 40	154 .2 124 1.3 53 18,9	3 3 15	2 2 19		3.98 .155 3.87 .101 .49 .096	4 2 39	7 2.44 8 1.57 59 .88	34 .01 20 .01	4 1.30 2 .52 34 1.92	.03 .02	.03 .03 .16 1	1 1 1 450

7

<u>Samples beginning 'RE' are duplicate samples.</u>

, e

_

i

	<u>_</u>]	<u> </u>	1	[}		,		r)		ſ]	Ì		r						
ACHE AMALTEICAL					Gr	ang	es	Inc	. PROJI	J ECT	UN	עא :	RIVER	134	FI	LE	() # 91-4	906			Page			
SAKPLE#	Mo ppm	Cu ppm	Pb ppm		Ag pom	iк пяра	Co ppm	Mn ppm	Fe As X ppm	U ppm	A∪ PP⊓	Th ppm	Sr Co pon pon	2	81 ppm	V ppm	Ca p X X	La ppm	Cr Hg ppm 2	a Ti ppm X		Ha X	0.000	AU*
J91-13-73 J91-13-74 J91-13-75 J91-13-76 J91-13-77	1 3 11 2 1	6 7 5 6 9	12 9 14 8 4	156 95 233 194 94	.2 .3 .1 .1 .1	13 10 28 6 2	¹ 28 24 52 14 13	405	9,83 114 7.64 104 10.85 223 3.40 26 4.30 7	5 5 5 5 5	И О И О И О И О И	1 1 1 1	140 .2 193 .5 122 1.0 211 .4 205 .2	5 8 4 2	2 2 2 2 2 2	27 47 42 18 16	3.89 .118 4.79 .070 3.50 .071 5.20 .068 7.46 .114	3 3 3 2 4	15 1.54 8 1.65 13 1.30 16 1.58 7 1.89	27 .01 19 .01 50 .01	2 .42 2 .82 2 1.00 2 .71 2 .42	.03 .03 .03 .02 .03	.04 1 .03 1 .03 1 .06 1 .12 1	7 8 6
J91-13-78 J91-13-79 J91-13-80 J91-13-81 J91-13-81	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 9 9 10	2 2 6 4 20	111 85 82 87 109	.1 .2 .2, 1	2 3 2 1	12 12	892 1473 1335 1246 1274	5.05 28 5.10 14 5.60 8 5.23 7 5.39 4	5 5 5 5 5	NO ND ND ND	1 1 1 1	141 .3 267 .4 221 .4 191 .3 198 .5		2 2 2 2 2 2	29 26 21 25 34	4.45 .162 9.47 .122 8.96 .123 7.35 .126 7.87 .130	5 4 4 5	6 1.50 9 2.33 5 2.19 7 1.94 8 2.02	100 .01 74 .01 89 .01	2 .46 3 1.16 2 .85 3 1.07 2 1.30	.03 .03 .03 .04 .04	.11 1 .11 1 .12 1 .14 1 .13 1	4 5 5 3 5
J91-13-83 J91-13-84 J91-13-85 J91-13-86 J91-13-87	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9 10 9 11	227 8 2 2 3	390 98 131 146 159	.9 .1 .1 .2 .1	3 2 4 5 4	13 14 14 16 17	1162 959 755 745 727	4.95 10 4.31 5 3.94 8 3.19 10 3.10 10	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	170 3.2 205 .2 170 .2 195 .2 206 .3	3 2 3 2 5	222222	19 38 38 37 39	7.35 .138 7.76 147 6.54 148 7.84 139 8.39 195	4 5 5 6	5 2.15 6 2.40 11 2.15 8 2.47 7 2.45	80 .01 71 .01 86 .01	5 .59 2 1.72 2 1.63 2 1.71 2 1.81	.03 .04 .04 .03 .04	.14 2 .08 1 .08 1 .07 1 .07 1	5
J91-13-88 J91-13-89 J91-13-90 J91-13-91 J91-13-92	1 1 1 3 2	13 10 6 9 10	3 4 3 8 4	120 152 90 79 74	.3 .2 .2 .3 .2	4 5 6 5 5	17 20 17 16 17	589 472 511 494 419	3.54142.79123.77123.70143.9316	5 5 5 5	ND ND ND ND	1 1 1 1	175 2 175 2 137 2 95 2 82 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46 18	6.18 .208 5.90 .164 4.77 .092 3.56 .213 2.07 .233	6 5 4 7 8	8 2.60 7 2.38 9 2.11 12 .71 7 .59	91 .01 62 .01 89 .01	2 2.03 2 1.98 2 1.89 3 1.01 2 .90	.04 .04 .03 .05	.07 1 .06 1 .04 1 .10 1	444
J91+13-93 J91-13-94 J91-13-95 J91-13-96 J91+13-97	4 2 3 2	11 9 9 6	6 7 4 8 5	84 88 73 113 146	.2 .1 .4 .3 .2	9 7 4 6 9	31 23 14 18 31	591 451 795 601 638	5.25 41 6.22 33 6.41 22 5.34 32 4.91 56	5 5 5 5 5	ND ND ND ND	1 1 1 1	102 .2 61 .3 138 .2 153 .4 285 .6	7 6 6 7 7	2 2 2 2 2	30 26 31 43 48	3.74 210 2.11 230 4.81 255 4.63 242 7.27 167	6 6 7 6	9 .71 15 .66 8 1.36 9 1.92 11 2.05	72 .01 65 .01 75 .01 55 .01	2 .94 2 .88 2 1.36 2 1.81 2 2.01	.06 .06 .07 .06 .04	.07 1 .09 1 .10 1 .05 1 .03 1	5 3 4 2 7
J91-13-98 J91-13-99 J91-13-100 J91-13-101 J91-13-102	2 2 6 10- 10	7 9 10 14 11	8 5 6 16	94 54 89 178 148	,2 ,1 ,2 ,1 ,2	8 7 12 29 18	13	194 313 341	\$.08 50 4.63 40 8.53 94 11.40 107 3.79 43	5 5 5 5 5	ND NO NO NO	1 1 1 1 1	60 .3 9 .2 46 .3 18 1.4 194 1.4	17	2 2 2 2 2 2	20	1.65 105 .14 .010 1.14 .081 .41 137 10.08 064	4 3 3 4	12 1.75 13 1.67 17 1.00 13 1.09 7 3.64	64 .01 55 .01 36 .01 25 .01	2 1.74 2 1.63 2 1.15 2 1.21 2 1.70	.03 .02 .02 .02 .02	.06 1 .05 1 .09 1 .10 1 .06 1	4 3 9 3 3
RE J91-13-100 J91-13-103 J91-13-104 J91-13-105 J91-13-106	7 10 14 21 15	11 19 20 24 14	5 17 15 14 8	94 144 197 200 93	33335	14 16 24 34 14	8 6 7	325 680 907 701 1090	9.08 103 3.99 39 3.57 18 3.63 16 3.52 10	5 5 5 5 5	00 07 07 07 07	1 1 1 1	48 .3 155 1.2 159 1.7 123 1.8 199 .5	2	22222	26 22	1.20 088 7.57 060 6.74 056 5.84 057 12.78 107	2 3 2 2 4	20 1.06 10 1.56 7 1.69 8 1.34 10 2.07	35 ,01 57 .01 65 .01 55 .01	2 1.21 2 1.08 2 .60 2 .54 2 .92	.02 .02 .02 .03 .04	.09 1 .09 1 .08 2 .08 1 .10 1	9
TANDARD C/AU-R	19	58	42	138	7.1	74	32	1082	4.01 43	18	7	36	52 18.6	16	20	57	.49 .094	36	59 .92		31 1.91		.16 11	

· · · · · ·

. .

.

Samples beginning 'RE' are duplicate samples.

.

GRANGES EXPLORATION LTD.

		UNUK RIVER PRO	JECT. PAGE 1 OF 33
HOLE No.	×.	COUL 3 CLA	M
3 91- 14	1944 - Sec.		
PURPOSE		·····	<u> </u>
I- STRATIGRA	PHIC		
2 - TO TEST	MINERALIZED ZON	ES INTERSECTED 11	N HOLE J91-13
	ME SETUP)		
LOCATION SEFE GRID;	GROUND ELEV.	BEARING	TOTAL LENGTH
3+84E , 12+97N	501m	× 2.7.0	313.94 m
DIP - 70	DIP TESTS $106.66 - 71^{\circ}$ $219.46 - 65.5^{\circ}$ $313.94 - 50^{\circ}$		HORIZONTAL PROJECT
LOGGED BY DATE	CONTRACTOR	CORESIZE	DATE STARTED SET. 28
G. ALLEN SEPT. 30 - OCT. 2	J.T. THOMAS	B. Q.	DATE COMPLETED OUT. 1/9
TUFF BREC 17.43-40.35 INTERMEDIA 10.35-45.86 ARGILLITE 15.06-47.20 INTERMEDIA 17.20-48.22 ARGILLITE 16.22-50.0 INTERBEDOS 50.0-66.50 INTERMEDIA 50.0-66.50 INTERMEDIA	CIA (+ FLOW ?) THE COARSE- GRAINED SILTSTONE, FINE- ATE FINE- GRAINED TUFFACEOUS SEDIMI ED FINE- GRAINED IN MATE TO FELSIC AMP MATE TO FELSIC AMP MATE TO FELSIC AMP MATE TO FELSIC AMP	TO LAPILLI TUFF SANDSTONE TUFF SNT, LAPILLI TUFF TERMEDIATE TUFF AND YGDALOIDAL TUFF B MINOR FLOWS?) NS- GAAINED TUFF TO GOALOIDAL TUFF LAPILLI TUFF SCOALOIDAL TUFF B GOALOIDAL TUFF D TUFF	SULPHIDE ZONE ARGULLITE RECCIA, LAPILLI TUFF LAPILLI TUFF CCIA OR FLOW PECCIA OR FLOW
	(CONTINUED		
518HIFICANT MINERALIZED 1 47.20- 48.22 - 259- autoph		•	AST Somele 1 391-14-151) Could be synguetic
176.35 - 177.70 - 257.	pyrite at filente -	angillite contact. A	e above.
······································		· · · · · · · · · · · · · · · · · · ·	
·			
	·····		

Γ

PAGE 2 OF 33

HOLE No.

, i

ø

INTERVAL	C. LOSS	LITHOLOGY	.≁ ∪	L	S	Μ	А	1
- 0- 2.13		CASING		0				ţ
			-	+ 	·	-	-	╞
				1				
				<u> </u>	-	-		ł
2.30-27.43		INTERMEDIATE TO FELSIC INTERMIXED	· . _	۹ <mark>- خ</mark> ر	-	1-32 PY	-	ŀ
		FINE - GRAINED TUFF TO, TUFF BAECCIA		- Elas	·			
		Midium below - gring relatively solt inhamitic	· · -		-	-	-	┣.
•	ŀ	commentat hetrogeneous volcomic rock. Testine	-	17	_	<u> </u>	-	
		cange from messine (with amygidalidad	••	30		•/		-
·		to conse- grained pragmental. Some sparently	_	(4) 2	-	- '	-	-
		frequental yours may in fact he preciated	_ ·			·	_	
· · · · · · · · · · · · · · · · · · ·		mon marine rock. Brienated interpole flooded	•					
	+	by fine-grand brack chlorite and prente.	· —	-	-	-	-	-
		The rock could be intermined fine -grained	:			~		
		tuffarmer sections	••• <u>-</u> -	-	-	-	-	-
·		12.22 - 13.10 - Black sheard argettite with	- ·	-21	· _	´	-	- /
·		30 % quarty conformate stringers at 30°CA. Contacts 45°	•			./		
			· - ·	-	:	-	-	-
· •			_ ^	4	<u>ш</u> -	_	-	-
				1	· [57.		
			<u> </u>	/-	`- }	 7-912	` -	•
			_	ן ה_ט	·	Py	_	_
			2	A.	-	51	1	
		15.5 - Possible budding 45°CA.	\dot{s}	1		-	- -	- 1
			/45	1		- 21		
			-		-		-	-
			-	-51			- -	
						划		
<u></u>				-	- 1	7	-	
	-		45	_	_	<u>}</u>	_	
							1	
			-	-	-	-	- -	- 2
L *		•						

0 5 [(10

Γ

[

[

15

20

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 3

OF 33

MINERALIZATION ALTERATION	SAMPL	E FROM	1 70	WIDTH	Au			Sb ppm		
					<u> </u>	<u> </u>				1
	/ -	 	 		∔	1	<u> </u>	I	I]
					╂━──	 	 	 	\vdash	4
	·	+	+	<u> </u>	 ,_	$\frac{1}{2}$	_	+	 	+
L-13-12.22 - 1-39. spondie pyreti;	<u> 591-14-1</u>	2.30	3.93	1.65	17	0.1	┨───	2		+
Lissiminated in ingular masses		- 05	100	1.54	$\frac{1}{7}$	 		2	<u>}</u>	+
to (can and inque stringers associated		3.75	3.47	11.24	2		<u> </u>	<u> </u>	┼──	+
to cam and ingular stringers associate	3	C 49	14.95	1.46	3.	+		2		+
		2.7.	<u></u>	H	<u> </u>	 	<u> </u>	<u> -</u>		†
	4	6.95	8.53	1.58		0.Z	<u> </u>	2	<u> </u>	†
			<u></u>		- <u>'</u>		<u> </u>	<u> </u>		t
	_5!	8.53	9.90	1.37	15	0.4	<u> </u> _'	2		t
							\Box'	<u> </u>		1
	٤)	9.90	11.44	1.54	ľ'	0.1	12	2		╞
		↓]	 '	 	í'	<u> '</u>	<u>اا</u>	Ĺ'		┦
		11 .44]	12.2.4	0.80	' <u>'</u>	ai	11	2	 `	4
	-	 	<u> </u>	├ ──┤	<u> 4</u>	├ '	<u> </u>	1-1	 '	+
		12-24	13.10	10.86	<u> '</u> !	0.1	5	2	{ '	╀
	-9	(1	trent	ا ر بر ا		1	2	 '	+
	-+	13.10	14-52	1.42	<u> </u>	0.4	19		<i>⊢′</i>	+
1.22 - 13.10 - 3-47. fine-grained punt	70	12 22	16.00	1. 10.1	1	0.3	12	12	<u> </u>	ł
dissiminated in argillity.	<u> </u>	4.27	16.00	/ <u>~</u> *†	, <u> </u>	ا	r 4	i+	l	+
8	11	11.00	17.27	16.27	- 41	0.2	· //	2	[]	ł
					ιÌ	Ĩ	<u> </u>		[]	t
10-17.27 - 3-47. purite in fracture	12	17.27	18.29	1.02		0.2	15]	2	·	t
and breas matrix (legilli mitriz? associated with calit										t
associated with calit	13	1 B. 29	18.94	0.65	3	0.1	19	3	\Box	Ĺ
							 			Ĺ
	144	8.94	20.52	1.58	3	0.1	6	2]	4
		-+				·	r	<u> </u>]	1
7 16 4 0-104 - 14.	-+	-+				·		·	 	1
7.27-18.94 - 8-107. pupite in inequile masers to 5 cm in doricin matrix and stringers.	+		-+			.—	+			┢
Inecci matrix and structure.	-+			-+						t
- Action of the second	+	+		+		+				ŀ
1.94 - 27. 43 - 2-47. sooradie serits	-+-				-+		<u> </u>			ſ
2.94 - 27.43 - 2-47. spondie pyrite predominantly in fractures up to Smon assoc, with calite. Some more								+		ſ
E and it lit o				<u> </u>			-+	-+		-

_		GRANGES EXPLORATION LTD	e d					
<u>)</u>			PAGE		† `	OF ³	3	
HOLE No.								
J 91-14	Ļ							
INTERVAL	C. LOSS	LITHOLOGY	× 5		S	M	A	
·			1	×		242	††	
	╉╼╉		-	יע ד		P1	_	-
				- - -		1-		
• <u>-</u> .	┨╌╽		1 -	- - -		t	- -	-
	+		-	-] - [7	- -	÷
					.·	\mathbf{N}		
	-	Cradational contact	-	-	-	7:		-
	┼╌┠		_	-	-		_ -	_
	++					2		
			-	-	-	- `		
 <u></u>			_	_	_	<u> </u> と		
7.43-		INTERMEDIATE COARSE- GRAINED TO LAPILLI				1.91		
2 70.35	╏╴╏╸	TUFF (TUFF BRECCIA ?) Dark to midium Islan another	-	->	-			
		inhomogenione coorse-grained the to tall bricina.		c-D-(ÿί	7-8%	
·	<u> </u> ∖	Init is distinct from one above. Distinct	-	- (E	-	XΧ	17	
	$\left \cdot \right '$	ulargedon to subnounded medium blue-guy	-	-	-		a. a.:	. :
		to I an. Fromunte an commonto a saddhill				2-37,		
		ith = 1 min anygdules of calate and chlority.	-	-	-	84	- -	
		me polable progrants of coarse-grained	_	_	_	イネ` 		
		num (chloritic?) and contains disseminated				i		
		ryrate and ingular massue of pyrite to 1 cm.	-	-	-	4		
		0 /10	_		_	5-8%		
	<u> </u>	9.52-30.37 - White to blue grug quanty wine		_		EY.	- Г	
		tor San 90'+60° CA. Thinky Committed wine light to dark liter- ony. Polypisodic languing	-	-	-	1-3		3
		Aght to dark film- ony. Polyipisodic laying				nin l		
		2 cm × 2 mm. Trans pyrolitum ?	-	-	120	-\ \i	-	
			-	<u> </u>		\$¥	-	
			. · .	7	<u>es:</u>	#h. j.		
)			-	-	:	1		
						'n'	ľ	
				-	-: F	224	-	łc
			·	· · · ·		,		

..

. .

PAGE 5

OF 33

HOLE No.

T91-14

20-	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	WIDTH	Au ppb	Ag g/t	As ppm	Sb opm		
~		15	20.52	22.00	1.48	2	0.1	14	3		
ļ		16	12-00	23.43	1.43	4		15	2		
-		17	23.43	24.95	1.52	3		16	2		
ļ		.(8	24.95	26.15	1.20	1	0.1	11	2	<u>_</u> , _,	┨
ł		19	24.15	27.43	1-28	2	0.1	/3	2		╁
5 +		20	27.43	28.57	<u>i.14</u>	3	0.1	15	3		$\frac{1}{1}$
ŀ	27.43 - 20.57 - 2-32 synte spandially	21	28.57	29.52	0.95	Ų	0.5	23	4		$\frac{1}{1}$
F	distributed in lopilli tuff mating .		<u>29.52</u>	30.37	0.35	4		16	5		╞
F	28.57 - 29.52 - 7-87. pyrite in stunigues and brican filling with	23	30.57	31.10	0.73	4		20	6		╞
	colinte and chlorite.	24	31.10	32·32	1.22	.7	0.3	32	4		╞
30+	29.52 - 33.64 - sponadic 2-3% pyrite in stringers and inegular mossie to	15	32.32	32.95	0.63	8	0.Z	35	z		ł
F	1 cm.	26	32.95	33.64	0.69	2	0.1	55	4		╞
*	33.67-39.83- 5-07. synte in stringen to Smm associated with calcute and	27	33.64	34.64	1.00	2	0.1	107	3		╞
ŀ	in ringular marsur to 1 cm in the lapilli matrix.	ZB	34.64	35.64	1-00	8	0.1	249	4		╞
	· · · · · · · · · · · · · · · · · · ·	29	35.64	36.64	1.00	9	0.2	/9 5	6		╞
\$5+ -		30	36.64	Ĵ7.64	1-00	7	0.1	120	4		╞
		31	37.64	38.64	[-0-0	11	0,3	298	10		╞
		32	38,64	39.83	1-19	3	<u> </u>	385	28		╞
ŀ		33	39.83	40.35	0.52	9	0.2	טן	2		
	39.83- 10.35 - 1-20% pyrite						· · ·				╞
•+	v u										-

HOLE NO INTERVAL

INTERVAL	й С	LITHOLOGY	* 5		5		A	
40.35-		ARGILLITE SILTSTONE FINE-GRAINED	50	\square	ŧ	<17.P7		+ 40
45.86	13 0.35 - ARCOILLITE SILTSTONE FINE-GRAINED 45.06 SANDERDRE Dete to dark your availing goding inte alletan fin-grained sandeting and book into availing organist sandeting and book into availing organist sandeting and book 14.00 + 4.00 - 57 white young strongers at 45.00 + 4.00 - White young strongers at 45.00 + 4.00 - White young strongers at 45.00 - 44.00 - White young strongers at 12.00 - 44.00 - White young strongers at 12.00 - 47.2 - 507 while quark, strongers to 100 - 70 - 60 12.00 - 47.2 - 507 while quark, strongers to 100 - 70 - 60 12.00 - 47.2 - 507 while quark, strongers to 100 - 70 - 60 12.00 - 47.2 - 507 while quark strongers to 100 - 70 - 60 12.00 - 47.2 - 207 Weak angellecture to 100 - 70 - 60 12.00 - 60.22 - 207 Weak angellecture to 100 - 70 - 60 30 - 100 - 100 - 20	["	-3	_	54%	_	L	
		Black to dark guy argillite grading into		-	.	27		
		silection fine-granied sandstone and book	_		-	121	_	
		into angillity across interval. Massive.	ł	[]				
			-	-	_	_	_	L
•••••••••••••••••••••••••••••••••••••••	Ŀ	42.14 - San angellite programment in siltetone.		1	 :	<12		
	 		-	X	-	17	_	- .
		45 + 45° to CA X		1	ستعلم	Q.v		
)	 	44.70- 44.88- White questy vin 45-60 CA.	P/~~.	- 1	Ti san Yaziya		_	- 45
		Traces printe, I'm gauge on uphole selvage.	51 L	4	• •			-
			1		- 1	2.57	-	╞
45.86-47-20			SILTSTONE, FINE-GRAINED SILTSTONE, FINE-GRAINED Ande gue anilik grading inter in geniid souleting of 70 ch. angellik Angest in addition. Upper context sharp at 70 ch. angellik Angent in additet. 80 - 57 Lik proty stringer at 80 - 50 Lik grant, stringer at 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					
				\mathbf{F}				
<u>``}</u>	3 ARCHELITE, SILLTSTEDIE, FINE-GARDENS, SILL OTTON ARCOLLITE, SILLTSTEDIE, FINE-GARDENS, ST							
J		47.0-47.2 - 50% white quarty stringue to 1 cm 60-70° cA			-		-	
			5.7/	, Š				
47.1 -40.22			<u>_</u> 62	-4		-	_	-
						2	•	
			-	<u> -</u> "	·	2	-	- 50
		47. 8- 48.22. 207. black any glabordal fragmente to		5		, ,		ļ
			-		-		-	\mathbf{F}
· · · · · · · · · · · · · · · · · · ·						1		
			-	_ 0	-	-		-
		moture and in stringers in hifforione intervals.		⊳		2		
			-		1		-	-
48.22 - 50.0			$\frac{1}{10} - \frac{1}{10} + \frac{1}{10} $					
			-	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	-	-		
·								
		soft hill interhedded with 20% block orgalloced	* _	-	-		-	- 55
		and must on triff:				2		
		49.6 - 50.0 - Wrete quarty stringer - shin zone.	-	-	-	14		-
						, [
50.0-66.50			- 1	÷	-	-	-	-
				-		ţ		
~				-	· -	7	-	-
		_ Midnem blue - grey coarse fragmental volcanic	1			i		
			-	-	-	-	-	_
		appointic relatively soft material will up to 152	50/			4		
		filme- ony chalcidony amyadula to 1 cm. Zones-	<u>^</u> •	·	-	- [-	-60
						0		
<u>, , , , , , , , , , , , , , , , , , , </u>		film - only till to logilli till with sphere to Sa	•					

Γ

PAGE 7 OF 33

HOLE No.

C C

~	MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Au DÓD	Ag g/t	As ppm	56 ррм	
-u -	40.35- 40.77 - 1% discominated printe	34	40.35	41.35	1-00	4	0.1	94	8	
	40.77-42.14 - 5-67. dong inigular	35	41.35	42.14	0.79	3	0.1	95_	21	
	transformer in and filling	36	42.14	43.60	1.46	3	0.1	13	3	
	Some collifare masses of pyrite to 6 mm. A21A - 44.88 - <19. pyrite.	37	43.60	74.8 8	1.23	4	0.1	15	2	
	47-08-45.47- 37. purite; desceminated	_38	44.88	45.86	0.98	3	0.4	<u> </u>	19	
5~	and along handing practime.	39	45.06	47.zo	1.34	5	0.2	43	3	
×.	15.47 - 45.86 - 207. pyrite commutated			48.22			0.4	413	14	
	provite. Thinky bounded at 70°CA. Associated with cality. Flooding along			49.22			0.1	115 115	4	
	foliation plance? Syngenetic?									_
	95.86-47.2 - 2-37 sporadic prynte.			500		<u> </u>	02	17/	2	
50 -	Dissimilated and in migula massing to	43	50.0	51.42	1.42	1	<i>0.2</i>	25	2	
¥	47.2 - 48.22 - 25% pyrite in mouse (atrigue ? replacement ? europertie ?) to 30 m		51.42	52.Bo	1.36	3	0.Z	23	2	
*	(stringue ? replacement ? syngurtic ?) to 30 mm associated with cality. Also in lopilli moti 48.22 - 50.0 - 5 % fim - grained prysets	45	52.80	54.28	1.18	15	0.Z	ىت	2	
	in ande bande ponallel to hedding.	46	54.20	55.70	1.42	3	0.3	23	Ζ.	
	Presibly syngunitic	47	55.70	57.14	<u> .44</u>	6	0.5		3	
	50.0 - 65.50 - spondie 2- 4 2 purite; in ingular masses to 1 cm in matrix of	48	57.14	58.52	1-38	7	0.Z	7	2	
5 -	fines - grained intervale, and in ingular stringue to I con associated with calcite.	49	58.52	60.0	1.46	·6	0.3	4	2	
-										
ŀ										1
₀∔										_†
┢			-+							

GRANGES EXPLORATION LTD

HOLE No.

ſ

_

INTERVAL	C. L055	LITHOLOGY	¥.		S	M	A	
		Fine - grained interests crudily bonded on fielded		2			†	t
. =-		45'-60' CA.	-	ь m	?y -	-	-	$\left \right $
				- [2 - 2 -	44	_		
	<u> </u>]	∓				Γ
	$\left \right $		-		Ť	-	-	ł
<u></u>				* v. 	1/	_		
		· · · · · · · · · · · · · · · · · · ·			\mathcal{L}			
	$\left \right $		-	-	2	-	-	┝
			_		1	_	_	
6.50- 89.37		INTERMEDIATE (TO FELSIC ?) FINE- GRAINED		معمته	2 47			
		TUFF TO LAPILLI TUFF Midum to dark film - any line - argumed	-	2 (- 3	242	-	-	╞
)		tuff with intervale to 50 cm of fragmental	_	٤٤		_	_	
		with angular aphanitic programite to 2 cm.	50°/	4- 4-				ſ
<u></u>		Fine-grained intervale commonly thinky banded	<u></u> so	_4	-	-	-	ŀ
		10 cm rouly amy delaidal Contacte with					_	L
		adjacent unite gradational marked by finer-	-	-	_	-		Γ
		grained nature and (morted) abarres of obvine	. –	-	4	-	-	┢
· · · · · · · · · · · · · · · · · · ·		anysoloidat sichore,			1			
			-	-	-	-	_	
		· · · · · · · · · · · · · · · · · · ·	-	-	\checkmark	-	-	\mathbf{F}
			-	_	7	-	-	
			-	-	-	-	-	-
-					/_			
			-			-		-
			-	-	-	-	-	-
	-		5.7		·			
)			5.1	-	-	-	-	-
			/35		-	· _ ·	-	-
	-+							
			-	- 1	- [- 1	-	-(

PAGE

8 .. OF 33

_	
-	
r	
-	
a	
Ê	
-	
L	
~~	
L	
r	
-	
_	
L	
_	
Γ	
Ĺ	. ,
<u> </u>	
L	
-	
_	

Γ

Γ

Γ

ŕ

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

9 OF 33 PAGE

•

HOLE No.

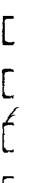
•							r	· — · ·		_	
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	ніотн	Au PQV	Ag g/t	As ppm	Sь ррм		
60-		50	600	64.43	1.43	7	0.3	5	Z		
-											
-		51	61.43	62.88	1.45	16	0.3	12	3		L
-							· ·				
_		52	62.88	64.53	1.45	3	0.3	17	3		
-						· <u>.</u>					
		53	64.33	65.50	1.17	<u> </u>	0.3	14	Z		
-		54	65.50	67.06	1.56	4	0.2	Ζ	2		_
65-											
	65.5 - 89.37	55	67.06	68.58	1.52	15	0.3	Z	2		
-	- 1- 17 quarte abure 1- 4 mm										L
-	budding - proalled bonds and stringers	56	6858	70.04	1.46	6	0.3	Ś	S		
-	associated with calcity.										
2		57	70.04	71.50	1.46	4	0.3	2	2		
C.											
-		58	71.50	72.88	1-38	1	<i>д.ц</i>	5	Ζ		
-		59	72-88	74.30	1.42	13	0.3	2	2		
70-									•		
/0-		60	74.50	75.83	1.53	14	0.4	5	2		
-	· .							•			l
		61	75.85	77.29	1.46	4	03	3	2		
-											
_		62	77.29	78.74	1.45	3	0.4	5	2.		
-							[
-		63	79.74	80.14	1.40	11	0.4	2	Z		
-				L							
- 75											
•											
-											
-											
- ·											
•	· · · · · · · · · · · · · · · · · · ·							·			
3					· · ·						
-											
-	· · · · · · · · · · · · · · · · · · ·										
80 -											
-											
	l		I	1	I		Í	I	1		1

.		GRANGES EXPLORATION LTD	PAGE	10	× c	DF_3	3	
HOLE No.		in the state state of the stat				<u> </u>	<u> </u>	1
I91-1	4							
· · · ·	12	T	—	1 - N		1	<u> </u>	$\left \right $
INTERVAL	C. L055	LITHOLOGY	بد ن	E	S	Μ	A	
				4		2-42		ſ
	<u> </u>]	هـ ا	_	₽¥ 	_	-
			4	ð		/ /		
			-	-	-	-	-	F
	_		•					ľ
			-	-	-	-	-	\mathbf{F}
		······································	ł		. [:]			
	1		1 -	-	-	-	-	F
	Γ		1_				_	L
]				_	
	_	A standard stand standard standard stand standard standard stand standard standard stand standard standard stand standard standard stand standard standard stand standard standard st standard standard stand standard standard stand standard standard stand standard standard standard standard standard standard standard standard standar		_	: _	2	-	L
	4-	References and the second s		:	:			
		an ang the second			and in T	\angle	-	ŀ
)			ł			/		
	+		-	-	-	-	-	╞
	1-					r		
	1		-		_	. 7 Z	-	F
9.37 -		INTERMEDIATE TO FELSIC AMYGDALOIDAL		ра - Ц		57	i	
113.04		TUEF BRECCIA OF FLOW	5.7/	-13 17		-	-	ſ
		midium blue - grey massive appenitic intering	14.			-	_	L
. <u></u> .		soft volcanin rock with 15? - 10 min	· .	- e				
	╀╌╸	colicity chlority and/on chalcidory amygdulue. Some	-	_	-	-	-	┝
	-	with vale to 30 cm appin to the consignment				-		
		The rock could be a coarse - grind tul briccio	-	-	-	•	-	F
		on flow. Annadyles flattered in which						
		divilized foliation plane	-	~	_	7	-	Ĩ
			7		:_	·_	_	
			5.5%					-
•			4 8	_	·	-	-	F
	\vdash					1		1
			-		-	-	-	-
}	╉┤		. 	-	-	/-	-	-
<u> </u>	1-1					1		
			-	- .			-	-
				. <u>.</u>		:_	_ [,
	ų.				. :		ſ	
	1 7		:					

ŗ

.....

100-


GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE // OF 33

HOLE No. 丁91-14 ٨s S۴ Au Ag ALTERATION MINERALIZATION SAMPLE FROM τо ыюти ŵ g/t ppm çpm 2 0.4 3 64 80.14 81.53 1.39 45 01.53 82.95 1.42 8 3 0.4 7 66 82.95 84.40 1.45 4 4 z 0.3 z 67 84.40 85.76 1.36 19 0.3 X 68 85.76 87.30 1.54 10 0.3 г 5 87.30 88.20 0.90 4 6 69 0.5 3 88.20 89.37 1.17 9 70 2.3 3 3 89.37 20.83 1.46 S 77 0.4 7 6 72 20.83 92.24 1.41 8 0.6 7-4 Lic 2-37. py 73 92.24 13.78 1.54 X 6.4 5 L 89.37 - 113.04 - Spone stringers to rally ponall 74 93.78 95.21 1.43 4 0.1 Lohate 2 12 punite i angadu 75 95.21 96.81 1.60 4 18 0.1 Z 76 96.81 18.31 1.50 20 ε. 3 0.1 77 98.31 99.78 1.47 0.1 18 Ζ 3 0.1 Z 14 J 99.78 101.30 1-52 78

		RANGES EXPLORATION LTD	PAGE	12	. c	्रम् ु	33	
HOLE Na. 391-14			<u> </u>					
INTERVAL	C. Loss	LITHOLOGY	* 5	L	S	Μ	A	
			-	2 -		2-39. CY		† "
				40 (ئا (-		-	F
					-	-	-	ŀ
		· · · · · · · · · · · · · · · · · · ·] -	-	-		-	-
			1_	_	. _		_	
		······	-					
				-	-	7	_	
				-	-	-	-	-
		· · · · · · · · · · · · · · · · · · ·	-	-	-	·	_	
			<u> </u> _			/ .		
					_	- 7.	-	ſ
			-	-	-	-	-	ŀ
				-	-	2	-	-11
	· · ·		1	_	_		_	Ļ
			-					
113.04-11860	LNTE	AMEDIATE AMYCDAL LAPILLI TUFF	1 -	-	-		-	F
	to 10	0 00 menon that the those	-		- 1	.	-	
	Come	- grained tufforence groundwoose. Amygdules	-	ې ب-	,,	5-72 9 <u>4</u>	_	ŀ
· 	- Formpres	I pudominantly of calente with lisin		Ĩ		.*/.		.,
	to 15	? of programmente.		-	- 1	·.+	-	-11
		· · · · · · · · · · · · · · · · · · ·	-	-	-	7.	-	-
		······································	1 -	_ [-		-	 -
					<u>ر ب</u>	(7		
)]				\mathbb{Z}	15		-	
		118.60 - 20 cm gonge along fault at 45° CA	-			P7		-
		t antact.	-	-	2 2	ч - 4	-	-12
						•		

ſ

HOLE No.

591-14

Sь ٨s Au Ag. MINERALIZATION ALTERATION HIOTH SAMPLE FROM τo p ób g/t ppm pp-m ['00 5 79 2 101-30 102.75 1.45 01 4 7 102.15 104.07 1.32 0.Z 80 5 S 104.07 105.52 1.45 3 01 81 2 10 BZ 105.52106-83 1.31 4 0.2 13 2 106.83 108.36 1.53 4 0.2 17 S 63 105 37 108.34 109.73 1.37 3 03 84 0.1 25 85 109.73 110.90 1.17 3 0.Z 2 34 BG 110.90 112.40 1.50 J 0.1 2 87 112.40 113.04 0.64 4 64 3 02 [Ţ 0.1 57 88 113.04 113.95 0.91 110 0.1 89 113.25 114.07 0.92 z ۰ **Σ** 101 90 114.87 115.82 0.95 1 64 a1 ? 91 115.82 116.73 0.91 1 01 136 3 113.04 - 118.60 - 5-77. - gra pyrite; 6 0.3 761 2 92 116.73 117.961.23 lapilli metriz, 0.8 652 inthe with cality 93 117.96 11860 0.64 ч 16 کا 0.1 28 94 11960 120.0 1.40 4 5 118.60-127.52 - 3-42 sponadic pyrite in inequilor stringue to 5 mm and mosses to 4 cm (neplacement?), 120

PAGE 13 OF 33

GRANGES EXPLORATION LTD

PAGE - 14 OF 33

.

• 1

HOLE No.

791-14

A	121		1		- 1	. .		
INTERVAL	C. Loss	LITHOLOGY	אי ט		S	M	A	13
8.60-		INTERMEDIATE TO FELSIC AMYGDALOIDAL TUFF		2-		3-57,		Т″
127.52		BRECCIA OR FLOW	[ພ -ຄ	_	РУ —	-	
		midning blue - grug to black massive	[2	1	5		
		-phanitic volcame rach with chaludonic	_	-9	- 1	_	_	L
		question calcute and Ion chlorite anygolulus. to Icm.		1				
		The rock is mottled black and gruy in place		_	 →	4	-	
····-		and in somewhat inhomogeneous. Some parts			÷			
		are thinly banded and anyadaloidal; flow ladel?	_	-	_	-	_	
		Some parite masses to 4 cm occur adjount to				۶		
	-	thinky bandre quarty - chlorite filled space	_	-	-	_	_	Ŀ
		and any golulies In place any goule are partially		Í		7		
		soveloped by printe suggesting uplocunist of	_		_	4	_	L
		rock by synthe.				4		
		000		/	_	_	_	L
7.52-		INTERMEDIATE TO FELSIC ANTODALDIDAL TUFF		×_∾_	_	. 7	_	L
138.80		BRECCIA		E C		3-52		
		nottled blue-grey to black inhomogeneous	_	- r	_	PY -	-	
		tuff briccia. Block and blue- grey annadalide	I			42		Ì
		(5-20% -1 mm - 1 cm andominantly calcite) modust	تل ما	يبينيا	ne	_'	-	- 13
		programmity on yours to I me with a finer -	Q		_	_	_	.,
	_	pained tul matrix. This unit differentiated fin	_	_	_	그	_	
		unit above on the basic of its predominantly				ι Ι		
		black colour and inhomogeneous mature.	_		_	2	_	
		0				-71	_	
			_		_	5	_	
						1		
			_	_	_	1	_	
			_			_	-	
			_	_	_	2	_ 1	_ /:
						.	_	
			-		_	5	_	_
			-		-	.~/	-	-
				ĺ		~		
			-	-•	-	1	-	-
						2.1		
l .				- J	- : I	, 1	- · [-
6. 60-		INTERMEDIATE FINE- GRAINED TUFF		1	- L		1	
/40.87	Т	medium to darle blue - greg fine to medium-	-	<u> </u>		-	- [-
		named tall. Cradie into angularing tal or angullite		_ "			_ [- 14
			- 1	- 1	- 1	- 1	- r	 T

OF 33 PAGE 15

HOLE No.

С С

	MINERALIZATION ALTERATION	SAMPL	E FROM	то	ыюти	Au	Ag g/t	As ppm	56 ppm		
20 -		25	120.0	121.54	1.54	13 	0.3	_	2	 	t
-						[1
ŀ		96	121.54	123.05	1-51	6	0.5	24	4		╀
Ē		97	12309	124.4	1.35	1	0.4	18	3		t
-			 	<u> </u>							Ŧ
F		78	(24.4	125.83	1-13		0.2	28	2		╀
-		29	12.5.83	127.52	1.69	z	0.Z	14	2		
125-								<u> </u>			Ļ
F		100	127.52	128.97	1.45	~	5.0	17	2		╀
F	127.52 - 138.80 - 3-5% pyriti; mynte more to 1 cm in Incia matric	101	128.97	13a 4	1.43	1	0.3	44	3		
┢	and along fractures.	1-2		131.88		7		<i>u</i> =	4		╞
	the stand the second se	101	1,20+4	1,2(,85	/•ተ8		0.3	15			t
-		103	131.88	133.40	1.52	(ي.2	174	4		F
		104	133.40	134.8	1.40	1	0.Z	148	2		╞
30 +											
-		105	13 <u>4.8</u> 0	136,36	1-56	L	0.1	142	3		-
		106	136.36	137.76	1.40	2	7.4	233	10		Ē
		107	137.74	38.80	1.04		0.4	230	4		╞
		108	138.80	140.ZI	1.41	.}	0.1	76	2	<u>.</u>	
						· · · ·					-
35											
- 											_
-									<u> </u>		
						-					
-	· · · · · · · · · · · · · · · · · · ·				<u> </u>		· ·				-
13	18.80- 140.87- 1-22 dimminated pyrite										
									-+		
40 											

HOLE NA		DIAMOND DRILL LOG	PAGE	10	,. 5 (0F	33	
J91-14					••			
INTERVAL	C. L055	LITHOLOGY	* U	L	S	Μ	A	-
142.05		ARCHLITE Black marine angillity. Cut by 15 cm contraste win / stringer zone at 45° CA (141.2-141.9) Lunce contact along a fault, Shraved contact 35°CA.	-		-	45	-	
142.05 - 166.00		INTERMEDIATE TO FELSIC AMYCDALDIDAL TUFF BRECCIA (THOW?) Midium Mun - guy relatively massive	-	2/3, 6 ~ /6~	THUS T, GOUL	P7 - -	-	
		aghanetic soft anygdalaidal (ip to 20%, <1- to >1cm, line. grey chaludany, calcite and minor chlorite) zones to 2 m interchedded on intercalated with fine -grained to lapilli tull Marine amere adalaidad so to mar he	-	- B - A	-	1 1	-	-
)		Henry fragmente, compacted til buccia on possibly florer. Weekly foliated. 142.05-144.6 - FAULT ZONE. Buchen come, Congr.	-	-	-	- /-	-	
		Pulvinged rock. Shrand 30° to subparallel to	- 5. 3.	-	1	- / -	-	- /
				-	-	7	-	
			F.:: \$ \$ -	-	-	1- 1/	-	
		56.14-156.50 - Shrand angellete, Upper contact		-	-	- / -	-	-15
			-	-	-	~	-	 - -
						- 42		

. .. -

PAGE 17 OF 33

HOLE No.

J91-14

	MINERALIZATION ALTERATION	SAMPLE				Au Dpb	910	As ppm	Sb ppm	
Ţ	140.07-142.05- 3-42 purite along	109	140.21	140.82	0.66	l	1.0	70	6	
$\left \right $	haiting practices and in discontinuous		140.04	142.05	(18	1	0.4	105	15	
ł	londe to 2 cm.		779.87				<u> </u>			
	142.05- 2-4% sponadic pyrite in ingular foliation - parallel barde	111	142.05	14295	0.90	1	0.1	12	2	
ļ	up to 5 mm mide, dissumentity,	1(2	/12.95	/44-48	1.53	4	0.1	13	2	
	fracture.	113	/44.48	145.92	1,44	2	0.(9	2	
		114	145.92	147.32	1.40	3	0.1	10	Z	
ŀ		115	147.32	148.70	1.38	3	0,1	12	1	
ŀ		116	148.70	150.1 4	1.44	4	0.1	6	2	
ŀ	······································	117	150-14	151.60	1.46	2	0.1	9	z	
		118	151.Lo	152.94	1.34	3	0.1	5	2	
╉		119_	<u>152.9</u> 4	15457	1.63	3	0.1	9	2	
	· · · · · · · · · · · · · · · · · · ·	120	154.57	155.60	1.03	3	0.1	6	2	
╞		121	وباككا	156.14	0.54	3	0.1	-8	2	
ŀ		122	156-14	156.50	0.36	1	0.1	13	2	
		123	156.50	157.95	1.45	2	0.1	12	2	
+		124	157.95	159.35	j.45	4	0.1	19	2	
		125	159.35	161.00	1.65	2	0.1	39	2	
							· · · · · · · · · · · · · · · · · · ·			
ļ										

HOLE No.		د 	PAGE	18)F		-
591-14	1055		1			<u> </u>		$\frac{1}{2}$
INTERVAL	تـ ن	LITHOLOGY	* 5		S	Μ	A	\downarrow ,
				2/3		Z-47. PY		
				TX P	-	-	-	Ē
			- · -	2	-	-	-	ŀ
			-	Ż	_	-	-	-
				۲, 8 ۲	-	_	_	
				-		- ,		
			-	-		-	-	۲'
66.0 - 177.70		LAPILLI (+ AMYCOADODAD) TUFF SULPHIDE ZONE	-	<u>ہ</u> ۔ '	4		-	╞
	1-	Cradational contact with unit above, redium	_	 	-			ļ
)	┢	blue grey fine grained to lepilli tuff. Some		9				
		annyagdeloidel frogmente.	-	-	-	/- /	-	
. I			-	-	-	-	-	-
			_		-	-	-	- 1
	*	172.2-177.7 - SULPHIDE - RICH ZONE,				1		
·		Pyrite in matrix to lapilli tiff and, men	-	-	-	3-5%	-	
		contest with angellite, massive . Some bonding	-	-	-		-	F
		sulphidre.	-	-	-	15-20 F Ari	-	ŀ
						1-32		
			-		-	TY	-	ſ
<u> </u>			-	-	-		-	-17
			-	-	-	- PY 	-	-
		1727 - minor alion and quarter - contracte stringers				257		
		along contact. Banding in sulphides parallele		Ĵ		P.	-	_
)		confact and bidding in argillete	5 <u>1</u> 3 503		-	2-37	-	-
77.7-182.88		ARCILLITE, SILTSTONE	77	х Ъ	_	47 -	_ [_

PAGE 19

OF 33

HOLE No.

C

391-14

	MINERALIZATION ALTERATION	SAMPLE	FROM	то	ыюти	Au	Ag g/t	As ppm	Sb ppm		
50		126	161.00	162.50			0.1	13	2		
		127	162.50	164.0	1.50	3	0.2	12	2		
		128	164.0	165.10	1.10	3	0.1	19	2		
	· · · · · · · · · · · · · · · · · · ·	129	165.1	166.0	0.90	3	0.1	39	3		
		130	166.0	167.45	1.45	3	0.2	27	2		
65-	166.0 - 171.33 - 2-47. sponadic muite			168.90			01	27	2		-
	166.0 - 171.33 - 2-47. sporadic printe predominantly in lapilli matrix.			<u>/70.38</u>				68	2		
				176-33			0.1	25	2		
				(72.20			0.3	75	2		-
				173.46		·.	03		2		
70-				(74.12			0.2	91	2		
	171.33-172.20- 3-57. pyrite in migula mourse to 1 cm in calciste flooded										
·	mouse to 1 cm in calcinte flooded	137	174.22	175.1B	0.96	4	0.2	126	5		
* *	172.2-173.46 - 15-207. Quite in	138	17518	176,35	1-17	2	0.3	475	7 :		
	172.2-173.46 - 15-207. pyrite in Ineccia (lopilli ?) matrix with colaite.	139	176.35	177.Lo	0.85	4	0.3	781	2		
	173.46-175.18-1-32 pyrite in lipilli	140	177.20	7.76	0.50	4	6.4	484	3		
75-	tiff matrix is about. 175.18 - 176.35 - 7 - 87. pipite in ingel mossis to 1 cm in lopilli matrix.	141	177.70	179./0	1.40	5	0.3	38	3		
*		14.2	(79. 10	180.55	145	5	0.2	30	3	· · · · · ·	
	to so an implice guy tuff. Anoc.					<u> </u>					╞
	unth calcute. Some banding. Sugnaturitie? 177.7-182.86 - 2-32 printe concentrated									 	╞
	along 1 mm to 1 cm winde siltetone legte										╞
80-											

HOLE No.								1
J 91-1	4							
INTERVAL	C. LOSS	LITHOLOGY	*		S	Μ	A	
·	Ĺ					2-32	┨	+ '
	_]_	-5	1 	₹7 -	_	L
······	_				K 30	_		
82.08.		INTERMEDIATE AMYGOANDIDAN LAPILLI. TUFF		-	5	-	-	ł
188.98		Black moderately solt to subicions			Ž	Q.		
		aphanitic volcanic fragmenta with = 202 -1-2mm		۳ ۱		-		
	╂	predominantly quarty and /or chlorists amygdule.	-	-8	-	-	-	╞.
	╉╼╸	50- 8070 blin- quiz tuffacions groundinous.	•		*	17.		
	\dagger	182.68-183.18 - Questy - conternate min-breesing 60-70"	-	-	ľ -	PY	-	+'
		CA.	1_				_	
.		184.2- 184.7 - Broken core, Shrand . Couge to 5mm						
·	+	on shence 20° cA.	-	-	-	-	-	ŀ
)	+	······································						
			-	-	-	-	-	
I		180.98 - Shear along lower contact at 60 °CA.	_	-	سيرا			L
	_	0		ų ب		<17	54-1	
<u>8.96</u> -		INTERMEDIATE TO FELSIC SPRICITIC PHYLLITIC	5,7	- v	-	<u>e</u> r	-	ŀ,
201.17		LAPILLI TUFF TO FINE- GRAINED TUFF	60	>		6AR1	J.	ĺ
		preduce the one success physical couple	5.7	- i	-	-	-	ŀ
		lithic promiste to 5 cm. Some progrante an	/55	_	_	·	_	L
		menty darken grug ghosts flattind in the plane	_			11.	_	
		of folicition. Some parts of the unit are vaguely	-	-	-		-	ŀ
	\vdash	anygdalaidal without distinct fragment boundaries			1.	Q.*		
<u> </u>		194.2-194.45 _ FAULT, Couge. Sheared 60° cA.	-	-		-	-	-
			_	_	1	-	_	_ '
·			-					
		· · · · · · · · · · · · · · · · · · ·	5.1	-	-	-	-	Ļ
			65					
	┟╌┨		-	-	-	·-	-	-
	╞──┤			•		i		
)			-	-	-	-	-	-
t								

ſ

ľ

PAGE 21 of 33

HOL	E	No.

C

C C

r	J91-14			·			r	r	r	_	<u>_</u>
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	н тоти	Au DP ^b	Ag g/t	As pp=n	Sb ppm		
[18º -		143	180.55	181.80			0.3		4		;
-		144	161.80	152.68	1.08	স	0.2	38	7		
	182.88 - 188.98 - Spondie = 17.	145	182.65	/83.18	0.30	স্ত	6.1	4	z		
-	182.88 - 188.98 - Spondie = 17. projects; disseminated and in incyclar masses and brande to 5 mm.	141.	101.4	104.0	(2 2		0.1		2		
	magnilan makera and stande to 3 mm.										
		147	184 56	186-00	1.50	10	0./	32	2		
-						-		- 			
						•					
-	188.96 - 213.16 Bonen, <12 pute. Unusually devoid of sulphidue.										
- 190 -											
										·	
					·						
-	· · · · · · · · · · · · · · · · · · ·										
- .		· · ·				·					·
									· · · ·		
- 195 -				· .							
_											
-						·					
							· · · · · ·				
200-											
										1	

• •		GRANGES EXPLORATION LTD	5- 				<u> </u>]
		DIAMOND DRILL LOG	PAGE	2:	Z. (OF .	33	
HOLE No.			•		····	<u> </u>		1
J91-14	ł							
INTERVAL	C. L 055	LITHOLOGY	¢ *	L	S	Μ	A	200
			_	2-30-41		412. PY	Se-t	T
201.17 -		INTERMEDIATE PHYLLITIC LAPILLI TUPE			-	-	-	Ē.
115.25		Matthe midium grunich - gruy to dark grun lumilli tull. Distinct dark grun dark onen	- -	_0 /	-	-	-	╞
	$\left\{ -\right\}$	patchen a fragmente to 5 cm with a darke		-	_	-	-	-
		light area upers with furners boundaries . In	-		l. ⁺			
	┼╌╂	some places three spice look like anygdule.						Ē .
		lighter grun grandings and the texture may	-	-	-	-	-	- 20 9
	╆	he a product of alteration. The light num-		-		-	-	-
		logilli tul with vogen flattined lithis	- _ /		_		_	1
\rightarrow	╀╌┦	fromunta to 3 cm. Gradational contact	- /3×					ſ
		darle quer progrante.	<u> </u>	-	-	-	-	F
!	$\left \right $		-	-	-	-	-	-
					_	_	_	- 210
	┟╴┟		51%				_	
			┦╝	-	-	-	-	-
			-	-	-	-	-	╞
			1_		_		_	
2 - 1 -	╞╌╢				_	5-67. TY ,		
216.25-		INTERMEDIATE FINE- GRAINED ARCILLACTOUS(?) TUFF		~	-		-	-
		Dark grun to black fine - grained phyllitic] -	\swarrow	-	-	-	-215
:		LIG. 6-216.25 - Shrand. amonth wine to 20cm 52°CA	51:		94 5	6. ¹		
				ر ۲	Ø-	52	5	2
240.31	1 1	CRAINED TUFF TO LAPILLI TUFF	-	۲- ۲-۴ ۲-۲	-	-	-	
		hight to making grunich to bluich - grun	-		· . .	-	-	-
)		wante fine - grained to lapilli tuff with	5.+					_
		Enogments close to same colore as matrix.	1.0		-	-	-	-
	Ľľ	Ving uniform homogeneous rock. Modestely	-	-		- [-	- 220

ľ

ſ		
L		

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 23 OF 33

591-14

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ыотн	Au ppb	Ag g/t	As ppm	Sь ррт	
	1		<u> </u>]	 	
					ļ	 	 		
						ļ		<u> </u>	
	<u> </u>								
				<u> </u>					
-		ب					_		
						1		-	
	1								
· · · · · · · · · · · · · · · · · · ·									
213.16-214.28 - 5-6% swrite in	148	213.16	214.70	1.12	2	0.4	97	2	
213.16-214.20 - 5-62 pyrite in ingular messes to 1 cm associated with calcular flooding. Some strages									-
quit caleit Manding Same staring									
to 2 mm.									
13.(6-239.0 Barren. < 7. sulphile<br (pyrite) in ron foliation - ponallel banda to 2mm.									
(purite) in your foliation - ponallul									
banda to 2 mm									
· · ·	[]								
	 								
·····	<u>├</u>								
	┨───┤								
								-	

HOLE No		RANGES EXPL			PAGE	24	4 C	มะ ม	.3	-
591-1										
INTERVAL	C. L055		LITHOLOGY		÷	L	S	Μ	Α	
						2-3 A-	_	<12 RY	5c	- 2
· · · · · · · · · · · · · · · · · · ·						4-01	_	-	_	
			·····			-		-	-	ſ
						-	-		-	F .
			·			-		-	-	
·				· · · · · · · · · · · · · · · · · · ·		-	-	-	_	F
^ <u></u>						-	-	-	-	ŀ
						-	-	-	_	-
<u>· </u>				· · · · · · · · · · · · · · · · · · ·		-	-	-	-	F
······································						-	-	-	-	$\left \right ^{2}$
· · · · · · · · · · · · · · · · · · ·					51 ³	-	-	-	-	-
					5	-	-	-	-	╞
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-	-	· -	-	-
	234-1	40.31 · Si	reitie shull	+.' .'	4 -	-	-	: -	-	-
	4	ght grunish	- quy fine.	grained tiff.	Lithie -	_	-	-	-	
		segmente not	apparent.				-	-	-	-
	· · · · · · · · · · · · · · · · · · ·							· _	-	
				·		· ·	1		_	
<u> </u>	ļ									Į

GRANGES EXPLORATION	LOG							
	<u> </u>						PAGE	25
HOLE No.								
391-14			.	1	-	r	r	
MINERALIZATION ALTERATION	SAMPLE	FROM	то	NI07H	Au pyb	Ag g/t	As pp=n	S6 ppm
				<u> </u>				
				[
· · · · · · · · · · · · · · · · · · ·		-						<u> </u>
· · ·								
		• •						┨
· · · · · · · · · · · · · · · · · · ·					· ·			
					<u> </u>			
•			·					
				· · · ·				
				<u> </u>				
				<i>.</i>				
······································			-					
						·		
		•					·	.
· · · · · · · · · · · · · · · · · · ·								
······································						<u> </u>	<u> </u>	
							 	
39.0-210.31 - 1-37 spendic fine- grained queste concentrated 1-3 mm foliation - porallel bon		120 0	7401	. 11	2	0.3	$\frac{1}{11}$	2

· · ·

•								1
		GRANGES EXPLORATION LTD	Î PAGE	26	. ()F 3	3	
HOLE No.						<u>`</u>	, _	
591-14								
INTERVAL	C. LOSS	LITHOLOGY	*	L	S	Μ	A	
240.31 -		ENTERBEDDED FINE TO COARSE - GRAINED				1	Se-	2
241.64	-	TATTERMEDIATE TURE AND ARGILLITE	- 5-	- u	-	-	-	-
	-	tull with 1-2 and July fine to coarse granne	4 • >	1				
		angillite on angillourne tut!	4 -	ער י	-	-	-	ŀ
		о — — — — — — — — — — — — — — — — — — —		+	_	_		L
241.64-		THATERMEDIATE PHYLLIAC FINE GRAINED TO		, , ,			-	ſ
313.94		LAPILLI TVFF	- j-	-	-	-	_	╞.
· - · - ·		Midum to have greenich - grup fine - grained						
		to upille tuff I hallitic. Madiestily foliated	1/55	-	-	-	-	- 2
		241.64 - 247.43 - Zone to soon with opinious	-					
		flatting light ony to black apparitie lithic	1 -	-	-	-	-	-
		fragmente to 2am.		· _ ·		.	_	L
· · · · · · · · · · · · · · · · · · ·					¥7.		-	ſ
	┟╌┨	247.43 - 255 - midium to dark grunich - grey		-	3 <u>c</u>	-	_	Ļ
	$\left \right $	fine grained phyllitic moderately foliated						
	┝╌╢	sumitient tuff.		-	-	-	-	\mathbf{F}
	┨──┤		5.					ſ
**	╞─┤		1-00	-	-	-	-	- 25
			-					
			1 - 1	-	-	-	-	F
]_;		_	_	_	
	┞╌┨			_				
	\vdash		4 - 1	_	-	-	-	-
	\vdash		$\left \right $				-	
	┝┈┼	255 - 260 - spondie zone to 5 cm with		-	-	-	-	F
	l f		5,:					
		calcite anyadales to 1 cm. Could be tuff Ineccia although my fragment boundaries opening	2.55	-	-	-	~	-25
		Possible a flow (?). Mitamorphism has	1					
		oblituated original textures. Dock is relatively] - [-	-	- [-	-
		homogeneous, Bornen. andreas as 2+7.43-255] _	_	_	-		_
		· · · · · · · · · · · · · · · · · · ·		•				
<u> </u>	H	40-266 Az 247.43-255	-	-	-	-	-	-
<u>)</u>		μ	1				ĺ	
		66-275.56 - As above with sounded any silicism	-	-	-	-	- }	-
		angene Could be any dulle on fragments.	1. 1		:	. •		
		warry my march	542	-		- [- †	- 26
····-			1/.1					

GRANGES EXPLORATION LTD DIAMOND DRILL LOG C

PAGE 27 OF 33

HOLE	E No

391-14

	+ i - 5 / E								.		
	MINERALIZATION ALTERATION	SAMPLE	FROM	τa	ы ютн	Au ppb	Ag g/t	As pp≪o	56 роги		
240 -	240.31-241.64- 1-27. pyrte.	150	290.31	241.64	1-33	Z	0.3	_([2		
	241.64-246.43 - 517. P. mile										
	246.43 - 247.43 - 1-27. punite in foliation - parallel bande to 1 cm.										
	247.43 - 313.74 < 17. pyrite.										
[245 -										·	
		151	246.43	LA 7, 43	1.00	Z	0.1	Ŷ	2		
				·							
						•					
1.50	· · · · · · · · · · · · · · · · · · ·										
								<u>_</u>			
r											
255-											
			···								
	· · · · · · · · · · · · · · · · · · ·										
260 -											
1	· · · · · · · · · · · · · · · · · · ·			- 1							

	C	GRANGES EXPLORATION LTD			· · · ·			
HOLE No.	. 5670	P.	AGE	26		0 ₽ _3		
591-1-					<u>.</u> .			
INTERVAL	C. Loss	LITHOLOGY	+ C		S	Μ	A	- 26
			-	2.A 	-	_	-	-
			-	√ + -	-	-	-	-
			-	_		_	-	Ļ
			-	-	-	-	_	
			-	-	-	-	-	- 26
			-	_ 1	-	-	-	-
			55	_	_	-	-	-
<u>}</u>	<u> </u>		-	-	-	-	-	F
			-	-	_	-	_	 -
	270.3	3 - 'z' hind folded foliation TH - Down House	-	-	-		-	- 270
			-	_	-	-	-	-
· · · · · · · · · · · · · · · · · · ·			-	-	-	-	_	F
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-	-	~	-	_	-
			-	-	_	- /	_	-
			-	-	-	3 ·/ ' -	_	- 275
	275.6	- 276.05- Black angillacions instrumed.	-	- - 	-	-	-	-
			sēz	-	-	-	-	-
			- 56	· 23 - 7-	-	-	-	
			-	-+ -+	-	-	-	-
			-	-	-	-	-	- 280

۰.	••	•

. .

GRANGES EXPLORATI			- <u>-</u>		• • •		PAGE	29	
HOLE No. 391-1-4				-		-			
MINERALIZATION ALTERATION	SAMPLE	FROM	TO	WIOTN	Au g/t	Ag g/t	As	Sè ppm	
			<u> </u>	<u> </u>			<u> </u>	┣	╀
		· · · ·					1		t
							<u> </u>		L
			 	.		· ·		 	╞
									╋
			İ		· .				t
									Ţ
						ļ	ļ		\downarrow
	· · · · · · · · · · · · · · · · · · ·					<u> </u>	- -		╀
· · · · · · · · · · · · · · · · · · ·				Ì					t
									t
				L					L
				· · · ·		. ·	. 	 	╀
									╀
							· ·	 	t
									I
				 		· · ·		 	Ļ
						<u> </u>		 	╀
				 					t
		-				<u> </u>		ľ	╞
				<u> </u>		<u> </u>			┞
				╞───┨					t
								•	
								<u>.</u>	L
		t			•				┢
	·							 	┢
									F
			·				(::::)	-	E
······································				<u> </u>			1		┝
			ت مرا			E.	गलकृत्		┢

		a spectra and						1
		GRANGES EXPLORATION LTD	×1. • • •	2				
		DIAMOND DRILL LOG	Ж	••••	•			
			PAGE	30	C	IF . 3	33	
HOLE No.			·					1
591-1-	4							
	550			T	<u>,</u>	Γ	1	4
INTERVAL	د ن	LITHOLOGY			S	M	A	
				2º A			├──	- 2
		201.05-202.05- Budded angillite - siltations interval	5.02	4 6-	-	_	-	ŀ
	┼┼		- ~	+				
				-	-	-	-	ŀ
	╁╌┼			-	-	-	-	-
			-		÷			
	╀┦	· · · · · · · · · · · · · · · · · · ·] -	-	-	_	_	Ĩ.
	╂╌╊	· · · ·		-	-	-	-	- 2
			5.0		-	_	_	L
	╏╌┤					~	-	
<u> </u>	┼┼			-	-	-	-	r
		289.0-289.4 - Agellite interval.		_	_	_	-	
	┟╁					_		
		/	51 45		-	-	-	-
			45	->>	_	_	-	- 2
	┨╌╂			.A - D				
·				+	-	-	-	-
] _	_	_	_	-	-
	╞╌┟		-					
			-	-	-	-	-	-
	┝─┼╴		5.7	-	-	-	-	-
			1/40		*			_
·			1.7	22	`-	-	-	- 2
	×	9525-296.6 - Dark oney internet. Argillaciono	-	-7	-	-	-	-
		'z' kich fold (foliation bottom with the two night)	1					
			- -	-	-	-	-	•
``			-	-	-	-	-	•
J			1					_
	2	99.67- 300. A- Dark guy argillacions interval.	5.				-	-
	· .	· · · ·	- 50	201	·-	-	- -	-300
			1 ł					

PAGE 31 OF 33

HOLE No.

280	MINERALIZATION		SAMPLE	FROM	то	WIDT	Au g/t	Ag g/t	As ppm	S6 ppm		
	·								1	1	1	<u> </u>
				. *					ļ;			
							<u></u>	·			4	
					<u> </u>	<u></u>	 	 	ļ	<u> </u>	┦──	
		······································					+	<u> </u>		┢──	╆	
		······································					1	<u> . </u>				
<u></u> }						<u> </u>						· · · · · ·
285						 						
							 				 	
		······································				<u> </u>		 				
$\rightarrow \vdash$	·											
												
						· · ·					 	
												-{ -
290					ير ال ال				·	-		
ļ	·····											1
		· · · · · · · · · · · · · · · · · · ·	, .			27	4.4		1.1.4	_		
· }		<u></u>				Arrest.			-			<u> </u>
-			·· ··· ·······························				÷					Ļ
												
		······································		-					<u> </u>			+
	A.,											}
	· · · · · · · · · · · · · · · · · · ·											
295												
			·									4
		· · · · · · · · · · · · · · · · · · ·			<u>. </u>	· ·	·					╀──
										-		
												<u> </u>
+												
$) \vdash$												
					-							
300		·						<u> </u>		-+		
			-+-+-							- -		{
					199				— <u> </u>			

.

PAGE 32 OF 3.3 HOLE No. J91-14 INTERVAL 0 1 LITHOLOGY LITHOLOGY LL S M A LITHOLOGY LITHOLOGY LL S M A 		GRANGES EXPLORATIONETO			4		ż		
INTERVAL INTERVAL	HOLE No.			PAGE	32	<u> </u>)F 3	3	4
5 5 5 5 5 5 5 5 5 5 5 5 5 5	J91-14								
	INTERVAL	LITHOLOGY		* 0		S	M	A	
30.7-310.95- Angillenen interned 310.7-310.95- Angillenen interned 310.95-313.94- Phylliti making to dark grun phylitic internedict logith widt idention lithic fragment (milling grun grup to lark grup, fragment (milling grup grup to lark grup, fragment (milling grup grup a plant of foliation 						-	-	_	
50			· · · · · · · · · · · · · · · · · · ·		-	-	-	-	
310.7-310.95-Angillecome interval 			······································		-	-		-	$\left \right $
310.7-310.95- Angillecome interval 310.7-310.95- Angillecome interval 510-95-313.94- Phyllitic making to deale gran phyllitic intervalide hopillic toff with alorian littlic frequents (milling gran gran to deale gran, fin-quind) to 3 cm flitted a plane of foliation a plane of foliation 	·				-	-	-	-	F
310.7-310.95- Angilleure interval 310.7-310.95- Angilleure interval 510.95-313.94- Phyllitic making to deale grun phyllitic intermediate hopillie toff with aloriene littlic frequents (milling grup grup to deale grup, fin-grund) to 3 cm flitted a plane of foliation 					-	-	-	-	
210.95-312.94 - Phyllitic moduum to dark grun phyllitic intermediate legillic toff with deriver lithic fragmente (modiling grue gruy to dark grey, fine-grand) to 3 cm flitted)	·		-	-	-	-	-	-
310.95-312.94 - Phyllitic moluin to dark grun phyllitic intermediate lepillie toff with during lithic fragmente (moliling grue jung to dark greg, fine-grand) to 3 cm flittend 				-	-	-	-	-	
210.95-312.94 - Phyllitic making to deck que 50		310.7-310.95- Augillacions interval		5.2		-	-	-	
		310.95-313.94 - Phyllitic midnim to de phyllitic intermediate lopillie toff in	ith grun		-	-	-	_	
	·····	to dark greg, fin- grind) to 3 cm fl	the gring	-	-	-	-	-	-
					212	-			
			· · · · · · · · · · · · · · · · · · ·	-	-	-	-	·. Ħ. -	F
				-	-	-	-	-	-
				-	-	-	-	-	-
					-	-	-	-	-

en en an an an a

• ;

		NGES EXPLORATI	LOG						141		PAGE	3 ,3	0	F
	HOLE No. 191- 14				 		10		· · ·					
	MINERALIZATION	ALTERATION	замі	٩٤	FROM	TO		IIDIH	Au g/t	Ag g/t	As ppm	56 ррт		
		·		_	- <u> </u>		f L							
-														
<u>}</u> —				_							<u> </u>			_
				╡			-					-		
-				1			L							
	· · · · · · · · · · · · · · · · · · ·			╀		<u> </u>	-		- · ·					
+														
				+			ŀ		··				 .	
				T				-						
				Ţ										
			_	╀						-				_
<u> </u>	<u> </u>					· · ·								
				╀			┝──							
 									╧┽╉	-				
				\vdash				╉						ļ
		··· ·												
				-		_	. /	+						ļ
						i ana								l
				·		<u></u>		-		_				
							• • •			_†				-
						1.1	: · -	-						
							:				-+			
	· · · · · · · · · · · · · · · · · · ·			•		-		+						
		· · · · · · · · · · · · · · · · · · ·				an in An Eile								
					-			+		-				
			— 		<u> </u>	<u> </u>	. /	· · ·		<u> </u>				

· ··· •

	y				Gra	nge	s In	c. P	ROJ	ECT	ŬN	Г Ж I	RIVER	134	FJ	ILE	# 91.	-4906	5		(Paç	je 7		
AMPLE#	Mo ppm j	Cu ppn	Pb ppm	Zn ppm p	00.00		Co Mr ppm ppr	i Fe 1 %	As ppm	U mqq	Au ppm	Th ppm	Sr Cd ppm ppm	Sb ppm	81 ppm	V mqq	Ca X	P La % ppm				l Na X X	κ 🖉	V Au
01-14-1 01-14-2 01-14-3 01-14-4 01-14-5	6 5 2 1	15 15 13 16 15	5 5 4 11	96 133 111 121 104	.1 .3 .1 .2 .3		9 1065 9 1104 8 1312 14 984 11 1212	4.90 3.27 4.62	37548	5 5 5 5 5	סא סא סא סא	5 3 4 4 4	239 .7 169 9 233 .2 175 .7 213 1.0	2 2 2 2 2 2 2	2 2 2 2 2 2	27 27 44	11.67 .14 10.31 .1	48 8 25 6 25 8 58 8	5 3.37 6 2.54 6 3.12	124 .02 108 .02 124 .01 114 .02	3 1.6 2 1.3 2 1.5	1 .04 9 .05 9 .05 1 .06	.09 .09 .11 .11	
21-14-6 191-14-11 21-14-7 21-14-8 21-14-9	1 7 2 1 5	13 22 11 9 12	5 7 11 7 16	80 158 59 141 120	.1 .2 .1 .1	4 3 4	10 937 15 673 12 946 8 1013 16 1047	7.63 2,92 3.78	12 11 21 13 21	5 5 5 5	ND ND ND NO	4 2 4 1	240 5 140 1.0 209 .6 315 .5 160 1.0	2 2 2 2 2 2 2	2 2 2 2 4	41 26 17	12.66 16 6.35 16 11.50 15 11.68 10 8.16 15	21 9 16 7	6 3.01 10 2.41 4 4.26 4 4.21 7 2.92	109 .03 126 .01 102 .01	3 1.5	6 .07 0 .03 8 .01	. 13 . 14 . 12 . 12 . 12 . 18	1 1 1 1
1-14-10 1-14-11 1-14-12 1-14-13 1-14-14	4 6 16 8 3	10 20 17 14 13	15 11 19 7 4	136 153 163 145 129	32211	4 4 4	11 992 15 639 13 1031 16 695 12 1061	9.81	12 11 5 19 6	5 5 5 5 5	ND XD XD XD XD	3 2 1 1 2	177 .5 107 .7 97 .9 80 .6 180 .7	2 2 2 2 3 2	3222	38 34 32	10.30 .1; 5.40 .1; 5.21 .1; 4.10 13 10.14 13	6 5 6 4 0 2	4 3.86 8 2.31 8 2.17 7 2.57 5 3.19	85 .02 71 .02 69 .02	2 .8 2 1.6 2 1.3 2 1.7 3 1.5	6 .05 3 .05 1 .04	.11 .14 .12 .11 .11	1 1 1 1
1-14-15 1-14-16 1-14-17 1-14-18 1-14-19	1 2 3 2	14 12 12 10 11	9 11 10 7 12	122 106 123 77 64	1 1 1	2 4 2	11 900 11 1059 13 925 12 983 11 1177	4.43 4.87 4.44	4 5 9 11 13	5 5 6 5	ND ND ND ND	3 2 1 3	149 5 154 .7 141 .3 123 .2 173 .3	22222	4 3 6 3 4	26 30 22	8.91 115 10.40 15 10.34 14 8.85 12 13.14 14	8 7 1 6 9 5	7 2.93 5 2.83 5 2.36 5 2.50 4 2.69	89 .01 71 .01 86 .01	3 1.5 3 1.2 2 1.3 2 1.1 2 1.1 2 1.3	9.03 8.03 2.03	.13 .11 .09 .12 .10	1 1 1
1-14-20 1-14-21 1-14-22 1-14-23 1-14-24	3 10 5 9 6	8 13 13 11 7	9 19 11 9 5	59 138 197 69 42	1 5 1 1 3	2 4 3 3 3	8 1503 8 863 4 239 9 766 8 1699	5.20	15 23 16 28 32	5 5 5 5 5	ND ND ND ND	3 1 1 1 4	258 5 94 .6 61 .9 106 .6 186 .3	3 4 5 6 4	3 2 2 2 2	19 33 19	16.08 .09 5.88 .14 2.96 .20 6.41 .17 15.07 .10	4 5 6 6	4 4.75 8 2.10 8 1.44 5 1.92 4 4.12	53 .01 72 .03 60 .01	2 1.1 3 1.0 4 1.4 4 1.1 3 1.1	4 .04 1 .10 2 .04	.05 .10 .12 .11 .08	1 1 1 1
1 - 14 - 25 1 - 14 - 26 1 - 14 - 27 1 - 14 - 28 1 - 14 - 29	7 8 21 17 16	8 6 8 9 9	7 6 4 10 9	51 23 26 115 47	1 1 1 1	5 (7 998 15 1135 30 997	10,74 10.62	33 55 147 249 195	5 5 5 8	סא סא סא סא	3 1 1 1	185 7 111 3 119 6 141 9 92 3	24346	2222222	17 24 22	12.90 11 9.12 08 6.85 10 7.71 05 6.46 11	0 2 8 3	3 5.12 3 4.94 4 4.32 8 4.46 5 4.16	76 .01 48 .01 35 .01 30 .01	3 1.2 2 .8 2 1.0 2 1.0 2 .8	7 .02 5 .01 5 .02 2 .02	.07 .04 .04 .03 .06	
1 - 14 - 30 1 - 14 - 31 1 - 14 - 32 1 - 14 - 33 1 - 14 - 34	5 14 23 1 6	8 11 16 5 9	7 8 7 2 9	12 30 49 2 13 48	3 0 1	8 1 : 1	17 903 26 696	12.17	120 298 385 10 94	6 6 7 5 5	И О О Ю О И О	2 2 20 1 1	122 .5 97 .3 116 2.1 277 1.4 122 7	4 10 28 2 8	2 8 2 2 2	21	8.55 .10 4.73 10 4.32 .06 4.74 .01 4.26 .04	ñ 2	5 4.74 3 3.70 7 3.05 2 2.71 5 1.69	49 .01 21 .01	2 .9 2 1.0 2 1.0 2 1.0 2 1.4 2 .9	20. 9 5.02 5.01	.05 .06 .05 .07 .06	
-14-35 -14-36 -14-37 NDARD C/AU-R	8 2 19	10 4 3 63	4 2 41	62 24 16 132 7	1	3 5 6 6	5 888 1 1555 1 1763 34 1073	1.61 1.59	95 13 15 43	5 5 5 15	ND ND NO 6	1	135 1.2 279 .4 226 .3 53 17.6	21 3 2 14	2 2 2 19	12 3	5.15 .02 15.87 .02 13.29 .02 .49 .09	6 Z	5 2.15 3 6.49 3 4.91 57 .90	36 .01 116 .01 96 .01	2 .6 3 .14 2 .16 33 1.93	.01 .01	.05 .03 .04 .15 1	

.1

Samples beginning 'RE' are duplicate samples.

-

and the second
.

. .

NAT	TICAL	Y. K E /		A 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			LIK A'I'	U M I -	NG 2000 -	1.1.1.1.55

ACM.

۳ŷ۶ GE_HEMICAL ANALYSIS CERTIFICA 2

OUVER BIC. VOA 1R6

852 E. HASTINGS ST

AA C	GE_HEMICAL ANALYSIS CERTIFICA	
	Granges Inc. PROJECT UNUK RIVER 134 File # 91-4926 Page 1 2300 * 885 W. Georgis St., Vancouver BC V6C 358 Submitted by: R.L. WRICHT	
SAMPLE#		AL Xa K V Au* Kg X X X ppm ppb ppb
J91-14-38 J91-14-39 J91-14-40 J91-14-41 J91-14-42	3 9 9 39 .2 7 10 242 4.51 43 5 NO 1 38 .2 3 2 10 .71 0.13 2 12 .99 63 0.1 2 1 13 5 11 102 .4 12 34 891 21.79 413 5 NO 1 85 .2 16 2 25 2.26 053 2 13 1.29 17 0.1 4 1 5 7 8 23 1 10 17 373 10.45 115 5 ND 1 25 2 4 2 13 .65 008 2 14 1.28 33 0.1 2 1	.63 .02 .12 3 1050 .04 .03 .13 5 240 .20 .02 .04 1 895 .32 .03 .06 1 1 845 .97 .02 .06 4 640
J91-14-43 J91-14-44 RE J91-14-49 J91-14-45 J91-14-46	9 7 9 41 .2 11 29 455 6.67 23 5 ND 1 75 2 2 2 16 2.33 .187 6 11 .60 93 02 3 1 11 7 223 .3 2 16 1134 7.97 2 5 ND 1 165 2 2 2 38 5.94 .114 2 12 1.97 98 03 21 3 9 3 118 .2 8 23 766 6.68 15 5 ND 1 115 2 2 2 34 2.94 217 7 12 .92 128 04 3 1 7 9 12 105 .3 8 30 1027 9.76 23 5 ND 1 114 2 2 2 2 24 3.54 135 5 15 .61 56 02 3	.76 .06 .12 1 260 .99 .08 .17 3 285 i.65 .07 .13 7 300 i.48 .11 .17 15 245 .91 .08 .3 545
J91-14-47 J91-14-48 J91-14-49 J91-14-50 J91-14-51	1 11 10 103 .2 3 16 1034 6.24 7 5 ND 1 198 2 2 2 45 6.32 .133 5 12 1.73 107 04 3 1 1 11 5 213 .3 2 16 1111 7.83 4 5 ND 1 170 2 2 2 38 6.06 113 3 12 1.94 100 03 4 1 1 10 3 132 .3 2 15 997 6.43 5 5 ND 1 199 2 2 2 58 6.07 120 4 10 2.40 81 03 2 2 4 10 10 115 .3 4 15 630 7.94 12 5 ND 1 135 2 3 2 31 4.07 090 3 11 1.32 66 02 2 1	1.64 .09 .13 2 6 255 1.95 .09 .13 1 7 220 1.62 .08 .13 6 285 2.32 .07 .09 7 215 1.38 .05 .09 16 485
J91+14-52 J91-14-53 J91-14-54 J91-14-55 J91-14-56	1 9 5 68 .3 3 18 894 4.24 14 5 ND 1 217 .2 2 3 43 7.32 .157 5 10 2.31 105 .03 3 1 1 12 4 85 .2 1 12 1084 5.48 2 5 NO 1 179 .2 2 2 42 6.57 .164 4 9 2.55 131 .04 2 1 1 11 7 92 .3 1 10 1222 5.56 2 5 NO 1 194 .2 2 2 43 7.09 .162 4 10 2.44 121 .04 4 1 1 12 6 95 .33 1 12 1306 4.90 2 5 ND 1 260 2 2 2 3 8.61 138 5 9 2.12 157 D4 4 2	.97 .06 ,04 3 800 .01 .07 .09 1 1 455 .99 .07 .14 1 4 250 .98 .07 .13 1 12 270 2.08 .08 .16 1 6 205
J91-14-57 J91-14-58 J91-14-59 J91-14-60 J91-14-61	1 16 9 100 .4 1 19 1399 6.16 5 5 ND 1 274 .2 2 2 48 8.91 140 4 10 2.61 134 .04 3 2 1 13 6 111 3 1 14 1235 6.08 2 5 ND 1 219 2 2 2 44 7.23 174 4 9 2.34 147 04 4 2 1 11 4 112 .4 3 11 1278 5.43 5 5 ND 1 244 .2 2 2 48 8.16 160 4 10 2.25 114 04 2 1 1 12 3 106 3 2 11 1239 5.44 3 5 ND 1 240 .2 2 2 43 8.06 163 5 11 2.43 154 .04 2 1 <	2.29 .07 .12 1 4 170 2.18 .07 .15 2 7 225 2.12 .08 .17 1 13 250 1.98 .07 .11 2 14 240 1.91 .07 .16 4 260
J91-14-62 J91-14-63 J91-14-64 J91-14-65 J91-14-66	1 14 5 106 .4 3 13 1162 5.67 2 5 ND 1 244 12 2 2 47 8.35 177 5 10 2.26 176 04 5 2 1 13 7 128 .4 2 15 904 6.12 3 5 NO 1 195 .2 2 2 63 5.97 188 5 11 2.66 159 04 3 2 1 11 5 101 .4 2 11 1256 5.48 7 5 NO 1 290 2 3 2 44 10.58 109 4 9 2.30 122 03 3 1 1 11 6 74 .3 2 13 1089 4.54 4 5 ND 1 228 .2 2 37 7.66 149 4 9 2.31 101 03 3 1 <td>2.04 .09 .15 3 245 2.27 .09 .18 11 250 2.60 .08 .16 1 210 2.05 .05 .10 3 8 175 1.45 .06 .12 4 235</td>	2.04 .09 .15 3 245 2.27 .09 .18 11 250 2.60 .08 .16 1 210 2.05 .05 .10 3 8 175 1.45 .06 .12 4 235
J91-14-67 J91-14-68 J91-14-69 J91-14-70 J91-14-71	1 14 2 84 .3 2 12 1258 5.85 5 5 NO 1 278 .2 2 2 45 7.72 141 5 10 2.05 130 04 2 1 1 16 5 96 5 2 13 950 5.34 6 5 ND 1 244 3 3 2 43 6.38 175 6 10 1.90 159 04 3 1 1 10 3 73 3 1 10 1482 4.93 3 5 ND 1 334 2 3 2 32 10.25 103 4 7 2.94 127 02 2 1	2.09 .07 .11 2 19 230 1.84 .09 .12 1 10 230 1.86 .11 .17 1 4 240 1.55 .06 .13 1 9 205 2.00 .09 .15 6 330
J91-14-72 J91-14-73 STANDARD C/AU-R	1 13 10 91 874 3 14 853 4.95 85 5 ND 1 228 882 2 2 42 7.05 8134 5 11 2.04 133 038 2 1	1.70 .08 .12 1 8 615 1.88 .08 .13 1 8 215 1.89 .06 .15 11 490 1600

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPH. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPH & AU > 1000 PPB

AU* AWALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE, HG AWALYSIS/BY FLAMELESS AA. - SAMPLE TYPE: CORE

Samples beginning /RE/ are duplicate samples.

DATE RECEIVED: OCI 6 1991 DATE REPORT MAILED: 9

SIGNED BY

Fr. Y (6 - 253-1716

PHONE (604) 253-3158

' ·		Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-4926 Page 2
:	SAMPLE#	Mo Cu Pb Zn Ag Ni Co Kn. Fe As U Au Th Sr. Cd Sb Bi V Ca P La Cr. Hg Ba Ti B Al Na K U Au* Rg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
	J91 • 14 - 74 J91 • 14 - 75 J91 • 14 - 76 J91 • 14 • 77 J91 • 14 • 78	9 14 5 102 .1 3 15 1424 6.48 12 5 ND 1 218 .4 2 2 37 12.00 104 2 5 1.94 84 01 2 1.56 .04 .05 1 4 425 3 19 9 131 1 6 22 715 4.92 18 5 ND 1 190 2 2 36 5.84 180 6 7 1.59 91 02 2 1.45 .06 .11 1 4 290 2 23 8 196 .1 6 26 519 5.65 20 5 ND 1 162 5 2 2 37 4.66 7 1.59 91 02 2 1.15 .05 .14 3 330 1 18 7 155 .1 4 19 449 3.37 18 5 ND 1 152 .3 2 2
	J91 - 14 - 79 J91 - 14 - 80 J91 - 14 - 81 J91 - 14 - 82 J91 - 14 - 83	2 14 6 119 1 3 9 726 3.53 5 5 NO 1 192 .6 2 2 34 6.81 179 8 9 1.60 120 .02 2 1.71 .07 .10 1 4 155 2 15 7 142 .2 5 13 838 4.86 7 5 NO 1 169 .7 2 2 30 6.47 190 8 6 1.53 105 02 2 1.53 .07 .10 1 5 225 1 15 6 188 1 4 14 958 6.97 10 5 NO 1 143 .8 2 2 34 4.81 184 5 5 1.78 79 02 2 1.74 .07 .09 1 3 320 1 16 4 153 2 4 13 11 2 2 43 6.03 188
	J91 - 14 - 84 J91 - 14 - 85 J91 - 14 - 86 J91 - 14 - 87 J91 - 14 - 88	2 16 14 245 .1 13 36 992 6.61 37 5 ND 1 233 1,1 3 2 58 7.22 186 5 6 3.36 41 02 2 2.03 .05 .01 3 455 2 15 6 141 .2 13 42 845 5.32 25 5 ND 2 219 .8 2 2 55 7.02 202 8 10 2.63 60 03 2 2.52 .08 .03 3 495 2 15 9 128 1 14 17 707 4.82 34 5 ND 1 204 .9 2 2 43 6.55 193 7 8 2.15 57 01 2 1.56 .05 .04 1 1440 2 14 10 162 .2 26 76 356 3.99 64 5 ND 1 232 .9
	J91-14-89 J91-14-90 J91-14-91 J91-14-92 J91-14-93	3 11 13 89 1 16 40 564 8.56 107 5 ND 1 203 9 2 3 51 5.72 107 2 5 2.46 28 01 2 1.45 .03 .01 1 3 780 4 11 11 160 1 14 30 534 5.41 64 5 ND 1 245 1.2 3 2 62 6.61 100 4 6 2.32 34 .01 2 1.27 .03 .01 1 360 5 10 10 80 1 15 38 395 5.66 136 5 ND 1 210 1.3 3 2 50 5.25 105 4 14 1.64 29 .01 1 1 360 6 13 19 100 3 25 68 674 6.66 261 5 ND 1 207 1.1 6 2 <td< td=""></td<>
	J91-14-94 J91-14-95 J91-14-96 J91-14-97 J91-14-98	2 13 15 202 1 5 17 1000 5.03 28 5 ND 1 280 1.2 5 2 36 8.24 1.12 6 8 2.97 54 01 2 1.20 .03 .06 4 260 4 18 12 154 3 7 17 561 6.67 19 5 ND 1 132 .4 2 2 23 3.66 .198 7 5 1.15 52 01 2 1.26 .04 .11 3 290 7 19 15 149 5 7 17 492 6.65 24 5 ND 1 114 .3 4 2 22 3.21 1.68 5 5 .60 42 01 2 .96 .04 .10 6 280 280 1.12 5 3 2 18 3.92 188 8 11 .53 65 .01 3 .56 .04
	J91-14-99 J91-14-100 J91-14-101 J91-14-102 J91-14-103	1 13 4 115 2 4 13 901 5.09 14 5 ND 1 2270 2 11 13 91 2 3 10 1052 6.02 17 5 ND 2 233 9 2 2 38 7.89 136 7 4 2.20 4.3 5 ND 2 233 9 2 2 38 7.89 136 7 4 2.20 4.3 01 2 1.99 .04 .04 2 205 3 11 14 185 3 4 13 795 5.97 44 5 ND 2 202 .8 3 2 39 6.78 169 5 4 1.98 35 01 2 1.32 .03 .01 1 315 2 12 17 113 3 4 12 917 6.41 43 5 ND 2 237 11 4 2 54 7.08
	J91+14-104 J91-14-105 RE J91-14-101 J91-14-106 J91-14-107	4 19 11 181 2 10 29 1057 6.20 148 5 NO 1 229 1.3 2 2 35 7.79 143 5 5 2.45 42 01 2 1.32 .03 .04 1 1 395 4 24 25 168 1 24 64 744 7.79 142 5 NO 2 138 9 3 4 43 4.52 192 4 8 2.15 28 01 2 1.47 .04 .02 1 685 3 11 14 180 1 5 13 727 5.54 43 5 NO 2 2 35 5.94 157 6 4 1.76 31 01 2 1.21 .03 .02 1 355 6 22 36 145 4 32 114 701 6.37 233 5 NO 3 151 1.4 10 2
	J91-14-108 J91-14-109 STANDARD C/AU-R	4 12 14 79 .1 12 25 181 7.76 76 5 ND 1 128 1.0 2 2 27 1.46 029 2 7 1.90 31 01 2 1.56 .02 .04 1 1 430 5 11 32 41 1 13 18 187 6.88 70 5 ND 2 50 8 6 2 17 .39 029 2 14 1.11 31 01 2 1.18 .02 .05 1 980 21 62 42 133 7.4 74 32 1057 4.02 42 19 8 41 52 7.7 17 20 60 .49 092 39 61 .89 177 09 32 1.90 .07 .16 1 480 1600

Sample type: CORE, Samples beginning 'RE' are duplicate samples.

1

÷

- .

	Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-4926 Page 3 AA
SAHPLE#	Ho Cu Pb Zn Ag Ni Co Hn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti B Al Na K W Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
J91-14-110 J91-14-111 J91-14-112 J91-14-113 J91-14-114	10 17 85 112 4 27 6 656 7.51 105 5 ND 1 126 2 15 2 17 3.60 077 2 12 1.18 36 0.1 3 .81 .01 .08 1 1 1750 2 16 5 143 994 4.69 12 5 ND 1 222 .3 2 2 34 6.93 111 4 8 1.54 65 01 2 1.48 .02 .07 1 200 1 21 7 154 1 2 15 741 6.89 13 5 ND 1 147 7 2 2 34 3.99 138 4 10 1.75 85 01 3 2.07 .02 .14 195 1 13 3 11 1019 3.42 10 5 ND 1 216 3 2 2 29 5.46 116 4 <t< td=""></t<>
J91-14-115 J91-14-116 J91-14-117 J91-14-118 J91-14-118	1 17 5 124 1 2 13 993 4.96 8 5 ND 1 203 1.8 2 2 37 6.08 125 4 8 2.42 95 0.1 2 2.12 .03 .10 1 3 140 1 17 7 107 1 3 14 986 5.22 13 6 NO 1 185 1.0 2 2 39 7.03 160 5 6 2.30 115 02 2 2.17 .04 .11 1 4 210 1 15 6 143 1 13 977 4.99 9 5 ND 1 188 1.1 2 2 48 7.46 117 4 7 2.77 85 02 3 2.26 .04 .08 3 175 2 13 6 210 1 7 .0 131 5 9 2.64 104 02 2 2.22<
J91-14-120 J91-14-121 J91-14-122 J91-14-123 J91-14-123 J91-14-124	1 10 3 68 1 2 4 588 3.31 6 5 NO 1 197 3 2 2 28 6.06 030 2 5 3.09 54 01 2 2.31 .01 .03 1 3 55 1 15 9 199 .1 2 12 427 4.33 9 5 NO 1 185 .7 2 2 40 4.13 153 4 13 2.82 90 03 3 2.31 .03 .08 3 160 1 14 7 122 5 263 3.12 5 NO 1 197 .3 2 2 10 3.12 .03 .03 3 2.31 .03 .08 3 160 1 13 3 134 1 2 14 715 3.80 9 5 NO 1 205 6 2 2 33 5.31 132 4 7
J91-14-125 J91-14-126 J91-14-127 J91-14-127 J91-14-128 J91-14-129	2 11 4 145 1 4 10 476 3.08 8 5 ND 1 130 5 2 2 37 4.08 075 3 8 1.75 94 01 2 1.75 .03 .07 1 2 135 1 17 4 172 1 4 16 760 3.59 13 5 ND 1 128 7 2 2 35 4.53 149 4 9 1.56 15 .02 4 1.58 .06 .14 1 195 2 13 5 149 .1 5 20 598 3.20 19 5 ND 1 123 .7 2 2 37 4.32 .162 5 8 1.29 137 .02 3 1.50 .07 .13 1 3 225 2 15 7 106 1 9 33 354 3.33 39 5 ND 1 82
J91-14-130 J91-14-131 J91-14-132 J91-14-133 J91-14-133	2 13 5 101 .2 9 27 827 3.38 27 5 ND 1 158 .7 2 2 39 6.63 122 4 11 1.12 60 02 2 1.09 .05 .03 3 565 1 11 10 152 1 5 16 759 6.26 66 5 ND 1 137 .6 2 2 29 5.03 159 5 7 1.54 100 .02 3 1.69 .06 .09 4 225 1 8 5 125 1 2 9 562 66 5 ND 1 76 2 2 21 3.61 136 2 8 1.35 63 03 2 1.14 .04 .07 1 250 1 14 2 199 3 6 18 836 9.53 75 8 ND 1 163 35 2 2 33
J91-14-135 J91-14-136 J91-14-137 J91-14-138 J91-14-139	2 12 2 133 3 10 31 725 17.45 224 5 NO 1 90 2.3 2 2 27 2.52 122 2 5 1.44 29 02 2 1.35 .03 .03 1 4 680 3 9 7 76 2 20 52 625 5.50 126 5 ND 1 163 2.4 2 2 4 4 8 2.16 57 03 2 2.30 .05 .04 3 530 4 9 2 42 3 16 47 365 12.23 475 5 ND 1 55 6 7 2 30 1.62 070 2 5 .98 21 02 2 1.43 .06 .01 4 595 11 3 9 165 3 19 5 16 7 2 30 1.62 070 2 5 .98 21
	1 14 2 136 .3 8 31 740 17.92 234 5 NO 1 98 3.0 2 2 29 3.15 130 2 5 1.45 48 04 2 1.48 .06 .04 2 6.04 1 2 6.01 1 2 2 20 3.15 130 2 5 1.45 48 04 2 1.48 .06 .04 1 2 6.01 1 2 6.01 1 2 6.01 1 2 1600 1 2 2 2 1.5 1.7 0.01 2 1.65 .01 .01 4 1600 18 28 33 402 3 2 15 2.73 053 2 17 1.17 46 01 2 .80 .02 .11 1 5 5 5 5 5 5 5 1 15 2.77 3 2 30 4.65 01 2 .80 .02<
J91-14-145	36 41 21 339 .2 50 8 697 3.54 38 5 ND 1 147 2.8 7 2 18 4.74 .058 2 14 .82 68 .01 2 .64 .02 .12 5 425 4 14 2 84 1 8 6 697 4.47 11 5 ND 1 124 2 2 2 13 3.29 051 2 33 1.68 91 .01 2 2 1.5 4.01
J91-14-146 J91-14-147 J91-14-148 J91-14-148 J91-14-149 J91-14-150	1 15 7 139 3 15 542 7.46 7 5 ND 1 83 2 2 2 99 1.16 142 7 11 1.99 63 02 2 3.41 .04 .07 11 65 4 14 7 181 1 5 16 772 5.23 32 5 ND 1 137 2 2 2 47 3.46 262 9 9 .73 67 01 2 1.58 .06 .06 1 10 110 10 10 110 10 10 10 110 10 110 10 10 110 10
J91-14-151	4 13 7 133 1 8 36 932 6.51 9 5 ND 1 190 3 Z Z 57 3.41 205 5 13 1.12 94 .01 Z .65 .06 .15 1 Z 35

COMMOND DRILL LOG UNUK RIVER PROJECT. PAGE | OF 23

HOLE No.

J91-15

(JEFF GRID)

COUL-3

PURPOSE

STRATI GRAPHIC

LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
13+00N / 2+50 E	455 m (ALTIM.).	270°	210.31 m
DIP	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
- 45	210.31 - 40°		
LOGGED BY DATE	CONTRACTOR	CORESIZE	DATE STARTED OI 10/ 9
JEFF TESAR oct. 02, 1991	J.T. THOMAS	B.Q.	DATE COMPLETED 02/10/9/
SUMMARY LOG (M)			
00 - 6.20 OVERBURDI	EN		
	INTERMEDIATE MEDIU	M TO COARSE PHYLL	ITIC TUFF
	ATE MEDIUM TO COARSE		
	DIATE MEDIUM TO LAPILI		
80.00 - 97.00 INTERHED	ATE TO FELSIC MEDIU	TO COARSE PHYLLI	TIC TUFF
97.00-100.90 BRECCIA	- /FAULT		· · ·
	DIATE TO FELSIC MEDI	UN TO COARSE PHYL	LITIC TVFF
12.55 - 118.40 BRECCIA	ไของปา		
	f.C.L.I.V.M.	· · · · · · · · · · · · · · · · · · ·	
	EDIATE TO FELSIC LAP	LLI PHYLLITIC TUFF	· · · · · ·
112 40- 130.50 INTERM	EDIATE TO FELSIC LAP		FINE TO MEDIUM SAND STONE
112 40-130.50 INTERM 130.50-131.80 FELSIC T	EDIATE TO FELSIC LAPI O INTERMEDIATE LAPILL	TUFF INITH MINOR	· · · · · · · · · · · · · · · · · · ·
<u>112 40- 130.50 INTERM</u> 1 <u>30 50- 131,80 FELSIC T</u> 131,80- 139,50 FELSIC	EDIATE TO FELSIC LAPI O INTERMEDIATE LAPILL	LTUFF INITH MINOR LITVEF NITH MINOR	· · · · · · · · · · · · · · · · · · ·
<u>112 40 - 130,50 INTERM</u> 130,50 - 131,80 FELSIC T 131,80 - 139,50 FELSIC 139,50 - 156,20 COARSE	EDIATE TO FELSIC LAPI O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL	LTUFF INITH MINOR LITVEF NITH MINOR	HUDSTONE AND SANDSTON
<u>112 40 - 130,50 INTERM</u> 130,50 - 131,80 FELSIC T 131,80 - 139,50 FELSIC 139,50 - 156,20 COARSE	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S	LTUFF INITH MINOR LITVEF NITH MINOR	HUDSTONE AND SANDSTON
112 40- 130.50 INTERM 130.50- 131.80 FELSIC T 131.80- 139.50 FELSIC 139.50- 156.20 COARSE 156.20- 165.40 MUDSTON 165.40-192.30 COARSE	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S	L TUFF INITH MINOR LI TVFF NITH MINOR ANDSTONE + MINOR F	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131,80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE	L TUFF INITH MINOR LI TVFF NITH MINOR ANDSTONE + MINOR F	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131,80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S	L TUFF INITH MINOR LI TVFF NITH MINOR ANDSTONE + MINOR F	FINE TO MEDIUM SAND STONE NUDSTONE AND SANDSTON INE TUFF
112 40 - 130.50 INTERM 130.50 - 131,80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIVM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE	L TUFF INITH MINOR LI TVFF NITH MINOR ANDSTONE + MINOR F	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C 51GNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C 51GNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIVM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C 51GNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C SIGNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C SIGNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C SIGNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C SIGNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131,80 FELSIC T 131.80 - 139,50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C SIGNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C 51GNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON
112 40 - 130.50 INTERM 130.50 - 131.80 FELSIC T 131.80 - 139.50 FELSIC 139.50 - 156.20 COARSE 156.20 - 165.40 MUDSTON 165.40 - 192.30 COARSE 192.30 - 210.31 FINE 210.31 END C 51GNIFICANT MINERALIZED	EDIATE TO FELSIC LAP O INTERMEDIATE LAPILL TO INTERMEDIATE LAPIL GRAINED SANDSTONE E + MEDIUM TO COARSE S GRAINED SANDSTONE TO COARSE GRAINED S OF THE HOLE INTERVALS (M)	L TUFF INITH MINOR LI TVPE NITH MINOR ANDSTONE + MINOR F ANDSTONE	HUDSTONE AND SANDSTON

AGRANGES EXPLORATIONED

OF 23

à. PAGE 2

	<u>8</u>				τ	<u> </u>
INTERVAL	LITHOLOGY	بد ∙د ∶	L	S	Μ	A
00 ~ 6.20	OVERBURDEN (00 - 6.10 CASING)					
· · · · · · · · · · · · · · · · · · ·			-	-	-	. –
· · · · · · · · · · · · · · · · · · ·			-	-	-	-
·	······································	-	-	-	-	-
		-	-	-	-	-
			-	-	-	-
5.20-31.88	FELSIC TO INTERMEDIATE MEDIUM TO COARSE PHYLLI	TC TUFF			-	
	H Wall contact not discernable. F-Nall contact: ge	ada /	-	-		-
)	tional (Bands). Grey in colour granular textur medium to coarse grain size. Phyllitic structu	<u>re.</u>	-	`-		5-1 6-3
	Attered by silica and carbonated; In places intensely limonitic (secondary from prote ?). H	linera	لا بر ا			_
	lized by traces of pyrite. Interidy phyllific.	in_] /	3-2 GL	_	•	-
	places wavey, in places contorted intervely a ritic throughout the interval.	- 4			•	
	11.80 - U. 25 Breccia / Fault?/ 11-well contact 40° shar	- s ,		Ŋ	-	6:-2/
	F-Wall contact 30° sharp		/-`	<u> </u>	-	7-
	12.25-21.00 Distinct drange in the foliation pattern. Wavey foliation directions/planes, martied by	······································	- '	1	-	-
	quarty-carbonate stringers parallel to the formation of a stringers and the formation of a stringer to the formation of a st	Interior }_	÷.		-	-
	specks throughout the interval.		-~		_	છ-3 ડાં-1
		/ 	, J	-	-	-
			י די	-	-	-
		¥1.35 	-28	_	-	-
)			N		•	
	· · · · · · · · · · · · · · · · · · ·	s,		-	-	
				. – 1	-	-

HOLE No. 791-	15		····						3	
MINERALIZATION ALTERATION		SAMPLI	E FROM	то	ыютн	Au pp ^b	Ag g/t	As ppm	Sb ppm	
· · · · · · · · · · · · · · · · · · ·	· · · · - · - · - · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · - · · · - ·		<u> </u>					<u> </u>		
	·	<u> </u>		<u> </u>	+					
				<u> </u>						
							-			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		}							
						•••				
2% Py narrow band and disseminat	h_1 -791-	15-1	610	6.80	0.60	7	77	7.		
							3.3.			
aces. Py, sampled as Hall.	·····	2	G.80	7.40	2.60	2	23	10	7	
· · · · · · · · · · · · · · · · · · ·										
					[
······································										
									· .	
			;		<u> </u>					
······································										
			_							
······································										
				-+						
							<u> </u>	1		
		1		1	- 1		í (

[([

	•			GRANGES EXPLORATION LTD	P	AGE	4	•	0F 🖌	23	
[HOLE No.	17 IN	J91-15							
		INTERVAL	C. LOSS	LITHOLOGY		ب د		S		A	20
						i F	C tar		-	-	
						4_	3-2,8-	-	-	66-3 51-1	
				23.10-24.38 Felsic to intermediate Capilli tuff, phyllitic Hwall contact gradational. F-wall contact 25° shor	e.	_4 /	1.00	/ - -	-	-	
						-1	-	-	-	-	- 25
[26.80-27.00 Swater of Quarty-carbon stringers at all ongles		/	. –	-	-	-	g-3
)	·		to the C.A.		_"	8-C* \$	-	-	E P	
		· · · · · · · · · · · · · · · · · · ·				۱ -	3-2	-	-	(4-3 Si-1	
						/	-	-	-	-	- 30
	31	88-63.80		INTERMEDIATE MEDIUM TO COARSE PHYLLITIC TUFF		-	- مو	-	-		
				Grey in colour, Granular texture with medium to coarse grain size. Phyllifio texture. In places angut = mosing guartz-carbon, stringers / reinlets. In place		.]	-	_	. -	-	-
-		·		minor bands of fine prained tall intensely atter	. ^ ?	' " -/	+ -	-	- /	_	-
				By ankexitic natrow stringers parallet to the folia = lion planes (regional atteration?) Foot-wall and Hangwall contact gradational.	-4	, (28	-	87	(6 <u>-</u> 3 si-1	- 35
						/	-	- /	-	-	-
_ .)			· · · · · · · · · · · · · · · · · · ·		$\left \right $	ر رو رو		-	-	F
				39.40 - 40.00 Breccia (core Broken up) flooded with quartz-carbonated matrix.	- /	-/*	19	Į.	-	-	40
]/				-	-	

DIAMOND DRILL L					;		PAGE	5	OF 🖌	2
HOLE No. J91-15							_			_
MINERALIZATION ALTERATION	SAMP	E FROM	t TO	WIOT.	Au ppp	Ag g/t	As ppm	Sb ррт		
			1						;	
							•			
		- <u> </u>		· 	 		<u> </u>			
	·	- 								
· · · · · · · · · · · · · · · · · · ·		<u> </u>				-				•
			<u> </u>							
			+							
• B ₂		21.00								
By j sampled as wall			32.53			0.1	2	Z		
~ 1% Py ; narrow stringers			33.23			0.3	2	2		_
T Py; sampled as wall	5	33.23	33.85	0.62	1	0.1	2	2		_
r By; sampled as wall	6	33.85	34.80	0,95	1	0.6	9	Z		
~ 1 %. Ry ; two narrow parallel bands	7	34.60	35.80	1.00	3	0.7	9	2		
Py ; sampled as wall	8	35 80	36.58	0.78	2	0.1	2	2		
										_
										_
· · · · · · · · · · · · · · · · · · ·										-
										_
					-				+	

[

[

[

[

•**••**

INTERVAL	J 91 - 15	LITHOLOGY	· · · · /	0*. /				1
INTERVAL	C. LOSS C. LOSS	LITHOLOGY						
					S	Μ	A	
1		· · · · · · · · · · · · · · · · · · ·		-	-	-	-	
			s	-	-	-		5
···				-		-	-	
				-	-	-	-	
····				-	-	-	-	
			(0 	+ +	-	-	-	
			5)-45 5,-45	B-0	-	- -	-	1 2
				-	-	-	-	
				-	-	- Fy	-	-
-				-	-	-	-	
	· · · · · · · · · · · · · · · · · · ·			-	-	- -	(6 3 5i-2	-5
				-	-	-	_	•
		· · · · · · · · · · · · · · · · · · ·		-	-	-	-	
				-	-	-	-	-6

and the second sec

Γ
[(
Ę.
. .

• -

PAGE 7 OF 23

HOLE No.

丁91-15

MINERALIZATION ALTERATION	SAMI	LE FROI	f TO	W107	, Au ppù	. Ag) g/1		St ppm		
			-							
		+						 		
· · · · · · · · · · · · · · · · · · ·					 					
· · · · · · · · · · · · · · · · · · ·										
		<u> </u>								
		<u> </u>								↓ ↓
			 . 		 					
· · · · · · · · · · · · · · · · · · ·										
- Py; sampled as wall	<u> </u>	50.20	50.70	0,50	1	0.1	Z	Z		
Ry; one narrow band	10	50.70	51.50	0.80	3	0.2	5	2		
Py ; sampled as wall	1]	51,70	5 <i>2.</i> 2	0.42	1	0.1	2	2		
- 1 % Py; disseminated	12	สาร	5 <u>3.</u> U	1.00	2	0.1	3	Z		
- 1 % By ; narrow stringers	13	53.12	54,17	1.05	3	0.3	6	Z		
Py; compled as wall	14	54.17	54.86	0,59	1	0.1	2	Z		
						\neg				
				[-					-+	

	GRANGES EXPLO	PRATIONISTO RILL LOG PAGE 8	
HOLE No.	J91-15		

8 of 23

 $\left[\right]$

 $\left[\right]$

[

 $\left[\right]$

[

INTERVAL	C. L055	LITHOLOGY	بد ن	Ĺ	S	M	A	
· ···	<u> </u>				1	Γ	1	1
			- 30	- ur	-	-	-	ŀ
<u> </u>			-/	870	-	-	-	
			/	20			6	5
			<u>и</u>	ر ا	-	-	SCI	
80- <u>80 00</u>		INTERMEDIATE MEDIUM TO LAPILLI TUFF, PHYLLITIC		۲ <u>م</u>	-	-	-	
		H-Wall contact gradetional. Internal predominantly medium-grained with Lapilli or coarse grained in places. Grey in colour. Granular texture with medium to coarse grain size. In places lapilli up to 2.5 cm. Toot wall contact gradational Intensely phyllific.	_	8-02				
· · · · · · · · · · · · · · · · · · ·		in places. Grey in colour. Granular texture with	45	7		-		
		medium to coarse grain spe. In places lapilli	<u>/-</u>]	-	-	-	-	
		Intensely phyllific.	4	_	_	_	-/	1
	-			- <u>'</u> ø			5:-3	
		68.80-69.00 Swarm of quartz-carbonate winlets (up 10 cm in true thidness) Veinlets at 60° to C.A.	17	2 B-Pta,	-	-	<i>с</i> ь=2	,
			1/	2/	-	-	1-	
		at 69.90 Contorted foliation planes	\gtrsim					
		53,80 m 72 oc	40	-	-	-	-	
·		at 71.60 Contorted foliation planes 5 51 51 51	\nearrow	-	-	-	-	
		Cq	<u>ل</u> ے پ		-			
		71,50 71,70	$\tilde{\boldsymbol{\varsigma}}$				1-2	
· · · · · · · · · · · · · · · · · · ·			1	-	-	-	si-l	
	-			-10		-	-	
	\dashv	· · · · · · · · · · · · · · · · · · ·		0				
			- 50	8	-	-	-	I
	-		/-	-	-	-	-	ŀ
							_	
		· · · · · · · · · · · · · · · · · · ·		• •	-	_	-	
	╡		\leq	-	-	-	-	ŀ
			_ [_	_	_	-	
			Ŋ,					
				3	-	-	- }	-
				2				

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J91-15								9	0F	4
Py; dissem, narrow bands, Associated with 15 74.30 75.00 0.90 Z Q.4 15 3 quartz-carbonated stringers.	MINERALIZATION ALTERATION	замы	E FROH	тa	WIOTH			1			T
2				 					<u> </u>		+
2			<u> </u>				· · · · ·				-
y ; dissem, narros bonds, Associated with 15 74.30 75.00 0.70 Z 0.9 1.5 3 quartz-carbonated stringers.				<u> </u>					-		. -
y; dissem, narrow bonds, Associated with 15 74.30 75.00 0.70 Z 0.9 1.5 3			┨]
y; dissem, narrow bands, Associated with 15 74.30 75.00 0.70 Z 0.9 1.5 3											
y ; dissem , narross bands. Associated with 15 74.30 75.00 0.70 Z 0.9 1.5 3 quartz-carbonated stringers.	······										-
	· · · · · · · · · · · · · · · · · · ·					,		-			╞
											- -
											_
	j i dissem, narrow bands, Associated with quartz-carbonated stringers,	15	74.30	75,00	0.70	2	0.9	15	3		
Image: Sector of the sector											
										-	
				:		· · ·					
				·						-+	_

[4

• ~~

-			GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	. 10	÷.	DF 2	.3	
	HOLE No.		J91-15		-		•		-
. <u> </u>	INTERVAL	C. L055	LITHOLOGY	* U		Ś	M	Α	- 8
			at 80.00 Contarted foliation plane's Su =		2-38-62	-	-	- C6-2 Si-1	-
8 <u>0</u> 	0.00 - 97.00		INTERMEDIATE TO FELSIC MEDIUM TO COARSE PHYLLITIC TUP Both contact walls gradational. In places wavey or contorted foliation planes. Ligh-gray in colour.	F - - - - - - - - - - - - - - - - - - -		_	-	-	-
		5.	85.50 - 86.00 Quartz-carbonated vein at 50° to the C.A. 200 /50 /50 /100 /100 /100 /100 /100 /100		Greek	-	-	1	-8
)		6-			-	_	-	-	L
-					-	-	-	-	9
				17 	BC1+ 1	-	-	- C6-2 Si-1	-
						-	1	· ·	-
 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			-	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	-	- 9
97.	00-100.90		BRECCIA / FAULT Some of crushed medium grained		-	-	-	43	-l.
)			BRECCIA FAULT Some of crushed medium grained intermediate taff flooded with quarty - carbonated matrix. Core Broken up. In places weakly chloritic 120% core recovery from the interval. /	- - - -	2 8.1 6× 1	NON MUCH	-	ય⊧ ક~ા -	-
· · · · · ·				- - - .	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	-	- 10

									·	
GRANGES EXPLORATION I DIAMOND DRILL LO	_TD IG) (· .		PAGE	I]	OF	2
HOLE No. 391-15			_							<u>-</u>
MINERALIZATION ALTERATION	Бамрі	E FROP	1 70	W1071	Au ppb	Ag g/t	As ppm	Sb ppm		
			+							+
				-			+			+
								 	 	╞
· · · · · · · · · · · · · · · · · · ·										
								+		
	-					 				
r By; sampled as wall	16	89.35	90.15	0.80	2	8.2	10	2	·	
% Py; disseminated	17	90.15	91.00	0.85	4	0.5	/3	4		
tr Py; sampled as wall	18	91.00	<u> 91.60</u>	0.60	_/	0.2	. 16	8		
	<u> </u>									
· · · · · · · · · · · · · · · · · · ·					-					
r Py; sampled as Hall	19	93.40	93.90	0.50	1	0.3	30	8		
~ 7 % Ry ; Bands, stringers, specks, dissem.	20	93,90	94.10	0,20	83	2.8	32 8	13		. <u> </u>
r Py ; sampled on wall				0.90						
r~1% Py ; disseminated				1.50		0.4				
				1.30		03				
						<u> </u>	<u> </u>			
	╋╍┤				 		{			

[

[

C	D		DAMOND DRILL LOG	PAGE	: 12	•••	of 🔏	23	
	HOLE No.	_	J91-15		-				
[INTERVAL	C. L055	LITHOLOGY	₩ 5		S	M	A	100
Γ	100 90-112 55				200		1	4-5	1
	100.90-112.55		INTERMEDIATE TO FELSIC MEDIUM TO COARSE PHILLITIC TUP H-Mall contact not discernable (core Broken up)	E -	P	1-	-	7-	F
-	· · · · · · · · · · · · · · · · · · ·		F-wall contact 45°, Ankeritic alteration along	-Kı					
		-	foliation planes throughout the interval.]/		-	-	-	F
_				_K_ (× -	-	-	-	-
				$\overline{\mathbf{V}}$					
				_*-s	z -	-	-	-	ŀ
-				K	_	_	-	(6-3 5=1	105
				- 5	9			ы_1 Г-К	
				5-5	د ا	- וי	-	-	
_				1					
	<u>م المجار الم</u>] _	m		-	-	Ĩ
				54		-	-	_	-
				/	1				
				بر الا الم	-	-	-	-	-
-				\swarrow	_				- 110
-		\dashv		5					
				k- ,	-	-	-	-	-
P*14	· · · · · · · · · · · · · · · · · · ·			\mathbf{V}					
	112,55-118.40	\square	BRECCA FAULT Bands or / and fragments of interme -	sı-	1		-		-
			diate to folsic lapilli tuff flooded with		_	1/-	_	_	-
			quartz-carbonated matrix. Core Broken	1	1	1 1	[· [

up hearily, in places nearly diloritic. H-wall contact 45° F-wall contact 40° ы. КБ-2 2-3 0+ . | 8× In places Bands of gougy tuff (fault coidence) a-1 . 115 _) 118.40 - 130.50 INTERMEDIATE TO FELSIC LAPILLI TUFF PHYLLITIC 27304 M-wall contact 40°, F-wall contact gradational Grey in colour. Fragmental texture with Lapilli fragments up 3 cm. In places phyllitic. - FK - 120 _

GRANGES EXPLORATION LTD

13 OF 23 PAGE

12

Ċ

HOLE No.

4

Į.

C

E A

Σ

MINERALIZATION ALTERATION	SAMPI	E FROM	TO	W1076	Au	Ag	As	56	
г Ру	24				PPV	g/t	рр# 52	ppm	
								10	
7. Py j_dissem.	25	102.60	104.10	1.50	3	0.3	8	6	
72 Py ; alissem.	26	104.10	105.60	1,50	13	0./	9	3	
(27	105.60	106.60	1.00	5	0.1	22	9	
% Ry j_narrow bands, dissem.	28	106.60	108.10	1.50	2	0.2	33	6	
	29	108.10	109.60	1.50	6	0.2	46	4	
	30	109.60	141.10	1.50	6	0.2	50	4	
	31	111.10	112.14	1.14	14	0.2	39	2	
tr Ry;	56	112.14	113.43	1.29					
	57.	113-45	14.43	1.0					
<u> </u>	58	14.43	ls.82	1.39					
	59	15.82	16.15	0.43				· · · · · · · · · · · · · · · · · · ·	
//	60	116-75	117.7~	1.0	-	·			
	61	117.45	111.40	0.65					
				i i					
· · · · · · · · · · · · · · · · · · ·		·							
· · · · · · · · · · · · · · · · · · ·			· · · · ·					·	
· · · ·									
1. Py; nacrow string. , dissem.	32	11840	119.90	1.50	390	24.6	45	25	

ANGES EXPLORATION LTD AMOND DHILL LOG

14 OF 23 PAGE

HOLE No. 791-15 C. LOSS S INTERVAL L1THOLOGY * А U) 120 5 Ry 5,--p ۵ 125 Μ 2 51 130 13050-131.80 FELSIC TO INTERMEDIATE LAPILLI TUFF (WITH MINOR FINE TO MEDIVM GRAINED SANDSTONE) Light-grey tuff with dark-grey bands or/and inclusions of fine to medium grained sandston H-wall gradational contact (but 60°) foot-wall LIX-71(2-30,) contact 60° sharp. FINE TO MEDIUM GRAINED SANDSTONE (dark- grey in 131.80-135.80 colour) with minor INTERMEDIATE TO FELSIC LAPILLI TUFF, H-wall contact 60° charp. F-wall \mathbf{r} contact 75°. Predominantly sandstone with 135 dastic texture of fine to medium grain size In places Bands or inclusions of Papilli tuff(light (7L'HL) + 10 -grey in colour) 135.80-139.5 FELSIC TO INTERMEDIATE LADILLI TUFF WITH MINOR HUDSTONE AND SANDSTONE H-wall contact 70°, Foot-Hall contact 70° 5-2 Light grey to green-grey poilli tuff with minor Bands or inclusions of dark grey sandstone or Black mudstone. Phyllitic 140 A, N

GRANGES EXPLORATION LTD

PAGE 15 OF 23

HOLE No.

MINERALIZATION ALTERATION		FROM	TO	ыюти	Au PP ^D	Ag g/t	As ppm	Sb ppm	
2 7. Py ; narrow string, dissem	33	119.90	121.40	1.50	1480	<u>l(.)</u>	432	14	
	34	121.40	122.90	1.50	1820	989	279	45	
	35	122.90	124.40	1.50	90	4.0_	42	3	
	36	124,40	125.90	1.50	15	1.4	26	2	
	37	125.90	127.50	1.60	9	0.6	26	2	
	38	127.50	49.00	1.50	8	0.5	25	2	
(39	L <u>1</u> 9.00	130.50	150	43	1.4	56	2	
~ 1% Py ; dissem.	40	130,50	131.80	(30	730	3.7	156	2	
(41	131.80	134.00	120	13	0.4	7	2	
- Py	42	134,00	135.60	1.60	3	0./	Z	2	
	43	15.60	157.10	1,50	2	0.Z	z	2	
— [(—	44	137.10	<i>138.60</i>	1.50	4	0.2	7	2	
	45	13860	140.00	1.40	3	2./	14	2	
	46	40.00	141.41	1.41	4	2.1	12	2	
						-+			

్ర			DRILL LOG		PAGE	16	0	IF 2	3	
HOLE No.	, J (91-15								
INTERVAL	C. L055		LITHOLOGY	· · · · · · · · · · · · · · · · · · ·	بر ن	L	S.	M	Α	
139.50-156.2	COAR	SE GRAINE	D SANDSTO	NE		1				17
· · · · · · · · · · · · · · · · · ·		Dark-g	ney in colour, C	lastic texture with a	parse	_	-	_	_	
	·	<u>grain s</u>	12e. Massire	structure. H-Nall CO	nTact					Ì
·		<u></u>	parked by narr	row bands of mudsto. ". In places bands of	<u>ne.</u>	-	-	-	-	╞
	<u> </u>	Foot-1	wall contact 50	<u>°. In places bands of</u>						
		mudst	one			-	-	-	_	╞
· · · · · · · · · · · · · · · · · · ·										
						-	-	-	-	Ļ
										¦,
			•	· ·	–	-	-	-	-	- <i>µ</i>
						N				
						11	-	-	-	F
								_	_	l
)	_					-	_	_	_	ł
· ····-	-			······································						
····-			·	· · · · - ·		-	-	-	_	╞
		·								
· ·						-	-	-	-	- 15
			,,				34			
· - • · - · · · · · · · · · · · · · · · · 	15120-	15/ 15 1:44	any tollara	us band at 50° to C.		27	-	-	-	-
	101.00	ior por cigni	grey paperoccu		<i>#</i>	72'52				
	151.40 -	152.30 Black	mudstone inter	ralated with minor d	ort-	177	-	-	-	ſ
	1	•		uall contact 50° F-1					_	
		conta	ct 550 Both	sharp. Mineralized By	· 74.		-	_	-	ſ
					<u> </u>		_		_	L
						12				
						<u> </u>	_	_	_	12

156,20-165.40	MUDSTONE + HEDIUM TO COARSE SANDSTONE + MINOR
	 FINE TUFF.
	Black muditone of very fine grain size with

724-Z1(213A) dark-grey medium to coarse grained sandstone + minor light-grey fine tuff. H-wall contact 50°. F-wall contact gradational. In places phyllitic ન

_

L

S,

--

-

Ŧ

_

- 160

[

GRANGES EXPLORAT	ION LTD				•		PAGE	17	of 2 2
HOLE No. J91-15							-		
MINERALIZATION ALTERATION	SAMPI	E FROM	ro	WIOTI	Au	Ag g/t	As ppm	Sb ppm	
	·					· ·			
· · · · · · · · · · · · · · · · · · ·									
· · · · · · · · · · · · · · · · · · ·									
tr Py ; sampled wall	49	150,70	151.20	0.50	8	0.1	13	2	
tr Py ; sampled wall 1% Py ; specks, dissem.	48	151,20	152.30	1.10	7	0.3	21	6	
tr Ry ; wall sample	49	15130	152.80	050	4	0.2	30	4	
						· ·			
· · · · · · · · · · · · · · · · · · ·									
· · · · · · · · · · · · · · · · · · ·									
- ~ 1 %. Py ; dise-m.	50	156,20	157,20	1,50	3	0.2	25	z	
	51	157,70	1592	01.50	3	0.(18	2	
	5,2	15920	160.70	1,50	6	0.3	29	2	
				·					

[[[[

[

[

[(

[

			AGE	-18)F 2	>
HOLE No.		791-15					
INTERVAL	C. L055	LITHOLOGY	* U		S	Μ	A
				(42	1		
			-41 /		-		-
·	<u> </u>		Æ	22	-	-	-
			-	F/1	_	-	_
		163.20-163.95 Coarse grained sondstone . H-wall contact 30° =-wall contact 40° sharp.				•	
				12.27	-	-	-
5.40-192.30		COARSE GRAINED SANDSTONE. (In places narrow black	-	ر ب ر بر بم	-	-	-
		Bands or inclusions of mudstone)	_		-	-	-
		H- Nall gradational . F-Nell contact gradation Clastic texture with coarse grain size, Massive	1. 	272	_	 	_
		texture. Dark -grey in colour.					
		168.15-168.60 Black mudstone with minor gray (in colour	, -	15 4 11	z)	-	-
·		COArse sandstone. H-Hall contact 75°. Foot-Hall contact 70°. Both contacts sharp.	-	274	15	-	-
		•	-		1_	_	-
		169.50 - 169.60 Band of Black mudstone at 70° to C.A.					
·		169.80 - 170.00 Band of Black muditone at 750 to C.A.	-	-	-	-	-
			• 		-	-	-
			_	-	-	-	-
			_		_	_	_
<u>-</u>				N			
			·	1	-	-	-
			-	-	-	-	-
			-	_	-	_	_
			· .	• •			-
			-	-		-	-
		· · · · · · · · · · · · · · · · · · ·	_	_ [}	-	-

C

[

[[

.

PAGE 19 OF 23

HOLE No.

Γ

Γ

Γ

[

MINERALIZATION ALTERATION	SAMPLE	FROM	то	HIOTH	Au	Ag g/t	As	56	
					494			ρρ π	
-~1°4Py; dissem.	53	160.7	6220	1.50	<u>u</u>	0.3	33	2	
۲ _. ۱									
				1		22			
r Py, sample of an Wall	54	162.20	163.70	1.50	<u>.s</u>	0.2	<u>ــــــــــــــــــــــــــــــــــــ</u>	3	
· · · · · · · · · · · · · · · · · · ·					· _	¦		<u> </u>	
	55	163.70	165.40	1.70	5	0.3	47	6	
						<u> </u>			
				-					
		-							
······						[
						 			
						<u> </u>		ļ	
				<u>-</u>					
	<u></u>							 	
-									
			•				<u> </u>		
						-		··	
									Į
						<u> </u>	 _		
						<u> </u>		 	
								 	
					 _			_	
							_	 	
		· -							<u> </u>
·····									·
					-	 			
		<u> </u>			<u> </u>	<u> </u>	<u>†</u>		<u> </u>
					<u> </u>	 	1	 	
						†		···	
		-			<u> </u>	1			
		 			<u> </u>	1			
							1		
		1				1			

TAODIMOTO	EVOLODATION TD	54 - C 8 *
(c): (1) (c)=>)	EXPLORATION LTD	
		· ·
1. 计控制机器		

PAGE 20 OF 23

HOLE No. 791-15 C. LOSS S * LITHOLOGY INTERVAL J 180 Nº. 12 (72/60 Br 180.90-183.40 Black my detone. H-wall contact gradational _ F-yall contact 50°, with minor sandstone se-Bands (grey) and quartz-carbonate stringers. Weakly sericitic. 185 N 190 191.10 - 193.50 Black Bands of mudstone poorty interBedard with minor grey coarse sondstone. Both Nalls contacts 65° Sharp. FINE TO COARSE GRAINED SANDSTONE . (in places 192.50-2103 poorly interbedded / intercalated with minor mudstone) Clastic texture with fine to Coarse grain size Massive structure -195 . In places quarty-consonate stringers at all angles to the core axis N × -1 С 200

GRANGES EXPLORATIO)N LTD
GRANGES EXPLORATION	LOG

Γ

[

[

[D]

PAGE 2 OF 23

HOLE NO. JQ	-15										
MINERALIZATION	ALTERATION	SAMPLE	FROM	то	ЫІРТЯ	Au g/t	Ag g/t	As pp=>	56 ppm		
······································											
· · · · · · · · · · · · · · · · · · ·					 						
										~	<u> </u>
							I			·	
······································					 						
·		·			-						 •
	······································										
				·			 	 	ļ		
					 			 	·		
		·									1-
									ļ		
						. <u> </u>					
						-	·-				
	······										
							<u> </u>			<u> </u>	
	······································										
							 				
			<u> </u>								
										L	
								 		ļ	
			<u> </u>					<u> </u>			
							<u> </u>				
······				L			ļ	ļ	L		–
					 						
					 						

	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	22	0	FZ	3	
HOLE No.	J91-15						
NTERVAL	LITHOLOGY	÷ د		S	Μ	А	
			-	-	-	-	
			-	_	-	-	
		-	-	-	-	-	╞
			X-Z	-	-	-	
			77	-	-	-	
			-	-	-	-	
<u></u>			-	-	-	-	
			-	_	_	_	
			_		_	-	
2 10.31	END OF D.D.H.			-	-	-	
			_	_	-	-	
			-	-	-	-	ŗ
			-	-	-	-	ŀ
·		=	-	-	-	-	
			-	-	-	-	
				-	-	-	
			-	-	-	-	

۰.

~

PAGE 23 OF 23

HOLE No.

[

[]

721-										-	
MINERALIZATION	ALTERATION	Samme	FROM	TO	WID7H	Au g/t	Ag g/t	As ppm	Sb ppm		
							·				
									 _		
								<u> </u>			
		- 									
			<u> </u>		1			<u> </u>			•
			1		 		 	 			
			 -								
······································					+				<u> </u>		•••• • • ·
			ļ		_				ļ	 	
······································			· · · · ·				<u> </u>				
											·
					ļ	 	_	<u> </u>	_		
						<u> </u>	╆				
· · · · · · · · · · · · · · · · · · ·						-	<u> </u>		╂		
		-									
					<u> </u>	<u> </u>		 	 		
								┨───			
						╂		┼╍╌╸		<u> </u>	}
			-		+						
· · · · · · · · · · · · · · · · · · ·				·		 _	<u> </u>	<u> </u>		ļ	
										 	
					╂───	┨───				<u> </u>	<u>}</u>
			+	 -	+	1					
·									Ţ	 	
			.								┣
				┨───						╂╼┈╼	
			1		1-	 	<u> </u>		1		
				<u> </u>			1				

Sample J-91-15 91.0 m

Fine Ankeritic Andesite Tuff (Unit 1/2A.cb); Early Ankerite-Quartz-Pyrite Veins; Late Ankerite-(Quartz) Veins

er en ser en

Minor relic grains of plagioclase averaging 0.05-0.1 mm in size are set in a well foliated groundmass dominated by sericite with less abundant plagioclase, chlorite and opaque. Ankerite (20%) forms irregular patches and replacement lenses parallel to foliation.

Two early veins up to 2 mm wide parallel to foliation are dominated by ankerite, pyrite and quartz. Quartz commonly is recrystallized in comb-textured aggregates against pyrite grains.

A late vein up to 2.5 mm wide and a few small veinlets up to \emptyset .2 mm wide are of very fine to fine grained ankerite with much less quartz. These are truncated or offset slightly along foliation, suggesting that later movement occurred along shear zones along the muscovite-rich layers.

Sample J-91-15 157.3 m Carbonate Altered Fine Latite Tuff (Unit 2B.cb): Ankerite Replacement Patches and Lenses; Calcite Veinlets (Note: no offcut block)

The largest fragments is of strongly altered porphyritic andesite. It contains 5-7% phenocrysts of plagioclase from $\emptyset.3-1$ mm in size altered completely to ankerite, 1-2% hornblende phenocrysts altered to pale yellow chlorite-ankerite, and a few euhedral grains of apatite up to $\emptyset.12$ mm long. The groundmass is an extremely fine grained aggregate of plagioclase altered moderately to strongly to ankerite, with wispy patches and seams dominated by sericite.

Several fragments up to 2 mm long are dominated by extremely fine grained chlorite oriented parallel to foliation. Some of these contain lensy inclusions of chlorite-opaque and of sericite oriented parallel to foliation. Textures in some suggest that they represent original pumice fragments.

One fragment 2 mm long is of carbonaceous argillite.

One layer about 1 mm wide contains moderately abundant fragments of quartz averaging 0.1-0.5 mm in size.

Minor original plagioclase crystals? averaging 0.3-1 mm in size are replaced completely by very fine to fine grained aggregates of ankerite.

The groundmass is dominated by extremely fine grained plagioclase altered strongly to ankerite, and sericite-rich seams and lenses parallel to foliation. Pyrite (0.3%) forms disseminated grains averaging 0.05-0.1 mm in size, and a few lenses up to 0.3 mm long.

A few patches up to a few mm across are replaced by very fine to fine grained ankerite.

Late veinlets up to Ø.15 mm wide of calcite cut the foliation and the ankerite-alteration patches at a high angle.

Sample J-91-15 162.6 m Pebbly Siltstone (Unit 7K/L.9Y,Zu)

The large fragment is of hypabyssal quartz diorite dominated by plagioclase with interstitial quartz. Plagioclase is altered slightly to patches of ankerite. Pyrite is common in a veinlike lens along one side of the large fragment; it forms subhedral to euhedral grains averaging 0.05-0.15 mm in size. Another fragment 1.7 mm across is of medium grained leucocratic diorite, in which plagioclase is altered moderately to sericite.

One fragment 4 mm long is of cherty quartz.

One fragment 2.5 mm across is of extremely fine grained latite, in which plagioclase is altered slightly to moderately to sericite.

One fragment 1.7 mm across is of slightly porphyritic latite. One elongate fragment 1.7 mm long is of carbonaceous argillite containing abundant opaque.

Several fragments form $\emptyset.3-\emptyset.7$ mm in size are of quartz or plagioclase aggregates and single grains. Most fragments are from $\emptyset.07-\theta.2$ mm in size and are dominated by single grains of quartz and plagioclase.

The groundmass is dominated by sericite with minor wispy seams of Ti-oxide/opaque. Foliation is warped moderately to strongly in small folds.

A few tension fractures up to a few mm long and 2 mm across are of undeformed, fine grained quartz and minor ankerite.

Sample J-91-16 129.15 m Amygdaloidal Andesite Flow (Unit 1/2GaK); Quartz-Pyrite-Ankerite Replacement Patches and Veinlets

The rock is an extremely fine grained andesite flow containing a very few phenocrysts of plagioclase up to 0.5 mm in size and , minor lathy plagioclase grains averaging 0.03-0.05 mm in size in a groundmass of equant plagioclase and much less ankerite and chlorite, and minor opaque. A light yellow stain on the offcut block suggests moderate K-feldspar in the groundmass.

Amygdules (20%) average 0.3-1.5 mm in size and are of two main types, one dominated by extremely fine grained sericite with a thin rim of chlorite, and the other of single grains of calcite with commonly a thin rim of sericite. A few sericite-rich amygdules have a rim of very fine grained quartz.

Replacement patches and veinlets (8-10%) are of extremely fine to fine grained quartz, pyrite, and calcite. Interstitial to pyrite grains quartz was recrystallized to comb-textured aggregates.

	191+15-1 191-15-2 191+15-3 191+15-4	6 21 35 35 37 1 11 4 41 2 2 11 7 120 6 17 10 120		1 56 472 6 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 .58 .06 .23	
	J91+15-5 J91+15-6 J91-15-7 J91-15-8 J91+15-9	2 8 2 105 1 1 14 20 121 121 2 14 16 107 2 2 14 4 119 1 1 29 5 77 0	6 3 36 1305 6.65 9 5 HO 7 3 21 1304 5.95 9 5 HO	1 260 259 2 2 2 1 207 2 2 2 3 1 239 8 2 2 2 1 278 2 2 2 2 1 236 2 2 2 2 1 236 2 2 2 10	31 4.62 226 8 10 1.33 175 04 6 27 5.43 237 7 9 1.00 198 05 2 28 6.75 264 11 8 1.10 202 06 2	2 1.97 .10 .21 1 1 35 6 2.93 .08 .18 1 1 125 3 2.44 .11 .22 1 3 60 2 2.80 .09 .24 11 2 30 2 3.03 .14 .08 11 1 10	
	J91-15-10 J91-15-11 J91-15-12 J91-15-13 J91-15-13 J91-15-14	1 35 3 75 1 29 2 71 1 33 5 68 1 30 6 69 1 33 4 70	2 34 39 1424 6.64 5 MO 1 32 31 1626 6.11 2 5 MO 1 34 35 1392 5.73 5 MO 3 27 25 1651 6.32 5 MD 1 28 26 1413 5.96 2 5 MD	1 247 2 2 2 10 1 210 2 2 2 10 1 263 2 2 2 10	01 10.90 047 4 56 1.43 174 01 1 04 8.88 047 4 57 1.39 97 0 04 10.47 043 4 54 1.53 117 01	2 3.10 .13 .07 1 3 55 2 3.01 .12 .06 1 1 85 2 2.97 .14 .08 1 2 25 3 2.97 .13 .08 1 3 15 2 3.24 .16 .08 1 1 20	
	J\$1-15-15 J\$1-15-16 J\$1-15-16 J\$1-15-17 J\$1-15-18	1 32 6 73 1 1 24 2 52 1 1 29 5 60 1 41 2 60		1 227	92 7.47 048 3 51 1.86 95 01 48 9.81 041 3 31 2.39 78 01	4 2.78 .09 .22 1. 2 60 6 1.59 .06 .28 11 2 65 4 1.61 .04 .22 1. 4 40 2 2.60 .07 .29 1 1 10	· · ·
	J91-15-19 J91-15-20 J91-15-21 J91-15-22 J91-15-22 J91-15-23	1 18 2 53 7 1 60 41 67 2 1 32 9 171 1 25 34 146 1 24 11 63	8 40 55 1817 13.18 328 5 HD 2 27 29 1593 6.91 34 5 HD 4 27 28 1615 6.46 38 5 HD	1 108 2033 13 2 4	44 4.60 032 2 24 2.50 50 01 71 6.28 045 3 38 2.46 92 02 73 5.63 042 3 38 2.73 73 02	4 2.32 .05 .34 1 1 25 7 1.29 .03 .22 1 83 65 3 2.49 .06 .30 1 2 50 5 2.56 .06 .33 51 1 55 2 1.37 .03 .23 1 2 35	
	J91-15-24 J91-15-25 J91-15-26 J91-15-27 J91-15-28		2 35 40 1329 6.62 52 5 HD 3 30 32 1581 6.51 8 5 HD 2 1 25 2169 5.70 9 5 HD 1 25 32 1845 5.69 222 5 HD 2 43 35 1630 5.53 33 5 HD	1 155 4 6 2 6 1 171 6 3 2 1 157 9 9 2	64 6.71 034 3 38 2.74 79 02 34 9.98 031 2 20 3.47 65 01 34 9.28 035 2 19 3.22 53 01	2 2.44 .07 .33 1 2 40 5 2.27 .06 .33 1 3 30 2 1.18 .03 .22 1 13 55 2 .94 .03 .27 1 5 50 2 1.29 .05 .31 1 2 65	
	J91+15+29 J91+15+30	1 27 5 67 1 26 5 62	2 29 35 1575 6.16 46 5 ND 2 27 32 1707 5.97 50 5 ND	1 172 15 4 2 1 1 216 3 4 2		2 1.80 .04 .30 1 6 30 2 2.07 .04 .34 1 6 25	
Ð	J91-15-31 J91-15-32 J91-15-33 J91-15-34 J91-15-35	1 31 2 62 12 24 58 159 24 5 16 30 109 1	2 27 26 1744 5.51 199 5 ND 4.6 10 26 2521 4.17 673 5 ND 1.1 5 21 3055 4.42 432 5 ND 3.7 8 2529 4.16 277 5 3 4.0 6 25 2538 4.81 47 5 ND	1 155 2:0 2 2 1 130 8 25 2 1 115 8 14 2 1 94 1 45 2	48 7,23 041 2 31 2,90 106 02 37 2,97 053 2 15 1.75 81 01 62 2,80 061 2 24 3.23 97 02 77 2,02 058 3 34 3.21 119 02	3 2.41 .05 .40 14 25 3 .86 .01 .21 1390 320 2 2.20 .01 .29 1460 205 2 2.44 .01 .34 1820 2500 2 3.33 .01 .29 90 65	
	J91+13-36 J91+15-37 J91+15-38 J91-15-39 J91-15-39 J91-15-40	1 11 2 74 1 13 28 143 1 13 3 156 1 14 31 115 2 24 54 241		1 89 条轮 0 2 2	94 2.27 057 3 40 3.91 92 03 115 2.26 054 3 41 3.91 67 03 92 1.44 042 3 25 3.30 105 03	2 3.38 .01 .36 1 15 35 2 3.79 .04 .23 9 30 2 3.97 .09 .19 8 40 2 3.21 .02 .29 9.14 43 60 2 4.16 .01 .22 730 105	
	J91-15-41 J91-15-42 J91:15-43 J91-15-44 J91-15-45	1 32 2 74 1 12 2 60 1 79 5 98 1 73 4 105	16 17 970 4.92 7 5 MC 1 13 14 1068 4.45 2 5 MC 2 11 16 1403 4.96 2 5 MC 2 9 18 1418 6.08 7 5 MC 1 10 17 1067 4.44 16 5 MC	2 141 120 2 2	57 2.40 076 9 26 1.60 102 03 50 3.41 075 9 23 1.11 115 03 38 2.95 122 8 11 1.40 258 02 47 2.48 147 7 9 1.83 151 03	2 2,67 ,05 ,37 13 15 2 2,38 ,06 ,44 3 15 3 2,50 ,02 ,51 1 2 20 3 2,89 ,04 ,45 1 4 30 2 1,35 ,01 ,36 3 40	
	J91-15-46 J91-15-47 J91-15-48 J91-15-49 J91-15-50	2 26 12 41 1 34 7 38 b 1 99 11 73 1 23 9 42 1 85 5 86	11 9 421 2.19 12 5 Mi 11 12 10 333 2.70 13 5 Mi 120 13 271 3.23 1 5 Mi 120 13 271 3.23 21 5 Mi 12 9 7 2115 2.75 30 5 Mi	1 114 1 121 2 2 2 81 2 6 2 81 2 6 2 2 4 2 4 2 5 32 9 4 2 1 532 9 4 2	7 1.68 048 3 5 .30 122 01 9 1.60 0000 3 4 .40 95 01 11 .66 065 4 5 .41 93 01 9 10.05 032 2 3 3.47 68 01	2 .52 .03 .36 3 .62 .03 .37 3 .66 .02 .30 2 .10 .32 .22 .1 4 20 2 .1.13 .01 .29 .1 3 35	
2	J91-15-51 J91-15-52 J91-15-53 J91-15-54 J91-15-55	1 100 3 108 1 92 8 98 1 220 6 87 1 57 13 84 1 66 18 106		1 165 12 2 2 2 166 12 2 2 3 167 2 2 2 2 166 3 3 2 2 166 3 3 2 2 2 97 2 2 2 ND 1 209 2 2 2 ND 1 96 22 2 2 ND 1 95 2 2 2 ND 1 121 2 2 2 ND 1 124 2 2 2 ND 1 169 2 2 2	22 1.94 103 4 5 .81 197 .01 22 2.79 23 4 6 1.17 143 .01 12 2.79 23 4 6 1.17 143 .01	2 2.34 .02 .37 1 3 25 2 1.91 .01 .33 6 40 3 1.35 .02 .46 11 35 4 1.18 .02 .36 3 110 2 1.02 .02 .28 5 50	
	J91-15-56 J91-15-57 J91-15-58 RE 8366	1 12 5 59 1 11 6 62 1 32 2 217 1 116 22 142	19 23 1782 5.72 66 5 10 27 920 5.07 42 5 9 31 726 8.65 58 5 44 14 667 3.92 5	HD 1 209 2 <th2< th=""> 2 2 2</th2<>	11 1.62 074 2 5 .62 106 601 2 30 5.40 037 2 13 3.33 30 601 2 30 5.40 037 2 13 3.33 30 601 2 29 2.10 145 3 9 1.65 55 601 2 75 1.79 68 3 10 2.06 47 601 2 23 5.36 606 4 24 1.29 57 601		
	J91-15-59 J91-15-60 J91-15-61	1 14 2 28 1 12 8 87 1 20 9 114	7 13 1018 4.21 19 5 11 7 20 947 4.79 36 5 8 26 1289 5.37 89 5	UA I IA1 1000 1000 100 10 10 10	2 29 3,20 032 2 23 1.42 28 01 2 27 2,81 063 2 8 1.46 39 01 2 28 3.76 075 2 8 1.84 78 01	7 .95 .01 .14 1 3 30 6 1,20 .01 .15 12 60 4 1.28 .01 .15 11 15 100	
					\bigcirc		

.

Sample J-91-15 162.6 m

٢

across is is altered grains along plagioclase slightly to altered The one averaging lar side o Ha moderately to cge fragment is of hypabys
with interstitial quartz. patches of medium of grained sericite. leucocratic hypabyssal diorite, quartz diorite in which plagioclase altered veinlike dominated 1.7 mm euhedr al lens Λq

One fragment 4 mm long is of cherty quartz.

in containing which One One One elongate plagioclase fragment l. fragment abundant use is altered slightly to moderately to s 1.7 mm across is of slightly porphyritic fragment 1.7 mm long is of showing the second 2.5 mm across opaque. is of extremely fine grained to sericite. argill lat ц Ц æ

ч Ч ч σ lagioclase -07-0-2 ົມ gioclase Several man in aggregates fragments size and and form are single dominated 0.3-0. grains. .7 mm by single in size Most are fragments grains of grains 0f quartz are quartz and о К from

Ti-oxide/opaque. folds. The groundmass is gominum. dominated by sericite warped moderately to with minor strongly wispy seame analy in small 0f

are of ₽ undeformed, h € ¥ tension fractures fine grain grained dn quartz 5 ω few mm and minor long and ankerite. Ν mm acros ŝ

Sample J-91-16 129.15 Quartz-Pyrite-Ankerite Ħ Amygdaloidal Replacement Andesite Flow Patches (Onit and 1/2GaR; Veinlets

moderate and groundmass ┣--very ູ່ ກ Υų minor few The plagioclase grains rock K-feldspar phenocrysts opaque. 0ff equant s L an Þ i n extremely of יייי נער בס 1.5 ו ins averaging 1.03-0.05 m plagioclase and much less light yellow stain ריייי the yellow stain on the offcut groundmass. fine grained up to Ø.5 mm in andesite mm in ankerite size size flow block suggests and in a and , containing chlorite minor ۵

commonly rim of ve types, one dominated | thin rim of chlorite, Amygdules very fine a thin dominated by extremely fine grained (20%) rim of grained average and the sericite. quartz. 0. other 3-1.5 Þ of single grains few sericite-ric mm ín size sericite and -rich are 0f amygdules with calcite сf, two 3 main with have ø

pyri fine ст Ф ð Replacement grains fine grained quartz patches and was quartz, recrystallized pyrite, veinlets and calcite. (8-10%) 6 combare textured 0 Fi Interstitial extremely aggregates. ő

ATCES INC. PROJECTIONUL RELIGIES ANALYSIS CHO Ma20 K20 T102 P205 1470 Cr203 SN/PLE# SIO2 A1203 Fe203 Lo Zri NgO Ba Sr รมห Y Яb 101

	7	X	<u> </u>	<u> </u>		X	X	X	× g	i A	7.	ppa	pp.	. p⊨nt §		ppm.	pon	x	X	
J91-2-21.2	72 05	11 40	3.88	77		05	4 21	1 02	07	新祥	007	1106	76	71	122	- 21	20	5 A		
J91-3-15.5	45 00	0.00	9.00		11 <u></u>	.03	7.00	1.70	100	診営	.007	1100	25	- 20 %	₹ <i>16</i> 64	24			100.01	
J91-7-35.0	77 10	7.72	0.07	,	St Sara		1.90	1.70	.27	新發	.005	2249	57	18	184	41	Z 3	4.5	99,99	
341-7+33.0	31.47	15.50	0.02	4.11	1.2.25	4.74	بة.	1-10	-18	1.2		387		TO §	1241	Z3	20	14.6	100.33	
J91+7-39.0	38.34	12.43	8.69 6.85 7.71	3.09	1/202	5.63	.zo	1.56	.25 §	5.4	.012	189	860	10 1	105 j	25	20	13,4	100.29	
J91-8-65.2	63.B4	13.75	5.44	1.62	11.66	.09	8,28	1.54	.26 ş	0147 747 08	.005	1722	101	- 14	185 772	25	20	4.0	100.06	
					141															
J91-10-69.0	DY.41	11.32	4.44 4.72 9.63 7.78	.57	8-++(f)	• 11	7.79	1.95	.57	49 H	.004		88	10	2-	- 31	20		100.02	
J91-11-88.0	26+61	15.27	4.72	2.17	5 M &	5.42	1.84	1.32	.22	812	.019	1373		10]	52	7	61	8.4	100,14	
J91-12-166.5	53.85	14.26	9.63	2.72	\$5,52	1.62	3.66	1.80	.60	HZS	.00Ż	784	243	13 1		26	48	6.0	100.10	
J91-12-175.6	56.93	13.43	7.78	3.63	药进7	.66	5.03	.77	.26	335)	.006	1046	147	12	60	9	24	7.2	100.13	
J91-15-91.0	29.07	13.20	11.60	6.70	16167	1.57	2.72	1.08	.19	45A)	.012	707	246	10	1651	16	44	16.9	100.42	
	1				13796131					44 H					24 00 15 00 5 10 00 10 10 10 10 10 10 10 10 10 10 10					
J91-16-129.15	46.04	15.77	9.14	4.43	医吗	1.89	5,52	1.53	.31	2.4	.007	1010		10	II (A	18	87		100.16	
J91-17-89.6	59.10	13.03	8.62	3.16	8453	4.09	.66	1.52	.29	關省	.002	288	247	25	615	37	79	5.0	100.08	
J91-17-149.0	65.12	: 12.13	6,33	2.70	11776	.08	7,63	1.31	.35	218	.003	2173	130	17		22	76		100.02	
J91+17-172.0	\$7.65	12.90	11.38	5.32	11192	.09	5.52	1.39	. 44		.002	1518		22	366	. 56	66	3.8	100.05	
J91-18-76.1	159.22	15.23	9.14 8.62 6.33 11.38 7.64	3.94	111193	2.01	4.22	2.01	.45	昭行	.002	1891		21	877 E	50	60	3.0	100.03	
															IM.				100100	
J91-18-77,3	\$9.74	16.41	4.76	3.19	18928	.28	5.96	1.42	. 07	168	.010	897	37	74	161	51	41	7.8	100,14	
J91-18-89.0	60.81	10.80	10.64	3.04	12122	.06	5.67	1.18	20	1878	005	3724		15	11	13	51		100.06	
191-18-94.7	62.99	12.76	A. 13	2.02	1055	1.45	7.23	1.40	36	10 A .		3086		20	148 166	76	77		99.99	
191-18-123.4	62.26	11.54	Q 78	2.03	#7-74	1 19	7 12	1 21	77	翻译	002	1350		10	8 8 7 (22	11	<u>.</u> .,	77.77	
J91+20-74.8	49 69	0 10 77	14 85	6.86	132-6	1.7	70	1.1	30	1775		123		10	81272	37	20	2.0	100.00	
1.1.20 1410	*/.0/		4.76 10.64 8.13 9.78 14.85	0.04	Ψ.SO	.45	.10	. 70	.52	ine:	.002	123	150	21	21	52		ö.4	100.16	
191-21-49.0	46.62	14.41	15.25	1.76	19169	4.99	1.55	2.04	62	10.05	002	877	280	75	1112日	29	50	10 E	100.24	
J91-22-45.0	162.61	10.92	• •.n1	2 10	111112	30	1 01	1 60	70	dénia -	002	1113		14	il i fili	20	27			
J91-22-130.2	46.62	15.20	16 18	4 12	12157	1 2	05	3 27	65	15.2	1002	203		10	124	20	20	7.7	100.20 100.10	
191-22-177.1	55 00	18 34	A 80	2 40	110	00	8 01	2 00	.07	11-14	002	1314		20	記録符	44	40	0.4	100.10	
J91-22-183.0	48 27	1 12 20	16.18 6.80 3.44	3 / 2	10.20	ŇC.	4.00	L. VV		65	.002			<u>20</u>	뭺쩺뭖	30	20	2.2	100.04	
	со. <u>с</u>	14146		6.44	3344	.02	0.92	- DO	. 14	en rece	.002	1035	60	ు	168 113 181 206	\$1	ſŸ	5.0	100.04	
J91-22-208.5	70.20) 13.65	3.76	2.55		.05	5.78	. 94	.10	1210	.002	1119	38	26	142	15	57	÷ 4	100.02	
J91-22-211.5	54.36	\$ 15.40	10.93	8.35	11.75	05	3.38	1.51	23		0.05	609		10	iiga.	21	20	5 1	100.05	
191-24-164.7	LL AL	16 27	14.50	5 00	13151	07	1.12	1 40	10	19.74	003	1213		24	85) 76		<u>с</u> џ в(1.1	100.03	
RE J91-22-177.1	55 8/	101 <u>6</u> 11016) <u>(</u> , , , , , , , , , , , , , , , , , , ,	2 66	30.67	05	0 13	1 07	67	4	.002			21	W/24	20	- 00		100.03	
J91+24-207,3	51.00	5 12 03	6.84 11.80	7 04	決点		7.13	1.7/		影為日	-002	1296		04	167	22	- 11		100.02	
071-24-E0110	24.7	16.71	11,00	13,00	111	.00	4.4	1.22	.40	ii iii	.002	1694	250	19	133	Zß	47	4.7	100.07	
J91-25-26,9	51.2	1 15.9/	5 7.89	2.11	17126	3.81	2.90	2.43	.57	il sa	002	1247	775	21	140	57	108	5 1	100.04	
J91-25-45.4	50.89	9 15 A'	5 7.89 1 8.40	1 1 41	17126	13 04	2 98	2 12	54	12.76		974		27	hzi	21	70			
J91-26-42.4	51 51	2 16 03	7 10 04	2 77	2/00	20.27	/ 70	1 70		(Some	.002			22	1				100.08	
J91-26-105.2	57 0	5 10.07 5 49 14	7 10.08 3 8.98	1 7 74	121.27	1 . 10	4516	1.30	.22	89	1002	1876		22	្រាត	42	_ (Y		100.09	
	27.91	12,00	0.90	12.21	10191	5 .UD	4.72	1.05	-48	资法	.002	1228		- 23	<u>013</u>	- 29	62	5.0	100.08	
J91-27-32.65	124.7.	3 30.0	2 6.47	5.42	1210	4.09	1.85	2.35	.60	12:15	.002	1756	339	14	117 134	26	20	4.3	100.05	
J91-27-60.5	76 2	1 0 2	3.60	\ <u>A</u> P		14 12	71	ידל ו	19	II.U	007	B00			脱斑			. .	105 45	
J91-27-68.D	57 1	8 12 O	8.47	7 7 00	14123	1 01	IJ	2 20	.47	11.33	.002			14	103 144	18			100.00	
STANDARD SO-4	47 0	1 10 ማ	7 U144 3 T E4	2,70			2,33	2.37	.02	16.20	.002	2205		20	超鐵	36	- 29	2.9	100,11	
31080000 3014	101.0	1 19.23	9 3.50	.70	\$3 1 .4 0 .)	51.23	2.03		د.	1912)	: .005	795	207	29	321	23	<u></u> Z0	11.2	99.98	
	.200 G	RAH SAI	MPLES /	RE FU	sed ur	TH 1 .	2 GRA	N OF I	1802	AND A		sen v	20.70v	100 4			t			

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBOZ AND ARE DISSOLVED ON 100 MLS 5% HND3. - SAMPLE TYPE: CORE <u>Samples beginning 'RE' are duplicate samples.</u>

91.

30

Vov

DATE RECEIVED: NOV 15 1991 DATE REPORT MAILED:

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ú Villerie

	SAMPLE# J91.16	No Cu Pb Zn Ag Ni Co Hn. Fe Ás U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti B Al Na K U A pom pom pom pom pom pom pom pom yom. X pom pom pom pom pom pom pom X X pom X pom X pom X X 2 pom p	
	A001 A002 A003 A004 A005	7 49 113 419 1.9 18 11 1220 4.23 31 5 NO 1 194 3.1 7 2 14 4.47 077 3 5 1.36 109 0.1 4 .92 .01 .30 1 23 30 220 2215 5.1 30 6 1995 5.23 36 6 ND 1 124 17.1 19 2 7 5.85 .066 4 5 1.63 58 .01 3 .43 .01 .26 1 25 31 506 2696 3.8 30 7 1053 4.20 32 5 ND 1 124 19.9 18 2 6 4.14 070 4 6 1.23 61 .01 3 .42 .01 .29 19 2 9 3.80 081 4 3 1.04 60 01 3 .39 .01 .31 1 29 29 198	2 215 4 1650 10 1500 19 715 2 470
	A005 A007 RE A003 A008 A009	25 33 45 126 117 32 7 579 3.60 33 5 ND 1 158 1.3 14 2 6 4.70 060 3 2 .88 66 01 2 .35 .01 .24 19 35 71 888 2.7 24 6 822 3.97 32 5 ND 1 170 65 10 2 8 4.99 071 3 4 1.31 54 01 2 .40 .02 .19 25 35 510 2725 4.0 29 7 1053 4.23 35 5 ND 1 128 19 16 2 6 4.19 070 4 6 1.25 56 .01 3 .42 .01 .29 1 12 25 17 180 5 19 9 1064 3.55 21 5 ND 1 258 1.6 6 2 24 8.26 085	6 305 15 715 7 1700 4 420 2 825
	A010 A011	8 22 14 177 .3 15 6 407 4.17 15 5 ND 1 133 1.1 2 2 10 3.06 075 2 2 1.33 62 01 2 .68 .03 .22 1 12 25 10 200 .2 22 7 483 4.34 16 5 ND 2 147 1.5 2 2 13 3.94 073 2 2 1.52 53 01 2 .51 .02 .18 1	2 680 4 770
	A012 A013 A014 A015 A016	8 42 18 140 .3 17 6 421 4.31 13 5 ND 3 100 .6 2 2 11 2.89 072 2 6 1.20 48 01 5 .56 .03 .18 1 8 27 15 152 .2 20 8 263 4.70 17 5 ND 2 94 8 2 2 12 1.94 067 2 5 .92 43 01 3 .76 .04 .22 27 32 14 156 3 35 6 845 4.63 29 5 ND 1 142 11 12 2 14 4.55 077 3 6 1.55 54 01 3 .41 .02 .20 1 31 32 17 201 .3 44 7 587 3.88 43 5 ND 1 182 15 11 2 14 6.11 052	7 690 7 775 3 585 3 1150 2 1600
n in the second record	A017 A018 A019 A020 A021	37 40 18 223 13 50 7 628 3.88 45 5 ND 1 133 1.7 10 2 17 6.55 073 3 6 1.13 71 01 5 .35 .03 .14 1 25 38 19 277 4 37 6 505 3.21 35 5 ND 1 180 2.2 7 2 12 6.25 063 3 5 1.19 92 01 2 .39 .03 .14 1 15 22 13 148 .2 23 5 936 3.26 21 5 ND 1 362 1.0 4 2 16 13.14 064 3 4 1.01 94 01 2 .77 .02 .08 1 10 10 17 10 17 10 1 10 17 .01 13 10 10 10 1.41 113 .02 2.77	3 1500 6 830 1 285 3 50 4 255
	A022 A023 A024 A025 A026	2 8 13 127 .3 3 14 1172 5.92 16 5 ND 1 212 .2 5 2 41 4.06 087 7 9 1.67 97 .03 3 2.38 .05 .20 1 4 8 12 133 2 3 16 982 5.99 23 5 NO 1 150 2 8 2 50 3.48 088 6 13 1.73 82 03 5 2.70 .04 .21 1 1 8 8 106 .2 6 23 929 6.86 44 5 ND 1 125 .2 9 2 55 3.53 059 3 19 2.04 78 02 4 3.08 .01 .19 1 1 7 11 102 1 5 24 1195 6.06 23 5 ND 1 164 2 8 2 57 3.79 <td>2 55 5 75 3 115 3 80 1 80</td>	2 55 5 75 3 115 3 80 1 80
	A027 A028 A029 A030 A031	1 8 4 99 2 6 25 1340 5.55 18 5 NO 1 238 2 5 2 55 5.76 054 2 20 2.30 114 02 3 2.42 .02 .20 1 1 9 10 70 1 6 25 1506 6.44 16 5 ND 1 232 2 6 2 96 5.72 054 2 26 3.02 76 03 4 2.80 .05 .20 1 1 10 10 68 2 8 30 1188 6.52 27 5 ND 1 163 2 10 2 86 4.67 .053 2 22 2.34 63 .01 3 1.99 .04 .11 1 1 6 7 67 1 7 19 1588 4.62 30 5 ND 1 163 2 9 2 37 7.23	1 80 1 75 1 95 3 125 3 100
	A032 A033 A034 A035 Re A031	4 9 11 140 .1 9 32 774 4.49 53 5 NO 1 115 2 7 2 40 3.30 .047 3 12 1.80 103 .01 2 1.60 .01 .19 1 5 8 2 55 .3 7 26 2363 4.85 30 5 NO 1 161 2 13 2 17 7.66 057 2 9 2.00 68 01 2 .33 .02 .17 1 31 6 5 92 10 5 21 1810 12.54 313 5 ND 1 130 2 14 2 17 5.14 055 2 6 1.58 31 01 2 .52 .02 .22 .02 .22 .02 .6 1.58 31 .01 2 .52 .02 .22 .12 .13 3.93 .073 2 6 1.35 .41 .02 <td>2 185 2 690 5 240 7 180 4 100</td>	2 185 2 690 5 240 7 180 4 100
	A036 A037 A038 A039 A040	1 9 6 168 1.6 8 35 769 3.76 31 5 ND 1 133 22 9 2 15 3.04 084 2 7 .39 64 01 2 .40 .03 .28 1 1 9 5 125 1.2 7 29 1043 2.95 31 5 ND 1 175 2 8 2 16 4.75 079 3 6 .53 109 01 2 .47 .02 .33 1 1 6 5 102 .5 4 23 1102 5.16 16 5 ND 1 197 12 2 2 44 5.42 063 3 11 1.26 135 01 2 .51 .02 .25 1 1 6 5 88 1.1 5 21 1592 4.24 27 5 ND 1 22 3 2 48 5.89 057	1 185 1 190 1 75 1 210 3 95
	A041 A042 A043 A044 A044	1 3 3 91 3 3 21 1440 5.66 35 5 NO 1 202 2 2 2 64 6.63 060 3 11 1.68 78 02 2 2.12 .03 .24 1 1 5 6 101 3 3 20 1084 4.92 20 5 NO 1 170 2 2 2 62 5.17 065 3 15 1.39 82 02 3 2.21 .04 .27 1 1 7 5 73 1 4 20 1164 5.26 17 5 NO 1 197 .2 2 2 63 5.33 052 2 25 1.95 64 02 2 2.64 .04 .27 2 1.94 .055 2 24 1.04 .27 1 .2 7 2 68 5.11 055 2 24 2.04 .04 .22 2 2.	3´95 3 50 2 10 1 25 3 110
2	A046 A047	1 5 7 83 2 4 23 944 5.90 18 5 ND 1 168 2 4 2 64 4.36 058 3 24 2.00 78 02 2 2.71 .03 .30 1 5 7 73 6 5 24 964 6.39 24 5 ND 1 123 22 9 2 40 3.66 059 3 17 1.34 54 011 2 1.52 .02 .34 4	5 25 6 45

}		\square	٦ ۲	- I	.	[<u>ייייל</u>) nqq	<u>,</u>	PPT	ррп	ך הסק	ppn.	ppm)سر مارة [))	(ppm) ppn	۲ ۲		(ppm) Dbu	٦ ۲) ppn §	PP	ר ז	x	ר ×	(x 68) ĭppb∕	ಪ್ರ≉ತೆ	-
	A048 A049 A050 A051 A052	ž	8 1 1 1	25 10 10 12 8	47 2 2 3			7 6 5	29 26 25	1272 1012 1305	11.81 5.63 5.90 6.66	143 32 32 51	5 5 5 5	ND ND ND NO ND	2 1 1 1) 1.0 1.0	10	2 2 2 2 2 2	26 58 77 75	2.66 6.33 6.00 7.62	.053 .062 .061 .059 .071	2 2 3 3	8 20 24 25	1.38 2.05 2.09 2.04 2.10	28 73 52 47	01 01 02 02	2 . 9 2 2. 6 2 3. 3 2 3. 3	27 .0 55 .0 53 .0 28 .0 28 .0	1.2 2.3 2.2 3.2	B 2 7 6	120 14 5 2 10	<u> </u>	
	A053 A054 A055 A056 A057		1 2 4 5 6	11 8 7 10 12	3 2 3 12 32	74 109 170 149 171	.7 .3 1.2 1.2	7 9 6	19 26 22	1642 1323 1100	5.28 5.17 5.32 5.91 5.47	22 34 58	5 5 5	20 27 27 27 27 27 27 27 27 27 27 27 27 27	1 1 1	54	.2 .5 1.0 .3 .6	6 2 3 5 3	2 2 2 2	70 (60 (59	3,27 2,67 1,46	.079 .048 .055 .064 .075	2 4 3	18 15 16	1.78 2.78 2.89 2.48 2.12	38 31 37	01 01 01 01	2 2, ¹ 2 2, 8 2 3, 6 2 3, 6	14 .0 39 .0 34 .0 36 .0 30 .0	2.2 1.1 1.2 1.2	8 9 4 3	2 4 17 12 3	60 110 60 165	
	A058 A059 A060 A061 A062		3 8	13 9 13 17 17	42 58 32 42 61	363 448 68 219 293	1.3 1.0 .8 1.3	28 5 3	45 · 13 · 15	1309 1024 755	6.81 7.18 4.35 6.65 6.58	107 104 39	5 5 5	ИО ИО ИО ОИ ОИ	1 1 1 1 1	30 33 45 38 41	1.2 1.6 .2 .6	10 8 7 13	2 6 2 2 2 2 2 2 2	85 25	.52 .89 .59	.089 .070 .120 .121 .136	4 7 4	23 5 4	2,17 2,54 1.01 1.01 .88	44 57	02 01 01	2 3.7 5 1.4 5 1.4	28 .0 74 .0 76 .0 76 .0	1.3 1.3 1.3	1	1 1 1 2 1 1		
	A063 A064 A065 A066 A067		6 10 12	14 12 21 24 91	17 27 39 98	97 661	,9 .8 1,6 1.5 2.3	3 5 3 4	12 12 10 13	1130 1483 2335		49 25	5 5 5	ND ND ND ND ND	1 2 1 1	39 49	,2 ,5 ,6 ,3 2,4	6 7 8	2222222	37 33 15 22 54	.95 .65 .86	.121 .096 .077 .106 .075	7 6 3	5 3 2	1.12 1.25 .53 .62 1.75		01 01 01	52,0 51.0 5,9	18 .0 13 .0 15 .0 12 .0 11 .0	1.3 1.3 1.2	4	1 44	100 220 225 110 440	
	A068 A069 A070 A071 A072		Z Z	45 11 10 28 8	10 13 14 4	412 123 131 112 136	.2	6 3 2 2 2	8 6 1 5	791 1455 1372 896	6.17 4.88 5.65	61 14 17 30 14	5 5	ND	1 2 1 2 3	38 31 51 53 36	1.6 .5 .6	2 4 2 11 3	2 2	53 41	.41 .87 .99	.102 .109 .098 .095 .064	8 7 12	9 5 3	2.01 1.19 1.54 1.33 1.45	76	01 01 01	5 2,2 2 2,4 5 1,7	2 .0 0 .0 3 .0 5 .0	1 .2 1 .2 1 .3	3	152 21 18 22 14	240 120 75 35 75	
	A073 A074 A075 <u>A076</u> A077		1	10 6 13 9	2 5 13 3	147 126 94 93	.3 .2 .3 .3	1 1 2	4 1 4 1 4	1151 1128 940	6.97 5.96 6.88 5.97	8	5	DK DK DK	1 1 1	53 30 34 33	.4 .3 .5 .3	3 4 4 2	2	33	.48 .51	,108 ,115 ,100 ,107	9 7	2 3	1.35 1.29 .95 1.09	42 59	04 03	223	9 0 6 0 4 0	2 2	1	11 31	75 95 70 50	1
	A078 A079 A080 A081		2	13 16 9 11 15	11 5 5 10	123 92 143 138 102	.6.5.2.2.6 .5.2.2.6	1 1 2 1	5 5 5		6.39 6.00 6.37 7.03 6.71		5 5 5	ND ND ND ND ND	2 1 2 1 2	46 33 29 55 29	2020	3 5 2 2 2	2 2 2 4 2	33 31 33 40 55	.85 .51 .38 1.49	. 104 . 123 . 122 . 106 . 100	7 10 12 13	3 5 5 5	1.31	60 54 52 48	.03 .05 .05 .03	2 2.3 2 2.4 3 2.4 2 3.3	54 .0 52 .0 52 .0 56 .0	3.2 4.3 3.3 1.2	6 3 1 8	1 39 5 9 1 8	110 205 80 100 205	
	A082 A083 <u>A084</u> A085	•	13 37	12 49 <u>39</u> 30		122 36 <u>1662</u> 376	16 60	2 3 4	7	885 1062	<u> </u>	.6 194 379	5 5	ND ND ND	2 1		.2 .2 7.3	2 12 43	2 2 2	35	.47	.073 .052	63	3	1.27 .93 1.05	77 49 38	012	5 1.2	0.0 7.0 7.0	1.1	5 🏁	37	145 695 4800	
	4086 4087 4088 4089		1 4 2	12 24	2 5 18 4	120 183 245 126	.3 .6 .9 .3	3 2	9 Z 6 1 7	227 4 168 7 631 6 796 7 298 7	.59 🧾	28 6 13 9 9	5 5	ND ND ND ND ND	1	50 47 24	.7 .2 .2 .2	8 2 4 7 2	2 2 2	45 47 53	1.43 1.34 2.21 .55	.075	6 5 6 7	4 6 6 4	1.61	48 43 42 52	.01 .03 .01 .01	2 1. 2 2. 2 1. 2 1.	47 .0 52 .0	1 .1 1 .1 1 .1 1 .1	1004	24 56 21 38	880 145 305 245 90	
	A090 A091 A092 A093 A094		3 4 3	13 23 29 20 12	8 22 8	108 104 100 88 86	.4 .9 .4	3 2 2	7 10 1 7 1	080 7 910 8 179 8 481 6 118 7	.49 .92 .97	7 20 35 21 14	5		1 1 1		.2.2.2.2.2.2	Z 4 8 2 4	2 2	72	.32 1.18 1.57	. 156 . 111 . 112 . 104 . 113	7 6 7	S 5 3	1.81 1.44 1.48 1.39 1.63	55 45 52	.01 .01 .01	4 2.º 3 2.0 2 2.0	59 .0 11 .0 07 .0 02 .0 21 .0	1.1 1.1 1.1	755	1 44 1 44 1 64 1 40 1 81	35 50 60 35 55	
	A095 A096 A097 A098 A099		1	10 11	19 11 59	86 68 52 67 108	.9	1 4 3	72 62 81	377 5 057 7 194 6 414 8 601 6	.07 .46 .10	20 6 10 30 17	5 5	ND	1 1 1 1 1 1 1 1 1	08 24 87	22222	2 2 4 5 2	2	46 - 64 -	4.21	.089 .103 .106 .108 .125	67	3 4 5 6	1.45	42 41 41 41	.01 .01 .01	2 1.5 2 1.7 5 1.4 2 1.2	56 .0 11 .0 50 .0 26 .0	1 .1 1 .1 1 .1 1 .1	1 2444	2 7 9 1 22 1 31 1 16	110 40 80 105	
1	A100 A101 A102		3 16 8	15 14 18	25 10 17	105 695 99	.7 .8 .5	4	9 2	065 8 011 6 175 8		27 44 51	5		1 1 1	26 50 71	12	7 6 F	2	57	.68	.142 . 95 2	8	4	1.64	52	01	2 2.0	0.0	1,1	7 🖉	29 23 30	55 95 4 55	

GRANGES EXPLORATION LTD.

			PAGE 1 OF 12
HOLE No.	Jeff Grid	*	Coul-3
J91-	LAUK PIU		900 ZONE
PURPOSE To te	ist doundip exte	nsion of 900 zone	below holes
107	4 and 7		
	,		
LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
L9+00N/0+63W	NAITM	270°	216.4 m.
DIP -60°	DIP TESTS 106.7 - 58° 59° 216.4 - 58° 58°	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE Out 4th	CONTRACTOR	CORE SIZE	DATE STARTED Oct 3/91
GFMCARTHUR	J.T. Thomas	BQ	DATE COMPLETED Od 4 91
SUMMARY LOG	<u></u>		
77.7-95.7 Black arg 95.7-130-3 Black tog 130.3-150.7 Black tog 150.7-216.4 Gross L EOH 216.4 m.	icon angilación tuli to la thic tuff to coarse tuft	vords. (FDAR) lapellituf - strong fr spilli (graded debr	BRic (101-turbideks). (FDDD)
83.3 Trace splats 10.2-110.65 mass 124.4-124.6 massive 163-164 Pyrites 199.7 Thace sp	inite-pale brown Sine pyrite 50% e pyrite 40% tringers+clissemiations 5°	% Red brown Sphel	lerite 190, Trace Pd

[|} C C ſ) [[] [

HOLE No.		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	æ	0	F 1	2	C
INTERVAL	C. L055	LITHOLOGY	* v		S	Μ	A	~
<u>C-6.1</u>		CASILG		·	_	-	-	-1
·		axidized fractured. It og feldspathic sondstore	-	_	_	-	-	-2
				-		-		
 	:	· · · · · · · · · · · · · · · · · · ·		-	-	-	– OKulu Lim	- 5 æd
6.1 -		Ltgy Feldspathic sordstone, sillstore, mudstone 73/7K		1, 75 / 7	- -		- -	• 7
		nudchip. The disseminated py - gth + gticarby. - unit Possibly Bowser? B.25-9.14 broken rubbly core - FAULT BK	- 16 -	75 .14	AAA	/?Y -	-	- 8 C
		9.26 Tr-py dess 9.36 mudchip (npupelast. 9.7 gt.v To" 9.9 gt.v 75° 10.0Tr-pydess. 10.15 gtv To"			Re /	-η -η		4421C 44715 47715 47710 - 10
		12.1 gt V 85° A themes trace chlorite in fibers. 12.18 fiberows gt V 2° to CA TREES stepped up hole				1 55,51	- 1- 1-	- 11 qhreo 32 - 112 - 112
					/R 150	י_ דיד	/ 9tr -	25 ⁻ - 13
		14.67-14.75 augellete. 14.8 bedaing? 35"			- +R 15	-	-	- 14 96 carb chl 50° - 15
		15.3 fold in Sondstone 15.55 Bedding 40° Tupy. Budding 15° 15.8-16.0 gtz V BX 15.92 polisted stip Fe. 16.0-16.1 Augulide.			er/s		Y.	9tr.v - 16 - 16
		16.6 tol 8.0 selly mudstone				ан 1 1 1	/qtv	- 17 20'
		18.65 ~ 19.0 mudelies	1/5	1.1.1	-	. - .	- /7+ -	- 16 - 15 - 19
		20.2 - 20.4 mudstore.	- %			-		- 20
				73			/ -1	230 21

GRANGES EXPLORATION LTD		-			
CODIAMOND DRILL LOG	PAGE	3	O	F 16	<u>ک</u>
HOLE No. J-91-16		• :			
		Τ.		м	

	INTERVAL	C. L 055	LITHOLOGY	c *		S	M	A	
			21.84-21.95 angellite		• • • • •	Ker			-1
Γ			21. 84-21.45 angellite 21. 8 FR with Fiberous gt CALL. CA]_	R	Fess	_	_	- 22
L			22.2-22.3 mudchips	1/5	17				
				Ľ-		· _	-	_	- 23
				· ·	12				
			21.0 fultgenge. 1000	-	14	peer	-	-	- 1a
_								/41	150
	· · · · · · · · · · · · · · · · · · ·		mudchips.	- I	P.	-	-	ľ - 1	-25
	· <u>-</u>			-	在二十	a			
	<u> </u>			-	1_	3	-	.	-26
			Braken nubbly core.		-	^ }		1/24	v.d.v
_			gt carb flooding Branfell + Venerg 30°	-		15	-	r -	- 27
			angulate sections above + below faultzone		TI	12			
_			any lift series above + Berentant 2000	- 1	-	1	-	-	- 25
	·				ju				
			nudchips	-	1	-	-	/qhu 30'	
				1_			-		- 30
					12				
			failt & gtz cabkis]	-	30	-	4	- 31
				·	1	P		And	-64·
Γ				- 1	5I	-	-	125	- 32
		`			har			Xat	ł
_	_,				1	_	-	- 11	- 33
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	50/				10	gter
				5	71	π	-	r _>~	-34
			· · · · · · · · · · · · · · · · · · ·	145	÷	125		3000	inegular
L				-	TT	ľ –	-	-	uregeler Igtiv -35
				1	·	•			
				1 -	-	-	-	-	-36 Ac 660
				1	1			77	
_					.[-	14	-	- Tak	-37 D
;				5/5	14	120		130	
				ſ -	ļ	-		13	F=BGn.v
_]_			_	<u>_</u>	- 34
					• •	6/			
		·		-	- I	1.	-	-	-40
			•		Γ.	a			
				- 1		- •	-	-	-41
			· · · · · · · · · · · · · · · · · · ·						9210
									42
								-	

 \mathbf{C}

HOLE No.	J	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	4	0)F [2	2	C
INTERVAL	C. L055	LITHOLOGY	*		S	Μ	Α	
·		10 cm geuge 42.5			200		/q+	41 25
				Ť.	يتر ا	-		-43 gecuby
		FAULT genge 43.0 to 43.6 Argelliste at 43.2 to 43.6		75	-	_	-	- 44
		0	_	· · ·	144			
	_	· · · · · · · · · · · · · · · · · · ·	- sele			-	-	-45
			- 40	1		<i>i</i> i		-46
			- 195	71	F#/50	1.1		·
·					-	-	-	- 47
			-1	-	-	1	7.	- 16
	-	- Pyrtie argellike pageents, minion dessensations 48.3-49.5	\$ 50	11/		+19	/9t2	25 - 49
· · ·				-71-	CR 10	-		
				-	-	-	- /gtv	- 50
······					-	-	/"15 -	-51
		graullife, at 51.2 51.7			/20		/a*	3S ⁺
···-		52.8-331 gtr carbiered fault BK			-	-	100	- 52 25°
·				11- 11-	-	-	/qr -	- <i>5</i> 3
· <u></u> ·			-	7.	×		91	60 -54
						e.	/av	55
<u></u>	+	Fault goinge 54-54.5 angellike 54.9-55.3 55.3-55.5		Ŧ		/~	∠.'I	-55 Hugitan gheadri
				11-		_	_	ghánh ^v •56
		56.1-63.1 argillaceous sulfstore. internet.	755	15k			15	
				-	-	- T+ - P(-	-57 carb5 ^b
]-	-	K	-	-	-58
····-		518.9. O.S. cm gk - carb vein filling searfult .50°	-	75·K	تنترثيهم		que	450
·		58.9 - 59.13 fault ganze 20°		- ·	F.	たれ	- av3	-59
				-	-		2	- 6 0
	$\left \cdot \right $:_	2/3	- 17- 17-	9.4	® ۵۰
							ave	•
		62.6. fait gauge 10 cm at carb Van filling		-		-	-	-62
		Junk was of a court in trans						63

	C	GRANGES EXPLORATION LTD	PAGE	5	c	ກະ 12	
HOLE No.	• •	J91-16					
TERVAL	C. LOSS	LITHOLOGY 63.1 Ltgy soudstone	بند ن 	2	S Free	M, **	A
		65.7 fault gouge - 9tr - corb filling		1- 1- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-	ία - (7) -	
		67.2 fauttgauge - gtr-carb v filling		17 12 12	- 4-	-	67 9hc.v.bx 68 9kc.obto 69
			 	71	14 - 4° - 4'	-	- 70 9+ c 5 C

アレーアレ

74

130

_

_

-

5/5 -

F3.

_

(4) /40

(二)、一八二 ダガジー引

gleculor. Aci

Tq2.

ġ.

Ĺ

2

े -

くう

18

.19

- 80

57

44.,

83

atv.

84

ahufungs

inegelow at "

74.6 faultgauge - gtz-conbrfelleg

[

Γ

Γ

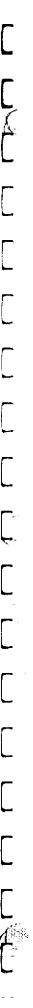
* (

÷

77.6-77.8 gauge - gt carb ven flooding - broken gt v. fregs. 40° 77.77 Black avgillete with most pale greenish fulf 95.71 bands strongly contailed at 1 at carb vens

tronaly contailed, gtz + gtz carb veins maphilie slips ₽ų, + dissemination Base CL متدحم carbon multigenerations of veint 🗕 del fragments 2 folds small high 520

FDAR · Footwall marker argellike at Calpine Jop of Datus Dearte unct)


83-85 strongly contacted aburden't graphitic ships - estequilar get reis 83.3 To sphalerile in bluish get verslet.

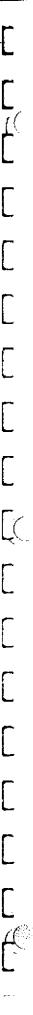
MINERALIZATION ALTERATION SAMPLE FROM TO WIDTH AL Ag As So	t														<u></u>						
MINERALIZATION ALTERATION SAMPLE FROM TO WIOTH Ppb gt pp gt pp gt pp pp gt pp pp gt pp pp gt pp gt pp <t< th=""><th>t</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>591-16</th><th>591-16</th><th>6</th><th>591-16</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	t									591-16	591-16	6	591-16								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	S6 ppm				ыютн	TO	FROM	SAMPLE	LIZATION ALTERATION	NERALIZATION ALTE	ALTERATION	LIZATION ALTERATION	LTERATION SAMP	PLE FROM TO	о нылли					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									<u> </u> '												╀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								<u> </u>												+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		1			╪
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					•																╞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					ļ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u></u>	····													+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					┦
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.		$\left \right $	· · · · ·											╀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										· · · · · · · · · · · · · · · · · · ·	······································										ļ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					╀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													<u></u>					1			T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-													<u> </u>			+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					$\frac{1}{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												······································							· · · · ·		╀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					Ţ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					╞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	31	1.9	2		78	77	A001	1-2%	diss 1-2%	10	5 1-2%		77 78	8	2 1.9	31	7		t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-0													╡
		19	36	51	4		74	78	Acc2			·····		<u></u>	2 78 7.	<u>4</u>	4 51	36	14	<u></u>	ł
" A005 81 82 2 26 39 19		18	32	3.8	10		80	79	A003					Acc	3 79 80	0	10 3.8	32	18		ſ
" A005 81 82 2 26 39 19		19		3.9	19		81	80	And					And	4 80 8		19 7.9		19		╀
																					1
		19	39	26	2		82	81	A005	·				A00:	5 81 8	2	2 26	39	19		╀

[((

[______

HOLE No.		GRANGES EXPLORATION LTD DIAMOND DRILL LOG 591-16	PAGE	6		if lo	2		
INTERYAL	C. LOSS	LITHOLOGY	+ 5	L	S	M	Α		
<u> </u>			2%	27.		P1 : .	/atv	54	
·		· · · · · · · · · · · · · · · · · · ·	-		-	- P4 -	5	-85 gtev:	
	\square		*⁄s -	-	-		-	-56	
		Tuy band at 55° / offset by frat 85'	4/50			55." ."iy	×	at1 -87	
•=•			5/40		\$1.0 120	10.1 . 14	<u>Ž</u> /3	5 ftv.	
			1/2-	-	-	- رمو	-	-56	
	-	50 	255	_	-	÷¶		-84	
			5	-	-	5%	Ī"	-90 170	
			-	<u>15</u> 4	-	- 1	12	- q;	
			5%				/qtu	25 -92	
				1 NJ		5.°' • "Pl	1%	wespyce	• ا يو
			-		-	-	-	-93	
			1	50/1	- ,	- ,	1795	-94	
			\$%	72) 12		40.' ''''	1 11 2	24	
		95.7 pale green to black argulaceous truff to	-		-	45. • •		95 2 V.	
		130.3 lapilli tull - strong flattering fabric 70-80	51	20	r	°РҮ -	15	1 1 1	
<u>. </u>		boudnaged gte veins in foliation	2.74		FR	ä	70 70	gt.e	
		never isatlinally folded at veris > + pytymatic	ł	-		عتبد	Pos	77 q±√	
	+	ateres (fating 4 on 5 to 1 elongation) ====================================	407	_	-	202	-	-91	
	+	argulaceoes from 95.7 to 113.2 -tuffs		⁷ ℃;	· _	h^	_	-99	
		Palequeenish 113.2 to 130.3 tut				54		ľ.	
		very pale (possible gtzeyer 119.15-119.32 + 1208-121.1	-	-	- ·	-	-	-100	
		121.9-122 dendiche file alkeration soakingsent along		-	_	• ?Y 	-	-101	
<u>_</u>		faliation from unequilar puncie vein	}	·. ·		74		9t-180	>
			- 5',	-	-	-	-	-102	
			70'	_	-	- ?y -	-	-103	
<u> </u>	┨──┨					PY	/9# 30		
	1	gte vern pulled apart fragrents starting to notice	i _	. – 4	I →	- 1	- i	-164	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG


J91-16

PAGE 6A OF 12

HOLE No.

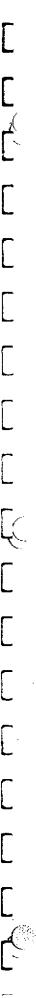
MINERALIZATION ALTERATION	SAMPLE	FROM	то	мтоти	Au ppb	Ag g/t	As ppm	S6 ppm	
	<i>Fl</i> ∞8	84	८इ	 	4	0.5		6	
	A009	85	86		2	03	15	2	
	Acio	86	87		2	0.3	15	2	
	foit	67	88		4	0.2	16	2	
	AOIZ	88	89		7	0.3	13	2	
	A013	89	90		7	0.4	17	2	
	A014	90	ঀ।		3	0.2	-29	12	
	Aois	91	92		3	0.1	43_	_//	
	 A016	92	93		2	05	47	10	
· · · · · · · · · · · · · · · · · · ·	Aort	ዋ3	94		3	0.3	45	7	
	AOIB	94	ঀऽ		ς	0.2	35	4	
	A019	95	96			(), Z	21	2	
	A 020	96	97		3	0.1	र	6	
	Aozi	97	98		4	0.1	52	5	
	Aozz	98	99		2	<u>0.2</u>	16	8	
	A023	99	100		5	01	23	9	
· · · · · · · · · · · · · · · · · · ·	A024	100	101		3	0,1	44	8	
	A025	101	102		2	0.1	23	9	_ _
	Aozo	102	103			0.1	29	5	
· · · · · · · · · · · · · · · · · · ·	Ho17	103	104		1	0.2	14	6	<u> </u>
	Aoz 8	104	ios		$\frac{1}{1}$	0.1	16	9	-+

HOLE No.	591-16			•.	of 12	<u> </u>	4	
INTERVAL	LITHOLOGY	بر ن		S	Μ	Α	1	
			 	3	11		/og	
		<u></u>	- 2c;	-		_	- 1~6	
·			-		- P.1.	-	-107	
			-	-	- 01	- qtz	- 108 - 20	
			-	-	P <u>I</u> . 	-	- 109	
	110 2- 110 1-5 mars		-	-	- Pile	-	-110	
	110.2-110.65 massive pyrite 50-60%		-	-		-	- 14	
	· · · · · · · · · · · · · · · · · · ·		-	_	_	-	- 112	
			-			_	-13	
	113-2-130-3 chloritie greenish telf and lapilli fulf		ZCA	100				
			_	-	- 'i	-	- 114	
·			-	-	-		-115 9tr-cb	
			-	-	- -11	-	-116	
			_	-	-	-	-47	
			-	-	íc - ;	-	- 118	
	119.2-119.35 Rity. qtu eyes?		-	-	يم م	-	-119	
	1 11- 11 1- 23 Kiry - 4to eges			_	1. 2.	-	-120	
	120.8-121.1 Rityoute? qtue eyes?		24	-	, 1	_	-121	
				_	义	_	-122	
			-					
			7CL	-	P	-	-lz 3	
	124.4-124.6 massine py 40-50%	<u> </u>	-	-	-	-	-124	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

page 74

orla


1

HOLE No.

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ыютн	Au ppb	Ag g/t	As ppm	Sb ppm	
	Aozq	105	106		1	6]	25	4	
	A030	106	107		3	0.2	27	10	
	A031	107	108		3	0.1	30	9	
	A032	108	109		2	0.1	53	7	
	A033	109	ιισ		2	0.3	130	13	
					5	1.0			
nassue pyrte 50%			111				313	14	
	A035	111	112_		7	2.2	56	12	
	A036	112	113		_/	1.6	3/	9	
	A037	113	114		1	1.2	31	8	
		ււգ	115		/	0.5	16	2	
	A039	แร	116		_/	1.1	27	8	
	A 040	116	117		3	0.5	17	3	
	Po41	117	118		3	0.3	35	2	
·	Ac42	118	119		3	0.3	20	2	
	A043				2	٥.٤		2	
	A044		121				27	7	
· · · · · · · · · · · · · · · · · · ·									
· · · · · · · · · · · · · · · · · · ·			122			0.3		5	
	Ac4b		123			0.2		4	
	fl047	23	124		6	0.6	24	9	
Massire pyrte 40%	A048	124	125		120	6.9	14.3	10	
	A049	125	17.6		14	0.6	77.	2	

	C	GRANGES EXPLORATION LTD							
HOLE No.			PAGE	8	C)F);	2		17.0
	2	91-16							
INTERVAL	C. LOSS	LITHOLOGY	c +	L	S	Μ	A		
			51			Ť	/gtw	126 Zu	
		· · · · · · · · · · · · · · · · · · ·		-	-	-	7	-127	
				ZCX		- rj 21-	/9tv	30 -121	
] <u>-</u>			24 •			
			12		-	-	-	- 124	
	12'	9-130.3 Large veneralar fragrents . cal-chl nfilling Jaborie appears to be loso	-	200	,	РЧ			
	+ +	Jabrie appears to be laso	- <u> </u>	<u>م</u> تقا		-	-	- 130	
	130	0-3-150-7	90	_	_	70 ⁻		- 151	
		Sequence of volconic debuisflows with	50	1					
		Coarseash to Lapelle base grading uphale		12	-	è	-	-132	
		to fire asgellaceous ash.	50-	54-97.					
	$\left\{ \right\}$	- a variety of pagnest types, large pagnents		1	750	-		-133 1920arby	
		- cobundant po dessenerated in fire ast matrix	-	20] 778	جو ا		- 134	
		3-5%		~~~	775	~	-	+61	
		- matux supported.		-	-	-	-	-135	
		- weak to moderate foliation	4	2.98	سر ا	-	1	28 14	
	$\left\{ \begin{array}{c} 1 \\ \end{array} \right\}$	130.3 - 133.6 gravilaccons tuff with some and ask whereas			-	-	K-	-136	
		133.6 134 Coorse Ash. to Lapelli				-ei-		ater. 137	
				ZD	-	- jo			
		134-136.1 fireash - angulacous to. 134.8		246	_	- 1	-	-136	
<u></u> <u></u>		tufacion open 134.8-135. 2	- %						
	╉╾╉┈╴	mothed angelecune full 135.2-136.1		-	-	<u>æ</u>	-	139	
	┨╴┨───	136.) Lapilli to 137.9.	- <u>-</u> %	1		5-	ł _	·	
					-		-	-140 -	
		137.9-138.4 fine Ash		200	1.		-	-H- 72 v	
	 	138.4-139.9 Capili	_	_	10	Po		22 ~	
<u> </u>	╂╌╂┈─	139.9 contact revery at 75680		19	-		-	-N2	
	+ - + + + + + + + + - + + - + + - + - + + - + - + + - + + - + - + + + - + - + + + - + + - + + + - + + + + - + + + + - + + + + + - +	139.9 - 140.2 fine ash 140.2 - 40.9 lapili	-					9160	
		140.9 - 141.2 fine Ash	- -	- T	-	-] -	-H3	
· ·		141.2 - 147.2 Lapilli]_	1	_	_	-	-14	
		147.2 - 150.7 firetuft.		1	FR				
		1		-	-	-	-	145	
			-						
····	+			-	-	-	-	~ 6	
·	╂╴╶╂───		131	1				47	

and a prime contract

J91-16

PAGE BA OF 12

HOLE No.

0.4 14

0.2.17

4

2

21

18


			_	<u>.</u>				<u> </u>
MINERALIZATION ALTERATION	SAMPLI	FROM	го	WIDTH	Au	Ag g/t	As ppm	Sb ppm
	Ac50	126	127		5	0.1	32	2
	A051	127	128		2	0.1	51	2
							<u> </u>	
	Ac52	12.8	129		10	0.4	3z	2
		129	130		2	0.7	45	6
								1
	A054	130	131		4	0.3	22	2
	A055	131	132		17	0.6	34	3
······································					1.7	0.0		
	Aos6	132	133		12	1.2	58	5
						L		
	flo57	133	134		3	1.2	83	3
	A058	134	135		Z	1.3	204	10
· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·	Ao 59	135	136		1	1.0	107	8
	A060	136	137		2	0.8	104	8
	-	· · · · · ·			·			
	Acei	137	138		1	0.8	39_	7
	A062	138	139		14	1.3	97	/3
					- /			
	A063	139	140		3	0.9	40	7
	A064	140	141		1	0.8	48	6
						2.0	* <i>4</i>	9
	A065	141	142		44	1.6	25	7
					70	7-		8
· · · · · · · · · · · · · · · · · · ·	A066	143	143		28	1.5	45	
	A067	143	ાવન		112	2.3	2,0	7
· · · · · · · · · · · · · · · · · · ·	<u>no68</u>	144	145		152	1.Z	61	2
	_{}							┞╼╼═─╌┨

A069 145 146

147

A070146

HOLE No.	J91-11	<u> </u>		= 9		of 12	<u> </u>	
NTERVAL	\$507	LITHOLOGY			S	M	Α	
	<u>ن</u>		ں 1947	10		Ka		[[] 7
	147.2.	Fire hiff.		7 -		Ke 50 10	*	¥\$
				1				•
					-	-	14	19 i 70
				_	-	-	19	
	150.7	green chloritic feldspathic fuff to Coe		1-	1 :			_
	216.4	tuff intermedibile composition (Andesite) 51	1 ZA-4	-	-	19	57.
		- Coarse pagnents occasionally hove bleached.	-		_	-	15	Ż
		- natur supported. dKaun abbutic male forge - debus flows coarse to foring up at fors.	10 py - 51		5/30			~
	<u> </u>	- gt - py ven 1-2%			5		19120 -15	5
		- FR steep 20'CA. - P.J. and D& dessenvetors, verlate, blue	4. 2-27	-	Fe/ 155	-	- 15	
·		- sprinty of pagest types		Ì	7.5	1/1	/9125 157	
<u></u>	<u> </u>		51	7	3			3
		Concer Lithic tuff sequence		-	- چر	Ţry ,	7 -15	2
<u> </u>				-	12	/://	7 -15	7
		· · · · · · · · · · · · · · · · · · ·			Fe/30		quet	ſ
_:				-	í –	-	158	•
·				-	-	-	/159	7
							- 160	
		<u>.</u>					- 160	
				-	-	- دين	161	
				_		يخ. - ا	162	
		·				Py.		
	163-164	stragers and disseminations of py 5% Trace	u Ro -	-	-	₽.Y		
		gte varing 5%		_	-	Pe ⁻	-154	1
		red brews sphalerite wespy bonds 163.5-616:	3.6 34	1. •	·		- 19te	
				-	-		165	-
	166.0-166.1	gh blotchy-carb. The cost then ghe open	Space _		_	74	-166 gh.	

GRANGES EXPLORATION LTD

PAGE

9A OF 12

HOLE No.

MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Au 140	Ag g/t	As ppm	St ppm	=
	Acti	147	148		22	1.0	30	11	
	A072	148	149		14	0.1	14	3	
	A073	149	150		19	0.3	5	3	
		ISO			11	0.2	4	4	
	A075		152			06	90	4	
	4076					0.3		2	
								3	
		153				0.6		5	
	A078	154	155			0.3			
	<u> A079</u>	122	156_		9	0.6	7_	2	
	<u>A080</u>	156	157		8	0.5	6	2	
	A081	157	158	 	5	O.Z	80	2	
				+					
		* .	·		<u> </u>				
	Re&	161	162			0.2	6	2	
		162			37	1.6	184	12	
Dubal El calabeta 19.		163	Ĺ		{		379		
Pyrikstringers 5% sphalerite 1%		164						8	
				ļ		0.3		2	
		165	166				ļ		
				- <u> </u>		<u> </u>	<u> </u>		

	<u> </u>		PAGE	10		F	<u> </u>	
HOLE No.		591-16		-*				
INTERVAL	C. L055	LITHOLOGY	* v	L	S	Μ	Α	165
		Andersitie lethic - hiff miner come hift " pale green		20		ΡΫÆ		927 - 169
····	-	The blacks por py, sinor gt & gt carb black ven Locally dk que chlorite	5	28.C]F# 35	70		
		Locally dk Gues chionite				- - Po	-	- 170 94 c
		· · · · · · · · · · · · · · · · · · ·		-	-	-	20	-171
			-	-	-		-	-172
·		Locally bleached - silica alti-		-	-	το	- .5i	- 123
·	-			-	ĪFR	_: Po -:		-{74
· · · ·				-	/ 30	-		-175
				-	CR - 80		-	- 172
					_	ż:	1	64161 - 171
			_			P.		
·				_		To.	_	-17\$
				-	-	- . ?.	-	-179
				-	- ::::::::::::::::::::::::::::::::::::	-		-160 712 -
				-	ĪFA	-	-	-181
	+			-	/ 90 	-	-	-182
· · · · · · · · · · · · · · · · · · ·	—				- 75 - 75	-	-	-183
				-	-	-	-	-161
				-	1	Pe ; -	-	-165
					_	_	-	- ,86
						PA		1.00

PAGE 10A OF 12

HOLE No.

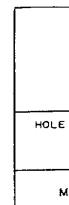
C

[

[[[[

HOLE NO. 59[-11	6										
MINERALIZATION		SAMPLE	FROM	то	W107H	Au ppb	Ag g/t	As ppm	S6 ррт		
			• .	•		*-1					
				. <u></u>			<u> </u>				
						·					
			`	-							
		A087	172	173		21	0.6	13	4	_	v
		A088	173	174		38	0.9	q	7		
Pyrite 1-3%											
		મિઝ્ક્વ	174	175		33	0.3	9	2		
									ļ		
								_		·	
· · · · · · · · · · · · · · · · · · ·						<u> </u>	<u> </u>				
						·		<u> </u>			
<u> </u>						 		· · · ·			
	· · · · · · · · · · · · · · · · · · ·					[i		
					<u> </u>	<u> </u>		 			
				 						}_	
						1					
										<u> </u>	
									┨	 	
		AO90	181	188		44	0.1	5	2		
								1	4		
		<u> </u>	188	1189		44	0.4_	20	۲		
l	a a a a a a a a a a a a a a a a a a a	. I	1	1		Ι.	1	l	.1	I !	l

GRANGES EXPLORATION LTD


PAGE 11 OF 12

.

1. (41) 1.

HOLE No. J91-16

INTERVAL	C. L055	LITHOLOGY	א נ	L	S	Μ	А		
		199.6. chalk wh K-spar of gh.V.	50	246	E R	Ŧχ		189 qh v - Mo	149. /Ksp
		Intermediate (Andesite) fire to redium tuff chlorite		70 K	-	î y	\$] av	30 - 191	A 92
		feldspathic in places, weak to nod fabric pale green, gt + gt carb less possibly some fellspar				_	/av	50	A9
		Trace tol % pyrite + pyriteotite			ER ST	-		-193	
						-ry -	1	-44	A9
,						9.	19	58 17 -195	R9
				_		; 7a -	*		49
· · · · · · · · · · · · · · · · · · ·	+		-	_		RY/R −E	-	- 147	r
			-	_	Fre -	-	_	-198	Ą
	-		75	-	. –	-	-	- 199	Ą
		199.7 speet of ledbraw sphalenite T- py + po.		_	_	- 17 -	5	g√. -Z00	Ą
			-	-	_	-	-	-201	4
<u></u>			-	_	-	Po 		-202	Ą
			-	_	-	Ř <u>ή</u>	-	-243	
			1 -	_	-	-	19130	+ a €-	
	+		1 -	-	-	74	-	- 245	-
			-	-	- FK	- - . Py	-	- 206	
·	+		-	-	10	-	1902	-207	
	+	FAult 203 - 209. 6 9t2 - carb vering	52	-	J.c.	- -	- 	- 208	
	+		1	1	1.0	1	1 and	1	,

[

Γ -

[

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 12 OF 12

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ы ютн	Au ppd	Ag g/t	As ppm	Sb ppm	
	A092	189	190		64	0.9	35	ଷ	
	<u>A093</u>	190	191		40	0.4	21	2	
		191	192		81	0.4	19	4	
	Baces.								
	Aogs	193	194		79	0.4	20	2	
	A096	194	195		22	0.9	6	2	
	A097	195	196		31	0.9	10	4	
	A098	196	197		16	0.4	30	5	
	A099	197	198		29	0.4	17	z	
		198	199		23	0.7	27	7	
	A 101	199	200		30	0.8	44	6	
	A 102	200	201	·	47	0.5	51	5	
	\$ 103	201	202		75	0.8	84	2	
· · · · · · · · · · · · · · · · · · ·						<u> </u>			
					 		<u> </u>		
				<u> </u>		<u> </u>	· ·	<u> </u>	
								<u> </u>	
					<u> </u>		<u> </u>		

	GRANGES EXPLORATION LTD STATES	AGE	12	 0	F 12		
HOLE No.	J91-16.		. :				
INTERVAL		÷ c		S	Μ	А	210
	enternediate (Andesite) redium tofise tyff: Chlorike pale green, tracs pyrite / pyrholite,	-	2.8 _K	FR/PO -	: Z	_	-211
			-	[A 30 -	ון. אי –	-	-212 -213
		 50	-	_	. P 19	/q•30 -	-214
		-	-	-	-	- -	-215
			-	 	-		216.4 Eoff
[Eo# 216.4 m.		-	-	-	-	-24 -51
L			-	-	-	-	-
Г		╡ - ┥ ┥ -	-	-		-	
<u> </u>		- - -	-	-	-	_	
			-	-	-	-	- -
		- - -	-	-	-	. –	-
		- - - - -	-	-	-	-	_
			-	-	-	-	- ·
·			-	-	-	_	

a second s

GRANGES EXPLORATION LTD.

PAGE 1 OF 19

HOL	Ε	ħ

JEFF GRID

UNUK RIVER PROJECT

COUL-3 900 ZONE

PURPOSE

TO TEST DOWNDIP EXTENSION OFF 900 ZONE INTERSECTED IN HOLES J91-4 AND J91-7

LOCATION 9+00 N /0+63 W	GROUND ELEV. 417 m (ALTIM)	bearing 270°	total length 177.39 m
DIP - 45°	DIP TESTS 73.15 m - 49° 30'	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE JEFF TESAR OCT. 06. 1991	CONTRACTOR J.T. THOMAS	CORE-SIZE B. Q	DATE STARTED OCT. 04. /194 DATE COMPLETED OCT 00.

SUMMARY LOG (m)

00 - 4:57 OVERBURDEN

4.57 - 76.80 INTERBEDDED SANDSTONE, MUDSTONE AND SILTSTONE

76.80 –88.80 BLACK MUDSTONE (H-WALL BRECCIATED , FAULT ZONE) WITH MINOR BANDS OF FINE TUFF. 88.80 –95.80 TUFFACEOUS MUDSTONE INTERBEDOED WITH ARGILLACEOUS TUFF, IN PLACES TUFF BRECCIA. 95.80 –106.82 FELSIC TO INTERMEDIATE TUFF WITH MINOR ARGILLITE

106.82 -110.90 INTERMEDIATE ARGILLACEOUS TUFF

110.90 - 117.20 INTERMEDIATE LAPILLI TUFF

J91-17

117.20-119.50 TUFFACEOUS ARGILLITE

119.50 -126.20 INTERMEDIATE COARSE TO LAPILLI TUFF

126.20-129.30 FAULT ZONE

129.30-136.56 INTERMEDIATE FINE TUFF WITHIN DARK ARGILLACFOUS MATRIX

136.56-146.52 FELSIC TO INTERMEDIATE LAPILLI TUFF

146.52 - 156.50 INTERMEDIATE LAPILLITUFF WITHIN DARK ARGILLACEOUS MATRIX

<u> 156.50 - 169.20 INTERMEDIATE MEDIUM TOLAPILLI TUFE</u>

169.20-177.39 INTERMEDIATE MEDIUM-TUFE

SIGNIFICANT HINERALIZED INTERVALS (m)

HOLE No.			AGE	~		f <i>19</i>		:
	9	丁91-17						
INTERVAL	C. L055	LITHOLOGY	÷ ¢	L	S	Μ	A	σ
00 - 4.57		OVERBURDEN						
	┝╾┨		-		-	-	-	-
·				DEN	_		-	_
				Bur				
		· · · · · · · · · · · · · · · · · · ·	-	VERG		-	-	-
				OVE			1	
				-	-	_	_	· ·
4.57-76.80		INTERBEDDED SANDSTONE, MUDSTONE AND SILTSTON	F _	_		.	-	- 5
		Light-grey to grey in colour felds pathic sandsto	e a					
		Clastic texture with fine to warse-grain size interbedded (in places party) with Black	5-	- '	-	-	-	-
		size interfledded (in places panty) with black		_			_	
<u> </u>		Buecciated I faulted. Mineralized by traces] -			•		
		to 1/2 % Ryrite, 5- 10% white quartz-carbona	<u>-</u>	· -	-	-	-	ŀ
	<u> </u>	stringers at all ample to the core axis in places	k.	ľ.		•	4-1	
	\vdash	seatly deloritic.	-		-		-	ŀ
						_	_	10
		4.57 - 15.44 Grey, medium to coarse - grained sandstone	17	1				
	-	with bracture -planes controlled limonitic	/ -**	-	-		-	╞
		atteration . Fisuall sontact sharp, 55°	ы. Пол	7412-2		•		
			-	1	-	-	-	Γ
] _ ·			·	-	ŀ
	 							
			1	1 -	-	-	-	F
			6		<u>.</u>			15
	╂──	15.44 - 17.40 Black and dark - grey interbedded mudstone		1.8	1		\checkmark	
		and sittstone with minor sandstone. H-wall	//	1 ×	-	-	-	F
<u> </u>	<u> </u>	contact 55°, shorp. Foot-Wall contact 45°, sharp	k.	12	<u> </u>			
		17.40-22.60 Grey, coarse to medium-grained feldspathic	-	17			-	F
	╏──	sandstone with minor bands or inclusions of	1.,	Ē	ł	_	-	
		argilite. H- Noll contact 45° charp. Fridl		12				
		contact 60° sharp	F i-	-4 	-	-	-	-
	 		4	トレ	[`		1	20

GRANGES EXPLORAT							<u>.</u>	PAGE	3	0
HOLE No. J91-17										
MINERALIZATION ALTERATION		SAMPLE	FROM	TO	W107K	Au ppb	Ag g/t	As ppm	S6 ppm	
										_
· · · · · · · · · · · · · · · · · · ·			· · · · · ·			· · ·				
						· · · · · · · · ·			 	
							 	· · ·	ļ	L
									 	
			÷							
	· · ·							· -		
								<u>.</u>		
								·		
							 	<u>,</u>		╞
	-							<u> </u>		-
· · · · · · · · · · · · · · · · · · ·		·				··				-
					·					
······································										-
to By; sampled as wall	<u></u> H -	001	15.00	15.44	0.44	31	0.1	16	2	
tr~1% Py; Blobs, speaks and dissem	- 14	002	15:44	16.44.	1.00	8	0.1	21	2	
	-H	003	16.44	17.40	0.96	2	0.j	16	6	
· · · · · · · · · · · · · · · · · · ·					0.55		0.1		4	╞
tr Py ; sampled as wall				17.12						<u> </u>

<u> - 1</u> GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** PAGE 4 OF 19 HOLE No. 了91-17 C. L055 S INTERVAL LITHOLOGY Μ β S 20 ž 22.60-23.80 Black and grey, interBedded mudstone and sillstone, H-Nall contact 60°, sharp . F-wall contact 550 (23.30-23.80 Brecciated, Fault) F-wall contact flooded with guartz-carbon ate $\boldsymbol{\lambda}$ 2 matrix 25 23 80-25,75 Grey, medium-grained fuld spathic sandstone ંદ્ with minor mudstone inclusions. Il-well contact 77,74 550, tharp. F-Wall contact 55° sharp 25.75 - 27.25 Black and grey interbedded (peoply) mudstone (X) X 7(X) and siltstone H-wall contact 55° charp. F. wall !! contact 75", sharp 27.25 - 29.25 Light-grey (tuffaceous?) medium grained sandstone. Weakly phyllitic with the network イト 30 of narrow quarty-carbonate stringers. H-well 12 Y-Z'(contact 75°, sharp. F-wall contact 70°, sharp Foot wall is marked by pyritic stringers and quarty-carbon winlet on the contact. 29.25 - 32.65 Grey, medium to coarse grained sendstane. H- wall contact 70° sharp. F-wall contact gradational. In places minor muditone inclusions. Grey medium grained feldspathic sandstone 32.65 - 40,03 35 5-2 with black mudstone. H-wall contact gradationed C6-2 B+ F-Hall contact 750 (35,30 - 36.20 Breccia , fault, flooded with quarti-carbonate matrix contact walls not discernable, poor core recovery.) , 173 211 72 40 Incàl -

GRANGES EXPLORATION ED CALLER CONTRACTOR AMOND DRILL LOG 6 OF 19 PAGE HOLE No. 791-17 C. LOSS S INTERVAL LITHOLOGY А S 40 40,03 - 43.40 Grey, medium grained sandstone. H- wall contact 75° F wall contact 60° sharp. 4 2 ₿≯ 43.40 - 44.10 Breccia / Fault Hudstone and sandstone tragments flooded with carbonate -quarty matrix H- Nall contact 60° Marp . F- Noll contact 70° 45 Internal graphitic and weakly deloritic. ドフラリる 44.10 - 50.70 Grey, medium to coarse - grained sandstone . interladed with bands of argillite. F-Hall contact 70°. H- wall contact 70°, 604 NTX 45 sharp 50 si-l 50.70 - 51.80 Breccia / Fault. Fragments of mudstone 63 and sonditione within ankeritic matrix (one Broken up heavily with poor core recoverys, -H-wall contact 70° F-wall contact not 73,672,67 discernable. 57.80 - 53.60 Black argilite with minor bands or inclusions of sandstone. F-wall gradational .55 53.60 - 61.60 Grey, medium to worse-grained feldings this cand do ne. H-well contact gradational. F-wall contact90. In places quarty-carbonate <u>stringers</u> ZITH 60

—	L LOG			<u></u>			. .	PAGE	7	
HOLE No. J91-17										
MINERALIZATION ALTERATION		SAMPLE	FROM	то	WIDTH	Au pyb	Ag g/t	As ppm	Sb ppm	
										┢
										L
									· · - · · · · · ·	-
· · · · · · · · · · · · · · · · · · ·										┝
										Ļ
				·						L
										Į
		 			·					┞
								· · ·		t
										╀
										Ĺ
tr-1% Ry, specks, dissem.	н -	013	5335	53.85	0.50	7	0.2	23	3	
2-3 % Py, marrow string blobs dissem, (a-107H -	014	53.85	54.86	1.01	173	0.8	2531	104	t
•				55.36	1	· · · -				ł
tr Ry; sompled as wall	<u>.</u>	015	27.80	57.56	0,30	0.3				ţ
										╞
	<u> </u>									t
										╞
				-						t
										╀
		_ _		<u> </u>	<u> </u>	╂───				ł
	<u>.</u> .						1			Į
	<u>.</u>									$\mathbf{+}$
		1	1	1	I	4		£	i	+-

GRANGES EXPLORATIO	N LTD LOG			.				PAGE	9	of /	9
HOLE NO J91-17											
MINERALIZATION ALTERATION		SAMPLE	FROM	ra	WIDTX	Au ppb	Ag g/t	As ppm	S6 ppm		
· · · · · · · · · · · · · · · · · · ·											
tr~1% By; sampled as well 3 TT: : stringers Blacks Snecks			70.30 70.90				0.2 0.4		3 4		-
3 7. Ry; stringers, blobs, specks.	И	018	71,63	72,70	0,91	7	0.4	77			
19 By; 610Bs, specks, dissem.			7 <u>2.7</u> 0 73,50	l			0.2 0.5		2 4		
<u> </u>	Н	021	75.21	76.81	1.60	8_	0.6	40	3_		
1%, Py, Tr-1%, SL; specks, dissem			76.81 77.80			I	4.7 3.7		1) [*] /2		
y							2.4		<i>1</i> 1 3		
			79.10 80 80			1	0.9	l '	2		
						1994 					

C [[[

GRANGES EXPLORATIONETD AMOND DRILL LOG PAGE 10 of 19 HOLE No. J91-17 2050 А LITHOLOGY INTERVAL ى 80 739 121)(1)(1)20-8 carbonate stringers at all angles to C.A. interbedded with narrow (Imm - Icm thick) bands of pale se-| 6-2 green fine tuff. In places weakly phyllitic. In places si-z Neakly sericitic. 76.80-83 Crush breccia | Fault zone. Foot-Nall contact sharp 45° Fragments of muditore in places sheared, flooded with quarty-carbonated matrix In places gauge . Core Broken up beavily with poor core recovery in places. In places phyllitic 85 traces to 2%. Pyrite; narrow bands. Tr of sphalerite (pink sphalerite) as specks. ት ት õ Ę 88,80 - **15.8**0 BLACK TO GREENISH, INTERBEDDED TUFFACEOUS MUDSTONE ARGILLAGEOUS TUFF, IN PLACES TUPF BRECCIA 90 H- Wall contact 80° shorp. Foot-wall combert 10 1, (2A-B), (TJ) Predominantly amilareaus kiff to taff breacia Ŋ / of greenish grey colour, with blackish bands of argillite or argillaceous tuff (tuff with argillity incluience) In places intermediate fine to medium-grained taff. Ry disc minated and an - 2 - stringers 1- 2% throughout the interval 94.60 - 95.80 Intermediate fine to coarse - grained argitaceous to f 2A18j 95 7 95.80-106.82 LIGHT-GREY, FELSIC TO INTERMEDIATE TUFF WITH MINOR ARGILLITE 3r2A+D(1) H-Nall contact 70°. F-Nall contact 35° Predominantly fine to lapilli tuff with isolated bands of dark grey to black argillaceous (<u>1</u>-1 tuff. Internal weakly chloritic, mineralized by pyritic stringers and narrow bands . Ry : 2-3 9. through - out the interval 3-5% gamte -carbonat chinger. 3 98.80- 100.30 light-gray felsic to intermediate tuff interBedded 3-2-4-100 lin places poorty) with black argillite.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 11 of **/9**

HOLE No.

[(([

[

Γ

Γ

MINERALIZATION ALTERATION		SAMPLE	FROM	TO	нтотн	Au Jpb	Ag g/t	As ppm	Sb ppm
						••			
-2% Pg , tr -1% 51, 66085, specks, dissem.	H	-027	82,30	83,60	1.30	14	0.3	19	2
2% Ry, tr SL , narrow Bands , specks .	H	028	83.60	g 460	1.00	3	0.5	24	2
<u> </u>	И	029_	84.60	86.Io	150	8	0.4	32	2
<u>/1</u>	h	030	86.10	8800	1.90	2	0.2	27	2
			<u>.</u>						
									· · · · · · · · · · · · · · · · · · ·
					<u> </u>	·			
H-Mall: 2-3 % B , F wall 1 % By ; string.	Н	031	88.00	89.60	160	1	0.1	4	2
~2 % Ry ; narray stringers, specks, discom.	И-	032	89.60	91.10	1.50	17	0.1	11	2
÷									
<u> </u>	h-	033	9110	92.60	1.50	10	0.Z	25	2
			81.0	 91. J.O.					
	<u>п</u> .		74.60	94.10		<u> </u>	0.1	13	2
<u> </u>	И	-035	94.10	95.80	1.70	1	0.1	32	2
<u> </u>	H-	036	95.80	<u>97.30</u>	1.50	/	0.1	10	2
	н	020	917 20	98,30	100	Z	0,	16	2
-3%, Py - 11									/
->/. ry - 11 -	<u>н</u>	USB	10 80	10030	130	_/	0.1	47	4
	•								
						-			

HOLE No.		J.91- 17						
INTERVAL	C, LOSS	LITHOLOGY	c ¥		S	Μ	А	10
						\dot{c}		
			-	-	-	iγ	-	F
			<u>,</u>	ŝ	· ·	1/-	-	-
			H 7	ğ		1	1	ł
·			. <u></u> .	7 7	-	-	-	F
				M	: 	1	i 	Ł
·		104.70-105.00 Breccia Frault. Fragments of argillite and	5		80	1	51-3	Ē
·····		tuff flooded with quark-carbonate groundman H-wall contact 80° F-wall; 80°, Bath sharp.	1	117 147		-1	6-2	ţ10
	12.	H-Wall contact 80° F-Woll: 80°, Both sharp.						
or ne lito de		The Advise The Advise CARDY WITH RULE OVATE ARCH ALBOUT	-	\mathbf{V}	-	-	-	ŀ
06. 82 - 110. 90	<u>ال</u>	BLACKISH TO DARK GREY, INTERMEDIATE ARGUACEOUS				-	_	
		H-wall contact 35°, sharp marked by quarty-	- 40			•		
		carbon stringers F-Hail contact gradetional	<u>_</u>	e S	ίθ_	7	-	+
· · · · · · · · · · · · · · · · · · ·	 	Predeminantly intermediate medium-grained to	•	20-		-		
	-	Lapitli tuff with argitlite conds and inclusions. 3 7 - 57 quartz - contonate strippors. Locally	- 	60		<u> </u>	-	F
···-	1-	brecciated.	-	0	_		-	
290-117.20						1		
··		LIGHT-GREY INTERMEDIATE LAPILLI TUFF			<u>.</u>	-	-	ŀ
. <u></u>		H-wall contact gradational. F-stall contact 55 Locally amygdaloidal fragments predominant.	an an Angel An Angel	р		'		
		5% narrow quarty-carbonate stringers at	ند. منبع الم	· · · · · · · · · · · · · · · · · · ·		シ	-	ſ
		all males to C. A. Mineralized by py 5%.	2	: >		-	-	ŀ
		throughout the interval.	51	8		A		
				1 2	~	1	-	ŀ
···				N	T.	Ŀ.	_	L
·				-		SL		
			-	-	• - .	A,	-	╞
	_		•					
n en lin ra		THEFACEOUS ADGULLITE Place to day on in solution	-	/] -	1	-	F
7. <u>20 - 19.50</u>	+	TUFFACEOUS ARGILLITE Black to dark gray in volour. Hwall contact 55° . F-wall contact 70°				2	_	
		Predominantly argillite with Minor Bands and	- 43	<u>`</u> ¥	in i Second			
		inclusions of medium grained intermediate tof		4				1

[

[

[

[

GRANGES EXPLORATION LTD

PAGE 13 OF 19

HOLE No.

C

C ((**C**

[

[

[(

791 - 17

MINERALIZATION ALTERATION	···	SAMPLE	FROM	то	MIDTH	Au ppb	Ag g/t	As ppm	Sb ppm		
t <u>r- 17. г</u>	И	039	100.30	10/.st	1.20	5	0.1	IJ	2		<u>↓</u> ↓
Py 2-3%; narrow stringers, specks, dissem.	Н	-040	101.50	103,00	1.50	9	0.	43	7		
1 % By ; specks, dissem.	H	- 041	103,00	194,50	1.50	2	0.1	13	2		
. Y. Ry ; narrow stringers, specks, dissem.	t	1-042	10450	106,00	1.50	3	0.2	20	5		
1~2% Ry; specks, dissom.	H	-043	106.00	107.50	1.50	4	0.1	22	5		
2-3%.Py — 11 — , striagers	Н	-044	107.50	109.00	1.50	2	0.1	٢ĩ	8		
1-2% Ry; speck, disseminated	H	-045	10900	11050	1,50	2	04	28	3		
<u> </u>	Н	046	10 <u>,</u> 50	112,00	1.50	1	0.4	19	2		
2-3 %. Ry; 11	h	×17	112,00	113_50	1.50	8	1.1	26	1		
6%. By ; stringers, specks, disseminated,	¥н	048	113.50	115_00	1,50	310	183.5	748	59		
5-6% By;	×H-	049	115.00	116.50	1,50	620	17.5	1627	/27		
-7% B; -11-,	×H	050	11650	117 20	0,70	1350	5.7	1334	<u>9</u> 4	*	
1~2 % Py; specks, olissicm.	<u>H</u>	-651	(j¶,20	11850	1.30	132	QI	75	8		
	4-	052		ः ।i १ ९४		143	22.	9 3	8		

14 of 19

HOLE No. J91-17

[

[

[

	25							
INTERVAL	\$ 5 07	LITHOLOGY	#4.4∰ ₩		ŝ	M	Α	
	Ú,	•	U .2	- 6 4			· ·	120
		Dark-grey to green-grey in colour. Granular				1/		1
	•. •	texture with coarre-grain size , grading in	_	ļ.,	1	\mathbb{Z}	_	
		places to fragmental (lapilli). In places chlort				1	11-1	
		Intervall is locally argillacous by inclusions of	10	ŧ_1			CL-1	
	·	Black argillite. In places argillite interBeckled	5					
		with taff especially within the foot-well of the	_	0	_	i _	-	-
		interval. Occurence of pyrite seems to be associa=	l	1 3.		1		
		ted with layilli tuff. The more tuff is argidaceous		N	-	T.	-	ŀ
	· .	the less pyrite it contents. However pyrite seems				Fy		
	÷	to be epigenetic (within lapilli tuff internals)	•	_	-	12	-	- 12:
			شي		ಿಲ್	<u> </u> ~ .		
- ·			_	1	$\left \right\rangle$	レビ		
126 20 - 129.30		FAULT ZONE . Quartz vein and breccia + quartz		a B	P		r	
1 <u>0 40 76 1.3</u>	[flooded minor fragments of argillite	÷1	13	Fait	Z	Sc3	
	-	orland intermediate tuff. Core in		N.	S	11.	CI-2	
· ····		places Broken up. H-wall contact 50°	1.	ħ		1		
		F-wall contact 75° Zone is pyritic,	1	5	4		-	ſ
· · · · · · · · · · · · · · · · · · ·		with pyorholite and weakly deloritic.	1.	Ø	14	Ρ.		
					2	7	-	Γ
129.30-1365	k	INTERMEDIATE FINE TUFF NITHIN DARKER			2.5			1.130
KY. 30-130-		ARGILLACEOUS MATRIX. JIN PLACES LAPILL	L'IL		10		_	r ^o
			1.1	1		1		
	· ·	Predominantly fine-grained tuff, locally	1 -	1.2		1/a	-	ſ
		grading into lapilli or tuff breaia.		(0-E)(I)		"Py		
		H- Wall contact 750 F- Wall contact grandation	1 -		· ·	1/2	-	F
		Interval mineralized by bands of pyrite;		0				
	 	pyrrholite and in places minor golena and			·.'	7	-	ŀ
		sphalerite. In places querty-carponate usine	ſ	N				
		mineralized by specks of pystatite.	-	· -		17	-	ŀ
				7		11	ł	.,
	: .		·	-		<i>1</i>	-	יצו
· · · · · · · · · · · · · · · · · · ·	<u> </u>		ł			19	l .	
136.56 - 465	2	FELSIC TO INTERMEDIATE LAPILLI TUFF		-		Γ£-	-	┢
. <u></u>	<u> </u>	H-wall contact and F-wall contact gradational.		1	1	15		
		Grey in colour. Fragmental texture with		 - ·	-	12	. -	┝
		lapill up 4 cm. within fine to medium-grained		···		123	SL	
·		matrix. Massia structure. Mineralized by	-		 .	S.	с <u>ь</u>	ŀ
	•	wins winlets and stringers of massive sulphing	.			3		
		=des: prite, sphalente, galena. Isolated	- -	0	- 1	区	-	╞
······································		quarts stringers throughout the intervalal		17			ļ	
		at all modes to C.A.	_	m		14	-	-14
·			4 i		-	أربيه		

GRANGES EXPLORATION LTD^T

PAGE 15 OF 19

HOLE No.

[

[

[

HOLE No. J91-17		1 -	ı 		·		.		r	r	-
MINERALIZATION ALTERATION		SAMPLE	FROM	то	ыютн	Au ppb	Ag g/t	As ppm	Sb ppm		
6~7%. By ; bands, stringers, specks dissem. *	H	053	1/9.50	121,00	1,50	660	15.4	357	3z	*	
3-4 % Ry; narrow stringers, specks, dissem.	H-	054	121.00	12250	1.50	220	4.9	155	12		
3 % B; - 11 -	<u>H-</u>	955	123.50	124,0	150	75	1.3	97	9		
4-5 % By tr- 1% B; narrow dringers, specks	И-	056	124.00	125.00	100	101	5.9	213	8		
1~2°/. Ry , 1=2% Po ; - 11 in places pypochetite crystals up 0.5 cm in diame		-057	125,00	126.20	1,20	14	1.0	55	8		
i		058	126,20	127/0	Q90	12	0.8	17	3		
1 %. Py ; specks	Н-	059	127 0	12.8.15	1.05	В	1.7	12	3		
2-3 % By; narrow stringers, specks.	H	060	128,15	129,30	1.15-	15	1.4	35	3		
2 % Po, 1% Py, narrow stringers, specks	Н	06	12930	130,90	1,50	20	3.1	5/	7	·	
	ĥ	06Z	13Q R	132.30	1.50	18	1.4	36	7		
	H	063	132.3	133,80	1.50	41	1.2	70	Jo		
11	Н	-064	133,80	135,50	1.50	16	2.4	44	7		
1%. Py , Tr Po ; specks , disseminated	H	-065	135,30	136.56	1.26	13	20.5	33	5		
1-2% Py, namer string, specks, dissen.	H K	- 066	136,5	, 137.2	069	31	• •	145	7		
to f. Py; 2% SL, 1% GL; anactomoring massive Sx veins voint-to chinoarc boods	<u>_</u> 	-067	137,2	1384 (SL -	51,20 dGL	760 form 4	g halo	655 4 adje	50 xent/	-sharp	

19

140

145

150

155

160

PAGE 16 OF HOLE No. J91- 17 C. L05 INTERVAL LITHOLOGY ن · ř. アン・シイ 0 N T (M) · · · · 146.52 - 156.50 INTERMEDIATE LAPILLI TUFF NITHIN DARK-GRF TO BLACK ARGILLACEOUS MATRIX. 24 V 12 Hang-Hall contact gradational but marked --by change in colour. F- well contact 67" Fragmental texture with lapili within 9 dark argillaceous matrix. Locally fine-2 \mathbf{Z} grained bands. In places taff Breasia 3-5% quarts winlets or stringers at all angles to C. A. Internal mineralized by Ry and speck 83 2 of subalerite (, pink, subalerite) $\langle \langle$ Breccia | Fault, Lapilli tuff fragments flooded with quarts-pyritic matrix chloritic F-wall contact 70° 150.90-151.10 2000 70. P. 51 156.50 -16920 GREY, INTERMEDIATE MEDIUMGRAINED TO <u>LAPILLI TVFF.</u> 11- Nall contact 67°. F- Nall contact Vinterva in places green-grey due to weat dioritization (į-1 Granular texture, grading from medium to lapilli . Frequent bands of breconted rock (angular fragmenti of tuff flooded with quert-carbonate matrix), Uniquitous quart stringers throughout the interval at all anotes to the CA

Mineralized by pyritic stringers and specks

PAGE 17

of 19

[

[[[

 $\left[\right]$

HOLE No. J91-17									
MINERALIZATION ALTERATION		FROM		ыютн	pp)	Ag g/t	As ppm	56 ppm	
5-6 % By, tr SL; narrow string, speck, disma (cons how)	H-068	13843	13945	100	65	4.1	226	13	
4-5% By, tr SL; narrow atting, specks, discom:	H-069	139.45	140.00	0.65	149	6.0	680	22	
4-57/Byth SL; - 11 - *	<i>d</i> -070	140,00	141.00	(00	151	6.8	880	20	
	4-07/				ļ		1	16	
5-67 By, tr-19.51; 11 anachen Gands.								13	
41-5 % By , tr SL , Marrow stringers, specks, discon.	H-073	14.5,15	144.65	150	49	1.4	56	7	
	4-074	•					125	9	
1-2 KRy , 17. Po, Tr SL; marrow string specks ×1							132	9	
1% Py, 2% Po, trSt 11 - Cpink sphalents 1	1076	48.00	149.50	1.50	39	1.1	74	9	
	017	14950	150,06	138	27	1.5	41	6	
— 11 — * h	078	15088	152,40	152	33	1.4	83	13	
17. Ry, 17. Po, trSL, specks, dissem. #++	1079	152.40	153 D	1,50	50	<u>/3</u>	67	9	
	080	15290	IS5.45	1,55	36	0.6	114	3	
<u> </u>	4081	15541	-156.52	1.05	125_	<u>2.2</u>	425	18	
1-2 7 8y , 1% Po. specks , discent.	H082	156.50	158.00	1.50	28	0.3	дз	2	
I <i>I</i>	1083	158,00	159.50	1,50	120.	0.6	77	3	
P 1									
					:				
				• • • •	·. ·				
			• • • • • • • • •		÷]

GRANGES EXPLORATION FIDER CONTRACTOR THWOND DRILLE OF PAGE 18 OF 19 HOLE No. J91-17 C. LOSS S INTERVAL LITHOLOGY А مرد J 160 158:00-159.72 In places amygdaloidal fragments prodominant Ş Clĝ ð X 164,00-166.40 Brecciated. Angullar fragments of tuff flooded with quarty, vuggy matrix. Core law. B-Davi-(165 3 167.50 - 168.40 Brocciated. Anyullar frayments of theff flooded with quarter, vuggy matrix Poor Core recovery. 16920-1739 GREY INTERMEDIATE MEDIUM-GRAINED TUFF (1-1-170 H- wall gradational Granwar texture with medium grain size. Massive structure Weakly chloritic thus queenish in places. In places grades to coarse-grained. . 175 1 177.35 END. D.D.H 180 2014 H 4 14 1

and the second
GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 19 OF 19

HOLE No.

Γ

[(([

[

[

[

[

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ыютн	Au ypb	Ag g/t	As ppm	S6 ppm	
14. Py 17. Po ; specks , olisseminated	4084	15950	161,00	1.50	106	1.3	ક્રપ્	10	
<u> </u>	4085	161.00	162.50	150	280	1.9	(66	3	
	H 086	161,50	164.00	1.50	48	10	Z18	9	
- 11 - (poor core recovery,	<u> 087</u>	164.00	168.42	248	13	(.0	<u>592</u>		
U	H088	166 M.Z	167.64	L12					
- 11 - (pour core recovery)	H089	167.64	69.00	1.36					 i
r~1% Py, tr~1% Po ; specks, disseminated	H090	162,00	170.50	150					
<u> </u>	H 091	170.50	172,00	150					
<i>II</i>	H0 91	172.00	173.50	1.50					
	H093	173.50	175.00	150					
	4094	125.00	<i>П6.50</i>	150					
r ~ 1%. Py , 1%. Po; narrow string. specks, diam	4095	<i>N6.50</i>	17739	a 89					
· · · · · · · · · · · · · · · · · · ·									
				•••• [·				

One fragment up to 2 mm across is of a moderately foliated, metamorphosed siltstone with patches and lenses of plagioclase and quartz (after original detrital grains?) surrounded by extremely fine grained sericite, which is slightly to moderately concentrated in subparallel seams.

One fragment several mm across and a few much smaller ones are of hypabyssal, leucocratic quartz diorite dominated by fine to very fine grained plagioclase with interstitial quartz. The larger fragment contains irregular patches and seams of extremely fine grained rock, whose texture suggests that it was formed by cataclastic deformation and granulation of the coarser grained rock.

One fragment of cherty silica has an unusual texture, with elongate (up to Ø.4 mm) and spheroidal (up to Ø.1 mm) patches (fossils?) of clear cherty silica, enclosed in a groundmass of cherty silica with moderately abundant dusty opaque inclusions. It is cut by a few ankerite veinlets.

One dark grey fragment up to 1 cm long is of argillite containing 50% ankerite and cut by a veinlet up to 0.2 mm wide of chlorite.

Several fragments up to 2 mm long are aggregates of fine to medium grained vein quartz, which were recrystallized to an interlocking aggregate of very fine to fine subgrains.

One fragment 2.5 mm long is of plagioclase-rich mudstone with much less sericite. A few fragments up to 1 mm long are of sericite-rich mudstone.

One fragment 1.7 mm across is of a slightly porphyritic, hypabyssal latite dominated by plagioclase.

Smaller fragments averaging 0.5-1 mm in size are dominated by single grains of quartz and of plagioclase.

The groundmass is dominated by extremely fine grained plagioclase and sericite, moderately replaced by very fine grained ankerite.

Andesite Lapilli Tuff (Unit 2/1D.1Gu) Sample J-91-17 89.6 m

Fragments up to 2 cm in size are dominated by non-porphyritic to slightly porphyritic andesite to basaltic andesite flows, generally containing plagioclase laths in an aphanitic groundmass. Plagioclase phenocrysts in some are replaced moderately to strongly by ankerite.

Several, commonly elongate fragments from 0.7-1.7 mm in size contain ellipsoidal lenses of chlorite, suggesting that they are pumice.

A few elongate fragments up to 1.7 mm long are of argillite.

A few elongate fragments of uncertain origin are aphanitic and contain abundant opaque; they may be a basaltic tuff.

Most smaller fragments are of a variety of andesite flows and Plagioclase forms a few grains up to 0.4 mm across. Quartz tuffs. forms a few grains up to 0.2 mm in size.

The groundmass (15%) contains patches of cherty silica which contain cuspate to irregular patches of chlorite (0.5%). A few larger chlorite patches contain cores of cherty, strongly interlocking quartz. A few other interstitial patches up to 1 mm in size are of similar cherty guartz. Ankerite (4-5%) forms fine to coarse grained patches up to 2.5 mm in size.

Minor wispy veinlets are of cherty quartz as in the cores of interstitial patches in the groundmass.

Sample J-91-149.0 m

Andesite/Latite Lapilli Tuff (1/2D.1/2GKu.1/2GKau.5Gu): Replacement Patches of Quartz-(Ankerite-Pyrite-Chlorite)

Several slightly porphyritic andesite fragments contain minor plagioclase phenocrysts up to 0.5 mm in size in a groundmass which ranges between fragments from extremely fine to very fine grained. K-feldspar is common in the groundmass of most. One fragment is amygdaloidal, with equant to elongate amygdules up to 2 mm in size dominated by cores of quartz with patches of very fine grained chlorite and minor sericite concentrated mainly along borders.

One large latite(?) fragment contains a few phenocrysts of plagioclase and abundant tiny amygdules 0.05-0.2 mm in size of cherty quartz in a slightly devitrified volcanic glass groundmass.

Several fragments up to several mm across are of aphanitic trachy-latite with scattered K-feldspar phenocrysts up to 0.5 mm across and abundant dusty to extremely fine grained opaque.

The groundmass is dominated by extremely fine grained plagioclase with scattered patches of extremely fine grained sericite up to 1 mm in size, and minor cuspate patches of chlorite averaging 0.1-0.2 mm in size.

Replacement patches (10-15%) are dominated by fine to medium grained quartz, which was recrystallized strongly in patches to much finer grained aggregates, in part with a strongly preferred orientation. Ankerite is concentrated in a few patches of very fine to medium grains. Pyrite forms a few patches up to 1.3 mm in size. Chlorite forms minor patches of very fine grains.

Sample J-91-17 172.0 m

Amygdaloidal Potassic Andesite Lapilli Tuff (Unit 2CK.2Gau)

Diffuse fragments are mainly of aphanitic, amygdaloidal potassic andesite dominated by equant plagioclase grains averaging Ø.Øl mm in size set in a groundmass of chlorite, plagioclase, and K-feldspar, with minor pyrite.

Irregular amygdules (8-10%) generally have a thin rim of plagioclase or quartz and a core of chlorite. A few have a core of coarser grained quartz inside the zone of chlorite.

The groundmass is in part difficult to distinguish from the fragments. It contains more plagioclase and less chlorite than the fragments. K-feldspar is concentrated in some fragments, but elsewhere in the rock its distribution between fragments and groundmass is unclear. Pyrite forms scattered grains averaging 0.1-0.2 mm in size, and much more abundant ones averaging 0.02-0.03 mm in size.

Dark orange-brown sphalerite (0.1%) forms an irregular patch 0.5 mm across and a few smaller ones in one fragment of andesite.

		G G H				E PRO										9 47,9		n n Fag					7.44	453-72		•
	SAXPLE#		\$012 \$012 \$	A1203 X	Fe203 7	NgO X	C aC	No20	144111 K20 X	<u>т:нин</u> т:02	P205 X			Ba ppa	Sr Sr	Lo	izr Zr	Y Ppa		LOI X	11111111 SLH X		<u>in nhi</u>			1
	J91-2-21.2 J91-3-15.5 J91-7-35.0 J91-7-39.0 J91-8-65.2		65.00 37.49 38.34	11.60 9.95 13.50 12.43 13.75	8.69 6.85 7.71	.77 .35 4.77 3.09	10 170 15 77	.05 .12 4.54	7.90	1.98 1.76 1.18 1.36 1.54	.03 .59 .18	.01 .01 .48	.007	1106 2249 387 189 1722	25 87 623 860	26 18 10 10	122	24 41 23 25	20 23 20 20	2.9 4.5 14.6 13.4	100.01 99,99 100.33 100.29 100.06			·		
	191-10-69.0 191-11-88.0 191-12-166.5 191-12-175.6 191-12-91.0	5	54.61 53.85 56.93 29.07	14.26 13.43 13.20	4.72 9.63 7.78 11.60	2.17 2.72 3.63 6.70	5.68 5.52 13.87 16.67	5.42 1.62 .66 1.57	1.84 3.66 5.03 2.72	1.08	.22 .60 .26 .19	10°NN3	019. 002. 006.	2136 1373 784 1046 707	243 147	10 10 13 12 10	125 14 8 5	31 7 26 9 16	61 48 24	8.4 6.0 7.2	100.02 100,14 100,10 100,13 100,42				· ·	•
	J91-16-129.1 J91-17-89.6 J91-17-149.0 J91-17-172.0 J91-18-76.1		47,46	12.0	7.04	3.94		14.41	4.22	1.53 1.52 1.31 1.39 2.01	.45		.007 .002 .003 .002 .002	1010 288 2173 1518 1891	247 130 75	10 25 17 22 21	73 154 115 166 163	18 37 22 56 50	79 76 66	5.0 3.0 3.8	100.16 100.08 100.02 100.05 100.03					
	J91-18-77.3 J91-18-89.0 J91-18-894.7 J91-18-123.4 J91-20-74.8		60.81 62.99 62.26 49.69	16.41 10.80 12.76 11.54 10.77	10.64 8.13 9.78 14.85	3.04 2.02 2.93 6.84	107 1655 1655	.06 1.45 .18 .43	5.67 7.23 7.14 .70		.29 .36 .34 .32	1920	.005 .002 .002 .002	897 3724 3086 1350 123	247 126 80 150	24 15 20 18 21	14.69.64	51 42 35 39 32	24 77 30	4.4 2.1 3.6	100,14 100,06 99,99 100,00 100,16					-
	J91-21-49.0 J91-22-45.0 J91-22-130.2 J91-22-177.1 J91-22-183.0	2	62.61 46.62 55.90 68.23	10.92 15.29 18.36 14.40	9.01 16.18 6.80 3.44	2.19 4.12 2.60 2.42	2117	4.21 .05	1.93 .95 8.93 6.92	2.04 1.59 3.27 2.00	.39 .65 .53 .14	8528	002	877 1113 203 1314 1035	81 109 99	23 16 23 28 33	168 113 165 205	28 28 44 36 31	20 46 90	9.5 6.4 3.5	100.24 100.20 100.10 100.04 100.04					1
	J91-22-208.5 J91-22-211.5 J91-24-164.7 RE J91-22-17 J91-24-207.3	5 7 77.1 3	54.36 44.84 55.80 54.95	15.48 16.27 18.19 12.97	10.93 14.50 6.84 11.80	8.35 5.09 2.66 3.86	22.2	05 07 07 05 1.06	3.38 4.42 9.13 4.27	94 1.51 1.60 1.97 1.55	.23 .49 .53 .40	N 78 12 5	.005 .002 .002 .002	1119 609 1213 1296 1694	40 665 100	21 30	142 85 167 133	\$ 35	28 86 77	5.1 6.5 3.5	100.02 100.05 100.08 100.02 100.07					
	J91-25-26.9 J91-25-45.4 J91-26-42.4 J91-26-105.2 J91-27-32.65	2	50.89 51.52 57.90 54.73	15.41 16.07 12.68 16.02	8,40 10,06 8,98 6,47	1.83 2.73 3.31 3.42	774	3.94 .10 .05	2,88 4,72 4,55 1,85	2.43 2.43 1.38 1.63 2.35	.54 .35 .48 .60	1. A D	000	1247 974 1876 1228 1756	246 237 129	23 33 23	1141	25	70 79	5.9 5.4 5.0	100.04 100.08 100.09 100.08 100.05				,	-
	J91-27-60.8 J91-27-68.0 STANDARD SD-		51.38	14,99	8,47	3.90	11.57	41.9	2.53	1.79 2.39 5.2.57	.62	.06 107 113	.002 .002 .005	800 2205 795	162	20	103 144 321	36	- 29	5.9	100.00 100.11 99.98					
1 1 1 1 1	DATE RECEIVED: NOV 15 1991	-	SAUTYLI	N SAM E TYPE REPOI	: CORE	3			lino[r	un of 1 19 <u>(re</u>) 91.	are	dupl	ARE DI Icote	<u>safno}(</u>	<u>l</u>					G, J.	WANG; CI	ERTIFIED	B.C. A	SSAYERS		

. '		7			ſ]	Г		r	7			Γ		Г				ר	<u> </u>	ר			_	7	()
Ē	5 91 - 17	Mo pom p		Pb ppm	2г ррп			Co ppm			A's ppm			Th ppm p		्रिल्ल	Sb ppm		V mqq	Ca X	Р Х 1	La spm p		Mg % F		TI E X ppr		L Ha X 7		¢ pon	Auger pps-	Hg ppb		1
	HOO1 HOO2 HOO3		1	28 71 69	11 (73 ,1 57 ,1 65 ,1	17 25 28	15	559	4.47 4.16 4.06	18	5 5 5	DH סא סא	2 2 1 1 4	72	.2 ,2 ,2	2 2 3		24	4.94 2.58 1.45			15	1.85 1.01 1.27		.01	3 1.5 2 1.7 4 1.8	·9 .0	1.Z	2	31 8 5	80 20 15		
	x004 x005 x006		11			54 .1 95 .1 03 .1	20	13 19	1416 352	3.27 5.02 4.10	16 24	5	ND ND ND	1 3 1 1 3	71 💈	.2 .2 .3		2 2 2 2	20 35	7.25	.054 .110	6 10	13 14	1.36	81 63 68	.01	3 1,3 3 2,2 2 1,7	21.0	2.2	4 🎬	6 8 3	25 20 25		
	H007 H008 K009 K010				8 1 8 1 13 20 3	05 2 89 1	14 19	15 16	956 965	3.59 4.81 3.62 4.41	25. 44	5	ND ND ND NO	1 4 2 1 1 1 1	94 24	.2 .3 1:6	2 6 4 10	2 2 2 2	42	2.36	093	7 5 6	17 13 11	2.96 1.52 1.26 .81	73 106 79	.01 .01 .01	2 (5 2) 4 1 (4 1)	25 .0 54 .0	2.2 2.5	25 19	3 7 9 11	20 30 25 95		
	H011 H012 H013 H014 H015			08 24	22 11 19 11 7 15 3 7	30 .1 65 .2 20 .8	§ 11	21 12 11	617 832 613		- 44		ND ND ND ND ND	1 1 1 1 1 1 1 1 1 3	19 04 89	.2 .3 1.9 2	5 3	24222	26 14	2.23	,122 ,094 ,053	6 4	13 7 4		98 53 62	.01 .01 .01	5 1.8 6 1.8 4 1.1 2 .9 2 .0	37 .0 12 .0 51 .0	2 .3 1 .4 1 .2	2 2	3 6 7 173 25	45 35 45 145 45		
	8016 H017			52 55		94 85 ,4				4.17 3.07			ND ND	1 1 1 1	10 34	;4 ;2		2	24 11	1.80	.070 ,053	4 3		1.08			31. 3.				12	70		┥
	Ю18 RE н023 Н019 Н020 Н021	26 1 2	86 26 44 67 55		10	63. 9.	4 2 9 3 2 1 2 2 1	1 8 2 10 8 10) 91) 135 5 49	6 3.1 1 4.6 8 3.8 9 3.8 6 2.9	8 36 8 20 6 61	555	NO	1	146 95	.5 25.3 1.1 2,1	14 2 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 11 13	3,60 4,43 1,65	.068 .055 .067 .083 .059	2 3 3	3 5	1.62	42 87 100	01 01 01	4 1.0 7 .4 2 1.2 5 1.5 5 1.2	8 .0 4 .0 5 .0	1.2 2.2 1.3	1 1 3 1 1	7 4 1 3 8	70 2850 115 55 170		
	H022 H023 H024 H025 H025		32 24 29 23 27		238 28 9	4 3. 0 2. 5	7 1 7 3 4 2 4 2	0 1 9 1 3 1	7 87 3 93 3 104	8 3,6 5 4,4 3 3,5 8 3,8 2 3,8	8 33 1 30 7 24	5 5) 5 , 7	ND VD	1 1 1	131 144 131	24,3	11 12 11 3 2	2 2 2	8 9 14	3.93 3.44 4.46 5.13 4.45	.054 .066 .066	2 2 3	3 6 9	1.04 .97 1.03 1.97 1.59	39 75 71	.01 .01 .01	8.8	8 .0 55 .0 36 .0	1 .2 2 .1 2 .1	9 15	3 5 9 1 7	2750 470 460		
	H027 H028 H029 H030 H031	27 32 35 29 1	30 52 61 50 14	11 20 27 21 6	43 59 20	0 3 3		9 81 8	9 31 0 35 8 45	7 3.8 9 3.6 1 3.6 8 3.4 6 6.3	1 2 4 3 9 2	4 S 2 S 7 S	Dא D	1 1 1	188 115 96 143 59	1.8 4.3 1.7	2 5 2	2 2 2	18 18 15	5.98 3.40 3.91 4.70 1.45	.052 .053 .064	3 2 2	5 5 8	1.67 1.02 .98 1.19 1.75	37 46 57	.01 .01 .01	4 . 6 . 2 1. 5 3.	71 .0 48 .0 08 .0)3 .')3 .')2 .'	19 16 14	1 14 1 5 1 8 1 2 1 1	1650 1850 1100		
	к032 к033 к034 к035 к035	2 1 2 2 1	10 11 9 12 6		/ 13 2 11 2 11	8 1 17	1	4 1 2 1 4 2	1 64 7 7: 0 97	6 5.7 6 4.9 60 5.2 72 5.1	2 2 26 1 12 3	3	i ND	1 1 1	132 113 118 139 295		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	41 64 52	3.05 2.27 2.69 3.26 6.62	079 127 1067	7 8 5	8 9 14	1.71 1.48 1.76 1.78 1.69	55 57 55	.01 .01 .01 .01	2 3. 2 2. 2 2. 6 2. 2 2.	60 .0 90 .0 89 .0)2 . 23 .	07 10 12	1 17 1 10 1 2 1 1 1 1	80		
	H037 H038 H039 K040 H041				2 8 5 17 2 1	30 🛞		2 4 7 3 9 3	8 14 1 9 4 14	59 4.9 44 6.4 57 3.0 50 4.1 60 2.1	00 01 57 4	7 1 3	5 ND 5 ND 5 ND 5 NO 5 NO 5 ND) 1) 1) 1	293 246 175 211 187		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5 95 2 75 2 67	6.33 5.87 4.46 6.83 5.98	056 085 072	3 4 3	23 23 20	1.89 2.10 1.44 1.59 1.37	61 72 39	.01 .01 .01	2 1.		02 . 04 . 03 .	11 17 09	1) s	2 65 125 5 85 2 220 2 65	,)	
	H042 H043 H044 H045 H045	25	15 8 12 12 11	1	8 2 9 2 0 1	47 02		11 3 20 5 9 4	57 5 56 8 51 13	24 2. 27 5. 75 3. 58 2. 59 3.	07 2 35 8 86 2	2 5 8	5 ND 5 ND 5 ND 5 NC 9 NC 5 ND) 1) 1) 1	185 93 119 150 166		24624	5 7	2 55 2 29 2 29	7 6.39 5 2.33 9 3.73 9 6.40 7 5.68	032 038 055	4 2 3	21 11 9	1.77 2.27 1.17 1.48 1.77	95 85 95	.01 .01 .01 .01	2 Z. 3 . 3 .	04 . 46 . 91 . 96 . 39 .	02′. 02 . 02 .	15 18 22	022.0	5 100 5 130 2 320 2 110 1 150) } 	
4	K047 K048 H049	1	13 76	i 5 20	4 1 5 4	18 66 183 49 13	,1 .5	6 7	25 13 22 15	81 2. 94 5.	72' 06 74 04 162	6 8	5 אנ 5 אנ 5 אנ) 1) 1	116 119		2 0 59 4 12	5	2 19 2 13	9 3.99 3 4.39 9 1.93	073 026	įζΖ	6	1.32 1.47 .27	51	VQ.18	3,	47 .	01.	30 16 21	310	8 230 0 11500 0 16000	1	

ACHE ANA CICAL	L LABORATORIES LID. B52 E. HASTINGS ST. V. JUVER B.C. VGA 1R6 PHONE (604) 253-3158 PAL (60 253	5-1716
H050 H051	20 35 264 274 15 7 9 20 394 8.39 1334 5 ND 1 14 7 94 4 8 2.08 023 2 22 .22 14 01 2 .89 .01 .25 11 1350 12	2500 195
H052 H053		145
SAMPLE# 391-17	Mo Cu Pb Zn Ag Ni Co Mn fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Be I B Al Na K W Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
K054 K055 H056 H057 K058	3 12 37 156 4.9 7 18 459 3.40 155 5 ND 1 54 .2 12 2 16 1.31 .047 4 16 .54 68 .01 2 .72 .01 .29 2 20 580 1 12 15 148 1.3 6 19 385 5.91 97 5 ND 1 22 2 9 2 29 .30 040 7 9 1.61 63 01 2 .56 .01 .27 .78 240 13 12 24 131 5.9 7 18 825 6.69 253 5 ND 1 48 2 8 2 11 1.81 .020 2 9 .94 30 01 2 .37 .01 .21 101 515 1 6 10 100 1.0 8 23 653 5.29 55 5 ND 1 62	
H059 H060 H061 H062 H063	2 9 5 96 .6 8 10 746 2.68 12 5 ND 1 66 .2 3 2 16 1.55 019 2 15 .89 21 01 2 .68 .01 .12 15 15 15 .89 21 01 2 .68 .01 .12 15 15 .12 .	
н064 н065 н066 н067 н068 -	2 13 53 337 1.6 8 26 1271 5.35 46 5 ND 1 46 6 7 2 50 1.44 039 2 23 2.28 22 01 2 2.02 .01 .14 16 205 1 30 101 224 1.2 5 22 1871 6.46 33 5 ND 1 62 5 2 66 2.05 2.55 2.99 23 01 2 2.64 .01 .17 13 160 3 14 66 126 2 7 14 1.19 004 2 29 .34 41 01 2 .46 .01 .14 .14 .14 .14 .14 .16 205 .1 .14 .19 004 2 29 .34 41 01 2 .14 .11 .14 .14 .14 .16 205 .1 .15 .15 .15 .17 .50 2 12	
H069 H070 H071 H072 H073	3 21 60 1069 6:0 7 20 440 9.68 680 5 ND 1 52 2.9 22 2 17 1.38 104 2 9 .45 20 0.1 2 .30 .01 .19 1 149 1150 4 21 77 167 6.8 9 28 171 13.80 880 5 ND 1 25 .4 20 2 13 .50 .050 2 18 .09 10 .01 2 .19 .01 .17 1 151 285 2 30 325 1007 4.9 14 42 644 7.07 345 5 ND 1 51 2.7 16 2 19 1.50 .070 2 15 .54 24 .01 2 .27 .01 .20 1 260 670 5 19 438 1394 3.7 11 37 324 8.24 4.11 5	
к074 н075 н076 н077 н078	3 11 77 280 1.5 10 30 882 6.00 125 5 ND 1 47 16 8 2 63 .99 070 3 30 .98 39 0.1 2 .82 .01 .18 1 160 245 11 63 403 760 3.1 14 27 762 6.69 132 5 ND 1 20 2.6 9 2 49 .31 .040 2 18 1,11 31 .01 2 1.35 .01 .20 1 38 465 6 13 48 226 1.1 8 23 1204 5.88 74 5 ND 1 42 .5 9 2 64 .74 096 4 15 1.80 29 .01 2 1.96 .01 .11 1 39 220 .91 2 1.96 .01 .11 1 39 220 .91 2 1.96 .01	
RE H074 H079 H080 H081 H082	3 11 77 288 1.5 10 31 897 6.15 132 5 NO 1 49 5 7 2 64 1.01 072 3 30 1.00 38 0.1 2 .83 .01 .19 1 194 260 4 11 24 41 1.3 7 11 1159 4.08 67 5 ND 1 95 2 9 2 39 2.15 080 5 12 1.19 34 01 2 1.25 .01 .12 1 50 290 2 7 13 143 6 5 6 794 4.18 16 5 ND 1 37 .3 2 16 .60 .030 7 9 1.23 24 .01 2 1.60 .01 .20 1 36 115 8 37 32 278 2.2 6 161 1854 6.52 425 5 ND 1	
H083 H084 K085 K086 K087	3 13 11 87 .6 4 4 1276 4.35 .7 5 ND 1 48 .2 3 2 33 .59 0.75 8 9 .75 34 .01 2 1.21 .01 .14 1 120 135 54 14 38 1167 1.3 6 4 973 1.92 84 5 ND 1 49 5.9 10 2 13 .87 0.62 7 9 .41 38 .01 2 1.21 .01 .14 1 106 1700 1 18 12 161 1.9 2 6 1328 6.75 166 5 NO 1 25 2 3 2 47 .42 088 5 6 1.17 37 01 2 1.81 .01 1 106 1700 1 14 5 606 3.94 218 5 NO 1 177 2 38 .25	
H088 H089 RE A262	2 5 18 97 .5 2 5 2187 5.44 110 5 ND 1 57 .2 5 2 44 1.66 0.89 6 6 2.15 29 0.1 2 2.08 .01 .09 1 15 245 1 5 8 63 .5 2 3 1083 5.33 24 5 ND 1 25 .2 3 2 41 .48 090 8 6 1.42 39 0.1 2 1.09 1 13 25 2 10 7 93 1.6 3 7 1607 6.80 25 5 ND 1 17 19 2 2 49 .30 082 6 4 2.42 34 01 2 3.09 .01 .07 11 17 13 25 5 163 24 106 15.6 7 12 385 7.52 1010 5 ND 1 20 </td <td>ł</td>	ł
H091 H092 H093 H094 H095 DATE RECEIVE	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	YERS

•

GRANGES EXPLORATION LTD. DIAMOND DRILL LOG

PAGE 1 OF 13

HOLE No.

J91-18

PURPOSE

To check north extension of 900 zone

LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
10+00N - 2+00W	388.963.	270°	243.84m
-45° /	01P TESTS 134.11 Test - 45° 143.84 test - 46°	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE	CONTRACTOR	COREISIZE	DATE STARTED Oct 6
6FH 00+7/91	J.T. Thomas	BQ	DATE COMPLETED at 8
SUMMARY LOG			• · · · · · · · · · ·
0-3.6 CASING	-		
3.0-248 Clastic tub	detes, grading up segue	en from basal Sond stress ->	selfstore - mudifore top.
24.8-32.5 Tuffaccons si	Ity segnence, angille	uns wispy greenish 9	LE-4.
32.5-54.5 Black Argill	ite . Ltoney silty in	fervale	2
54.5-60.0 FAULT			
54.5-68.9 Black grap	hike argillite, 4 gr	y calcanous, setty, taff my	evels, toliand
68.9-164.1 Fine and to 4			
Volcanic tu	rouse course pour to	firetops weak delication	•
		firetops weak feliation	te allaced Latinked
164.1 - 194.5 INternetiale	volconie Aurbidites	graded sequences chlori	te altered for the kd
164.1 - 194.5 INHUMLALE 194.5 - 198.7 pala yella	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INternetiale 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INHUMLALE 194.5 - 198.7 pala yella	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INtermediate 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INtermediate 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INtermediate 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INtermediate 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie Aurbidites mish green skilarike	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Elack a 198.7 - 202 FAUST	volconie An-bidites mish green Ale louke / argeticke. It greg selly	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INtermediate 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a	volconie An-bidites mish green Ale louke / argeticke. It greg selly	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yeller 198.7 - 243.87 Elack a 198.7 - 202 FAUST	volconie surbidites mish green Alelouke j tropilieke. L+ greg setty TERVALS	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellow 198.7 - 243.87 Black a 198.7 - 202 FAUST BIGNIFICANT MINERALIZED IN	volconie durbidites mid green Aleboucke j ergebiete. L+ greg selly TERVALS halvete.	graded sequences chlori hylite (vol fuff?) stron	g fotestin
164.1 - 194.5 INHUMLALE 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a 198.7 - 202 FAUST BIONIFICANT MINERALIZED IN 13.1, 13.5, 14.0 THACK SP	volconie durbidites mid green Aleboucke j ergebiete. L+ greg selly TERVALS halvete.	graded sequences chlore shyllite (vol fuff?) stron bonde 5%, strong feliate	g fotention in (possibly upside durn)
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Elach a 198.7 - 202 FAUST BIGNIFICANT MINERALIZED IN 13.1, 13.5, 14.0 Trace Sp 20.1 рупк 3-5% Sphalent	volconie durbidites mid green Aleboucke j ergebiete. L+ greg selly TERVALS halvete.	graded sequences chlori hylite (vol fuff?) stron	g fotention in (possibly apside dawn)
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Black a 198.7 - 202 FAUST BIGNIFICANT MINERALIZED IN 13.1, 13.5, 14. O Trace Sp 20.1 pyrite 3-5% sphaluite 25.7 Trace sphaluite	volconie durbidites mid green Aleboucke j ergebiete. L+ greg selly TERVALS halvete.	graded sequences chlore shyllite (vol fuff?) stron bonde 5%, strong feliate	g fotention in (possibly upside durn)
164.1 - 194.5 INHURSLAUE 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a 198.7 - 202 FAUST BIGNIFICANT MINERALIZED IN 13.1, 13.5, 14.0 Trace Sp 20.1 Pyrite 3-5% Sphaluite 25.7 Trace Sphaluite 26.7 Trace Sphaluite 30.0 Trace Sphaluite	volconie durbidites mid green Aleboucke j ergebiete. L+ greg selly TERVALS halvete.	graded sequences chlore shyllite (vol fuff?) stron bonde 5%, strong feliate	g fotention in (possibly upside durn)
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Black a 198.7 - 202 FAUST BIONIFICANT MINERALIZED IN 13.1, 13.5, 14.0 Trace Sp 20.1 pyrite 3-5% sphaluite 25.7 Trace sphaluite 26.7 Trace sphaluite 30.0 Trace sphaluite 30.45 Trace sphaluite 31.1 Trace sphaluite	<u>volconie durbidites</u> <u>mid green Alelouke</u> <u>trgetide. L+ greg silly</u> TERVALS <u>haluite.</u> <u>c 1/2 %</u>	graded sequences ch/ore shyllite (vol fuff?) stron bonde 5%, strong feliate	g fotestin in (possibly upside durn)
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Black a 198.7 - 202 FAUST BIONIFICANT MINERALIZED IN 13.1, 13.5, 14.0 Trace Sp 20.1 pyrite 3-5% sphaluite 25.7 Trace sphaluite 26.7 Trace sphaluite 30.0 Trace sphaluite 30.45 Trace sphaluite 31.1 Trace sphaluite	<u>volconie durbidites</u> <u>mid green Alelouke</u> <u>trgetide. L+ greg silly</u> TERVALS <u>haluite.</u> <u>c 1/2 %</u>	graded sequences ch/ore shyllite (vol fuff?) stron bonde 5%, strong feliate	g fotestion in (possibly upside durn)
164.1 - 194.5 INtersidiale 194.5 - 198.7 pale yeller 198.7 - 243.87 Black a 198.7 - 202 FAUST BIGNIFICANT MINERALIZED IN 13.1, 13.5, 14. O Trace Sp 20.1 pyrite 3-5% sphalente 25.7 Trace sphalente 26.7 Trace sphalente 30.0 Trace sphalente 30.45 Trace sphalente 31.1 Trace sphalente 15.7 - 123.0 py-po deis	Volconie An-bidites mish green Alelanke j ngelieke. 1+ greg setty TERVALS halente. c 1/2 %	graded sequences chlore hylite (vol fuff?) stron londe 5 1. , Strong feliate	g fotention in (possibly ryside down)
164.1 - 194.5 INHUMALALE 194.5 - 198.7 pale yellar 198.7 - 243.87 Black a 198.7 - 202 FAUST BIONIFICANT MINERALIZED IN 13.1, 13.5, 14. O Trace Sp 20.1 pyrite 3-5% sphaluite 25.7 Trace sphaluite 26.7 Trace sphaluite 30.0 Trace sphaluite 30.45 Trace sphaluite 31.1 Trace sphaluite	Volconie An-bidites mish green Alelanke j ngelieke. 1+ greg setty TERVALS halente. c 1/2 %	graded sequences ch/ore shylite (vol +uff?) stron bonde 5 1. , strong feliate	g fotention in (possibly upside durn)

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** OF /3 PAGE 2 HOLE No. 591-#18 C. L055 S INTERVAL LITHOLOGY ب ن CASING 0-3.6 3.0 - 27.8: Sand store, sellstore, nodstone - turbidekes, gtc-At-carby, Pydiss, Po, sphalute, Hay to dkgy Life 9/45 ______ - 3 -Fy Lt gy selfstore , homente stand fractures gt - carb. 50 1K; The pyrite $\bar{\mathcal{V}}$ it gy sand stone, Linoutestand Fe., gtz-yellow conbuck, Topy ز ۲۰ 54 V.BY pale green (chlowle) in gt carb v Bx) · ~ ` 5 ū qev 0.3 black mudstone, mudchips in sandston 다 당 1750 1750 1710 Sules flooding Tipy, tymonik Fe, Trpy It gy sondition method alteration 8 Ģ, 442 green mineral (chlorike) in carbonate (yellow) vein 30 si/Li Tr P4 TKL si Av gtz · yellow carb. V Bx wall Ry progreats in by TH Py đ RY signature small band argulite, styplile bk carbon residue, gtt.V 5 gtz veine stragular. Trace py - madesh sphalente, stypheles blk carbon residue linoutre gauge 13.9 Trace sphalente , pyrete. Pro , wearder gte veins num gtz-carby. liq gtz. - conto - py v 5% , sequence for andeline, ettebre, and store graded up tido, fring up sigurces, furbidites ot coup - and - py v stydike with bik carbon searchier للطع Sac gt cab-chi-pyv, stylik, pyvd 1-290 10 , ehlv iВ

sultatione, mudstone sultation, sontypin, feldsportine 55 with haff deigy sultations - qt2 py v 50° py d, qt- carby 45 TH

gtz-carb.chi-py-Tr-red brown sphalente, gtz 150 Sondstone 4 gy, styrute ble residere

Ľ

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 27. OF 13

HOLE No.

MINERALIZATION ALTERATION	SAMPLE	FROM	то	М101Н	Аи РР ^Ъ	Ag g/t	As ppm	56 ррт	
÷.*									
	·					<u> </u>	<u> </u>		
- to 1%. py. v. d.	A104	3	4		70	0.6	38	210	
		ŧ	5						
<i>ii</i>	A 105	4	5		15	1.6	28	71	
4	A 406	5	6		20	10.0	53	155	
11	A107	6	7		30	3.4	93 '	<u>9</u> 4	
	A 108	7	8		26	2.6	77	17	
							-		
	A109	8	٩		18	0.8	100	36	
	Allo	a	10		11	0.7	54	35	
	A 111	10	<u> </u>		סן	0.8	66	13	
	- A1(2	14	12.		27	9.2	158	19	
	<u>A113</u>	12	13		12	1.5	36	21	
phaletik 13.1, 13.5 with py Trace.		13	 i4	}	6	1.9	42	17	
							<u> </u>		
phalenite 14.0 with py Trace, pp	Ans	14	15		3	1.4	28	9	
That to 17. Du	Anc	15	16		6	1.7	20	L 1	
Troces to 17. Du									
1-2% pm	Aut	16	17		<u>Í</u> I	3.2	172_	0_	
1-2 / py	A118	11	18		12	2.4	151	7	
							· ·		
Tr- py	คแจ	15	19	 	72	1.9	82	7	
1'1. py	A 12.0	14	20		25	<u>}.</u> ч.	45	7	
		•							

GRANGES EXPLORATION LTD DIAMOND DRILL LOG of 13 PAGE 3 HOLE No. J-91-#18 L055 S LITHOLOGY INTERVAL ڻ U. 21 gt pyr 60", gt. cb- chl entr gt pyr, styrite 2 ¥. والم و و المار % tĶ, ግዮሮት - 22 Ltgy substone unipy budding, Ltgy fire gred sond stone or -ch-√ 14 14 51/4 51/4 1 - a esterinediate intruction (dyke)? clasts of Ang. - 9 to vening. to Py - 23 ¥, 19- Cb merpront fol a bedding 40', gw-cb + 65:55', py + 30, Fe 95-45 Py 3% vd. ĻΖų camb v 70, py integralen to 35° 1-2%, lower contract shored 2 Stechen 5 Fy 1×1~1×1×1×1 gtz carb py v 20". quenest yey tylaccor altatore 28.8 140 25 8/9 green gy tuffaccas altiture, qv. py v.a, 25.5 Trace sphelack queby 1 50 unspy black anglick , stystites bik. qv 10-20, q. cby 30-50 - 2.6 7KA1 بر ۲ quidov. -21 ディン 764 pyv.d., conborater. with sphalenike 40°, wespy blang, 27.7 ~d 40' 12 styphiles blk, 27.8 more tuffaccous than sully. 11% -28 1ak Ar 28 none tuffaccos greener in colour, wisp argulite, gte par Ã carby. py v. d. blebs 37. - 7 9 19. 19. unspy angulik, py v.d. gt. carbv. Trace and brow Spiralink 30.00 /+**s**o 114 more angulacean. gtr V 30-40, gtrpy migular , py vid. 0 an che Py-Po bleb Tr. Tr splatnik 30.45 31 1915 31.1 Tr sphalende, qy 35, bleb py-po 31.6 FR 60 14 becoming more fuffaceano. chlambie -32 clloute tuit, po-py v.d. 92.8. 32.5 60° contact ~ gtv. 32.5 - Black Argellite, well bedded. It grey 25 Z 54.5 Dulty and tapacies whereas I aminghed by grachv - grachv - 11 gtz + gtz carbv., . 54 50 qtv the child North Albert Mart 35.3 qt - cb - chl V. Bx . 81 and the states of the states of Śь ×, -37 canb v By 30 -BB -15 4 的复数数据数据 ____ stycht ; bedding steepes locally down CA. a contacted (Stunp?) r! -30 1140 154 31 174. 10 - 1 ៍ព -¥0 1/10 Constant State and an and a state of the second state of the secon **(**13 ĥ Martines Hassight

Jes-

- 4 ș.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 3A

of /3(

HOLE No.

J91-#18

51110		_				-		.		
MINERALIZATION ALTERATION	SAMPLI	FROM	то	NIOTX	Au Pyb	Ag g/t	As ppm	Sb ppm		
:7-ру	A 122	21	22		14	2.0	88	2		
· · · · · · · · · · · · · · · · · · ·			ļ				-		ļ	
17.ру	A 123	22	23		27	3.0	87	Z		
<u></u>	A124	23	24		-	0.4	70	5		
<u>3'/. pu</u>	12121		<u> </u>		27	10.4	20			
<u>Τ-ργ</u>	A 125	24	25		27	1.8	420	9		
·		<u> </u>	<u> </u>							
Truce optationale 25.7 py 2%	A126	25	26		36	1.3	152	3		
Trace sphalmile 26.7 py 2%	A)27	26	27		49	1.B	115	2		
- Process Spreature Ser 1					┫_╉					
	A128	27	27.7		28	1.2	103	3		
З 1 ру	<u>A129</u>	27.7	29		54	1.6	87	2		-(
Trace splature 30.00 1/1.py	A130	29	30		65	7.2	235	2		
11000 Spining SU. 00 1117					· · ·	.	<u> </u>			
Trace sphaluske 30.45 27.py	A131	50	31		30	2.0	92	5		
			0-							
Trace splatuck 31.1 2% py	AI3Z	51	3z		25	1.6	72	3		
Cot fin 27	A133	32	32.4		47	7.4	394	z	<u> </u>	
potpy 2%					- I-F -	<u> c -</u>				
		52.4				1.7	104	18		
1-2% ру	A135		34		5	1.0				
Tr - 11. py	A13:6	34	35		8	0.9	54	<u>१</u>		
17. py	A(37	35	36		11	09	45	3		
	1				<u> </u>	0.1	, ,			
s!	B138	36	37		6	<i>0</i> .9	38	Z		
r'	A139.	37	38		<u>_ 0</u>	0.7	51	2		·
11	A140	38	39		10	0.6	44	9		-
·····	1470			1	19					
· · · · · · · · · · · · · · · · · · ·	A14#	39	40		11	0.7	46	5		
· · · · · · · · · · · · · · · · · · ·]]		ļ				\rightarrow
11	A142	40	41		26	0.5	44	3		
	A143	4,	42		4	no	44.	6	-+	
11	17172	1 1	76			0.6	74	<u>.</u> ¥.		
			L	<u> </u>		1			L]

HOLE NE 391-418 NTERVAL $\frac{5}{3}$ LITHOLOGY $\frac{1}{5}$ L S M A 42 42 57 TR $\frac{1}{3}$			GRANGES EXPLORATION LTD	PAGE	4	C	: F /2	3	
G G G G G G G G G G G G G G	HOLE No.		591- # 18	-	-				
And	NTERVAL	C. L055	LITHOLOGY	ļ		S	M	А	
Investidae Carbonak V. Tr pr. Pr. Law Te		Ť		5	1-1-1		17	70-	42
$\frac{1}{24^{10}} = \frac{1}{24^{10}} = \frac{1}{24^{10}$					- 1	- 1	-	À	43
Image: State of the set of the s		+-	uniqueer conboak Vi Irpy , py lone to,	- 7%			14	~~~ \$	
Image: Second			1/1 solo bedding of set along Fe.	12	-	54	R	-	- 44
Image: Start grand the start			50 60 FK 70 1 11 1		-	-	-	-	- 45
Image: Start graphike anglike iam py ist graphike it. Image: Start graphike anglike iam py ist graphike it. Image: Start graphike anglike iam py ist graphike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it. Image: Start graphike it. Image: Start graphike anglike it.			iiiii		-	1/50			4.
					-	l	-	-	-46
Image: An and An				1	- I	I -	1-1	_ [.]	-47
Image: State State State Image: State State Image: State State Image:		1		1.		10			
graphie star 75-80' So 80 L Fe 70 TT		+			-	50/		-	
<u>graphile skips 75-80</u> So 80 L Fe 70 <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>		1.		10	[760	·		ł
Image: State of the second			graphike stips 75-80 50 80 1 Fe 70		15%	Fr.		80	
Graphike fact. VV ⁰ Graphike fact. Goreloss 54.5. 60.9. Graphike anglike clam. py. let gray calcum the stand Graphike fact. The statistic factor of the statis					مينا	-	-	7	50 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+				15	2		
Image: Stand graphilic angulation of the stand graphilic			gradific full. 290°				-	114	-51
Ithout Googe - Coreloss St. S. Lo. Q. 130 130 130 54.5 Black graphike argulate lan. py. "et gray colored with stand function of the stand part of the				13	-	14	<u> </u>	<u>/</u> 4*	₩° 152
Italian 130 13		-		· .		1	- j- , •	41 10	
Ithurt Googe - Coreloss St.S. 60.0 50 55 54.5 Slack graphike argulate · Lan. py. Ut gruy channed 50 68.9 tuff or sulfisherpads. calcile venticity. shoog function 55 68.9 tuff or sulfisherpads. calcile venticity. shoog function 68.9 tuff. - - 1000000000000000000000000000000000000		+		170	- .	1		-	-53
Hour Googe - Coreloss 545 60.0 54.5 Black graphike argilike · Lan. py. 24 grey colored in 68.9 huff or substaneous. calcul vinit py shong felation inter felds ~ boundared remains potented rem Calcul fragments. 10 - 57 10 - 58 10 - 58 10 - 58 10 - 59 10 - 58 10 - 58 10 - 58 10 - 59 10 - 58 10 - 58 10 - 58 10 - 59 10 - 58 10 -			· · · · · · · · · · · · · · · · · · ·	¥0	<u> </u>		<u> </u>	_	- <u< td=""></u<>
54.5 Black graphike argilike Lan. py. 24 grey Colour 4.1 68.9 tuiff or sulfstonepads. calcik vinst py. shong foliation 425 another folds ~ boundmed remine series terms for a first rem Calcite fragments. 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to budding Co-EE in angelike bands: pt to CA 1 tabric. L to Calcite						55		1	
68.9 tuff or sulfstone pards. calcule vanthe py. strong filestion 116 - 135 iii - 52 minter filds - boundaned remains sotoched rem calcule fragments. - 57 - 58 - 196 - 58 - 58 - 58 - 58 - 59 - 59 - 59 - 50 - 59 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50				-12	123	571	H-1	1.Té	- 55
ander felds - boudaned reises sotated rein calite hagenents. 	<u></u>		100 10 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 		7311 1.55		ľ.	
Cillete fragments: so to devent of above on tomposition of place faborics is to budding co- El is angelike bonds: place 21, tentor - rulling 21, tento	•		and the second		-	555	n		-52
Jubric 1 to budding a - Et in anythic bands P to CA - 24 to budding a - Et in anythic bands P to CA - 24 to be daining a - Et in anythic bands P to CA - 59 - 59			calite payments.			14		-	57
- 24 Terrer rulley - 24 Terrer rulley - 59 - 50 - 50						5,8	.; !		
			Jabric - to bedding Co - ET in angulike bands : P to CA.			15%	à	-	-58
	<u> </u>		ERRO Illa	-		82	1		
	·····		And				16	1	-59 W
							12		-60 ~
	·····						A	7	cus. Q
		:				3-	<u>۲</u> -,		-61 Cal:
						2	1	۰ <u>،</u> ۱	- 60
	<u> </u>		Nodels + Danding A calcite, Py Lan. El 9/ Ich.]%					

PAGE 4 A

OF /3

HOLE No.

59	-	48
U 1	1	10

241-78		_					.	-	
MINERALIZATION ALTERATION	SAMPLE	FROM	то	ы 10тн	Au ppb	Ag g/t	As PPm	Sb ppm	
- Tr-17.pg	A14 4	42	43		16	0.6	42	7_	
11	A145	43	44		7	0.5	37	5	
ţ,	A146	44	45		8	0.7	मप	5	
. 1:	A14 4	45	46		(0	0.4	32	2	
11	A148	46	47		4	0.4	48	5	
i)	A14 8	47	45		12	0.5	43	3	
N		48.	49		12	05	39	4	
11	A15\$		50		7	0.7	57_	5	
	152		51			0.8			 $(\downarrow$
ę*	4153		52			6.4			
						0.3		3	
	A154		53						
rt	AISS	53	54		11		21	2	
1	A156	54	55		7	1.0	26	9	
Coreloss: NImcare gouge	A157	55	57.3		7	0.6	17	2	
	A (58	57.3	60.0		- 3	0.1	22	5	
Coreloss: NIM core Jouge		343	40.0						
- 						·			
1 1/. py	A159	60	61		4	0.3	26	3	 -
	A160	61	62		6	02	32	6	
	A161	62	63		4	0.2		વ	

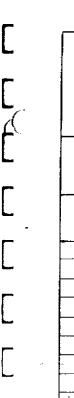
DIAMOND DRILL LOG

PAGE 5 OF 13

in the second second

HOLE No. J91-418 C. LOSS INTERVAL S LITHOLOGY * S 63 Black argulate locally scheepers (cherty) foliated. 5% f%s Lt gy cal lan - backins, graphite slips Cal Fr. - to fol. (m) Fe pel and I to fol. 50 65 pyrite lan. cal 66 - 12/2 67 泌 1 cabite. - grey patchy carbonate 68 68.9.> volcoric grey to green foliated 69 and to inpilli, ligger calcile lan 4 rf. 4 strong flattening fabric, locally chlorike, pydis 70 3+2 P.D. × let. and a start ្រែ bevol frags in angulacion should fabrie -71 2 for fatice -1 internet 27 war fragent locally anythic -7z 4/0 -lattered quesish ask. Some notation on f 14 11 locally angulacions and fiver granied, passibly angulacions 73 6/ top of volcome debits flow's with conservate back of uphole : 132 A.C.K. 26. celate un - py bleb. 7¥ upper section predemantly fire grend varies from -75 augulaceous to chloute queen in color locally calcunes, since ge veres, strong fabric S. 76 mine die py (***!!)** -77 ð ر ک -78 Q NTO 79 27 80 茍 <u>aliceon la pilli i gru allentie</u> 82 ded to senie sounded fabric selectioner her 4 2-244s py steaks 1-27. in Jal. S. 20. 83 1 Q.1.

page 5A


OF / 75%

HOLE No.

[(([

MINERALIZATION	ALTERATION	SAMPLE	FROM	то	WIDTH	· Au pob	Ag g/t	As ppm	S¢ ppm	
······································		AILE	63	64		3	0.2	26	7	
		A 16 3	64	65	-	6	0.2	2 7	11	
		A16 4	65	66		3	0.2	27	11	
		9/65	66	67		4	0.2	30	12	
······································		A166	67	68		3	0.2	29	12	
		A167	68	69		2	0.2	32	12	
·		A/68	69	70		١	0.2	22	4	
		A/69'	70	71		19	1.6	200	28	
	· · · · · · · · · · · · · · · · · · ·	A170	7/	72		9	0.8	43	10	····
		A171	72	73			0.8	41	[1	
		A172	73	74		5	0.8	23	12	
		A173	74	75		6	(.0	20	11	
•		A174	15	76		4	0.8	14	7	
· · · · · · · · · · · · · · · · · · ·		A175	76	71		15	1.2	ાવ	01	
		<u>A176</u>	11	18		<u>20</u>	0.7	ลร	8	
		A 177	78	19		16	0.B	27	6	·
······································	·	A178	79	80		21	0.9	31	6	
		A119	80	81		31	1.0	49	5	
	·····	A180	81	82		7	0.7	7	4	
·			82	83		15	0.8	FI	6	
		A182	83	84.		12	0.5	8	3	

GRANGES EXPLORATION LTD BIAMOND DRILL LOG PAGE 6 OF /3 HOLE No. J91-*18 C. Loss S INTERVAL LITHOLOGY ≁ J 84 Internedicate to felsic fire ask nature to hapill نچ ت Bilicification becoming pervasion pagnents - 85 pagiests but matur 53 patche -el toutic silverfred section Z-319 == t. -66 . h brittally fractured and cut by white PL. with' pysite grand way -87 nose pyrchotile, sulpludes led, weal ver gt by infiling also 88 pervisine crackle Bx down section ŧ٧ 0 - white gtz crackle Bx with blk (pyrobutumen) dess. 88.4 89 Stydelse well conton + po. 88 0 stadle po speeks diss in Rx 90.3.-91. 90 Ĩ 89-91 patchy succe + chl. dess 3-5% sulphidis l-qi pately silica + chil to 93.0 Ę, -92 Ću 93-98 pervasive lit gy silver with white suber 59 Crackle Por and black pyrobuturen decis po a v. 3-52 95 Locally where sities pately shairs for 30-40" 51 -94 98-99 Chlante Ey Po. dues μ 29 8 44/2 3 96 --- *7* 97 -98 Chl 99-103 patchy Si a local wh silica top with Ţ, Blk pepebetenes eg 99.3 -100 100.8-10 local patchypo . Ż almost Jabric is rowdisco 10 101 ballend secure cu Σı and very little fertures 103 前天政治学 - 184 · . . , ۰. 105

[4

GRANGES EXPLORATION LTD DIAMOND DRILL LOG C

PAGE 6A OF 13

HOLE No.

				Ι		Δ		A -	L	
MINERALIZATION	ALTERATION	SAMPLE	FROM	то	NIOTH	714 77 ³⁰	Ag g/t	As ppm	Sb ppm	
		AIB3	84	85		15	0.B	06	3	
		- A184	85	86		82	06	6	2	
		A185	86	87		Ģ	0.6	6	2	
		AIBG	87	88		13	0.8		2	
· · · · · · · · · · · · · · · · · · ·		A187		89		6				
· · · · · · · · · · · · · · · · · · ·			60			<u>v</u>	1.0	108		
		A 188	89	90		27	0.9	[] 9	3	
		A189	90	વા		23	0.7	19	4	
·		A 190	٩١	92		62	0.4	47	3	
		191A	92	93		65	0.9	46	6	
		A192	93	୳୳		14	62	17	2	
		A 193	94	95	•	8	0.3	-86	4	
		A194	95	96		2	0년 -	78_	3	-
		A 195		97				52		
	· · ·									
		A146	97	98		71	0.5	60		
		AI91	98	२१		10	03	21	7	
	· · ·	A198	99	100		43	0.9	81	10	
		A 199	100	101		3	0.4	_11	7	
		A 200	101	102		2	0.8	43	6	
· · · · · · · · · · · · · · · · · · ·		A 201	102	103		14	09	46	5	
		A 201		104			0.5		3	
·							0.9		7	
		A 203	104	105	· ·		<u>v.4</u>	74	<u>_t_</u>	

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** PAGE 7 ^{of} /<u>3</u> HOLE No. J91-#18 1055 S INTERVAL LITHOLOGY * ن J 105 Si penasine subfication local patchy subplide dessenerations thebs, ungeter tens py + po 5% Local wispy darkchlorik with pyrite 106 - 75 ,Po 9+ 107 107-108 strong sulphides 20 70 mothed whe gtz. Si Z Z -108 108.4-110.5 unspy dk chlouke & pyrile 5% 41 4 Ð FICE elwipy ტ -110 755 Ţ 110.5 - 112 bleby + patchy sulphidas 5 10 4 - 111 . H 4th. ę٤ 112-115.7 very fire graned blebby po 3% 2 / gt 213 gt 114 *(*7: dis 1 5% 115.7 - 123. PY ٠IIS mitur 3. 118 118.3-118.5 20% subplide py-po-cpy (5%): <u>9</u>9 119 120 . . . ·"• Ð ובי 41 f Est. 122. blotchy ch dkgra unth py-po 3% 123 123.2 Lithic tuff 1-2 cm. frags. 124.5 py 1-2% V.d. Z 50 - 55 124 12S 55% py - po whit ghe 125.8-125.9 73

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 7A

OF /

HOLE No.

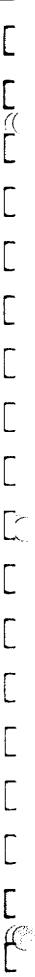
J91-*18

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ы ютн	Au	Ag g/t	As ppop	S6 ppm		
· · · · · · · · · · · · · · · · · · ·	A204	105	105		7	1.0	112	7	-	┥╌
· · · · · · · · · · · · · · · · · · ·	A205	106	107		2.	0.6	27	4		
»% ру+ро	A2.06	107	108	· ·	45	2.7	204	28		
	A207	108	109		51	1.9	125	19		
	A208	109	110		96	2.4	130	ız		
	A209	110	<u></u>		74	1.4	62	ક્ર		
	A210	iti	112		60	1.3	-74	11		
· · ·	AZU	112	113	··	46	l.D	65	6	- -	
·	Aauz	113	114		69	0.9	27	7		\downarrow
· · · · · · · · · · · · · · · · · · ·	A213	114	្រេ		31	1.2	36	7		
· · · · · · · · · · · · · · · · · · ·	4214	115	116		<i>20</i> 0	3.0	235	13		
· · · · · · · · · · · · · · · · · · ·	A215	116	117		560	 . 7	315	32		
· · · · · · · · · · · · · · · · · · ·	A216	117	118		<i>44</i> 0	5.7	289	21.		
% ру-ро-сру(5%).	A 217	118	119		2590	52.B	<u> 01</u>	(07		
	A218	119	120		640	4.6	139	16		
	A219	120	121		89	1.2	97	4		-
	4220	121	122		240	4.1	174	12	· <u></u> · · · · · ·	
•	A721				<u>n</u> 8	2.0	136	12		
	A222	123	124			2.3		9		-(
	A223	124	125		250	3.3	341	12		
	A224		126		2660	17.2	711	47		
									-	

		GRANGES EXPLORATION LTD		<u>.</u>			
			PAGE	8	OF	13	
HOLE	No.						1
	3	91#18		·	-		
		1				<u> </u>	{
INTERVAL	C. L055		+		SI	MIA.	
_		grean brown grey colour for to consease some varienter for grants	<u>.</u>				126
· <u></u>		Schen alter, duss + V py po, with gt V+ blobs, wispy ellow te.			* I	(1) S []	4toJ
		departie Altin out from py-gte 1. + in crackle Fre.	-	-	. – I	a sid	-127
•		fine Ash remmant texture					- 128
-	\perp			א ז			140
•				_ <u>h</u>	·	* P G	-129
·		· · · · · · · · · · · · · · · · · · ·	_	3-248's			ł
				14	-	5 - 5	-130
•		what for remnant texture		^m	ŗ	17 18	5°.
-				-	-		-131
-		······································			2	2 7	40
		des dishe Alta and from py-silear.	- -	-	-	14	-132
	1				<u> </u>	11/2	17-
•				-	- I	72 50	-133
*				44	_ -	2. 2	- 34
<u> </u>		resicules filled with che + pg rement texture		2K		5	
		ask with reaction rims OD	<u> </u>	60	_]		-132
-		Traces of wespy clloute		2.A	ľ	5 Tre	l
				312	· -		-1.34
		<u>A</u>		1 A. J.		5	
· · · ·				- ·	- []	コレスコ	-137
`						S TICH	1.
				: :	· · · ·	2121	-158 ⊀≶≎
					ſ	17 1 Ted	1
		Venelis on rined ash		— • د		ંડિંડ	
-				_		7. T.el	l -140 ul:
•			. /			1. S. T.C	
			· · ·	<u> </u>	_	20 7 1 0	-1¢i v:
			_			• 1 1	
			·	-]-	Pg -	-1\$2
		mobiled colem	-		1	po: Si/	
_	-			- ·	· - · ·	- /	j1¢3
						રંચ	
-					1. A. A. M. A.		-140
 .						¥: \$4	Ces.
						39 1 / 1	-145-
· · · · · · · · · · · · · · · · · · ·			1			6 the	f -146
			- 1 - 1 - 1 	-14			40 14 6

and a second s

Ĺ [L C


HOLE No.

or 13 PAGE 8A

MINERALIZATION	ALTERATION	SAMPLE	FROM	то	MIOTY	Au	Ag g/t	As ppm	St- ppm	
		A225	126	127		۹	2.6	153	19	
·		A226	127	128		ા(પ	64	66	11	
		A22.7	128	129		3 9०	2.0	109	7	
·····		A228	129	130		174	2.2	14_	9	
		Az29	130	131		48	1.6	199	ő	
۲ 		A230	131	132		590	4.5	249	7	
		A231	132	133		200	1.7	175	7	
		A232	133	134		260	J.Z	/66	8	
······································		A233	134	135		BBD	2.4	209	10	
		A2.34	135	136		200	1.6	350	6	
•	· · · · · · · · · · · · · · · · · · ·	A235	136	137		196	[.]	76	2	
· · · · · · · · · · · · · · · · · · ·		Az 346	137	138		64	1.6	142	3	$ \rightarrow$
· · · · · · · · · · · · · · · · · · ·		A237	138	139		280	3.2	193	9	
	·····	A238	139	140		470	4.1	<u>(97</u>	2	
		A239	(40	141		<u> </u>	2.8	2 <i>81</i>	8	
		4240		142		200	28	150	3	
·····		P241	04 ¹³⁹⁴	143		250	2.5	<i>16</i> 8	2	
······································		A242	143	144		290_	2.4	231	2	
		A243	ાપવ	145		270	2.6	128	2	
· 		A2441	45	146		310	2.0	234	3	

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** 9 PAGE OF 13 HOLE No. J91-18 C. L055 SM INTERVAL LITHOLOGY Д بيد J Si j treat vancular or second fragoests DO a gto- Manfilling . Р.І — Р.У. — Ż HI€B Ţ. 10 -144 unspy shear To chit py 2 cal-pg د. ج 8+2-9815× 4 J - 151 **ヴ** み^ン 5./ J -152 ? ¢_ latte black speck desseminated, the or for make 1150 -153 waspy chl . py 2%. lithic fragments : 4 nd e, -154 basded 50° patchy black with gte 1) MP 71 155 gibo sugalor gt with po py 3% 外 н / Гім -qvingle 154 inigular gt py . po 3.5%. St. St. ťYgringeler -157 migular gt py. po 3:5%. ۲*۶*, 1 mgales 40 -/58 Ę. ないかがいろうられたこうや -159 streaky gtz -py. po 5% Ash with reaching 51 **9**# io 160 5+ gy froble Itrejular gtc \$4. nighten bluch gte with black spots cut by late A while gt with py:po 3.5% · Koz 3-5% and the second unqueles why to write py po 44 3 -165 Littuic pagasts, magula gh py-po P/z 3-57. 191 mottled textures -164 15 164.1 - 194.5 165 11112 fine tiff mothed ben - gra - selectors weak patchy AL) streaky dk gow chl with py 5% eg 🖣 4 the streaks a section of the sec a section of the sect - - - ; white -----168

PAGE 9A OF 13

HOLE No.

J91-18

<i><i><i>¹¹¹⁷⁸</i></i></i>		1	1	r		<u> </u>	1	[
MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Au	Ag g/t	As ppm	S6 ppm	
· · ·	A246	147	148		290	2.1	227	2	
	R247	14-8	149		lol	1.5	178	2	
	A2+8	149	150		210	1.4	134	2	
	A249	150	151		260	1.8	137	2	
	Azso	151	152		195	2.7	311	5	
	AZS/	152	153				778	11	
· · · · · · · · · · · · · · · · · · ·	A252		154				1151	8	
	4153		155				496		
· · · · · · · · · · · · · · · · · · ·	A254				87		321	S	
	A255					1.4		2	
					-		157		
<u> </u>	A256		621						· ·
······································	Az57		159				1675		
	A25B	157	160				752		
	A257		161			_	392	2	
	A260	161	162		187_	7.2	519	14	
	A261	<u>14 z</u>	163		88	1.7	276	2	
	A262	163	164		410	15.5	997	34	
	A 263	164	165	¥.	270	11.6	770	32	
	9,264	165	166		117	1.8	436	12	
······································									

GRANGES EXPLORATION LTD DIAMOND DRILL LOG OF 13 PAGE 10 HOLE No. J91-#18 C. L055 S \mathbb{M} Д INTERVAL LITHOLOGY ≁ J 168 164.1- 194.5 Ul siquesce of welcomic turbedites from vel 55 to medelore beff graded up hole, norted blk-green, chloritic, angularus vol 55 feldspathic, wispy chlorited & green with dissey blk orgalaceous tops, wispy shears, follated. 1 169 50 - FO 10 <u>[</u>]. 12 19 1-2 NOTES, 10-_ 170 /ði mus py Tr-14 gt V minor Tr-1". _ - 17 Locally calcanons conent in 55. 2 Ø. 50 172 Faultgoing 172.5 , 173.5 - 173 _ _ ņ fault going 17the -174 _ _ -175 R ço 214 <u>•</u>7 10 -176 176-177.3 calcareous cent in Sol Sandstone ly. Et -177 177.7. Julyange -178 -2Ē1 th 179 . . 24 <mark>יہ</mark>: 160 n. 27 i. 121 ŧ. 1 v /40 182 . • 182.7-182.9 faultgange 2.34 . _ 183 calusion public vol fps ss 18d 11111 Linestone band Or con pebby voj for se calenteus -185 mispy chl - r 5 7 24. achty vol for 55 186 · · • • . . . 774 ::: -187 シア (| - |<u>|</u>) wyfoll Т., _ 188 189

2 .e	GRANGES EXPLORATION LTD CONTRACTOR	PAGE	11	ÖF	- /2	3
HOLE No.	T91- [#] 18	· · · · · ·	•		ر	
INTERVAL	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	به ن		S	M	A
			2 ^{A6}	-	-	-
			2.44	-	_	
			-	' —	-	_
			- 24545	-	-	
	faalt 194.3 - 194.5 gt vuned		-	مسر ستسر	-	[av
	194.5 - 198.7 pale yellmish green etilowhi phyllite vol tuff strong de fanation, konk bands snall folds, bandred gpt		18 7 5	Ā	- M	15
·	1-2% pyrik becatty		-		-	-
	in the second se		-		2	'êr
	198.7 - Janlt gange: 202. 198.7 - 243.84.		Burg	1.5	1	, a 1
2	Black anglikk (mudshu) Lt gy silly ponds 5% - Storgy folicited, 5% gt ving + bourdins		-	111	- 751	
	mier py lerinations 1%. Dad fills.			5.5	2	-
			-	-	<u>r</u> : -	1
· · · · · · · ·			الديدا	- -	- 	
· · · · · · · · · · · · · · · · · · ·			177cu			/. -
					A	مر
£				-		1-1
				-	7	م. مند

		GRANGES EXPLORATION HTD CARACTERISTICS	•••••••				
			PAGE	12	0	F /	3
HOLE No.		TO1 #10		•			
		J91-#18			•	<u>,</u>	,
INTERVAL	C. L'OSS	LITHOLOGY	⊷ د		S	Μ	4
		Black angelkle (midstore), 1+gy sellsfore, 3%, gh v 5 in small folds, boundared ghv. Strong fabric owner by Low. 3%.					
	╉╋	Small folds, boundered ghr. Strong fabric		-	_	-	-
	╌╂╍╾╋	auro of have 2h					Ĺ
. <u>.</u>			- ⁻ Я				/-
				_	_		-
·····	\square			· ·			[
				-	-	-	2
			-				
	┼┽	· · · · · · · · · · · · · · · · · · ·		-		~	
]	7.J.W.	-	-	-
				17			K
	╶┨╌╌╽			-	-	[-!	\-
	+						2
	+	Lt gy cal bond		-	-	9	
<u> </u>		- 19 cm 0000					7
			- 4/		AU		
	┼╶┨		- [*] ?*	-	.199*	-	-
		· · · · · ·	·				
	+	cal band with pyrotochurren	- -	-	-	-	5
· · · · · · · · · · · · · · · · · · ·	╧	Che por a mar population of the second secon		:	_	<u> </u>	
•				-	4E/5	[-]	-
· · · · · · · · · · · · · · · · · · ·					150		ł'
			- 7.	[] -	-	r-	17
	-			·		1/	.
						FY	
				-	-	17	ĺ -
			_			5	/
	1				-	H	-
			- 51			11	[
			70		%	17	V
	1					12	
	1		<u></u>		y ÷i .	11	ļ
		data na sana na kana na Kana na kana na		-			

ŝ	GRANGES EXPLOBATION TO ASA		· ·			
		PAGE	13	0	F /)	3
HOLE No.						
NTERVAL	LITHOLOGY	* C		S	Ń	Α
• •			—	n f	X	-
	Black angullake (mudstone) will banded Ltgy sellstore bands, gtz y. 5% pyv 3%, Lam. strong fabric		_	-	$ \times $	
	Ha wasken		- -	-	ey	
			-	-	-	-
· · · · · · · · · · · · · · · · · · ·		- H 	7.7642	-		مير ا
·····	Tops possibly down hale? orestwhed?		-	-		2
<u> </u>			-	-	14	
			-		-	
			-	-	-	

C C

•

					1	<i>`</i>	~	
			51	-	-	-	-	-242
			70	_		_	_	-24
] _	-	. —			
· · -]		_	_	_	
	:	EOH 243.84m (800ft).						
~				_ ·	·	-		ŀ
			·`	_	l	-	-	╞
			_		ŀ	ļ i		
				-	_	-	-	\mathbf{F}
			-					
			-1 -	-			-	-
<u> </u>			-					
· _ 			- - `	-		-	-	ŀ
•			-					
						. –	-	F
	1		-			I .		1
···						-	-	F
· -•			800.002					
		ender in ender an ender en	1	I	1	l		1

Sample J-91-18 76.1 m Andesite Lapilli Tuff (Unit 2D.2Gu); Replacement Patches of Quartz-Chlorite-Calcite-Pyrite

Fragments are mainly of aphanitic to very fine grained andesite flows, commonly containing lathy plagioclase up to 0.1 mm long an aphanitic groundmass of plagioclase and chlorite. Pyrite forms disseminated clusters up to 0.5 mm in size.

Replacement patches contain: coarse grained quartz (17-20%), calcite (3-4%), and pyrite (1-2%); patches of very fine grained chlorite (10-12%); very fine to medium grained intergrowths of K-feldspar (4-5%) and quartz, and scattered grains of apatite up to $\emptyset.4$ mm across.

Sample J-91-18-77.3 m Contact: Very Amygdaloidal Basaltic Andesite (Unit 1Ga), Argillite (Unit 7J.7J/3Au.3Cu)

The amygdaloidal basaltic andesite contains lathy plagioclase grains up to 0.03 mm long in an aphanitic groundmass containing abundant semiopaque and opaque. It contains very abundant (50%) amygdules dominated by zeolite(?), carbonate, chlorite, and quartz. A few contain patches of sphalerite intergrown with chlorite and cherty quartz, mainly in cores, and others contain patches of subhedral to euhedral pyrite.

The argillite is dominated by sericite and chlorite, with moderately abundant dusty to extremely fine grained opaque, commonly concentrated in wispy seams parallel to foliation. Pyrite (5-7%) forms dense lenses and patches up to 0.5 mm wide commonly oriented parallel to foliation. Fragments up to a few mm long are dominated by sericite/muscovite without opaque. Some of these contain abundant tiny lenses of chlorite parallel to foliation; the texture suggests that the fragments are altered pumice.

Quartz forms minor detrital grains up to 0.07 mm in size.

Wispy seams of opaque parallel to foliation in the argillite may represent zones of later shearing parallel to foliation.

Sample J-91-18 89.0 m Brecciated Latite/Trachy-latite Flow (Unit 4/5Gf); Matrix of Quartz-Calcite-Pyrite-Chlorite

The fragments (65%) are of a few textural types of latite to trachy-latite, and possibly potassic-altered andesite. A few contain phenocrysts of K-feldspar up to 1 mm in size. Some phenocrysts (plagioclase or K-feldspar) are replaced partly by interlocking intergrowths of K-feldspar and quartz. The groundmass is very fine to extremely fine grained plagioclase and K-feldspar, with much less abundant disseminated patches of chlorite (possibly after hornblende) and opaque (pyrite).

A few fragments are dominated by lathy plagioclase averaging $\emptyset. \emptyset7 - \emptyset.12 \text{ mm}$ long in subparallel orientation defining a flowfoliation. These contain interstitial K-feldspar and chlorite, minor prismatic apatite crystals up to $\emptyset.12 \text{ mm}$ long and equant grains up to $\emptyset.1 \text{ mm}$ across, and disseminated, extremely fine grained opaque.

Fragments are set in a sparse to abundant matrix (35%) of very fine to medium grained quartz, fine to coarse grained calcite, and extremely fine to fine grained pyrite. Some calcite-rich patches contain disseminated, euhedral quartz grains averaging 0.07-0.12 mm in size. Chlorite (0.5%) forms a few foliated lenses up to 1.7 mm long along borders of some quartz-calcite replacement patches.

Irregular wispy seams and patches (1-2%) are dominated by sericite/muscovite.

Sample J-91-18 94.7 m

Trachy-Latite Flow (Unit 5G); Zoned Replacement Patch/Vein of Quartz-Calcite-Pyrite-(Chlorite-Ankerite)

Subhedral to euhedral phenocrysts (1-2%) up to 1.2 mm in size of plagioclase(?) are replaced completely by aggregates of extremely fine grained chlorite with less abundant interstitial patches of quartz and calcite. A few phenocryst up to 0.4 mm in size may be of altered hornblende; they consist of aggregates of quartz and chlorite with scattered original(?) grains of apatite.

The groundmass is dominated by lathy plagioclase and interstitial K-feldspar with a weak flow-foliation. Much less abundant are extremely fine grained chlorite, ankerite, and Ti-oxide. Apatite forms acicular grains up to 0.4 mm long. Pyrite forms disseminated grains averaging 0.02-0.03 mm in size, and replacement patches up to 1 mm across of very fine to fine grained aggregates.

A few wispy seams up to 0.1 mm wide are of foliated chlorite. A similar chlorite-rich fragment 1.5 mm long occurs in the quartz-rich border zone of the replacement patch.

A replacement patch/vein (35%) at one end is zoned strongly. Along the margin is a zone of quartz in which patches averaging $\emptyset.07-0.12$ mm in size consist of extremely fine grained, interlocking aggregates in approximately parallel optical orientation are set in a groundmass of similar extremely fine grained quartz. In places, this zone contains irregular patches of extremely fine grained chlorite and elsewhere it contains fragments up to 1 mm in size of the host rock. Interior to this is a zone of ankerite averaging $\emptyset.05$ mm wide. Interior to this is a zone up to 2 mm wide in which cryptocrystalline quartz occurs in patches with subradiating extinction. In the core of some of the patches is coarse grained calcite. In this calcite are a few patches of very fine grained quartz and subhedral grains of ankerite averaging $\emptyset.1-\emptyset.15$ mm in size. Pyrite forms scattered grains and clusters up to 1.5 mm in size.

Sample J-91-18 123.4 m Trachy-latite Tuff (Unit 5C); Replacement Patches of Pyrite-Pyrrhotite-Sericite-Quartz-(K-feldspar)

Fragments are up to several mm across.

Most fragments are of aphanitic to very fine grained trachyte and trachy-latite. A few patches contain minor K-feldspar or plagioclase phenocrysts averaging 0.5-1 mm in size. Some fragments have a prominent flow-foliation. Sericite forms irregular replacement patches up to 1.5 mm in size, commonly with diffuse borders.

A few fragments of hypabyssal latite contain plagioclase phenocrysts in a groundmass of lathy plagioclase, K-feldspar, and minor ankerite.

The groundmass is dominated by extremely fine grained quartz/plagioclase with minor sericite and disseminated patches of Ti-oxide.

In the groundmass, pyrrhotite (1%) forms elongate lenses and irregular patches up to 1 mm in size of granular aggregates averaging $\emptyset.03-\theta.05$ mm in grain size. Pyrite forms disseminated grains averaging $\emptyset.02-\theta.03$ mm in size.

A few fragments up to 0.2 mm across are of quartz grains (possibly small phenocrysts).

Replacement patches are of pyrite, pyrrhotite, sericite, quartz, and K-feldspar. Pyrite and pyrrhotite form patches up to several mm across. Pyrite forms subhedral to euhedral grains and aggregates averaging 0.03-0.5 mm in grain size. Pyrrhotite forms anhedral patches of grains averaging 0.07-0.2 mm in size, and irregular interstitial patches between pyrite grains. Chalcopyrite forms minor patches up to 0.1 mm in size on pyrrhotite-pyrite contacts. Sulfide-rich patches contain clusters of Ti-oxide grains averaging 0.01-0.02 mm in size.

Sericite forms patches up to 2 mm across of extremely fine grains. Quartz and sericite form extremely fine grained patches. K-feldspar is intergrown with quartz in some very fine grained patches.

Medium to dark orangish brown sphalerite forms a few patches up to Ø.1 mm in size on borders of pyrrhotite-rich patches.

No gold-bearing phases were recognized.

					C.										479) 479)		Pag						A	A
: : [SNPLE#		k sola Z	(1203 F X	e203 Mg0 % %		Na20 %	K20 X	T102 I X		HTO X	Cr203		Sr pom	La pon	Z P	Y ppa	Nb pom	LOI X	5.H X			4000422589	<u></u>
	J91-2-21. J91-3-15. J91-7-35. J91-7-39. J91-8-65.	,5 ,0 ,0	37.49 1 38.34 1	9.95 3.50 2.43	3.68 .77 8.69 .35 6.85 4.77 7.71 3.09 5.44 1.62		.12 4,54 5,83	7.90 .83 .20	1.76 1.18 1.36	.03 .59 .18	101 101 128 128	.007 .003 .015	1106 2249	25 87 623 860	26 18	N33 8 P	24 41	20 23 20 20	2.9 4.5 14.6 13.4	100.01 99,99 100.33 100.29 100.06				
	J91-10-65 J91-11-82 J91-12-12 J91-12-17 J91-12-91	3.0 56.5 75.6 1.0	54.61 1 53.85 1 56.93 1 29.07 1	15.27 14.26 13.43 13.20 1	4.44 .37 4.72 2.17 9.63 2.72 7.78 3.63 1.60 6.70	5) 68 5) 52 73 87 16 67	5.42 1.62 .66 1.57	1.84 3.66 5.03 2.72	1.32 1.80 .77 1.08	.57 .22 .60 .26 .19	25023	.004 .019 .002 .006 .012	2136 1373 784 1046 707	243 147	10 10 13 12 10	86 45	31 7 26 9 16	61 48 24	8.4 6.0 7.2	100.02 100.14 100.10 100.13 100.42				1
)	J91-16-12 J91-17-85 J91-17-14 J91-17-17 J91-18-78	7.6 49.0 72.0 5.1	59.10 1 65.12 1 57.65 1 59.22 1	13.03 12.13 12.90 15.23	9.14 4.43 8.62 3.16 6.33 2.70 1.38 5.32 7.64 3.94		4.09 .08 .09 2.01	,66 7,63 5,52 4,22	1.52 1.31 1.39 2.01	.31 .29 .35 .44 .45		.007 .002 .003 .002 .002	1010 288 2173 1518 1891	247 130 75	10 25 17 22 21	154 154 163	18 37 22 56 50	79 76 66	5.0 3.D 3.8	100.16 100.08 100.02 100.05 100.03				į.
	191-18-77 191-18-89 191-18-94 191-18-12 191-20-74	9.0 4.7 23.4 4.8	60.81 1 62.99 1 62.26 1 49.69 1	10.80 1 12.76 11.54 10.77 1	4.76 3.19 0.64 3.04 8.13 2.02 9.78 2.93 4.85 6.84	2,22 187 185	.06 1.45 .18 .43	.70	1.18 1.40 1.23 .98	i	8012N3-	.010 .005 .002 .002 .002	897 3724 3086 1350 123	247 126 80	24 15 20 18 21	161460114	42 35	24 77 30	4.4 2.1 3.6	100,14 100,06 99,99 100,00 100,16	1 1			
	J91-21-49 J91-22-40 J91-22-11 J91-22-12 J91-22-12 J91-22-12	5.0 30.2 77.1	62.61 46.62 55.90 68.23	10.92 15.29 18.36 14.40	15.25 1.76 9.01 2.19 16.18 4.12 6.80 2.60 3.44 2.42	1636	.39 4.21 .09 .05	1.93 .95 8.93 6.92	1.59 3.27 2.00 .66	.39 .65 .53 .14	12 108	.002 .002 .002 .002	877 1113 203 1314 1035	81 109	23 16 23 28 33	168 113 181 166 206	28	20 46 90	9.5 6.4 3.5	100.24 100.20 100.10 100.04 100.04	 +			
	J91-22-20 J91-22-2 J91+24-10 RE J91+21 J91-24-20	11.5 64.7 2+177.1 07.3	54.36 44.84 55.80 54.95	15.48 16.27 18.19 12.97	3.76 2.55 10.93 8.35 14.50 5.09 6.84 2.66 11.80 3.86	229	.05 .07 .05 .06	3.38 4.42 9.13 4.27	1.51 1.60 1.97 1.55	.23 .49 .53 .40	3825	.005 .002 .002 .002	1119 609 1213 1296 1694	40 665 100	26 10 21 30 19	162 85 76 167 133	21 20 35	28 86 77	5.1 6,5 3,5	100.02 100.05 100.02 100.02				
•	J91-25-20 J91-25-45 J91-25-45 J91-26-41 J91-26-11 J91-25-37	2.4 05.2 2.65	51.52 57.90 54.73	16.07 12.68 16.02	7.89 2.11 8.40 1.83 10.06 2.73 8.98 3.31 6.47 3.43	82.7	.16 .05 4.09	4.72 4.55 1.85	1.38 1.63 2.35	.35 ,48 .60	244.5	.002 .002 .002	1756	246 237 129 339	14	141 183 147	25 45 29	70 79 62	5.9 5.4 5.0	100.04 100.00 100.00 100.00	3			1 } ;
, 1 1 1	J91-27-6 J91-27-6 Standard	0.2 8.0 · SO-4	74.21 57.38 67.81	9,88 14,99 10,29	3.60 .84 8.47 3.90 3.56 .91		4.12 1.92 1.33	.73 2.53 2.05	1.79 2.39 .57	.47 .62 .23	06 07	.002	800 2205 795	166 162 207	14 20 29	144	36	29	5.9	100.0 100.1 99.9	1			
$\frac{1}{3}$				n sampi	LES ARE FL	SED W	178 1.	2 GRA	OF L	1802	AND .		SSOLVA	ED / DH						,,,,,				
212	DATE RECEIVED: NOV 15	1991 D	ATE R	epor;	r Haile	•	Vov	30	91.				77-	7-		D.TC	ME, C	.LEON	G, J.	YANG; C	ERTIFI	ED B.C.	ASSATERS	5
	······································		· · · · ·														• • • • •		· · · · · ·					

÷

	LABORATORIES LTD
AA	Granges Inct PROJECT UNUK RIVER 134 2300* 885 Wideorgis St. Vancouver BC Voc 3E8 Submitted by: Ril WRIGHT Page 1
SAXPLE# J91-18	Ho Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti B Al Na K V Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
A104 A105 A106 A107 A108	1 58 14 181 16 26 12 1512 4.30 38 5 ND 1 74 111 210 2 34 1.56 085 7 17 .98 114 01 2 1.79 .02 .17 1 70 40 1 50 74 627 1.6 18 9 2121 3.36 28 5 ND 1 163 55 71 2 16 2.94 .055 3 10 1.17 56 01 3 .82 .04 .09 1 15 250 1 67 75 502 10.0 33 16 1718 4.25 53 5 ND 1 162 4.2 155 2 11 2.57 .078 3 7 1.5 54 01 3 1.08 .02 .21 130 435 2 68 141 733 2.6 26 18 873 4.45 77 5 ND
A109 A110 A111 A112 A113	1 57 84 419 8 29 15 928 5.05 100 5 NO 1 27 32 36 2 68 .39 067 4 65 1.43 35 01 2 1.87 .03 .13 1 18 790 1 50 41 213 7 37 17 1539 4.66 54 5 ND 1 97 12 35 2 34 1.19 092 6 20 1.53 77 01 3 2.05 .01 .23 1 11 380 1 '41 16 131 .8 27 15 1293 4.70 66 5 ND 1 57 44 13 2 36 .80 0.03 5 25 1.36 87 .01 3 1.0 325 1 63 36 371 9.2 27 15 1723 4.79 158 5 ND 1 262 2.8 19
A114 A115 A116 RE A121 A117	3 65 272 3562 1.9 22 9 1250 4.99 42 5 ND 2 29 20.1 17 2 36 .35 .059 4 24 1.20 63 .01 2 1.27 .01 .14 1 6 1950 2 99 164 3066 1.4 18 12 1513 5.74 28 5 ND 1 31 17.3 9 2 44 .37 .071 4 24 1.26 57 .01 3 1.49 .01 .18 1 3 1750 2 46 100 611 1.7 12 9 1329 3.71 20 5 HO 2 51 4.24 1.26 57 .01 3 1.49 .01 .18 1 3 1750 2 202 643 9663 80 28 13 1388 7.49 100 5 HO 2 55 57 7 21 .00
A118 A219 A120 A121 A122	1 50 244 1393 214 20 13 1053 4.99 151 5 NO 1 47 10 1 7 6 12 .51 046 2 7 .53 44 01 2 .87 .01 .20 13 475 1 42 138 2143 1.9 19 10 1008 4.22 82 5 NO 1 32 14.66 7 2 14 .43 .662 4 7 .56 59 .01 4 .93 .01 .23 1 .72 505 1 46 216 534 1.4 25 11 1288 45 5 NO 1 32 3,6 7 3 8 .44 .075 4 4 .50 62 .01 5 .61 .01 .33 1 25 155 15 ND 2 52 50.86 6 8 20 .66 052 3 18 .75 17
A123 A124 A125 A126 A127	4 38 425 1163 3.0 18 10 643 3.72 87 5 NO 2 38 7.7 2 6 4 .51 044 2 8 .50 52 .01 4 .86 .01 .18 1 27 420 4 10 33 87 4 11 6 193 1.11 36 5 ND 1 17 14 5 2 3 .21 040 4 5 .08 66 .01 4 .29 .01 .22 10 .25 110 .25 110 .25 .110 .25 .110 .25 .110 .25 .110 .25 .110 .25 .110 .27 .605 .21 .21 .51 9 .2 .25 .035 3 .15 .27 .01 .25 .125 .127 .605 4 26 214 1426 13 12 8 .21 .50 .51 .91 .33 .
A128 A129 A130 A131 A132	1 26 98 1648 1/2 11 14 1382 5.80 103 5 ND 2 40 11.8 3 5 21 .38 048 3 12 .83 54 .01 2 .67 .01 .16 1 28 470 2 39 56 1413 1.6 16 14 1061 5.31 87 5 ND 2 12 97 2 5 41 .32 056 3 25 .82 57 .01 2 1.5 .01 .64 425 4 109 105 721 3.2 18 31 1590 9.69 235 5 ND 1 8 6.3 2 12 50 .17 .051 2 26 1.05 36 01 2 2.02 .01 .13 1 65 180 1 79 230 1679 2.0 13 15 1627 6.77 92 5 ND 2 <
A133 A134 A135 A136 A137	4 612 560 5181 7.4 17 23 2245 10.03 394 5 ND 2 28 3472 2 6 50 .65 .056 3 32 1.76 37 01 2 2.82 .01 .13 1 47 2100 1 138 127 1046 1.7 48 17 1770 4.91 104 5 ND 2 95 6.4 18 2 15 1.89 109 5 12 1.35 67 .01 4 1.09 .01 .27 1 34 230 1 96 25 190 1.0 54 18 1893 4.68 55 5 ND 1 140 9 2 24 3.09 118 6 20 1.56 71 01 3 2.04 .01 .27 1 5 50 1 84 37 367 9 50 17 1978 4.84 54 5 ND 1 149 2.2 2 2 2 3.78 101 <
A138 A139 Standard C/AU-R	1 75 19 172 .9 38 15 1527 3.74 38 5 NO 1 291 140 2 2 19 6.18 090 5 17 1.06 59 01 2 1.70 .01 .24 1 6 260 1 110 27 334 7 49 17 998 4.64 51 5 NO 1 125 1.9 3 2 23 2.92 098 4 23 1.33 70 01 2 1.96 .02 .27 1 10 155 19 59 37 139 7 2 72 33 1065 4.06 42 19 7 40) 52 18 15 18 55 .50 092 39 60 .88 181 09 32 1.92 .06 .15 12 480 1800
: /	ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LINITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZH AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG ANALYSIS BY FLAMELESS AA. Samples beginning (RE' are duplicate samples.
DATE RECEIVED	DE OCT 16 1991 DATE REPORT MAILEDI OL 21/91. SIGNED BY

			J CJ ĽŹ		
	Grand	ges Inc. PROJE	CT UNUK RIVER	134 FILE # 91~5084	CONFINENTIAL Page 2 AAA
SAMPLEN 191-18	Ko Cu Pb Zn Ág ppm ppm ppm ppm ppm	NÍ Co Kn Fe Ás pprippri ppri Xippri	U Au Th Sr Col ppm ppm ppm ppm ppm ppm p	Sb Bi V Ce P La Cr Hg prnipprn X X ppm ppm X	Ba TI B AL Na K V Au* Hg ppm X ppm X X X ppm ppb ppb
A140 A141 A142 A143 A144	1 106 11 285 6 1 125 29 124 7 1 94 10 83 15 1 125 11 120 6 1 122 14 96 6	54 18 1061 4.32 46 48 16 1618 4.25 44 57 18 631 4.70 44	5 ND 1 300 2 5 ND 1 107 3	9 2 11 3,25 089 5 14 1,31 5 2 27 3,32 111 6 28 1,50 3 2 28 4,91 102 6 29 1,51 6 2 31 2,32 115 6 31 1.62 7 2 27 4.07 102 5 26 1.39	57 01 2 1.91 .01 .23 1 11 100 48 01 2 2.00 .01 .21 1 26 85 55 01 2 2.24 .01 .24 1 4 130
A145 A146 A147 A148 A149	1 100 12 92 7 1 115 11 88 .4	48 16 915 4.37 37 46 19 898 4.97 44 38 15 659 4.13 32 40 16 1175 4.45 48 44 16 808 4.04 43	5 NO 1 145 .2 5 ND 1 98 .2 5 ND 1 212 .3	5 2 27 4.05 107 5 26 1.33 5 2 26 4.06 1092 5 25 1.36 2 2 24 2.73 103 6 23 1.23 5 2 23 6.56 1078 5 22 1.39 3 2 22 3.91 1094 5 22 1.15	53 101 3 1.86 .01 .23 1 8 190 68 101 2 1.78 .01 .25 1 10 160 69 101 2 1.77 .01 .21 1 4 265
A150 A151 A152 A153 A154	1 87 13 108 5 1 98 35 122 7 1 127 20 110 8 1 66 23 111 4 1 143 8 106 3	45 17 1142 4.06 57	5 ND 1 232 335	4 2 19 6.63 078 6 23 1.46	74 701 2 1.42 .01 .32 1 7 135 32 701 4 1.71 .01 .25 1 7 130
A155 A156 A157 A158 A159	1 128 7 105 1 9 19 67 134 1 5 10 13 122 6 17 22 13 142 1 26 28 11 157	5 11 4 1140 3.07	5 ND 1 239	2 2 18 1.71 111 6 11 .95 9 2 14 8.28 .077 3 9 2.09 2 2 7 10.08 .040 2 5 2.37 5 2 9 6.16 .049 3 7 1.28 3 2 8 5.16 .060 4 8 .82	54 001 2 .61 .01 .18 1 7 300 51 01 2 .42 .01 .12 1 7 475 52 .01 2 .68 .01 .17 1 3 700
A160 A161 A162 A163 A164	37 41 21 312 38 37 16 215 33 34 16 138 25 34 15 166 24 32 14 199	2 54 8 365 4.12 30	5 ND 1 80 1,3 5 ND 1 146 6	6 2 9 2.76 .036 3 7 .85 4 2 9 2.94 .045 4 7 .81 7 2 9 6.49 .049 4 6 .76 11 2 9 5.31 .056 6 7 .75 11 2 9 5.86 .055 6 6 .68	40 01 2 .90 .01 .17 1 4 1150 38 .01 2 .94 .01 .16 1 3 860 47 .01 2 .99 .01 .19 1 6 570
A165 A166 RE A162 A167 A168	30 32 11 180 180 21 24 8 227 180 35 35 16 147 26 25 15 222 1 12 9 127	2 39 8 528 4.34 30 2 33 6 1114 3.53 29 2 50 9 786 4.25 30 2 40 7 509 4.37 32 2 6 9 1576 4.34 22	5 XD 1 203 1.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47 01 2 .98 .01 .16 3 450 44 01 2 1.00 .01 .16 3 940 5 47 01 2 1.40 .01 .17 1 2 355
A169 A170 A171 A172 A173	1 4 6 84	6 22 29 1904 6.39 200 8 4 23 1614 4.56 4.3 8 7 27 1948 4.82 4.1 8 5 22 822 7.03 23 0 5 22 735 8.31 20	5 ND 1 110 2 5 ND 1 147 2 5 ND 1 62 2	28 2 25 8.15 124 4 12 1.77 10 2 26 3.57 092 6 9 1.65 11 2 36 3.85 054 3 17 2.26 12 2 65 .92 060 4 20 3.23 11 2 80 .54 077 3 21 3.64	5 80 01 4 1.73 .01 .29 9 235 5 60 01 2 1.84 .01 .25 11 155 7 43 01 2 3.56 .01 .17 1 5 100
A174 A175 STANDARD C/AU-R	2 5 6 152 3 12 12 120 1 19 60 40 132 6	2,99 30000	5 NO 1 75 .4	7 2 42 1.18 082 7 9 2.22 10 2 39 1.23 102 8 7 2.02 16 19 57 .47 090 37 58 .8	

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

...

i.

AA ADA AMILITICAL	Granges Inc.	PROJECT UNUK	RIVER 134	FILE # 91-5084	Page 3 Page 3
sample# J91-18	Ko Cu Pb Zn Ág Xi Co Kn pprnpprnpprnpprnpprnpprnpprnpprnppr	Fe As U Au Th X ppm ppm ppm ppm	∖Sr CcC Sb Bi nppm ppm ppm ppm pp	· · · · · · · · · · · · · · · · · · ·	B AL NB K V Au* Hg m X X X permippo pop
A176 A177 A178 A179 A180	7 12 12 191 7 11 16 527 9 42 8 154 8 10 20 837 8 5 12 187 9 7 15 643 4 26 14 139 10 4 7 712 1 2 5 119 27 4 9 691	5.85 27 5 ND 1 5.10 31 5 ND 1	36 .3 6 2 53 .4 6 2 63 .2 5 2	47 .60 035 8 22 2.56 41 01 29 .75 074 5 10 1.67 39 01 28 .91 .066 7 17 1.57 43 .01	2 2.58 .01 .22 1 20 115 2 2.90 .01 .22 1 16 75 2 2.13 .01 .20 1 21 150 2 1.95 .01 .21 1 31 80 2 1.98 .01 .15 1 7 80
A181 A182 A183 A184 A185	1 5 13 201 .8 2 7 1575 1 2 7 97 .5 4 9 852 2 9 17 123 .8 2 6 1151 2 7 8 80 .6 4 2 634 2 1 10 124 .6 2 3 715	5.39 8 5 ND 6.11 6 5 ND 5.45 6 5 ND	1 60 /2 3 2 1 62 /2 3 2 1 31 /2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2.66 .01 .07 1 15 130 2 2.15 .02 .15 1 12 40 2 2.33 .01 .18 1 15 65 2 1.55 .01 .11 1 82 65 2 2.07 .01 .10 1 9 85
- A186 A187 A188 A189 A190	6 3 28 191 8 2 3 741 6 9 29 190 1.0 2 3 686 14 14 21 175 9 2 4 1236 3 9 10 119 7 3 4 1585 1 8 15 117 6 3 3 1326	6.69 108 5 ND 6.17 119 5 ND	1 43 44 2 2 1 168 13 3 2 1 144 12 4 2	50 .68 108 7 6 1.35 58 .01 43 .64 .091 6 8 1.05 38 01 42 1.91 .086 5 14 1.22 52 01 40 1.78 .094 5 8 1.61 46 .01 36 1.47 .089 6 7 1.68 45 .01	2 1.94 .01 .13 1 13 125 2 1.47 .01 .07 1 6 125 2 1.58 .01 .10 1 27 140 2 2.05 .01 .12 1 23 70 2 1.89 .01 .11 1 62 95
A191 A192 A193 A194 A195	6 46 21 108 9 1 4 2154 2 1 8 50 2 3 2 60 3 2 7 65 3 3 2 491 4 14 30 113 4 3 2 491 2 6 8 82 4 3 3 601	4.61 17 5 ND 5.68 86 5 ND 6.04 78 5 ND	1 44 2 Z Z 1 52 2 4 2	37 2.27 090 5 10 2.07 43 01 37 .72 087 8 6 .83 52 01 40 .80 083 7 8 .65 39 .01 40 .50 096 8 18 .95 48 .01 40 .67 090 8 7 1.06 42 .01	2 2.05 .01 .11 1 65 90 2 1.17 .01 .12 1 14 30 2 1.26 .01 .08 1 8 40 2 1.43 .01 .12 1 5 65 2 1.50 .01 .12 1 12 75
A196 A197 A198 A199 A200	3 6 13 64 5 4 4 71 1 1 11 109 3 2 5 101 4 9 13 139 .9 2 6 131 1 7 8 77 4 2 5 146 3 6 11 73 8 3 4 60	1 7,03 21 5 но 0 7,79 87 5 но 5 7,00 11 5 но	1 76 2 7 2 1 22 2 7 2 1 49 2 10 2 1 51 2 7 2 1 16 2 6 2	23 3.46 060 4 7 .44 45 .01 31 .30 068 7 14 1.77 44 .01 45 .76 .101 6 7 1.69 41 .01 47 .85 136 6 8 1.76 37 .01 33 .33 123 8 15 1.03 46 .01	2 .61 .01 .10 .27 250 3 2.59 .01 .17 1 10 75 2 2.25 .01 .14 1 43 455 2 2.28 .01 .10 1 3 70 2 1.37 .01 .16 5 65
A201 A202 A203 A204 A205	3 5 9 74 19 2 4 69 2 8 8 79 5 5 3 67 4 23 10 81 9 3 4 62 3 19 12 62 1.0 2 4 48 2 18 8 65 6 3 3 70	9 5.64 25 5 ND 0 7.09 42 5 ND 3 7.21 112 5 ND	1 21 2 5 2 1 22 7 3 2 1 20 2 7 2 1 21 2 7 2 1 21 2 7 2 1 42 2 4 2	31 .38 106 8 7 1.18 40 01 42 .41 113 8 11 1.19 38 01 40 .41 133 10 21 1.18 42 .01 29 .42 .28 9 5 .82 43 01 33 .69 12 7 9 .96 30 01	2 1.45 .01 .14 1 14 105 2 1.44 .01 .11 1 2 65 2 1.43 .01 .15 1 3 75 2 1.07 .01 .18 1 7 105 2 1.09 .01 .11 1 2 95
A206 . A207 A208 A209 A210	923 21 35 2.7 4 8 64 22 12 20 45 1.9 4 10 161 40 11 29 65 2.4 2 9 247 8 9 35 74 1.4 2 5 212 19 33 18 44 .3 2 6 123	8 9.31 125 5 ND 7 11.49 130 5 ND 3 7.49 62 5 ND	1 38 .2 28 2 1 37 .2 19 2 1 121 .2 15 2 1 70 .2 8 2 1 .28 .2 11 2	42 .68 077 3 7 3.68 15 0.1 60 1.86 096 3 2 4.78 11 .01 56 1.33 092 4 13 3.77 22 .01	3 1.06 .01 .14 1 45 2250 2 2.80 .01 .10 1 51 1500 3 3.61 .01 .08 96 985 2 2.70 .01 .06 1 74 \$75 2 2.50 .01 .10 1 60 735
RE A206 A211 STANDARD C/AU-R	9 21 23 33 216 4 7 61 5 75 12 43 110 3 5 73 1860 41 133 8.7 70 32 104	6 6.77 65 5 NO	1 35 ,2 28 2 1 14 2 6 2 35 52 18 2 17 19	43 .28 105 4 9 1.52 21 .01	2 1.01 .01 .13 1 36 2350 2 1.53 .01 .09 1 46 85 34 1.89 .06 .15 12 480 1450

Sample type: CORE. Samples beginning (RE) are duplicate samples.

. . . .

•

JT91-18	No C. Jpb ppm ppm ppm	a ppra ppra ppra	ppm ppm X		∽ vcđ sb si v ca s 	Pile Cr Hg Be 11 Xppm ppm Xppm X	B AL Ha K W A Hg ppm X X X ppm p, ppb
A212 A213 RE A218 A214 A215	1 37 16 2 90 15 2 121 34 3 168 33 5 100 89	5 40 1,2 3 4 42 4,4 1	6 976 5.73 6 754 7.16 5 679 7.02 8 337 8.31 5 243 7.94	27 5 ND 1 25 36 5 ND 2 18 123 5 ND 1 16 235 5 ND 1 16 315 5 ND 2 12	5 12 7 2 68 .41 .13 3 .2 7 2 56 .34 .13 5 .2 14 2 48 .36 .14 5 .2 14 2 48 .36 .14 5 .2 13 2 40 .29 .11	1 2.13 33 01 34 5 2 1.49 34 01 33 7 1 .80 30 01 10 6 3 .54 26 .01	2 1.63 .01 .12 1 31 35 2 .92 .01 .11 1 590 210 2 .74 .01 .16 1 200 150
A216 A217 A218 A219 A220	14 2175 1542	B 44 1.2 4	9 287 9.81 5 419 9.83 5 696 7.31 5 936 8.17 6 946 9.75	289 5 ND 2 19 1101 5 ND 2 24 139 5 ND 1 17 97 5 ND 2 17 174 5 ND 2 15	4 2:5 107 2 26 .45 0 7 2 16 2 50 .38 1 7 2 4 2 55 .35 1	25 5 4 .39 14 0 27 7 1 .83 30 0 20 7 3 1.18 33 0	1 2 .51 .01 .12 1 2590 2250 2 .94 .01 .12 1 640 215 2 1.37 .01 .13 1 89 50
A221 A222 A223 A224 A225	3 65 35	4 110 3.3 3 9 238 17 2 1		136 5 ND 1 14 139 5 ND 1 13 341 5 NO 1 23 711 5 NO 2 49 153 5 ND 2 32	3 ,2 9 2 38 ,25 01 3 ,2 12 2 40 ,36 01 9 ,3 47 2 43 ,89 01	83 6 6 1.19 31 0 88 5 4 1.05 32 0 97 6 2 .74 14 0	1 2 1.45 .01 .13 1 1350 165 2 1.16 .01 .13 1 250 380 2 .81 .01 .12 1 2660 1400
A226 A227 A228 A229 A230	1 29 10 2 23 12 2 50 0	3 46 1.4 3 4 107 2.0 1 2 93 2.2 4 8 60 1.6 3 8 130 4.25 1	7 992 7.66 5 719 7.45 5 692 8.21	66 5 ND 1 29 109 5 ND 1 17 111 5 ND 1 16 199 5 ND 1 29 249 5 ND 1 17	7 2 7 2 41 .31 1 6 2 9 2 37 .31 .1 9 72 8 2 36 .54 .1	18 6 1 1.48 34 70 03 5 4 .97 35 0 06 5 2 .90 43 .0	1 2 1.71 .01 .15 1 390 145 1 2 1.11 .01 .13 1 174 60 1 2 1.05 .01 .14 1 48 55
A231 A232 A233 A234 A235	2 23 14 1 10 14 5 5 11		6 1007 7.84 6 1164 8.01	175 5 ND 1 20 166 5 ND 2 11 209 5 NO 1 23 350 5 NO 1 20 76 5 NO 1 20	7 .2 8 2 59 .32 .1 2 .2 10 2 43 .34 .1 0 2 6 2 62 .40 .1		1 2 1.68 .01 .14 1 260 70 1 2 1.88 .01 .15 1 880 200 1 2 1.96 .01 .11 1 200 80
A236 A237 A238 A239 A240	10 22 5 4 31 3 2 51 1	1 110 116 1 6 109 3 2 2 7 131 4,1 3 8 95 2,8 1 3 132 2,8 2	7 1416 8.68 7 1367 9.46 6 1210 8,79	142 5 NO 1 14 193 5 ND 1 2 197 5 ND 3 24 281 5 NO 1 14 50 5 ND 1 14	1 .2 9 2 57 .31 .1 4 .7 2 2 56 .36 1 6 .3 8 2 61 .30 1	40 6 1 1.89 36 0 13 5 2 3.25 32 0 26 5 4 2.82 32 0 16 4 2 2.22 28 0 40 7 1 2.53 35 0	1 2 3.20 .01 .11 1 280 180 1 2 2.97 .01 .11 1 470 160 1 2 2.32 .01 .09 1 390 115
A241 A242 A243 A244 A244 A245	3 22 1 2 10 2 9 1	0 105 2.5 2 1 91 2.4 2 9 93 2.6 1 2 116 2.0 2 6 88 1.8 1	6 1522 8.09 6 1350 7.72 6 1296 7.65	231 5 NO 1 2 228 5 NO 1 1 239 5 NO 1 2	3 .2 2 2 64 .38 .1 8 .2 2 2 66 .30 .1 10 .3 3 2 64 .33 1	37 6 2 2.27 34 0 13 5 7 2.18 33 0 10 5 1 2.34 37 0 25 4 2 2.22 34 0 27 5 8 2.62 39 0	1 2 2.31 .01 .10 1 290 75 2 2.43 .01 .09 1 270 65 2 2.23 .01 .10 1 310 105
A246 A247	2 7 2 8	9 73 2.1 1 8 75 1.5 4			27 2 5 2 67 .36 26 3 5 2 55 .36	11 4 2 1.96 33 .0 30 5 4 1.91 43 .0	
A248 A249 A250 A251 A252	- 1 7 3 10 1 4 19 1	9 116 114 3 9 148 118 2 4 101 2.7 3 9 109 2.3 4 4 105 2.3 3	7 1438 7.84 6 776 7.40 6 452 6.08	137 5 NO 1 15 311 5 ND 1 14 778 5 ND 1 24	(9 2 2 70 .28 .) 3 5 2 66 .31 .1 4 11 2 19 .45 .1	15 2 5 1.31 31 0 02 3 17 .11 31 0	1 2 2.80 .01 .07 1 260 135 1 2 1.39 .01 .08 1 195 110 1 2 .27 .01 .13 1 230 95
A253 A254 A255 A256 A256 A257	5 53 2 3 47 2 1 28 2	7 84 216 4 3 41 11 3 4 83 14 3 1 104 1.8 3 2 157 4.2 3	6 893 6.47 7 1068 7.65	496 9 ND 1 29 321 6 ND 1 36 211 5 ND 1 32 157 5 ND 1 36 675 5 ND 1 36	.3 2 2 56 .55 .1 .2 2 2 26 .51 .1 10 2 2 64 .44 1	07 Z 5 .28 36 0 44 2 5 1.39 32 0	1 2 1.00 .01 .10 1 87 120 2 .54 .01 .13 1 107 75 1 2 1.72 .01 .10 1 126 105
A258 A259 A260 A261 A262	4 34 1 6 103 1 4 80 1	4 91 2.8 3 5 131 2.0 4 8 82 72 4 8 42 17 3 10 109 15.5 7	6 1110 6.85- 4 514 6.71 6 683 7.58	292 5 NO 1 24	5 2 2 49 .39 .1 13 14 2 39 .35 1 9 2 2 52 .44 1	35 4 5 1.12 37 10 17 4 19 .31 36 0	1 2 1.41 .01 .15 1 72 90 1 2 .65 .01 .12 1 187 90 1 2 .96 .01 .18 1 88 140
A263	3 207 2	21 76 4136 13			A 17 7 11 45 4	### \$\$\$	

			·				*						4	ŧ		;																					
STRINGER		591-7.	NoTE : 103-113.95 9		Ϊ.	~14.	113.95 - 4-6 %	88.60- 91-65 -5-87. 1	न ,	170-27	167.10	156-61	113.30- 144 64 TAITEA		1.65- 7515 INTERMIXED	H K I	16-10- DO. ON LATHONIZED		23.60- 53.57 INTERMINED	29.60	. h-	14.96	E L	SUMMARY	GALLEN OCT 9 -	LOGGED BY DATE	- 63 '	ΞĮ.	, J+44E	LOCATION JEFF GAIN	INTER SE CTED	PURPOSE TO TEST	I91-19	HOLE No.		C CBANGE	
	evo en Thata		PROMONY CARD		10 + 65 - TAACALS	SPHALEAUTE -	PYRITE IN STRINGER	PYRITE IN HAPILLI	INTERVALS	INEO PH	FINE -	マデ	יישי איזייייי	DEDIMENT	FINE TO	┺ ┠┇┍⋛।	To COARSE.	r		TE 7128-		Five To			J. T. THOMAS	CONTRACTOR	231-65		ł	GROUND ELEV.	in itera	Souther of STR				GRANGES EXPLORATION	
	Rio Baru	1111日 111日日	CARESULATIVE VIAITH	1	10 0.		ì	MACE			GATINES THE		70 L/Tr/1LL1	C Silici Citot	Compse- Cren	- Later-	ייינייי אירר פאינ	C ivia		UL CAN	TUFF	10m - 68				CORE SIZE	-63 . 20			BEARING	391-7.	LINE EXTENS		Cour	UNUK		
1.1.5	Sphara in Ano	- K	12		ST- BUHLOPPE ANSRU		5	SPHA Star		INTERMEDIATE TUFF	.	DIDAL LAGIFLI	ς Έ.Ε. Α	J P F F	GRAINES INTERMEDIME		1035		ייזאו טור אונר			, IN			13. A	SIZE	206.22	VERTICAL PROJECT	272"	NG		NON OF M		3 CLA	RIVER PRO		
	GALSWA IN		៦		Ansen presite Dissenwhite	のないとない。	1-2% Pylemon TE	SPHALMENTS IN STRU	C THE STATE	The THEFACTORS SEDIMEN	1.	TUPP		HAPILL TUFF	TUFF	 .	(MAGILL		ľ	5 1	ar (teases			·	DATE COMPLETED	ESTARTED	108.82	HORIZONTAL PROJECT	233.17-	TOTAL LENGTH	:	INRALIZED 2	×.	3	TECT PAGE 1	· · · ·	
	QUNETZ		ZowE-IN		NI GEN			STRINGES	, 	S-107			L	 	H-V-O		6045)	TVPF		/ Denus fro					0CT. /0	े भू ह		JECT				N N N N N N N N N N N N N N N N N N N			OF 25		

GRANGES EXPLORATION PROCESSION MAMOND DRILL LOG PAGE 2 OF 25 HOLE No. 591-19 1055 S А LITHOLOGY INTERVAL Ċ, ن 0-6.3 OVERBURDEN 0-6-1- CASINC 14 S 2 6.1-6.3 - Rubble of sandatom -- 5 ARGILLITE 6.3 - 11.6 Black massive to thinky budded millit -ū myrich to bluich - gring Danke br (57. 10.3 - 11.0 - 60% white alinte subpralled to come an 6CV - 10 11.5-11.65 - Questy - Contornate min Jucin To CA. ور الموارد المراجع TO MEDINA ... GAAINED TUFF INTERMEDIATE FINE 11-60-14:96 -quant Midium blue- gring_ requests to 2 mm) 1000 . 20 °CA 12.4-16.2 - Blocky con. Fraction ۰. r.= - 15 درجوان TUFFACEOUS SEDIME ARGILLITE, ARGILACEOUS 14.96-16.20 Fine - gri 202 -1n - 5m angu T. Itafforum ्र,⊽ INTERMED, ATE FINE - GRAINED TUFE TO LAPILLI TUFE 16.20-29.00-20 (BRECGATED ?) OR DEBRIS FLOW medium 1607. manh 无止?(3)上 202 -20 ાનનું છે. agments to 3 cm siltiture (2) 11111111111

PAGE 3 OF 25

HOLE No.

_((

----,

-[((

391-19

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ШІОТН	Au ppb	Ag g/t	As pp=n	Sb ppm	
	·							 	
6.3-11.6- Armon 27. fin-graind printe concentrated in sittatore lide to 1 cm.	S-001	6.30	7. 75	1.45	19	Q.6	50	19	
	5-∞3 5-∞4					0.7 0.4		9 6	
	5.00 <u>5</u>						9	z	
11.6-38.2 ≤ 17. pyrite.									
					•				
					T				

HOLE No. 591-19		DIAMOND DRILL LOG	PAGE	4	0	F 2	5	
INTERVAL	C. L055	LITHOLOGY	*		S	Μ	А]
		blue - quy chaledong. Fraquent oppion to have	- -	2A-0/	_	±1% €Y -		- 20
		maybe a debus flow.		4 		-	_	l r
			- - -	2Kv, 2A.	-	-	_	-
				-	-	-		-
				-	-	-	-	-25
				-	-	-	-	-
	-			-	-	-	-	ŀ
			-	-	۲		-	- (
·			-	-	-	-		-
80- <u>53,6</u> 7		INTERMINED INTERMEDIATE FINE- CRAINED TUFF	-	1.	-	-	-	- 30
····		AND SILTSTONE / DEDRUS FLOW		м 2 4	1.		-	-
		50% darle grunch - grug to black soft	1 -		-	_	_	-
		in a fing- grained medium grunish- grey fine-	- - -	02 ,0	-	-		-
		not present but ranky evident at 50°CA.	1_	_	ł		_	-
		Some darlin poute oppin to be buccisted and invade	L		-	_	-	-35
_		flow Some of the brecin texture may be pseudobuccin coursed by alteration			_		_	
		33.3-35 - Blocky con. Fractural 60 * + 30 ° cA.		-	-	· -		
		JJ. 5- JS Chrony Grue		-	-	-	-	
	 .	· · · · · · · · · · · · · · · · · · ·	- 	-	-	7-5.7 Ta P	-	(
			50	-	-		-	ſ
			[_	- 1	_	-	-40

	LON LTD						PAGE	5	
J91-19									
MINERALIZATION ALTERATION	SAMPLE	FROM	то	W107H	Au Dob	Ag g/t	As ppm	Sb ppm	
								<u>}</u>	╞
								_	╀
				·			<u> </u>		\vdash
				<u> </u>				_	╞
									┢
								<u> </u>	F
									╞
									t
									╞
								<u> </u>	┢
								 	
			<u> </u>						╞
									Ľ
								i	┝
		·							
									_
· · · · · · · · · · · · · · · · · · ·							·		
2-38.95- 2-5" pyrite in bricin matrice. Along stringers to 5-m associated with blue-grey chale and colate. Min pyrehotete.	5.06 3	B.Z .	38.95	0.75	2	9.2	38	3	

HOLE No.			PAGE		• (DF 2		-
591-	19							
INTERVAL	C. Loss	LITHOLOGY	c +	L	S	M	А	40
				Z A , 7	_	14. 17	-	-
·				4 / 4		_		
			-	70,70		_	_	
						2-47.	_	ſ
				-	-	TY	-	
				-	-	-	-	-45
·		47.13-47.5- Quanty - conformati - flooded briccia zon. 57- pyrite		-	-	-		
				-	-	Ħ.	52.17	-
				-	-	1-22 P/	-	
·		······································		-	-	-	-	
		50.3-50.7 - Levilli tuff. Flattend medium gruy	\$ī.	-	-	-	-	- 50
		in a dark argillacuna grundmore.	<u>-</u>	-	-	-	-	-
				-	-	_	-	-
.57-7610		INTERMEDIATE FINE- CRAINED TO LAPILLI TUFF		-	-	-		F
		nottled melium to dark grunich-grug fine grained soft intermediate triff with		۲ <mark>ا</mark>	يتتن	41 % Py	<u>त</u> -।	-
		The motiled notice of the unit suggeste that		 (a		4	-	- 65
		lithis programmates may be a significant		-	-		-	╞
		54.40-1 cm calite atringer and 1 cm gauge 75° CA		-	-	-	-	-
·····		5t. 40 - 1 cm Caberts atringer and 1 cm goinge 13 Ct	-	-	-	-	-	-
			1		,		5	

GRANGES EX	PLORATIO	ON LTD
DIAMOND	DRILL	LOG

PAGE 7 OF 25

HOLE No.

591-19

		SAMPLE	FROM	то	МІОТИ	Au pyb	Ag g/t	As ppm	S⊎ µрт	
	38,95- 43.10 - 12 pyrite					-				
4	3.10- 47.50 - sporatic 2-4.9. amite along	5.007	43,10	11.61	1.51	59	0.3	28	14	
	3.10-47.50 - spondie 2-4% pyrite along ingular stringers and merce to 1 cm, genually associated with calacter 47.13-47.5- Questy- culoret flooded				1 4 7	15	በ ፖ	76	<u>ل</u>	
	47.13- 47. 5 - Quest - andurate llooded	5-70-8	14.6 1	76.04	1.45	10	0.5	<u>a6</u>		
s 🕂	brecia. 53 pyrite.	5-009	46.04	47.50	1.46	<u>م</u>	0.2	83	5	
-	<u> </u>	S-010	47.50	48.90	1.40	G ´	6.4	17-	Z	 <u>.</u>
				1	•					
. 4	17.50-53.57-1-2 2 pyrite predominutly discuminated.	<u>5-01(</u> _	48.20	50.44	1.54	6	0.1_	\$7	_11	 ••••
		5:012	50.44	51.9Z	1.4B	z	0.1	20	2	
		5-013	51-92	53,57	1.65	3	5.0	え	9	
's +-	· · · · · · · · · · · · · · · · · · ·									
-	<u></u>									
. -						÷		-		
5	357-58.89- <17. Py									
۲ ۲										
-	· · · · · · · · · · · · · · · · · · ·									
•										
-										
						<u>-</u>				
5	18.69-59.0 - 202 syntistite 52 pint		58.17	58.89	0.71	7 ·	1.6	6	2	
• ∔	90 °cA.									
-				59.00			<u>0.1</u>	10	2	
1		Soll	59.00	59.82	0.82	3	3.5	+	19	

[[GRANGES EXPLORATION LTD	PAGE	g	0	IF 2	5		0
HOLE No.									
391-19	16	······	1		·	;	r		
INTERVAL	C: L055	LITHOLOGY	⊷ ن		S	Μ	A	60	
C				Z A (-	<12 87 -	sc-1 CI -1 -		
				ש ע -	-	-	-		
_ .			4 -	-	-	-	-	-	
L				-		-	-	-	
				-	-	-	-	- 65	
				-	-	_	-	 	
				-	-	-	-	-	C
·····			-	-	-	-	-	-	Ę.
				-	-	-	-		
·			1	-	-	-	-	- 70	
				-	-	_	-		
				_	-	_	_	-	
					-			ŀ	
·				-	-	_	_	-75	
<u> </u>				_	-		-	-	
76.10-B8.80		LAPILLI TUFF AND FINE TO CORRESE - GRAINED	2	24-0;	-	17. 27. 27.	ş;		
		TUFEACEOUS SEDIMENT (ARGILARCEOUS) Hiterogenesses interval with 60% milium	-	17:	-	- 7- 67	-		6
Č		grunish - grun intervale up to 1.5 m interbedded	-	-	· <mark>-</mark>	-	-		Ś
Ţ		traffacence adiment. highter intervile range from fin- grand taff to cross- grand sandy taff to legible tall with medium grey agheritic programte	-	-	-	:		- 80	

a caracteristic construction of the second

HOLE No.								9	0
J91-19 MINERALIZATION ALTERATION	SAMPLE	FROM	го	WIOTH	Au ppb	Ag	As	56	
59.0-76.1- <17. pyrte.					i ppu	g/t	PP*	ppm	+
							 		
			 	 					
								-	╂
			ĺ						
								 	<u> </u>
									┢
				-					
		:				 	 	ļ	
· · · · · · · · · · · · · · · · · · ·				<u> </u>					<u> </u>
							<u> </u>		
						ļ			
									<u> </u>
								<u> </u>	
									<u> </u>
	5-017	76.10	76.92	0.72	18	3.5	81	19_	
76-1-76.82- 17. pyrite	S-018	76.42	77.41	0.59	20	1.9	102	5	
76.82- 77.41- Questry view and be	waite			<u> </u>					
76.82- 77.41- Questy view and be questy vin. 2-32. pyrite, trace brown sphaleits.	- nd - 5-019	77,41	78.41	1.00	4	<u>[1.0</u>	22	Ś	
Inown sphallits.						 	 		├

	GRANGES EXPLORATION LTD	PAGE	10		DF 2	.5	-	C
HOLE No. J91-19								
		÷ 5		S	M	A		
	to 2 cm. The darker intervals appear to be pudominantly angillite failtatome with 20%. fine - grained ardumentary lithis fragmenta up to 1 cm (tiffactore?)	-	24-0, 773	-	17. F7 	-	60	
		-		-	-	-	-	
		55	-	-	2-47. P <u>Y</u>	-	- 85	
		50 ⁷ /40	-	-		-	-	C
- #6.8-91.65	INTERMEDIATE TO FELSIC LAPILLI TUFF 50-607, milium bilue quy soft ophanitic angular to subrounded lithis frequente to tem	-	۲ <mark>-3</mark> , ۵	-	5-82	-	- 90	
	Fragmente are commany any gladoided (10%. E 1mm). Croundmars of lapilli tull typically flooded by blue- my calente and 5- 8% pyrite		-4 Z (1)	-	s. ti		-	
9 <u>1.65-98.15</u>	INTERMINED FINE TO CORESE- GRAINED INTERMEDIA TUPE AND TUPEACEOUS SEDIMENT Medium to dark blue-oney soft fime-	-	5,7,7; I	¥ * *	31 -	-		
-	greined (ongillacions) to comes- grained sondy triff, or triffocione and innet with dark to hight open appointic filice volcome programte to I cm what of unit is blocky broken.	51:-65 -	- 1	X	17. 12 -	-	- 95	
······································	92.80-92.9 - Pulvinged cone. Gonge. FAVLT, Drivetetion under but probably ~ 80° cd. 92.9-93.27- 70% white quarty vin / stringers.	50.		-	- - 442		-	
	98.0-90.15- Folietis, phyllitic, sheared along content.	-	2. 3 A-01/6-	-	2	-	-/00	

PAGE OF 25 11

HOLE No.

Ę

J91-19

_					.		·		-		
			1]				56	[
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	нтоги	Гла	Ag	As	1		
80					L	ipb_	g/t	Ppm	ppm		
				1							
				1							
		1		<u> </u>							··
_	<u>}</u>	-		<u> </u>			┨				
		ļ					 		· · · · ·		
					{						
		1									
		1	1				1	[
							1	100	0		
-	84.5 - BB. B - 2-47. pyinte; discominated,	5-020	84.5	85.90	1.40	51	<u>1.4</u>	62	8		
_	dong practises to 2 mm crosscutting										-
85		5-011	85.90	87.35	1.45	64-	2.6	53	15		
- 40.	londe to 5mm porallel to bedding.				•						
	more to Smith forgeted at anothing					4-	11	20			
-	Minon pyrhotite.	5-022	37.35	88.80	1.45	63	1.4	38	<u> </u>		
		<u> </u>								L	
	86.8-91.65 - 5 - 8 7 fine - grained to	5023	66.60	90.06	1-26	94	3.4	112	20		
_							[
6	lopilli tuff matrice.	5-024	90.01	9 . 0.			31	190	10		
	- manual	2 024	10.00	10.04	0.7D		13.6	100	10		
1											
-	# 90.06-90-84 - Questy stringer to 2 cm	5-025	90.84	91-65	0.81	886	15.0	951	34		1
	anteparallel care arice . Trous red -										
	brown sphalmits.	5-026	91.65	9700	1.5	10	07	40	7		
, 2 0 -	free the second second	5.000		14:00	2101		<u>10.1</u>	<u>9</u>			
						├ ,					
-		\$-027	92.80	93.27	0.47	5	0.2	2	2		
	91.45-98.15 - 17. printe; disseminated and along fractures.	{									
	a later last	5-028	92 77	36 6-	2 22	2-	02	In	4		
			1.1.	13.70	<u> ~:=</u> 4	<u></u>					
~		5-029	95.50	16.60	1.10	12	0.(59	2		
		5030	96.60	28.15	1.55	48	0.7	65	3	1	
			· · · · · · · · · · · · · · · · · · ·	#	1						
			20.4			(00)	2-1	10/1	<u>tı</u>	·	
75 .		5-031	76-15	77.15	1.00	180	<u> </u>	124	41		
-											
~		5-032	99.15	100.00	0.85	460	2.9	92	11		
[1	
										1	
		┨──┤									·
C C							i				
Car]								-	
H											
No.		┠┨									
		└─── ┤					L				
001											
\sim											
		<u> </u>		- 1						f	[
• •			1								

GRANGES EXPLORATION LTD

PAGE 12 OF 25

 \mathbf{C}

HOLE No.									
<u></u>	9								
INTERVAL	C. L 055	LITHOLOGY	د د		S	M	A	-	
18.15 - 113.3		INTERMEDIATE TO FELSIC SILICIFIED TUFF.		2		4.2	s: -	100	
		LAPILLI TUFF		34	-	PY -	-		
		Minim blue gry silicions aphanitic volcanic rock with intervale containing distinct planitic	-	-D(1) 5	-	1-27. P.	-	-	
·····		The with hose a vegue clastic textine	• -	_	_	<u>}</u> ∓-52	-	-	
		Inscirition and silverification. Could be in part flow. Tractions descend by silverification.	-	-	-	17 27 Po Long 51	** { Tm	als As	
· · · · · · · · · · · · · · · · · · ·		98.15-106.5- 5% white quart stringing to 2 cm	-	-	-	-	-	-105	
		parts by the guy chaledonic quarty.	-	-	-	12	-	-	
		106.5-108.5 - 107. white quarty stronging Bucin filling pudominantly 20'to subparallel to CA.	-	-	-	Ŵ	}- }(02	92 (_
			-	-	-]-	}-°		
			-	-	-		-	-	
			-	-	-	.7	-	- 110	
			-	-	-		-	-	
·····			-	-	-	X.	-	-	
		· · · · · · · · · · · · · · · · · · ·	-	.7*	-	ر. سبت			
-43.3 -		INTERMEDIATE TUFF TO LAPILLI. TUFF	-	27-1	-	173 P	s;=2 \$P##		
		Mottled medium grunish - gruy to blue. gruy fine - grained till to lepilli till with	-	(1) va	-	자 <u>년</u> 2 P1	-	-115	
		annyadalaidal fragmente to 3 cm. Spanadrially silicified Annyadule generally = 1 mm in	-	-	-	£≉ -	-	-	
~		diameter, but range up to 3 mm.	-	-	-	-	-	-	
••••		Graditional contact with unit above. This unit is probably a loss altred equivalent		-	-	-	-	ſ	
		of the unit above.	-	-	-	-	-		
		Minon blue- quy chalcedony stringers in-selicified	-	-	-	-	-	-120	
	_[•				

PAGE /3

.

OF 25

HOLE No.

C

391-19

MINERALIZATION ALTERATION]		Au	Ag	As	56	
MINERALIZATION ALTERATION	SAMPLE	FROM	то	MIOTH	ppb	g/t	ppm	ррт	
98.15-113.30 4-67. pyrite; predominent	5-033	100.00	101.0	1.00	<u>3</u> 30	6.0	525	44	
along frontine to 5min. Ame. Equ	· 				0~/	10	140	8	
1-23. pyrhitit	5-034	101.0	/02.0	1.00	87	1.9	UPI	0	
103.7-104.65 - Trace to 0.5? inhided	5-03-5	101.0	103.0	1.00	ેર્બ	1.9	119	10	
manopyrate dissiminated in silicitie	1								<u> </u>
tuff	5-036	103.0	103.7	0.70	3 8-	ւ.գ	227	<u>//</u>	
103-113.30 - Tracia red - Improve	5-037	103.7	10465	0.95	58	र.उ	1604	34	
aphalente in quarty stringers,									
# 107.6-107.6. 17. effetinte in marcu	5-038	104.65	10544	0.79	98-	<u>3.5</u>	717	25	
to 5mm. Red-brown rim with	5.039	10544	1065	1.06	190	2.9	297	K	
pale yellow cone. (Mucmy nich?)	5-040	106.5	107.5	1.00	280	3.4	331		
	5-0+1	107.5	108.5	1.00	710	3.7	373	25	
	5-047	100 5	107.6	1.00	812	1.9	199	26	
	5-043	109.5	110.5	1.00	<u> ५२</u>	1.6	154	17	
	5.044	110-5	111.4	1.00	370	70	241	17	
	0.044			4			<u> </u>		
	5-045	111.5	112.5	1.00	210	1.4	44	15	
			117 -		6_	20	69	6	
	5-046	112.5	<u>ייע, איי</u>	0.40	&z	α.1.	×1		
	5.047	113.30	114.44	1.14	86	1.3	74	7	
113.30 - 144.84 - Spondie 1-22 pyrite							144	2	
and 2-47. symphold. Destind	5-048	114.44	[15.26	0.62	6	 · -	1.177	<u> </u>	
init above.	5-049	115.26	116.18	0.92	27	0.5	13	13	
			<u> </u>	<u> </u>	<u> </u>		15	2	
(15.67 - Trace dark grug occular me	115-050	114-18	01-47	1.21	_ح	0.1		<u>~</u>	
- i aniemali i in planty average.	5-051	117.69	119.0	1.31	35	1.1	75	2	
					_	11	0	0	
	5-052	119.0	120.53	1.53	त्तव⁄	1.2	94_	8	
					[1		
							1		
	<u> </u>	\		 	 		 -		

			GRANGES EXPLORATION LTD	PAGE		+ (DF 2	2.5		C
	HOLE No.		·		-			-		
	J91-1		· · · · · · · · · · · · · · · · · · ·		,	,	•	·		
	INTERVAL	C. L055	ĻITHOLOGY	≁ ט		S	M	А		
					×4-7		1-27. EY	5(-2 5900	+ 120 10 c	
<u> </u>	·····				(s) ad	_	2-42 	_		
L	•	-	· · · · · · · · · · · · · · · · · · ·		_	_	ר	_	-	
					-		1 [-	-	_	
-	• · · · · · · · · · · · · · · · · · · ·					-	12,	-	- 12.5	
		<u> </u>			-	-	/ /	_	- -	
L -	•			 	_	_	Ę	-	-	<u>_</u>
[-	-	\ ;	_		
[]			-		-	-	` ^	_	-	
<u> </u>			131.5-133.4 - 5% quarty stringers and gach		-	_	ן כ	-	- 130	
<u>L</u>	•		wine to 1 cm at 20° CA		-	-	ŗ.	-	-	
[_		-			-	-	52 [2] 444	_	-	
					-	-	-	-	-	
						-	-	-	-	
L-					—	-	-	-	- 135	
				- -	-	-	-	-	-	
Γ							-	-	-	
					-	-	-	-	-	۲
L	·····				-	-	-	-	-	
					-	-	-	-	-140	
_				1 1						

Ć

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 15 OF 25

:

HOLE No.

C

391-19

_	J / 1 / /								······	T	
_	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	NIOTH	Au PPb	Ag g/t	As pp≠1	Sb ppm		
_120 -		5-05 3	120-53			120		151	5		
-		5-054	121.92	123-43	1.51	67	1.4_	150	15	_	
-						68 ′		81	2		
_									2		
-						170					
-		<u>5-057</u>	126.47	128.01	1.54	500'	1.B	174	ő.		
- 125 -		5-058	128.01	129.52	1.51	17 -	0.6	37_	4		
-		5-059	129.52	131.06	1.54	160'	1.0	32	Z		
-	127.86. 1 cm zon with 202 nd-brown spholuits adjacent quarty stringin	5-060	131.06	132.54	1.48	44	1.3	51	8		
Ć		1				210		94	3		
-			1			220			2		
- _ 130 -				ł	1	300			4		
									5		
-				1		370		1	1		
		<u>s-065</u>	138.7	140. LI	1.49	170	0.8	32	<u> </u>		
	133.0- Trave black minutar metallic										•
-	minut in questy stringer at 20 °CA.	<u> </u>				-					
-135 -						<u> </u>				 	
-				-				<u></u>	<u> </u>		
							<u> </u>			<u> </u>	
re .		1	 		1	 					
Д ^{°°}						<u>+</u>		<u> </u>	†	<u>+</u>	
L_					1	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
140 ·								+ -		1	
~	1	1	1	1	L	1		<u> </u>	<u> </u>	<u></u>	L

		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	,6	. c	0F 2	5	
HOLE No.								
J91-1		· · · · · · · · · · · · · · · · · · ·			r			ļ
INTERVAL	C. LOSS	LITHOLOGY	** U	L	S	M	Α	140
		· · · · · · · · · · · · · · · · · · ·	-	14		1-27. PY	51-2 5 1-1 4	
				-4	-	2.47	-	F
				(s) + Q	-	P <u>•</u>	_	-
	-		-					
		· · · · · · · · · · · · · · · · · · ·		-	-	-	-	-
				-		-	-	-
		144.13-144.84- FAULT - Broken core. 10 cm			270 2~			
		purunges tore and gange as 10 co.	1-	12	-	3-72 M	Cī-2	- 145
1.84-		INTERMEDIATE TUFF TO AMYCDALOIDAL LAPILLI		<u>م</u> -۲	-	-	-	-
156.81		TUFF Medium mental - men line - around mountainer		•		1-22 64		
		with lightin quinish - quy aphanitic frogmente		-	-	-	-	
		and woguely bounded patches up to San. Three	-	-	-	-	-	-
	1	Sum chloritic masses which in meny case		_	_	····	_	
	<u> </u>	appear to be anyadula. In some place They				1-272 646 ii		
		mon la motie plimenste or motie frogmente.		-	-	67.10	-	- 150
		The unit has a distinctive daily grin spotted		_	- -		-	
			4 -	-	-	-	-	-
				-	. 	_	_	_
		· · · · · · · · · · · · · · · · · · ·						
i				-	-	-	-	-
					-	-		- 155
		· · · · · · · · · · · · · · · · · · ·	-					
		· · · · · · · · · · · · · · · · · · ·	-	-	-	-	-	-
6-81-		INTERMEDIATE FINE- GAAINED TUFF TO LAPILLI		1	_	· · · 1	_	-
167.10		Mottled midium to dark minich - ones		4-4		1-22		
		nottles midium to dark grunch - grey line - grained tull with wagen litting brammite	4 -		-	-12 PY	-	F
		the 2 cm. Distinguished from unit drove by	1_	_	_	_		ļ
		alance of ellositic marine.	-					
				-	-	-	-	-160

ſ-----

PAGE 17 OF 25

÷

HOLE No.

591-19

		r			1	.				T	-
	MINERALIZATION ALTERATION	SAMPLE	FRON	TO	WIDTR	Au ppb	Ag g/t	As ppen	S6 ppm		
) - (160			2		T
		1									L
		5-067	141.75	143.25	1.50	63	0.7	98	4	·	Ļ
						1.4					∔
		5-068	143.25	144.13	0.19	65	0.9	51	2		╞
						Ga		70	z		┢
		5-069	144,13	/ <u>4</u> f.84	0.71	99	0.0	<u>٦6</u>	-		┢
	144 04. 147 77 3.47 aug 177 is	5-070	144.04	14(.30	141	11	01	47	z		┢
5 -	144.04. 147.72 - 3.47. pyshotite in masere to I cm. 1.2% pysite Discuminated	3-070	176.07	141.30	1.70	<u> </u>	<u></u>				t
5 -		5-071	146.30	147.72	1.42	46	09	63	2		ſ
ĺ											L
											L
											┞
	156.01										╀
	147.72 -, 1-27. when of pyrite and pyraletite.										╀
	· · · · · · · · · · · · · · · · · · ·										╞
	· · · · · · · · · · · · · · · · · · ·										┢
									-		t
											t
	·										Γ
											L
											Ļ
ļ		-	[·					┞
	· · · · · · · · · · · · · · · · · · ·										┢
				•		·					┢
5 -									-		ł
											┢
	156.81-167.1 - 1-27. pyrhotity =17. pyrite; pudominantly in ringut										ſ
	provite: predominantly in inger										
	mosers to 5mm and discriminated										Ĺ
	· · · · · · · · · · · · · · · · · · ·										L
									· .		L
ļ											┞
ļ											ŀ
∘┦											-
		{		{							⊢
											Ι.

	GRANGES EXPLORATION LTD	PAGE	18		OF .	25	
HOLE No.							-
591-19					-		
INTERVAL	LITHOLOGY	÷		S	M	A	-
			*A-0 -	-	1-272 P= \$17. P7 -	_	- / 40
			-	-	-	Se-1	
			-	-	-	-	165
	COARSE- GRAINED PHYLLITIC INTERMEDIATE		-	-			
	TURE TO TURFACEOUS SEDEMENT Maining quinish - gray fine grained suicitic phyllitic graindmass with 15% a1 - Smm dank grain flatting lithic fragments. Crum interval	76 51 61 -	ct > 774	_	<12 12 -	_	-
	grade in and out of dark blue- gray angellacions and innent with a coarse- grained sandy component.	-	1 28, 6	-	12, PY 41 2 To		- 170
<u>40.27-172.10</u>	INTERMEDIATE COARSE. GRAINED TO MEDIUM-GRAINED TUFF OR FELDSPAR PHYRIC DYKE Midium quinish - grey fine - grained sinistic grandmass with 15-20% <1 to 2 min white	- 1,130 70	10,B 4	-	12.	-	- -
	feldigen phinocrypts. Could be a crystal triff on possibly a dyper	-	14-2		1.55 The second se	- K -	- 175
	TWEEREDIATE FINE TO MEDIUM-GRAINED BEDDETS TVFF hight to dark quinch gruy thinky bunded to massion fine to medium agained phyllitic tuff, Darkoning flattend lithic brasmith to	-	-	-	-	-	-
<u></u>	5mm (average - 1-2mm) INTEGREDIATE TUFF TO LANGILLI TUFF	-	-	-	-	-	
	mottled making to light quinich - only aft fine- grained triff with rare wagen to distinct aphenitic frequente to 2 cm.	-	-	-	-	- -	180

.

1.7

ſ

	DIAMOND DRILL LOG	i	÷					PAGE	19	OF	
	HOLE No.										
	591-19										
		1		1	<u> </u>	I	Г	1	r	1	T
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	мюти	Au	Ag	As	56		
。-	· · · · · · · · · · · · · · · · · · ·		<u> </u>			ppb_	g/t	ppm	ppm	ļ	4
		ļ			1			L		ļ	4
		 								 	-
ļ								ļ			┦
									 		+
		<u> </u>					┣				┨
ŀ		┨	 	 -			<u> </u>	 	 		+
-			ļ	<u> </u>			 				
5-				 			 		 		-
5-								1	1	•	
ł					╞			inter que		⊢	
ł					 		ł	- 7	1	┣	
ł		<u>+</u>			\vdash	QSEA	ec	wy	γ	H	
⊦		<u> </u>			<u>⊢</u> '	~~ -	Sh	9.√C	ت	- -	+
	167.1-170.27 - < 17. disseminated pyrite.	1								17	-
ł								b^{-1}	.8°51	7 kin -	
ŀ					┨────			V		/ L	+
ŀ							<u> </u>				
ŀ											┨
∘∔			· ·					<u> </u>			╉
ŀ	170-27-172.10 - 1-22 fin - grained pyriti;		· · ·								┥
	to 5 mm. 4/ 20 pyrobatite.							· · · · · · -			┨
-	to 5mm. 4/ 20 pyrohetic.				-			<u> </u>			
⊦		· · · · · · · · · · · · · · · · · · ·	· 					 			+
⊦	172.10- 173.73 - 27 my fine - graund	1						<u> </u>			
· }	dissuminated provide				6 20	10.0	51	27-	2		┫
⊦		5.072	(15.75	1/7.12	0.37	HOLQ_	שיבן	273			
⊦	173.73 - 174.12 - 47. pyrhotite, 22 pyrite disseminated and in inigular massive to	5-073	174.17	176-0	107	420	40	18Z	5		1
	· · · · · · · · · · · · · · · · · · ·	>-073	177.74	(13,0]	v.77		(• • •	1 <u>0</u> -	,		
5+	5mm.	5.070	176 40	17620	 1 1 1	52	25	41	3		
┠	174 10 175 09- 2-67- 0 7+ 5-	5-0/9	173.07	• / • • • 0				· "	~~		1
*	aphalinte and galence concentrated in	5 A7C	7/ 7-	177.41	1.21	117		27	2		t
۲ F	illing and garnes concentrated in	2-0/2	176-40		r: 2*	# <u>~</u>	1 .7.	_د_م			t
ŀ	174.12-175.09- 3-520 pyrite. Trace aphalente and galence concentrates in illus - quy quarty stringers and breccia filling. 1-27. pyrelitite	5-076	. 77 51	179	1 50	e	00	36	ۍ		┫
⊦	brecia filling 1-29. pyrhitite		117.26	00,00	1.30	רגן	<u>~~</u>	<u> </u>			┨
⊦		C-077	1-12-1	10	1 70	27	101	37	3		┨
ł		S-077	17.06	1 50-34	1. 20	22	<u>v-1</u>	<u>יד-ר</u> ן	-o		┨
ł	175.09 - 184.60 - 27. each of purite and				7						┨
╞	pyrhotite. Dieseminated and along	<u> </u>						 			┦
	· · · · · · · · · · · · · · · · · · ·						-	-			

[

	GRANGES EXPLORATION LT	D	20	OF	25	
- J91-19		· · · · · · · · · · · · · · · · · · ·				
INTERVAL	LITHOLOGY	* u		SI	1A	
			2A-3	_ 2 _ 1	7. 10-11 10-1 21	- 180
			-	-		-
_		60	-	-		
	·····		-	e:		- 185
			-	- (12 0 -	-
••• ·····		=	-			C
* 88.45- 170.86	TO LAPILLI TUFF	HESE- GAAINED TUFF 66	12 pt.	- 4	-	-
	Light to medium - granich unicitie physitic groundmess. pry to green flattend appre	my fine - grand - with 15% dark	- m-e	-	- - . /	- 190
		unit similar to	77, 4	- 14 - 5	n e	-
170.86 - 195.40	ARGILL ITE, SILTSTONE Think intribuded black an	54 74	_	·		-
	Thinky interbudded black and histor - gruy silteten. Cut his stringers to I can parallel X		- 			-195
- 1 <u>95.40-</u> 201.95	INTERMEDIATE PHYLLITIC FI	NI - CHAINED TO S. +5	4. hr	- 4	<u>5</u>	
	hight to dark quinch - qui line - grained suicitic phyllis fur zone to e.s.m with	flatting littice	_* _	;	 	-
	fragminte (aphanitic, rarely a 99-201.75 - Distinction wills	my deloided) to ZCm. 00 515 74 mich - green colum.	-	_ · ·		
·				-		-200

.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 21

OF 25

HOLE No.

391-19

	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	ыютн	Au Pr ^b	Ag g/t	As ppm	56 ррт	
-		5-078	180.34	181.50	1.16	18-	0.1	23	Z	
		5-079	181.4.	182.53	1.03	17-	<i>0.</i>]	15	2	
		S≁080	(82.53	183.50	0.97	19	0.2	H.	2	
		[184.60			_	14	3	
		1	102.20	1.1.60	1.10					
184	.60-188.45- 1-22 disemmeted pyr <1? pyrhotite	<u>لل</u>								
	1.45 - 190.86 - <1 2 purite.									
						15				
190.1	86 - 195.40 - < 17. which of pyrite and	1 5-08z	170.86	192-43	1 .6 7		03	17	7	
*	86 - 195. to - < 17. each of pyrite and pyrihetite - Trace red - brown apholisite in quarty . continuents attringue.	5-083	192-43	193.8Z	1.39	10 &	0.6	22	5	
	struigue.	5- ≎ #4	19. 3.2 2	195A0	1.58-	g	0.8	26	4	
ļ										
125	.40 - 201.95 - < 1% end of pyrite and									
	stringers subparallel to foliation.	<u>∽</u>								
\vdash										

- - - - -

	HOLE No.		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	22	<u> </u>	0F .	25	
L	591-						=		
	INTERVAL	0 1 0 66	LITHOLOGY	c ‡		S	M	Α	
	201.95- 23 <u>3.17</u>		ARCILLITE SILTSTONE Thinky interformated black angillite and medium grey siltetone. Fault along upper		1. January		-	-	- 200
[Contact, 5 cm gange, 70° cd. Unit cut by 52 white quarty - conhampte stringers and mine generally parallel to bedding.	80		-	4151 61966 6196 51-	-	-
L ſ	······		106-2 - contented siltetone bid. Soft sidiment	 	-	-	-	-	- 205
			212.0 - Ar above.	5.	-	-	_	-	C
					-	-	-	-	-
	· · ·	-		-	-	-	-	-	- 210
				40		-	-	-	
				-	-	-	-	-	
[-	-	-	-	-	-215
				-	-	-	-	-	
				- \$4 	-	-	-	-	- 220
				N.					-~~

PAGE 23 OF 25

HOLE No.

$\frac{derg fridues and in gasety - 4}{continue of in gasety - 4} - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - $	-				.	•						
201.95 - 233.17 17. print preden 5005 203.70 1.75 4: 0.2 16 Z dong fritune and in guedy . * curlimete staring . 17. print 2 5002 203.70 1.5516 1.46 3. 0.2 16 Z to curlimete staring . 17. print 2 5002 203.70 1.5516 1.46 3. 0.2 10 Z to curlimete and opticinite and opticinite 3.000 200.516 1.46 3. 0.2 10 Z * curlimete and opticinite and opticinite 3.000 200.516 1.46 3. 0.2 10 Z * curlimete and opticinite and opticinite 3.000 1.42 5. 0.2 10 Z * 0.000 109.50 1.50 5. 0.2 9 3. * 0.000 109.50 1.50 5. 0.2 9 3. * 0.001 10.73 1.12.0 1.07 7. 0.3 11 Z * 0.001 11.073 1.12.0 1.07 7. 0.3 11 Z * 0.001 11.07 7. 0.3 11 Z * 0.001 11	-	MINERALIZATION ALTERATION	SAMPLE	FRON	то	міотн	Au Dpb					
descy functions and in guicking 0	_ 260 -						hi.d					
descy functions and in guicky 0 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>	-											
desc. friduus and in guesta.	-	201-95 - 233.17 17. pipite preson	S~85	201.75	203.70	1.75	4:	<u>az</u>	16	2		
torue checkspitte and sphelitit 3 007 10 3 throughed 3 007 10 3 >080 10550 1000 1142 \$ 0.2 0.2 >005 5 001 1000 1142 \$ 0.2 \$000 1000 1000 1000 1000 1000 1000 1000		along fractures and in quarty -					→				┣───	<u> </u>
$\frac{2}{2} = \frac{2}{2} = \frac{2}$	-		5-086	203.70	205.16	1.46	<u> </u>	0.2	10	<u> </u>	<u> </u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~		5-087	205.16	206.50	1.42	3 :	62	(n	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-											<u> </u>
$\frac{5 \circ 01}{202.0} \frac{109.5}{109.5} \frac{10.50}{5} \frac{5}{0.2} \frac{9}{9} \frac{3}{3}$	-		5-098	206.58	108.0	1.42	5	0.2	10	5		
$\frac{5 \circ 01}{202.0} \frac{109.5}{109.5} \frac{10.50}{5} \frac{5}{0.2} \frac{9}{9} \frac{3}{3}$	205 -						```					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-017	208.0	209.50	1-50	รั	0.2	9	3	 	
$\frac{5 \cdot 091}{410,33} \frac{1100}{410,33} \frac{1000}{410,07} \frac{1}{7} \cdot 0.3 \frac{11}{9} \frac{2}{9} \frac{1}{9} $	-	Pa						1.2	•	-		
$ \begin{array}{c} $	-		5-090	209.50	L[0.93	1.45		0.2	13_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-091	210.93	212.0	1.07	7.	0.3	{	Z	<u> </u>	
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	No.					· · · ·						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-092	412.0	213.5	1.50	1.	0.3	13	4		
210 - 5 - 094 215.8 217.20 1.40 5 - 0.1 18 3 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 - 18 - 0.1 -	-											
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	-		5-093	Z13-5	215,80	2.30	6 -	0.Z	١g	ζ		
215	- 210 -		6 - 8 4	*.c.a	1	1.40	~		10	7	<u> </u>	
215	- 1		2-074	<u>~ >.8</u>	211.20	1.40	<u>> ~</u>	0.1	70	2		
215	ţ		5-095	217.2	218.60	1.40	8-	07	SI	3		
	- [
	-		s-०१6	218.6	220.05	1.45	6-	0.3	14	2		
	-											
	_						· · · ·					
	_											
	- 215 -											
	- [
	-											
		······································						<u> </u>				
	ŀ									-		
	<u></u>	····										
220				•						-		
220	- f											
	- 120					1						
	~~~ T							]			]	
	-											

·		GRANGES EXPLORATION LTD	PAGE	24	. (	DF 2	5	C
HOLE No. 591-19			-					
INTERVAL	C. LOSS	LITHOLOGY	¥ 5	L	S	M	Α	
· · · · · · · · · · · · · · · · · · ·			50	V L	_	12.17 ~17, 12	_	220
				77, ~ ,	_	Tomat CP Ser	-	
				-	-	52. 9.Cv	_	-
		223.87-224.17- White contracte min. Barren		-	-	C.V	_	-
- <u><u><u></u></u></u>		224.17 - 225.05 - 207. white contents stringers		-	-		-	-225
· ···				-	_	<58 QZv	-	-
			- 59 ² 31 65	-	-	-	-	
			_   -	-	_	-	-	
·					-	-	-	-
				-	-	-	-	- 230
				-	-	-	_ ,	-
· · · · · · · · · · · · · · · · · · ·				_	-	-	_	-
		233.17 E.D.H.		25	5.17	£. 	хн. -	-
	•			-	-	-	-	-235
· • · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-	-	-	-	-
					-	-	-	_
			- - - -	-	-	-	-	
			-	-	-	-	-	-
		· · · · · · · · · · · · · · · · · · ·	┨ - ┃	-	_	_	- Í	-

_____

i



PAGE 25 OF 25

HOLE No.

C

			<u> </u>	<b>1</b>	<u>т —</u>	<u> </u>		1	T		<b>1</b>	T
	MINERALIZATION	ALTERATION	SAMPLE	FROM	то	MIOTH	Aµ DDD	Ag g/t	As ppm	56 ppm		
20 +			5-097	220.05	12.75	1.68	2-	0.(	4	2		Ļ
			(-098	221.73	222.82	1.13	3.	0.Z	13	Z		╞
												L
			5-099	222.86	223.87	1-01	3.,	0.Z	//	2		-
	······		5-000	223.67	22420	0.33	2	0.4	2	2		
	*****			<b>*</b> • • •				0-1	13	2		ŀ
25			3+/01	114.10	22.5.05	0.45	<u>].</u>	<u></u> <i>U</i> -1	13	4		
			5-102	225,05	226.5	1.45	7	0.Z	18	4		╞
			5103	126.5	127.96	1.46	3.	6.1	17	2		-
					-							L
			5-104	227.96	L26.95	0.99	3	0.1	16	7	<b></b>	┞
		· · · ·	5.105	228.95	231.30	2-35	3	0.1	23	2		L
			5-101-	21/ 1-	232.4		<u> </u>	0.2	19	Z		+
30				~31.70	2.44.7	1.10						t
			5-107	232.4	233.17	0.77	6	0,1	22	3		┢
								-				
		·									<u>.</u>	┢
					····							Γ
												┝
35 —					·, ····							Ē
												┞
												F
												-
	<u> </u>		_									
	· · · · · · · · · · · · · · · · · · ·	······································										<b>[</b> _
·			_									╞
												L
												<u> </u>
L							]					L

	Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-509 ON FIDENTIAL Page 4
SAMPLE# J91-19	Mo Cu Pb Zn Ág Ní Co Mn. Fe Áš U Áu Th Sr. Ccl Sb Bí V. Ca. P. La Cr. Hg Ba T.(B. Al Na K. W.Au*. Hg pen pen pen pen pen pen pen pen pen pen
\$001 \$002 \$003 \$004 \$005	39       50       34       434       .6       78       8       341       2.91       50       5       ND       2       120       31.8       13       2       21       7.10       059       2       7       .78       37       01       2       .29       .02       .12       19       1350         39       49       20       358       .4       74       7       324       3.30       45       5       NO       1       102       3.2       7       2       16       5.73       053       2       3       .76       31       01       2       .29       .02       .12       13       1600         33       64       25       462       .7       5       NO       1       70       5.1       7       2       16       5.73       053       2       5       .75       22       .01       3       .42       .02       .13       1600       9       1200         24       35       15       366       .4       37       5       527       2.23       29       5       ND       1       437       3.5       6       2       14       11.39
\$006 \$007 \$008 \$009 \$010	5       6       2       91       .2       6       18       1704       6.66       38       5       ND       1       150       .7       3       2       58       5.24       101       4       3       1.46       38       .01       2       2.02       .02       .10       1       2       275         5       5       10       102       .3       8       18       1078       7.77       28       5       NO       1       103       1.3       14       2       19       3.13       .126       4       3       .61       26       01       4       1.30       .01       .11       1       59       1900         1       4       4       95       3       9       20       1725       5.96       26       5       NO       1       195       1.00       4       2       67       7.01       .088       4       3       1.86       32       01       2       1.96       .01       .10       2       10       330         3       3       4       69       .2       4       15       2052       6.18       83       5       ND <td< td=""></td<>
RE S015 S011 S012 S013 S014	9       70       47       80       1.5       16       50       2071       15.39       10       5       NO       1       195       2.3       2       3       34       6.90       036       2       3       .95       30       01       2       .93       .01       .13       1       2       155         5       6       9       91       11       19       39       1383       6.11       37       5       ND       1       200       8       11       2       62       4.87       123       3       3       1.07       25       01       4       2.15       .02       .08       16       295         1       6       4       101       1       9       23       1613       5.04       20       5       ND       1       161       7       2       2       55       5.76       150       4       2       1.08       32       .10       3       2.12       .02       .10       2       250         3       8       20       139       .3       16       32       1514       5.01       25       5       ND       1       157 <t< td=""></t<>
S015 S016 S017 S018 S019	9       69       42       78       16       17       50       2062       15.16       10       5       ND       1       142       2.3       2       2       33       5.54       034       2       3       .94       38       01       2       .83       .01       .13       1       3       135         1       3       2       125       .1       4       22       1098       6.36       7       5       ND       1       180       7       2       2       98       4.33       114       5       3       1.12       50       01       4       2.66       .02       .12       2       3       105         27       13       30       142       3.5       19       29       376       4.27       81       5       ND       1       43       1.1       19       2       16       .70       065       4       10       .80       35       01       4       2.66       .02       .12       2       305         27       13       30       142       3.54       102       5       ND       1       43       1.1       19       2 <t< td=""></t<>
\$020 \$021, \$022 \$023 \$024	2       12       17       115       1.4       4       18       807       3.98       62       5       ND       1       42       5       8       2       26       1.54       062       4       6       1.21       38       01       3       1.20       .01       .32       1       31       140         2       11       7       72       2.6       9       30       2154       5.19       53       5       ND       1       82       7       15       2       24       3.25       058       3       15       1.59       34       01       2       .90       .01       .30       164       130         1       8       6       76       14       6       25       1531       5.12       38       5       ND       1       64       .7       11       2       38       2.37       042       2       13       1.45       .01       .28       1       63       95         5       14       11       80       3       4       430       9.55       14       149       10       20       2       12       .95       055       2       7
\$025 \$026 \$027 \$028 \$029	8       25       35       265       5:0       7       31       679       8.14       951       5       NO       1       64       1.5       34       2       17       1.47       066       2       12       .33       16       01       3       .58       .01       .34       1       880       350         1       10       8       96       7       6       25       1437       4.74       40       5       ND       1       57       7       3       44       2.44       048       3       16       2.72       24       01       2       2.39       .01       .25       2       19       65         1       5       2       92       2       6       19       1118       4.61       21       5       ND       1       104       .2       2       2       2       2       0.01       2       2.61       .01       .16       1       5       155         1       9       16       113       7       5       28       1047       6.61       113       5       ND       1       30       .7       4       2       81       .61
\$030 \$031 \$032 \$033 \$034	5       6       10       64       7       3       6       209       1.99       65       5       ND       1       19       2       3       2       3       .14       025       15       4       .48       52       D1       2       .85       .01       .33       1       48       65         11       18       33       39       2.7       2       6       480       3.41       124       5       ND       1       54       2       11       2       7       .85       079       4       6       .32       29       01       2       .37       .01       .22       1       180       360         8       30       39       28       2.9       7       8       785       4.17       92       5       ND       1       65       4       11       2       17       1.11       071       5       8       .64       24       .01       2       .76       .01       .35       2       460       205         6       27       54       39       6.0       1       9       17       144       2       8       2.10       079
\$035 \$036 \$tandard c/au-r	6 13 24 28 119 3 6 1211 4.32 119 5 ND 1 90 5 10 2 7 1.49 070 4 5 .64 27 01 2 .40 .01 .19 2 70 160 4 28 30 24 129 4 7 354 4.89 227 5 ND 1 21 7 11 2 8 .48 068 6 6 .21 23 01 3 .34 .01 .17 2 78 340 17 55 36 122 70 65 32 972 3.99 39 16 7 37 52 174 16 19 56 .47 083 36 57 .86 172 08 31 1.83 .06 .14 11 480 1600

ć

Sample type: CORE, Samples beginning 'RE' are duplicate samples,

.

ŧ.

	Granges Inc. PROJECT UN	UK RIVER 134	FILE # 91-5098	Page 5
SAMPLE#	Мо СU Pb Zn Ag Xi Co Mn Fe As U Au рел рел рел рел рел рел рел X рел рел рел	Th Sr Ccd Sb Bi pom pom pom pom pom p	V Ca P La Cr Hg Ba 1.1. pm X X ppm ppm X ppm X	B AL NA K W Au* Ng
S037 S038 S039 S040 S041	22         44         103         295         3.3         6         5         126         5.54         1604         5         ND           28         36         52         80         3.5         5         8         75         5.06         717         5         ND           9         25         34         766         2.8         5         6         86         4.65         297         5         ND           10         13         53         212         3.4         6         4         37         4.24         331         5         ND           11         21         73         708         3         7         6         4         44         4.83         273         5         ND	2 11 2 25 2 1 13 518 15 2 1 19 9 25 2	4       .20       061       7       24       .04       27       .01         4       .18       063       7       4       .03       27       .01         4       .25       089       8       7       .03       26       .01         4       .24       .085       7       7       .02       31       .01         5       .20       .074       8       .23       .02       .25       .01	2 .19 .01 .13 1 58 1650 2 .20 .01 .13 1 98 1550 4 .24 .01 .19 1 190 1500 3 .18 .02 .14 1 280 1950
5042 5043 5044 5045 5046	9       20       57       68       1.9       4       4       85       4.53       1.99       5       ND         8       19       48       126       1.6       7       3       104       3.56       154       5       ND         5       24       47       215       2.9       6       3       209       5.39       241       5       ND         5       35       25       158       1.4       4       2       728       6.54       44       5       ND         7       36       35       217       2.9       3       6       1053       10.10       69       5       ND	2 14 .6 13 2 1 17 .8 15 2 1 20 .4 6 2	4         .25         093         10         3         .04         29         01           4         .23         076         9         9         .04         40         01           6         .28         101         9         7         .14         22         01           17         .25         085         8         16         .63         39         01           11         .24         078         6         3         .65         17         01	2 .22 .01 .15 1 43 890 2 .34 .01 .24 1 320 300
5047 5048 5049 5050 5051	2         16         14         86         1,3         4         6         1742         9.56         76         5         ND           14         13         23         12         1,2         7         5         371         2.59         146         5         ND           3         7         6         107         5         5         3         937         5.47         13         5         ND           2         12         10         79         .5         3         3         962         5.10         15         5         ND           7         22         20         63         1.1         4         10         1833         4.49         75         5         ND	1 16 2 13 2 1 23 2 2 2 1 31 2 2 2	21       .26       081       4       7       1.36       24       01         6       .23       069       6       8       .13       41       01         25       .26       091       11       17       .98       57       01         30       .33       096       10       4       .87       64       .01         37       .83       099       7       3       1.34       54       .01	2 .21 .01 .10 Z 6 340 2 1.29 .01 .15 1 27 80 2 1.25 .01 .14 1 5 80
\$052 \$053 \$054 \$055 Re \$051	6         26         26         96         12         5         6         1191         6.72         96         5         NO           11         23         22         84         1.3         3         6         1061         6.44         151         5         ND           12         21         34         107         1.4         4         6         639         4.44         150         5         ND           5         18         16         81         0         2         6         1484         7.14         81         5         ND           7         27         21         65         1.0         4         10         1876         4.57         76         5         ND	1 22 2 5 2 1 1 36 2 15 2 1 33 2 2 2 2	43         .33         109         8         6         1.59         37         01           48         .38         .107         8         13         1.32         33         01           24         .05         087         6         3         .75         37         01           24         .05         087         6         3         .75         37         01           24         .05         087         6         3         .75         37         01           24         .05         087         6         3         .75         37         01           45         .71         .093         5         3         1.43         32         .01           39         .85         .090         7         4         1.39         55         .01	2 1.61 .01 .10 1 120 575 2 .79 .01 .13 1 67 880 2 1.82 .01 .09 1 68 365
\$036 \$057 \$058 \$059 \$060	1       26       25       195       1       2       2       10       2154       10.07       66       5       ND         7       29       26       424       1.8       3       8       1001       7.72       174       5       ND         1       14       11       90       6       3       5       803       6.33       37       5       ND         1       16       7       123       1       0       3       6       1482       7.88       32       5       ND         2       28       14       99       1.3       5       5       1093       5.21       51       5       NO	1 22 1 1 8 2 1 18 2 4 2 1 73 2 2 2	52         .40         .105         6         3         2.05         35         .01           45         .47         .093         5         13         1.03         30         .01           41         .34         118         7         2         .91         36         .01           55         .60         .103         7         4         1.44         32         .01           51         .78         .11         8         7         .87         38         .01	2 2.78 .01 .12 1 170 340 2 1.25 .01 .12 1 500 445 2 1.31 .01 .14 1 17 160 3 2.15 .01 .11 1 160 110
\$061 \$062 \$063 \$064 \$065	3       51       14       149       1.2       3       4       766       6.62       94       5       ND         2       60       17       209       1.2       2       4       1220       7.13       126       5       ND         2       21       17       112       1.3       2       6       1288       7.88       75       5       ND         1       30       12       60       1.2       4       5       1546       7.26       88       5       ND         3       14       16       83       .8       3       3       952       6.74       52       5       ND	1 31 .7 2 2 2 26 3 4 2 1 44 3 5 2	43       ,53       124       7       12       .67       30       .01         44       .64       114       7       2       .99       30       .01         42       .57       .095       6       3       1.35       28       .01         54       .91       .007       6       6       1.43       31       .01         52       .49       .23       9       12       1.15       35       .01	2 .90 .01 .13 1 210 155 2 1.21 .01 .14 1 220 275 2 1.61 .01 .13 1 300 195 2 1.56 .01 .12 1 370 140
5066 5067 5068 5069 5070	2       17       18       48       .9       2       4       1312       7.23       90       5       ND         2       21       14       38       .7       3       4       1225       6.46       98       5       ND         4       21       16       326       .9       3       5       2648       6.95       81       7       NO         3       21       6       77       .6       2       7       2758       7.01       36       5       ND         1       19       8       62       .7       1       5       1442       7.22       43       5       ND	1 30 2 4 2	58       .63       .10       8       2       1.87       33       .01         53       .74       110       9       3       1.66       35       .01         43       1.87       085       5       3       2.79       27       .01         59       2.05       100       6       7       3.20       36       .01         65       .57       126       9       1       1.85       40       .01	2 1.99 .01 .11 1 160 230 2 1.75 .01 .12 1 63 175 2 2.48 .01 .08 1 65 285 2 3.25 .01 .10 1 98 110
SO71 SO72 Standard C/AU-R	5         18         14         83         .9         6         8         1276         7.39         63         5         ND           22         394         193         692         5         6         5         9         780         12.65         273         5         ND           18         58         36         130         7.0         70         32         1032         3.90         41         21         6	1 41 2 2 2 3	53 .33 089 8 5 2.07 40 .01 36 .55 048 3 5 1.32 29 01	2 2.74 .01 .18 1 46 110

...'

Sample type: CORE, Samples beginning 'RE' are duplicate samples.

*.**

-,		
•		Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-5098JUNHIUTHAL Page 6
	sample# . 	Mo Cu Pb Zn Ág Ní Co Xn. Fe Ás U Au Th Sr CC Sb Bí V Ca P La Cr Mg Ba Ti B Al Na K W Au* Ng ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
	\$073 RE \$077 \$074 \$075 \$076	3       96       486       417       4.5       3       7       1207       7.12       182       5       ND       1       41       241       5       2       63       .92       092       3       8       1.99       32       .01       2       2.10       .01       .06       1       470       285         1       8       9       136       .2       1       6       1111       8.42       40       6       ND       1       50       1.4       3       2       83       1.17       136       5       5       2.61       40       02       2       3.40       .01       .05       1       32       90         1       7       8       117       .5       2       61       101       7.24       41       5       912       3       2       73       1.34       140       6       4       1.75       53       03       2       2.46       .01       .10       1       58       100         2       16       17       120       .4       3       1.27       .92       .94       132       4       3       1.70       47       .02
	\$077 \$078 \$079 \$080 \$081	1       8       7       141       1       7       1115       8.45       37       5       NO       1       50       1.5       3       2       82       1.21       136       5       5       2.63       41       .02       2       3.37       .01       .05       1       32       75         1       9       5       150       4       7       1144       8.48       23       5       ND       1       80       1.6       2       2       83       1.84       139       3       8       2.09       48       .04       2       3.12       .02       .07       1       18       95         1       6       8       123       3       8       100       5       ND       1       55       2       74       2.48       137       5       5       1.31       46       0.01       2       1.68       .02       .07       1       18       95         1       5       11       92       2       7       1575       7.20       11       8       NO       1       70       1.4       2       2       58       3.14       130       3
	S082 S083 S084 S085 S086	1       59       14       96       13       16       19       1410       5.31       17       5       ND       1       196       1.2       7       2       33       4.67       109       4       11       1.31       98       .01       2       2.41       .02       .35       1       15       180         1       69       11       93       .6       16       18       1558       4.61       22       5       ND       1       201       1.0       5       2       38       2.96       107       4       11       1.48       82       01       2       2.33       .01       .29       1       10       185         1       112       14       122       2       26       5       ND       1       77       4       2       47       .90       099       5       16       1.36       90       .01       2       2.50       .01       .35       1       8       65         1       112       14       122       2       26       5       ND       2       200       11       2       2       36       5.72       122       4       <
<ul> <li>A state of the sta</li></ul>	S087 5088 S089 S090 S091	2       115       18       120       .2       45       17       621       4.69       10       7       ND       3       198       1.4       3       2       46       4.90       116       8       20       1.58       94       0.1       2       2.45       0.02       .15       1       3       190         1       99       17       118       .2       43       17       605       4.55       10       5       ND       1       207       15       2       3       44       4.72       112       6       20       1.62       98       0.1       2       2.46       .02       .15       1       5       205         1       105       16       116       .2       47       15       634       4.45       9       8       HD       1       217       15       3       2       36       4.02       101       3       2.34       .02       .105       61       31       3       190         1       105       15       115       2       47       17       564       4.36       13       5       HD       1       12       2       2
and the second	\$092 \$093 \$094 - \$095 \$096	2       92       14       116       .3       30       15       642       4.60       13       5       NO       1       211       8       4       2       31       5.30       119       7       22       1.32       65       01       2       2.09       .02       .13       1       1       180         2       109       14       121       1       34       15       564       4.40       18       5       ND       1       230       1.7       2       2       31       4.50       103       4       18       1.34       63       01       2       2.09       .02       .13       1       6       230         2       109       14       121       1       34       15       564       4.40       18       5       ND       1       200       1.0       3       2       34       4.777       113       8       17       1.37       80       01       2       2.30       .02       .14       1       5       215         1       9       12       11       2.5       NO       1       309       7       3       2       36 <t< td=""></t<>
	\$097 \$098 \$099 \$100 \$101	1       94       13       11       1       33       15       693       4.11       11       5       ND       1       253       10       2       2       32       5.19       102       7       18       1.39       70       01       2       2.23       .02       .13       1       2       125         1       10       12       117       .2       34       16       670       4.30       13       9       ND       2       259       6       2       2       40       5.30       123       10       21       1.58       100       01       2       2.42       .02       .14       1       3       210         1       92       11       103       .22       21       15       680       4.24       1       5       ND       1       314       4       2       2       16       8       16       1.54       75       01       2       2.33       .02       .11       1       3       170         1       32       4       31       .6       5       1328       1.27       2       5       ND       5       2115       4       2<
	\$102 \$103 \$104 \$105 \$106	3 110       12 110       2       30       18       606       4.82       18       5       ND       1       268       1.1       4       2       40       4.03       1.16       3       17       1.91       74       .01       2       2.64       .02       .13       1       7       250         3       94       13       111       .1       25       18       603       4.69       16       5       ND       1       268       1       4       2       40       4.03       1.16       3       17       1.91       74       .01       2       2.64       .02       .13       1       7       250         3       94       13       111       .1       25       18       603       4.69       16       5       ND       1       243       7       2       2       46       4.74       128       3       17       1.74       72       01       2       2.50       .02       .12       1       3       240         5       111       15       18       17       514       4.84       19       5       ND       1       212       10       3 </td
	S107 Standard C/Au-R	1 105 15 111 .1 24 14 531 4.58 22 5 xD 2 219 1.1 3 2 41 5.43 115 3 21 1.29 79 01 2 2.22 .02 .11 1 6 335 20 62 44 133 7.2 72 32 1050 3.98 43 18 8 39 53 17.6 15 18 61 .47 090 38 56 .88 180 09 34 1.91 .06 .13 11 470 1400

Sample type: CORE. Samples beginning (RE) are duplicate samples.

÷

į,

Ţ

	es exploration 170: OND DRILL LOG		
	•	•	PAGE 1 OF 16
HOLE No			COUL-3
U - Constantino de la	91-20 (J	EFF GRID)	750 ZON
NORTH	IECK ROCK AND SOIL ( 1 OF THE FAULTED CON NICS AND SEDIMENTS OF S	TACT (1) OF FELSIC TO	INTERMEDIATE
LOCATION	GROUND ELEV.	BEARING	
			TOTAL LENGTH
7+00 N   0+BIE	460 m (ALTIM.)	-270°	118.87m
DIP - 45°	DIP TESTS RIG HEAD ANGLE - 46	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE	CONTRACTOR	CORE SIZE	DATE STARTED OCT 10/11
JEFF TESAR	J.T. THOMAS	B. Q.	DATE COMPLETED OCT II/19
30 50 - 40 80 CHERTY II 40 80 - 62.00 MODSTONE 62.00 - 64.00 ARGULINE	ATE MEDIUM TO LAPILLI TUI NTERMEDIATE FINE TO LAPILI INTERBEDDED NITH SIL OUS INTERMEDIATE FINE-GI	U TUFF TSTONE RAINED TO AMYGDALOID	
	O INTERMEDIATE LAPILLI	TUFF TO TUFF BREC	CIA
69.20 - 70.20 BRECCIA	7	r THEF	
	EDIATE LAPILLI PHYLLITI VE INTERBEDDED NITH		
- 118.87 END OF		ALTOTANE	
		• • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·		
A CARLES	ter State and a state of the st	and the second sec	
SIGNIFICANT CHINERALIZE	D INTERVALS		
14.10 - 20.90 3-4%	Printe ; narrou stringers ; sp	ecks dissem	an a
39.85-40.95 7-84	Prote ; band (25 cm) and no	twork of stringers	and State a
	Syrite ; narrow concordant str		
a stand of the second state of the second	OF MASSIVE SULPHIDES * 6-		
64.00 - 69 10 * ZONE		a characterization in the second state of second states in the second states of	
64.00 - 69.10 * ZONE	traces of sicinnabar arsenop	itite, chakopy rite ; stionit	c, sloer rich doctrium.
64.00 - 69.10 7 ZONE	an over the and the strength	In mere at Aller	
64.00 - 69.10 7 ZONE	<u>alledir (tax matal) dagada</u> <u>a 1976 alan ang</u> artikana ang	- Internet and a state of the second state of	
64.00 - 69.10 * ZONE	<u>n an /u>	12-11-12-12-12-12-12-12-12-12-12-12-12-1	
64.00 - 69.10 * ZONE		- Internet and a state of the second state of	

Ľ

[ _(

[ [`

Γ

[

[

Ę

[ _ _

[ [ [

		DIAMOND DRILL LOG	PAGE	: 2	(	0F /	6
HOLE No.		J91-20					
INTERVAL	C. L055	LITHOLOGY	+ 3		S	M	A
00 - 4,57		OVERBURDEN /CASING		1	+	<b>†</b>	
			] _	_	_	_	_
			_	× U			-
				10	-	· - ·	-
			-	3 C			
				VERBUR	-	-	-
		· · · · · · · · · · · · · · · · · · ·	-	0		1	
				-	-	-	-
4.57-11.20		INTERNEDIATE MEDIUM-GRAINED TO LAPILLI TUFF, In	1.	1.	1	<u> </u>	
		places tuff breacia (slump breacia) with any ul	<u>ן</u> -	-   -	-	-	-
		grey medium -grained fragments of tuff within black	]_	_	-	'Py	_
		cherty fine-grained ground mass					
		H-wall contact not discernable. F-wall contact gradational		-	-	<u> </u>	-
		Moderately to intensely siliceous Mineralized by mino	q	E S			si-2
		pyrite : isolated narrow bands, specks and dissemin	it -	2	<u>-</u>	-	-
		<u>ted</u>	┥.	a s			
			-	t so	-	/_	-
	·	· · · · · · · · · · · · · · · · · · ·	1	10		7	
			1 -	-	<b>.</b>	F-	-
			]_	1.5	_		$\square$
1:20-17.90		MIXTURE OF VINTERMEDIATE FINE TO LAPILLI TUFF WITH		5		•	
		CARBONACEOUS BLACK CHERT.	-	_	_	<u> </u>	_
	_	Prodominantly black carbonaccous chert with	-	1	·	/	
		grey fine to lapilli tuff ( in places amy gdaloide	4 -	ב	-	-	-
	$\dashv$	fragments predominant). In places stump Greccia	-			1	
	$\neg$	with angular or subangular fragments of diort within fine-grained tuffaccous matrix. In	1 -	7	-	,-·	-
-		places taff Bressie with angular and subange	1	<b>0</b> ,			<del>5</del> i-3
		fragments of fine tuff within black direty	<b>1</b> -	۲,		.7	-
		groundmass Mineralized by narrow anastomos	9	Ч		1.	
		Bands or stringers of pyrite which occur,	<u>ן</u>				
· .		within tuff. Intensety silicoccus.		_		L.	_
				1.1	i i	1	·
7.90-30.50		GREY INTERMEDIATE MEDIUM-GRAINED TO LAPILLITUFF	/	12	-	ľ- 1	1
	$\dashv$	In places phyllitic. Granular texture with mediam	Ŀ,	·] · .		امر	
		to coarse grain size, grating to fragmental with lapilli up 3 cm. Thyllitic structure, in places Navey. Locally Breviated Quarty stringers	1-2	<u>ا پر</u> ا	· -,	[-]	-
	+	lapilli up 3 cm Thyllitic structure, in places	K	17	. <b>F</b>		
	{	(with minor carbonate) 1-27 of the interval.	1-7	6	-	.В.	-
	1	(NUTA BLACE COCHADATA ) E d E A MARIATACITAÍ		101			

GRANGES EXPLORATION	FD. G			!			BAGG	7		
J91-20			<u></u>		<del></del>		PAGE	3	0F	
MINERALIZATION ALTERATION	<b>SAHP</b> I	E FROI	то	W1071	Au ppp	Ag g/t	As ppm	Sb " ppm		ļ
			:							
			<u> </u>			 				
						· · · · ·		· · · · · ·		
7. By ; specks and disseminated	H 096	10.30	11.20	990	2 *	0.1		Z.		
Ry ; specks and disseminated	H097	11.20	12,70	1.50	5	0./	23	2		
II	H098	12.70	14.10	1,40	2	0./	22	Z		_
и Ру; папон anastom. stringers, speck, dism	H099	14.10	15,52	1.42	Ż	0.1	59	2		-
Ry; narrow stringers, speck, disrem.	H 100	15.52	17.90	2.38	1	0./	37	2		_
/ //By ; narrow stringers, specks ; dissem.	HI01	17.90	19.40	1.50	6	0./	62	Z		_
. By ; narrow stringers, specks, discom	H 107	Ig La	1a90	150	4	0.1	50	2		-
						<i>0.1</i>		~		
		-								
		-					-	·		

[

[

[

[

[

[

[

C C

2...

-

speks and discriment duithin fine-grained matrix of the legilli tuff. 21.34-27.00 Internal with markedly wavey to contented foliation planes, due sly narrow breainst does foliation planes, due sly narrow breainst does 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	· · · · · · · · · · · · · · · · · · ·		DIAMOND DRILL LOG	PAGE	4	d	1= /	6	
5 specks and discripted within fine-grained matrix of the lapili tuff. 21.34 - 27.00 Interval with markedly wavey to contexted foliation planes deadly narrow breaked bad foliation planes deadly narrow breaked bad 1 20.60 - 27.00 Interval with anygdaloided. fragments prodom const. (vesicular structure of lapili tuff.) 20.50-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In planes lands or land inclusions of carbonicasts chert or silicous for fargments of tuff within dervice what structures for graving the full with any division structures. Const. (vesicular structure of lapili tuff.) 250-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In planes lands or land inclusions of carbonicasts chert or silicous fine-gravined matrix. Accelly parrow lands fine-gravined matrix. Accelly merry lands fine-gravined matrix and subscenters. Stringers h-17 of the interval at allangles to Ch fine-gravined matrix. Accelly merry lands fine-gravined matrix and subscenters. Stringers h-17 of the interval at allangles to Ch fine-gravined matrix for data and inspect to Ch	HOLE No.		J91-20						
specks and disseminal du pillin fine-opsined matrix of the lopilli tuff. 21.34-27.00 Interval with markedly wavey to contexted foliation planes decally narrow breainted break foliation planes decally narrow breainted break 20.60-29.00 Interval with anygduloidal fragments protomin e Dant. (wesicular structure of kepilli tuff.) 20.50-40.30 GREY TO DARK GREY CHERTY INTERHEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of safe with utils and social with subaspace fine-organistic discussions of tuff. Utils and or for dual fine-organistic discussions of safe with subaspace fine-organistic discuss structures of positic discuss of social with subaspace inclusions of safe with structures of positic discuss of social structures of positic discuss structures of positic context and angles tack. The solution of social predictic discuss - of the structures of positic context and angles tack. The solution of social structures of positic context and angles tack. The solution of social predictic discuss of social structures of positic context and angles tack. The solution of social structures of the social social structures of social structures of positic context and angles tack. The social social social structures of social structures of the social social structures of social structures. The social social structures of social structures of social structures. The social social structures of social structures of social structures. The social social structures of social structures of social structures. The social social structures of social structures of social structures. The social structures of social structures of social structures. The	INTERVAL		. LITHOLOGY	* 0		S	Μ	A	2
21. 34 - 27.00 Interval with markedly wavey to conterted foliation planes due by narrow Greated break foliation planes due by narrow Greated break 24. 50 - 27.00 Interval with anygdaleidad fragments presion - nant (vesicular structure of lapili tuff) - nant (vesicular structure of lapili tuff) 250-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPULLI TUFF. Predominant for the subsequence of lapility of the subsequence of lapility subsequence of lapili	·		specks and disseminated within fine-grained matrix of the lanilli tuff.	\$0.					]^
foliation planes deraily norme broainigt beed foliation planes deraily norme broainigt beed 1 28,60 - 27,00 letered with anygdaloidel fragments protoni 28,60 - 27,00 letered with anygdaloidel fragments protoni 20,50 - 40,80 GREY TO DORK GREY CHERTY INTEREDIATE FINE TO LAPILLI TUFF. Prodominantly talf. In places lands or land inclusions of carbonucus chart or silicous argilitie in places dump broain with subsome lat fragments of buff within desty (silicous) fine-grained matrix. Accelly norms langels to CA 1	· · · · · · · · · · · · · · · · · · ·			The.		-	'	-	Γ
200-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPULLI TUFF. Predominantly tuff. In places lands or fand inclusions of cationaucuss cheat or silicous argillite in places sum boroine with ubards bas fragments of tuff uither detty (silicous) fine-openied matrix. Accelly nerve lands of peritie and treasular structures of angles to CA industry to the silicous of an officers of the silicous argillite in places sum boroine boroine bas fragments of tuff uither detty (silicous) fine-openied matrix. Accelly nerve lands of peritie and treasular structures indicating on Overell price content 3-4 Y. Guarte Stringers the 1% of the interest of all ingles to CA H well contest gradehend. Frud content 3-55 there 36.16-36.35 Interval with peritie fragments prodominent 37.55-39.40 Amygdaleidal fragments prodominent				76	<b> </b> _		1	-	
28.60 - 29.00 Interval with anygdaloidal fragments predominant 28.60 - 29.00 Interval with anygdaloidal fragments predominant part. (vesicular structure of lapili tuff) 250-40.80 GREY TO DARK GREY CHERTY INTERHEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonicauss chert or silicous argilite, in places shurp breezia with subarges fine-grained matrix. lacally nareu bands fine-grained matrix. lacally nareu bands fine-grained matrix. lacally nareu bands of preditic and Oriseular structures Mineralized by network of another grainet stringers to 'I'' Guarts Stringers to 'I'' of the interval at all angles to Ch if you have been to the interval of all angles to Ch if you have been to the interval of a structures Stringers to 'I'' of the interval of structures Stringers for I'' of the interval of structures Stringers of and fragments predominant Stringers 36.35 Interval with pacifile fragments predominant			foliation planes docally narrow breain ted band			<b>A</b>			
28.50 - 29.00 leteral with anygdaloidal fragments predominant 28.50 - 29.00 leteral with anygdaloidal fragments predominant pant. (vesicular structure of lepili tuff) 2.50 - 40.80 GREY TO DARK GREY CHERTY INTERHEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In dates lands or land inclusions of carbonicaus chert or silicous argillite, in places shump brocin with subappe lar fragments of tuff, ultim cherty (silicous) fine-grained matrix. locally narew lands of preditic and orsicular structures. Mineralized by network of anomal pyritic stringers. Doveell pyrite carbonic of structures. 15.3 36.15-36.35 Interval with pacifile fragments predominant 37.55 - 39.40 Amygdaloidal fragments predominant			· · ·	-  <del>`-</del> +			-	-	$\mathbf{F}$
28.50 - 29.00 leteral with anygdaloidal fragments predominant 28.50 - 29.00 leteral with anygdaloidal fragments predominant pant. (vesicular structure of lepili tuff) 2.50 - 40.80 GREY TO DARK GREY CHERTY INTERHEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In dates lands or land inclusions of carbonicaus chert or silicous argillite, in places shump brocin with subappe lar fragments of tuff, ultim cherty (silicous) fine-grained matrix. locally narew lands of preditic and orsicular structures. Mineralized by network of anomal pyritic stringers. Doveell pyrite carbonic of structures. 15.3 36.15-36.35 Interval with pacifile fragments predominant 37.55 - 39.40 Amygdaloidal fragments predominant			······································	-12	1		J-R		
28.60 - 29.00 laterval with anygdaloidal fragments prodomi - Dant. (vesicular structure of lapili tuff) 050-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Prodominantly tuff. In places lands or land inclusions of carbonaceus chart or silicous - argilite, in places shart or silicous - argilite in places shart or silicous - argilite and vesicular structures - dimeralized by network of narrow pycitic - stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at all angles to CA - Stringers to 1% of the interval at the interval at all angles to CA - Stringers to 1% of the interval at the other to CA - Stringers to 1% of the interval at the other to CA - String				$\uparrow \land$	ġ	¥	~	-	F
28.60 - 29.00 laterval with anygdaloidal fragments prodomi - Dant. (vesicular structure of lapili tuff) 0.50-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Prodominantly tuff. In places lands or land inclusions of carbonneeus chart or silicous - argilite, in places sharp broking where y (silicous) - argilite and vesicular structures - dimensioned matrix, locally parrow lands - dimensioned by network of namow pycitic 			· · · · · · · · · · · · · · · · · · ·	-	6		1		
28.60-29.00 Interval with anygdaloidal fragments produce = nant. (uesicular structure of lepili Tuff) 250-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonucuus chert or siliceus argilite in places stung breeze with subarge- lar fragments of tuff within cherty/siliceus fine-grained matrix, locally nerve bands of politic and vesicular structures Mineralized by estivate of ardingles to CA H will contact gradal end. Final contast: 55 storp 36.15-36.35 Interval with politic fragments predominant 37.55-39.40 Amygdaloidal fragments predominant			· · · ·		6		-	-	ſ
29.50-40.80 GREY TQ DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonaccuss chert or siliccuss argillite in places stump brocins with subapper lar fragments of tuff within every (siliceus) fine-grained matrix, locally piercu lands of petitic and vessular structures Mineralized by network of carrow pyritic stringers. Overell purite carbon 3-44. Quarte Stringers to 1% of the interval at all angles to CA Huell cartact gradational. Final contact: S5 sharp 36.15-36.35 Interval with peritic fragments prodominant S1.55-39.40 Amygdaleidal fragments prodominant				TÈ	L _			- 1	L
CSO-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO 2.50-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonaccuss chert or silicous argillite in places chump broccia with subarges lar fragments of tuff within cherty (silicous) fine-grained matrix, decally narrow bands of perlitic and vesicular structures Mineralized by cetwork of carbony pycific Stringers tr 1% of the internet of all ongles to CA. M-H-Wall contact gradational. F-wall contact: SS sharp 36.16-36.35 Interval with partitle forgments predominant					['		1		
<u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>LAPILLI TUFF. Predominantly tuff. In places lands or land</u> <u>inclusions of carbonaccuss chert or siliceous</u> <u>argilite in places shump broccia with subarges</u> <u>lar fragments of tuff within cherty (siliceous)</u> <u>fine-grained matrix, locally narrow bands</u> <u>fine-grained matrix, locally narrow bands</u> <u>of perlitic and vesicular structures</u> <u>Mineralized by network of narrow pyritic</u> <u>stringers troits of the internet of all ongles to CA</u> <u>H-wall contact gradational. F-wall contact: SS sharp</u> <u>36.157-39.40</u> <u>Amygdaleidal fragments predominant</u>				1.2	<b>_</b>	-	-	-	╞
<u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>Const. (vesicular structure of lapili tuff)</u> <u>LAPILLI TUFF. Predominantly tuff. In places lands or land</u> <u>inclusions of carbonaccuss chert or siliceous</u> <u>argilite in places shump broccia with subarges</u> <u>lar fragments of tuff within cherty (siliceous)</u> <u>fine-grained matrix, locally narrow bands</u> <u>fine-grained matrix, locally narrow bands</u> <u>of perlitic and vesicular structures</u> <u>Mineralized by network of narrow pyritic</u> <u>stringers troits of the internet of all ongles to CA</u> <u>H-wall contact gradational. F-wall contact: SS sharp</u> <u>36.157-39.40</u> <u>Amygdaleidal fragments predominant</u>									ĺ
CSO-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonaccus chert or silicous argillite. In places shump breach with subanges lar fragments of tuff within cherty (silicous) fine-grained matrix, decally narrow bands of perlitic and vesicular structures. Mineralized by network of antrow pyritic stringers to 1% of the internet of all angles to CA. M-wall contact gradational. F-wall contast: SS sharp 36.15-36.35 Interval with partitle forganents predominant				- -*	1 -	-	19.	-	╞
CSO-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPULLI TUFF. Predaminantly tuff. In places lands or land inclusions of cathomicaus chert or silicous argillite. In places shamp breach with subarges lar fragments of tuff within cherty (silicous) fine-grained matrix, Locally mirrow bands of pertitic and vesicular structures. Miceralized by network ef narrow pyritic stringers to 1% of the internet 3=4% Quarty Si-55-39.40 Amygdaleidad fragments predominant		-	· · · · · · · · · · · · · · · · · · ·	1	شكوته		1		
CSO-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPULLI TUFF. Predaminantly tuff. In places lands or land inclusions of cathomicaus chert or silicous argillite. In places shamp breach with subarges lar fragments of tuff within cherty (silicous) fine-grained matrix, Locally mirrow bands of pertitic and vesicular structures. Miceralized by network ef narrow pyritic stringers to 1% of the internet 3=4% Quarty Si-55-39.40 Amygdaleidad fragments predominant			28.60 - 29.00 Interval with anuadalaidal fragments produced	ゴブ	د آ	-	1	-	F
250-40.80 GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of cathomacous chert or silicous argillite. In places slump broccia with subanges lar fragments of tuff. within cherty (silicous) fine-grained matrix. Locally nerves bands of perlitic and services for narrow pyritic Stringers. Overall pyrite content 3=47. Quarts Stringers tr 1% of the internal at all angles to C.A. Miscal contact gradational. Freducinent 36. 15-36.35 Interval with partitle fragments predominant 37.55-39.40 Amygdaloidal fragments predominant		·	< pant. (vesicular structure of lapili tuff)	7.		_			-
LAPILLI TUFF. Predominantly tuff. In places lands or land inclusions of carbonaccuss chart or silicous       -         argillite in places slump broizia with subacyes       -         lar fragments of tuff within cherty/siliceous)       -         jine-grained matrix, locally pierow bands       -         of pectitic and vescular structures.       -         Mineralized by network of carbonaccus structures.       -         Mineralized by network of carrow pyritic       -         Stringers to "I''. of the interval at all angles to C.A.       -         Mineralized syndotional. F-wall contast: S5" sharp       -         36.15-36.35       Interval with perlitic forgenents predominant       -         36.15-36.35       Interval with perlitic forgenents predominant       -			······································	] .	3		<b>a</b> 7		[ .
LAPILLI TUFF. Predominantly tuff. In places lands or fand inclusions of carbonaccus chert or silicous       -         argillite , In places slump steccia with subanges       -         lar fragments of tuff within cherty (silicous)       -         fine-grained matrix, locally narrow lands       -         of prelitic and vesicular structures.       -         Mineralized by network of carbonaccus structures.       -         Mineralized by network of parrow pyritic       -         Stringers the 11% of the internal at all angles to C.A.       -         Mineralized swith parlitic fragments predominant       -         36.165-36.35       Interval with parlitic fragments predominant         37.55-39.40       Amygdaleidal fragments predominant	0.50-40.80		GREY TO DARK GREY CHERTY INTERMEDIATE FINE TO		_ ۲	_	4	[	L
argillite in places skump broccia with subanges lar fragments of tuff within cherty (silkeous) fine-grained matrix, locally norrow bands of perlitic and vesicular structures. Mineralized by network of narrow pyritic Stringers. Overall pyrite content 3=4% Quartz stringers tr 1% of the interred at all angles to GA N-Wall contact gradational. F-well contast: SS'sharp 36.15-36.35 Interval with perlitic fragments predominant 37.55-39.40 Amygdaleidal fragments predominant	·			4			$\tilde{\phi}$		
Iar fragments of tuff withe cherry (silkeous)         fine-grained matrix, locally nerves bands         of perlitic and vesicular structures         Mineralized by cetwork of control pyritic         Stringers. Ourcell pyrite content 2=47. Quarts         Stringers tr~1% of the interral at all angles to CA:         H-wall contact gradational. F-wall contact: S5" sharp         36.15-36.35         Interval with portitic fragments predominant         \$7,55-39.40				<b>-</b>   -	3	_	77	-	╞
fine-grained matrix, Locally nerves bands of pertitic and vesicular structures. Mineralized by cetwork of carrow pycific stringers to Overall pyrite content 3-47. Quartz stringers to 1% of the internal at all angles to C.A: M-wall contact gradational. F-wall contact: S5" sharp 36.15-36.35 Interval with pertitic fragments predominant 37.55-39.40 Amygdaloidal fragments predominant			argillite, In places skump breacia with subange	2	พี		£		ļ
<u>Stringers tr~1% of the internal at all angles to C.A.</u> <u>U-wall contact gradational. F-wall contact: 55° sharp</u> <u>36.15-36.35 Interval with partitic fragments predominant</u> <u>57.55-39.40 Amygdaloidal fragments predominant</u>			lar fragments of tuff with cherty (silkeous)		्व	-	T	-	ŀ
<u>Stringers tr~1% of the internal at all angles to C.A.</u> <u>U-wall contact gradational. F-wall contact: 55° sharp</u> <u>36.15-36.35 Interval with perlitic fragments predominant</u> <u>57.55-39.40 Amygdaloidal fragments predominant</u>		-		1	E		E.		
<u>Stringers tr~1% of the internal at all angles to C.A.</u> <u>U-wall contact gradational. F-wall contact: 55° sharp</u> <u>36.15-36.35 Interval with partitic fragments predominant</u> <u>57.55-39.40 Amygdaloidal fragments predominant</u>					₹	- 1	F	-	t
<u>Stringers tr~1% of the internal at all angles to C.A.</u> <u>U-wall contact gradational. F-wall contact: 55° sharp</u> <u>36.15-36.35 Interval with partitic fragments predominant</u> <u>57.55-39.40 Amygdaloidal fragments predominant</u>			stringers, Ourrell evoite content 3-4% Quart	2	l Or		2	51-3	-
<u>36.85-36.35</u> Interval with partitic fragments predominant 57.55-39.40 Amygdalaidal fragments predominant		_	stringers to ~ 1% of the interral at all angles to C.	4	D				
<u>36.15-36.35</u> Interval with partitic fragments predominant 57.55-39.40 Amygdalaidal fragments predominant			11-wall contact gradational . F-well contact: 55" share	2 -	14		$[\mathcal{D}]$	-	Ĺ
57,55 - 39,40 Amygdaleidal fragments predominant				-					
37,55 - 39,40 Amyqdaleidal fragments predominant			36.15-36.35 Interval with partitle frequents predominant		-		EX.	-	$\mathbf{F}$
				_		5	141 2		
		-	Mar 1040 A 11-11 A A J A		-	*	-	-	ŀ
39.85-40.80 Mixture of every intermediate bailli tuff with there	\$§:	-+	ST.22 - 27.40 17 mygdalo 1 dal fra gments predominani	<b>-</b>  `		•.	ど		
cheet or cherty anvillite. Interval intensets villeaus.		-	3985-1080 Mixture of any intermediate hailli tull with 6		-	-	<u> </u>	-	Γ
		-+	A the state of the	T	1	·	Ĉ		4

BIAMOND DRILL LOG

PAGE 5 OF

HOLE No.

ر (( ۲

丁91-20

Au ppD S٣ ٨s Ag MINERALIZATION ALTERATION HIOTH SANNLE FRON TO glt PP:0 ррля 1-27- Py narrow stringers, specks, dissem. H103 20902240 1.50 4 2 0.1 18 49 2% Ry ; 4104 22.40 23.90 1.50 1 2 0.1 2~3%Ry; 1105 23,90 25.40 1.50 4 0.1 95 2 H106 2540 2690 LSO 17 3 0:1 2 . . . 1-27-Ry; spacks, narrow string, dis 4107 16.90 28.50 1.60 2 0.1 5 63 2 4108 1850 29.65 1.15 71 0.1 ____ H.109 2965 30.50 0,85 4 0.2 54 2 . . . 2.3% Ry narrow stringers H110 30.50 SLOO 1.50 -2 0.2 175 4 3-4%. Py; network of narrow pyritic stringers. HIII 32,00 3350 1.50 4 0.2 219 7 2-3 % Py; H 112 3350 35.00 (SO) 0.1 276 8 88 5 2-3% R H113 35,00 3650 1.50 4 H 0.1 1114 36 50 3800 1.50 2. 4-5% Ry in H O.Z. 160 10 36.6 . الدر من ت · .... . . . 2-37Py HUS 3800 3985 1.85 1 11 -0.1 342 2 7-8% Ry; metwork of narrow pyritic stringers #116 39.55 1095 1,10-1 3-0.4 370 6 and band (25 cm true width ) of pyrite filling the matrix of the interval

		GRANGES EXPLORATIONETD	·				~
HOLE No.			PAGE	6	(	0F /(	-
		J91-20				÷	
INTERVAL	C. LOSS	LITHOLOGY .	+ U	L	S	Μ	А
40.80-62.00		BLACK MUDSTONE INTERBEDOED NITH GREY SILTSTON		$\overline{\nabla}$		/	
		Clastic texture with very fine grain size. Bedding tops downhole 55~60°. Frequent quartz-carbona	<u>بر</u> جو ا	∮ - র	-	1	
		stringers parallel to the bedding alones. In places	K	-		3	_
		wavey pattern of Rodding to places parrow lands	╡╻		4		
· · · · · · · · · · · · · · · · · · ·		of couge ( drag faults?). Mineralized by pyritic concordant bands ( up to lam in true width,	1/	17	-	-	-
	•	Also as yeaks and weakly disseminated. In places		13		-/	_
		limonitic (secondary from pyrite). In places graphit H-Hall contact 55°, where.	š /	K		V	
		H-Nall contact 55 ° , sharp.	, ,	-	-	-	-
			-  ¥4	ģ	مر ا		
		46.92 - 47.10 Narrow Band of Breciated rock, Gougeband.	1%			1	-
		at 40° to C.A.	¥.	1,1	11	1_	_
			_ <mark> </mark> ≯ι	12	<b>P</b> .		
		4985 - 4045 P + 1 + 4 + 0 + 44/2 + 1 + 1 + 1		12	-40	-	-
	-	48.85 - 49.45 Breccia / Fruit, Dray fault(?). Two distinct		1			
		12 18 13 between Fiz	K	6*	1	/-	-
		This And JT. 74 Core broken	- 12		· -	-	-
	·	But (crushed)	4	K.73			
· · · · · · · · · · · · · · · · · · ·	_	49.45			-	17	-
				1 i		ſ	
	-	52.00~ 52, 10 Quarts vein at 45° to the core axis.		17	-	-	/
			$] \mathcal{J}$	]_	-	17	
	-+		12	-	-	-	-
			ľ				
	1	· · · · · · · · · · · · · · · · · · ·	1-	-	-	- P4	-
			<b>_</b>	6	-	/_	-
				્			
		·	5	5	-	-	-
			- ·	1	ł		
	$\neg$		-	12	-	<b>1</b> 7	-
	+		]/	<b>{</b> '_	· _ 1		_
			F.	<b>r</b>	-	7	-
			1 1	1 A A A			

GRANGES EXPLORATION COMPANY		
	1 1 20	

PAGE 7 OF 16

HOLE No.

[

J91-20

MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Au 19D	Ag g/t	As ppm	56 99m	
- 11- Py, concordant bands, specks, dissem	ниу	40.95	42.67	1,72	12-	03	84	15	
	H 118	42.67	44,48	1.81	6 -	0.1	26	2	· ·
	H 119	44,48	46.00	1.52	7-	0.2	29	2	 
	H 120	46.00	47,50	1.50	5-	01	29	2	
il	H 121	47,50	49,00	1.50	6 -	0.1	24	2	
	H 122	49.00	5950	150	ų	0.1	27	2	· · ·
	H 1 <del>3</del> 3	5Q.50	52.00	1.50	8 -	0.[	22	2	;
(I	НЩ	52.00	5350	1.50	11 -	0.3	25_	2	-
IL	H 125	53.50	55.90	1.50	3-	0.1	3)	2	
<u> </u>	H 126	<u>33</u> 00	5650	(50	5 -	0.1	32	2	
<u></u>	H 127	56.50	5800	1,50	3-	9.7	79	5	
<u> </u>	H 128 :	5800	59.50	<i>1.5</i> 0	10 -(	2.6	129	·11	
//	H129		9 . LN	150	5-	2.1	199	19	
	H BO (		52 <b>.0</b> 0	1.00	16-1	1.2	168	35	

GRA	NGES EXPLO	RATIONLTD

PAGE 8 OF 16

[

		PAG	Ε	σ	0	F /	•
HOLE No.	丁91-20						
INTERVAL	LITHOLOGY	<b>ب</b> د ب			S	M	4
			+				
		5.		76.6	70	1/	
	61.45-61.55 Minor fault. Band of gouge at 70	to the	7	71)	-	ĨŊ.	-
	core axis. Contorted Bedding planes an	60th 50				V_	
	adjacent Halls.	<u></u>	4	ut -	N'A		
			ว '	\$	Å		
62.00 - 64.00	ARGILLACEOUS INTERMEDIATE FINE-GRAINED	То	<u>ا</u>	۰	40 .	$\Gamma_{r}$	
	AMYGDALOIDAL PHYLLITIC TUFF		7	ン	£ .	~	Γ.
	Dark-grey in colour. Predominantly tu	<u>4.</u> (.		-		1	Sh
	In places bands of argillaceous tuff, t		1			82	R.
	argillite or inclusions of blackish carbonace	an chert	7	Ś	-	-3	(in)
- · · · · · · ·	Harralliastack DO" I a to an I trans			5		37	ng 56
	F-wall contact 40° marked by contacted for	and googs	<b>6</b>	2	-	1.	¢ī-
	Interest grades from fine-grained arg	Haceous	7	DfEj≿	⊅	ih,	
	tuff on the upper sall through mediu	n-smiller	Λ	5	-/	Ú.	-
	to amygdaloidalyon the lower Nall.	- Justice /	Æ	N		1	
	· · · · · · · · · · · · · · · · · · ·		์   ๑	5-1		×-1	-
64.00-69.20	FELSIC TO INTERMEDIATE LAPILLI TUFF TO ;	TUFF	1	>>		$\tilde{c}_{j}^{\mu}$	
	BRECCIA	5	1	S	B	1	<u>-</u>
	H-wall contact 40° marked by minor fac	.14	lá	i i	£.		-
	indicated by narrow gouge band. F-wall com		1	51	1		
	Phyllitic with frequent brittle fracture	thread 1	રી :	5	"//,	1.	
	the internal Also stores llattenion Lak	inic SI	ŧ۴,			~	U-
	the interval. Also strong flattening fab throughout the whole interval. Quarts	Deine 19	ሦ		1	·"	
	and stringers (predeformed?) up to			-	-	-	_
	of the rock Major deformation ou		<u>.</u>			•	
·····	prior to mineralization, then (after mine		***	-	·-	-	-
	minor deformation followed.					•	
	Rack is light-grey in woord, frayme	-tal -	· ·	- [	-	-	-
	texture (which in places grades into tuf	1 herecia		- 1		•	
	Nith lapilli fragments nithin medium-gr	nined 15	5	-	-	-	-
	silicous matrix, in places carbonaceous	chart	Ĩ				
	matrix.		<u>с</u> г	거	-	-	-
	Foot-wall of the interval is brecciated /	Laurian 1	2	ы Ц		•	
	wall of fault) cut off by the fault dout		1	<b>2</b>	-	-	-
	Null of Fault Cur of a lite fault dout		21	24		•	
	6850 - 6920 Romania / Fruit Hanning wall of	the d	ch	-	-	-	-
··	68.50 - 69.20 Breccia / Fault. Hanging wall of					.	
	fault. Mineralization intensity decre	ases re	<u>ار</u>	-	-	-	-
	down the interval. Angular fragment	cot /	14	-		.	
	tuff flooded with quarte motrix. Inten	wy	/	-: [	-	- [	-
	phyllitic on the foot wall of the interv	ai d	1	-		1	

7 · ·



PAGE 9 OF 16

HOLE No. J91-20										
MINERALIZATION ALTERATION	<b>заниц</b>	FRON	ro	MIOTH	Au ppb	Ag g/t	As ppm	Sb" ppm		
		<b> </b>			<b> </b>	<b> </b>				┫──
4-5 % By; narrow concordant stringers, species	H 131	62,00	63.00	1.00	44-	4.5	243	18		
11	H 132	63.00	64.00	1.00	75	10.Z	42)	28	. <u>.</u>	<u> </u>
64.00 -69.20 ZONE OF MASSIVE SULPHIDES* Miaeralized by 6-7% Pyrite (locally 10%) as	H133	64.00	65.00	1,00	2090	335.7	4122	181		
anastomosing lands, stringers speck and discover, * Also traces of cinnabar (stringers and specks	H 134	65.00	66.00	1.00	3240	129.4	6618	203		
throughout the whole interval), arsenopyrite, * chalcopyrite, stibuite and	<u>H 135</u>	66.00	67.00	1.00	250	(5.2	795	37		
the wire of silver-rich dectrum *	H 156	67,00	68.00	1.00	/63	9.9	533	23		
¥	H 137	6800	69.20	1,20	182-	5.2	445	1 L	_	
traces of pyrite. extensive core loss.	H158	69,20	70,20	1.00	30	1.1	56	3		
2 %. By ; disseminated , norrow stringers specks	H 139	70.20	71.70	1.50	<i>a</i> 3	2.0	70	4		
tr-1%. Ry ; disceminated, speeks	H140	71.70	3,15	1.45	13	0.5	22	2		
	H 141	73_15	74.85	1,70	<b>I</b> 4 /	6.4	29_	2		
	4 142	74,85	76.35	1.50	13 1	0.3	19	2		
	4143	76.35	77. <b>v</b> 5	100	اک	0.4	18	2		
· · · · · · · · · · · · · · · · · · ·					· <b>_</b>					
	H <u>144</u> 1	17.85	79.35	1.50	- 01	0.3	13	2		
	4145	79.35	81.25	1.90	91	0.2	21	2		

# GRANGES EXPLORATION LTD

+ i -

PAGE 10 OF 16

(

HOLE No.

L

J91-20

-						;		
INTERVAL	C. L055	LITHOLOGY	c *		S	Μ	Α	
<u>6920-7020</u>		BRECCIA FAULT. This unit is a foot-wall of the fault zone that starts at 68.50 m. H-wall contact 40°. F-wall contact not discernable	_	-	-	-	-	-
		Core Broken up Over 70 % core loss Core Broken Intensely phyllitic intermedicite kpilli tuff Chloriti	40.	-	_	-	-	-
70 20 - 82.30		GREY INTERMEDIATE LAPILLI PHYLLITIC TUFF.	-	-	-	-	-	-
Г		In places any geal olidal fragments dominant. Strong flatening leaderic throughout the interval	-	-	-	-	-	-
L		with the rotation of lapillis fragments along the planes of foliation. In places littic fragments predominant. Often wavey or contented foliation	-	-	-	-	_	- -
		plancs near-by deformation (fault) associated	_	_		 	_	-
[		71.10 - 71.70 Breacia . Angular fragments of lapilli tuff flooded with quartz groundmass. Weathy chloritic Core broken	up.	_	_	-	_	(
<u> </u>		Both walls adjacent to the breastated one show contorted foliation planes, indicating browing fault		-	-	-	-	-
Г		80.85 - 81.25 Breccia   Fault? Angular fragments of lapilli tuff flooded with quarty matrix. Chloritic. F-wall contact	-	-	-	-	_	-
		75°, sharp.	-	-	-	-	-	-
			-	-	-	-	-	-
			-	-	. –	-	-	-
С			-	-	-	-		-
			-	-	-	-	_	
			-	-	-	-	-	-
[			-	-	-	-	-	-
<b></b>			<b>.</b>	-	-	-		Ć
L			-	-	-	-	-	-
L			-	-	-	-		•
_ \			L,		1	. 1	4	

GRANGES EXPLORATIO	NE <b>TER</b> .OG			• <u>•</u>	<u> </u>		PAGE	//	OF	16
HOLE No. J. 91-20					<b>.</b>	··- <u>-</u>		<u> </u>		
MINERALIZATION ALTERATION	<b>SAMM</b>	FROM	TO	HIOTH	Au g/t	Ag g/t	As ppm	Sb ppm		
				· · · ·						
						•				
······································										
	······································									
		-								
	4									
· · · · · · · · · · · · · · · · · · ·		•	· · · · · · ·							

__(

ļ

GRANGES EXPLORATION . DIAMOND DRILL LOG PAGE 12 OF 16 HOLE No. J91-20 Los INTERVAL LITHOLOGY u. 20 Alexandres 62-1 80.85-81.25 Breccia | Fault? | Angular fragments of si-3 lapilli taff flooded with quartz matrix. Chloritic. F- wall contact sharp. 75° 81.30 - 118.87 BLACK MUDSTONE INTERBEDDED WITH GREY SILTSTONE Contact: Morked by zone of brecciated taff ( upper wal and brecciated muditione (lower sail) both 7. Gooded with quartz-carbonate matrix in places suggy . Predominant anyle 70° 85 Intersected mudstone with siltsone, tops downhole. In places Bedding places contarted to Neaver In places precision with dense network of quarty  $-\hat{Q}$ - carbonate stringers ( at all angles to G A) throughout the interval. In places graphite 透出的 C the set of the set - 5 8.0 ÷., ان از این از این از این میدند. منابعه استان کاری در دارد 1994 - S. -51-2 • 90 - T. . . . . 5 5, 60 **7** 9244 Fault zone H- wall contact 50" 89 40 3 1 Foot-wall contact not discornable (ore Broken ap, 영리를 sheared, in places presence of gouge, with dence swarm of quarts stringers at all angle to the core axis -ĩ I ्यः १ ः जन्म .95 4 **进行日本**有4 . . . . STATE -2019년 1월 1997년 · 清洁 · · · the second second 3. 3 97.40 -97.85 Breacia, fault H- well cantact not discoverede MER IN (are Broken up) F will So there S. 18 5.2 98.25 - 100.10 Breccia , fault some H- sal contact 352 F-Hall contact 40. 5 容易的知识。 10 a M CONTRACT 因思想的教育 



PAGE 13 OF 16

HOLE No.

19³

L

C

J91-20

					_					
MINERALIZATION ALTERATION	SAMPLE	FROM	то	W107H	Au	Ag g/t	As ppm	Sð" ppm		
			1		11					
	1		[						1	
tr - 1%. Py; disteminated, specks	H 146	81.25	82 30	1.05	41-	04	27	2		
						····			1	1
tr-1% Ry; marrow pyritic concordant Bands	H147	122	8780	150	101	5	27	5	<u> </u>	<b></b>
II I A M MATTON PYTITIC CONCORDER & BANK	1911	0.030	10200		10	0.1	<u>~</u>	<u> </u>	┫────	╉────
		<b> </b>							+	
	Lima	19 7 90	85,35	154	11.	0.7	4 -		<u> </u>	
	11110	<u>ब २</u> बए	\$5.35	1,22	4-	0.2	<u> 2 +</u>	マ	──	
									ļ	<b>_</b>
										<u> </u>
	H 149	85.35	86.85	1.50	6-	03	27	3		<b></b>
										ļ
									•	1
	1									1
										<u>†                                    </u>
									$\vdash$	<u> </u>
									<b> </b>	┨────
									<u> </u>	
								-	<b> </b>	<b> </b>
									<b> </b>	
								-		<b> </b>
								_		
								_		
										- · ·
· · · · · · · · · · · · · · · · · · ·										
										<u> </u>
	1 1									
					-		·		<b> </b>	<b> </b>
	┨─┨								┟────┤	<b> </b>
			·						<b> </b>	┟
	╶┨╼╾╌┨									
· · · · · · · · · · · · · · · · · · ·										┫━───
										L
· · · · · · · · · · · · · · · · · · ·										L
						•				<b></b>
	1 1			1	1					
	1 1									
	╁──┤									
	<u> </u>				1			]		

		GRANGES EXPLORATIONED DIAMOND DRILL LOG	PAGE	14	o	IF /6	ī	
HOLE No.		丁91-20		<u> </u>				
INTERVAL	C. L 055	LITHOLOGY	بد ن`		S	Μ	А	
			_	3				
			17	746(3)	-	-	-	f
			<b>6</b> 0	77	_	ļ _	_	
		102.60 - 103.00 Breacia / Fault Both contacts broken up thus		ráf				
		not discernable. Crushed rock with dense actual		1-	-	-	-	┢
<u> </u>		of avanty-carbonate stringers at all angle C-A	-					
				-	-	7	-	
				<u> </u>	_	ĺ -	_	
				i si				
	<u> </u>		So	-	-	-	-	╞
			-	1%	1	P#		
				5	-	-	-	ŀ
<del>.</del>			-	K		_		
					65	-		ſ
				[ - ]	Æ	-	-	┝
	$\square$	108,85 - 114.60 Fault zone. H-well contact 65°. Foot-well	-		1 se			
		contact 65° marked by band of gouge.		μ	\$	-	-	ŀ
		Rock crucked, brecciated in places gouge	-	*   >		/	<b>si-</b> 2	4
	$\square$	narrow Bands with dense network of norrow quartz-carbonate stringers at all angles to c		70 6,4	1	-	(ā-1	Γ
· · · · · · · · · · · · · · · · · · ·		Mineralized by parrow concordent pyritic stringen	]_	Þ	Æ	-	_	
		Mineralized by parton concordent pyritic stringen		×				
	44			Ĩ	#	-	1 -	┝
			5	2	5	,		
			11	[	25	1	/~	Ί
			<b></b>	[_		_	_	
			_  -	18	-	/-	-	-
			-	14				
				Б	-	-	-	┢
	┨┤	· · · · · · · · · · · · · · · · · · ·	-	1		/		
č	$\left  \cdot \right $		<u> </u>	-	-		-	ſ
- 118,87		END OF THE HOLE	┠╴	+	-	<u>  _ </u>	┝╌╍	┫
			_					
				-	-	-	-	ŀ
· · · · · · · · · · · · · · · · · · ·			-					

_

GRANGES EXPLORATIO	NER
	-06

PAGE 15 OF 16

HOLE No.

[

[

[

C

[

.

								;		
MINERALIZATION ALTERATION	SAMPLE	FROM	TO	МТОТН	Au g/t	Ag g/t	As ppm	Sð ppre		
								-		
			· ·			·				
· · · · · · · · · · · · · · · · · · ·										
· · · · · · · · · · · · · · · · · · ·										
	ļ									<u> </u>
										<u> </u>
										<b></b>
										<b> </b>
										<u> </u>
		:								
		-								
				<u> </u>						
	i									
······································										
· · · · · · · · · · · · · · · · · · ·	-									
· · · · · · · · · · · · · · · · · · ·										
	<u> </u>									
·									<u> </u>	
	<b> </b>				<b>_</b>	:				
			ļ	<b> </b>				ļ	<b> </b>	
								· .		Ц
						<b> </b>	L			
		· .								
	1			<b></b>						
				<u> </u>						
	1	<u> </u>	L	<b>I</b>	<u>.</u>		L		L	L

Sample J-91-20 65.35 m

Sericite-rich Argillite, Minor Cherty Layers (Unit 7J, 7N); Replacement Lenses of Pyrite-Arsenopyrite; Replacement Vein of Quartz-K-feldspar-(Ankerite); Late Veinlets of Mineral A

The rock is a well foliated argillite dominated by sericite with moderately abundant, disseminated, extremely fine grained pyrite. Some layers are dominated by extremely fine grained, slightly interlocking quartz grains.

Replacement veins (35-40%) are dominated by quartz with 3-4% patches of K-feldspar. Quartz commonly is strained moderately. One lens 1 mm long in a quartz-rich patch is of extremely fine grained Mineral A. A late veinlet 0.2 mm wide is of extremely fine grained Mineral A. Mineral A has a very low R.I. and very low birefringence, and is soft. Ankerite forms a few irregular patches of very fine grains intergrown with quartz.

Other replacement seams parallel to foliation are dominated by extremely fine to fine grained pyrite (15-17%). Some pyrite aggregates were brecciated very finely. Arsenopyrite (3-4%) forms grains averaging  $\emptyset.05-\emptyset.1$  mm in size on borders of pyrite-rich patches and clusters of grains averaging  $\emptyset.01-\emptyset.02$  mm in size in the adjacent host rock. Sphalerite (trace) forms lenses up to  $\emptyset.4$  mm in length parallel to foliation. Interstitial to sulfides are extremely fine grained aggregates of sericite

One larger pyrite grain contains an irregular inclusion 0.02 mm across of pale yellow electrum. A veinlet of electrum 0.04 mm long and 0.005 mm wide occurs between two pyrite grains.

## Sample J-91-26 74.8 m Altered Andesite Lapilli Tuff (2D.1Bu)

The large fragment a few cm across is of andesite/basalt tuff(?) dominated by aphanitic plagioclase/chlorite with wispy seams of chlorite parallel to foliation and abundant, irregular, lensy patches of sericite and/or ankerite and minor ones of quartz.

Along one side of this fragment is a 1.5-to-2-cm-wide band containing moderately abundant crystal fragments of plagioclase and quartz in a groundmass dominated by sericite/plagioclase and ankerite (probably secondary). Adjacent to this layer are a few fragments up to 2.5 mm across of very fine grained latite/andesite, with lathy plagioclase grains up to 0.07 mm long in a groundmass of plagioclase, ankerite, and minor opaque.

Several pumice fragments up to 1.5 mm long are dominated by lensy intergrowths of sericite and chlorite.

A fragment 1.7 cm long is of argillite containing patches of sericite, possibly after plagioclase crystals.

Scattered fragments averaging 0.5-1 mm in size are of quartz aggregates and plagioclase phenocrysts. Some plagioclase phenocrysts are altered slightly to moderately to ankerite.

The groundmass is dominated by extremely fine grained sericite, chlorite, and plagioclase, and is contorted moderately to strongly.

G	
SAMPLEN	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
J91-7+35.0	72.05       11.60       3.88       .77       00       .05       6.54       1.98       .03       01       .007       1106       25       26       122       24       20       2.9       100.01         65.00       9.95       8.69       .35       170       .12       7.90       1.76       .59       11       .003       2249       87       18       131       41       23       4.5       99.99         37.49       13.50       6.85       4.77       15       74       4.54       .63       1.18       .18       .015       387       623       10       94       23       20       14.6       100.33         38.34       12.43       7.71       3.09       705       5.83       .20       1.36       .25       64       10       105       25       20       13.4       100.29         63.84       13.75       5.44       1.62       62       .09       8.28       1.54       .26       168       .005       1722       101       14       172       25       20       4.0       100.06
J91-11-88.0 J91-12-166.5	69.41       11.33       4.44       .37       127       .11       7.79       1.95       .57       01       .004       2136       88       10       124       31       20       2.9       100.02         54.61       15.27       4.72       2.17       5.66       5.42       1.84       1.32       .22       19       .019       1373       233       10       59       7       61       8.4       100.14         53.85       14.26       9.63       2.72       552       1.62       3.66       1.80       .60       .22       .002       784       243       13       14       26       48       6.0       100.10       105       16       48       6.0       100.10       10       105       16       48       6.0       100.10       10       10       15       16       48       6.0       100.10       10       10       10       10       10       10       15       16       48       6.0       100.10       10       10       13       10       10       10       13       10       10       10       10       10       10       10       10       10       10       10       1
J91-16-129_15 J91-17-89.6 J91-17-149.0 J91-17-172.0 J91-18-76.1	46.04       15.77       9.14       4.43       72       1.89       5.52       1.53       .31       27       .007       1010       141       10       73       18       87       8.0       100.16         59.10       13.03       8.62       3.16       4.57       4.09       .66       1.52       .29       15       .002       288       247       25       55       37       79       5.0       100.05         65.12       12.13       6.33       2.70       17       .08       7.63       1.31       .35       118       .003       2173       130       17       15       22       76       3.0       100.02         57.65       12.90       11.38       5.32       .09       5.52       1.39       .44       133       .002       1518       75       22       76       3.0       100.02         59.22       15.23       7.64       3.94       197       2.01       4.55       14       .002       1891       109       21       163       50       60       3.9       100.03         59.22       15.23       7.64       3.94       197       2.01       4.55       14       .002
J91-18-77.3 J91-18-89.0 J91-18-94.7 J91-18-123.4 J91-20-74.8	59.74       16.41       4.76       3.19       72       .28       5.96       1.42       .07       .00       .010       .97       37       24       .051       51       41       7.8       100.14         60.81       10.80       10.64       3.04       .0422       .06       5.67       1.18       .29       .25       .005       3724       247       15       4.6       42       24       4.4       100.06         62.99       12.76       8.13       2.02       1.45       7.23       1.40       .36       10       .002       3086       126       20       166       35       77       2.1       .99.99         62.26       11.54       9.78       2.93       .55       .18       7.14       1.23       .34       .23       .002       1350       80       18       .91       39       30       3.6       100.00         62.26       11.54       9.78       2.93       .55       .18       7.14       1.23       .34       .23       .002       1350       80       18       .91       39       30       3.6       100.00         62.26       10.77       14.85       6.84       .6
J91-21-49.0 J91-22-45.0 J91-22-130.2 J91-22-177.1 J91-22-183.0	46.62       14.41       15.25       1.76       222       4.99       1.55       2.04       .62       107       .002       877       289       23       106       28       59       10.5       100.24         62.61       10.92       9.01       2.19       11.38       .39       1.93       1.59       .39       .09       .002       1113       81       16       113       28       20       9.5       100.20         46.62       15.29       16.18       6.12       2177       4.21       .95       3.27       .65       165       .002       203       109       23       183       44       46       6.4       100.10         55.90       18.36       6.80       2.60       .09       8.93       2.00       .53       112       .002       1314       99       28       166       36       90       3.5       100.04         55.90       18.36       6.80       2.40       .09       .05       6.92       .66       .14       0.6       .002       1035       63       33       206       31       79       3.0       100.04         68.23       14.40       3.44       2.42       .
J91-22-208.5 J91-22-211.5 J91-24-164.7 RE J91-22-177.1 J91-24-207.3	70.20       13.65       3.76       2.55       .05       5.78       .94       .10       J0       .002       1119       38       26       142       15       53       2.6       100.02         54.36       15.48       10.93       8.35       .25       .05       3.38       1.51       .23       33       .005       609       40       10       .85       21       28       5.1       100.05         44.84       16.27       14.50       5.09       521       .07       4.42       1.60       .49       78       .002       1213       665       21       76       20       86       6.5       100.03         55.80       18.19       6.84       2.66       1971       .05       9.13       1.97       .53       12       .002       1296       100       30       167       35       77       3.5       100.02         54.95       12.97       11.80       3.06       6.71       1.05       .40       143       .002       1694       250       19       133       28       47       4.7       100.07
J91-25-26.9 J91-25-45.4 J91-26-42.4 J91-26-105.2 J91-27-32.65	\$1.21       15.96       7.89       2.11       7749       3.81       2.90       2.43       .57       28       .002       1247       335       21       160       27       108       5.1       100.04         50.89       15.41       8.40       1.83       7744       3.94       2.88       2.43       .54       19       .002       974       246       23       161       25       70       5.9       100.03         51.52       16.07       10.06       2.73       708       3.16       4.72       1.38       .57       23       .002       1876       237       33       183       45       79       5.4       100.03         51.52       16.07       10.06       2.73       708       3.16       4.72       1.38       .57       23       .002       1876       237       33       183       45       79       5.4       100.09         57.90       12.68       8.98       3.31       4841       .05       4.55       1.63       .48       41       .002       1228       129       23       137       29       62       5.0       100.08         54.73       16.02       6.47 <td< td=""></td<>
J91-27-60.5 J91-27-68.0 STANDARD' SO-4	74.21       9.88       3.60       .88       1.98       4.12       .73       1.79       .47       06       .002       800       166       14       103       18       24       2.1       100.00         57.38       14.99       8.47       3.90       152       1.92       2.53       2.39       .62       .07       .002       2205       162       20       164       36       29       5.9       100.11         67.81       10.29       3.56       .98       1.61       1.33       2.05       .57       .23       13       .005       795       207       29       321       23       20       11.2       99.98
	.200 GRAN SAMPLES ARE FUSED WITH 1.2 GRAN OF LIBO2 AND ARE DISSOLVED ON 100 MLS 5% HX03. - SAMPLE TYPE: CORE <u>Samples beginning 'RE' are duplicate samples</u> .
DATE RECEIVED: NOV 15 1991	DATE REPORT MAILED: Nov 30/91. SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

AA ALL ANNA PTEM				Gra	inge	) S	Ine	c.	PRC	JEC	T S	UNL	JK	\ RI'	ل ver	13	4	FI	ĿĘ	# 9	91-	509	98	CO	NF				Рa Рa	ige		)	
SAMPLE# J91-20		Cu ppm		2n ppm			Co pm	Mn ppm		AS PPT		Au ppm (			Cd ppm		Bi ¢¢m j	V mqc	Ca %	P X	La ppm		Kg X		TI X	8 Span	Al X	Ná X		ppm	Au* ppb	на ВК Вррр	
K096 K097	2	13 13	8 10	82 90		4	9 9 1	845 019	4.35	11 23 40	5	ם א	1	82 91	5	2	2	19 26	2.76	163	9 11	4	.91 .92	69 63	01			.03 .03			25	250 180	
RE A315	13	16	13	98	Ξį.	13	5 1		3.71	40	5	ND	i	237	े <i>ं</i> (5) २०१४	4	2	17	8.45	.159 .083	6		2 24	56				.01			ź		
K098	2	17	7	104	89 E	4	12 1	105	6.14	22	5	ND	1	103	8	2	2	26	4.72	175	11	4	1.12	64	01	2	2.39	.03	. 08	1 2008 1 2001	2	310	
8099	2	19	10	129	80		14 1		6.88	859	5	NO	1	153	10 A	2	2			169			1.11		01			04				565	
X100	2	16	8	90	80 -				5.92		5	ND	1	99	6	2	2			193	11		1.12					04			i i	375	
н101	3	20	18	75	26	6	21 1		5.70	862	5	NĎ	1	339	8	2	2	16	9.68	165	10		.89		01			.03			6	445	
H102	1	27		237	1			99 <b>5</b>	7.51	50	5	ND			.8					,230					.01			.04				3400	
X103	1	19	6	180		4	13	702	4.76	18	5	ND	1	100	.5	2	2	41	3.51	.250	10	3	1.14	100	01	3	2.25	.04	. 17	, 🕅	1	140	
H104	2	26		146	88	4	20	806	6.46	49	5	ND	1	139	,6 .8 .5	2	2	40	4,23	239	8	5	1.20	55	.01	2	2.21	.04	. 17	/ 201	1	275	
8105	2	30	- 19	143	88 Q	6	24	966	8.34	95 17	5	ND	1	137	888.8	2	2	35	5.15	<b>\$195</b>	6		1.26		01	2	1.93	.03	. 17	と 総称	- 4	275	
8106	1	15	10	160		3	14	709	5.17	- 2172	5	NO	1	111	SE 5	2	2	47	3.82	\$242	11	5	1.36	109	01			.04			3	145	
8107	1	23	12	115	80			747	6.22		S	NÐ	1	130		2	2	39	4.57	.253	9		1.22					.04			5	175	
X108	1	26	12	103	<u>f</u>	3	16 1	196	6.14	71	5	ND	1	302	.,	2	2	42	7.61	200	11	5	1.30	75	01	4	2.28	,03	1	2 🕮	1	155	
H109	5	29	13	155	2	3	18	666	7.89	\$54	5	ЯD	1	104	8.8	2	2		3.05	221	7		1.54		01			.04			- 4	190	
к110	5	19	14	144	<u> 2</u>	3	15	798	6.91	54 175	5	ЯD	1	128	9	4	2	23	4.39	\$224	9	4	1.22	40	-01	2	1.99	.04	.1	7 🚳		1550	
H111	7	18	10		2		12	397	5.48	219	5	ND	1	96	- 5	7	2	12	2.89	\$175	8	3	.64	- 30	01	2	1,18	.04	. 1/	3 🚳		1700	
H112	10	20	11	36				236	7.94		5	ND	1	49	9	8	2	15	1.45	1214		3	.59	17	.01			.04				1600	
K113	3	17	15	109	80	4	22	699	6.23	88	5	ND	. 1	145	.6	5	2	33	3.28	.200	8	6	1.94	43	.01	2	2.37	.04	1'	2 🗐	4	845	
H114	5	16	8		. 2			1406	7.60		5	ND			31.9		ž			<b>§</b> 132			2.14		01			.03				1900	
STANDARD C/AU-R	1 19	61	- 42	131	7.1	76	34 1	1034	3.93	40	16	8			17.8										09		1.93					1750	

.

.

4

•••

.

.

and a second of the second 
• •

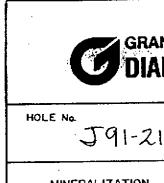
-

and a strange to a second state of the state of the second state of the second state of the second state of the

		<b></b>		ŗ	]	<u> </u>	]	_ <b>ر</b>	]	<u> </u>	٦	Г		_ŗ	<u>_</u> ر	(		7	[	]		ר	(	7	ſ	ו	ſ	٦		<u> </u>		1 r	ר
		,.		G1	ranç	jes	II	nc.	PRO	JEC	T	UNU	IK I	RIV	ر ER	13	4	FI	LE	<b>#</b> ⊊	91-:	509	ļ	NF	101	NT	IA	[ P	age	نې ع			
sample# 591-20	Mo ( ppm pp				Ag PPm p			Hn ppm		As PPT p					Cd ppm					P X				Ba Sprin	ti X pp		וא 1. % 7		K V X ppm		Кg ppb		
H115 X116 Re H121 X117 X118	21 28 14	18 28	15 15 2 8 2 10 1 7 1	48 30 27	142.3		17 9 8	225 495 281	4.45	342 370 26 84 	5	ND ND ND ND	1	74 🗄	1.7 2.3 1.5 1.7	2 6 2 15 2	6 2 2	28 2	.95 2.06 .66	.175 .112 .083 .060 .075	3 3 2 3 4	9 4 1 7	.09 .99 .46 .63	12 16 13	01 01 01 1	7 1.1 9 .9 1 .8	)1 .0 9 .0 9 .0 91 .0 30 .0 50 .0	3.1 1.1 1.1	1 1 3 1 9 1		375 585 1350 1300 710		
X119 N120 X121 X122 X123	26 28 15	26	7 1 9 1 11 2 10 1 13 1	58 23 72	;2 ;1 ;1 ;1 ;1	39 31 42 25 28	8 1 9 10	435 1025 508 837 680	4.31 4.03 4.47 4.41 3.71	29 29 24 27 22	5 5	ND ND ND ND ND	1 1 1 3 1 1 2 1 1	30 78 234	2.4 1.8 2.3 2.3 1.7	22222	2 2	23 2 54 7 29 2 32 9 18 9	7,28 2.15 5.35	,073 ,100 ,084 ,089 ,076	3 4 2 3 3	7 2 4 1	.07 .71 .52 .12 .32	40 21 33	01 01 1 01	91. 0. 81.	08 .0 72 .0 74 .0 74 .0 74 .0	1 .0 1 .1 1 .1	9 31 4 1 1 1	7 5 6 11 8	975 1100 1350 980 950		
 X124 K125 K126 X127 X128	25 10 28	29 16 30	16 1 14 1 8 1 50 2 43 1	69 06 81	,3 ,1 ,1 ,7 ,6	33 35 17 39 36	7 7 9	699 647 547 271 240	3.71 3.62 3.85 4.45 5.41	25 31 25 79 129	5 5 8 5	DX DX DX DX OX		111 🖁	1.5 1.6 1.0 1.8 2.7	2 2 5 11	22222	14 13 14	5.00 3.37 1.19	.066 .064 .078 .079 .090	4 <u>3</u> 2 2 2	4 ·	.08 .02 .38 .73 .65	46 46 38 27 17	.01 .01 .01	3 .9 3 1.3 4 .4	11 .0 21 .0 28 .0 32 .0 70 .0	1.1	8 1 6 1 1	11 3 5 3 10	685 1100 595 1750 1400		-
H129 H130 H131 H132 H133	24 5 16	23 10 14	12 1 11 1 12 18 18	37 99 57	.1 1,2 4,5 10,2 35.7	12	9 16	356 119 120	4.51 5.27 4.28 8.26 15.21	199 168 243 421 4122	5 5 7 6 5	NO NO ND ND ND	1	61 67 110	1.4 1.0 .4 .5 1.8	19 35 18 28 181	2 2 3 2 2	13 14 7	1,52	088 090 060 082 080	322222	4 3 4 11 6	.17 .57 .08 .05 .03	31 26 32 22 12	01 01 01	2 . 2 . 2 .	72 .0 47 .0 33 .0 29 .0 47 .0	1.2	24 1 24 1 19 1	5 16 44 75 2090	950 775 295 680 15000		
 H 134 H 135 H 136 H 137 H 138	14 8 4	21 25 17	17 9 44 1 65 4 59 1 11	387 488 263	27.4 15.2 9.8 5.2 1.1	15 8 6	15 15 14 10 22		11.04 7.19 6.84 5.21 5.09	6618 795 533 445 56	5 5 5 5 5	3 סא סא מא	1 1 1 1 1	41 39 48 84 54	1.7 .6 1.9 .3	37 23 11	22222	5 6 7 8 26	.43 .51 .80 .93 .69	.091 .148 .160 .145 .156	2 2 2 2 5	7	.30	11 13 22	01 01 01	2.2	32 .0 36 .0 42 .0 65 .0 62 .0	11 .2 11 .2	26 1 29 1 23 1	163	11000 1050 1050 565 230		
K139 N140 K141 H142 K143	3 2 4	16 18 17 19 17		137 🖇	2.0 .5 .4 .3 .4	7 8	17 18	979 752 1067 1772 866	5.11 6.50 6.25 6.79 5.81	70 22 29 19	5 5 10 5 8	ND ND ND ND ND	1 1 1 1	69 32 43 88 63	1.2 5 1.3 1.1	42222	22222	38 33 33	1.81 .74 1.13 2.88 1.58	. 104 . 153 . 124 . 123 . 150	8 10	7 5 6	2.22 2.83 2.61 2.58 1.79	74 47 32	.01 .01 .01 .01 .01	2 3. 2 3. 2 3.	29 .0 60 .0 34 .0 72 .0 01 .0	01 .2 01 .2 01 .2	27 1 27 1 23 1	23 13 14 13 13	240 85 150 70 50		
X144 H145 H146 H147 H148	4 6 5	15 12 18 16 18	6		.3 .2 .5 .2	3 5 11		945 945 717	5.76 6.12 6.17 3.36 4.35	13 21 27 22 27	5 7 5 5 5	ND ND	1 1 1	55 68 95 91 119	,6 1,5 ,2 1,0	2 2 5 2	22232	19 19 7	1.34 1.40 1.45 2.45 4.03	4105 136 049	9 8 3	3	1.91 2.46 2.18 .81 .99	41 63 51	.01 .01 .01 .01 .01	23. 23. 2.	09 .0 35 .0 04 .0 77 .0 68 .0	01 . 01 .	26 1 30 1 26 1	10 9 41 10 4	35 55 70 405 680		
H149 Standard C/AU+R					.3 7.3				3.63 4.05				1 40	50 51	.2 18:0	3 15	7 20	7 60	1.36	.058 .095	4 39	3 58	.57 .90	47 182	•01 09	2. 33.1.	76 .0 90 .0	01.3 07.	26 1 15 13	6 450	900 1400		_

Sample type: CORE. Samples beginning /RE/ are duplicate samples.

4.


. .

!

· .

GRANGES EXPLORATION LTD DIAMOND DRILL LOG 1..... PAGE 1 OF 9 HOLE No. J-91-21 PURPOSE to drill down dip for Hole 20 TOTAL LENGTH **BEARING** LOCATION GROUND ELEV. 270° . . . 152.4m. - 460m L7+00N-0+81E HORIZONTAL PROJECT DIP TESTS VERTICAL PROJECT DIP -70* 100.8 m -70° 152.4m -691/2" DATE STARTED Oct 11/91 CORE SIZE CONTRACTOR LOGGEO BY DATE DATE COMPLETED Oct 12/91 GFM. Octizhi J.T. Thomas. BO BO SUMMARY LOG 0-5.2 CASING 5.2-6.1 Black angillite with full bonds & nier pyrite ging ques. pf x. d. 2.5%. gtr. vering placed. 6.1-51.7 Interreducte fire to ha pulli fuff. local pately black silver alteretion ? 51.7-152.4 Black Mudstere with ninon hilf inkulablast top disee depth and synguetic by inte longations serveral short yould zones and graphite slips unally pr FAult 62-64. FAult 73-76 FAult. 82 -86 FAULY 1006-107.5 FAULT 112-121 FAULT 124-127 Fossils - belemnites 131.45. : Lower part of mudstone intervel may be Squaren River Formation ( Below failt ) upperpart poppility Betty Beek For (above fault) SIGNIFICANT MINERALIZED INTERVALS . . 11-13m py v.d. 3-4%. 45-47m py v.d 3-5% . . . . . 50-51.7 py v. d. 10-20% Ling sig-and the second second second : 1 シュージャン See in the second CALLER .

-		GRANGES EXPLORATION LID STREAM	PAGE	2	OF	9		C
HOLE No.	J	91-21			• . 	و		
INTERVAL	C. L055	LITHOLOGY	* 5	Ŀ	S	MIA		
0-5.2		CASING.			-	- 7	-52 AN	•
<u>5,2-6.</u> ] -		Black Argillite mine Itques gen taff, unipy pyrite dess, veins 1% rubbingter 5:5 practice slips, Lower contact graphite slip 35		734	c/sc 	~71 ~71	s - 6	
6.1-5/.7		Intermediale fire tull to Lapelli tuff grey-grean, anostanosing pyrite vens 1 dus 2% gte pateles rie	-	  		11 - 14	# - 8 1	
		1-2% local Bil silica alferation pateles, fragments; Tr. carbonale pateles F. Jolialed 30-30		(3A-D+ (a) 1			- 9 4v6	0
				2/3A	د الله الله الله الله الله الله الله الل			$\mathbf{C}$
		Black silver alter + fragments			- <b>X</b>		- 12	
		Stap Bullet forthe logits		1.2	仁福道		- 14	
		Pately Black situa, 2-3% ungular py & Locally.					+ -16 14 Si	
		Tuff sequere les lus cour pagoerts, shinger phation			· · · · · · · · · · · · · · · · · · ·			•
	540° 240°	Carbonale Patelus	341 SY				3.1	! . ●
			<b>-</b>				- Z( - Z	
······································				937	建山橋		2,	
Ē					the state of the s	39 L C		<b>3</b>
·							₩ 1 25	•



C

Þ

# GRANGES EXPLORATION LTD

PAGE 2A OF 9

MINERALIZATION ALTERATION	SAMPLE	FROM	ro	N 107K	Au Pr ^b	Ag g/t	As ppm	56 фрт		
Py1%	Агьс	5.2	6.1		16-	0.5	19	2		<u> </u>
pyv.d. 2-3%.	A266	6.1	7.0		4.	1.2	21	2		•
pyr.d. 1.21.	A267	7.6	8		5	0.5	q	2		
pyv.a. T+-1%	A268		9		<u>'</u>	0.2		2		
py v. d Tr-1%	A269		10			0.8		2		
py v.d 2-3%	A 270		11			0.7	ł	2 Z		
pyv.d 3-4%	A271		13	·		0.3 0.4		2	 	
py v.d. 4-5%.	A272 A273		14				25	2		
py v.d Tr-1%	A274		15			0.1		2		
Pyv.d. Tr-1%	A275		16		3~	0.1	11	Z		
Py v.d 1-2%	A 276	16	17	······	2	0.1	17	Z		
py v.d Tr-1%	A277	17	18		4.	01	7	Z		
Py J.d Tr-1%	A278	18	19		4	0.1	5	Z		
Py v.a Tr-1%	A219	19	20			<u> </u>	1	2		
py v. d. TE-1%		20	<b></b>	 		0.1	<u>  ·</u>	2		
py v.d. Tr-1%.			22				/6	2		
Fyx.d. Tr-1%		22	<b>_</b>		· .		3Z			┨──
py v.d Tr - 1%		<u> </u>	24	<u> </u>	<u> </u>		23	~ 2	 	-
Pyva 1%	H229	24	25			12/_	13			

GRANGES EXPLORATION PRICE 1 PAGE 3 5 OF 9 ſ HOLE No. J91-21 C. L055 S Ą LITHOLOGY * INTERVAL J Z۲ 13/25, Tea 25 25 Tuffs and lapilli , gugques foliated miner my right. 94 zć 9% 24 15 (5) gtcb 27 ٦¢ ***** -28 You fit ×××< Patchyalta Black silies чил, ۶i 10 24 ..... -30 -31 132 (E Pjv 33 Ę Stypher blk. 51/35 101 \$ 80 , j 35 - 3f . • 55 Broken cove. -54 36.5 - 39.5 pyrite Vers 2 55 31 Ş Ē · _ _ · یا دی۔ در دیکھیا ہے 1. 7 2 ÷ . 531 R/SO \$9 coarser tuffs and lapitles events occassional S 39.5-51.7 4. <u>Venesla fragrents.</u> 40 ~ . -91 ō na la constante en la constante La constante en · --Coavie And - Lapelli - fore and marking المجاورة المحجولية والالتعاد -42. GU 3 . . . . . Black silver altr. wig py 3% المرافقة المتلاف م - ;;;; ارد. موجود برزومیم موجود میشند است. 187 優化的) 50 32E wispypyv -37 وبالم المعادية المعاد المعاد الم Hall shee , ÷ × じとつ ſ 9 Vesicular fragaents 1012200 .*: A 1 1 



PAGE **3**A

of 9

HOLE No.

[

J91-21

								;	<b>.</b>	
MINERALIZATION ALTERATION	SAMPLE F	FROM	ro	WIDTH	Au ppD	Ag g/t	As ppm	Sb ррт		
py vd. 1-2%	9285 =	25	26		2:	0.1	38	2		
Pyxid. 1%	A286 2	26	2]		3 -	0.1	(7	2		
py V.d. Tr. 1%.	A2.87 ;	27	28		1 ~	0.1	17	2		
-py v Tr-T%	A2.88 2	28	29		6-	0.1	13	2		
pyv Tr	0289	29	30		4 -	0.(	22	2		
Pyx TF	4290	30	31		4 -	0.(	18	2		
Py v Tr	A291 2	31	3Z		4 -	0. ₁	15	2		
py v-d. 2-3 %	A292 3	32	33		4_	0.2	21	Z		
Pyv-d 2-3%	A293 3	53	34		1-	0.1	43	2		
-pyv. 1-2%	A294 3	34	35			0.1	53	3		
- Pyv 1.2%	A295	35	36		4-	0.1	35	2		
pyv. · Tr	A296 3	36	37		3-	0.3	85	2		
Py v.d To	A297	37	38		2-	0.4	54	4		
py v.d. 1%	A298	38	39		2 -	0.5	58	4		
Pyv.d. 1%	A299	39	40		1_	0.4	45	2		
py v.d. 1%. py v.d. 1-2%	A 300 4	40	<b>4</b> 1		2	0.5	25	3		
py 1-d. 3%.	A 301 -	41	42		64-	0.9	16	2		
Pyr. d 2%	A302 4	42	43		5 -	0.2	34	2		
pyv.d z.3%	A303	43	44	·	2 -	6.1	72	2		
Dyv.d 3%.	A304 4	44	45		2-	0.Z	72	2		
py v.d. 3-5%	A305 4	45	46		9-	01	76	2		

GRANGES EXPLORATION TO THE STATE OF THE STAT and the second PAGE 4 OF 9 HOLE No. J91-21 C. LOSS S INTERVAL LITHOLOGY * Д J 46 ĥ, 5/ 155 Lapithi fragoests some vesicular wrspy alto & fraguents 20-94 1g Black Silica anasternosing DI Hack intersection fabrics 30-35 + 40-50 44 lapillituf 10% pysite patrac to х Я'х pyrite natur & lapille hiff 20% 57 contact sharp 65 . - Jraphiti slip --52 51.7-152.4 Black and lite with what are ash heavents out × v selly beds shong Joliate Si clevinge -53 Veins N. nakon 2-3% 1000 ask down hole Small sale folds. 54 Pts. 9160 All and the 55 Ň ÷ c130 . CAL 60 - 50/50 7 56 -, 51 5 ۰_... . . . . 70 <u>`</u>,--1-58 * **-** ^ C6-30 % -59 5 হু' 70 . 60 <u>.</u> -52 . . . 2 a.S . . . . . . 5⁷⁴ ٠ų 1 محمد أستنا بشقص والمراجع â 4 S. Ŀ ••• . Fault 30. To 43 3 15-• • • frank a start a start مرد در چوره مدر در 64 ، المراجع المرجع ال . . . of clearage starting to hangen belling зà. 65 5 Attractory. • • のないなななないです。 1 "我的你能。 <u>____</u> a diala. Maria ÷. . • 

.



PAGE 4A OF 9

HOLE No.

591-21

J 11-21							_··	÷	
MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Au 23 b	Ag g/t	As ppm	Sb ppm	
pyv.d. 5%	A306	46	47		<u>4</u>	0.1	41	_2	 
Py v. d. 3%	A307	ך4	4B		2	0.1	32	2	 
pyvd 5%	A308	48	49		2	0.1	77	2	 
py v.d. 3%	A309	49	50		5.	0.	83	2	
py v.d 10'1.	A310	<del>5</del> 0	51		3 -	Ø.2	143	6	 
py v. d. zoj.	Ази	51	517		2	0.3	176	2	 
	Aziz	5 <b>1</b> 7	53		14	0.1	66	11 I	 
py v. d 3%	A313	53	54		4	0.1	58	8	 
pyr.d. 1%	A314	54	55		6	0.1	65	Ισ	 
pyr.d 1-2%	ABIS	55	56	·	1-	0.1	39	6	 - ·
	A316	56	57		٩.	0.1	60	9	
	· ·								 
				i					 
	<u> </u>								 
· · · · · · · · · · · · · · · · · · ·									 
py.d. Tr	A317	64	65		12	0.1	27	2	 
pyd Tr py.d. Tr	A3/8	65	66		7-	.0.1	35	2	 
Py.d. Tr	A319	66.	67		3.	01	28	2-	 

GRANGES EXPLORATION CONTRACTOR . Ц PAGE 5 OF 9 HOLE No. J91-21 C. L055 S LITHOLOGY A INTERVAL * J 67 Black mudstore, silty-full lan murph fault junge 68-685 shing clerky. 68 <u>gtv 10%.</u> qV. È J (M)C 69 nin fait 89.8-70.1 <del>4</del>7 ъ A rebbor ghe sens aV 30 40 30/50 71 cis. đ٩ К Black Argulete - palegrey self a tuf F 73 r fac sale matisk der.)720 9121. 10 -74 telt 74. - 74. 1 ls. 571 co/50 -75 fault. 76 - 76:2. -76 . ---77 Small fild. ÷ shong clea - 18 7 ý., In the low _ . ana ana ana ana بك 6 بأخرجه تسأره . . . below failed section Mindstone less silty full bonds ·Iz Ø core, graphitie gauget Sups Foults gh this broker 85 82-85 (coreloss. ÷. د د دو د ویژه و ژونو در در د در اینده و و ژونو و شور در اینده و و شور و شور -10 instant fring Alexander al e ø ì Ŧ 4 . . . . . i. San San San San San San 12 - <u>1</u>5 e and There is the factor of the second s 1 常 建白 . Selfande - S . . . 369947-09-5



PAGE 54 OF 9

### HOLE No.

	_							2		
MINERALIZATION ALTERATION	SAMPLE	FROM	TO	MIOTH	Au pp)	Ag g/t	As pp=>	56 ppm		
aund. The	A320	67	68		7	0.2	35	8		
pyv.d. Tr	1	P /	00		- <b>T</b>		<u> </u>			
	A321	68	69		5	0.3	48	8		
	1154	00	0(			03	10			
		10								
()	A322	69	70		2.	0.1	78	10		
11	A323	70	71		<u>.</u> 5	0.3	157			
	A324	7/	72.		3.	0. <u>3</u>	117	(6		
					;					
j k	A325	72	73		N N	0.Z	102	15		
	+									
······································										{
· · · · · · · · · · · · · · · · · · ·	<u> </u>									
					. <u></u>					
		-			-					
				<u> </u>						
	łł									
· · · · · · · · · · · · · · · · · · ·			· · · ·					· • • • •		
		•								
	┨╧╍╌┨									
Fy Tr	A 326	80	ୟ		4.	0.2	124	12		
41	A327	81	82		1/	b./	173	27		
	A 328	8z	86		19/	1.6	21B	45		
	1									
	<u> </u>									
	1									
									<del>-</del>	
		-		-				-		
							-			]
Ry Tr	A329	86	87		7	0.2	44	9		
la ·	A330	87	88		3_	0./	50	81		
							<b></b>			$\neg \uparrow$
								Ł		

GRANGES EXPLORATION TO A SUB-PAGE 6 OF 9 *(**** HOLE No. J91-21 C. L055 S INTERVAL LITHOLOGY 4 ن ن 88 strong cleanage, wheeled accords 1.2% tuff-selfybards Black 'ŋ 1 hes T) 89 (al ge Liquey line stone peds, nodule + fracture ling 90 (possibly Samo River Fr.) 15/cal. ŕΙ Π t 9z 9130 -93 91 /44 94 ø 51/ 159 1 PJ. 95 py diss 5 -96 20 Gaphike ship 10-15 91 c.l. والمحمولة مترك . . 1 -98 99 . . . . ta 100.6-103.6 9t + 201. FAULK 100.6-107.5 ÷ d 1045% ġ, Nellon ghd. 30 lar 103.6 - 107 failt zone, gt v 30% · . . . . • 2 - . . . . 10# Shong ghe Vering 35. 1949 1244 105 Ъ., 106 Lineakons 30° tailt at 20 **%** ر شود به مراجع 1 108 Matchards ÷ --- - - -. 1 



PAGE 6A OF 9

ì

HOLE No.

[ ر

Sb ٨s Au Ag MINERALIZATION ALTERATION WIDTH SAMPLE FROM го \$0b g/t рөт **PP**^m <u> 74 Tr</u> 88 89 3~ 2 A 331 0.1 29 A332 89 90 5-01 2 17 # 2 20 A333 90 91 2-02 ù 2 4334 91 9Z 3-01 19 н A335 92 2 _____ 23 93 0.1 L . 5 A336 93 94 3 0.1 32 IJ A337 97 py Tr 4 92 7 98 0.( 4338 98 99 44 1 0.1 5 4 38 A539 99 100 0.2 10 5 **, i** 3 1.4 37 16 A340 100 101 H 4 1.1 39 12 4541 101 102 48 31 6 1.6 10 A342 102 105 đ PyTr 3 5 1.( 17 A343 105 106

GRANGES EXPLORATION DO DIAMOND DRILL LOG 9 PAGE OF HOLE No. J91-21 ... C. L055 : -S А LITHOLOGY ₩ INTERVAL J 109 Black argellik mudstere, pyritic len, graplité 9/10 slips" 1 weat phase 110 10 G٧ b M 111 112 Fruit graphite going to graphite goinge, gt vering to ? بنز Q1. 50 112 121 Cm2 43 N. N 55 Bog _ 114 ĸ -115 ۶q4 лL 1/-( ł . . ŀπ . . . . . . *5*. 5 9 118 . T.A 119 Į, . . . 120 -50 10 3 121 122 155 . - . 123 . • \··· . --·/24 Test data of the 1.1.1.2 80 FAalt 2000 graphic parge - ghvening 20, 125 124-127 Astronomic -94 printie Lan. . . . . . . . . 12 ميتين. ويتري beddin he muds poorly de ar 14 لى ا ::-::in derivale 122 ted a cleated. Ruo 14 ジャム市 umo ÷ 認為薄 Er makin 化了 S. S (1 1 20



# GRANGES EXPLORATION LTD DIAMOND DRILL LOG

page 7A.

of 9

MINERALIZATION ALTER	RATION SAMPLI	FROM	то	NIOTH	Ач р <b>р</b> Ь	Ag g/t	As pp=o	5Ь ролт	
					┥╌╬╴╶╾╌				
	······································		1						 
······································			1						
		-							
RI TN	A344	112.8	115.8		4	1.7_	17	3	
Ry Tr					• • • •				
			[						
Ry T	A345	1/5.8	118.9		4	2.1	26	9	
-19 1	······				· ·				
		_							
							:		
Ry Tr	A346	118.9	121.9	·	4	1.4	26	9	
						1			
		-							
RyTI-	A347	121.9	123		3	1.8	28	8	
	······································				~				
Py Tr-	A348	123	12.4		5	5-1	18	5	L
	A349	124	124.5	· · · · · · · ·	9.	2.4	39	8	
								<u> </u>	 
· · · · · · · · · · · · · · · · · · ·							<u> </u>		
				I	l			<u> </u>	 L
Ry Th	A390	126.5	128.3		ス	a.1.	31	12	L
				Ì	: 				
					1				<b> </b>
						<u> </u>	ļ		
· · · · · · · · · · · · · · · · · · ·					[	L			
								· .	L
			[						
		1	t	L	L	i			 

Sel Street BRANGES EXPLORATION ÷ 9 PAGE 0F 8 HOLE No. J91-21 C. L055 S А * LITHOLOGY INTERVAL -J 130 pyrte layer. 13).45 Fossils (befenuter E 3 -13/ graphie byert 2-3%. graphie stips k-midsone aranthi \$ 90 132 le my selly legens 1 L'Iabrie 5/ at Varia 17, wea 40 gv -/33 or faith, graphite stips -134 5 50 -135 _ -136 E To **{**□ **《** / Prike layers pullapart TTT - mplled with gte _ 137 137-152.4 broken cove, gh vening 10%. 1 138 ι. 5° 4 139 -. -140 32 7. . Séjan , المعالي مشام . 40 av -*142* 2.0 en de la المراجع معتود مسكنوفة شبغ ÷7 . . . . ... 2 . . . . -143 . . , and prove the 44 1 والجير المتوجد ÷. 70 รัฐร a a construction of the second _ 45 . e palla مراغ المهديه ومساح M 20 . . . . . . . . المراجع والعربية المعاقب uning a state of the .... 147 s start start i s Ę ، جي چنديجہ з. đ٢ and the second second ŋ -المراجع والمحادث 198 (jp -----. . معادية المجمعة فالمعتب 70 199 و الما يوني الما يوني الما يوني الما يوني الما ي نغ. رو ە ئىسامىرىدىغ كەتىمىكى<mark>تە مەركىيە ي</mark>ىشىر 影響的人 و او او ک н. 150 ..

HOLE No.	-7			<u> </u>				1
		91-21	<u> </u>	<u>,                                     </u>	<b>1</b>	, 	<del></del>	
INTERVAL	C. LOSS	LITHOLOGY	بند د	L	S	M	Ą	1
		black needstore, pyrite lani, 2-3%	- 40		FE	1.		157
	╋		- 70	]		PY	-	152
	┨──		-		75	1		
<b></b>	1		-   -	-	-	-	-	f
		152.40 EOH		İ _		-		L
			4					
	╂			-	-	-	-	╞
	╂╍╍		-	<b>.</b>				
· · ·				-	-	-	-	ŀ
······································			-			· ·		
			<b>_</b>	-			-	ſ
				-		- "	-	-
· · · · ·			·					
···· -			-  -	-	-	-	-	- '
	1		-					1
			- 1	-			-	╞
				·				
			] -				-	ſ
				<u>_</u> :	-	-	 _	
<u> </u>			- ·	1.14				
				-	-	ىمىنى ئىسىنى سىكى ب		-
	┨──┤							
*. *.				. <u> </u>	A. W.			ł
			1.				1	
····			1-	-		-		Ţ.
			]					· .
• •								
			-					ŀ
· · · ·			-	م معرفی م				
	┨──┦					-1-4-4-	-	F.
								t.
						ند <u>مر</u> موجب	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	E I
-	5.00	Salah Alaga dalah sa sa sa sa sa sa sa sa sa sa sa sa sa				3 4 5 C	ې ولستې د . د د کې د	
						1044	مۇرىيى مىلىي تېرىك تو تە	
					4		_	-
:				21 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		221		

# Sample J-91-21 49.0 m Basaltic/Andesite Tuff (Onit lC/D); Replacement Patches of Quartz-Pyrite-Ankerite

[ [ [

Fragments up to several mm across are of slightly porphyritic basaltic andesite, containing 3-7% lathy to prismatic phenocrysts of plagioclase averaging  $\emptyset.15-\emptyset.3$  mm long, and locally up to 1 mm long in a groundmass of extremely fine grained slightly lathy, plagioclase, minor to abundant opaque, and minor sericite and replacement patches of ankerite. The variation in color in the hand sample is caused by variation in abundance of disseminated opaque. A few phenocrysts up to  $\emptyset.3$  mm long are of apatite.

Wispy seams between and cutting fragments are of opaque.

Replacement and interstitial patches and seams are dominated by very fine grained pyrite (4-5%) and quartz (2-3%) with much less abundant ankerite. Quartz commonly was recrystallized in comb-textured aggregates surrounding pyrite grains.

A few replacement patches up to 2 mm across are of very fine to fine grained ankerite (3-4%).

# Sample J-91-22 45.0 m Argillite (Unit 7J), Latite Tuff (Unit 2B); Ankerite Veinlets and Replacement Patches

At one end of the sample is an argillite dominated by plagioclase/quartz aggregates averaging 0.002-0.005 mm in grain size, with wispy seams parallel to foliation of semiopaque/opaque (2-3%), and irregular patches of ankerite (1-2%). A few irregular lenses and layers up to 0.2 mm wide contain much more abundant, extremely fine grained opaque. Pyrite (1%) forms disseminated cubic grains averaging 0.05-0.1 mm in size. Ankerite (3-4%) forms a few replacement patches up to a few mm across and veinlets up to 0.3 mm across. One veinlet was offset by shearing along closely spaced planes parallel to foliation. A few replacement bands parallel to foliation up to 0.4 mm wide are of very fine grained pyrite, quartz, and ankerite.

At the other end of the sample, the latite tuff contains scattered crystal fragments and crystals of plagioclase, quartz, and apatite up to  $\emptyset.2 \text{ mm}$  in size in a well foliated groundmass dominated by plagioclase and sericite, with disseminated patches averaging  $\emptyset. \theta 2 - \theta. \theta 3 \text{ mm}$  in size of ankerite. Ankerite forms patches up to  $\emptyset.5 \text{ mm}$ in size, which may represent completely altered fragments of uncertain original composition.

A few fragments up to 1 mm long are of argillite containing moderately abundant carbonaceous opaque.

Wispy, opaque-rich seams up to 0.05 mm wide cut across foliation irregularly at a moderate angle.

<b></b> .					ANALYSIA ANALYSIA III// ULL III// UL		
1.000	SAMPLE#	SID2 A1203 Fe2	03 NgO CHO 7 7 7	AMAZU KZU HUZ PZUS	AND CLADS BO ST LO	127 Y NO LOI SUM COMMI PRAM PERM X X	<u></u>
Ļ	J91-2-21.2 J91-3-15.5 J91-7-35.0 J91-7-39.0 J91-8-65.2	72.05 11.60 3.1 65.00 9.95 8.1 37.49 13.50 6.1 38.34 12.43 7. 63.84 13.75 5.4	69 .35 70 85 4.77 19 74 71 3.09 77.05	.05 6.54 1.98 .03 .12 7.90 1.76 .59 4.54 .83 1.18 .18 5.83 .20 1.36 .25	01 .007 1106 25 26 01 .003 2249 87 18 368 .015 387 623 10 67 .012 189 860 10 06 .005 1722 101 14	122       24       20       2.9       100.01         131       41       23       4.5       99.99         94       23       20       14.6       100.33         105       25       20       13.4       100.29         177       25       20       4.0       100.06	
	J91-10-69.0 J91-11-88.0 J91-12-166.5 J91-12-175.6 J91-12-175.0	53.85 14.26 9. 56.93 13.43 7. 29.07 13.20 11.	63 2.72 5.52 78 3.63 5 87 60 6.70 16.67	1.57 2.72 1.08 .19		31       20       2.9       100.02         59       7       61       8.4       100.14         14       26       48       6.0       100.10         56       9       24       7.2       100.13         15       16       44       16.9       100.42	ч. Ч.
	J91-16-129.15 J91-17-89.6 J91-17-149.0 J91-17-172.0 J91-18-76.1	46.04 15.77 9. 59.10 13.03 8. 65.12 12.13 6. 57.65 12.90 11. 59.22 15.23 7.	14 4.43 7 04 62 3.16 4.33 33 2.70 7 7 38 5.32 92 64 3.94 97	1.89 5.52 1.53 .31 4.09 .66 1.52 .29 .08 7.63 1.31 .35 .09 5.52 1.39 .44 2.01 4.22 2.01 .45	.007         1010         141         10           16         .002         288         247         25           18         .003         2173         130         17           33         .002         1518         75         22           11         .002         1891         109         21	18       87       8.0       100.16         15       37       79       5.0       100.08         15       22       76       3.0       100.02         166       56       66       3.8       100.03         163       50       60       3.9       100.03	
ay - mart - , - , - , - , - , - , - , - , - , -	J91-18-77.3 J91-18-89.0 J91-18-94.7 J91-18-94.7 J91-20-74.8	59.74 16.41 4. 60.81 10.80 10. 62.99 12.76 8. 62.26 11.54 9. 49.69 10.77 14.	76 3.19 2.23 64 3.04 2.22 13 2.02 1.67 78 2.93 5 85 6.84 655	.28 5.96 1.42 .07 .06 5.67 1.18 .29 1.45 7.23 1.40 .36 .18 7.14 1.23 .34 .43 .70 .98 .32	06         .010         897         37         24           25         .005         3724         247         15           10         .002         3086         126         20           25         .002         1350         80         18           62         .002         123         150         21	148       42       24       4.4       100.06         166       35       77       2.1       99.99         91       39       30       3.6       100.00         94       32       26       8.4       100.16	:
	191-21-49.0 191-22-45.0 191-22-130.2 191-22-177.1 191-22-183.0	62.61 10.92 9. 46.62 15.29 16. 55.90 18.36 6.	01 2.19 11.36 18 4.12 2.17 80 2.60 11.93	4.21 .99 1.55 2.04 .62 39 1.93 1.59 .39 4.21 .95 3.27 .65 3 .09 8.93 2.00 .53	107 .002 877 289 23 109 .002 1113 81 16 115 .002 203 109 23	166         28         59         10.5         100.24           113         28         20         9.5         100.20           181         44         46         6.4         100.10           186         36         90         3.5         100.04           206         31         79         3.0         100.04	
U, DL	J91-22-208.5 J91-22-211.5 J91-24-164.7 RE J91-22-177.1 J91-24-207.3	54.36 15.48 10. 44.84 16.27 14. 55.80 18.19 6.	93 8.35 25 50 5.09 5 21 84 2.66 197	.05         5.78         .94         .10           .05         3.38         1.51         .23           1         .07         4.42         1.60         .49           7         .05         9.13         1.97         .53           1         .06         4.27         1.55         .40	33 .005 609 40 10 178 .002 1213 665 21 1312 .002 1296 100 30	15       53       2.6       100.02         83       21       28       5.1       100.05         76       20       86       6.5       100.08         167       35       77       3.5       100.02         133       28       47       4.7       100.07	
1011 I.C.	J91+25-26.9 J91-25-45.4 J91-26-42.4 J91-26-42.4 J91-26-105.2 J91-27-32.65	50.89 15.41 8. 51.52 16.07 10. 57.90 12.68 8.	40 1.83 7.44 .06 2.73 7.02 .98 3.31 4.84	433.94 2,88 2.43 .54 83 .16 4,72 1.38 .35 45 .05 4.55 1.63 .48	19:002 974 246 23 24:002 1876 237 33 24:002 1226 129 23	140       27       108       5.1       100.04         141       25       70       5.9       100.08         183       45       79       5.4       100.09         117       29       62       5.0       100.08         134       26       20       4.3       100.05	
יחד דבי	J91-27-60.ቼ J91-27-68.0 STANDARD' SO-4	74.21 9.88 3. 57.38 14.99 8. 67.81 10.29 3.	.60 .88 1 9 47 3.90 1 5 56 .98 1 6	4.12 .73 1.79 .47 2 1.92 2.53 2.39 .62 1.33 2.05 .57 .23	.002 2205 162 20	103 18 24 2.1 100.00 1444 36 29 5.9 100.11 321 23 20 11.2 99.98	
			ARE FUSED WI DRE <u>Sompl</u> e	TTH 1.2 GRAM OF LIBO2	AND ARE DISSOLVED ON 100 duplicate somplet.		

K....

							1					
- <b>-</b>	ррб 755	620 145 120 255	240 270 280 250 195	245 160 165 170 110	130 105 170 200 155	150 240 210 155 160	140 145 100 200 275	1950 550 400 350 265	240 180	235 220 255	185 140 310 260 870	565 1250
Au*	ррb 16	5 4	1 1 7	2 4 3	1 4 4	2 3 1	4	4 3 2	Š Z		4 2 2 5 3	
K V	× ppn )7 1	)3 )9	10 1 06 1 13 1	04 1 10 1 10 1	09 1 10 1 11 1	10 11 1 11 1	11 1 11 1 11 1	16 1 17 1 17 1	20 🛞	16 12 10	.06 .11 .12	
Na	<u>×</u> .01 .	.04 .03 .04 .03	.04 . .03 . .03 . .03 .	.02 . .03 . .03 . .03 .	.04 . .03 . .03 . .03 .	.03 .03 .03 .03 .03	.03 .03 .03 .03 .03	.04 .03 .03 .04 .04	.03	.04 .03 .03 .03 .03	.03 .03 .03 .04 .04	.03
AL	× ,83	2.36	5.01 5.20 2.89	3.20 4.09 2.97	3.07 2.95 2.40	2.88 3.08 2.98	3.57 3.40 3.15	2.60 2.62 1.50	1,80	2.09 1.92 1.69	1.67 1.23 .84	1.33
B	թթո 2 1	22	6 : 4 : 3 :	4 : 5 : 4 :	3 : 5 3	3 4 3	4 5 5	6 6 5	ξ 4	2 2 2	2 2 2	
<b>)</b>	ד <mark>אַ ™</mark> 1.01	3 .01 5 .01 1 .01 2 .01	1 01 1 01 0 01	5 .01 3 .01 6 .01 1 .01 6 .01	5 .01 1 .01 1 .01 6 .01 6 .01	6.01 5.01 0.01 0.01 0.01 8.01	72 .01 36 .01 37 .01 78 .01 55 .01	58 .01 58 .01 48 .01 49 .01 49 .01	40 .01 51 .01	23 .01 26 .01 33 .01 28 .01 21 .01	28 .01 49 .01 18 .01 16 .01 20 .01	18 .01 18 .01
Mg B	Хрр 83 7	65 3 46 8		.59 .87 1 .34	. 35 . 33 . 05	.57 .32 .32	.34 .31 .30	.34	, 24	.80 .64 .49	.76 .35 .21	
Cr	pm 7 1,	4 1. 3 1. 3 1. 2 1.	31 41 51	4 1 5 1 6 1	4 1 3 1 3 1 4 1 4 1	51	41 51 41	3 1 4 1 4	_ 4 [*]	21 21 51	21 34 34	4 · 6 ·
La	ppm p 6	4 9 13 13	7 10 10	10 10 12	12 12 12	10 13 11	12 9 10	9 9 11	11	7 6 4	9 4 4	2
	.048	, 195 , 173 , 232 , 181	,203 ,192 ,203	.166 .213 .209	.208 .208 .200	.207 .235 ,226	,215 ,218 ,237 ,221 ,204	.244 .238 .197	2237	,181 ,187 ,165	. 152 . 182 . 165	, 141 068
Ca	× 2.22	0.77 5.69	9.42 5.15 5.52 7.81 5.28	9.08 9.06 5.40 8.98 5.36	0.40 7.13 8.89 0.63 6.45	4.90	5.51 3.38	5.93 3.48 4.94 4.29 2.40	2.47	3,06 4.80 3,23 3,19 3,27	1.35 6.43 2.58 2.83 1.64	2.06 2.04 1.24 1.44
	ppm 34 1	42 1 35	34 62 51	65 54	50 53	46 54 49	58 52 50	41 36 14	15_	2 23 2 25 2 23	2 25 2 15 2 12	2 19 2 11 2 1
b Bł	nippmi 222	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Z 2 2 2 2 2 Z 2 Z 2 Z 2 Z	3 2 2 2 2 2 4 2 4 2	3 7	2 2 2	2 2	2 11
lus l	2011 PI	.2 .7 .8 .8	.7 5 9 4 3	.4 .7 .7 16	.4 .9 .7 .3	.5 .7 635	.7 .7 .6 .8	.9 1.1 .2 .2	.4	1,0 .7 .6 .8 .8	.7 .7 .8 .7 1.2	1,0 1,4
Sr 2	ppm 8 404	154 343 117 285	164 132 131 187 125	181 185 141 196 133	209 159 195 182 146	133 168 127 139 226	129 137 86 127 151	144 97 108 108 69	71 101	1 116 1 194 1 142 1 118 1 121	1 65 1 260 1 109 1 107 1 76	1 101 1 99 1 73
Th	ppm 3	4 2	3 1 2	2 1 2	1	1 1 1 1	) 3 ) 1 ) 2	0 1 0 1 0 1	<u>)</u>	ND ND ND	ND ND ND	NQ ND
Au	ppm ND	סא סא	NO ND ND	DN DK	NO ND ND	i NC i NC i NC i NC	5 NG 5 NG 5 NG 5 NG 5 NG	5 NG 5 NG 5 NG 5 NG 5 NG	א 5 א <u>וא</u>	5 5 5 5	5 5 5 5 5	
ີ ນັ້ນ	1 ppm 2 5	5 5 5 5 5	5555		2) S	85 766	855	5 5	5	34 72 72	32 77 83	76 66
	( ) ) ) ) ) )		4 41 5 21 5 25	0 17 7 7 3 19	5 10 8 10 8 31	6 30 9 1 3 1	1 1	93 98 88	75 4 07 2	47		.38 .84
Fe	<b>%</b> 3.11	6.41 5.25 4.54 4.72	5.67 8.34 6.86 6.15 5.58	5.79 7.10 7.67 6.03 7.93	5.81 5.75 5.98 5.38 6.75	6.70 6.96 6.19 6.03 6.96	7.56 7.01 6.96 7.54 7.62	2 7.81 2 6.29 5 7.59 5 4.68 2 3.27	9 4.75 3 4.07	2 6.6	7 5.4 2 8.1 3 7.1	1 10.3 2 4.4
Hn	ррп 1823	1711 1021	1240 1062 1455	1649 1229 1532	1304 1521 1402	1338 934 1035	1198 842 994	632 816 526	309 408	1011 709 602	582 533	
<b>)</b> Co	ppm 5	10 7	14 12 14	13 15 15	10 14 15	18 13 13	15 15 16	13 16 14	15 15	14 13	7 10 15	
NI NI	ףקיז 22	3 2 2 1	3 2 3	3	2 2 3	4 3 2	1 2 3	2 3 4	2 2	3		3 33
	PPm .5	1.2			1		.1 .1 .2		5	2		
Zn	<u>ррт</u> 156	190 203	186 222	202 164 161 162 144	119 138 165 111 164	134 140 162 132 159	160 150 176 132 125				63 92 52 88 88	50 200
Pb	ррт 55	41 24	39 23 71 18 14	17 10 38	10 39 10	14 10 10	14 6 10	14 45 16		8 13	7 13 9	
Cu	ррп 18	27 19 23 24	22 27 23 19 20	21 16 23 22 23	20 21 22 18 21	20 22 18 19 23	22 24 20 30 22		21 22	15 16	17 14 21 16 .17	17
Ko	20	3 1 1	1 1 1	1 1 1	1 1 1	1 1 1 1 1		1 1 5 5	5	20 4 6 8 10	5	13
										•	-	
AHPLE.	265	266 267 268 . 269	270 271 272 273 274	275 276 277 E A281 278	279 280 281 282 283	284 285 286 287 288	1289 1290 1291 1292 1293	4294 4295 4296 4297 4298	AZ99 A300	A301 A302 A303 A304 A305	A306 A307 A308 A309 A310	A311 A312
	<u>'91-:</u>			• • 								
Ĩ					-							

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

	A34 A34 A34 A31 ST	434 434 434 434	A33 A33 A33 A34 A34	A33 A33 A33 A33 A33	A32 A32 A32 A33 A33	A32 RE A32 A32 A32	A31 A31 A32 A32 A32		A31 A31	
	48	13 14 15	88 99 60	3 4 5	8 9 0 ·	A328 4 5	9 0 1	PLE#		
	30	17 7 13 13	8 21 28	6 3 4 5	20	18 18 24	14 12 8			LAB
	58 52	35 37, 38	15 17 29 38 28	15 14 18 16 19	23 22 24 27 23	22 21 24 23 23	24 19	Cu	25 21	RAI
	21 48 56	25 37	4 11 17 37 32	9 6 10 9 8		6 5		Pb		(0);4
	1021 1210 1439 1330 132	222 566 350 417 453	167 103 155 131 227	104 92 148 103 142	178 178 173 163 114	243		124 Zn ppm	184	) HS#
1AL	1.1 2.4 2.1	1.1 1.7 2.1			:1 :6 :2 :1	.34.3.22 	.1 .2 .1 .1 .2 .1	Ag		2a
FOR 1	16 37 53	29 16 25 27 26	15 14 30 30 35	12 9 12 10 14	33 28 30 31 16	24 35	19 26 22 16 15	20 Ni ppm j	31 20	
IN F	5 9 8	6 6 8 7	7 9 11	8 9 8 8 16	9 8 11	8 8 10	5 7 9	Co		
E SR	2011 413 1042	1872 414 962 530	2095 490 422	843 408 621	763 560 356	726 1770 947	889 816 445	Mn		114.54
CA P	3.02 3.02 3.81 3.34 3.34	3.31 2,70 2.80 2.79 3,14	3.71 3.51 3.62 4.49 4.32	3.84 4.11 3.43 3.73 4.37	4.81 5.99 3.94 4.92 4.79	3.90 5.63 3.54 4.12 3.85	2.92 2.86 3.33 3.74 4.42		5.09	23.000
LA C	18 39 31	17 17 26 26	44 38 37	20 19 23	44 50	102	35 28 35 48 78	As		$\sim \sim \sim$
R MG	5 5 7	5 5 5 5	5 6	5 5 5	5 5 5	5 5 5	5 5 5 5 5 5	U		1000
6 BA	ND ND	ИО ИХ ИО ИО ИО	но 24 20 26 26	ND ND ND ND ND		70 70 70 70 70 70	ND ND ND ND ND		ND	2.00
TI 8	1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	Th		Sec. 2.2
W A	234 323 106 138 52	373 54 78	403 536 148 138 213	138 172 76 112 103	104 107 175 90 134	106 418 127	202 187 143 135 121	\$г		9
	1127			44600	1.6 1.2 1.4 1.0	1:3 1.3 1.6 2.1 1.7	1.0 1.2 .5 .5	Cd PP ¹¹	2.0	81.
	5 8 12	5	5 10 16	2 2 2 2 2 5	45	38 16 15	2	Sb		<i>Yalika</i> ta
D FQI	2	2 3	22322	22223	2 4 2 2 2 2	2 4 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
R NA	32 18	40 29 18	34 9 7	8 8	18 10 8	17 25 14	15	V	17	1
OR ONE K AND		11.14 13.52 1.32 3.28 2.32	11.62 13.65 3.89 2.94 4.94	4.80 7.56 2.59 4.31 3.81	3.24 2.70 4.35 2.05 4.97	8,53 2,57 8,93 3,85 5,92	6,57	2.68 Ca %	1.79	VI IFI(
AL.	.080 .040 .082	.047 .069 .043	053 058 059	084 058 059	.077 .061 .053	.072 .048 .070	.056 .077 .072 .065 .082	.053 P X	.070	2.6.14.1
	322	2 4 2	5 4 3	4 5 4	3 4 3	2 3 3	3 2	La	4 Z	
	6 5 14	5 18 6	6 3 2	3 3 4	4 4 3	4 5 3	3 5 4	Cr		
CTION	2.16	2.13 2.85 1.24 1.20 1.16	3.21 3.51 1.16 .89 1,66	1,13 1,17 1,01 1,10 1,61	1.40 1.40 1.07 .78 1.69	2.69 1.33 1.87 1.29 2.52	.98 1.20 .91 .89 1.78	1.01 Mg %	1.69	SPH(
	111 35 96	110 100 91	79 49 45	64 49 54	31 48 35	28 41 43	46 52 35	5a		DNE (
	01 01 01	0.1	.01 .01 .01 .01		- 0.1	.01	.01 .01			604
	2 3 2	2 3 2	3 2 6	6 4 2	4 1 2 5	2 1 2 1 2	2 3 2	B	3 1.	
	.27 .26 .23	.25 1.06 .28	1.51 .36 .31	.70 .84 .84	.23 .69 .40	.19 .38 .69	.99 .80 .76	AL	.44 .	W. KI
	.02 .02 .02 .03 .06	.02 .02 .02 .02 .03	.01 .01 .02 .02 .02	.01 .01 .01 .01 .01	.01 .01 .01 .01 .01	.01 .01 .01 .01 .01	.01 .01 .01 .01 .01	Na	01.	12 - 2
	.08 .13 .11	.08 .12 .14	.11 .19 .20	.24 .19 .19	.21 .18 .21	,20 ,13 ,18	. 12 . 18 . 14	Χŝ	18	Π
	38 I.			4 4 1 1	1 1 1 1		1		1 8	AX (6)
	3 110 5 110 4 130 2 170 20 160	6 93 3 65 4 63 4 67 4 70	4 89 1 105 5 125 3 74 4 100	5 105 2 115 3 97 1 115 3 100	1 96 9 125 2 110 3 150 3 120	5 715 7 1450 3 910 2 1100 4 1000	7 665 3 690 7 610 5 680 2 900	' Xg	1350 680	1912) 1
	0 10 10	5 5 5	0 0 0	0 5 0		) ) }	)			53-17 AA
										16
								ļ	· <del>-</del>	1

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PE ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. 'HG ANALYSIS BO FLAMELESS AA. Samples beginning 'RE' are duplicate samples.

U 221

91. SIGNED BY

DATE RECEIVED: OCT 17 1991 DATE REPORT MAILED: