APPENDIX A: DIAMOND DRILL LOGS AND CERTIFICATES OF ANALYSIS PART III: J91-22 to J91-30, T91-1

To Accompany 1991 SUMMARY REPORT

on the

UNUK RIVER PROJECT (Unuk and Coul Claim Groups)

SKEENA MINING DIVISION NTS 104B/9 and 104B/50SESSMENT REPORT

Owners: Malcolm Bell, Clive Ashworth, Granges Inc.

Operator: GRANGES INC. 2300 - 885 WEST GEORGIA STREET VANCOUVER, BC V6C 3E8

FEBRUARY 3, 1991

Π

A.J. O'DONNELL

		-	
	S EXPLORATION LTD.	建設さ るが、1945年)。 1947年 1947年	
DIVINO		- ,	1 E
· ·	UN	IUK RIVER PROJE	PAGE + OF 27
HOLE No.	· · · · · · · · · · · · · · · · · · ·	COVE 3 CLAIM	······································
591-22			
PUAPOSE	······································	······································	· · · · · · · · · · · · · · · · · · ·
TO TEST	A SOUTHERN STRIN	LE EXTENSION C	F THE 900 ZONE
(Cours - Bada	ING ZONE INTER SECT	50 H 391-4	4 AND 7)
LOCATION JEFF GRID;	GROUND ELEV.	BEARING	TOTAL LENGTH
8+00 N, 0+59 W	~ 424 ~~	272	246.89m
•			LODIZOUTAL CONTRACTOR
DIP -47.5	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
41.5	155-45	178.56	146.1 ****
LOGGED BY DATE	CONTRACTOR	CORESIZE	DATE STARTED OCT. 12/9
G-ALLEN 0007. 13-14	J. T. THOMAS	B.Q.	DATE COMPLETED OCT. 4/9
5.00 - 8-55 INTERME 8.55 - 225 ARC-ILLI 2.25 - 10.70 INTERME 10.70 - 13.25 ARC-ILLI 13-25 - 14.17 ARC-ILL 14.17 - 14.93 DEBRIS 14.93 - 21.34 SANDSTON CORAINED 21.34 - 31.45 SANDSTON 31.45 - 35.60 GRAPHITIS 35.60 - 42.88 INTERME	DEB ARDILLITE AND FI	EDIMENT , TURFACEDUS SES FRACEDUS ?), SANDS (TURFACEDUS ?) 11NDR (NTEAMEDIATE UFF WITH MINOR L	TUFF TO COARSE -
49.40- 83.95" INTERME	DATE FINE CARNED "	TUGE AND MUMA	
03.15 - 89.75 INTERM	EDIME AMYGDALDIDAL	FLIDW OR TUFF	BRECCA
SIGNIFICANT " MINERALIZED			
/7, p	YRITE - 4 17, RED-1 TZ STRINGERS POS	POWN SPHALEATE	
· · · ·			i e ta statu i ta statu
	RUARTZ CARBONATE STR		
/0 7.	SPHALEASTE 5% CA	<u>ALENA</u>	· · · · · · · · · · · · · · · · · · ·
			en en la construction de la construcción de la construcción de la construcción de la construcción de la constru En entre en
		· · · · · ·	ener gener hell i solar en

[

C C

[(

[

Ч		·					• • • • • • • • • • • • • • • • • • • •		4	
			GRANGES EXPLORATION LTD	·						
L			UIAMUND DRILL LUG	년 PAGE	2	ċ	። ንፑ 2	7		C
Π	HOLE No.					· · · · · ·			1	X:
- -	591-2;	_						_		
	INTERVAL	C. LOSS	LITHOLOGY	* 	L	S	Μ	Α	0	
Π	0-3.05		CASING	_					Γĭ	
			No second		- 1	-	-	-	-	
				- -	-z	-	-	-	F	
Ţ				-				•	L	
	0.10.0				,5 ,5 ,5					
_	3.05 - 5.80		ARGILLITE, SANDSTONE, TUFFACEOUS SEDIMENT Dark film - gran to black an illite	50.	<u>،</u> ئ- يّ	-	-	-	-	
			and fine to coarse grained sandatane largillours	J)_	. `` `	-	_	_	-5	
_			with gradational contacte. Mina grunish tiff intered and fittered milium grun lithing programmets to 2 cm	<u>.</u>	<u> </u>					
Ц				3-70	-2-4	-	-	5e-2 Cl-1	F	
_	5-80-8.55		Intermediate LAPILLI TVFF	- -	-		'-	-	ŀ	<u></u>
			soft (sincitie ?) would foliated groundwess with		-		-	-	-	(
			20% midium to dark one appointing lithing	-	- J					
Ц		î	fotisation .		7, 794, 7	. — 	-	_		
	8.55-9.25		ARCILLITE TUPPACEOUS SEDIMENT] .	107					
			Dark John - gring to black anothing geding		74.5	-	-	-	F	
			adiment with a fine-grained clothic component.	50	, ار مر ر ار مر		-	-	-	
-	9.25-10.70		ENTER MEDIATE LAPILLI TUPF TUFFACEOUS SEDIMEN		5	1		-	-	
Ц	······		notitud light to indum grunich-grug soft	-	747			•		
	· .		daile teles- gray fine to coarse- grained sandetone	-	10/	2	<u></u> . ;	· — ·		
Ų		-	and black (anilite) prograte up to lim			-	 -	` -	-15	
		_	Graditional lower contact.		(17			-		
Ч		_	A	545	5					
ł	10.70-13.25	- E	ARCILLACEOUS SANDSTONE (TURFACEOUS?) SANDSNOM CONGLOMERATE	50	7A A		, -	-	-	
Ч			Tutululled dark guy angillarione silteton and		1) 		-	-	1835au
		•	sendetine, mohum-grained meaning Sondations,					. :		Ś
			compress of 20% black to medium grunich-gruy	75	-	-		-		
4			flattend lethic prognests in a sondethin matrice	/	-		. –		-20	
1		-1		1			1			

GRANGES EXPLORATION LED DIAMOND DRILL LOG

HOLE No. 591-22 C. LOSS S А INTERVAL LITHOLOGY . Μ J (TUTFACEOUS ?) ARGILLACEOUS SILTSTONE 3.25-· grained phyllitic rock <u>Mu - gruz</u> Dank に 14.17 ÷ 2 FWW (?) DEBRIS 4.17 - 14.93 _ blue guy Darle to subargul _ ---_ ---_ requeste up to Za ton tenna <u>sl</u> contact R SILTSTONE AND MINOR INTERNOLITE 4.93 - 21.34 SANDSTONE --TUF COARSE-TO CARINGO u _ _ -----_ cont (Ludded) -×. Sulth di unel in -No distinct contact component _ ---_ ----_ _ ----. _ . • -_ _ ς. -----_ --_ -_ ---.

C

€

c

D

٥

D

D

Ū

۵

D

Ū

GRANGES EXPLORATION TO THE G

OF 27 PAGE 3

-	J91-22					-					
	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	ыюти	Au g/t	Ag g/t	As pp=n	Sb.+ ppm		
•		1									
							· · · ·				
				··							
	1.05-29.0 Bonin	.	: :								
					· · ·						
				:	 						
5+		·	, ·	-							
-		<u> </u>								·	
	·	┼───									
	· · · · · · · · · · · · · · · · · · ·										
		1									
			-								
	· · · · · · · · · · · · · · · · · · ·										
	· · · · · · · · · · · · · · · · · · ·	· · ·	· -								
											┟
<i>1</i> 0 +-						<u> </u>					
- -		<u> </u>	——					⁻			
+						<u> </u>					
-					1			- ·			
								-			
			-		[ļ	· .			
	· · · ·	ļ		<u> </u>	<u> </u>	 	 	<u> </u>			
-		<u>}</u>	 		 	 		<u> </u>		<u> </u>	
				•		╂───		<u> </u>		┨────┤	\mathbf{I}
15-		<u> </u>				<u> </u>	┨────	<u> </u>	[
-	· · · · · · · · · · · · · · · · · · ·						-	╞───			
- -					1						
-	<u>_</u>			-			·			<u> </u>	<u> </u>
								 ;;		<u> </u>	
		· ·			<u> </u>	ļ	1 - 7		<u> </u>	┣	┣—
	······	<u> </u>				, <u> </u>					╂
			i ji		<u> </u>	e		• 1		┢	┣
⊢					· · ·	 				┠╼╼╼┊	†
20+		<u> `</u>	• • • • • •	<u>t</u> ,							├ ──
· -		1	 	<u> _`'</u> _	1		<u> </u>		:		

and the second GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** PAGE 4 OF 27 HOLE No. 591-22 L055 U S INTERVAL LITHOLOGY * Д J. റ് 20 24-0 i U V K SANDSMNE 21.34-31.45 SILTSTONE ر ۲۵ م دام م Intuiting mander to f · grain sit a QC_ contact tint 190 Fy Fy Conse- grand 14.93- 27. inte angillars itte 50 - graind sandets 52 _ -25 abour Both للوبيه ק-ק an graded 23.36-23.55 - quarty- carbont vin / stru \$ 70° cA. Trace pupite 3-42 ۳Y - 30 ÷.4 formalile +35° 4. contact sharp and con : برد برد GRAPHITIC ARGILLITE 17. P<u>y</u> 45 -35.80 angellet Black mosive sheard situtione bute to mit questy - carbonati at. aut by 5%. atto cA, W/ yand 33.53 - 35, 80 - FAULT Gonge Shrand 60° cA .35 up into que sr.≠ 52.87 Questo vin μ. Amore 1-22 77 5,80-INTERMEDIATE FINE- GRAINED TUFF W1774 57. QC 12.08 LAPILL TUFF <u>~</u>y. 89 Min (grup annyd 7. mart 30-60 CA. Umit s mini <u>~~~</u> composed 1.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

5 OF 27 PAGE

HOLE No.

	J91-22	<u> </u>						—— 1	•	<u> </u>	
	MINERALIZATION ALTERATION	AMPLE	FROM	то	W107H	Au DpD	Ag g/t	As pp=>	S6 ppm		<u></u>
20											
-											
											_
\vdash											
											_
-											
-5 -											
ŀ											
- -											
		5.108	29.0	30.4R	1-48	1/	05	299	lo 0		
	anite in incentar mossis to			. 1	ł	1					
30 -	3 cm and one bidding - parallel	-109	30+4B	31.45	0.97	15_	0.7	67	2		-
ł	band to 5mm	5-1/0	31.45	32-85	1.40	3	0.8	30.	2		
-	31 AE- 35 (a- 1% discuminated sente	İ	32-85	·		<u> </u>	1.0		2		\vdash
			Ι.					<u> </u>			
		5-112	33.53	35.10	1.57	2	0.4	33	2	<u> </u>	┢
		5-113	35.10	3560	0.50	4	0.6	47.	13		-
		5-114	35.60	36.0	0.40	12	0.5	50	2		F
35-	35.60-36.0 - Quenty-continuate	5.115	36.0	36.51	0.58	4	0.4	23	Z		+
	tuff contact Stringers at 60°CA. 4-57.	5-116	36.58	38.05	1.47	8	0.2	20	2	<u> </u>	╞
*	france red - become aphalinete in questy	 	 		┨───	+		26	2		-
ta -		5-117	38-05	37.62	1.57	<u></u>	0.1				
	along stringers to I min and in	5-118	39.6.2	41.12	. 1.50	4	0.3	22	2		╀
	migular masers to Somm. Ponts					<u> </u>			1		Ţ
40 -	unsoning white the second particular		ļ						· ·		┢
				<u> </u>	L.		<u> </u>	<u> </u>	<u> </u>	<u> </u>	_

÷ •

GRANGES EXPLORATION LTD

HOLE No. 391-22 C. LOSS S LITHOLOGY ** A INTERVAL S 40 レスプ。 27 Þ 41-12 - 41.73 - 10-202 1-2 an white que ์ ช Contrante stringere 30 - 80° CA. 3-4 7. PY (*7. 964 s+<u>i</u>l . ,-Et. 44 2A-C 2.7. ARCILLITE AND FINE- GRANED INTER BEDDED 42.88 - 46.46 27 TUFF INTERMEDIATE -4 ngillite and medic 1. la la 51*54 to coarse -pair •45 75 a. Tullour Zocm 500 smaturith an an rogmente to 18 (۲) ور 1-27 12 46.46 - 48.40 GRAPHITIC ARGILLITE 75 th: black angillity 2-37. gry silter ۰. ĒУ ר אוי) (- ב) | - FAULT, Conge, puls 46.46-47.0 con. Two site shring o°CA 70 0 - 50 5. -INTERMEDIATE FINE GARINED TUFF AND 8.40 -12 83.95 MINOR LAPILLI TUFF 'φy. quint 3-42 54= <u>phyllitic</u> た wit go 51% Unit is triff where a gunt 94 tithis from 48.40 - 50.26 - Vegue, one agh _t -55 (12mm, questy) Som <u>annja</u> 3 cm. 80 52. 4 - 53. 26 - Lepilli tuf as above. Fletting aphanitic only fraque 55.94 - 56.53 - Code from logillis to े. (***) *** agillite 10-15% quarty stren ÷. - 5 Swand Bo'ca 0 Unit art here · . . • * 412 in stringers . stringer and white calut - 60 80

(

PAGE 6 OF 27

GRANGES EXPLORATION LTD DIAMOND DRILL LOG لا

PAGE

7 OF 27

HOLE No.

K

591-22

	۶۹۱-2.2								· · ·	
	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	W107K	Au DPD	Ag g/t	As ppm	Sb⊡ ₽₽₩	
1 0 -		3-119	41.12	41.7.3	0.61	23	0.3	45	2	
	41.12-41.73- 3-47 pyrite pudamintly	5-120	41773	42.66	1.15	4	0.Z	26	2	
	along the morgin of stringers.			44 -33			0.Z	22	2	
	41.73 - 42.88 - 1-27. merite.		Į	45.72.			0.3	33	4	
	42-80-46.46 - 2% pyrite; pudommently		<u> </u>				0.3		3	
15 -	to 2 mm wide.			46,46						
	46.46- 48.40- 1-2% pyrite; disseminated	5-124	46 46	47.o	0.51	4	0.5	60	12	
	and along foliation - parallel bands to 1mm. Syngmetic?	5-125	47.0	48. 1 0	1.40	6.	0.7	53	16	
	1 mm. syngmeter	5-126	40.10	47.03	1.43	5	0.1	24	2	
		5-127	49.83	51.32	1.49	4	0.5	<i>45</i>	8	
	48.40- 50.26-2-37 pyite ducamineted	5-128	51.32	52.40	1.08	8	0.2	31	2	
50 -	foliation associated with calcute.	5-129	52. 1 0	52.80	0.40	10	Q.₹	41	7	
	50.26-52.40- 17. Printe			54.34			0.3		9.	
	52.40-52.80- 3-47. pyrite; discuminated	01:30	52.80	24234	1.54	·	0.5		C	
	and in foliation - parallel bonde to 5mm									
	52.80-53.84 = 17. pyrta	 			-					
55 -										
	55.84-56.53- Lapilli triff to angillite. Shrand. Generity flooded	<u>S-131</u>	55.84	54.53	0.69	8	0.6	57	14	
	56.53 - 128.2 517. pyrite.									
es. Altre										
			-			-				<u> </u> -
- 00										
		 								

			GRANGES EXPLORATION ED						
			GRANGES EXPLORATION ED	AGE	8	0	F ;	27	С
	HOLE No.	22							
	INTERVAL	C. LOSS	LITHOLOGY	*	L	S	Μ	А	- 60
			56.53 - 83.95 - Fin- grained marine to phyllitic intermediate triff a possibly a flow?	-	2A,+	_	£1¶. ₹1	-	-
				-	-	1	-	_	
				-	-	-	-	-	-
			· · · · · · · · · · · · · · · · · · ·	_	-	-	·	÷	-65
-				_	-	ці.		- ·	
				- 513/	-	-	-	-	C
				-	- ·	· - · ·		:	-
					-	-		-	- 70
				-	1. 1		, j		- -
				71	1 N	-	-	-	
				-	-	-	-	_	.76
				-		- 	- 	-	-75 -
					-	-		-	- .
		·		-	-	-	•	-	
				-	-	-	- -	-	- Bo
.						-			

PAGE 9 OF 27

HOLE No.

	ноце Na 591-22							_		,		
	MINERALIZATION	ALTERATION	SAMPLE	FROM	то	ыюти	Au g/t	Ag g/t	ለs የየማ	Sb ppm		
60 -	· · · · · · · · · · · · · · · · · · ·	·····										
	· · · · · · · · · · · · · · · · · · ·											
-												
	·								<u> </u>			
										<u> </u>		
_	<u></u>	· · · · · · · · · · · · · · · · · · ·				<u> </u>	-					
	· · · · · · · · · · · · · · · · · · ·											
									·			
65		· · · · · · · · · · · · · · · · · · ·										
- "]_												
- -		·			. <u> </u>							
		······							<u> </u>			[
		······										
		······································								ļ		
~ [
					· · ·	-						
70									<u> </u>			
									[:]			
		· · · · · · · · · · · · · · · · · · ·	1									
₋ `⊢	······		1									
C 🗆												ļ
		······································										
r L												
L				ļ		 						
- -		<u> </u>			-			<u> </u>				
75		<u></u>		<u> </u>		 		<u> </u>			i	1
	- <u></u>		1 -					-		-		
L						ļ	ļ					·
_ [_				ļ	 				┨
	· · ·	······································	-			<u> </u>		 	 		l	<u> </u>
				 								
r -	<u></u>						-					<u> </u>
LH	· · · · · · · · · · · · · · · · · · ·	· · - · · · · · · · · · · · · · · · · ·	+									
80-			+		- <u></u>				1			
	··········											

	a statistic providence in the statistic providence in the statistic providence in the statistic providence in t						1
	GRANGES EXPLORATION LTD DIAMOND DRILL LOG						
HOLE Na	F	AGE	10	0	₹2	7	C
7.0							
J 9777	5		ı.		м	٨	
INTERVAL	LITHOLOGY	¥ √		<u>ጋ</u>	~	A	- 80
		51:11	t A z	_	≤17, 17 -		_
	83-83.95 - A fur mundel chiledonic question and	_	-	_	-	_	-
	caliste amygdule (?) to 1 cm. Unit could be a flow.						
			-			-	
03.95- 89.75	TUFF BRECCIA	-	34	-	-	-	-
·	grained soft measine (soft) groundmass with	-	14	-	-	-	- 85
	distributed cality prati and miner the guy	- -	-ħ	-	-	-	-
	chalendonic anygdulie. Concentrations of	-	-		-	~	C
	progrants but no distinct advages are			Sine of	-	-	
	bottom of the unit - flow top ? Cradational	\$0	-	-	-	-	
	upper and lower contacts.	 -	 	-	-	 ST-1	-90
<u>9.75 -</u> <u>113.20</u>	ENTERNEDIATE FINE CRAINED TUFF (FLOW?) Midnim to dark grunish - grue to black	-	A/G	-	-	୯୮-1 -	-
	fine-grained soft massive triff on possibly	 _	:. _	-	-	_	-
	Ingely I swight and chloute.	1_	-	_	· -	_	-
			_		_		
		5.					- 95
·		76		-	-		
			-	-		-	-
				-	-	-	
				-	-	-	
		-	-	-	-	-	+
·]		-	-	-	-	-	-100
· 📕 💦 👘		1	1	ł	I		

A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 11 OF 27

HOLE No.

<u>(</u>

591-22

-	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	ыютн	Au g/t	Ag g/t	As ppm	St- ppm		
- 80 -											
-		 									
-		†		·							
		<u>†</u>		_							
-		1									
-		<u> </u>								L	
-									. .		
		<u> </u>									
-											<u> </u>
- 85-										└┤	
85-									<u> </u>		
-					L						
-											
-											
	· · · · · · · · · · · · · · · · · · ·		<u> </u>		┣───						
		<u> </u>	<u> </u>	 		 					
		<u> </u>	 		<u> </u>			<u> </u>			
		<u> </u>	 -	┢	<u> </u>			[——			. <u> </u>
		┨						}	┨───		
- 90 -		<u> </u>							<u> </u>	<u> </u>	
90-						┨────		<u> </u>			
		- <u> -</u>	 			┨		┣			<u> </u>
					1		<u> </u>		 	-	<u> </u>
—				╂			<u>↓</u>	1		<u> </u>	
			<u> </u>	<u></u>	+						
				╂	<u> </u>				†	† -	ļ
—				╂	+				<u> </u>	†	
<u> </u>			+		+	1	1	<u> </u>	1	<u> </u>	
_			╂╾╌──	╏╌╌╸		+	<u> </u>	1	1		
 15-			┨╍──	 	+		<u> </u>	1	1 -		
_ /5		┼┈╾	╂┄━╌╍	1	- <u> </u>		· · ·		1		
_		_ _			+	1	1	1	1		
			1	1	1	1	1	1			
			<u> </u>	<u> </u>	1	<u> </u>	1.	1			
-			1	<u> </u>	<u> </u>						
		+	-	1	1						1
		-	1	1					<u> </u>		1
		1	1	1			1			<u> </u>	
Ļ	\	1			•				 	_	<u> </u>
100-			1						ļ	 	ļ
			1	1	·		1		1.		
		1	} .	1	_1		1			<u> </u>	

	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	12	. 0	F ,	27	C
HOLE No. 59	-22						
INTERVAL	S C LITHOLOGY ເ	+ v	Ĺ	S	M	Α	100
·			24 / C	-	-11. 17. -	5e-1 Cl-1 -	-
				-	-	-	_
			-		_	-	_
	105.7 - 106.2 - Vague dark green patches by flattend lethic frammate (to 5)	may	. –	_	-	_	- 105
	be flottend lettre fragment (to S		-	-	-	-	-
	108-113. 2 - Sund intervale to 20 cm a distinct lithic fragmente to 1 cm		-	-	-	-	C
	in plane of foliation.		14-0	-	-	-	-
	· · · · · · · · · · · · · · · · · · ·		-	-	-	-	-110
· · · · · · · · · · · · · · · · · · ·				-	-	-	-
	AMYGOALOIDAL		-	-	-	-	-
3.20- 116.50	ARCILLACEOUS, TDEF BRACCIA (?) Darla grey to black fin - granned	angillacen_	بر م ا کر م	-	Ţ	-	-
	Brun (arriver 1-2 mm). The angodites	ulue to -		-	-	-	-115
	occur in fine grained grandinge	and it - m angellite with -		-	• -	- 	-
	an angellite matine Guilletiand contacte.	-	, -2		-	<1-) -	
6.50-134.7	TO AMYODALDIDAL TUFF BRECCIA Mittled medium to dank granish-gring	Loft -	m 2 -	-	_	-	
	fine - grained musice triff with 5047 Sections up to 2m long. Amygdulaidal g	anygdalad -	-		-	-	- 120

PAGE 13 OF 27

HOLE No.

C

L

591-22

• 1											
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	NIDTH	Au g/t	Ag g/t	As ppm	Sb ppm		
100 -											
`			L		·						
-		.							<u> </u>		
. 1			 			·					
F				ļ				<u> </u>			-
- 1											
•											
.				ļ							
				 					 		`
105 -					 		[-	
									<u> </u>	 	ł
			<u> </u>	 			 -				
- [┨───・	├ ──				<u> </u>	
- [┨				_	<u> </u>		·
0								<u> </u>	 .	<u> </u>	
C					╂╼──				1		[
-					<u> </u>		 	<u>├</u> ───	<u> </u>	ŀ	<u> </u>
-			╂╴──	 			1 -		<u> </u>		
					1	1	†		1	1	
- 110 -			┼		1	<u> </u>	1	1	1	1	
-					1	1—	1	1 -	1	T	
-			+ -	 	<u> </u>	<u> </u>	1	1	1		
				1	1	1	1				
-		_	1	1	1	1	1				
			1	1		1					<u> </u>
_			1	1						1	
_			1	1							
-			1					-	<u> </u>	<u> </u>	
_		- †	-	1					<u> </u>		
										<u> </u>	<u> </u>
							<u> </u>	<u> </u>	1	_	
-								 			╂
						<u> </u>		<u>_</u>		_	<u> </u>
						<u> </u>		. 	<u> </u>		
-					:						
-120.							<u> </u>				
()				_		· ·	1		- -		
.								 			
-				1				ļ			- ,
120-				<u> </u>	_ _	1_	<u> </u>		<u> </u>		·{
		·									
		1					_	_			

	:	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE			FZ	7	C
	HOLE No.			- <i>1</i>		· ,		
	INTERVAL	LITHOLOGY	*		S	M	Α	
	······	i chalcidanie, and chilorite anygolulue. No distinct lithin fragment boundaries but probably a	<u>-</u> -	ZA, 7	_	धर 1⁄	_	- 120
		120		ייז 1 -	-	-	_	
	· · · · · · · · · · · · · · · · · · ·			-		-	-	-
	-				-	-	_	- 125
Π				_	-	-	-	-
				-	-	-	-	Ć
	· · · · · · · · · · · · · · · · · · ·	128.2 - 136.62 - Quarty - calite stringer / bucci		-	-	212		-
		and califite stringer to Sam predominantly 60-70° cA and in bruccia filling.		-	-	たべ	-	- 130
				-	-	Ż	_	
U		÷		_	-	X	-	- -
			-	-	-	X		-
	34.70 - 163.56	TO GARSE- INTERMINED INTERMEDIATE FINEN GRAINED TUFF FINE- GRAINED TUFFACEOUS SCRIMENT AND	- r -	12A (-	-		-	- 135
		MINOR DEBRIS FLOWS OR SEDIMENTARY BRECCIA INTERVALS Utilized modium grunich - gray intervals (1)		(-5),	-	2.3%	- • • • • •	-
		(~50%) dark green to blook fin- grand tuffaceone sediment and 15-20% debria flor		773, 7-2		17 	-	
	······································	to flat dark green lithis fragment in a medium grunich - greg fins- greened groundwood.	_	_0	-	Ľ	-	
		intermedite tuffer. They are generally fine- ground but include some grand- arey	-		- 1	(/		1 , F

GRANGES EXPLORATION	LTD
GRANGES EXPLORATION	10
UIAIYIUND UHILL LU	ງບ

PAGE 15 OF 27

HOLE No.

- -

MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIOTH	Аи рр <u>р</u>	Ag g/t	As pp=1	Sb ррлт	
					· · ·	 			
						}			
		· · · · · · · · · · · · · · · · · · ·							
					<u>-</u>		_		
						ļ		 	
		 					<u>.</u>		
12B.2-136.62 - Quarty - Cal briesin zon - 1-2.2 dries pyrite generally in host.	ente stringen 5432	12.8.3	129.15	1.55	5	0.9	156	<u>ъ</u> н	
bucin you - 1-22 dies	minated		121 2-7	1 4 2	र	0.Z	40	2	
pyrite gunnelly in host.	~~~ <u>5-133</u>	127.85	191-27	1.4%					
	5-134	B1.27	132-80	1.53	5	0.4	30	4	
		12.7.4-	133.77	. 97		0.4	41	4	·
	5-136	133.77	134.70	0.93	6	0.5	26	7.	
			135.82	1 1 7	4	0.3	/2	7	<u>.</u>
	5137	10 4 73	204		. .				
	5-138	135.82	136.62	0.80	4	0./	//	2	-
			138./6	1 54	रि	0.7	21	12	
136.62 - 142.46 - 2- 57. py	ite eredam.			I		<u> </u>			
in 1-2 mm practines a	tallonghe S-140	138.16	139.54	1.30	4	0.2	69	15	_
to con ania and in 1	- 2 mm	120 64	140.9z	1.28	4	0.3	60		
burning franchin brande					<i>I</i>				
			ļ				<u> </u>		.
					┨		<u> </u> -	+	┟╌
				· ·	 -	1 -	<u> </u>	1	
	<u> </u>				i		<u> </u>		

							1	
		GRANGES EXPLORATION LTD	•					
		P	AGE	16	0	F 2	7	C
	HOLE No.	-				;		
[]	INTERYAL J	LITHOLOGY	c *		S	M.	А	-140
		littic progrante to 1 cm. The dank green intervele an probably a toffacione sediment, possibly	-	2A(-0),	_	2-316 PY -	-	~
		Angellacione. The bucces interest conget of programme of tuffacione sediment in a tuff matrice	-), 753	-	- U	-	-
			-	, 7-20		1 	-	-
			-	-	-	-	-	- 145
			1.3 ₹ 1	-	-	7	-	
			-	_	-		_	-
			307 90	-	-	/ 7	-	(
			-	-	- ·	7	-	-
			- '		-	ķ	-	- 150
	·		-	-	-	- -	_	-
				_	_	4	-	-
			54570	-	-	12		-
			54 : 90	-	-		-	-155.
٦				-	-		-	-
				-	- -	147) 	-	
			-	-	-	11	-	-
			-	-	-	-	-	-160

PAGE 17 OF 27

HOLE No.

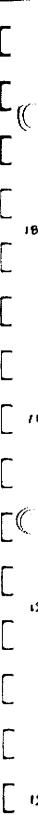
591-22

									· · ·	-	
-						۵.,		٨.	56		
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Mu Ppb	//g	As	26 Dbu		
-											
		5-742	140.92	14Z.44	1.54	3	6.3	25	3		
		•									
		5-/43	167.4	144.06	1.60	7	0.6	28	13		
		<u> </u>			1. 1. 1.						
		S-144					a 11	٦.	8		
-	142.46-144.06-17. disseminated	S-/44	44.06	145.51	1.51	3	0.9	<u> </u>	_σ_		
	142.46-144.06-1 7. disseminated				<u> </u>	- <u>-</u>					
		5-145	145.57	146.07	1.3c	4	0.5	5	2.		
	144.06-162.3 <17. pyrite.					_					
-											
-											
145 -											
-	······································						·				
~								· ·			
										· ·	
L											
		1									
		<u> </u>									
									_		
		 			•						
- 150 -		ļ									
г [.]											
	·	<u>.</u>									
-						_					
_											
		1	· · · · ·	· ·							
<u>.</u>		· -	<u></u>								
		<u> </u>					<u> </u>		·	<u> </u>	
		┨			 		╂───				┠
		<u> </u>		<u> </u>	ļ		 				
55 -		L								<u> </u>	┠
							<u> </u>	L			
					l			<u> </u>			
Γ		1									
		1				1					1
						<u> </u>		<u> </u>			
-		╂			<u> </u>	<u> </u>	┨━·──				<u> </u>
		<u> </u>							· —		<u> </u>
6		<u> </u>					· · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· .		L				 			
	· · · · · · · · · · · · · · · · · · ·	1									
L		1					· .				[
160 -		1			· ·		{				
		<u> </u>						·			
L.				l	<u> </u>	1	<u> </u>	L	L]	·	L

GRANGES EXPLORATION LTD **DIAMOND** DRILL LOG PAGE 18 OF 27 HOLE No. 591-22 C. L055 S А INTERVAL LITHOLOGY * S. . 160 -12 160.55-161.54 - Fin - grand m £۲ Lithe - og menter inth tul. 53 gin (any 24 64 ~ 20° CA. 162.7-162.9- Shranch Ingala à, vin to 5 cm assert ا- مر ò ∽ <17 163.56-COARSE- GRAINED TUFF INTERMED ATE v 44 166.56 tr dark grund Coarse -165 _ inte Se-1 -5 a-1 reg me prome HERE & SITTIC _ LAPILLI TUFF 16656-INTERMEDIATE . 180.43 . 170 _ Medium gruniel 166.56 174-25 128 and childrentie suicitie ĽH <12.0 tu angular 507. Cana 3 cm t. ï. light tr. 2.0 ph. <1 ⁹. 19 _ T* t. 5 Si-2 . 175 agreent summe my ti anone icolly Spores to made 174,25-1775 to light 0-0 ·Ch Texte floodin durately to a to the 177.5-180-22atringe 5-82 subparell 45K 180 CORRELATIVE TO 900 ZONE ** PROBABLY

							PAGE	19	0
HOLE NO. 591-22									
MINERALIZATION ALTERATION	SAMPLE	FROM	то	MIOAH	Au ppb	Ag g/t	As ppm	Sb ppm	
							49	8	
162.3-163.56 - 2° pyrite in angillocione intervale and in gray tuff adjocent quarty win	5-146	162.3	K 3.5C		<u> </u>	0.9			
163.56-170.5 - <14. pyrite									
		· · ·	z						
					~				
170.5-173 - 17. pyrhotite, <17. pyit		ļ	171.95			1.0	19 17	4 4 4	
	1		174.1.9				5	2	
173 - 177.5 - & 7. pyrhotite, <17. pyrte. disseminated.			175.25 176.25			1.3	18	6	
			177.5				26	2	
			178.5				83	6	
177.5-180.22- 3-47 pyrchetite in marces stor 1 cm in quarty stringue. 12. printe in quarty (predominantly	5-154) 5-155		179.5 182.43					4 14	
	I .	[1 1			1	1	1	t i

GRANGES EXPLORATION LEDE


trans-

PAGE 20 OF 27

C

_1							/	
HOLE No.	-		·					
591-23	2					:		
INTERVAL	C. LOSS	LITHOLOGY	≁ ∪		S	Ń	Α	
-1		180.22 - 180.43 - FAULT. Couge. Shrand 60°CA.		1	1			- 180
			_	- ²	~(o -	1217	Se-1 -	*
180.43-		INTERMEDIATE, COARSE- GRAINED TO LAPILLI		Å		2-5% 5+ 417,		
181.60			-	-^		¥155.	-	-
		midium grey to greenish - grey smartic		\square		PY	اسید. اسیک	
]		donte group and dark groundet - gruy fragmente	-	ר אר		-		-
		as 166.58-174.23. Some fragment to 2 mm	-	-	-	-		-
		last average Amm - 1 cm.	_	.			_	-185
182-60-		COARSE- GRAINED INTERMEDIATE TUFF						
<u>198-/p</u>		milium quinial - quy fin - graind suicitic noundmass with 20% immen to	-	-	_	-	-	-
-		3 man dank any to greenish - grey restrangels	-	-	—		-	-
		chloritie or sureitie soft frequente, 90%	_	-	-	مىر		-
-1		black angillacione (?) fragmente. Unit is		- 2 C - B		27. Zo	Si-1 Se-1	*
		water marine, hanogenere.	-	-4	-	70		
190.10-		INTERMODIATE COARSE- GRAINED TO LAPILLI	_		_	* ∕1∓	_	-190
189.70		TUEF		6		17	Se-l	- 19 0
		main quinich- quy succtic fine- grained	-	- ×	-			-
		littic fragmente Eregenente are light guy	_		_			_
		to dark your aphanitic, and ranky pullipan		Γ.		44		
· · · · · · · · · · · · · · · · · · ·		physic and annygolational. Unit and they blue-	-	א ה-	.	PZ, Po	-	-
		any chalculonic attingue to 2 min commenty		, d				
┍−┓		occured after stringer - Fragmente silverous.	- 1	-	-	-	-	t i i i i i i i i i i i i i i i i i i i
			_	_	-	_		- 195
189.70-		INTERMEDIATE FINE TO MEDIUM- GRAINED TUFF						-
192.02		motium to dark grun tuff with segue	-	-	-	-	-	-
L ⁻		graine <0.5mm to I min ina structure groundward. HETEROLITTIC	•					-
92.02-		ENTER MEDIATE, COALSE- GRAINED TO LAPILLI	-	ايت ا	-	- <i>₹</i>	-	F
197.24	Ĺ	TVFP.		к 0-		: 44 - 1		
		Dark grunich - gruy, gruy light gruy aphantic	•	ra C				C
L H	$\left - \right $	Lagrante light only presign physic fragmente to	-	-	<u> </u>	-	-	-
······		I can and flattened yellowred - green fringer	-				, 	-200
		sincitie prindman.	. i	- 55		ر. چونو		- •
•	F I	1. Y		1 1	-		ł	

· · · · · · · · · · · · · · ·

GRANGES EXPLORATION LTD

21 OF 27 PAGE

HOLE No.

391-22

	- J71-22							_			
180 -	MINERALIZATION ALTERATION	SAMPLE			NIOTH	ррЬ	Ag g/t	As ያየማ	56 ррт		
180 -	180. 22 - 180. 43 - 3 - 47. diseminated	5-156	180.43	181.40	0,97	123	12	/63	9		
	pyrite.	5-157	181.40	182-6	1.20	62	0.6	95	5		
	180.43 - 181.40 - 27. printe 2-37.			184.10				85	7		<u> </u>
	practing in mary to 5 mm										
₩	wide. Traces und - brown sphelit	5-159	141. /0	185.62	1.52	18	0.8	10	2		
	associated with prijete along fractione.	5160	185.62	187.07	1.45	25	1.0	30	4		
185-	181.40- 188.10- <17. discuminated	5.161	187.07	188 .10	1.03	/20	<u>^1</u>	100	4		
	pyriti							[
		5-162	188.10	<u>188.77</u>	6.67	320	1.2	364	7		
C		5-43	188.77	189-17	0.40	29B0	86	/77	12		
		s-164	189.17	189.70	0.53	390	1.0	38	Z		-
	188.1-189.7- 2% @ pyritrand pyrihitite;	<u>5-165</u>	189.70	191.00	1.30	72	0.6	10	3		
- 190 ج		<u>-166</u>	191.00	192.02	102	77	1.2	15	Z		
		s-167	192 OZ	193.5	1.48	16	0.5	16	4		
	Q pyrite and sphalmite and 5%	5-168	193.50	194.96	1.46	סן	0.4	Z	10		
	189.7-192.02 < 12 pyrhotite. T-mar. FY.	5-169	134.96	196-47	1.51	36	0.7	2	8		
•	192.02 - 197.24 - 7. each pyrite,</td <td>5-170</td> <td>196.47</td> <td>197.24</td> <td>0.77</td> <td>29</td> <td>୨ନ୍</td> <td>1)</td> <td>11</td> <td></td> <td>-</td>	5-170	196.47	197.24	0.77	29	୨ନ୍	1)	11		-
. 195-	pyrcholite. Verelminated.	5-171	197.24	198.5	1.26	67	0.9	7	٩		
	197.24 -201.90 17. pyrhotita <17. pyrite	5-172	198.5	2020	1.50	22	0.7	Z	- 7		-
*	199.85. 1 mm cryptal of red-brown aphalente in matrice of										
C	longe amygdalaidal fragment.										
V.]							
200 -					-					-	
		· .		:							
		I	1						I		

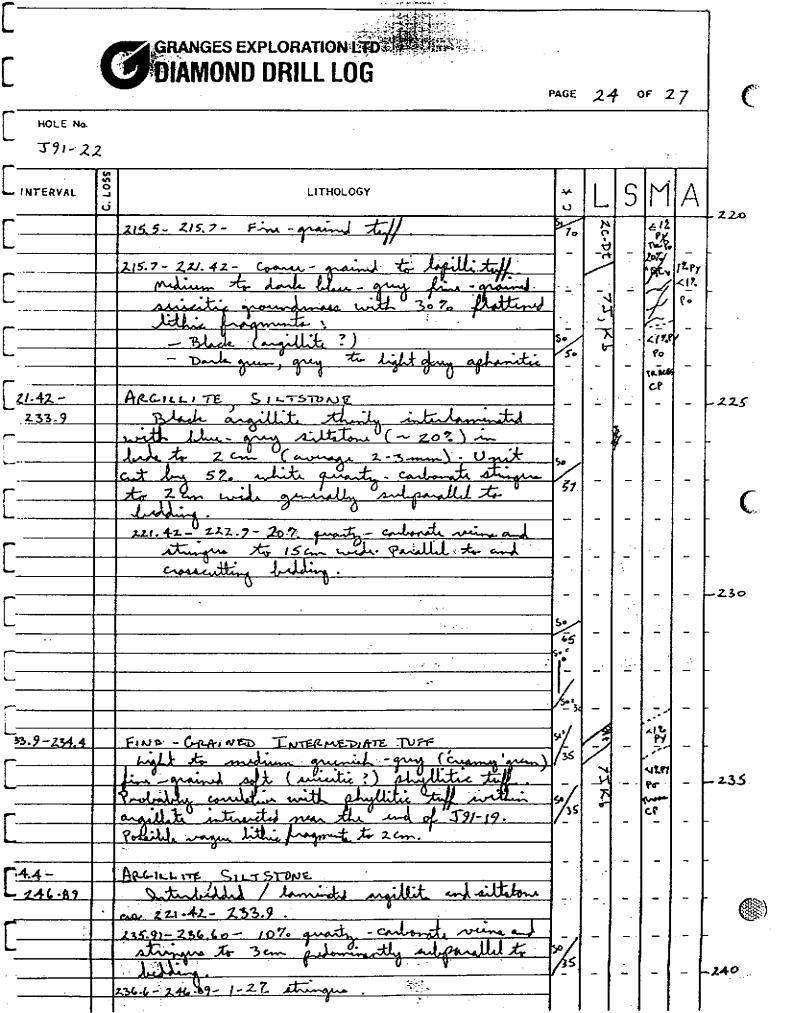
GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 22 OF 27

(

HOLE No. 591-22 1 0 SS SM INTERVAL LITHOLOGY * А ن J . 200 <17. <u>97.24</u> -INTERMEDIATE AMYCOANOIDAL LAPILLI TUFF Å Y ۴Y 203.86 TO TUFF BRECCIA וער פ hitighthie suisitie graind 17.C. midie Comeintermediate till 3-7% :tt ache silicions ngdalaidal to 20mi ζ<u>-</u>ζ, sj regnente appia bimedal r, cé 60 (trachytic) with Feldepar physic <i7. 52-1 1 chlorite amygdulie ን የ to 2 m 17.B n to 1 cm blue-Aphynic with 20% 1 -205 he. Very distinction anygdy <u>kin qny</u> thus ragmente" have alteration sime 51262 unit and by mine the only chalado HETEROLITHIC INTERMEDIATE COARSE - GAAINED TUFF TO 03.86-210.44 LAPILLI TUFF --3-4% Midum - grained succetic grandy ۳Y 407 upto an to m 55 -210 -lithi. up to Zay agninta 54 55 to 1 cm). Fragmentes 2 - sight to dark guy aphanti রাহ - Darle gun (7) ۴Y - Black angillite (?) 1-- Dark brownich - grey С physe. i. FING- GRAINED INTERMED, ATE TUFF 0.44si: 211.7 me - nee -215. mm antis June Land 20.44-210.70- Angellacion 20 HETERONITHIC. INTERMEDIATE COARSE - GRAINED TURE TO LAPILL U 月.7 -₩ . a. South the light 221.42 ندر TUFF 211,7- 215.5 - Cal.T. - Distinctive unit Min sincitic groundmore with 3 - que suicit hie fragmenta: 50% lithie - Doubled green to 2 cm flattend in place of foliation - Dark grin to 162 -220 ingillate rip - up clast ंड - Black Mit malentile a hardlite

PAGE 23 OF 27


HOLE No.

-(

591-22

	591-22										.
	MINERALIZATION ALTERATION	SAMPLE	FROM	то	н 10ти	Au ppb	Ag g/t	As ppm	Sb ррт		
»		5-173	200.0	201.10	1.10	9	<u>Lı _</u>	લે	8		╞
ł		5-174	201.10	2019D	0.80	19	1.2	3	12		
	in mighter messes to 3 cm in legilli matrix. Sponadic.	5-175	201.90	203.05	1.15	18	2.1	2	13		
*	2-37. dissiminated fin grand pyrite. Trace chalcopyrite.	5-176	203.0	203.86	0.81	24	2 .9	21	19		
	203.86-209.0 - <17. und punite	5-177	203.86	204.53	0.67	الم	1.4	23	12		
5-	pyrhititi.	F178	204.53	206.0	1.47	10	0.4	6	5		╞
		5-179	206.0	207.54	1.54	172	08	26	6		
		5-180	207 .54	209-0	1.46	58	1.0	21	5		╞
		S-181	209.0	210.44	<u>1.44</u>	 		alo	7		╞
	209.0-210.44- 3-470 fine-grained disseminated pryrite.	5-182	210,44	210.7	0.26	130_	 4 9_	391	18		╞
0 -	210.44-210.7- 5% puite concentrated	5-183	210.7	211.7	1.00	 3 .	68,	63	13_		
	al , his + 26 , at 25% and			213.22		Į.		1	10		╞
·	210.7 - 221.42 = 1 %. pyrite, Trace po.	5-185	2/3.22	214.77	1-55	27_	0.6	2	٩		╞
		3-1B[214.77	215.50	0.73	25	0.6	2	2		
			<u> </u>	217.0	·				2	· ·	╞
5-			ļ	218.44	<u> </u>		0.3		2		╞
				219.92		<u> </u>	0.B	5	2		$\left \right $
				221.42		1	0.4	5	2		
			-							<u>·</u>	╞
								· · ·			Ŧ
20 -									 		Ŧ
						 					t

1.12.4.3

GRANGES EXPLORATION LTD

PAGE 25 OF 27

HOLE No.									
591-22						<u>г</u> ——			
MINERALIZATION ALTERATION	SAMPLE	FROM	τo	WIOTH	Au .ppb	Ag g/t	As ppm	Sь ррт	
	5-191	221.42	222.70	1.40	6	0.6	19	3	
221-42-222.9 - 17. punits, < 17.	5-192	11290	22 <u>4.5</u>	1-60	•7	0.6	19	5	
pyrholitic associated with quarty	5-193	224.5	226.16	1.66	7	0.3	21	7_	
						0.3		2	
222-9-233.9 1% each of pyrite and pyrhotite.								3	
				2.44			<u>14</u>		-
	5-194	2302	231.73	1.45	4	0.3	24	2	
	5-197	231.73	233.30	1-57	9	0.4	-20	6	
•	5-198	233.30	233.9	060	17	0.5	36	B	
	5-199	233.9	234.4	0.50	6	0.1	6	2	
· · · · · · · · · · · · · · · · · · ·	5-200	234.4	235.91	1.51	12	0.4	19	4	
		· · ·		1.09	<u> </u>	0.4	29	3	
							23	2	
2.33.9 - 234.4 - 1% dissoninated printe		ł						 	
	1 -203	238.42	240.40	1.98	5	03	22	2.	·
		· ·	-						
234.4-246.89- <17. punite Traces cheliopinite sphelinite in stringen									
cheliopypite, sphelinite in stringer	<u>.</u>								
					ļ		ļ		
					1	1-			<u> </u>
		[╂

			GRANGES EXPLORATION LED	PAGE	2.0	-	OF 2	7) <i>(</i>
	HOLE No.						÷		
0_	INTERVAL	C. L055	LITHOLOGY	c +	L	S	M	A	- 240
	·····		· · · · · · · · · · · · · · · · · · ·		7545	-	41 8.8 5-5 CP	-	
					_	_	-	_	-
			243.4 - Graded sandeting bid suggesting type		_		-	_	
				5. 	-	_	-	-	-245
					-	-	-	-	-
				╻ <mark>┝╶</mark> ╶╸ ┥	2	46.B	9	¢, 0. t	• • ()
ц П					-	-	-	_	-
n					-	-	-	-	-250
U_ n	· · · · · · · · · · · · · · · · · · ·				_	-		-	-
					-	-	-	-	-
					-		-	-	.
					_	- 411		-	-
					-	-	-	-	-
					-	-	-	-	
					-		-	-	-
					-	-	-	-	-

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 27 OF 27

HOLE No.

591-22

	MINERALIZATION	ALTERATION	SAMPLE	FRON	TO	міотн	Ац ррД	Ag g/t	As pp≠n	S6- ppm		
40			5-2=4	210.10	241.0	1.40	B	0.Z		2		
			5-205					0.4	15	2		┝
												-
			5-206					1		2		
			5.207	244.7	246.0	1.30	7	0.4	41	505	-	┞
			3-208	246.0	246.09	0.89	3	0.3	12	2		
5												┝
												F
										<u> </u>		$\left \right $
			1									F
												t
		- · · · · · · · · · · · · · · · · · · ·										╞
		<u></u>		<u>_</u>								t
;o										<u> </u>	. <u> </u>	$\frac{1}{1}$
	 									-		ţ
							· .			<u> </u>		╀
								<u> </u>				Ţ
		t a granne a star a										$\frac{1}{2}$
								†				
						┣			<u> </u>			ł
								-				$\left \right $
-										<u> </u>	 	1
									ļ			╉
,	<u>.</u>					<u> </u>	<u> </u>		<u> </u>			╞
												╀
											<u> </u>	1
						1		<u> </u>			 	╀

Sample J-91-21 49.0 m Basaltic/Andesite Tuff (Unit lC/D); Replacement Patches of Quartz-Pyrite-Ankerite

Fragments up to several mm across are of slightly porphyritic basaltic andesite, containing 3-7% lathy to prismatic phenocrysts of plagioclase averaging 0.15-0.3 mm long, and locally up to 1 mm long in a groundmass of extremely fine grained slightly lathy, plagioclase, minor to abundant opaque, and minor sericite and replacement patches of ankerite. The variation in color in the hand sample is caused by variation in abundance of disseminated opaque. A few phenocrysts up to 0.3 mm long are of apatite.

Wispy seams between and cutting fragments are of opaque.

Replacement and interstitial patches and seams are dominated by very fine grained pyrite (4-5%) and quartz (2-3%) with much less abundant ankerite. Quartz commonly was recrystallized in comb-textured aggregates surrounding pyrite grains.

A few replacement patches up to 2 mm across are of very fine to fine grained ankerite (3-48).

Sample J-91-22 45.0 m Argillite (Onit 7J), Latite Tuff (Onit 2B); Ankerite Veinlets and Replacement Patches

At one end of the sample is an argillite dominated by plagioclase/quartz aggregates averaging 0.002-0.005 mm in grain size, with wispy seams parallel to foliation of semiopaque/opaque (2-3%), and irregular patches of ankerite (1-2%). A few irregular lenses and layers up to 0.2 mm wide contain much more abundant, extremely fine grained opaque. Pyrite (1%) forms disseminated cubic grains averaging 0.05-0.1 mm in size. Ankerite (3-4%) forms a few replacement patches up to a few mm across and veinlets up to 0.3 mm across. One veinlet was offset by shearing along closely spaced planes parallel to foliation. A few replacement bands parallel to foliation up to 0.4 mm wide are of very fine grained pyrite, quartz, and ankerite.

At the other end of the sample, the latite tuff contains scattered crystal fragments and crystals of plagioclase, quartz, and apatite up to $\emptyset.2 \text{ mm}$ in size in a well foliated groundmass dominated by plagioclase and sericite, with disseminated patches averaging $\emptyset. 02- \emptyset. 03 \text{ mm}$ in size of ankerite. Ankerite forms patches up to $\emptyset.5 \text{ mm}$ in size, which may represent completely altered fragments of uncertain original composition.

A few fragments up to 1 mm long are of argillite containing moderately abundant carbonaceous opaque.

Wispy, opaque-rich seams up to 0.05 mm wide cut across foliation irregularly at a moderate angle.

Sample J-91-22 130.2 m

Amygdaloidal Andesitic Basalt (Onit 1Ga); Chlorite-Quartz Vein, Opaque-Rich Seams

The rock contains lathy plagioclase grains averaging Ø.Ø5-0.08 mm long in a groundmass of finer grained plagioclase, chlorite, and opaque, with disseminated patches of carbonate.

The pale green end (in hand sample) contains much less opaque. It also contains amygdules (8-10%) of quartz-(ankerite) with diffuse borders. Quartz forms extremely fine grained aggregates with patches up to 0.1 mm in size showing approximate optical continuity. Ankerite forms skeletal grains averaging 0.05-0.15 mm in size. A few amygdules also contain patches of extremely fine grained sericite (0.5%).

The dark green end (in hand sample) contains much more abundant disseminated opaque and opaque-rich seams. It also contains larger and more abundant amygdules (25%, up to a few mm across) of quartz-ankerite-(chlorite-sericite-pyrite). A few of these contain patches of quartz and/or calcite with spheroidal textures. Pyrite forms disseminated grains up to 0.5 mm in size in cores of a few amygdules. Bordering the largest one, quartz is recrystallized to a comb-textured aggregate.

A few discontinuous veinlets up to 0.3 mm wide are of very fine grained plagioclase. Some of these grade into slightly coarser grained veinlets of calcite-quartz. A few discontinuous veinlets up to 0.3 mm wide are of carbonate.

The main vein 3-4 cm wide in the center of the section is dominated by chlorite flakes averaging 0.02 mm in size, with a few patches of fine to coarse grained quartz and minor wispy patches and veinlets of calcite in quartz. A few patches up to 1.5 mm long near one end of the section (in the darker green rock) are of similar chlorite.

Sample J-91-22 177.1 m

Heterolithic Andesite/Latite Lapilli Tuff (Unit 2D)

One fragment 1.2 cm in size is of slightly porphyritic trachy-latite. It contains 2-3% phenocrysts of K-feldspar in a cherty groundmass of K-feldspar and plagioclase with 1-2% disseminated grains up to 0.5 mm in size of opaque, and minor skeletal patches of sericite.

A few fragments up to a few mm across are of andesite/latite, containing lathy plagioclase in a groundmass of plagioclase, chlorite, K-feldspar, and minor opaque. One of these has a well developed flow-foliation defined by parallel orientation of plagioclase laths.

A fragment 2.5 mm across and a few smaller ones are of slightly porphyritic (K-feldspar), flow-banded trachyte. It contains patches with moderately abundant disseminated pyrite grains averaging 0.01 mm in size. A few fragments are similar but without flow-foliation. Most of these have a semiopaque groundmass caused by the extremely fine grain size. Some have cuspate patches averaging 0.05-0.1 mm in size of extremely fine grained sericite.

A few fragments up to 1.5 mm in size are of very fine to fine grained latite tuff. Coarser tuff fragments contain moderately abundant crystal fragments of plagioclase averaging 0.1-0.2 mm in size.

One fragment a few mm across is of a latite tuff containing fragments up to 0.8 mm in size in a groundmass dominated by aphanitic, equant plagioclase.

Some patches up to 1.5 mm long of pyrite-(quartz) may be fragments.

Smaller fragments averaging 0.3-0.8 mm in size are mainly of aphanitic to very fine grained tuffs, flows, and pumice.

Several fragments averaging $\emptyset.2-\emptyset.5$ mm in size are of quartz grains.

The groundmass is dominated by very fine to extremely fine grained sericite showing a moderate foliation.

A few replacement patches up to 1.5 mm in size are of very fine to fine grained pyrite and quartz.

Sample J-91-22 183.0 m Latite Coarse Tuff (Unit 3C)

Fragments (17-20%) up to a few mm across are mainly of trachy-andesite; containing scattered K-feldspar phenocrysts and minor ones of apatite in a groundmass dominated by slightly lathy plagioclase and opaque. The groundmass in some shows a delicate flow banding.

K-feldspar (3-4%) of similar origin forms fragments up to 0.8 mm in size. A few K-feldspar grains contain an inclusion of acicular to prismatic apatite.

A few wispy fragments up to 1.5 mm in size are of argillite containing moderately abundant wispy opaque rich seams parallel to foliation.

The groundmass is of equant, plagioclase (50%) averaging 0.002-0.005 mm in size. It is replaced(?) by irregular patches up to a few mm long of extremely fine grained sericite (30%). Pyrite (0.2%) forms scattered patches up to 0.3 mm in size.

Sample J-91-22 208.5 m Fine Trachy-Latite (Crystal) Tuff (Unit 3/2B) (note: no offcut block)

K-feldspar (2-3%) and quartz (0.5%) form crystal fragments averaging 0.3-0.7 mm in size. A few K-feldspar grains contain an inclusion of acicular to prismatic apatite.

A few patches up to $\emptyset.8$ mm in size are aggregates of fine grained quartz and plagioclase.

A few fragments up to 1.3 mm long are of trachy-andesite as in Sample J-91-22 183.0 m.

The groundmass is dominated by extremely fine grained sericite and less plagioclase. Foliation is moderate to strong, and is outlined by discontinuous, wispy semiopaque seams, which are warped around lenses 0.1-0.3 mm long of sericite-plagioclase. Several lenses up to 2 mm long parallel to foliation are of sericite. Pyrite forms scattered anhedral grains up to 0.2 mm in size.

Sample J-91-22 211.5 m Latite Tuff (Unit 2A/B)

A few wispy fragments (4-5%) up to 1 cm long contain moderately abundant chlorite intergrown with sericite and lenses of Ti-oxide. In one of these the texture is suggestive of pumice.

A few fragments (0.1%) up to 0.7 mm in size are of very fine grained latite.

The groundmass is mainly an extremely fine grained aggregate of plagioclase and sericite (65-70%) in moderately varying proportions. Lenses and irregular patches (20-25%) up to a few mm long and 1 mm wide are dominated by sericite/muscovite oriented parallel to foliation. Some of these contain several fragments of latite and trachyte flows.

Irregular patches and lenses up to 1.5 mm in size contain abundant opaque intergrown with plagioclase/quartz (5-7%).

Replacement seams and lenses (2%) up to 0.3 mm wide are of extremely fine to very fine grained pyrite and much less abundant quartz. A few lenses up to 0.8 mm long are of slightly coarser grained quartz and calcite (0.3%).

GTAIGES Include Contract CE ANALYST 100 No20 K20 T102 P205 NO0 Cr203 SNPLE# SID2 AL203 Fe203 MgO Ba Sr La Nb 101 5.N 的考 翻幕 X x * X * Χ. * X * ppa **pp≡** pp=1 x ppa pont х. J91-2-21.2 72.05 11.60 3.88 .77 .05 6.54 1.98 .03 .007 1106 25 26 24 20 2.9 100.01 J91-3-15.5 65.00 9.95 8.69 .35 .12 7.90 1.76 .59 87 23 4.5 170 .003 2249 18 41 99.99 J91-7-35.0 37.49 13.50 6.85 4.77 .54 .83 1.18 . 18 .015 387 623 10 23 05 5.83 .20 1.36 20 14.6 100.33 J91-7-39.0 38.34 12.43 7.71 3.09 105 172 .25 .012 189 25 860 10 20 13.4 100.29 J91-8-65.2 63.64 13.75 5.44 1.62 ÷2, .09 8.28 1.54 .26 .005 1722 101 54 25 20 4.0 100.06 J91-10-69.0 69.41 11.33 4.44 .37 .11 7.79 1.95 .57 .004 2136 88 10 31 20 2.9 100.02 5125 5.42 1.84 1.52 512 1.62 3.66 1.80 3187 .66 5.03 .77 16167 1.57 2.72 1.08 J91-11-88.0 54.61 15.27 4.72 2.17 .22 .019 1373 233 10 7 61 8.4 100.14 J91-12-166.5 53.85 14.26 9.63 2.72 .60 116 .002 784 13 243 26 48 6.0 100,10 J91-12-175.6 56.93 13.43 7.78 3.63 .26 .005 1046 147 12 9 24 7.2 100.13 J91-15-91.0 29.07 13.20 11.60 6.70 .012 707 - 19 246 10 44 16.9 100.42 16
 04
 1.89
 5.52
 1.53

 4.33
 4.09
 .66
 1.52

 77
 .08
 7.43
 1.31

 92
 .09
 5.52
 1.39
 J91-16-129.15 46.04 15.77 9.14 4.43 .31 .007 1010 141 10 -18 87 8.0 100.16 191-17-89.6 59.10 13.03 8.62 3.16 ,29 ΗĐ .002 288 247 25 37 79 5.0 100.05 J91-17-149.0 18 65.12 12.13 6.33 2.70 .35 17 .003 2173 130 22 76 3.0 100.02 J91-17-172.0 57.65 12.90 11.38 5.32 .44 .002 1518 75 22 56 66 3.8 100.05 J91-18-76.1 59.22 15.23 7.64 3.94 93 2.01 4.22 2.01 .45 21 .002 1891 50 109 60 3.9 100.03 J91-18-77.3 59.74 16.41 4.76 3.19 .28 5.96 1.42 .07 .010 897 -37

24 51 41 7.8 100.14 J91-18-89.0 60.81 10.80 10.64 3.04 .06 5.67 1.18 .29 .005 3724 15 247 42 24 4.4 100.06 J91-18-94.7 62.99 12.76 8.13 2.02 1.45 7.23 1.40 .36 .002 3086 20 126 35 77 2.1 99.99 511 .18 7.14 1.23 6950 .43 .70 .98 391-18-123.4 62.26 11.54 9.78 2.93 91 94 .34 .002 1350 80 18 39 30 3.6 100.00 J91-20-74.8 49.69 10.77 14.85 6.84 .43 .70 .98 .32 .002 123 150 21 32 26 8.4 100.16 J91-21-49.0 46.62 14.41 15.25 1.76 234.99 1.55 2.04 .62 1107 .002 877 289 23 168 28 (30 .39 1.93 1.37 217 4.21 .95 3.27 .09 8.93 2.00 ~ 4.02 .66 59 10.5 100.24 J91-22-45.0 62.61 10.92 9.01 2.19 .39 09/ .002 1113 81 16 113 28 20 9.5 100.20 J91-22-130.2 46.62 15.29 16.18 4.12 23 28 .65 .002 203 18) 166 44 109 46 6.4 100.10 191-22-177.1 55.90 18.36 6.80 2.60 .53 .002 1314 97 36 90 3.5 100.04 191-22-183.0 68.23 14.40 3.44 2.42 . 14 .002 1035 63 33 206 31 79 3.0 100.04 70.20 13.65 3.76 2.55 J91-22-208.5 .05 5.78 .94 .10 .002 1119 38 26 -15 53 2.6 100.02 191-22-211.5 54.36 15.48 10.93 8.35 .05 3.38 1.51 .23 .005 609 40 10 855 21 28 5.1 100.05 J91-24-164.7 44.84 16.27 14.50 5.09 576) 167. .07 4.42 1.60 .49 .002 1213 665 21 20 86 6,5 100.00 RE J91-22-177.1 55.80 18.19 6.84 2.66 .05 9.13 1.97 .53 .002 1296 100 30 35 77 3.5 100.02 J91-24-207.3 54.95 12.97 11.80 3.86 .06 4.27 1.55 .40 .002 1694 19 250 1331 28 47 4.7 100.07 J91-25-26.9 51.21 15.96 7.89 2.11 07.1393.81 2.90 2.43 .57 .002 1247 335 21 [04]] 27 108 5.1 100.04 50.89 15.41 8.40 1.83 7,44 3.94 2.88 2.43 51.52 16.07 10.06 2.73 7,08 .16 4.72 1.38 57.90 12.68 8.98 3.31 64.05 4.55 1.63 54.73 16.02 6.47 3.42 5171 4.09 1.85 2.35 J91-25-45.4 PT3 .54 .002 974 246 23 114 (3 25 70 5.9 100.08 J91-26-42.4 .35 .002 1876 33 237 ាស់ 45 79 5.4 100.07 J91-26-105.2 .48 .002 1228 129 23 50Z 29 62 5.0 100.08 J91-27-32.65 14 .60 .002 1756 339 26 20 4.3 100,05 J91-27-60.3 198 4.12 .73 1.79 152 1.92 2.53 2.39 1341 1.33 2.05 .57 74.21 9.88 3.60 .88 .47 06 07 .002 800 166 14 18 24 2.1 100.00 J91-27-68.D 57.38 14,99 8.47 3.90 .62 20 III (24 002 2205 162 29 5.9 100.11 36 STANDARD SD-4 67.81 10.29 3.56 .98 .23 .005 795 207 29 1321 23 20 11.2 99.98 .200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBOZ AND ARE DISSOLVED /DW 100 HLS 5% HHD3. - SAMPLE TYPE: CORE Samples beginning 'RE' are duplicate samples. DATE RECEIVED: NOV 15 1991 DATE REPORT MAILED: SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS Nov ∣ 91. 301

	Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-5129 Page 2
SAMPLE# J91-22・17	Ho Cu Pb Zn Ag Ni Co Mn Fe As. U Au Th Sr CC Sb Bi V Ca P La Cr Hg Ba 1/ B Al Na K W Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
\$10 <u>8</u> \$109 \$110 \$111 \$112	10 38 24 31 5 19 11 379 3.69 299 9 NO 1 95 2 10 2 5 1.83 037 2 4 .56 43 01 3 .28 .01 .21 11 265 2 23 17 124 7 11 8 1437 2.58 67 5 NO 2 317 5 2 2 9 7.58 035 2 4 2.64 01 3 .28 .01 .21 11 265 32 47 25 300 .8 52 8 415 3.06 30 5 ND 2 185 1.6 2 2 13 7.01 056 3 3 .92 .66 01 5 .30 .03 .15 3 1050 39 54 18 444 0 80 8 365 2.42 25 5 NO 3 26 2 2 18<
\$113 RE \$118 \$114 \$115 \$116	40 4060 26 3187 6 1423 26 435 3.33 47 5 ND 3 216 2.2 10 26 19 8.15 041 2 6 1.11 55 01 44 .25 .02 .11 273 4 790 1 31 6 112 .25 27 2210 5.58 22 5 ND 1 219 .2 2 108 7.71 .040 2 49 2.08 37 03 2 2.90 .02 .03 1 4 75 12 26 11 452 5 37 19 725 3.57 50 5 ND 1 275 3.1 2 2 18 7.97 050 3 9 1.32 56 01 2 .26 .02 .09 2 12 510 1 23 2 19 17 1802 5.62 23 5 ND 1 173 2 2<
\$117 \$118 \$119 \$120 \$121	2 34 8 96 1 44 41 1694 6.19 26 5 NO 1 160 2 2 2 109 4.97 057 2 48 1.86 50 01 2 3.02 .03 .05 2 1 125 1 30 8 113 3 25 27 2247 5 ND 1 26 2 2 111 7.75 044 2 51 2.12 40 01 2 2.95 .03 .05 2 1 125 10 26 7 130 3 35 39 1371 6.07 45 5 ND 1 22 2 82 5.82 D68 2 10 1.41 51 01 2 1.04 .02 .05 2 3 180 1 10 6 125 2 1 128 2 2 107 4.00 147 5 3 1.50 53 01 2
\$122 \$123 \$124 \$125 \$126	1 9 7 141 3 4 25 953 6.12 33 5 ND 1 91 2 4 2 45 3.30 065 3 2 1.52 75 01 2 .39 .01 .11 .5 260 2 11 11 144 3 4 28 944 6.45 40 5 ND 1 97 22 3 2 61 3.28 004 3 2 1.39 106 01 2 .94 .02 .13 1 255 24 30 20 370 5 55 15 703 3.51 60 5 ND 1 120 216 12 2 35 4.68 056 2 3 .81 50 01 3 .40 .01 .10 1 4 500 28 45 23 373 17 53 5 NO 1 117 3.3 16 2 16 4.09 </td
\$127 \$128 \$129 \$130 \$131	3 37 3 69 .5 63 58 1470 6.91 25 5 NO 1 113 12 8 2 89 4.46 037 2 50 1.51 42 .01 2 2.62 .04 .05 1 4 225 1 34 6 78 .2 28 29 2124 5.68 31 5 NO 1 198 .2 2 2 87 7.72 .042 2 50 1.81 54 01 2 3.15 .03 .04 2 8 70 1 24 11 82 7 43 37 3046 7.10 47 5 ND 2 305 2 7 2 81 11.83 063 3 32 1.74 36 01 2 2.86 .02 .02 3 10 145 1 29 2 96 13 27 25 25 ND 1 267 2
\$132 \$133 \$134 \$135 \$136	8 23 4 349 1.9 78 76 1846 6.60 156 5 ND 1 239 1.3 14 2 82 8.04 032 2 29 2.27 41 01 2 2.72 .01 .09 1 5 425 1 7 7 105 .2 21 26 1636 7.40 30 5 ND 1 184 .2 2 2 92 5.64 115 5 11 1.97 21 01 2 3.00 .02 .04 2 3.00 .02 .04 2 3.00 .02 .04 2 3.00 .04 2 3.00 .02 .04 2 3.00 .02 .04 2 3.00 .04 2 5 300 1 4 9 88 .6 15 26 1926 5.64 41 5 ND 1 219 2 4 2 66 7.75 097 4 1 2.01
\$137 \$138 \$139 \$140 \$141	1 6 4 108 (3) 7 17 1715 5.45 12 5 ND 1 173 ,2 2 2 40 7.46 163 6 1 1.46 44 01 2 2.28 .02 .10 1 4 140 1 5 2 91 1 4 14 1488 4.04 11 5 ND 1 165 2 2 2 32 6.98 157 6 1 .91 30 01 2 1.80 .02 .11 1 4 175 3 8 2 101 7 17 30 1441 6.71 31 5 ND 3 176 4 12 2 80 5.39 171 6 2 1.81 23 .01 2 3.03 .02 .05 3 5 200 8 7 10 147 2 37 56 1347 6.06 69 5 ND 1
S142 S143 STANDARD C/AU-R	3 4 6 99 3 7 20 1696 7.16 25 5 NO 2 222 2 3 2 63 6.77 156 5 1 2.07 28 01 2 2.34 .02 .09 1 3 170 1 9 56 330 .6 11 26 1586 6.77 28 5 ND 2 207 2.11 13 2 60 5.77 186 5 1 1.83 26 01 2 2.61 .02 .10 1 5 295 19 60 40 132 7 3 69 31 1054 3.97 41 20 7 38 52 18.3 15 22 56 .48 090 39 58 .88 177 09 32 1.89 .06 .15 11 510 1800

. • .

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

. .

SAMPLE# J91-22

\$144 RE \$149 \$145 \$146 \$147

19.41

		<u> </u>									· · ·				·																		
	Яο	Cu	Pb		A93			Mn	Fe	10	U	AU			B2	Sb		٧	Ca	R	La	Cr	Mg	ßa	87)¥	ß	Al	Хa	¥			Хa	
 ,	ppm	ppm	ppm	ppm	pon	ppn	ppm	ppm	×X	ppn	ppm	ppn	ppm	ppm	(ppm)	ppn	ppm	ppm	*		ppm	ppm			88% F	2 mqc	X	×	x	PPI)	ppb	ppb	
	4	7	16	97		12	27	1390	5.53	21	E	UD.	,								-									899			····
	Ż	13	73		俗情		12		6 77		5	סא סא	۲ ۲	168 38	1444	8	2	20		165		2	1.22	32	<u> (01</u>)		2.28			8 2	-7	95	
	1	7	6		8 S	3	16	1477	6.33 4.60	85	Ś	ND	1	189	100	5	2	29	.51 4.64			2	1.20	49	<u>01</u>		1.96				62	370	
	- 3	10	15	89	9	7	27		2.49	29		HD	i	123	883	Å	2	11		:054		2	.71	32 45	01 01	4	2.01	.02	- 10		4	70	
	3	16	34	132	1.0	3	16	1120	6.53	90		סא	Í	57	12	ŭ	ž	39	.73	27		8	1,42	66	01	5	2.54	01	124 26	Ž,	30	120 55	
														•			-	•				•		00		-					50	22	
	3	14	73	337	1252	5	13		5.47		5	ЯD	1	40	2.8	4	2	26	.51	203	6	5	.83	60	01	2	1.35	.01	.28	33.	20	190	
	1	13	70		172	2	12	859 893	6.44 6.80	- 25		НD	1	37	7.9	2	2	29	.47	176		Ś	1.21	51	01	ž	1.98	.01	.30		ŠŤ	335	
	ļ	15	36		183	3	17	893	6.80	- 18 1 8		ND	1	49		6	3	29 29		<u> 161</u>		8	1.21	51	01			.01		2	45	75	
	2	18 14	34	152	1273	4	16		6.47	28		ND	- Ş	36	686	7	2	23 23	.47 .56	168		4	.95	53	01	Z	1.45	.01	.27	M	26	105	
	1 4	14	21	142		2	14	619	5.18	26	5	ND	1	55	224	2	2	23	.56	.188	7	3	.91	63	<u>01</u>	2	1.65	.01	.37		58	70	
	٦ ا	29	41	85	1 2	7	8	346	4.55	83	c	ND		74	382		•				,							.					
	3	43	12		89)	ŝ	11	441	4.53		;	ND		36		0	ŝ	12	.55	<u>8212</u>	-	13	. 28	52	<u>301</u>	2		.01			121	80	
	8	48	120	1075	2,0	5	17	813	5.40			NO	- 1	39 65	911	14	5	18	.67	220		5	.43			2	,66	.01	.20		16	100	

1

\$148 \$149 \$150 \$151 \$152	3 14 73 337 15 5 13 631 5.47 27 5 ND 1 40 2.8 4 2 26 .51 203 6 5 .83 60 01 2 1.35 .01 .28 1 20 190 1 13 70 825 12 2 12 859 6.44 5 5 ND 1 37 7.9 2 2 29 .47 176 6 5 1.21 51 01 2 1.98 .01 .30 51 335 2 15 36 162 13 3 17 893 6.40 18 5 ND 1 49 .3 6 3 29 .53 161 5 8 1.23 51 01 2 1.99 .01 .26 2 45 75 3 18 34 152 17 4 16 753 6.47 28 5 ND 2 23
\$153 \$154 \$155 \$156 \$157	3 29 41 85 2 3 8 346 4.55 83 5 NO 1 36 .6 6 2 12 .55 .212 6 13 .28 52 .01 5 .60 .01 .24 1 121 80 3 43 42 76 9 5 11 441 4.53 47 5 NO 1 39 2 4 2 18 .67 220 5 6 .43 53 01 2 .66 .01 .20 1 16 100 8 48 120 1075 2.0 5 17 813 5.40 06 5 NO 1 65 9.1 14 2 13 .62 227 5 2 .42 .49 01 2 .84 .01 .32 163 360 360 360 360 360 360 360 360 123 .85 5 .79 23 8 5
\$158 \$159 \$160 \$161 \$162	2 18 21 104 12 3 12 504 2.75 85 5 NO 2 32 .4 7 2 6 .34 089 17 2 1.16 49 .0 2 1.45 .01 .30 2 28 55 2 9 24 81 8 2 6 430 2.08 10 5 NO 1 34 4 2 2 1 .33 024 16 7 .88 47 .0 2 1.45 .01 .30 2 28 55 2 10 38 120 10 2 6 715 2.43 30 5 NO 1 45 3 4 2 2 .55 029 16 3 1.15 51 .01 .31 2 25 60 4 12 28 90 7 3 9 453 2.29 108 5 NO 1 32 2 4 2 </td
\$163 \$164 \$165 \$166 \$166 \$167	10 45 2115 4470 886 2 8 1801 7.28 177 5 3 1 103 15:5 12 2 39 1.71 083 6 4 1.58 41 .01 2 1.92 .01 .12 1 2980 2700 2 20 23 189 6 1 18 223 13.45 10 5 ND 1 57 0 3 2 35 .96 112 6 4 1.48 43 .01 3 1.92 .01 .13 1390 220 2 20 23 189 6 1 18 2233 13.45 10 5 ND 1 55 2 3 2 79 .60 197 8 1 3.60 39 02 2 5.58 .01 .10 72 1100 2 62 27 224 12 12 2 39 .66 151 9 5 1.92 .01 <td< td=""></td<>
S 168 S 169	1 7 6 124 4 3 8 947 6.63 2 5 ND 1 41 3 10 2 47 .62 162 9 8 2.04 43 01 5 3.14 .01 .16 1 10 45 1 8 12 200 7 1 4 1585 10.57 2 5 ND 1 31 2 8 2 67 .63 145 7 10 2.93 32 01 5 4.39 .01 .06 1 36 75
\$ 170 \$ 171 \$ 172 \$ 173 \$ 174	1 6 9 179 .7 1 6 1599 10.03 11 5 NO 1 25 .3 11 2 73 .46 .131 7 6 3.14 40 0.1 6 4.64 .01 .06 1 29 60 1 14 11 195 9 2 6 920 5.42 7 5 NO 1 38 2 9 2 48 .49 0.1 8 8 1.39 48 0.1 4 1.92 .01 .07 1 67 145 1 20 4 98 .9 3 6 943 4.79 2 5 NO 1 50 3 7 2 40 .69 112 8 8 1.26 47 .01 2 1.70 .02 .07 1 22 70 1 38 12 106 1 3 13 981 4.53 5 NO 1 50
\$ 175 \$ 176 \$ 177 \$ 178 \$ 178 \$ 179	1 52 24 107 21 6 27 765 9.69 2 5 NO 1 34 2 13 2 45 .47 200 5 9 2.14 56 0.1 4 3.03 .01 .17 1 18 40 1 127 40 117 2.9 7 35 793 11.07 21 5 ND 1 38 2 19 2 61 .59 186 4 9 2.14 58 .01 7 3.32 .01 .26 124 80 1 53 26 85 1.4 6 18 588 5.05 23 5 ND 1 36 5 12 2 13 .35 086 6 9 1.26 80 .01 3 1.77 .01 .26 16 60 1 6 2 95 .4 1 3 686 2.52 6 5 ND 1 31 2
\$ 180 RE \$ 176 \$ 181 \$ 182 \$ 183	1 5 8 71 0 2 5 58 21 5 ND 1 30 2 5 2 4 .25 0.30 18 7 1.23 83 01 2 1.44 .01 .25 1 58 65 1 122 33 103 2.6 5 32 703 10.12 19 5 ND 1 36 2 15 2 55 .55 186 3 9 1.97 59 01 6 2.6 75 1 9 19 66 15 3 8 463 4.65 26 5 ND 1 34 2 7 2 3 .31 019 9 6 .96 48 .01 3 1.26 .01 .28 .21 .75 1 26 28 274 4.9 6 25 1493 11.23 391 5 ND 1 35 2 18 2 70 .59
\$ 184 \$ 185	1 12 15 112 8 4 10 1286 8.32 74 5 NO 1 39 2 10 2 41 .55 13 5 10 2.45 54 01 4 3.78 .01 .18 52 40 1 12 18 151 6 3 9 1239 8.40 2 5 NO 1 50 2 9 2 42 .63 152 7 10 2.27 55 01 4 3.72 .01 .18 52 40

			•		
\$ 201 \$ 202 \$ 203 \$ 204 \$ 205 \$ 206 \$ 207	s 196 s 197 s 198 s 199 s 200	s 191 s 192 s 193 s 194 s 195	S 186 S 187 S 188 S 188 S 189 S 189 S 190	SAMPLE# J91-22	
			5 1 5 1	Ho (ppn pr	
120 114 122	11 90 62	14 26	6 4 4 · 25 1	lu Marp	
10 23 13 12 16	25 10		18 1 2 1 6 1	Pb cen p	G
115 129 134 126 123 123	132 123 115 276 152	87 128 116 135 126	59 26 104 291	Zn xxn	rar
CON CONTRACTO	1244001-24	0.0 10 10 10	Kewww.		rđe
36	55 30 28 7 43	24 38 39 53 60	3 4 6	X1 PP73 P	1 5
18 21 25 20 22 19 21	21 22 23 4 16	13 19 19 19 19	8 9 10 11	Co xpm	Inc
844 974 783 752 704	931 845 862	937 897 922	1358 1341 1580	Kn ppm	3.
5.65 5.62 5.87 5.53 5.03 5.14 5.60	6.31 6,90 5.79 2.08 5,70	4.26 5.61 5.31 5.44 5.22	9.99 7.20 6.48 8.97 7.12	Fe X	PROJ
22222	230.6.6.0	19 19 10 10 10	SALWARD ST		EC
55555	5 5 5 5 5 5 5		\$ 5 5 5 5 5	U prag	Γī
10 10 10 10 10 10 10 10 10 10 10 10 10 1	00 07 07 07 07	а 4 2 4 2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO NO ND ND ND	Au 2 ango	טאנ
1 1 1	1 1	1	1 1 1 1	ĩh xom	K
420 219 231 216 217 216 208	194 211 281 333 282	228 242 260 272 229	36 65 81 48 54	sr ppn	RIV
N. N. N. N. N.		NOTION IN	22222	icdi PPT: P	VER
3 2 2 2 2 2 505	2 6 8 2 4	3 5 7 2 3	222222	Sb (Pnipi	134
22222 22	22222	2 2 2	2	βľ ρπ.p	ł
38 39 50 51 53	40 32 4	36 - 44		V بتعتبر	FI
8.72 5.85 7.14 6.65 6.15 5.41 4.79	5.42 5.07 6.31 8.96 6.73	5.57 7.49 5.20 7.99 5.86	.16	Ca X	LE
1000 COLLAR	161 198 1024	15.0 MO A	132 1220 1369 10		# . 9
45523 31	3 4 4 6 4	4 3 3 3 3 3	14 14	La Sprn p	1-
33 33 32 35 34	28	28 26 34	16 14		519
1.61 1.64 1.60 1.53 1.51 1.66 2.15	1.69 1,79 1.42 .75 1.65	1.17 1.47 1.40 1.55 1.53	2.12 1.96 1.73 2.04 1.89		35
60 64 54 72	57	60 73	46 70 69 62 72	Bo ppm	li
	0.0.0.0			(C) (33) P	UN
5 4 5 5 5 5	6 5 2	4 4 3	4 3 3 4	B xpm	[]
2.80 2.75 2.48 2.59	3.07 2.35	2.01 2.53 2.26 2.56 2.45	4.41 3.84 3.37 4.02 3.33	۸۱ ۲	
0.0 .0 .0 .0	01. 01: 101:	.01 .01 .01	.01 .01 .01		. A
	.12 .14 .10 .10 .09		.22 .20	K X	Pag
				iiNi PEN	ge
16 8 5 14 7	4 9 17 6 12	6 7 4 4	25 13 7 7 4	Avt pob	4
150 175 255 250 185 175	245 235 225 115 175	80 155 250 125 160	40 30 10 130 80	Hg PPO	2

Sample type: CORE, Samples beginning (RE' are duplicate samples,

Ν

			Bug
	S EXPLORATION LTD.		
	ND DRILL LOG	. •	
		INUK RIVER PROJECT	PAGE OF 28
HOLE No.		,	COUL - 3
J 9	1-23 (JEF	F GRID)	·
PURPOSE			
10 11	EST EASTERN EXTEN	SION OF TOO ZONE	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T	
LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
8+50N / 0+57 N	418 m	270.	256.95
DIP	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
60°	$65.53m - 58^{\circ}$ 213.36m - 56	217.34 m	137.07 m
LOGGED BY DATE	2 <u>56</u> <u>95</u> <u>m</u> - 61 ^a	CORE SIZE	DATE STARTED 14/10/19
JEFP TESAR	J.T. THOMAS	B.Q.	DATE COMPLETED 16 /10/ 19
		D. C4.	
SUMMARY LOG (M)			
00- 4.80 OVERBURDEN		230.60 - 138.50 INTERHE	RIATE LAPILLI TO COMPLE TVE
4.80 - 10.50 MEDIUM TO COARSES	ANDSTONE NITH MINOR ARGILLITE	238.50 - 240.66 ARGUACED	DUS FINE TOFF
0.50 -31.70 INTERMEDIATE L	APILLI TUFF	240.66 - 249.72 INTERHEDIA	ME FINETUFF TO TVFFACEO
<u>31.70-35.50 FINE (IN PLACES L</u>	APILLI TUFF NITH ARGILLITE	SEDIMENT	
<u>35.50-36.60 INTERNEMATE LA</u>			<u>EPIUM TUFFACEOUS SANDST</u>
	HILLITE AND NINOR SILTETONE.	253.80 - 255.95 BLACK A	RGILLITE
58.65-66.80 FAULT ZONEL B		- 256 95 END OF	THE HOLE
6.80-83.70 ARGILLITE INTE	•		
13.70-91.70 INTERMEDIATE		<u> </u>	
	FINE TO HEVIOH AND LAPILLI TVFI		
01,20-128.55 INTERMEDIATE			····
	LAPILLI TO FRAGMENTAL TUPF = SILICEOUS LAPILLI TVFF	1	
180.40 - 195.40 IN TEERBOOM IS 180.40 - 195.40 COMESE INTER	· · ·		
· .	TE LAPILLI TO COARSE TUFF		
221.17 - 223. 8) INTERNEDIATE			
23.81 ~ 230.60 INTERNEDIATE			
SIGNIFIGANT MINERALIZED			
87 70- 88 05 10+12 % P	rite ; anastomosing hand.		
91. 70 - 94.50 1-2 % Py		· · · · · · · · · · · · · · · · · · ·	
106 70 - 108.50 from 35	1 Py to 3-4% Py with Pyrrhelit	r	
	y + Po and traces ef sphalerite		<u> </u>
165.40 - 166.90 3 % Byt	Po and traces of upbalerite	stringers, specks.	
	Po : in places traces of cobole		
253. 10 - 256.00 tr 51, th	-1% Ry, tr. Ro ; specks, disc	minated.	· · · · · · · · · · · · · · · · · · ·
	ا میگرد. موجود افران این از روان در این از میگرد. میگردی میگردی از میگردی این از میگردی از میگردی از میگردی از م		
	and the second	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	

]	

GRANGES EXPLORATION LTD.

.

PAGE 2 OF 28

HOLE No.		丁91-23							(
 INTERVAL	C. L055	LITHOLOGY .	¢ ¢	Ŀ	S	Μ	А	0	
<u>20 - 4.80</u>		OVERBURDEN (00 - 457 Casing)	-	-			-	-	
]			-	1 o V.	1	-	-		×
<u>4.80 - 10.50</u>		DARK-GREY MEDIUM TO COARSE-GRAINED SANDSTONE INTERBEDOED NITH MINOR PROILLITE (BRECHATED) Frequent quarty-carbonate stringers at all angles to the core axis. Minoralized by disseminated pyrite. In places limonitic. (Simillar to the 3.05-5.80 Interval of J91-12 hole) F-udlontad SS 9.15-9715 Breccia fault. Angular fragments of argillite flooded with quarty matrix. Dominant direction 35° H-Nall contact 50°, F-Nall contact 55°. Core loss INTERMEDIATE LAPILLITUEE H-uall contact 55°, charp. F-uall contact gradulione Green-grey in colour with white, pale-grey and grey ash fragments within fine-grained diloritic matrix. Some of the fragments are flattened, some are rotated. In places physlific, with Navey pather of faliation planes. Neally servicitic. In places clasts of sulphides and dork ash or argillite clasts.	- - -	120(4)x 1 1 1 20(1) 1/2 1/77) 1/6, 1			- - - - - - - - - - - - - -	- 5	C
		Also Micro-quartz veinlets and stringers interseeding foliation planes. Starts to be interbedded with Black argillite near the bottom of the interval. Specastic bands or fragments of beterolitic tuff. (off different composition) la places anygdalaidal fragmonts dominant. In places anygdalaidal fragmonts dominant. In places anygdalaidal fragmonts dominant. In places anygdalaidal 15.80 - 17.30 the walk contact 40°, marked by vruggy guarts carbonate veintet. F-walk contact 40°, marked by vruggy guarts carbonate to increase in chloritic attention as well inclusions of organic material common wraves pattern of foliation planes	53 31	1205/ 1 1207(),1			- - Se-1 CL=1	- 15	۲

GRANGES EXPLORATION LTD
DIAMOND DRILL LOG

page 3

of **28**

HOLE No.

C

Γ

[(

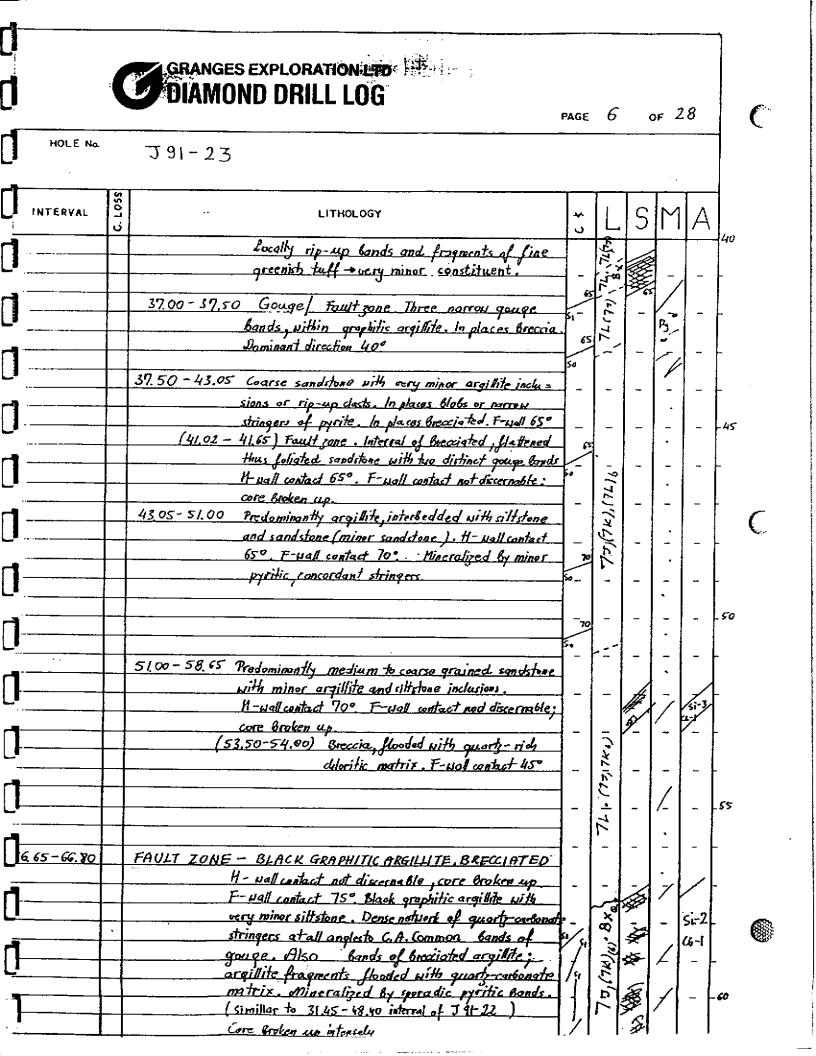
Ę

丁 91 - 23

								•		
MINERALIZATION ALTERATION	ЗАМРІ	E FROM	то	MIDIM	Au Prb	Ag g/t	As pp=n	56 ppm		
· · · · · · · · · · · · · · · · · · ·										
							ĺ			
		1								
		1		· · ·						
		1	1				1			·
	-									
······································										
	-	-								
	1	1	1		-			· ·		
	1	1	1							
	1	1	1							
	1									
	1 .	1								
	+	1								
tr Ry; sampled as Nall	1 14 6-6	9.15	10.50	1 35	16	6.2	41	10		
	1					<u> </u>		1		
tr Ry - 1% Ry; disseminated, specks	1 147-6	10.50	12.00	1.50	3	0.4	21	2		
It ref. if ref. the seminance, speces				<u> </u>		/	~()	~		
- <u>11</u> 1	148	12.00	13.50	1,50	8	0.1	17	2		
······································			···-							
	149-1	8,50	14 80	130	4	0.Z	33	5		
					·'					
	150	14.40	15 20	100	12	1.3	50	6		
		1	-			×	×			
27 Part dimental many timere carely	1 151	15,80	1730	150	21	0.8	45	7.		
2 %. Ry; disseminated, narrow stringers, specks	1					~ q				
tr -1°f Ry; disseminated, specks.	152	17.30	17.20	1.50	q	1.4	36	य		
	1	1							=	
	1	<u> </u>	1							
	1	1								
······································		1				·				
· · · · · · · · · · · · · · · · · · ·										
	1	1		·	•					
······	1	1		f						
								1		
· · · · · · · · · · · · · · · · · · ·		╏───┤	·	{						
	+									1
	<u> </u>	1								

! .

HOLE No.								1	
		丁91-23							
INTERVAL	C. L055	LITHOLOGY	بد ن		S	Μ	A	10	
				*			50-1		
		$\frac{1}{22} g_{11} = 2 g_{10} g_{1} g$		20%					
		22.87 - 29.10 Pale-green-grey intermediate pilli tuff grading	e - 4"	17	1 -	-	1	╞	
		Tuff Greacia Chitic fragments within five-grainer siliceous pyrithe maters, H-Hall contact 40° F-Ha		Ľ		L.A.	ľ		
		Contact 65°, silicous with minor porphyritic fragments scattered throughout the interval.	17	1 3		2.2			
•		fragments scattered throughout the interval	-k-;		-	100	-	-	
•		(22.87 - 23.63) Tuff Breccia. H well contact 40	//	-(2E)	Ì				
		F-490 -35°.		ā	-	5	-	-25	
			\mathbb{Z}_{-}	10	-	(fr)	a <u>-</u> 1	Ļ	
			^			Ð		İ	
				-	-	<u> </u>	-	ŀ	
<u></u>	<u> </u> i		- *	1		20			(
·			f	- J	-	16	-	F	
				-0	-	Æ.	/	1	
		29.10 - 30,48 Swarm of quartz-cartonate stringers within	- "	÷.		÷.	si-3		
<u>-</u>	-	intermediate lapilli tuff. F-Hallcontact 65. H-Hall		A	-	Ž.	-	-30	
		contact gradational.	[7	1.		K,			
31.70 - 35.50		GREEN-GREY FINE (IN PLACES LAPILLI TUFF)-GRAINT	0	8	-	7	-	ſ	
	 	INTERMEDIATE TV PF INTERBEDDED AND INTERMIXED		2	_	1	-	Ļ	
	 	WITH BLACK ARGILLITE	-	~		(5)			
	-	H-Wall contact gradational F-Wall contact 90, s. Predoningely fine tuff or flattened lapili fragment	<u>چ</u> اچ	17	<u> </u>	5,	a-1	╞	
		with or within silty to sandy argillaceous matrix		(10)		17	<u> </u>		
		In places bands of argilite or argillite rip-up de	ф ,	d e	-		_	ſ	
	<u> </u>			2	-	- 1	_	-35	
<u> 35.50 - 36.60</u>		GREEN - GREY INTERMEDIATE LAPILLI TUFF GRADIN		- 27		10			
	—	TO PALE GREEN-GREY TUFF BRECCIA NITH PYRITIC MA	<u>BIX</u> _	0755	-40	25	-	╞	
		H- Wall contact 90°. F- Wal contact gradational.	$\exists 2$	17~~		\mathbf{Y}			
36.60 - 58.65		INTERBEDDED, INTERMIXED DARK-GREY TO BLACK		$\overline{\mathbf{x}}$	1	1	-	F	
		MEDIUM TO COARSE SANDSTONE ARGILLITE AND MINOR		18	-	<u> </u>	_		
		SILTSTONE	- "	1 ×		/			ļ
· · · · · · · · · · · · · · · · · · ·		H-wall contact gradational. In places quartz		7	-	1-	-	╞	
		rich chloritic breasia. Near the top of the interv several gauge / fault zones. Mine ralized by	<u>יר</u> ןי	<u>4</u> ,7				-40	


GRANGES EXPLORATION	LTD									
GRANGES EXPLORATION DIAMOND DRILL LC)G	•					PAGE	5	OF a	28
HOLE No. J91-23						*				
MINERALIZATION ALTERATION	SAMPLE	FROM	го	W107#	Au Job	Ag g/t	As pp=n	Sb ppm		
tr-1% Ry, disseminated.	H 153	21.80	22.80	1.00	14	6.3	29	4		
2-3%. Ry ; narrow stringers-matrix supported,	<u>H154</u>	22.80	2363	0,84	18	6.6	123	6		
2-3/Ry, tr Po	H 155	23.63	25,00	1.37	22	0.7	148	B		
<u> </u>	H156	25.00	26,50	150	2	0.8	153	ł		
<i>µ</i>	H157	26.50	28,00	150		0.9	119	7		
<u> </u>	H158	18.00	29,10	1.10		06	514	13		
<u> </u>	H 15 g	29.10	30.60	1.50	15	0.6	83	5		
1-2%. Py j narrow stringers disseminated.	H 160	30.60	31.70	1,20	7	0.4	355	Ą		
+ ry	H 161	: 3(70	<u>33</u> 20	1.50	6	0.3	ζ - 7	q		
1-2% BI; Marrow stringers, speaks, dissem	HЦ	3 <i>3,2</i> 0	34.70	1,50	10	2.3	37	5		
/1	H 163	34.70	35,50	0.80	_6	0.2	32	.4		
2-3%p;	<i>H</i> 164	35,50	36.60	Ų0	23	0.1	42	<u>-</u> f		
1~2 % Az ;	H 165	36.60	37.10	1.50	10	1.3	83	13		
11	H 166	810	1960	150	21	00	760	15		

1. A. A.

[[[

[[(

C C

HOLE Na J91-23 MINERALIZATION ALTERATION SAMARE FRON TO UIDTE AU AS AS SH pren pren pren pren pren pren pren pren	GRANGES EXPLORATION LT DIAMOND DRILL LOC	D 3						PAGE	7	OF
MINERALIZATION ALTERATION SAMPLE FROM TO WIDTH ppb g/t ppm ppm 1-2 % By ; narrow stringers, Blobs, single winlets H167 4165 43.05 1.40 36 1.1 167 12	HOLE No. J91-23		_							
	MINERALIZATION ALTERATION	ЗАМРЦЕ	FROM	70	WIDTH	Au ppb	Ag g/t			
			· · ·	 		. <u></u> .				
	1-2 % Py ; narrow stringers, Blobs, single winlets	H 167	4165	43.05	1.40	36	[.]	167	12	
Image: Sector of the sector	· · · · · · · · · · · · · · · · · · ·			1				133	12	
Image: Sector of the sector				 						
Image: Sector of the sector		<u> </u>								
Image: Sector of the sector										
Image: sector of the sector										
Image: Sector of the sector								· · · · ·		
Image: Constraint of the sector of the sec										
Image: Section of the section of th	- · · · · · · · · · · · · · · · · · · ·									
Image: Section of the section of th										
Image: state of the state of										
Image: space of the systemImage: space of the system										
Image: Sector of the sector										
Image: space of the space of		<u> </u>						· · · · · ·		
Image: Sector of the sector										
							<u>i</u>			
	· · · · · · · · · · · · · · · · · · ·				-					
	-		·							

	HOLE No.		JIAMOND DRILL LOG	PAGE		8	of 2	8		(
		5			- ,	- 	· ·	1		
	INTERVAL	C. LOSS	LITHOLOGY	۰ ب	L	S	Μ	A	60	
J	·	-				安野	-7	-		
	·····				۲ ۵	6	-	-	_	
	······			<u></u>	(7K).	× *	7	5i-2 61		
				-,	77,1	A	-	-	-	
. ال	····				-	#	.–	_	. (5	
ן <u>י</u>	6.80 - 83.70			Ⅎ∕	-	T	F	-	-	
	<u></u>		BLACK ARGILLITE, IN PLACES INTERBEDDED WITH NARROW BANDS / LAMINAS OF SILTSTONE H- Wall contact 75°. F-Wall contact: 65°		-	-	-	-	-	(
			In places warrey planes of Bedding, locally natrow gouge bands : indication of deform		-	-	-	-	- 	•••
			Sporadic quarty-carbonate stringers In places Blobs or specks of carbonate		-	-	~	-	70	
J -		-	Mineralized by narrow syngenetic pyritic Bands.			-	•	_	- 10	
]			73.80 - 74.00 Breccia (Crush sone Angular darts of		-		r			
			argillite flooded with quarty-carbonate mater	** کرنے	(7K1) 6		-	_	-	
			at 74.65 - narrow gouge Band, nyrific. 750 to C.A	<u></u> -	, -7, - 7	+04.15	-		-	
			at 74.65 - narrow gouge Band, pyrific. 75° to C.A	70	-	-	-	-	- 75	
0					-	-	- -	-	_	
					-	-	-	-	-	
					-	-	-	-	-	C
					-	-	-	-	-	
]		+			-	-	-	- -	80	

.

٦
0
0
l
0
0
0
ſ

GRANGES EX	PLORATION
DIAMOND	DRILL LOG

PAGE 9 OF 20

HOLE No. J91-23

·										
MINERALIZATION ALTERATION	SAMME	FRON	то	אזסוא	Au g/t	A _{jj} g/t	As ppm	Sb ppm		
										
		-							<u> </u>	
								<u> </u>		
				 					-	
										}
								 		
									 -	·
									ļ	
· · · · · · · · · · · · · · · · · · ·										
······										
-										
· · · · · · · · · · · · · · · · · · ·										
		•								
	· ·							•		
						:				
· · · · · · · · · · · · · · · · · · ·										
· · · · · · · · · · · · · · · · · · ·										
										·
										[
						{				
I				l				ļ	ļ	

GRANGES EXPLORATION END

PAGE 10 OF 28

0

湯

HOLE No.

J91-23

į.

<u> </u>						•		1
INTERVAL	C. L055	LITHOLOGY	א ט		S	Μ	Α	80
		· · · · · · · · · · · · · · · · · · ·	75					00
			5.			4	-	-
				5		1.		
		×.	_	(11)	-	2	-	-
				ત.		<.		
					_		_	L
3.70-92.70		INTERMEDIATE FINE TO LAPILLI TUFF. (IN RACES GRADES TO	s.			ľ r		
		TUFF BRECCIA)	_	_	-	1.	_	
		H- Wall contact 65°, marked by pyrific band (Isom	,			1.		
		F- Hall contact 66" marted by purific band (2cm)	_	_	-		_	-85
		F- Hall contact 60°, morted by pyritic band (2cm) Grey is colour granular texture with fine grain		(E)				
		size, grading to kapilli or fragmental (tuff-Brecia)		C d	_	-	_	L
			7	2		/		
		83.70 - 87.70 Lapilli fragments predominant la places grades	h 	_		الآلي	_	
		into tuff braccia bands. Sharp contact on the				残		
		foot-Hall, 75° marked by pyritic Band 135cm			_	i.e		
		true width]. In places blackish bands of organic	. –	-	-	.,	-	ſ
		origin (?)					CL-1	
		87.70 - 92.70 Fine to medium grained intermediate taff-	-	-	. –	-	-	
		Dark - grey in colour with blobs or bands of				2		- 90
		pyrite Sporadic quarty-chlorite veinlets at	-	-	-		-	
		50° C.A. Lower part of the interval: prevence		9		;		
. ·		al anothing of Alach the Ringers of ste al hailly	-	24	-	1	-	
		al argillite or black tuff rip-up clasts of lapilli size. F-441 contact 60° marked by pyritic Band.				•		
		JISE Wall contract Markey 44 pristic owned	-	~		V.	/	-
70-101.20		BLUE - GREY INTERMEDIATE FINE TO MEDIUM-GRAINED		X	Ø,		5-3	
		AND LAPILLI TUFF	- 1o	ш/ . ч	凌		a1	-
·			47	A-8,	14	27	C6-1	
		Fine to medium - grained tuff intermixed with	*-/	2	Sec.	<u>ج</u>	1	-
			£,]		<u> 282</u>			.95
	_	apilli tuff. Mineralized by stringers and specks of pytite. Upper part of the interval is breaciate	<u>,</u>	-	-	-	-	- 77
		OF pyinc . [Lpper por of the mich of is vicenare	*					
		dano dh ha ruthana	-	-	-		-	-
		<u>92.70 - 94.49 Fault zone.</u>		6		1		
<u>_</u>	-	Bounded by bressinted fine to medium grained.	- 1	(2,4+8)	-	4	-	-
		tuff flooded with quarte-chloritic groundmass.		2		-		
		Locally bands of blackish argilists? clasts within	-	Q	-	7	-	6
· · · ·	<u>`</u> -{	quarte-rich matrix. Culorific.		Р		1		e e
			-	-	-		-	-
					j	1.	ļ	144
			-	-	- 1	7	-	-100
			1	1	1			

PAGE // OF 20

[(

[

[

HOLE No. J91-23									
MINERALIZATION ALTERATION	блиме	FROM	то	W107H	Au ppb	Ag g/t	As ppm	Sb ppm	
r~1% Ry. sampled on Wall	4169	82.50	83.70	1.20	9	0.2	46	20	
2-3% Ry; narrow stringers, speaks, disceminated.	H170	8370	85.20	150	3	0.2	69	15	
2%. Py; - 11-	ΗΠĮ	85,20	86.70	1.50	5	0.2	36	9	
1-2% Py; -11-	<u>H 172</u>	86.70	87,70	1.00	6	0.7.	68	10	
10-12%. Ry; anastomocingland of pyrite *	Нлз	<u>87,10</u>	88.05	0.35	15	0.7	265	30	
tr-1% Py; specks, disseminated	H174	88.07	83.55	1.00	2	0.1	16	5	
1-2 % Py; narrow stringers, specks, dissem.	Hris	89 <u>5</u> 7	<u>91,05</u>	1.50	/	0.1	28	3	· · · · · · · · ·
1-2% Ry; tr Po 11	H 176	91 <i>p</i> 5	9270	1.65		5.2.	26	6	
- 11 - traces of red-brown SL	H 177	92,90	94,50	1.80	_/	0.1	97	2	
tr~1%.Py; discem.	H 178	9450	96.00	1,50	1	0.1	12	2	
— II —	H179	96.00	9750	1.50	7	0.1	14	2	
	H 180	97.50	99.00	1.50	1	0.1	12	2	
	H 181	99.00	101,90	2.20	1	0.)	14	2	
······································			, 						

GRANGES EXPLORATION LTD

PAGE 12 OF 28

4

C

HOLE No. J91-23

Γ

	•		.	. .	,		r <u> </u>	4
INTERVAL	C. LOSS	LITHOLOGY	* 		S	Μ	Α	100
			70	242				100
····			sı	0 7 7	-	÷	_	-
۹				7		1		
101.20 - 128.55	-	GREY HEDIUM, INTERMEDIATE TUFF INTERBEDDED WITH	-	-		<u> </u>	-	-
		BLACK ARGILLITE	{ .	ີ້		r		
7		H- wall contact gradational. F-wall contact as	hell.	7,(28)	-	ŗ,	-	-
ل		In places Breceived with argillite clasts	ł	h.		<u>`</u> `		
	$\left - \right $	within fine-grained tuffaceous (often pyritic)	-	1	-	1	-	-
		matrix. Upper part of the interval intensely			75			145
 '	┨ ─		-	-57-		7	-	- 192
-1	1	and specks. This is predominantly an argillaceous	11	1	ſ	$\mathbb{V}_{\mathcal{V}}$		
		internal function of the internal and and	50-	-	-	F_{2}	-	F
	╂──	interval. Lower part of the interval grades into bands of fine tuffind finally into the				Ø.		
-1 ·		solid tuff. Intensity of mineralization decreases	-	-	-	62	-	f
		downhole as well. In places brecciated with				$\alpha_{\rm s}$		
		Parrow gouge bands. 2 quarty-carbonate dringer		-	- 90	5	-	-
				Т <u>х</u> -	and a	12		
J		104.20 ~ 104.40 Breccia / Fauth . Narrow gouge bond, at 75°	51_ TL	⁻ 3 8×1		\$1	-	~
		to CA flanked by breeciated walls.	51	<u>```</u>		8		- 110
		I CH JIANKED OF GREATORED WANS.	-	5	<u>مـ</u>		_	- ""
		101.50 - 109.80 Fault Greccia, Marrin gouge bands Hanked		<u></u>	ø	7.7		
r4		by range of Bronisted amility amerika	- .	15	955	r	-	-
·		by somes of Breasiated argillite, graphilic. H-wall contact 90°, F-wall contact 75°						
· · · · · · · · · · · · · · · · · · ·		Extensive core los from the intervel		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	-		-
rd			15	(2B)			_	
		111.20-111 30 Fault, Narrow gauge band at 35% C.A.	s,	2	_			
		This fault with aff mineralization by pyrite.]•	\sim				
-		and the second s	-	[-			_	_
					_		-	. µs
•							ī	
		116.70 - Predominantly mediam-grained tuff with minor		1_		_	-	-
		inclusions or Gands of argillite. H- Mal contact 50-						
	_	In places brecciated. White corporate specks throughout	<u>}</u>	ľ _	_	_	_	-
		the internal Almost barron no sulphides visible.	80	•				
		J *	Sia	-	_	_	· _	- 1989.
r*		***************************************		· .				
[]			-	214,	-	_		L
-				``				
- 1			-	_	-	_ [-	_120
					••			
				1 1	i	I	4	

GRANGES EXPLORATION LT DIAMOND DRILL LOG	D	<u>i</u> t T					PAGE	Ľ	3 OF	2
HOLE No. J91-23					•					
MINERALIZATION ALTERATION	блите	FROM	то	ыютн	А и РрБ	Ag g/t	As ppm	Sb ppm		ļ
1-27. Ry, tr. Po ; sporadic stringers, specks, disce	4182	101.10	102.70	1.50	4	0.1	2	2		
tr Py, tr Po - 11 -	H 183.	10270	10420	1.50	7	0.1	14	4		
	<u>H 184</u>	104.20	105.60	(,410	1	0.	6	2		╞
			195.70				124	7		
35% of Sx. (Ryrite + Ryrrh+ite) bands; vugqy, * anastamosing (up. 30 cm in true width), matrix filling 3-4% of Sx (Ry + Ro) anactomorphy Band: 00 breccia. *	H.186 1187	106.70 107,20	107.20 108.50	0.50 1.30	42		1378 482		 	
matrix filling and parrow stringers on the lower part of the internal (possible core loss of mineralized zone) appr. 20 % of core recovery of entire interval thus	H188					0.1	213	36		
intensity of mineralization is difficult to estimate . 2% Pf 3-4% Proite ; parrow anactomosing stringers, Blues	Υ					0.Z	99	38		
tr By; sample & on wall.			1/2,78			0.1	14	7		
					· ·					
· · · · · · · · · · · · · · · · · · ·										
	<u> </u>				 -					ţ
						·				t

[

[[[

[

[C [[

C <

[

	HOLE No.	- Loss	J91-23		PAG	<u> </u>)F 2		_	(
	NTERVAL	LOSS	1									
		ပံ		LITHOLOGY	۰۰ د			S	M	Α		
· · · ·						5,6	_				- Ko	
1			· · · · · · · · · · · · · · · · · · ·		{1		-	_	-	-		
 n							L t	-	_	-		
U -							С Ч -	-	-	-	-	
							-	-	-	-	- 125	-
			125.80-126.00	Distinct interval of green-grey chloritic medium		28	I	-	-	<u>a-2</u>	4	
- n				grained intermediate tuff. Both contacts 85°		8 < 2.		-	-	_	F	C
	55 - 150.40					۔ بی	 - 	-	17.	-	-	(
U <u>~~~</u>	53 7-0.40		INTERMEDIATE	LAPILLI TO FRAGMENTAL TUFF. H-Hall contact gradefinal marked by tuff tone of tuff clack within Alachich as illow	6reccia	25	<u>.</u>	-				
				Jone of tuff clasts within blackish argitlace matrix Grey, with lapilli fragments with	oas ⁽¹⁾ _	-	k	X	~	-	-130	,
			· · · · · · · · · · · · · · · · · · ·	fine-grained myritic and often riliceous matrix. Lower part of the interval it is		-		X	~	_	-	
		-		dark-blachish truff due to argillaceous mat	сін ₁)-	-	. ′	_	, , ,	-	-	
1			129.55 - 129.30	Tuff Breccia. Fragments of tuff within bladin		-		-	5	-	-	
				argilaceous? matrix. H-wall contact gradation F-wall not discernable: core Broken up.	-	-		-	≯	-	-	
			· · · · · · · · · · · · · · · · · · ·			D-A.	<u>ତ</u>	-	Ĩ	Si-1	-135	
			· · · · · · · · · · · · · · · · · · ·			20-		-	Å	(l- -	-	
J								_ [K.	-	_	
			·····				:		\sum_{i}	_	_	~
-								_	\geq	:		٢
		+						-	хĺ	-	- 140	

PAGE 15 OF 28

Million

HOLE No. J91-23

_(

[(

	<u> </u>			T				<u> </u>		
MINERALIZATION ALTERATION	SAMP	E FROM	то	WIDT	Au pob	Ag g/t	As ppm	Sb ppm		
		<u> </u>				<u> </u>				Γ.
						+	+			
					† –		1		<u> </u>	
	_		1			<u> </u>	1		1	
					}		<u> </u>			_
· · · · · · · · · · · · · · · · · · ·	+			1			1			┼──
						<u> </u>				╞
		<u> </u>	 				┨	-		
		<u> </u>								
	1			<u> </u>						
2% Py; parrow stringers specks disseminated.	H (9)	17790	17920	115	14	120	4-	6		
	pr va			2775	A 7	<u>a.u</u>	03_			
				[
-2" Py; extensive core loss (15% core recovery)	#192	4930	133.30	420	861	13.6	R716	78		
						· <u> </u>				
-3% Ry; nacrow stringers (matrix filling) specks, discm.	H193	133,50	135.03	153	756	10.8	488	42		
		i 					·		•	
<u>11</u>	4190	13502	Man	147	00	50	1.0			
U		2002	15050	677	10	77	11 D_	20	•	
		-					_			
· · · · · · · · · · · · · · · · · · ·	4195	136.50	<u>B800</u>	1.50	89	<u>4.0</u>	10Z	16		
1/	H 196	13.00	139.80	1.50	90	5.9	122	19		
							•			
11	H 197	13950	141.00	1.50	74	र १	104	17		
						ـــــــــــــــــــــــــــــــــــــ	<u> </u>			
						-				
			··							
					-+			· [
					[[
· · · · ·	I				1	[· [•

							7
	GRANGES EXPLORATION ETC.						
	DIAMOND DRILL LOG						
	DIAMOND DITIEL LUG	PAGE		16	0F 2	P	
				10	<i>yr 4</i> 4	<u> </u>	1
HOLE No.	丁51-23		•				
							1
	LITHOLOGY		Ι.		1.		1
INTERVAL		*		IS	IM	IA	
		<u> </u>		<u> </u>			40
					13		
			-	-	乏	-	ł
		5.0 *	히		15		
			-	-	3	- Si-1	F
					1	<u>4</u> -1	
			5		•	! -	Γ
			W	_	_	_	
			50				1
			N -	-	-	_	-145
			1				1
			-	-	-	-	╞
	147,00-147.50 Anyodalolidal Crasmonts predominant.		}		-		
. <u></u>			10	-	-	/	\mathbf{F}
	H-wall gradational. F-wall 45°, sharp.		r			ſ	ļ
	147.50 - 149.50 Argilaceous tuff . H- wall 45° . F-wall contact	*/1 * -	8	- 1	-	a-2	ł
	Predeminantly Blackish tuff interbadded with na		3		-	Ç , -	
	laminas of argillite, Culoritic.			-	-		-
!			50	_	1	_	150
	149.30 - 150.40 Green coarse - grained intermediate tuff to lo	pili	N		<u>к</u> (
·	H-Nell contact 90". F-wall contact not discern	261e; _		- i - i	. ·'	-	
	core Broken up	·	ľ	•	<u>ि</u> -		
0.40-180.40			-	- 1	È.		-
V.4U~180,40		ITE.			Ś		
	<u>H- Hall contact not discrime ; core Broken up</u>		-	-	r,	-	\mathbf{F}
	F-Wall contact not discervelle; core Broken up				śĽ-	Si- 2	
	Interroediate tuff with fragmental texture of lapilli fragments within fine-grained siliceous			-	- 1	<u>ā-2</u>	F
	and diloritic matrix. Silicification is due to	*	sh		ະ ເ		1
	atteration Green dilerific Bonds throughout		2 D	- 1		-	-155
	the interval Mineralized by pyritic-pyrit	otite	~ 1		4	_	
	stringers and Blobs, specks - upto 4 1/2 avera	1					
·	In places traces of sphalerite. The unit co	note	•• • 1 	:	$\overline{\lambda}$	-	L
	of intervale of siliceous, quarte-rich interme	liste		н. 	<u>بر</u>		
	- tuff and green-grey chloritic intermediate t	Historia		-	<u></u> {}		-
	Mineralization By: py, po and traces of SI so				\sim ,		
	to be distributed eventy throughout the un	# -	-	_	Ę	-	L .
	although traces of red Grown sphalerite as				2		
	associated with silica-rich intervals. In pla	se -	-	-	5	-	- 160
					2		

PAGE

17 OF 28

HOLE No.

C

L.,

[((

丁91	-23
-----	-----

MINERALIZATION ALTERATION	SAMPLI	FROM	то	H107h	Au Ipb	Ag g/t	As ppm	56 ррм	
2-3 % Py ; matrix filling narrowstring, specks, clistern.	H 198	141.00	142.50	1.50	14	1,0	39	6	
Hr Ry.	H 199	14250	14400	1,50	10	0.3	23	7	
tr By.	H200]44,00	145.50	150	5	0.2	8	3	
t- ру	H201	14550	147.00	150	2	0.3	19	3	
% Ry; locall stringers, specks	H202	147.00	14 2.50	150	15	0.7	102	5	
— 11 — (core loss)	H203	148,50	150,40	[90	6	0.Z	14	2	
". Ry + Po ; stringers, specks, olissem. Traces SL	<u>H 204</u>	15040	151,90	150	59	0.7	ેન્વ	2	
<u> </u>	н 105 1	<u>151,90</u>	153,40	1450	27	0.6	4	2	
1/ Ry+Po -11	H206	15.40	15490	1.50	15	0.7	25	Z	
3% Py+Po	H207	IS4 90	15 <u>6.</u> 40	1.50	22	1.0	323	3	
3% Py+Po	H208	156.40	157.90	1.50	161	ها	492	5	
-2% Po	H209	157, 1 0	159.40	1.50	33	<i>[.</i> 0	9	2	
	H210 I	159.40	16090	150	75	06	2	2	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 18 OF 28

		. S		1 A	160
		-			
	-	-	,7	-	-
	5	-	100	- Si- C <u>L</u> -	
	120 54	_	, , /_S		- 165
	-	-	12	-	-
167,64-169.64 Breacia Angullar folsic dasts within greenish intersely diloritic matrix. Il-Hall contact not	~	THE ST	Г - ,	CL-2 S(-1	
discernable, core Broken up. F-yall contact 50°	×0 %	1 4 4 B	- -		Į –
171.15 - 171.30 Gouge band, Fault, at 50° to C.A.	-	1	- -	51-2 21-2 21-2	. 170
	-	-	\ <u>√</u> ,	-	-
	-	-	<u>`-</u>	-	_
	-	-	/ !/	(1-2 5;=1	-
J	-	-	\ 71	-	- ns
	5	-	/ . ,	_	
		-		-	
				-	
		-	Ţ,	-	-180

PAGE

19 OF 28

HOLE No.

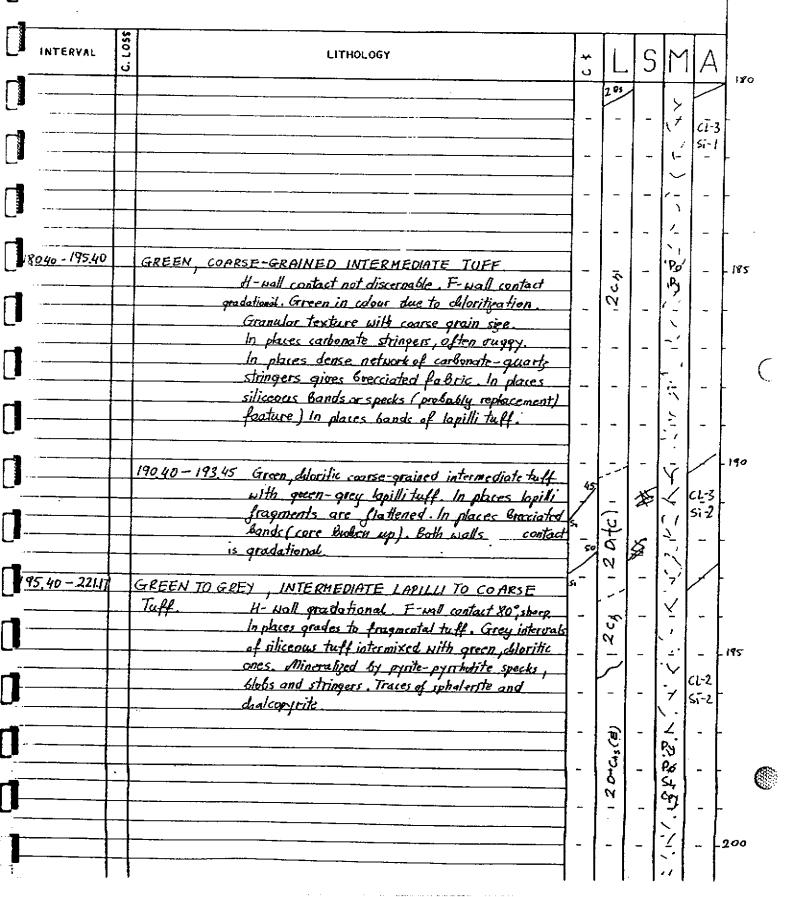
[(

Γ

[

[

丁91-23


				·	,			- .	_
MINERALIZATION ALTERATION	замы	E FROM	то	W1074	Au Reb	Ag g/t	As ppm	Sè ppm	
-3 / Pa+Py; stringers, specks, disseminated	4211	160.90	9 16.3.40	0 1.50	60	1.0	68	2	
3% & + Ry; 11	H212	162.40	163.90	01.50	28		224	4	
II	H23	163.90	165.40	, 1.50	23	1.0	2	2	
	* <u>H_114</u>	165.40	166.90	1.50	43	0.8	7	3	
-2% Ry+Po, specks, dissemin.	<u>H215</u>	166.90	168.40	1,50	17	0.6	28	2	
	H216	168,40	169,90	1.50	13	1-0	109	7	
(#217	162,90	171.40	(50	ຊູ	0.7	58	5	
-3 % Ry+Po; stringers, specks olissem.	H.218	F71.40	172.90	1.50	47	1.8	161	18	
~2 % Ry+R; -11-	H219	172,90	174.40	1.50	11	0.]	21	9	
<u> </u>	H 220	174.40	175.9v	150	26	0.6	136	7	
<u> </u>	H 1 7]	∏ <i>5,</i> ¶0	177.40	1.50	168	0.6	36	9	
	H 222	177,40	17890	1.50	25-	0.7	61	9	
	H223	17890	18040	150	27	6.6	412	16	
							·		

· .

GRANGES EXPLORATION LTD

PAGE 20 OF 2θ

HOLE No. J91-23

						· · ·				
GRANGES EXPLORATION I DIAMOND DRILL LO	TD									
		:				· · · · · · · · · · · · · · · · · · ·	PAGE	2		28
HOLE No. 381-23							-			<u> </u>
MINERALIZATION ALTERATION	SAMPL	E FROM	то	HIDTA	Au	Ag g/t	As	56		
2% Pot Ry; stringers, Blabs, specks	H 229	180.4	0 181.90	1.50	195 19	0.8		ррлт [()		
	HLLZS	181.90	18340	1.50	72	04	2	10		
	H 226	183,40	184.90	1.50	17	0.7	9	9		
	H 227	184,90	186,40	150	17	0.4	2	9		
<u> </u>	H.228	186,40	187.90	1,10	22	1.2	67	14		
	H229	18790	189.40	<u>150</u>	92	0.6	29	13		
	41230	189.40	190, 9 0	<u>1</u> 50	186	1.3	14			
1-2% Py+Po; Blobs, specks, disseminated	H 251	19090	192.40	1.50	121	1.1	Z	12		
(I	H232	192.40	19390	1.50	154	0.8	2	7		
II	H 233	19390	19540	1,50	121	0.3	2	ฮ		
1~2 % By + Po, tr SL, tr Cpy specks, stringers, discom	H254	19540	196 PD	1.50	129	0.4	2	8		
		196.90		_			5	9	 	
<u></u> <u></u>	H 136	19840	19 <u>9</u> 9	1.50	140_	0.5	38_	2		
	<u>+</u> +									
	1{						· 1			

[

[

HOLE No.	J 91 - 23	PAG	E	22	of 2	8	_
INTERVAL .	LITHOLOGY	++ U		S	Μ	A	1
			_	_		_	200
····			-	-	2	_	-
			-	-	P Po SL	5- 4-	2 Z-
			-	-	SL ,	-	- ·
			20-cu		=	si-3 (1-3	-205
	205.10-206.10 Brocciated / Crushed rome, flooded with quarty	- <u>-</u>	2	×		/-	
			-	-	- 17 1	-	Į (
			(E) 5,	_	- ۱	-	
			DICC	-	-1 -2	-	-210
			-27	-	-/	-	-
			-	-	- - 	- sī-z	
			-	-	1	SI-2 CL·U	-
			-	-		-	F
			-	-	- [5]	-	_ 215
			_	-	Po SL	-	-
				-		_	
<u></u>		_	1		1		Q

GRANGES EXPLORATION LE DIAMOND DRILL LOU							PAGE		23 OF	~8
J91-23										
MINERALIZATION ALTERATION	ЗАМРІ	FROM	то	WIOT	Au Ppt	Ag g/t	As ppm	S6 ppm		
"2% Ry + Po , tr SL ; specks, stringers, disseminated.	H 23	19 <u>9</u> 9	2014	0 1.50	56	0.)	2	2		
U	H 238	201.4	1029	0 1.50	28	04	2	2		
u	H239	202.90	2044	r 1.50	35	0.Z	2	2		
	H240	204.4	1059	0 150	70	0.3	10	2		
	H241	205,90	2074	0 1,50		1.9	18	2		
	H242	207.40	2089	1.50	2.00	0.1	2	2		
	H.143	208,9 ₀	210.40	1,50	los	0.5	22	2		
	H.244,	210,40	21190	1.50	240	0.8	2	2		
	H245	211.90	213,40	1.50	330	0.4	2	2		
	H 146	213,40	214.90	1.50	ລເວຣ	0.7	58	2		
<u> </u>	H247	214.90	2 16.40	1.50	40	<u> </u>	131	2		
((H_248	216.40	217.90	1,50	15	2.5	4	2		
									┠₽	

H250 2194022115 1.75 660 1.3 18

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE - 24 OF 28

(**

HOLE No.

丁91-23

	(n]				·.		
INTERVAL	LITHOLOGY	c ≁		S	Μ	Α	210
			D-C/4		X		
221.17-223.81	GREEN INTERMEDIATE LAPILLI TUFF (ARGILLACEOUS)	77		-	$\overline{}$	~~	₽
· · · · · · · · · · · · · · · · · · ·	H-wall contact 80°, sharp, marked by parrow	5.			27 20 22	se-2	1
	stringer of sphalerite. F-wall contact sharp. 70°	- ¥0	-	-	1/52	25-1	-
·]	marked by band of gouge. Strong flattening	51_	±jaz				
	Fabric throughout the interval. Predominantly	75	2		-		
	- tuff, with argillite np-up clasts, No silicification	<u>;;</u>	_			_	_
]	Sericitic, phy llitic. Mineralized by 2% of			圣	\mathbf{V}		
	pyrite and pyrrhotite. Traces of deal copyrite		10	7	\ _	_	-125
	Also weakly diloritic.	'	5	ŧ.	1	5-3	
223 81 - 230,60		- 90	(× 8) 1 (1	#		5F5 (E-1	-
	GREEN-GREY INTERMEDIATE FINE TO LAPILLI SANDY TUFE	'	F	¢			
<u>ה</u>	H-Nell contact 70°, sharp F-wall contact 55; have	-	4+0,C7L	¥	Ĥ	-	_
	Commonly Brecciated (core Broken up) with	775	õ	4	2		6
	quartz-rids intervals mineralized by traces of	-	*	-	ς'	-	- N ie
	the whole interval. Often quarty stringers or			Ŕ	-		
1	veinlets at 70~ 75~ 90° to the C.A.	-	-	~	-	-	-
.				Æ	Ry Ro		
23260-238,50	GREY INTERMEDIATE LAPILLI TO COARSE - GRAINED TUFF.	-	7	-		7	230
.	H-Wall contact 55°, shorp , F- Wall contact	70			\star		
ע וו	gradational. Siliceous with silica-rich intervals		-	-	7	- [•
J	scattered throughout the unit. Lapilli fragments	_	_	_	Ϋ́	_	_
·	often flattened (phy litic). Power part of the				()	<u></u> <u> </u> <u> </u> <u> </u> - z <u> </u> - z - z - z - z - z - z - z - z - z -	
┣╌───┼	interval : flattened lapilli tuff with (intermixed)	-	-5	-		-	
J	argillite rip-up fragments. Mineralized by		<u>थ</u>		11		
	pyrite and pyrrhofite		Ŷ	- [Ϋ́,		
			2 2	·	<u>'</u> /	Í	
·····	215 (0 . 21(50	-	-	-	<u> </u>	- }	235
₽	235.60-236.50 Swarm of ungay quarty-carbonate stringers	Ì			愛情	1-3	
	encrusted by coarce cryptals of pyrite. Increase in pyrite content.	-ຄ	-	-		a=2	
					≤łŀ		
		-	-	-	- [-	
		I			-		
23850-240.66	BLACK TO DARK-GREY ARGILLACEOUS FINE-GRAINED TUFF	-	ノ	-	-	-	ß
	H-Noll contact gradational, F-Noll contact 60	ľ					C
	Ualcanic component decreases down the	7	Ē	-	_	- [
▶	interval.		1 E	_		_ L:	240
J			7		-	Ē	
ſ	1	r	1	ł	ł	ļ	

丁91-23

25 OF 28 PAGE

.-

HOLE No.

C C

Γ

L [

[(

MINERALIZATION ALTERATION	SAMPL	E FROM	то	WIDTH	Ац Ррђ	Ag g/t	As ppm	Sb ppm	
-3 % Pyrite, tr Po, tr SL; stringers, specks, dissem	H1.51	22115	2224	1.25	290	1.1_	42	2	
	H252	222.4	2.23,8	1.41	30	06	7	2	
1. Ry ; tr Po, tr SL; specks disseminated	H253	223,81	125.00	1.14	6	0.5	17	2	 `
<u> </u>	H 1 54	22500	116,50	1.50	ID	0.9	12	2	_
— 11 — (core loss)	H255	\$26.5 0	228,00	1.50	3	0.7	13	z	
<u>u</u>	H 256	22800	229,60	<u>160</u>	5	0.8	30	3	
			23050			-	-		
°/ Rj			23250						
2%, Py, 1%, Po, tr SL, stringers, specks, dissem.	H259	252.10	233.60	1.50	84	0.6	/3	2	
	H260	233.60	235./0	1.50	67	1.3_	60	2	
4×Ry + SL 11	H 261	235,10	236,60	1.50	18	J.Z.	78	S	
	H262 -	23(60	13 <i>8,</i> 50	1.90	31 0	28	25	2	
			239.60 240.46			0.4 0.1	14	3	
	<u> </u>								

GRANGES EXPLORATION LTD

PAGE . 26 OF 28

e Li

.

HOLE No.

丁91-23

	10								
INTERVAL	C. LOSS	LITHOLOGY	*			S	M	A	
242 66 - 247.72		DARK-GREY INTERMEDIATE FINE-GRAINED TUFF TO	F		\geq			+	240
L		TUFFACEOUS SEDIMENT		«					1
		H- Nall contact 60 . F-wall contact gradational	1-	1	-	-	-	-	ŀ
	Ĺ	In places brecciated, flooded with quarty-cart	l. t	2			1		1
•		matrix (parcay intervals), Moderataky Alasitic		~ I.	3	-	-	-	F
		(in places). Fine tuff intermixed with sandstone	レ		2			1	
		and/or argillite, Mineralized by trains of pyrite. In	51=2		- 1	-	-	-	-
٦		places predominantly fine tuff.							ļ
		proces proventianity drift with.	- 1	-	•	-	-	-	\mathbf{F}
			י	0					
 ד			51-50] -	-	-	-	-	- 245
									1
			-	-	-	-	-	- 1	F
т]	
247.72-25380		GREN THE TO REPUBLIC TO THE	-	-	.	-	-	i -	ŀ
STL 12 23 300		GREY, FINE TO MEDIUM-GRAINED TUFFACEOUS SANDSTONE		2	-1				c
7		H-wall contact gradational. F-wall contact gradation	<u>al .</u>	_		-	-	_	
<u></u>		Gradually increase of argilite component at the			ł	ĺ			
		base of the interval. Mineralized by stringers	-			_	_	_	-
r		and specks of pyrite-pyrchotite with traces of		14-1	2				
┟────┤	-	sphalerite.	_	15	•	_	_	_	- 250
				7				_	
F		251.60 - 252.50 Breccia (Fault? Fragments of taffareous	_	× ت				_	_
┣━━━━━┤		sandstone flooded with queste-carbonete matrix		7			Ţ,	si-3	-
	-1	F Hall contact 70°. Core loss	_	1	[-	5 15	
F	_		-	-	Ē			~	-
L	-				Γ	70	- ' [
	_		-		-	- 4	- -	si-t	-
25380-256.95		BLACK ARGILLITE		لتحمر		, 1	የ <u>)</u> ዓር ቤረቶ	a-1	
L		H-wall contact gradational. Upper part of	2	-		≁	F	-	-
		the interval is brecciated and flooded with	-	ڍ ا	3	×	V		.
		quartz-carbonate matrix where it is mineralize	-	h		劉	-	-7	. 255
		by tr of sphalerite and pyrite-pyrthotin	.	27	1	P			
		spects (up to 1%) also traces of dual copy	-	r -			-	-	-
		= tite. Mineralization is cut off by fault	·	2	1				
•		at 255 95.	- 1		1-	- -	-		•
	1	MJ 7607 (J+		·-	-			- 1	
		255.87-256.00 Narrow Band of gouge / fry Hindicator 1	-	-	•	•	-	-	(Carlo
	ſ								E
		flanked by gones of Broccia tod arpillite, flooded with quartz-confignate matrix. 50° to C.A.	-	-	-	-	-	- -	
	1	ALLY queriz-consomere mattyx. 50° to C.A.							
	-1-	END OF THE HOLE	- [-	-	• [-	- -	260
= 256.951 -			-						
- 256.95	╈								

. . . i . .

GRANGES EXPLORATION	LTD		:							·
UIAMOND DRILL LO	JG		•				PAG	ε	27 _{0F}	- 28
HOLE No. J91-23										<u> </u>
MINERALIZATION ALTERATION	бамр	LE FRO	H TO	W10	TH Au Ppł	- i ~				
tr By , tr SL , specks, dissem	H26:	5 240.	<u>6624</u> 2.	20 1,5	65	0.1	8	2		
— <i>y</i> —	H.266	5 2422	0 243.	20 1.50	, 6	0.]	17	2		
— <i>II</i> —	4267	7 243.7	0 245,2	1.50	4	0.4	21	2		╊╌━╴ ┫━── ┨╌──
	H.268	3 2452	246.7	1.50	6	0.5	17	2		
()	4.269	246 70	248.20	2450	7	0.4	16	2		
- 11	H 270	248.7	249,7	1.50		0.6	21	2		
— <i>y</i> —	H.271	2497	151.60	1,90		0.5	27	3	· · · · ·	
tr By, Po, SL, 60% - of quartz Core loss	H 172	251,60	2528	0.90	13	ai	19	2		
tr Ry, SL; specks, norman stringers	H273	252,50	253,80	1.30	IB	0.5	44	3		
tr. SL, tr ~ 1%. By, tr Ro; specks, disr m	Ħ274					3.3	95	2		
- 11- (core loss)						1.3		2		
tr py	H176	256 au	256.95	Q95	6	<u>[.]</u>	38	6		
					 				_	
										_

ACTION CONTRACTOR	LABORATORIES LIDE 842 ET MASIDINOS SER COUVER BIC: VGA 1RG PHONE(604) 253-3158 FAX A1253-1716 GEOCHEMICAL ANALISEB CERTIFICATE Granges Inc. PROJECT UNUK RIVER 134 File 4.91-5155 Page 1 2300 885 U Georgia Stry Variouran BC V6C 358
SAMPLE# J91 - 23	Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Li B Al Na K U Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
H 146A Re H 150 H 147A H 148A H 149A	1 43 10 97 6.7 13 13 1926 5.48 61 5 ND 1 173 8 10 2 17 6.38 078 3 8 1.76 55 01 7 1.13 .01 .25 1 16 280 1 18 12 112 3 4 15 1821 6.76 51 5 ND 1 67 7 6 2 35 2.35 276 7 7 1.90 46 601 2 2.48 .01 .24 14 40 1 12 4 131 .6 2 12 2.5 .80 1 177 2 2 2 2.2 2.2 5.17 60 01 4 2.15 .01 .32 3 75 1 15 12 173 11 3 12 1664 6.96 17 5 ND 1 56 7 5 2.17 60 01 4
H 150 H 151 H 152 H 153 H 154	1 17 19 110 3 3 13 1671 6.60 50 5 ND 1 63 7 6 2 32 2.09 262 7 6 1.79 44 01 3 2.35 .01 .25 1 12 55 1 10 12 132 6 4 21 940 7.65 65 5 ND 1 40 2 7 2 54 .82 088 5 18 2.37 23 01 2 3.29 .01 .24 12 60 1 13 17 161 4 1 11 1456 5.66 36 5 ND 1 53 14 4 2 21 1.72 184 7 6 1.49 46 01 2 2.82 9 130 12 55 12 60 9 130 14 50 130 14 50 14 5 14 50 14 50 14
К 155 К 156 Н 157 Н 158 Н 159	1 9 28 49 7 3 11 841 5.48 148 5 NO 2 42 2 8 2 18 1.16 227 7 8 .84 50 01 3 1.47 .01 .56 22 110 1 9 14 65 8 2 10 2078 5.93 153 5 NO 1 71 3 7 2 18 2.70 201 6 5 1.17 45 01 2 1.36 .01 .44 2 70 1 15 15 53 9 2 14 961 4.66 119 5 NO 1 66 4 7 2 17 1.81 217 7 5 .80 56 01 2 1.43 .01 .54 1 95 1 15 14 25 6 4 12 263 3.91 514 5 NO 2 37 5 13
H 160 H 161 H 162 H 163 K 164	1 21 12 1096 6.41 355 5 NO 1 64 8 8 3 26 1.35 246 7 6 1.16 71 01 4 2.36 .01 .48 1 7 50 1 116 8 83 3 13 28 1367 5.50 37 5 NO 1 77 2 9 2 40 1.51 217 6 7 1.56 80 01 2 2.92 .01 .50 6 50 1 174 12 73 .2 12 27 183 2 5 2 27 1.75 151 4 6 1.05 180 01 2 1.31 .01 .40 10
H 165 , H 166 H 167 H 168 H 169	2 56 36 250 3 18 16 743 3.06 83 5 ND 2 58 2.5 13 2 13 1.09 0.82 3 5 .50 60 .01 4 .81 .01 .49 10 130 1 53 15 63 9 16 18 556 3.09 568 5 ND 2 87 2 15 2 11 1.31 0.061 2 9 .63 71 0.1 3 1.08 .01 .49 1 65 1 24 12 58 1 14 9 974 3.36 167 5 ND 2 89 3 12 2 6 1.95 055 2 4 .54 47 0.1 2 .50 .01 .35 36 35 1 67 16 68 3 38 16 698 3.99 33 5 ND 3 1.56 20
H 170 H 171 H 172 H 173 H 174	1 10 13 142 2 11 28 1187 6.84 69 5 NO 1 15 2 54 4.86 1064 3 19 2.21 49 01 2 2.64 .01 .10 3 125 1 0 11 192 2 7 19 804 6.35 5 NO 1 187 4 15 2 54 4.86 1064 3 19 2.21 49 01 2 2.64 .01 .10 3 125 1 10 11 192 2 7 19 804 6.35 68 5 NO 1 185 1 10 2 37 4.10 079 4 9 1.60 45 01 2 2.27 .01 .09 6 170 18 24 49 203 7 19 804 6.35 5 ND 1 121 3 30 2 39 3.14 157
H 175 H 176 H 177 H 178 H 179	1 7 3 146 1 5 23 1025 6.24 28 5 NO 1 100 4 3 2 48 2.85 07 3 17 2.11 59 01 2 3.02 .01 .100 1 100 1 12 8 145 2 7 26 766 7.28 26 5 NO 1 58 2 63 1.32 077 3 19 2.28 98 01 2 3.40 .01 .12 1 155 1 6 2 1199 5.00 27 5 NO 1 172 3 2 2 86 5.32 077 3 19 2.28 98 01 2 3.40 .01 .122 1 155 1 3 2 138 1 6 18 1897 8.13 12 5 NO 1 180 2 2 2 102 5 10 2 2.773 </td
H 180 H 181 Standard C/AU-R	1 3 5 123 1 6 21 1539 7.56 12 5 ND 1 191 2 2 2 102 5.80 118 4 6 1.48 32 01 2 2.84 .01 .08 1 1 75 1 4 2 121 1 3 24 1359 7.81 14 5 ND 1 166 2 2 2 86 4.73 118 3 7 1.27 36 01 2 2.84 .01 .08 1 1 75
AS •	CP • .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. HIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. SSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG ANALYSIS OF FLAMELESS AA, amples beginning (RE! are duplicate samples.
DATE RECEIVED:	

J91- Z			ppm X ipp	ppm ppm ppm		some pon pon por	m X X ppm pp	n X ppm	ppm X X X	REAL	ppb
H 182 H 183 X 184 X 185 H 186	3 11 6 22 24 7	120 1 6 29 144 1 5 25 82 3 6 22 128 6 9 22	1584 8.01 82 1807 7.52 12 1864 7.36 6 2356 11.13 22 1080 18.00 378	5 ND 1 5 ND 1 5 ND 1	138 2 152 .2 144 .2 151 .2 43 .2	4 2 9 2 2 9 7 2 4	5 5.56 127 5 6 5.36 123 4 8 8.09 086 2	6 1.30 35 01 6 1.33 33 01 6 1.29 35 01 7 1.15 28 01 8 .48 14 01	2 2.65 .01 .13 3 2.50 .01 .14	65852352	120 100 125 885 11000
H 187 H 188 H 189 H 190 H 191	7 6 14 1 11 12 1 9 11 1 8 10 1 15 15	228 1 5 17 147 12 6 22 93 1 2 28 117 2.8 4 20			50 .3 41 .5 78 .2	36 2 10	6 1.05 018 2 6 .58 041 6 9 3.15 103 7	6 .53 20 .01 6 .55 26 01 5 .39 33 01 9 1.55 76 .01 3 1.38 36 01	2 .85 .01 .25 2 .85 .01 .29 2 2.09 .01 .28	1 2 1 2	9900 1710 1600 180 135
H 192 H 193 H 194 H 195 H 195 H 196	1 17 75	112 5 9 8 39 99 4 0 8 37	293 6.89 488 637 5.42 118 1597 7.60 102	5 ND 1 5 ND 1	43 ,2 79 ,2	78 2 10 42 2 11 20 2 11 16 2 61 19 2 31	3 .73 052 2 9 .96 .062 2 1 5 2.79 062 2 3	8 .04 21 01 9 .12 24 01 5 .56 33 01 1 2.10 39 01 1 1.49 30 01	3 2.11 .01 .24	1 756	625 420 335 130 150
H 197 H 198 H 199 H 200 H 201	1 5 10 1 5 3	87 10 6 31 81 3 5 28 86 2 4 16 66 3 6 25	1362 5.43 04 2139 7.12 39 1339 7.11 23 1014 6.83 8 904 4.53 19	1 סא 5 5 NO 1	67 2	6 2 5/	8 3.65 058 2 2 6 2.12 047 2 2 5 1.36 061 6 1	5 .89 34 01 9 2.58 32 01 7 2.41 43 01 9 2.62 34 01 9 2.62 34 01 8 1.74 62 01	2 3.17 .01 .19	1 74 1 14 1 10 1 5 1 2	115 45 35 25 40
X 202 H 203 H 204 H 205 H 206	1 11 18 1 4 13 1 16 23 1 6 10 1 9 8	93 72 1 5 133 7 2 3 115 6 2 4 101 7 2 4	1050 4.35 102 744 5.80 14 1312 7.43 74 968 5.87 4 1100 5.71 25	5 NO 1 5 ND 1 5 ND 1 5 ND 1 5 ND 1 5 ND 1	74 22 59 22 43 22 29 33 39 22	5 2 44 2 2 1 2 2 56 2 2 40 2 2 40	7 .56 117 13 8 .65 106 6 0 .49 106 10	5 1.12 61 01 6 1.25 70 01 8 1.04 33 01 8 .96 40 01 5 .92 40 01	2 2.45 .01 .26 2 1.67 .01 .08	1 15 1 6 1 59 1 27 1 15	125 105 130 95 120
RE N 202 N 207 N 208 N 209 N 210	1 11 19 6 13 21 24 18 16 1 20 11 1 11 18	60 1.0 1 5 216 1.0 3 5 91 1.0 2 5 140 6 1 7	1031 4.29 97 618 4.47 253 478 2.78 492 1232 6.90 9 2203 8.69 2	5 KO 1 5 KD 1 5 KO 1 5 KD 1 5 KD 1	73 .6 27 .2 21 .7 22 .2 26 .4	3 2 44 3 2 3 5 2 19 2 2 54 2 2 54	7 .34 092 9 9 .26 067 6 4 .30 080 6	4 1.12 63 01 5 .59 38 01 6 .27 41 01 7 1.14 33 01 9 1.58 29 01	2 .50 .01 .15	1 11 1 22 1 161 1 33 1 75	105 160 255 65 105
X 211 X 212 X 213 X 214 X 215	4 17 30 1 16 14 1 12 18	38 1 5 3 4 157 1 0 2 6 114 8 2 7	1984 9.33 68 878 4.49 224 1747 7.96 2 2083 8.76 7 1533 5.95 28	5 00 1 5 07 1 5 08 1 5 08 1 5 08 1 5 1 08 1	32 31 22 22 35 35	2 2 55 4 2 33 2 2 48 3 2 54 2 2 49	3 .66 083 7 8 .42 098 6 4 .48 101 7 1	6 1.64 31 01 9 .68 38 01 7 1.37 32 01 2 1.58 30 01 6 1.29 43 01	2 2.24 .01 .09 2 2.67 .01 .07	1 23 1 43	150 265 160 75 140
H 216 H 217 H 218 H 219 X 220 H 221 H 222	10 37 50 1 11 12 1 10 10	96 77 3 4) 135 1 8 3 6 ! 144 7 1 4	3226 7.08 109 925 5.90 58 2458 6.84 16 2111 6.51 2 1340 6.69 136 1283 6.36 36 987 6.17 6	5 NO 1 5 NO 1 5 NO 1 5 NO 1 5 NO 1	104 .6 33 .3 79 .2 43 .2 30 .2 32 .6 25 .2	5 2 34 18 2 27	4 .50 10872 8	5 3.05 53 0) 8 1.19 64 01 2.38 84 01 2.04 50 01 1.44 45 01 1.49 43 01 1.38 41 01	2 1.46 .01 .11	2222 ·	180 170 950 470 300 145 220
H 223 H 224 H 225 H 225 H 226 H 227	1 24 10	62 🚟 63 9	1556 5.18 412 1561 6.13 35 2047 8.07 2 1705 8.22 9 1646 8.75	5 ND 1 5 NO 1 5 NO 1	45 2.7 27 22 32 22 26 22 25 22	16 2 38 10 2 68	1.43 069 6 1 .79 131 7 10 .93 133 7 14 .95 25 7 1	3 1.44 35 01 3 1.48 47 01 5 1.68 41 01 3 1.80 40 01 3 1.90 40 01	2 1.48 .01 .11 4 2.14 .01 .07 4 2.83 .01 .06 4 2.77 .01 .05 4 2.92 .01 .05	1 27	130 135 105 245
X 228 X 229 X 230 X 231 X 232	1 6 13 1 34 58 1 20 44	185 1233 1 11	2296 9.82 57 1915 7.94 29 2127 9.27 4 2106 10.21 2 1473 8.32 2	5 NO 1 5 NO 1 5 NO 1	60 2 40 3 32 2 35 2 35 2	14 2 69 13 2 54 11 2 70 12 2 62 7 2 66	2.52 12 5 5 1.39 07 5 10 .99 31 6 5 .90 .05 5 4 .63 .20 5 5	2.54 38 .01 2.51 31 01 2.82 31 01 2.45 29 02 2.10 34 01	4 2.87 .01 .06 3 3.14 .01 .06 4 3.89 .01 .05 6 3.99 .01 .04		205 55 300 160

1.1.1.

A A	LABORATORITES LED BLER HASLINGS ST V COUVER STC. VON 11R PROME (60 723-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-
Н 233 Н 234 Н 235	1 3 10 159 3 1 8 1466 9.52 2 5 ND 1 24 2 8 2 76 .39 138 5 10 2.28 37 .02 3 3.86 .01 .05 121 125 1 5 10 197 4 1 7 1561 8.38 2 5 ND 1 26 2 72 1.67 28 5 6 2.02 53 01 4 3.39 .01 .05 129 135 1 17 10 134 .4 1 6 1544 8.18 3 5 HD 1 28 2 9 2 65 .43 126 6 7 1.98 45 02 4 3.08 .01 .05 1 240 80
\$АМРLE# J91-23	Ho Cu Pb Zn Ag Ni Co Hn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Be Ti B Al Na K V Au* Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
8236 8237 8238 8239 8240	2 8 8 122 .5 1 9 1246 8.16 38 5 ND 1 33 2 2 2 63 .52 111 6 4 1.91 59 02 2 2.63 .01 .13 1 440 95 2 3 8 16 1 7 947 7.30 2 5 ND 1 32 3 2 2 68 .62 122 9 2 1.84 65 01 2 2.57 .02 .15 156 90 4 4 16 88 .4 2 6 685 6.65 2 5 ND 1 59 2 2 2 63 .88 122 9 4 1.19 64 01 2 1.87 .02 .16 28 80 3 5 12 109 .2 1 7 1255 7.41 2 5 ND 1 53 2 2 67 </td
H241 H242 H243 H244 H245	3 62 553 688 1.9 1 8 1203 7.37 18 5 ND 1 24 2.5 2 2 73 .41 122 8 3 1.60 60 .02 2 2.40 .01 .14 1 740 345 1 8 10 136 .1 4 8 1333 8.17 2 5 ND 1 33 .4 2 2 77 .75 115 5 4 1.82 48 .03 2 2.63 .01 .11 1 1200 55 7 10 16 149 .5 1 10 1613 9.64 22 5 ND 1 26 .2 2 2 76 .53 130 6 3 2.22 47 .03 2 3.30 .01 .11 1 105 170 2 17 9 144 .8 2 11 1415 8.32 2 5 ND <
H246 H247 H248 H249 H250	8 12 28 120 .7 1 7 874 6.11 58 5 ND 1 29 .3 2 2 57 .53 .21 9 2 1.03 66 02 2 1.56 .01 .17 1 200 80 6 7 10 114 .6 1 7 969 7.16 131 5 ND 1 28 .5 2 2 74 .62 113 9 3 1.25 67 03 2 1.95 .02 .16 10 1.490 55 4 11 47 167 .5 3 7 853 6.83 .4 5 ND 1 27 .3 2 2 70 .51 123 10 4 1.30 66 03 5 1.91 .02 .15 1 15 75 2 21 8 91 .7 3 25 846 5.18 11 5 ND 1
RE H254 H251 H252 H253 ¥254	1 125 2 84 9 13 19 573 5.73 10 5 NO 1 41 2 2 3 51 .24 073 13 11 2.05 90 0.1 5 2.95 .01 .35 1 14 150 2 25 14 112 1 4 15 1032 6.26 62 5 NO 1 51 2 2 2 35 .80 163 6 4 1.88 74 02 3 2.84 .01 .41 1 2.90 90 90 2 24 9 91 .6 4 15 877 6.44 7 5 NO 1 49 4 2 2 32 .85 .165 6 4 1.79 81 .01 4 2.36 .02 .37 1 30 75 3 107 4 126 5 11 122 2023 5.5.49 12 5 NO
H255 H256 H257 H258 H259	1 83 2 86 7 11 18 981 5.85 13 5 NO 1 64 5 2 2 85 .85 091 8 17 2.72 56 01 3 3.03 .01 .23 1 3 225 3 72 8 94 8 11 18 1468 5.29 30 5 ND 1 73 .5 3 2 61 1.76 085 5 24 2.36 68 01 2 2.48 .02 .27 1 5 120 2 68 26 104 5 8 14 129 .8 4 2 44 3.44 072 4 15 2.248 .02 .27 1 5 120 2 68 26 104 5 8 1 1399 .5 2 2 60 2.87 088 3 6 2.13 77 01 2 1.93 .01 .27
H260 H261 H262 H263 H264	4 18 51 153 3 2 8 1846 6.74 60 5 ND 1 124 .5 2 3 39 3.14 0.05 4 3 1.94 49 01 2 2.07 .01 .14 1 67 160 3 15 20 131 2 1 8 1782 7.36 78 5 ND 1 118 8 2 2 30 4.32 079 3 1 1.58 45 01 2 1.52 .01 .11 1 48 140 5 19 15 124 .8 4 11 3178 6.02 25 5 NO 1 188 8 2 2 38 5.03 094 4 5 3.14 56 01 2 3.02 .01 .19 1 31 70 1 46 2 90 .4 15 21 909 5.96 1.4 5 ND 1
X265 X266 K267 K268 K269	1 39 2 246 .1 10 18 1250 5.27 8 5 ND 1 178 1.5 2 2 79 2.86 080 5 23 1.98 65 01 2 2.62 .01 .23 1 5 195 1 84 11 119 1 12 3 1650 6.16 17 5 ND 1 188 6 2 2 89 2.56 081 5 27 1.95 94 01 2 3.00 .01 .39 6 80 2 60 3 93 .4 8 20 1396 4.96 21 5 ND 1 163 5 2 3 32 2.81 114 7 5 1.17 90 01 3 2.40 .02 .44 45 1 71 5 90 .5 8 16 1685 4.81 17 5 ND 1 22 2 33<
H270 H271	1 44 4 85 .6 18 16 874 4.68 21 5 ND 1 161 8 2 3 38 2.25 069 3 17 1.58 90 D1 3 2.37 .02 .33 1 10 115 1 38 3 .55 5 12 14 645 3.37 27 5 ND 1 95 2 3 2 21 1.49 061 3 10 .99 96 01 4 1.58 .02 .34 1 1 265
К272 Н273 Н274 К275 Re M003	3 14 9 20 1 17 11 542 1.59 19 5 ND 1 93 .2 2 2 11 1.34 032 2 9 .43 57 .01 3 .73 .02 .17 1 13 25 1 31 8 49 5 10 11 630 2.56 64 5 ND 1 97 2 3 2 17 1.51 .044 3 9 .80 90 .01 4 1.28 .03 .29 1 18 40 3 117 370 1123 3 23 14 876 3.62 95 5 ND 1 99 19 2 2 26 1.27 .080 5 13 1.63 111 .01 2 2.19 .02 .32 1 35 450 2 140 37 149 3 28 15 1149 4.38 69 5 ND <td< td=""></td<>
H276 DATE RECEIVED:	1 119 14 102 1 27 14 711 3.97 38 5 NO 1 91 22 2 2 28 1.43 107 5 16 1.89 103 01 2 2.59 02 30 1 6 45

GRANGES EXPLORATION LTD

PAGE I OF 14

Ę_((

J91-24

Drill behind J91-8 to test 900 Zone

9944,887 N 19850 SSIE

LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
9+50N - 1+50W	389.907 m	270°.	249.94
DIP - 50°	DIP TESTS 70-1 - 52° 207.26 -60°	VERTICAL PROJECT	HORIZONTAL PROJECT 147.50m
LOGGED BY DATE GFM Oct16/91	CONTRACTOR J.T. Thomas.	CORE SIZE BQ	DATE STARTED OCT 16/91 DATE COMPLETED OCT

· ...

SUMMARY LOG

0-10.67 CASING	80.55- 88.07 Interrediate Lapilli, Seliceoas.
10.67-40.25 Sondstore, settione, mudstore	BB.07-9144 Silicion tuffacious Sandstone
fars-53.3 Black angelike contrated graphitic	91.44-96-9 Internediate Lapelli to trif breesa - Silician frago
53.3-59.35 Felsic/Internationthe Trif breezen (DATUM)	95-9-97.2 Argellaceous fine heft
59.35-62.5 Internaduate lapelli hilf	91.2-103.3 Internediate Uni precesa - Scheepen frage, chlandic-
62.5-62.84 Argillaceous fire tuf	103.3-105.7 Internediale fine huff, scherene-chlorictic
52.84-64-88 Angellacion Lapelli tiff, vision la frage	105.7-152.35 Tutersonak tullbroccia - sulcion frago - chlorike
64.88-67.45 Angulaceous Lapelle taff, chlorine frage	152.35-154.05 Interediate fire high - Silveron - Chloritic
67.45-70.0 Angellaceous fre tuff	154.05-161.6 Interneticale Til bressie, selicion frago-chlorikie
10.0-70.8 Internedicale fire tuf	161.6-170.6 Intersediale Chloritic finelift
10.8-72.45 Internadiale Lapilli Vesicular frage	1706-172.3 Interediate reduce til - Chloritic
12.95-12.25 Internediate medium tuf, auguilete page	172.3-195.9 Interrepeter Tul breezen, Silecon page- chloritic, vie
1325-76-35 Interneticke lapelli, chloritie frage	195.9-196.7 Int./filsic flathened lapille - chi page/filsic page
16.35-79.05 Angellacean fine to coarse triff	1967-200.85 Tylessediele medium fult/fult sandstone
19.05-7950 Interediate Lapilli	200.85-209.48 Internadiale Tuff Breesia - Selecton frage - chlorobi
19.5 - 79.7 Argullacion fie tuft	209.48-240.8 Argellite, folialed.graphilic
19.7 - BO.SS Internedicate fire hift to lapille	240.8- 244.2 Felsie fue tuff / entrusis dyke
SIGNIFICANT MINERALIZED INTERVALS	249.2-249.94 Argellite, foliated
53 2-x935 NULL WY	
53.3-59.35 pyritic 10%	
182- 133 T. 24-00-50-1002	
132- 133 Tr py-po-cpy	
140 - 143 pyrle 30%. 188 - 191 Tr py-po-cpy.	
· · ·	

	GRANGES EXPLORATION CONTRACTOR AND A STATE						
			PAGE 2. OF 14				
HOLE No	J91-24						
NTERVAL	C. L 05	LITHOLOGY	÷ LSMA				

(

1

			PAGE	2	Z . I	DF /	4
	HOLE No.	J91-24		·.			
	·			···		-	
	INTERVAL	LITHOLOGY			S	M	
	···				Ļ		<u> </u>
	0-10.67	CASING.			_	-	-
	10.67 - 4	10.25 du-greg siltspre and fine grained sord your					
	· · · · · · · · · · · · · · · · · · ·	with nense merd store. pydins 1-2/ localy	- 1	- -	1%	ry.	120
	· <u> </u>	gr, mor tuffacions conporent.	- 7	14K			1 <u>1</u> 0 -
		11.3-16.1 for sands tone, sellstone with ninor argetite	50				
] -	-	-	-	7
				-		-	13.0
		15.25 feult. nijor	-			·ŕí	
		16.1. Black mudstore -16.3.	- -	TT	-	-	-
		16.6 fault	5.65	72.4	ميم	7.5	-414
		16.6-18.0 contracted fine sardatore, and the desipy 5%, 90 inique 10%.	-		ہر	~	75
		18.0 fault		جر	معتلمهم	· 7.	-
	·	18.0 - 21.8 fire greyblue sondstore, sellene with mudstone on tento	51/	per	-	<u>P</u> <u></u> -	19
	···	July bedded, some feldspors, tr py, gv 3/. 21.4 angulik reprepelants.	-		-	ġ	
		19.41 angulite		-	-	ני	*-
			5/			ĨŊ	42
	·		{{ - } } 				/4:
		21.8-26.3 It quenich que felderathic sondstone with	-	2	-		-
		tufacious conposit 30%, name		4		_	-
			4	÷			
			-	ے۔ ایک	-		-/
		a a a a a a a a a a a a a a a a a a a	1/2	سيت بد	، . روب مور	<u> </u>	140
			· • • ÷	e 201	Ê	<u>i</u>	
		26-3 faut 26.4 fait			20	·	
		26.3 Joie grand blue grey Sendstore, Settstore nice muditore	i A	1			
		3.67 minor tufacions conprest.		2014 2014	4		·- 1
				7년		11	-/
					1	ł	1940
		29.3 failt.		1	استمنه	:- [- -
•	·····			-	_	-	
-							

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

Г₍)

Γ

Ç r PAGE 24 OF 14

HOLE No. J91-24 MINERALIZATION ALTERATION Au Ag As 56 SAMPLE FROM τo NIOTH ррЬ g/t ppm ppm 2 Mool 16.0 16.6 0121 2 M062 16.6 17.0 4 0965 5 M003 17.0 18.0 0.1 103 21 6 HO04 18.0 19.0 20 0.2 46 3

- }

		GRANGES EXPLORATION LERO DIAMOND DRILL LOG	PAGE	: 3			4	
	HOLE NO.	J91-24						
	INTERVAL	2 31.67 angellite 31.8 31.B-34.9 fine sandstore, sellstore miner candstore	★ 3 安 平 一	1 1.40	S R T R	M - -	A - -	31 -32 -33
		34.9-36.78 consue sondstone, huffacion conposit possible percepte	99/45 -		-	-	-	-3y -35
		36.78 39.4 fine sandstore, settstore, merdistane	- 40	- 75	-	-	-	36 37 38 _
	40.25 -	39.4-40.25 very course feldpatie Sondstone 40.25 fault 53.3 Black sheared contacted argullite with graphitic slips, gt vers 15%, diss py 3.5%	-	The way	- 	-		39 (. 40
			- - 9/45	- 1 - 1 - 5	WHAT AN AN AN		\times	41 Hz 13
		45.1 - 45.5 - Jault. graplike signinge	-	-	2 - 12 12 12 12 12 12 12 12 12 12 12 12 12	 	Y Y 9 .(- 9	
			-	- 4 -			 4 4<	
			B. C.	- 7.	1.		47 50	ć
TIRRET!	หนะเ หลือหลังก่องเวลล์ค	well bedder pourstone becoming enlicences at base.	- .	- 17			57	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

^{page} *3*4 0F/4

HOLE No.

L(

J91-24

			-							
MINERALIZATION ALTERATION	SAMA	LE FROI	t TO	MIOTH	Аи ЭрЬ	Ag g/t				
										╟
		-		-		1	1			T
									<u> </u>	.
			1							
						-	<u> </u>		-	
										┢
			-							┼╌
							_			T
		+						+		+
· · · · · · · · · · · · · · · · · · ·		<u> </u>					<u> </u>	1		
		<u> </u>								-
1-2% py v.d.	Moa	40.25	41.0		24	2.6	70	20	<u> </u>	L
и и	Hook	41.0	42.0		12	2.1	47	19		╞
11	<u></u> <u></u>	42.0	43.0		5	1.2	18	12		┞
н Н	408	43.0	44.0		1	1.4	27	14		
Н		440	45.0		5	1.4	21	11		
И	Malo	450	46.0		/	<u>1.4</u>	27	9		
4	Moll	46.0	47.0		1	0.1	22	9		
ľ	No12	4-1	48		18	12	20			
*	WOIL	<u> 7/</u>						10		
И	Mois	48	49		12	0.1	26	9		
lt	19014	49	50		2	0.1	30	13		
·										
<i>M</i>	Mars	50	<u>47.4</u>	—- -	12	0./	<u>25</u>	8		
•	4016	51.4	52		2	0.Z	45	14		

une de contrante de la contrante de

8

 $\mathcal{W}^{(p)} = \mathcal{U}^{(p)}$

								7
		GRANGES EXPLORATION LTD						
	-1	DIAMOND DRILL LOG						
			PAG	:4		OF /4	4	6
							/	
HOLE No.		T91-24						
	Д	111-27						
	13		-1			- <u>-</u>	<u> </u>	4
INTERVAL	1055	LITHOLOGY				IM	A	1
L	<u>_</u>		<u>၂</u> ၂		-17	1 1	IN.	15
r		Black argullite becoming scheening, Tr-11. py lon.				11	1	52
· · · · · · · · · · · · · · · · · · ·			150	-11s		·		-53
	4	53.3 - 59.35 75 sharp contact in hangelite, felsicho Takuediste	: ľ	- 	5			55
<u></u>		- a levery - blue geg full breccia, resicular programs		_	_	K	1_	-54
·	<u> </u>	Stolanastanosing pyrite lens, black selice parchyaltan	4					57
	┢	as fragrants foliated, occasional reaction rimson		_	_	X	1_	5-
-¥	┢	flaguests a derdutic atta vins (DATUM?) perimone						-55
	┢	latteration (K-spar)?	-15-	/ X u	- 1	F	_	-56
			65	0	·	14	1	Biksille
				1 1	-		-	-57
	┨──		_	4		1		EKsi B4
			4 -	N	_	U		-58
·			- 0	m		P		
		Lower contact gradational	i iii	1 nu ¹¹ 2Đ	· _	_	_	59
			4		1	1		6
- 59.35-62.5		Tules adala and a list all i illi		-		-	-	-60
	-	Internediale green gely fire tuff to hapille miner Vesieular progrests in fire tuff matrix, and stamosing	-	2AP		20		•
-1		residue pagetas in the ref marty a astenesing		-	-	74	-	-61
	_	papare i vers 2-31:	151					
		gradatural contact.	70	-	-	-	-	-62
62.5-62.84			-	141	1			
62.84-64.88				L-	-	-	-	-63
		takensediate grey queen Lapitte with chlorike fragments	-	9]			
		sharp /ower contact. 65°	51	\$	- ·	-		-64
64.88-67.45		Enterrediale black green angellaccours lapilli with	85	in		//		,
4		Vesicular pagnests in black mudstone mature 3-5% pyrike	1 -		-	~	-	-65
		Local tank band 50°L to SITS"	1	5	5			
·		gradational lover contact.	5	1		-	~ [·	66
7		· · · · · · · · · · · · · · · · · · ·	75	201	~~	FI		6-
	_[· · · · · · · · · · · · · · · · · · ·	1 -	[]		⁷	7	67
67.45: 70.0		Internediate de queix queen fine acquilacences het		715				/.c
· · · · · · · · · · · · · · · · · · ·	<u> </u>	foliated taces pyrile, 5% anesterrasing gh tentes		强	- i	Ē		00
┪┈╴╌╸╎	_	gradational contacts. To pyrile.	<u> </u>				2	49
╃ ───┤	_	1	65			Py -		<i>•</i> /
j			_			_	-	b _
70- 70.8	-	Internediate grey green fre hift.	· i	2A_			ľ	^ (§
70.8-72.45		Enternediale grey-green hapieli with descenter property	_	-1	- j	_	- L	7/
	4	Torpy, Trgr. giadates of contacte		3		-ايرز	arto	
	-		in the	51	-	7	<u>-</u> ;	7-
72.45-73.2	+	internediale grey-green reduin grained toff with argellike		<u>N</u> .	5 I	1	ľ	-
Hand Band State St		hadrents Trace Durite and storid cortecte	3	254	ן א	14	[• •••
www.concentration	N-3787.5	ของอยากกออราสารกรรรรรรรรรรรรรรรรรร <mark>รรฐสาชสาชสาชสาชสาชสาชสาชสาชสาชสาชสาชสาช</mark> สาชสาชสาชสาชสาชสาชสาชสาชสาชสาชสาชสาชส	act di					

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 4A. OF 14

HOLE No.

J91-24

	<u> </u>			1	1	r		<u></u>	
MINERALIZATION ALTERATION	SAMPL	E FROM	то	K107H	Au DD\$	Ag g/t	As ppm	Sb ppm	
1 /. ру. d. 5-ю́1. ру. v.	Moit	52	533				47		┼──┼
		<u> </u>					_		
5-101. py v.	Noig	53.3	54.	ļ	10	0.1	349	13	<u> </u>
D	Morg	54	55		3	0.1	587	16	
¥		55	56		8	0.3	731	20	
								1	
*	H021	56	57			0.2	549	קן	
2	Mozz	57	58	-		0.2	335	11	
А	M023	58	59		6	<u>0.</u> 2	136	6	_ _
242-3% v.d.	Mozy	59	60		5	0.1	56	3	
1 1	Hozs	60	61		3	0.1	30	4	
11	HOZE	61	62					7	
		07	62		<u>'</u>	0.2	60	╞╵┦	
rpy d.	M027	62	63		4	0.[_	25	4	
v	Ho2.8	63	64.		1	0.	13	2	
*	H029	64	64.88		z	0.1	40	8	
043-51. V.d.	430	64.58	66		2	0.2	68	10	
r P	4631	66	67			0.1		8	
//	1632					0.]		2	
Py5%. v.	NI033	67.45	62.0		8	a.l	77	2	
н Руб'ј. у. н	M033 M034	65	69			0.Z	31	2 2 5	
Py 5 1. V.	Mozs	69	70		5 (2.1	34	б	
N	4026	70	71		_	·		2	
							<u>·</u>		
		_							

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** PAGE 5 OF 14 HOLE No. J91-24 C. LOSS INTERVAL S LITHOLOGY * J 200 73 76-35 Intermediate grey- green Lapilli, weak fol. 73.25-51 chlorike forgreats. N "2 D(+) · Ku lower contast sharp 75" 75 -76 19.05 Internediate blackish guen fine to coarse tuff angellacensmatric, weakly plated. 76.35 -A-C; (e)-77 S. BO Lower contact gradational -78 2 79.50 Internediate greg quer Lapilli, foliated, trace py 79:05-÷. -79 79.70 ques argulances fire tuff. 29.50 blackich. 8 -7970 - 80.55 Jukin lick grey green lapsti to 20 4 trace argellete phylle 8 (riktu BO.55 - 88 07 grey-que phylike terndiate In subcification 206 foliated, phylipic poor, bly 5-12 -82 pyrite V. d. locally 3-5%. Sericike occasional fraguent resicular 83 202:50 302 -84 1.1.1.1 54 60 -85 186 205 87 51 Lower contact faulted. -88 88.07-91.44 Interrediate grey siliceous tilfaciono Sonditor with quarter vein Bx diss py Ti to 3% locally -89 PY ที่ 926 91 91.45-92.7 fault. (Coreless) (9z Internediate group green Republi to tuffbracia with medium grand tuff matrix, alleron fagrent locally Tr-1% py-pd 92.7-96.9 9 93

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

HOLE No.

[(

Γ

С С

.

J91-24

MINERALIZATION ALTERAT	FION SAM	PLE FR	он то	WIOTH	Au	Ag gi				
						1	+-		 	Ĺ
										┢
						1_				
						1	-}			
										_
								-	┠───┤	
		-		-						
~ +			_							
The pyrake	M_03;	<u>z 79</u>	BO	<u> </u> !	22	0.3	42	6		
Pyrite 3%	M038	180	81		4	0.4	35	4		
Pyrite 3-5%	Maza	181	82	11			33			
				Ĺ î				T		
2ynte 3.5%		82	83		48_	[.]	71	10		
2ymte 3-5%	Ma59	83	84		24	0.8	41	2	<u> </u>	
yrik 5%	Mo#1	84	85	$ - _{=}$	72	<u></u>	40	2		
2yrite 3-5%										
		85	86		42	.4	(14	2		
TL. pyrite	1043	86	87		3	20	78	10		
F. pg.	Mo44	87	88		17	0.9	19	3		
	1645	88	87		8	0.8	41	2		
з%. ру. 3%. ру	Motb	89	90	2	2	.3	15	3		
Tr py.	M047	90	91	- 17	60	<u>, q</u>	31	2		
Т- ру.	1648	2,	a							
1-7	/2058	<i>u</i>	92		30	.4	57	2		
		[\square					
						-				

and a second second second second second second second second second second second second second second second

´ :

	DIAMOND DRILL LOG	PAGE	6	OI	F]4		(
HOLE Na.	91-24				÷		
INTERVAL	LITHOLOGY	+ c	L	S	Μ	A	οú
	Netrolithic littic fagnets ranses kinds some selicion from dk to whitish	· 	(B)	_	-	-	8
			217/65-(8)	_	-	-	96
96.9 - 97.2 97.2 - 103.3	dark gey-ques orgellaceons tuff (24j) Internediale gey-green tuff preceia, gy siliceas		Ħ	- Ħ	-	-	97
	fragrests in fire green chloutic ash matrix Thaces of pd-d., trace sphalerite		- \$\$	-	••••	-	98
		5170	£ <, s =	- H- 22	ا <u>م</u> ې	-	- <i>19</i> 9 - 100
	100.6-101 fault.		-	2223 223	-	-	101
	r		-	-	-	-	-/02 (.
			-		-	-	-103
103.3-105.	istermediate guy-queen fine alicious, chloritie tuff with gtz V-, dess po V.d., To sphalenke d.		- 75.6		1.00.	- _a	104 30 105
	15 Thternediate grey-green tuff breccia,	10	[-		••• •	7.	106
	grey outreene faquent, patches. <u>chloritie matrix</u> , qtry BX with dessport-sph Trace strbie, local verscular fragrents	<u>-</u>	. 45' BK	- - - 	\$- Po	Å	av07 167
	Local bluish chalesdoric gtz.		2Esk	—	26	-2	108
			<u>-</u>			R	-109 1109 -110
	110-9-111 Auger fault		_			-	-111
	111.8 gouge		-	~~	10	. –	-112 (Č
			-		- 10	×	9404 -113
				-		- 	-114

- - -----

GRANGES EXPLORATION LTD

PAGE 6A. OF. 14

HOLE No.

J91-24

MINERALIZATION ALTERATION	SAMPLE	FRON	то	W107X	Au 	Ag g/t	As pp=n	-Sð ppm		
									-	
										_
										_
										-
				┣━┉╍━						
						. -		-		_
r på	Morg	101	102		23	0.9	57	え		
				·						
F-1%po	4650	102	103		22	0.8	26	2		_
F- ρφ F-1%-ρο Fr ρφ	Hosi	103	104		174	0.4	38	Z		-
r þ¢					18-1	<u>↓</u>				
et	H052	104	105		סוצ	0.4	2	2		
			101			1.8	2	2		
<i>A</i>	N053	105	106		╏─╴╄	<u>(- 7</u>		<u> </u>		
1-2%. PO-Tr sphalerite	4054	106	107		8	0.8	3	2		
· · · · · · · · · · · · · · · · · · ·						0.0				
-2% po-Tr sphalente -2% po-Tr sphal., Tr sb	HOSS	107	108		14	0.7	358	~		
	HOSE	108	109		5	0.7	593	Z		
-2%. po - 7- sphal-	<u> </u>	100	107			<u> </u>				
-2 %. po	Hos7	109	110	_	3	0.4	<u>a 3</u>	2		
								Z	 	
51 	Nose	110	111		-14	0.6		~		
14	. 1/060	<i>n</i> 1	112		23	0.3	30	z		-
1							ł			_
V	4061	112	113	<u> </u>	280	3.1	155	3		
·								2		
<u> </u>	N062	<u>5''</u>	114	<u> </u>	85	1.2	 +	~		-
	HOLZ	114	115	t	74	2.1	49	z		
		<u></u>	1 ····	1		<u> </u>				

		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	.7	C	οF J⊂	Ļ	
HOLE No.	Ţ	91-24					••••••	
NTERVAL	C. LOSS	LITHOLOGY	*	L	S	M	А	
		Tuter nediate grey-green tiff breeces to valcanic busines. fragments in first as & native, longe fragments selecour guy			~~	-		115
		pately relicification, chloritic matrix, des. py-pd atry By buille Fractures. selection frage fractured.			-	po		-//6 94:44
				- 25 -	~ 20	- •	1 1	-/// 9v-
		Traces of py+po deas. 1-2% on later buttle fractiones		۔ ج		р• -	_	-118 -119
				E	T	:iri	_	/20
				6	مشتر من المراجع		_	-121
				_	ĺ	! <i>!!</i> Y _	/	9V - /22
			_	-		•	_	-/23
			- 1	-	-	Рю. -	-	- 124
	-		-	_	_	 Ā	-	-/25
 			4 -	-		•	-	-126
				-	-	•• •-	+	-127
			-	-		<u>.</u> Lo	-	-128
			1 -	-	- ·	 -	1	-129
 			-			石		-130
		130.5 carbrak yein	-	-	-	-	-	Carbv -/5/
		131.8 dark green clorite with pyrite dest	-				50	-/3z-
		132.8 dark green chlorik with pyrite, pp, cpy	-	-		× Co	~	041. - <i>133</i>
		Dark assen union chlorite inthe pyrite dess + pd	-	-		1 20	-	-134
······································	-	Dork green unipy chlorile unter pyrske dess + pp coating fractures:	-	-		ré. Pri	-	-/35
		Mislatch - Possible fault? Core Loss	1					171

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

page 7A

of 14

HOLE No.

[

[(

J91-24

		_						61	
MINERALIZATION ALTERATION	SAMPLE	FROM	то	NIOTH	Au Դəpib	Ag g/t	Λs pp=o	56 ррт	
Tr-11. Po	1/064	115			32			2	
			 					- 7	
17	M065	116	117		4	0.5	रेडर	2	
	1066	117	118		2	0.4	र	2	
<i>μ</i>	70012								
14	1 067	//8	119		90	0.4	to	2	
	No68		120		73	10	64	2	
<u>il</u>	1068	119	120		73	0.9	67		
lt	H069	po	121		64	1.2	31	2	 -
			 _					2	 -
ct	<u> Moto</u>	121_	122		121	og	17	2	
<i>II</i>	M071	122	123		177	0.8	81	2	
			<u> </u>						
ç?	Hotz	123	124	<u> </u>	200	09	80	2	 -
	M073	174	125		172	5.5	22	2	
<u> </u>	1013	127							
11	1 074	125	126	[55	0.4	80	2	
	N1.75	~	19-1	ļ	70	<u> </u>	65	2	
И	Clow	126	121			0.1	60	_7	
<i>J</i>	1676	127_	/28		510	0.5	20	2	
·					40	1.2	10		
	77077	<u>72.8</u>	129		40_	1.5	10	2	
п	H678	129	130		64	27	38	2	
		_					ļ		
Ттру-ро	M079	150	131		210	0.8	ति	2	
şi	1080	131	132	· · ·	220	0.7	130	Ζ	
·									
Tr-11. ру, ро, сру	M08/	<u>132</u>	<i>13</i> 3		24	1.3	102	2	
<u> </u>		177	134	<u> </u>	210	1.4	44	ک	
Tr-1'1. Po, Py	PT002								
2-3% ру-ро	1/083	134	136		250	1.Z	ar	٢	
				ļ		10	(0 †		
2-3% py-po	1081	/36	137_	<u> </u>	<u>006 </u>	μ <u>η</u>	{0 r	.	<u>ia</u>
				<u> </u>	I	1		<u>ن</u> ـــــا	

.

		GRANGES EXPLORATION TO THE DEST	•					
			PAGE	8	i o	F J4	4	
HOLE No.	Ĵ	91-24		~.	· · -	·		
INTERVAL	C. L0\$\$	LITHOLOGY	*	Ľ	S	M	Α	
	Ť	Internediate grey-green tuff brecaia, in finer ash matic						136
		large fragnests vesiculary siliceous; patchy seles. Chlorite, chlorik dork green with py-po Tropy.	-	501	-	FY:	-	-137
		chloretie matrix 1_1 1/		· a.u.s.	-	2. 2. 2.	-	-138
· · · · · · · · · · · · · · · · · · ·		·		2EK5	- 	P.	-	-139
		Py dess. 10%, wispy dk open allorite 140-141-5		6	14/0			140 dicellante
				-	- رم بیر م	ببقز		- 141
	-	142.4.142.7 colliform-botrogedal pyrite 35%		-	14	ſ	F	-142 Rymle
				-	-	5	<u>د م</u>	-143
		· · · · · · · · · · · · · · · · · · ·		- -	-	5	//30	-144 94
		· · · · · · · · · · · · · · · · · · ·		-י <i>בע י</i> לע	-	Í.	-	-145
				5(k)-14	-	21. *	-	146
				2/35/5	-	V2	Ŧ	147 9h 0x
· · · · ·				2/	-	ÊŀA		-148
				-	⁻ -	2.0	-	- <i>149</i> 4V
	-				-	R. P.	-	150
		Chine be filled vaneules with white piles simi		-	`.		0	157
52.35-1	1-4	.05 Intersediate medicin to fire gravid grey green		8		74	-	
/	*	seleccous, chlouki stuff: dess py 3-5 %	-1 - ?	12:02		÷4	-	153
54.05	61.1	5 Internediate grey green tuff breecera to Vol. By		4		:.	_	157 C
		fractures, anastanosing py-po stringers + diss		105		it as		-156
· <u>· · · · · · · · · · · · · · · · · · </u>			-	25	1-	4		

GRANGES EXPLORATION LTD

PAGE 8A OF 14

CLEAR STREET CONTRACTORS OF CONTRACTORS OF CONTRACTORS OF CONTRACTORS OF CONTRACTORS OF CONTRACTORS OF CONTRACT

HOLE No.

Γ

C_e

C

J91-24

~ // ~/	r	.		r		r —	1	<u>, </u>	r——	-
MINERALIZATION ALTERATION	SAMPLE	FROM	то	MIOTH	Au Pot	Ag g/t	As ppm	Sb ррт		
			• •	۱ ۱						
							100	2		╞
py-poid. 3-5%	<u>M</u> 085	131	138		330	1.4-	125	2		╀
	NoQ1	120	./39		780	1.2	117	2		╞
	1000	.90			760	1.5	1.5			┢
r*	1687	139	140	·	550	1.4	107	2		
Pyd. 10%	M088	140	141		810	1.7	211_	Z		
										-
243-5% v.d.	M089	141	142		840	6.7	257	2		-
	M. A.	11.7	117		1.000	1.1	171	10/1		-
24.20%. d. masses	M090	142	145		1020	<u>a(0.6</u>	637	107_		┢╸
py 3-5% d.	Hogi	143	144		230	99	353	37		
A	No92	144	145		220	3.0	236	7	ļ	<u> </u>
								_		
	M093	145	146		200	(.9	207	Z		
· · · · · · · · · · · · · · · · · · ·		141			2.0	20	100	2		┢
11	Mo94	146	141		240	4.4	144			ŀ
	Hofs	147	148		270	7.7	221	2		┢
					(5. .)52	لمحد				
	NO96	MB	149		৯০	1.8	119	2		
1										_
	N097	149	150		440	2.5	86	2		-
py diss 3%.					100	1		-7		┢
	1098	150	<u>'5/</u>		242	1.0	٥٦ ا	2		┢
	1099	157	157		250	2.3	93	2		╞
		4 ¥1_	<u> </u>		×1.9.9					
	H100	152	153		200	1.1	<u>58</u>	2		
м										Į.
	MIO/	153_	154		ବିାଠ	1.8.	43	2	L	
py-po-vd 3-5%										┞
· · · · · · · · · · · · · · · · · · ·	HIOZ	<u>154</u>	155		Zao	3.2	2 51	ح_	 _	┢
К	Minz	15+-	156	· · ·	220	Z 1	156	z		┢
\$ ₁	H103	192	190		ഷവ	D-1	<u> </u>			ŀ
	HIOY	156	157		102	Z.6	179	4		Γ
•			1-1-1-1		-u-e					Γ

		DIAMOND DRILL LOG	PAGE	9		DF 14	L	
HOLE No.	V	T91-24				÷		
NTERVAL	C. Loss	LITHOLOGY	* 5	Ľ	S	Μ	A	
	-	Silicians tuff breceia, responsing py vins a deas				æ.		-157
	1			-	-		-	152
				5,70.	-	PY-P	-	15
<u>.</u>	_			5	-	-	-	-160
				N -	E.	-	_	-161
61.6-1	<u>/p.</u>	6 Inkinediate nedium to fire tuff, strongly chlorike dark green blue, soff.		فلع	هنه	_	_	162
	+	faulted upper a lower contacts.	-					
		Janka upper & currer contacts.		-	- (-	-	-16:
			_] -		}	-		-169
	╀			-		-	-	-165
- ·· · · · · ·			-	×		-	-	166
		· · · · · · · · · · · · · · · · · · ·		8-8				
				4	A			167
			 .	-		· —.	-	168
				-	-	FI	_	-169
		· · · · · · · · · · · · · · · · · · ·			سرم پرچ	_	Ĺ	170
10.6 - 11	2.	3. Internediak ne diin hift, modusk chlorik		<u>ب</u>	-	_	-	- 171
		pyrete diss TA-11.	-	213× (tj)	·	•		
2.3 - 195	· O	Internediate grow-grey Siliceaus, makly chlorike matrix	-			\sim		-172
2.5 - 115		- tuff breecia with silician patches, Vesicular		- 78				-173
		fragaents. diss po-py		* * *	-	-	-	-179
				;}		, 	-	175
<u> </u>				E S E		7	-	17
				21				176
	┞─┦	177.5-177.6 Hematile in Caly.	-	° н а. 11 г.			-	177

L

[

 C_{3}

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

A CONTRACTOR OF A CONTRACTOR OF

PAGE 9A OF 14

HOLE No.

J.91-24

9.112(;		
MINERALIZATION ALTERATION	SAMPLE	FROM	то	ырти	Au ppb	Ag g/t	∧s pp=>	Sb ppm		
Py diss - 3-5%	NI05	157	15B	 		22		2		
11	M106	158	159		150	2.5	157	6		
					24.					
1)	M107	159	160		ДЮ	6.2	<u> 344</u>	17		
	MIOB	160	161		170	3.1	212	10		
Ry TI-		•			• • • •					
l ^s	M109	/6/	161.6		140	1.6	163	10		
-11	H/10_	161.6	163		9	0.1	_٩_	2		
······································										
6 . 1	НШ	11.2	Hd .		15	0.4	2.	2		
Pyrite Trace		-°	.,-,		1.5	<u> </u>	a	~		
11	HUL	164	165		23	b. 7	20	2		
· · · · · · · · · · · · · · · · · · ·										
¥	HII3	/65	.166		4	0.Z	(6	2		
			167		6	05		2		
и		60	/6/		0	0.5	19	~		
Ч	MIIS	167	169		3	1.7	a 1	2		
11	4116	168	169		3	1.2	29	2		
h.	11117	11.9	170		10	0.7	27	S		
·····			170				<u>a</u> 12			
ĸ	M118	170	170.6		30	1.3	ŚВ	ຈັ		
								~-		
1)		1706	17z.3		50	1.7	78	5		
h)'/ D.	4120	/17.3	172		40	1.6	(7)	3		
1.2% py	422					1° ¥.	-01	·		
-2%. py	M121	<u>173</u>	174		140	1.7	272	4]	
· · · · · · · · · · · · · · · · · · ·					1-3	J -1	1/10			
<u>1-2'1. Py</u>	M122	/74_	<u>75</u>		110	1.7.	144	4		
21/ 040 04	H[23	77	176		180	22	85	3		
2 / py-p\$			· · · ·				<u> </u>			
1-2°%. ру-рф 1-2%. ру-рф	MIZY	176	177		160	3.1	263	-7-		
1-2% py-pø	MIZS	<u>177</u>	178		190	1.8	45			
- 								5 ×		_

e p

	i V	DIAMOND DRILL LOG	PAGE	10	ِ ح	OF ,	14	
HOLE NO.	\mathcal{J}	91-24				 :		
INTERVAL	C. L055	LITHOLOGY	*		S	M	A	
77.3 - 195.9		Internediate grey-grees tuff breecia, selicions fagorits		+	1-	1~	6	- 178 9× 5×
		Interactiate grey-ques tuff breecia, selicenso fagnets seliceaus or chlorickic matrix, gtiv Bx-sulphides,	4 -	_	-	1.	*-	179
	┞╴┦	Py-po dessembations 3-5%	4					111
·····	┝─┤			-	-	-	-,	-180
		· · · · · · · · · · · · · · · · · · ·	-	2 2		Nr.	17	
			1 -	1 -	1 -	1×	1	-181
]_	_3 _3		1 m	12	944
	┝──┟		4	2E'se			· ·	102
		·	- -	-	-	194	-	183
			-				1/	9452
				-	-	-	*	- 184
								100
] -	-	– .	PY	K	cal-gl
			-	-	Fe			186
			-		30		ſ	
	+		-	-	[-\	1.97	-	187
			1					100
	_[] -	-	-	R A	-	188
		189.5. sulplude-chlasslevein po-py-cpy 3%	_	-	_	4	- 1	-189
;			 ·			¢.:		10/ v- 81
		190.5-191. Ver Br chlorite-at , chlorite fragment, dus.	-	3	-	111	[-/	190
		190.5-191. Ver Bx chlorite-qtz, chlorite fragment, duss. DD-DY-CDY 5%	1	1	ĺ	N.		chi-qt Py-f
		······································	1 -	17	-	1.	17	191
		191.5 possibly-flow bonded frequents, mispy it chlowite	1_	द ्र		2	1	chlord 192
]	25. Jan 1/2 . Su		~	5	172
	-+		_	V -	-	힘	_]	193
	+					1		
	+		-	-	•	13	7	-194
							4	9V
			1 -		i Ti	æ	2	-195
15.9-196.	₽Ţ	Internediate to felsice flattered physlike lapille tuff			;			-196
		whether open- grey. don't climitic frage, while felsic	5	SP.		79		·/° (
16.7- 200.R		flags, for 70° Tr-pa diss' contacti gradational	-		-		-	-197
	<u>+</u>	Juleonediate frey-dork green medui garied tuff to		54				
	1	WITCHING DEDGALENEL COCAL CALLCHOLLELIOLE ALT. LOCALY		2B/7L		• _ I		198

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 10A OF 14

HOLE No.

E¢

[

[[{

Γ

Γ

C?

March & Carle

CHCREMENDERSECTOR CONTRACTOR

J91-24

1/125 1/127 1/128 1/129	179 180 181	179 180 181		330		39 145	2		
	179 180 181	180 181		дœ	29	145	2		
H128 H129	180 181	181							
H128 H129	180 181	181							
H129	/ 8 / 	1. N	5	210	2.1	117	2		
H129	/ 8 / 	1. N	57	alo	<u>α.</u>	Π T			
		182			1				
				160	2.8	171	5		_
M130					l				
	182	183		170	2. 1	4z	2		
		<u> </u>					 		
MISI	183	184		240	2.5	172	2		
	141	.0						<u> </u>	
H132	184	185		140	d.b.	139			
4127	18-	181		440	17	144	2		
11/53	10.3	/06		160	1.4	{ 0 }		<u> </u>	
MBY	186	187		260	6.7	237	z		
									<u> </u>
H135	187	188		210	<u>2.1</u>	160	Z		
1136	188	189		<u> 30</u> 0	2.1	23Z	2		
1/37	189	190		230	7.9	212			_
HUS	140	191	·	220	1.8	300	7		
1160	170	171.		~ 10	(-0	3			
MISI	191	192		60	1.6	105	Z		
MINO	19 Z	193		86	0.7	50	2		
<u> </u>	193	194		63	0.7	20	2-1		
- N	14.1	10/		54	55	2	1		
-11172	174	175		হন	<u></u>		┢╼┵┥		
M142	195	195 9		106	0.7	35	2		
		1.1			<u> </u>				
HHH	155.9	197		13	0.2	16	Z		_
145	197	198		22	0.5	19	3		
_					0.0				
H146	198	179		<u>14</u>	0.2	90	à	<u> </u>	
	M132 M133 M133 M134 M135 M135 M136 M137 M136 M137 M136 M137 M137 M138 M137 M137 M138 M138 M141 M141 M143 M143 M143 M145 M145	1/132 184 1/132 184 1/133 185 1/134 186 1/135 187 1/136 188 1/135 187 1/136 188 1/135 187 1/135 187 1/136 188 1/137 189 1/138 190 1/139 191 1/140 192 1/140 192 1/140 193 1/141 193 1/142 194 1/143 195 1/145 197 1/145 197	H131 183 184 H132 184 185 H132 184 185 H133 185 186 H133 185 186 H133 185 186 H133 186 187 H134 186 187 H135 187 188 H135 189 190 H137 189 190 H138 190 191 H138 190 191 H140 192 193 H141 193 194 H141 193 194 H143 195 197 H143 197 198 H145 197 198 H145 197 198 H145 197 198	H132 184 185 H133 185 186 H133 185 186 H133 185 186 H133 186 187 H135 187 188 H135 187 198 H137 189 190 H138 190 191 H139 191 192 H139 191 192 H140 192 193 H141 193 194 H141 193 194 H141 193 195 H143 195 197 H144 155.9 197 H145 197 118	H/32 ISH $I85$ $ 40$ $H/33$ $I85$ $I86$ $ 40$ $H/33$ $I85$ $I86$ $ 40$ $H/33$ $I85$ $I86$ $ 40$ $H/34$ $I86$ $I87$ $a60$ $H/35$ $I87$ $I88$ $a10$ $H/35$ $I87$ $I88$ $a10$ $H/35$ $I87$ $I88$ $a10$ $H/35$ $I87$ $I88$ $a20$ $H/35$ $I87$ $I89$ $a230$ $H/37$ $I89$ $I90$ $a230$ $H/38$ $I90$ $I91$ $a230$ $H/38$ $I90$ $I91$ $a230$ $H/38$ $I90$ $I91$ $a86$ $H/38$ $I90$ $I91$ $a54$ $H/140$ $I92$ $I93$ $a65$ $H/141$ $I93$ $I94$ 635 $H/142$ $I94$ $I95$ $a13$ $H/143$ $I95$ $I97$ $a13$ $H/145$ $I97$ </td <td>H/32 ISH $I85$ $I40$ 2.6 $H/32$ $I85$ $I86$ $I40$ $I.3$ $H/33$ $I85$ $I86$ $I40$ $I.3$ $H/34$ $I86$ $I87$ 260 6.7 $H/35$ $I87$ $I88$ 210 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I89$ 300 2.1 $H/37$ $I89$ $I90$ 230 7.4 $H/38$ $I90$ $I91$ 230 7.4 $H/49$ $I92$ $I93$ 86 0.7 $H/49$</td> <td>$H/32$ ISH $I85$ $I40$ 2.6 $I34$ $HI33$ $I85$ $I86$ $I60$ $I.7$ $I84$ $HI34$ $I86$ $I87$ 260 6.7 237 $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 200 2.1 $I50$ $HI35$ $I87$ $I86$ 230 7.4 215 $HI37$ $I89$ $I90$ 230 7.4 215 $HI37$ $I89$ $I90$ 230 7.4 215 $HI37$ $I97$ $I92$ $I60$ 1.8 3∞ $HI37$ $I97$ $I92$ $I65$ 0.7 50 $HI41$ $I93$ $I94$ 635 0.7 20 $HI41$ $I93$ $I94$ 635 0.7 355</td> <td>H_{132} ISH $I85$ $I40$ 2.6 $I34$ 2 H_{133} $I85$ $I86$ $I60$ $I.3$ $I84$ 2 H_{134} $I86$ $I87$ 260 6.7 237 2 H_{135} $I87$ $I88$ $B7$ 260 6.7 237 2 H_{135} $I87$ $I88$ $B7$ 260 2.1 160 2 H_{135} $I87$ $I88$ $B9$ 300 2.1 140 2 H_{137} $I89$ $I90$ 230 7.4 215 2 H_{138} $I90$ $I91$ 230 7.4 215 2 H_{149} $I92$ $I93$ 86 0.7 <t< td=""><td>H_{132} 184 185 140 2.6 134 2 H_{133} 185 186 140 1.7 184 2 H_{134} 186 187 260 6.7 237 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 $13z$ 2 H_{137} 189 190 230 7.4 215 2 H_{137} 189 190 230 7.4 215 2 H_{138} 190 191 230 7.4 215 2 H_{138} 190 192 160 1.7 50 2 2 H_{141} 193 194 65 0.7 2 2 2</td></t<></td>	H/32 ISH $I85$ $I40$ 2.6 $H/32$ $I85$ $I86$ $I40$ $I.3$ $H/33$ $I85$ $I86$ $I40$ $I.3$ $H/34$ $I86$ $I87$ 260 6.7 $H/35$ $I87$ $I88$ 210 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I88$ 300 2.1 $H/35$ $I87$ $I89$ 300 2.1 $H/37$ $I89$ $I90$ 230 7.4 $H/38$ $I90$ $I91$ 230 7.4 $H/49$ $I92$ $I93$ 86 0.7 $H/49$	$H/32$ ISH $I85$ $I40$ 2.6 $I34$ $HI33$ $I85$ $I86$ $I60$ $I.7$ $I84$ $HI34$ $I86$ $I87$ 260 6.7 237 $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 210 2.1 $I60$ $HI35$ $I87$ $I86$ 200 2.1 $I50$ $HI35$ $I87$ $I86$ 230 7.4 215 $HI37$ $I89$ $I90$ 230 7.4 215 $HI37$ $I89$ $I90$ 230 7.4 215 $HI37$ $I97$ $I92$ $I60$ 1.8 3∞ $HI37$ $I97$ $I92$ $I65$ 0.7 50 $HI41$ $I93$ $I94$ 635 0.7 20 $HI41$ $I93$ $I94$ 635 0.7 355	H_{132} ISH $I85$ $I40$ 2.6 $I34$ 2 H_{133} $I85$ $I86$ $I60$ $I.3$ $I84$ 2 H_{134} $I86$ $I87$ 260 6.7 237 2 H_{135} $I87$ $I88$ $B7$ 260 6.7 237 2 H_{135} $I87$ $I88$ $B7$ 260 2.1 160 2 H_{135} $I87$ $I88$ $B9$ 300 2.1 140 2 H_{137} $I89$ $I90$ 230 7.4 215 2 H_{138} $I90$ $I91$ 230 7.4 215 2 H_{149} $I92$ $I93$ 86 0.7 <t< td=""><td>H_{132} 184 185 140 2.6 134 2 H_{133} 185 186 140 1.7 184 2 H_{134} 186 187 260 6.7 237 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 $13z$ 2 H_{137} 189 190 230 7.4 215 2 H_{137} 189 190 230 7.4 215 2 H_{138} 190 191 230 7.4 215 2 H_{138} 190 192 160 1.7 50 2 2 H_{141} 193 194 65 0.7 2 2 2</td></t<>	H_{132} 184 185 140 2.6 134 2 H_{133} 185 186 140 1.7 184 2 H_{134} 186 187 260 6.7 237 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 140 2 H_{135} 187 186 $au0$ 2.1 $13z$ 2 H_{137} 189 190 230 7.4 215 2 H_{137} 189 190 230 7.4 215 2 H_{138} 190 191 230 7.4 215 2 H_{138} 190 192 160 1.7 50 2 2 H_{141} 193 194 65 0.7 2 2 2

3

	GRANGES EXPLORATIONED	PAGE	11	, ,	0F }4		
HOLE NO.	91-24						
INTERVAL	LITHOLOGY	بر ت	ļ Ļ	S	Μ	A	in an
	muer fault. 200.2 - 200.6		AN AN AN	تشتت	.' <u>'</u> .'		199 eht. -ZOO
200.85-209.	Internediate pale queen to dark green, flattered phyllikic lapilli tuff, with felsec and matic frequents, locally		-	FR 5- 5-	- - · · · -	- /~. -	-20/ 1 -202
· · · · · · · · · · · · · · · · · · ·	Py, boudered grivers, veryning Kintbording Sz + pactures.		1				1" -203 1
			Dktw-uk-3k	240	- - ` -		-204 -205 9*80
			- 2 Dk4	 -	- - ·* -		206 C.N. 011 FR.70 Z07
			-	-	-	70-12	208 eU. 709
209.48 - 2	Faulted Lower contact. C-B Black argillete, bedded, lam 5% guy selfstone or wispy tuff? follated, contacted, apapletic slips, local fild	- - -	2023 -		- 		207 gtv. 210
	qte vens 10%, Py lamatins 5%, local genge.	- <u>Si</u> - 80	(K/A)- 2-1	∼ 4 ~	-		Z/I ZIZ
		4	521	 	 	H.	44 213
			-	-			214 ZIS- W-Cal
		100					Z16 Z17 60
· · · · · · · · · · · · · · · · · · ·	218.8-219.1 pale green fahaded fine chlarche hilf / Dyke?	5	-				z <i>i</i> P.
			194			- -	219 •~-

ļ

E(C

Γ

[[((

<u>ل</u>

GRANGES EXPLORATION LTD DIAMOND DRILL LOG E.

page 11A of 14

MINERALIZATION ALTERATION	5лн <i>те</i>	FROM	TO	ыюти	Au ppD	Ag g/t	As pp=0	S6 ppm	
		100	2.5.5		R R	0.3	7	2	
1-2% pyinte	W[4]_	199	200		<u> </u>	0.5	<u> </u>		
lı	N148	200	200.85		3	0.1	15	2	
11	M149	Z00-85	202		1	0.1	2	2	
t1	HISO	202	203	-	5	0.]	3	2	
11	H151	203	204		2	0.1	2	2	
41		204	205		6	0.1	2	2	
11		205			3	o.]	2	2	
						0.Z	Z	2	
\$f		206							
4		207	208		<u>lı</u>	0.3	2	2	
ţ.	HISG	208	209		6	0.3	9	2	
pt	M157	709	209.45		34	0.3	329	2	
11	<i>H</i> 158	209.95	210.3		9	4.0	45	6	
11		1/0.3			6	0.3 0.2	12	2	
1 <u>1</u> 03	<u>ню</u> M161		212 2/3		_6 _2	0.Z. 0·Z	4	2 2	
Py 3'l.	M162	213	215			0.3		2	
· [-				
*1	1163	215	216		5	0.4	त	2	
					2	0.4.	3	2	
	<u>M%4</u>	216	217		×		_ 		
د۱	· M165	217	218		3	0.3	3	z	
et	M166	218	219		2	૦.ન	a.	2	

	Æ	GRANGES EXPLORATION TO						
		DIAMOND DRILL LOG	1					
			PAGE	12		0F /1	4 I	1
HOLE No.	·		÷	• 6			1	Ľ
	Ta	11-24						
	୶ୄ	1-27				-		
	105S			<u> </u>	Γ	1	┌ ──┦	
INTERVAL	- - 	LITHOLOGY	-		IS	M	IAI	
	┼─┼	foliated Black argelite, graphile ships, local gauge	<u> ''</u>		Ľ	<u>+ </u>	1I	220
		- pylan 5% gtv, gv Bx 10%, local folding	-	ļ				
		selfy as tuff bonds 5%, bendindgerv. py in lake frack	<u> </u>	-	-	 	-	221
			10			- PY	Z	
	\square		1 -	-	-			222
	┨┈┠╴			<u>_</u> ?	_	[[_ [223
	╞╼┠╴			·(K/h).	نيريير	تبتية	ſ	~~)
<u></u>	┼╌┼			ີ ຄ	-	-		224
	╏┼┼		-	Ŀ				÷.
			20	5	-	-	与个	22.5
			- "	7			4	
			-	-	-	-		126
	\Box		in the	ľ				4
			15	-	. –		1	227
<u> </u>	╞╌┠╴]_	_	_	m	_ [(
	┝╌┨╌				ام			22 8
	┣━┨━		∮ _	-		Ē		129
	┝╌┨╴					14		
			-	-	-	^ _		30
		41P - 70°	1					
	;	local ship fold	210	-	影]=	- -	31
	\Box	1	70		22	-		
] -	-	-1	<u>,</u>		32 V
			_	_		21	\mathbb{Z}_{2}	33
	- -				أيرر		Ta la	iBr
		· · · · · · · · · · · · · · · · · · ·	5	-	$\overline{\gamma}$	-	-74	31
	- -				们	-		
			-	- 1	P -	-	2	<u> ४</u> -
			est.	ի	, ^ ^ ^	R.		
			-	-	- [7.	$\frac{1}{\sqrt{2}}$	36 -
					<i>.</i> ~~!		319	<i>.</i> .
			-	-	-	<u> </u>	23	97 17
					_ [Ţ.		38 🙈
					ŀ	-	[*	» 🛞
	-		70	- 6	العه.		2	34 1
				ľ		P1.		
40.73 - 244	2	contacts gtz seried, graphitic slips	- [-],	27	=	-2	40
				-	- F		11	/•

Γ

PAGE 12A OF 14

HOLE No.

J91-24				±					;	-	
MINERALIZATION	ALTERATION	SAMPLE	FROM	то	WIDTH	Au ppb	Ag g/t	As ppm	56 ррм		
· · · · · · · · · · · · · · · · · · ·	······································		<u> </u>								
							· ·		-		
									<u> </u>		
	• · · · · · · · · · · · · · · · · · · ·										
							ļ				
<u> </u>							······				
· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 									
				•			<u> </u>				
			_,							┨────┤	
	· · · · · · · · · · · · · · · · · · ·	ļ				. <u></u>				╞──┥	
			-								
	· · · · · · · · · · · · · · · · · · ·						<u> </u>		 	 	
-		·					-		{	}	
	······]			
<u>py1-2'/.</u>		M167	230	231		6	0.3	10	۷		
ру1-2% ру1-2%		<i>416</i> 8	231	227		Ţ	0.1	4	2		
		100		~ 22		I					
······································		_	-								
	· · · · · · · · · · · · · · · · · · ·]	
<u> </u>	<u></u>										
										 	
· ••••						. <u> </u>		· ·			
							<u> </u>				
										┠╾╌╾┦	
<u>,</u>											
T-py		M169	240	240	13		6.4	5_	2	 	
-											

		GRANGES EXPLORATION LO	PAGE	13		0F /	4	
HOLE No.		P1-24.				<u></u>		
INTERVAL	C. LOSS	LITHOLOGY ·	*		S	IM	A	
240.73	_	4.2. Internedicate to falsic fine full on felsic dyte palique locally chloriticalta, diso py-po, wear Joliation contacts gtevened, graphiticstips		32 R 9 . Kan				- 241 - 242 - CLlouil - 243
244.2 -	24	9.94. Johated black argullete, graphike slips, pylam 5%, 95. + + Bx 10%, grey silty or fetrie		6) 1 (132		1.1.1.1.	7	-244 -245
		full 5%. Ibeal gauge, buduredge.		TJE . AU		1,12,11,1		-246 q~~~~ -247
			- 51	-	-		- // -	- 248 - 249 9~ - 250
		EOH 249.94		-		-	-	-
				-	· · ·	-	-	-
				-	-	-	-	-
				-	-		-	_
				-			-	-
				-				-

C	C
	6
	6

[(

	<u>.</u>
GRANGES EXPLORATION	ON LTD
DIAMOND DRILL	LOG

PAGE 13A OF 14

2

HOLE No.

-

J91-24

MINERALIZATION ALTERATION	занна	FROM	то	ніотн	Au Ìp⊅	Ag g/t		56 ppm	
Pyrite 3'1.	MITO	240.73	242		1	01	2	2	T
11	4171	242	243		1	0.1	2	2	
pyrite-po 3%	M172	243	244.Z		1	0.1	2	2	
pyrite-po 3%. pyrite 1-2%		2442		<u> </u>	7	0.4	5	2	 ╞
·η ρι- 3-5 %		245			-1		4	2	 $\left \right $
						0.3		2	
			247						
ру 1-2%		247			3	0.3	13	2	 ╞
Py 3%	<i>H</i> [777	Z48	<u>7</u> 49		4	0.Y	10	Z	 <u> </u>
rt	M178	249	249.94		1	0.Z	11	と	
· · · · · · · · · · · · · · · · · · ·				_					
									<u> </u>
									 _
		• • •							
······································		-							
······									
······································				· .					
· · · · · · · · · · · · · · · · · · ·									
······································		-		·····					
						[<u> </u>		

Sample J-91-24 164.7 m Intermediate Lapilli Tuff/Pebbly Greywacke: Large Fragments of Argillite (Unit 2D/7L.7Ju)

A few fragments up to at least 2 cm in size are of extremely fine grained argillite containing minor detrital grains of quartz and plagioclase averaging 0.02 mm in size in a moderately foliated, extremely fine grained groundmass dominated by plagioclase and sericite. A few fragments up to 1.5 mm long are of argillite with abundant seams of carbonaceous opaque parallel to foliation.

One fragment 2 mm across is of a porphyritic andesite/basalt containing abundant phenocrysts of plagioclase up to 0.7 mm in size and minor ones of hornblende in a groundmass dominated by lathy plagioclase. Plagioclase phenocrysts are altered slightly to sericite; those of hornblende are altered completely to chlorite. Opaque (pyrite?) forms irregular patches in the plagioclase phenocrysts and groundmass.

Smaller fragments averaging 0.15-0.4 mm in size are of several types, including crystals and crystal fragments of K-feldspar, quartz, muscovite, plagioclase, and apatite, extremely fine grained latite, lenses of opaque.

The groundmass is well foliated and dominated by sericite and plagioclase. Wispy seams and lenses are of coarser grained sericite/muscovite. Replacement patches are dominated by calcite (1-2%), and a few are of pyrite and quartz $(\emptyset.3\%)$.

A lensy veinlet 0.15 mm wide parallel to foliation is of very fine grained quartz and interstitial ankerite. A few strongly contorted veinlets up to 0.3 mm wide are of extremely fine grained quartz and opaque (pyrite?). These veinlets are segmented and offset along cleavage planes parallel to foliation. A late, planar veinlet 0.1 mm wide is dominated by calcite with minor quartz.

Sample J-91-24 207.3 m

Strongly Foliated Intermediate Tuff or Flow (Unit 2B/Ga)

Scattered fragments (5%) include crystals of plagioclase and K-feldspar, and patches of latite and quartz aggregates. These average 0.1-0.2 mm in size. They are set in a well foliated groundmass containing bands rich in sericite, others rich in chlorite, and others composed of sericite-plagioclase. Some layers contain moderately abundant K-feldspar. Pyrite forms scattered grains up to 0.2 mm in size. A few lenses up to 1.5 mm in length are of slightly coarser grained sericite/muscovite, and may represent fragments. These textures suggest that the rock is an intermediate fine tuff.

The rock contains 4-5% lensy patches up to 2 mm long of extremely fine grained quartz and less abundant extremely fine to very fine grained ankerite; textures are similar to those of amygdules in samples of amygdaloidal andesite flows. This suggests that the rock is a strongly sheared andesite flow.

Several replacement lenses and veinlets averaging less than 0.2 mm wide are of very fine grained ankerite and pyrite. One widens to a patch 1.3 mm wide of coarser grained ankerite. A few oval-shaped patches up to 1 mm long are of very fine to fine grained ankerite.

Gr	ang Kili		nc. Allia	ERC HPRC	9118 9118		NUK Grafi	RI		i F F		119 119 12	1175 E011	479		Pag	e 1			
SAXPLE#	\$102 X	A1203 X	۶e203 ۲	NgO X		X=20 X	K20 X	T f 02 X	P205 X	N-O	Cr203 %	8a ppa	Sr ppm	La ppun		Y Ppa	nick Nb π⊂Ω	LO1 X	S.M I	<u>11111111</u>
J91-3-15.5 J91-7-35.0 J91-7-39.0	72,03 65.00 37.49 38.34 63.84	9.95 13.50 12.43	6.85 7.71	.35 4.77 3.09	1210 1274 1253	.12 4.54 5.83		1.76	.59 .18 .25	10.222	-012	1106 2249 387 189 1722	25 87 623 860 101	26 18 10 10 14	N1287	24 41 23 25 25	23 20	2.9 4.5 14.6 13.4 4.0	100.01 99.99 100.33 100.29 100.06	

J91-7-39.0 J91-8-65.2	38.34 12.43 63.84 13.7	3 7.71 3.09 5 5.44 1.62	7105 5.83 1284 .09	.20 1.36 8.28 1.54	.25 147 .26 106	.012 189 .005 1722		0 1105	చ జ	20 13.4 20 4.0	100,29	
J91-10-69.0 J91-11-88.0 J91-12-166.5 J91-12-175.6 J91-15-91.0	69.41 11.33 54.61 15.23 53.85 14.24 56.93 13.43 29.07 13.24	3 4.44 .37 7 4.72 2.17 6 9.63 2.72 3 7.78 3.63 0 11.60 6.70	1,74 .11 5,68 5.42 5,32 1.62 3,87 .66 6,67 1.57	7.79 1.95 1.84 1.32 3.66 1.80 5.03 .77 2.72 1.08	.57 .01 .22 .19 .60 .125 .26 .135 .19 .54	.004 2136 .019 1373 .002 784 .006 1046 .012 707	243 1 147 1	0 150 3 114 2 86	31 7 26 9 16	20 2.9 61 8.4 48 6.0 24 7.2 44 16.9	100,14 100,10 100,13	
J91-17-149.0 J91-17-172.0 J91-18-76.1	65.12 12.11 57.65 12.90 59.22 15.20	7 9.14 4.43 3 8.62 3.16 5 6.33 2.70 3 11.38 5.32 3 7.64 3.94	77 .08 77 .08 92 .09 93 2.01	.66 1.52 7.63 1.31 5.52 1.39 4.22 2.01	.29 1296 .35 1418 .44 1433 .45 141	.002 288 .003 2173 .002 1518 .002 1891	247 2 130 1 75 2	5 (5) 7 (1)5 2 (166	18 37 22 56 50	87 8.0 79 5.0 76 3.0 66 3.8 60 3.9	100.08 100.02 100.05	
J91-20-74.8	49.69 10.7	1 4.76 3.19 10.64 3.04 5 8.13 2.02 4 9.78 2.93 7 14.85 6.84	1650 .43	.70 .98	.34 .23	.002 1350	247 1 126 2	5 148 0 166 8 1193	51 42 35 39 32	41 7.8 24 4.4 77 2.1 30 3.6 26 8.4	100.08 99.99 100.00	
J91-22-130.2 J91-22-177.1 J91-22-183.0	46.62 15.29 55.90 18.30 68.23 14.40	1 15.25 1.76 2 9.01 2.19 9 16.18 4.12 6 6.80 2.60 0 3.44 2.42	1036 .39 22177 4.21 11973 .09 .05	1.93 1.59 .95 3.27 8.93 2.00 6.92 .66	.39 .09 .65 .15 .53 .12 .14 .08	.002 1113 .002 203 .002 1314 .002 1035	81 1 109 2	3 (18) 8 (166)	28 28 44 36 31	59 10.5 20 9.5 46 6.4 90 3.5 79 3.0	100.20 100.10 100.04	
J91-22-208.5 J91-22-211.5 J91-24-164.7 RE J91-22-177.1 J91-24-207.3							40 1 665 2 100 3	6 152 0 85 1 76 0 167 9 133	15 21 20 35 28	53 2.6 28 5.1 86 6.5 77 3.5 47 4.7	100.05 100.08 100.02	
J91-26-105.2 J91-27-32.65	57.90 12.64 54.73 16.01	6 7.89 2.11 1 8.40 1.83 7 10.06 2.73 8 8.98 3.31 2 6.47 3.42 8 3.60 48	7,08,16 4,64,.05 5,7,14.09	4.72 1.38 4.55 1.63 1.85 2.35	.35 .27 .48 .41 .60 .15	.002 1876 .002 1228 .002 1756	246 Z 237 3 129 Z		27 25 45 29 26	108 5.1 70 5.9 79 5.4 62 5.0 20 4.3	100.08	
JY1-27-00.0	174.21 9.8	R 3.60 AR	\$3050027 13	77 4 75	1	1		644.847				

.200 GRAN SAMPLES ARE FUSED WITH 1.2 GRAN OF LIBOZ AND ARE DISSOLVED ON 100 MLS 5% HHO3. - SAMPLE TYPE: CORE Samples beginning 'RE' are duplicate samples.

91.

30

74.21 9.88 3.60 .88 1198 4.12 .73 1.79 57.38 14.99 8.47 3.90 1152 1.92 2.53 2.39 67.81 10.29 3.56 .98 1161 1.33 2.05 .57

N⁄o√

74.21 9.88 3.60 .88

DATE RECEIVED: NOV 15 1991 DATE REPORT MATLED:

J91-27-68.0

STANDARD' SD+4

organization of

166

162

207

14

20

29 §321

1 103 144

18

36

23

.002 800

.002 2205

.005 795

105' 107

1213

.47 .62

.23

D. TOYE, C.LEONG, J.SUNG; CERTIFIED B.C. ASSAYERS

24 2.1 100.00

29 5.9 100.11

20 11.2 99,98

		Grar	iges	Inc.	PROJEC								,ë # 91	1-5	155				Page	ع	٦Ľ	
	pom pom p	Pb Zn Al opm ppm ppm	ig Xi mippin p	ppm ppm		ppm	Au ppm (Th Sr pprn ppr	r Col m ppm (sp bbu b	ei burbt	V C >11	Ca R L X PP	a C on pp	¦r Mg xn %g	Ba Til ppm 🔭 p	8 / pm	Al Na X X	н К.∭ КУррп	Au* ppb	Hg ppb	
M001 M002 M003 M004	2 84 1 2 95 2	11 111 19 134 29 139 14 84 5	19 6 27 7 27 2 17	17 569 15 677 17 584 15 504	3.91 21 3.19 65 4.67 103 3.62 46	5 5 5 5	ND	1 191 1 343 1 165 1 119	3 2	2 5 6 3	2 1	153. 152,	.51 089 .47 084 .46 081 .56 079	3 3	11 1.23 9 .57 7 .69 12 .84	73 .01 54 .01	31. 41.	.86 .0 .16 .0 .25 .0 .59 .0)2 .34 1)1 .29 1	1 2 4 21 1 20	40 90 80 35	
ноо5 Коо6 Моо7 Моо8 Моо9	9 25 3 12 17 2 17 25 3	35 125 2 36 224 2 26 206 1 30 214 1 36 235 1	17	9 577 9 404 6 759 9 769 7 717	3.85 70 4.55 47 3.10 18 4.03 27 3.63 21	5 5 5 5 5 5	ND DK DK	1 184 1 114 1 166 1 144 1 121	4 1.4 6 1.2 4 1.6	20 19 12 14 11	2 1 2 1 2 1	12 1. 10 4, 12 4,	.04 .057 .93 .076 .83 .057 .39 .057 .16 .064	2 2 2 2 3	5 1.06 2 .77 4 1.02 3 1.04 2 1.03	46 .01 86 .01 42 .01	2 2 3	,66 ,0	01.21 1 01.24 1 01.18 1 02.22 1 01.22 1	1 5 1 1	290 305 265 330 405	
M010 M011 M012 H013 M014	19 24 1 25 24 1 26 30 1	37 304 17 14 149 14 154 18 189 14 185	4 32 26 2 29 1 32 1 37	7 600 7 383 7 556 7 502 7 535	3.80 27 3.73 22 3.37 24 3.66 26 3.26 30	5 5 5 5 5 5 5	NO NO NO	1 138 1 137 1 173 1 195 1 195	77 3 1.3 5 1.4	9 9 10 9 13	2	72. 134. 123.	.34 .055 .64 .055 .22 .061 .97 .058 .53 .057	23434	2 1.09 3 .92 3 1.15 3 .88 4 .87	\$1 .01 43 .01 69 .01	2 2 2 1 2	.34 .0 .67 .0 .24 .0 .85 .0	01 .20 1	1 1 18 1 12	440 675 635 770 540	
H015 H016 H017 H018 H019	25 42 1 26 27 1 6 19 2	9 148 17 331 17 180 21 49 20 46	S 5	7 503 8 324 27 234	2.41 25 3.33 45 3.12 47 8.47 349 9.63 587	5555	NO NO NO	1 414 1 135 1 117 1 57 1 51	5 2 5 7 1 3	8 14 14 13 16	2 -	14 1.	.83 ,041 .82 ,045 .12 ,051 .52 ,148 .02 ,211	22365	2 .89 3 1.05 4 .56 1 .75 3 .74	67 01 35 01	2 2 2 2	.67 .0 .36 .0 .34 .0	01.12.1 01.18.1 01.17.1 04.17.1	1 2 1 17 1 10	530 735 755 1950 2850	
M020 M021 M022 M023 M024	3 17 1 3 21 1 1 17 1	19 107 19 120 16 118 11 131 12 111	3 6 2 5 2 2 2 2 1 3	27 421 37 479 19 550	5.80 336	5	DK DK DX	1 51 1 80 1 84 1 88 1 104	0 .3 4 .2 8 .2	20 12 11 6 3	2 2	17 2. 19 3. 28 3.	.04 160 .99 206 .23 211 .05 196 .38 155	4 6 6 7	3 .78 2 .77 2 .80 3 .96 2 1.16	54 02 54 02 50 02 75 03	3 1 2 1 2 1 3 1	.29 .0 .22 .0 .23 .0 .45 .0	06 .26	1 8 1 1 1 1 1 6	2050 1400 1550 705 470	
н025 н026 н027 н028 н029	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 69 15 109 17 109 12 123 18 106	254	14 1040 18 1073 10 1123	5.80 60 5.67 25 4.97 13	5 5 5 5 5 5	ND ND	1 127 1 187 1 139 1 133 1 149	7 .2 9 .2 3 .2	4 7 2 8	2	38 3. 36 3.	.29 142 .71 141 .19 115 .86 146 .77 119	8 7 7 10 6	3 .95 3 1.59 5 2.12 3 2.04 6 1.27	62 03 72 03	22 23 23	.55 .0 .36 .0 .41 .0 .41 .0 .16 .0	07 .21 1 02 .21 02 .29	1 3 1 1 1 4 1 1 1 2		·
MO30 MO31 Standard C/AU-R	2 8 1	16 93 14 112 44 134 7,	SE 10	29 1758 34 1075 32 1061		5 5 16	ND	1 297 1 179 40 52	7 .3. 9 .2 2 18.9	8	2	873,	.32 053 .95 063 .49 091	2	21 2.04 23 2.19 59 .91	72 02	2 2 2 3 32 1	.02 .0	04 .16 05 .20 06 .15 1	32 Z	290 215 1400	

Sample type: CORE, Samples beginning 'RE' are duplicate samples.

.

.

۰.

South and the second sec

i

,••

								J91		
M066 M067 Standard C/Au-R	H061 H062 H063 H064 H065	H056 H057 H058 H059 H060	M051 M052 M053 M054 M055	M047 M048 K049 M050 Re K046	ND42 N043 N044 N045 M046	M037 K038 M039 M040 M041	M032 M033 M034 M035 M036	SAMPLE# - ZY		
1 1 18	1 1 1 1 1	1 1 1 1 1		2 3 2 1	1 2 1 1	1 1 1 1	1 1 1 1	Mo pom		
19 29 60	52 82 7 10 18	27 18 13 23	15 18 84 32 24	15 32 28	6 16 17 8 13	9 11 6 17 8	4 8 12 12 8	Cu ppn ;		
11 7 43	34 24 17 5 7	20 14 11 5 41	13 6 12	100 148 10 15 21	3 11 19 17 31	5 5	5	РЬ ppm		
64 53 134	135 141	82	189 246 158 76 127	321 122 133	80	71 100 99 112 84	62 115 102 126 93	Zn ppm p	Gr	<u> </u>
14 14 619	12.55	7 4 6 3 1	.4 1.8 .3 .7	1.3 9 8	2 1.4 2.0 9 8	.3 .4 .2 1.1 .8	1 1 .2 .1	Ag Somi F	anç	<u> </u>
	9 2	34264	2 1 3 2 3	7 4 2 3 6	7 8 5	8 5 10	3 4 6	λl porn p	jes	
5	55 13 5	30	6 6	16 12 6 18	26 37 13	32 29 43	22 23 26	Co xpm	I	
1049 807 1055	1568 1637 1357 1084 1119	973 983 2096 1141 1710	1668 1336 973 1047 1018	870 792 1382 1033 522	1695 1777 541	1381 1309	730 712	Mn ppm	nc.	
6.90	8.93	7.23 5,03 7.96 6.85 10.27	11.29 9.42 9.14 8.45 7.65	5.92 5.40 9.65 8.42 6.01	6.83 7.32 10.96 2.79 6.00	4.17 6.90 6.11 7.94 7.97	6.32 6.63 7.64 5.69 6.24	Fe X	PR	
) 70	49 6 37	23 o 30 55	223	31 57 26	114 78 19	- 19731	28 32 31 34 22	As ppm	OJE	
5 5 17	5 5 5 5 5	6	5 5 5 5 5	5 5 5 5 5	5	5 5 5	5 5 5 5	U ppm	CT	
ND	NO ND	ND ND	NO NO ND	ND ND ND	אס סא סא סא	ND NO NO ND	סא סא סא סא	Au ppm	บม	
	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1		1	Th ppm	UK	
25 26 52	25 21 19 17 18	29 41 43 70 24	22 24 18 36 49	43 33 37 19 16	73 71 65 29 16	107 102 88 96 94	441 78 83 133 221	sr ppm	RI	Ł,
.2 .2 19,0	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	233.2.2 2.2.2.2.2	.6 .2 .2 .2	2 2.3 2 2 3	.2 .2 .2 .2 .4	24244	Cd) POII	UEF	
2 2 15	34222	22222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2	2 5 10 3 2	6 4 2 10 2	2 2 5 6 2	sb ppm p	: 1:	
2 2 19	22222	22222	22222	22222	2 2 2 2 2 2 2	222222	2	81 ppm	34	
	73	52 48 48 66 83	59 74 69 60 49	59 45 48 37 73	75 65 96 31 74	74 61 54	42	V ppm	F	
.38 .42 .49	.55 .34 .35 .32 .33	.62 1.17 2.15	.58	.64 .71 .36	2.95	3.01 3.38	1.48 2.18 2.46 3.48 5.07	Ca X	ILE.	
117 114 1090	176 140 151 139 124	103 118 102 070 168	, 115 , 149 , 132 , 124 , 110	.037 078 083 098 029	073 059 046 027 029	.044 .049 .066 .058 .060	.063 047 060 .065 .061	e X p	# 9	
7 7 37	7 6 7 8	7 8 4 3 5	7 7 6	4	2 2 3	2 2 2	3 4 4	la pm p	1-:	2
16	12 10 15	10 16 28	11 14 13 10 17	18 1 15 1 18 1 11 1 33 1	30 3 29 2 24 2 13 33 1	18 1 21 3 26 2 25 2 30 3	32 2 20 2 20 1 16 1 26 2		520	i d
1.29	2.19 2.72 2.14 1.51 1.60	1.82 1.63 2.76 2.71 2.93	1.99 1.69 1.58	.42	.62	.39 .79 .49	.95 .54		3	
57 53 179		40 💥	52 0 68 0 64 0 77 0 62 0	30 0 46 0 52 0 64 0 41 0	47 .0 40 40 41 .0 47 .0 39 .0	66 0 63 0 62 0 48 0 53 0	37 .0 54 .0 69 .0 74 .0 55 .0	Be T opm		
ĥ)2)2)1		2		1 1 1			t PP1		
2 2.0 2 1.7 36 1.9	4 2.8 3 4.0 5 3.1 4 2.2 2 2.2	3 2,3 2 1,8 2 3,0 2 2,8 4 3,8	3 4.30 2 3.10 4 2.6 4 2.0 2 1.8	2 1.4 ⁴ 3 2.0 ⁴ 3 3.00 2 2.2 ⁴ 4 1.70	4 3.15 3 2.20 3 2.45 2 .75 2 1.76	2 1.30 2 2.71 2 2.75 5 1.95 3 2.89	5 2.56 4 3.10 4 3.13 2 2.30 2 2.81			
7.01	9 .01 6 .01 6 .01	9 .01 1 .01 1 .01	8 .01 1 .01 9 .01	01, 01 0, 01 0, 01	0.01 01.01 01.01	.01 .01 .01	.01 .01 .01			-
.21	.17 .20 .21	.19 .14 .28	.21 .22 .20	.22 .18 .20	.23 .19 .22	.24 .29 .28	.17 .23 .26		Pac	
1 1 13		38 9	1	1 1 4 1	11 1 1	1	1111	A War	je :	7
2 90 450 1			10 7 8		27 42 3 27 18	22 2 48 24	8 8		ي ع	
45 50 400	60 125 110 170 80	150 375 60 90 70	90 200 135 50 270	310 165 70 85 55	40 195 75 30 60	95 90 50 80 60	55 10 90 130 55	Kgʻ xpb	1	

.

Sample type: CORE. Samples beginning (RE) are duplicate samples.

• •

and decides and a state of the second

- ć

i

.....

AA A		Granges Inc.	PROJECT UNUK		FILE # 91-5203	· · · · · · · · · · · · · · · · · · ·	age 4
SAMPLE# J91-24.		Zn Ag Ni Co Mn ppm ppm ppm ppm ppm	Fe As U Au Th X pont pont pont pont	i Sr Cc Sb Bi ippπ ppπ ppπ ppm pp	V Ca P La Cr Mg pm X X ppm ppm X	Ba TÎ B AL Na K pçan X pçan X X X	V Au* Hg ppm ppb ppb
M068 M069 M070 M071 M072	3 31 17 3 19 18 3 12 18 4 26 21 3 38 13	61 1.2 3 7 740 98 9 2 9 1324 69 8 4 8 994	9.53 37 5 NO 1 8.90 17 5 NO 1 8.01 81 5 NO 1	28 2 2 2 3	47 .41 110 6 5 1.34 33 .41 094 6 5 1.06 48 .43 097 5 9 1.91 55 .48 119 6 4 1.88 57 .45 .110 8 4 2.05	48 01 2 1.41 .01 .18 54 01 2 2.46 .01 .19 58 01 2 2.23 .01 .21	1 1 64 120 9 1 121 110 1 177 180
н073 м074 м075 м076 м077	2 20 14 3 28 17 4 41 16 2 9 11 2 7 9	39 8 3 7 1150 45 9 3 8 1324 88 5 5 1 7 1049	6.97 80 5 ND 1 7.26 65 5 NO 1 7.39 20 5 2 1	23 <u>3</u> 2 2 0 21 2 4 2 0	66 .40 1,1 8 10 1,93 67 .43 118 9 5 1,79 62 .57 113 9 4 1,82 68 .30 1,11 9 9 1,54 71 .35 12 10 4 1,51	69 01 2 2.13 .01 .22 58 01 2 2.09 .01 .19 65 02 2 2.21 .01 .20	2 1 55 230 9 1 70 295 0 1 510 305
н078 н079 - м080 м081 н082	2 25 13 3 ·· 28 11 3 30 21 4 402 14 2 35 13	47 5 1 6 1690 49 1 2 2 8 1448 58 2.7 1 7 1542	6.49 141 5 ND 1 6.71 130 5 ND 2	1 40 22 2 3 2 2 30 22 2 2 1 1 40 22 2 2 2	59 .49 .098 6 10 2.25 50 1.02 101 6 2 2.75 51 .73 105 5 4 3.33 68 .74 110 6 9 3.42 74 .31 114 8 3 1.92	58 01 2 2.61 .01 .19 51 01 2 2.81 .01 .19 52 02 2 3.11 .01 .10	9 210 170 5 220 175 6 124 195
• м083 м084 м085 м086 м086 м087	2 19 10 3 26 19 2 27 21 1 26 23 1 31 17	9 66 1.3 2 9 1044 118 1.4 2 10 1157 89 1.2 4 9 1161	8.15 25 5 NO 7.99 13 5 NO	1 18 2 2 2 1 23 2 2 2 1 21 2 2 4	74 .27 107 8 3 2.00 62 .29 113 8 10 1.60 60 .32 120 6 2 1.56 60 .33 126 6 3 1.61 59 .34 .140 6 6 1.94	71 01 2 2.14 .01 .2 75 01 2 2.27 .01 .2 65 .01 2 2.26 .01 .2	1 200 110 3 1 330 70 2 1 780 40
мова мов9 мо90 мо91 мо92	1 41 49 4 177 623 9 1290 259 3 141 51 2 65 37	5 270 6 7 1 13 182 2 351 20.6 3 11 121 87 8.9 2 9 76	5 13.79 257 5 ND 2 16.76 637 5 ND 5 9.78 353 5 ND	1 34 2 2 7 1 34 2 104 5 1 40 2 37 2	68 .27 094 3 2 3.23 86 .36 091 2 3 3.81 30 .94 079 2 12 1.68 36 .91 100 4 3 .43 50 .66 120 5 4 .88	1 22 01 2 3,98 01 0 3 25 01 2 1.41 01 1 5 30 01 2 52 01 1	7 1 840 330 2 1 1020 12000 5 1 230 940
M093 M094 M095 M096 M097	3 36 20 7 50 18 5 74 18 4 70 20 2 41 36	3 82 2,9 4 11 179 3 80 2,3 1 8 155	0 12,78 199 5 NO 9.08 221 5 NO 7.62 119 5 NO	1 26 2 2 2 1 32 2 2 2 1 56 2 2 2	71 .66 125 5 7 1.74 95 .46 130 5 1 3.04 68 .51 133 5 3 1.67 60 .80 117 5 9 1.40 56 3.17 092 3 1 1.36	4 53 03 2 3.62 .01 .1 7 64 01 2 2.02 .01 .1 0 65 01 2 1.76 .01 .1	8 1 240 90 9 1 230 130 9 1 250 70
RE M093 M098 M099 M100 M101	3 39 24 2 26 27 3 31 16 1 10 17 2 12 27	1 129 148 3 10 170 6 108 2 3 2 11 181 7 73 1 1 1 10 236	1 8.43 93 5 ND 7 8.59 58 5 ND	1 59 2 2 3 1 41 2 2 2	76 .71 131 5 9 1.84 71 .82 171 5 3 1.82 72 .61 157 6 5 2.28 63 1.01 100 4 2 2.29 65 .49 .098 4 2 2.53	2 94 01 2 2.49 .01 .2 3 100 02 2 2.91 .01 .2 9 65 01 2 2.76 .01 .1	3 1 240 105 3 1 250 100 8 1 200 110
M102 M103 STANDARD C/AU-R	4 37 2		9 9.78 56 5 ND	1 26 2 2 2 1 81 3 2 2 6 52 17.6 15 19	50 .42 ID6 4 9 1.26 49 1.19 IO7 4 2 1.34 56 .49 091 36 59 .89	6 57 .01 2 1.63 .01 .1 4 52 .01 2 1.73 .01 .1 9 180 .09 34 1.86 .06 .1	8 1 220 125

Sample type: CORE, Samples beginning 'RE' are duplicate samples.

.

(1) Solution (S. 1997) and S. 1997 Solution (S. 1997) and S

स्वतः स्वयं द्वितः स्वतः स्वतः स्वयं व्यवः स्वयं व्यवः

		2
	Granges Inc. PROJECT UNUK RIVER 134 FILE # 91-5203 Page 5	si.
SAMPLE# J91-24	Mo Cu Pb Zn Ag Xi Co Hn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti B Al Xa K W Au* Xg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
ж104 ж105 ж106 ж107 ж108	.4 26 27 71 2.6 1 8 2015 8.64 179 5 ND 1 99 2 4 2 48 1.72 107 5 4 1.21 43 01 2 1.35 .01 .13 1 103 155 2 29 25 65 2 1 10 2067 8.50 189 5 ND 1 58 2 2 2 43 1.09 091 3 8 1.68 38 01 2 1.35 .01 .13 1 450 120 4 50 33 58 2.5 2 10 1514 7.32 157 5 ND 1 70 2 6 2 37 1.07 088 3 3 1.01 .06 .01 2 1.09 .01 .10 1 150 105 2 101 40 60 6 2 37 1.07 3 6 .23 21 <	
M109 K110 M111 X112 N113	3 16 20 47 1.6 8 13 1389 5.93 163 5 ND 1 145 2 10 2 28 1.67 106 4 6 .67 26 .01 2 1.47 .02 .29 1 140 245 1 8 7 119 1 10 22 1485 5.23 19 5 ND 1 152 2 2 94 1.34 4.11 10 12 1.66 164 .01 2 2.84 .02 .39 1 9 35 1 6 4 118 .4 12 26 1661 5.84 21 5 ND 1 211 2 2 2 33 1.37 .267 10 11 1.83 184 01 2 3.10 .02 .39 1 15 30 1 11 7 119 .2 13 25 1398 6.07 20 5 NO 1	
H114 H115 H116 H117 H118	1 136 7 112 5 15 26 122 6.50 19 5 ND 1 93 2 2 2 56 .66 73 11 14 1.91 176 01 2 3.31 .02 .37 1 6 30 1 540 3 107 17 9 23 1220 5.05 21 5 ND 2 130 2 2 2 48 1.09 217 15 9 1.70 154 01 3 2.61 .02 .33 40 1 300 6 110 12 29 1356 5.38 29 5 ND 1 107 2 2 51 .74 106 10 11 1.73 177 01 2 2.74 .01 .35 3 40 1 191 12 108 7 13 26 1343 5.79 26 5 ND 1 65 2 2 49 <	
M119 M120 M121 M122 H123	2 63 101 197 7 12 17 1973 5.35 78 5 ND 1 71 4 5 2 82 .96 056 3 30 2.49 62 01 2 2.44 .01 .15 1 50 150 4 86 59 244 6 9 16 1436 7.40 131 5 ND 1 34 4 3 2 72 .56 097 5 17 1.45 63 01 3 1.71 .01 .15 1 49 175 7 36 54 247 1.7 3 12 668 8.45 272 5 ND 1 23 .2 4 2 51 .46 .133 9 3 .65 31 01 2 .90 .01 .15 1 140 170 6 27 67 304 17 3 13 960 7.55 169 5 NO <t< td=""><td></td></t<>	
H124 H125 H126 H127 H128	7 31 76 231 3.1 2 10 1595 7.77 263 5 ND 1 60 .2 7 2 51 1.40 122 7 2 1.35 52 0 2 1.40 .01 .12 1 160 205 3 21 28 131 1.6 2 12 2947 6.68 45 5 ND 1 148 2 2 2 57 3.20 1.19 7 3 1.70 66 .01 2 2.02 .01 .14 1 190 165 3 18 26 160 1.6 2 11 146 2 2 2 61 1.77 112 6 7 1.25 64 01 2 1.59 .01 .12 1330 160 11 26 98 464 2.09 2 1 1678 7.87 145 5 ND 1 40 5 2 2 66 .89	
H129 H130 H131 H132 H133	4 29 38 146 21.8 1 10 4275 9.44 71 5 ND 1 154 2 5 2 42 4.37 094 2 2 1.17 45 03 2 1.29 .01 .11 1 160 315 3 20 35 157 2.1 1 8 3045 7.27 42 5 ND 1 135 22 2 2 48 3.32 121 6 5 1.58 62 .01 2 1.68 .01 .14 170 220 2 53 55 272 2.5 2 9 1633 7.79 172 5 ND 1 64 2 2 2 44 1.32 124 6 3 1.24 52 .01 2 1.32 .01 .11 110 220 240 240 240 240 240 240 240 240 240 240 240 240 240 240	
RE M129 M134 M135 M136 X137	4 31 39 153 3.0 1 11 4530 10.04 174 5 ND 1 122 .2 5 2 44 3.79 101 2 2 1.24 6 01 2 1.40 .01 .11 1 180 355 6 88 1012 2029 6.7 2 11 2241 7.70 237 5 ND 1 56 516 2 2 53 2.49 113 5 2 2.60 54 01 2 1.40 .01 .11 1 180 355 2 41 57 212 2.1 1 9 1648 7.57 160 5 NO 1 58 2 2 2 59 1.50 124 6 1 1.78 64 01 2 1.85 .01 .13 1210 220 2 46 37 193 2.1 2 1 333 1 2 2 63 .83 <td></td>	
M138 M139 STANDARD C/AU+R	11 27 39 151 1.8 1 14 2380 9.03 308 5 NO 1 56 22 2 266 2.04 114 6 1 2.15 65 01 3.4.97 .01 .14 1 270 110 4 12 24 146 126 2 8 1377 7.47 105 5 NO 1 52 12 2 2 65 1.14 118 6 7 1.51 72 01 3 1.93 .01 .15 1 160 95 R 19 58 42 133 7.5 72 32 1054 4.00 38 15 7 39 52 8.4 15 19 55 .49 090 38 59 .90 177 09 32 1.89 .06 .15 11 520 1400	

Sample type: CORE, Samples beginning /RE/ are duplicate samples.

.

and on a lot of the second signal states and states and second signal second second signal second

and the second of the second second second

and the second second second with the second second second second second second second second second second se

H154 1 11 12 173 22 1 8 2124 8.55 2 5 NO 1 158 5 2 2 4 4.21 14.21 <	SAMPLE# Ho Cu Pb 2n Ag Ni Co Mn Fe As U Au Th Sr $-Z''$ ppm ppm
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ppm ppm
11 15 160 3 2 8 2619 8.40 2 5 NO 1 173 7 2 2 40 4.71 117 4 7 1.46 82 05 6 3.10 .01 .2 12 10 148 3 12 16 1523 8.25 520 5 NO 1 150 5 2 2 5 3.82 328 7 7 1.26 129 02 7 3.09 .02 2 91 14 110 4 22 13 697 9 124 3 16 1.6 160 101 3 1.64 .01 2 2 1.4 1.0 4 17 1.20 84 0.1 2 2 2 2.4 7.0 1.4 17 1.60 1.50 1.50 1.50 2 2 2.4 7.03 1.1 4 17 1.60 1.50 1.6 1.50 1.6 1.60 1.61 1.6 <	m ppm ppm ppm x ppm
16032826198.4025NO1173722404.71117471.46820563.10.01.2161323947.1895NO115052253.28771.261290273.09.02210422137994.9145NO11505223.66.3123161.161060131.04.01.2121316136234.56115NO1173222247.031.14171.20840151.04.01.21212146294.8835NO1181222247.031.14171.20840151.87.01.11212146294.8835NO1150522553.8032871.261330233.10.02.32.00.01.21212146294.8835NO115052255.801.2613.0233.10.02.33.10	ppm ppm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ppm ppm x ppm
8 2619 8.40 2 5 NO 1 173 7 2 2 40 4.7 1.46 82 05 6 3.10 .01 2.2 13 2394 7.18 9 5 ND 1 160 7 2 2 48 4.25 252 4 7 1.46 82 05 6 3.10 .01 2.2 13 61523 8.25 520 5 ND 1 160 7 2 2 48 4.25 252 4 7 1.46 82 05 6 3.12 .01 3.3 6 2 23 6.63 173 2 2 4.8 4.7 1.46 160 103 02 3 1.64 .01 2.3 2 2 2 4.7 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.173 2.7 <td>ppm x ppm ppm</td>	ppm x ppm
98.40 2 5 NO 1 173 7 2 2 40 4.71 117 4 7 1.46 82 05 6 3.10 .01 .2 138.25 329 5 ND 1 160 7 2 2 48 4.25 252 4 7 1.46 82 .05 6 3.10 .01 .2 138.25 329 5 ND 1 150 5 2 2 55 3.82 328 7 7 1.26 120 2 7 3.06 1.16 106 101 3 1.64 .01 2 2 2 24 7.03 111 4 17 1.20 844 .01 5 1.87 .01 .1 29 4.88 3 5 ND 1 181 2 2 2 37 4.57 147 6 22 1.20 97 01 5 2.11 .01 .2 2 2 37 4.57<	* Ppm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Port Ppr Ppr Ppr Ppr Ppr 50 5 ND 1 64 20 5 ND 1 30 2 5 ND 1 30 2 5 ND 1 58 6 5 ND 1 51 19 5 ND 1 185 20 5 ND 1 163 5 5 ND 1 163 5 5 ND 1 163 5 5 ND 1 140 3 5 ND 1 158 2 5 ND 1 159 2 5 ND 1 169 2 5 ND 1 135
5 NO 1 173 7 2 2 40 4.71 117 4 7 1.46 82 05 6 3.10 .01 .2 5 NO 1 150 5 2 2 48 4.25 252 4 7 1.60 103 02 4 3.12 .01 .2 5 NO 1 243 2 25 3.28 7 7 1.26 129 02 7 3.09 .02 .2 3 1.64 .01 .2 3 1.64 .01 .2 3 1.64 .01 .2 3 1.64 .01 .2 3 1.64 .01 .2 3 2.00 .01 .2 .2 .2 .01 .130 6 20 1.38 .01 .4 .2.4 .01 .1 .2 .2 .2 .01 .1 .2 .2 .01 .1 .2 .01 .01 .2 .2 .01 .2 .01 .2 .	m ppm ppm ppm 5 ND 1 64 5 ND 1 30 5 ND 1 96 5 ND 1 58 5 ND 1 51 5 ND 1 151 5 ND 1 152 5 ND 1 163 5 ND 1 1201 5 ND 1 140 5 ND 1 158 5 ND 1 163 5 ND 1 158 5 ND 1 169 5 ND 1 172 5 ND 1 135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ppm ppm 1 64 1 30 1 96 1 58 1 51 1 185 1 152 1 163 1 201 1 140 1 158 1 169 1 172 1 135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ppm 64 30 96 58 51 185 152 163 201 158 169 172 135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22222 22222 222
71 117 4 7 1.46 82 05 6 3.10 .01 .2 25 252 4 7 1.60 103 02 4 3.12 .01 .3 82 328 7 7 1.26 129 02 7 3.09 .02 .2 63 121 3 16 1.6 106 01 3 1.44 .01 .2 03 111 4 17 1.20 84 01 5 1.87 .01 .1 80 30 6 20 1.38 79 .01 4 2.34 .01 .1 80 30 6 20 1.38 79 .01 4 2.34 .01 .1 80 325 8 7 1.26 133 .02 3 3.10 .02 .3 1.01 .2 20 137 5 25 1.36 82 .01 5 2.17 .01 .1 <	69 1.8 79 .6 77 2.1 80 1.5 70 .8 113 3.5 101 3.5 121 3.5 84 4.0 83 3.5 82 5.4 83 5.1 90 5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 127 2 159 2 156 6 145 8 136 2 102 5 076 98 107 98 148 148 148 12 297 14 302 26 274 14 302 20 314
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6754 43346 658
1.46 82 05 6 3.10 .01 .2 1.60 103 02 4 3.12 .01 .3 1.26 129 02 7 3.09 .02 .2 1.15 99 02 3 2.00 .01 .2 1.20 84 0.1 5 1.87 .01 .1 1.38 79 01 4 2.34 .01 .1 1.20 84 0.1 5 1.87 .01 .1 1.38 79 01 4 2.34 .01 .2 1.20 97 01 5 2.11 .01 .2 1.30 82 01 3 2.17 .01 .2 1.31 81 01 3 2.17 .01 .1 1.32 86 01 3 2.17 .01 .1 1.32 85 01 2 2.35 .02 .1 1.49 78 01 2	ppm 10 1 9 1 15 1 14 2 24 2 43 2 38 2 37 3 35 1 11 9 11 10 9
82 05 6 3.10 01 .2 103 02 4 3.12 01 .3 129 02 7 3.09 .02 .2 06 01 3 1.64 .01 .2 99 .02 3 2.00 .01 .2 99 .02 3 2.00 .01 .2 99 .02 3 2.00 .01 .2 99 .01 4 2.34 .01 .1 79 .01 4 2.34 .01 .1 133 .02 .3 .10 .02 .3 97 .01 5 2.11 .01 .2 82 .01 5 2.26 .01 .1 84 .01 3 2.17 .01 .1 85 .01 5 2.03 .01 .1 86 .01	1.33 1.54 1.37 2.13 2.21 2.21 2.27 1.32 1.33 1.31 1.31 1.25 1.25 1.25 1.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m % 64 01 62 01 63 02 58 02 98 01 95 01 95 01 38 06 32 100 32 29 93 60
.10 ,01 ,2 ,12 ,01 ,3 ,09 ,02 ,2 ,64 ,01 ,2 ,00 ,01 ,3 ,10 ,01 ,1 ,34 ,01 ,1 ,34 ,01 ,1 ,10 ,02 ,3 ,11 ,01 ,2 ,26 ,01 ,1 ,17 ,01 ,1 ,25 ,01 ,1 ,25 ,01 ,1 ,25 ,01 ,1 ,77 ,01 , ,77 ,01 , ,72 ,01 , ,240 ,01 ,	ppm 4 2. 7 2. 4 2. 10 2. 11 4. 10 3. 7 2. 9 4. 8 3. 7 3. 9 3. 10 3. 7 2. 7 2. 9 4. 8 3. 7 3. 9 3. 10 3. 7 2. 9 4. 7 2. 9 5. 7 2. 7 3. 7 2. 7 2. 7 2. 7 2. 7 2. 7 3. 7 2. 7 2. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
01 .2 01 .3 02 .2 01 .2 01 .2 01 .2 01 .2 01 .2 01 .2 01 .1 .01	.28 . .28 . .28 . .89 . .12 . .03 . .12 . .07 . .10 . .98 .
	x x 01 .13 01 .12 01 .12 01 .12 01 .12 01 .12 01 .14 01 .12 .01 .12
S 5 9 3 2 8 7 3 1 4 5 6 7 8 4 4 5 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1	5 1 1 7 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ppb ppc 86 7 63 10 54 10 106 10 13 4 22 1 14 1 5 1 5 1 6 1 1 1 1 1 1 1 1 1 1 1 3 1
20 75 85 85 65 65 65 65 65 65 65 65 65 65 65 65 65	75 10 10 10 10 10 10 10 10 20 25 55 55

GRANGES EXPLORATION LTD.

	UNUK RIVER	PROJECT (134)	PAGE OF 15
HOLE No.	Cour	3 CLAIM	

391-25

PURPOSE

TO TEST DOWN DIP EXTENSION OF MINERALIZATION INTERSECTED HOLE 10 ('750 ZONE').

LOCATION JEFF GRID	GROUND ELEV.	BEARING	TOTAL LENGTH
0+75E , 7+5IN	455	2,70	
DIP - 8 1°	DIP TESTS 57.91 - 77° 134.11 - 77°	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE	CONTRACTOR	CORE SIZE	DATE STARTED OUT. 18/9
G-ALLEN OCT. 18, 19	J.T. THOMAS	B.Q.	

SUMMARY LOG

0-7.62 CASING

7.62-B.63 OVERBURDEN

8.63-68.65 INTERMEDIATE (TO FELSIC ?) FINE- GRAINED TUFF AND LAPILLI TUFF 68.65-74.18 ARGILLITE, SILTSTONE

74.18-87.13 INTERMEDIATE TO FELSIC ANYGOALDIDAL LAPILLI TUFF TO TUFF BRECCIA STRINGER ZONE

6713-111.97 INTERMEDIATE TO FELSIC COARSE- GRAINED TUFF TO LAPILL TUFF

13.95-116.9 INTERMODIATE FINE TO MEDINA - GRAINED TUFF

116.9 - 118.28 ARG-ILLITE, SILTSTONE 118.28-119.0 INTERMEDIATE COARSE- GRAINED TURF 119.0-12560 ARG-ILLITE SILTSTONE

12540-127.7 MEDIUM - GRAINED ARGILLACEOUS SANDSTONE

127.7 - 134.11 INTERBODED SILTSTONE, ARGILLITE AND MINOR SAND STONE

134.11 E.O.H.

BIGNIFICANT MINERALIZED INTERVALS

×

Contraction of the second second second second second second second second second second second second second s

60.65-74.1B								
· · · · · · · · · · · · · · · · · · ·	STRINGERS	IN AF	LGILLITE .	PROBACLY	· COPRES	LATIVE	WITH GOL	D-BARING
·	ARGILLITE			4			- 7 A	-
					•	-		
74-18 - 111-97	- SPONADIC	3-74.	STRINGER.	RELATED	PYRITE	in Si	LICTIED	VOLCANICLASTIC
	BOCK.				÷	· · · · ·		
	74-18-94.4	5- < 17	FACH O	F SPHALE	LITE AND	GALENI	A. /A	· · · · ·

96.1 TRACES CINNABAR THIS INTERVAL PROBABLY CORRELATIVE WITH MINEARLIZED ZONE IN

94.5-111.97 TRACES CALENA AND SPHALERITE

GRANGES EXPLO	RATION LTD
DIAMOND DF	NLL LOG

PAGE 2 OF 15

.

(

.

|--|

391-25

	_ 5						
INTERVAL	LITHOLOGY	*		S	M	A	
0-7.62	CASING		+	┢╌		†	-0
	No morring	<u> </u>	_		ĺ _	_	
	0			1]		
<u> </u>			-	-	-	-	-
·							
			1-0	-	[-	-	-
		-1	"				
•			2	-	-	-	-
·			י_		_		
						_	-3
			-	_	-	_	-
			- '	-	-		
7.62-	OVERBURDEN	-	0		·		
8.63	Palylithic sublite		0.0	-			
····	0				œ.t		
8/2 4.46			10			2-32 M	
8.63-68.65	INTERMEDIATE (TO FELSIC?) FINE- GRAINED				107	~ L	- 10
	TUFF AND LAPILLI TUFF	5.	Ŀ.		<u>•</u> y-	· .	
	medium blueist - and line and I	- 1-0		[2-37.		
	to poorly hilled to makely phyllitis sift	H/	· .		77	-	
	(anisitie ?? try with some baccouse - and	1 8 0	-		2.7	- +	
	progranted intervente to 1.5m. Fragmente me	ame		(1).	253 271	·.	
	fine- grained midium plus- one material similar	- -	-	-	2	- F	
	to the fire - pained till and may in fact	ቅ:/		ļ	-22		
	he debies flows on briceisted fine ground				77	- [
	tuffa		_	_	_]		- 15
		-					
	8.63-9.68 - 402 white quarty carbonate vina		- [7.4			
	and outcome filling. Vine at 80 CA. Barris.	- 1		ŀ			
	9.60-10.68- Priville a tel Inicia with a line		-	- 3			
	light our admitie watering harmente to the	-					
	Rouly promite have line or small amended.		-	2			e
· · · · ·	1-mm			["	Y		Q
	No anyodalaidal frogmente apparent in sectof interio]5%]	-	- /	7	- -	
	CO ALCONTRACTOR	V			2	_ L	20
						. Г	20
	CALL CONTRACTOR OF	1	·].	: ľ			

.

3 PAGE

÷,

of 15

HOLE No.

-(

C(

Γ

591-25

MINERALIZATION ALTERATION	SAMPL	FROM	то	ыютн	Аu ppb	Ag ppm	As ppm	Sb ppm		
							 	 		
· · · · · · · · · · · · · · · · · · ·										
		ļ	 	 		<u> </u>				<u> </u>
			ļ							
	_									<u> </u>
										j <u></u>
· · · · · · · · · · · · · · · · · · ·										
			<u> </u>							(
ora orac in lite that	5-209	0/1	010	1.05	1	0.1	26	2		
8.63 - 9.68 - 402 white quarty - contracter	3-209	2.4.2	7.4 2	1.05			<u> </u>			
2-32 fractum filling projects in	3-210	9.6 B	10.68	1.0	2	0.7	271	5		
host.	5-211			+ 07		0.1	77	2]	
68-10.68- 107, prite in migular	<u>J-21</u>	10-63	0.75	1		0.1	<u>J T</u>	ž		
mouse and foliation parallel boundar,	5-212	11.75	12.19	0.44	1	0.5	61	2		
.68-11.75- 2-3 ° punite in drienting	6 7.5	5 6	13.20	0		0.1	40	2		
Polistin - Parallel Junde to I mm wide.	520	12.17	10.00	1-17	<u> </u>	<u>,</u>	<u> </u>	\sim	•	
	5.2/4	13.38	14.90	1.52	2	0.1	6	Z		
. 75-12.19 - 87. pyrite. Acabone. Bande						- 	21	2		
to 3 mm.	5-219	14.70	16-40	1.30	~	0.	<u>ها</u>	~	}	
2.19-13.38 - 3-5° provite Projection	3-46	16.40	17.70	1.30		0.1	28	2		
above and in fraction filling.			10 47	. 17		0.1	2	2		
3.38-16.40-1-27. Dirite Dissing TI	5-47	(/./•	17.02	1.52		<u>-1-</u>	2	~		
3.38-16.40-1-27. pyrite Dissiminated	5-218	19.0Z	20.46	1-44	1	0.1	8	2		
	┨									-(
. 40-17.7-3-47. pyrite "	┨╶╴┨							─ ─╂		
7.70-22.67- 17. printe. "										`
<u> </u>	<u> </u>							[•	•
					1	- 1				

× 3 -		-	N 27	-	- 20
	(+,+), D	-	12 17	-	- 20
	(+,+), D	-	Py		- 25
	- - - -	-	<17. 177 - -		- 25
	- - - -	-	<17. 177 - -		- 25
		-	<17. 177 - -		- 25
	-	-	<17. 177 - -	-	- 25
	-	-	-		- 25
	-	-	-		- 25
		-	-	-	
		-	-	-	
			-	-	
	-	-	- -	-	
		_	1 -	ļ ~	P
	1		1	f	
	-	-	-	-	-
		- -		_	- 30
	-	- - 1- 3	-	-	
	_		121	_	-
	-		·		
			: <u>-</u> 	-	·
	-		- "	-	-
					-35
 					ر»_
 [-]	-	یند : است : اهمار :	·	-	-
	_			-	-
· · ·	: 	م مندر ۲		,	
	⊴ _ 2`ા		an an an an an an an an an an an an an a	··-	-
	-		1-22 12	-	
	1.1.0 1.21 2.41		5		:
				·	-40

GRANGES EXPLORATION LTD DIAMOND DRILL LOG C,

of is(PAGE 5

HOLE No.

391-25

	MINERALIZATION ALTERATION	SAMPLI	FROM	то	ыюти	Au ppb	Ag PPM	As ppm	56 ppm	
20 -		5-219	20-44	21.52	1.06		<u>n</u>	3	2	
			 							
		5-220	<u>4.52</u>	22.67	1-15	2	0.1	2	2	
	12 17 14 AR 17 Duite i have !		12 (7	77.40	0.81	2	0.1	19	2	
	22.67 - 23.48 - 47. pyrite in migule masses to 1 cm or Smin in wale	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.40/	22.41	0.01	~	10.1	114-	- *	
	chlority, contorate flooded buccia.	5-222	23.4	24.90	1.42	1	0.1	4	2	
			-	24.00						
	23.48-38.15 <170 diaminated, froting	5-223	24.90	26.37	<u>].47</u>	1	0.1	5	2	
.5 -	paragran other poyen.	5-224	26.37	27.82	1.45	1	0.1	5	2	
		5-225	27.82	29.36	1.54	1	0.[_2	2	
		5-726	29.36	30.82	1.46	1	0.1	2	2	
	· · · · · · · · · · · · · · · · · · ·									(
		<u> 3-227</u>	30.82	32.38	1.56	<u>ا</u>	0.1	6	2	
		-170	20.00	33.70	1 2 7	1	0,1	2	z	
o '		5-220	26.72	5170	1-22			~		
Ū.		5-2.29	33.70	35.18	1.48	1	0.1	5	2	
				71 60			Δ.		2	
		5-230	52.18	36.59	1.40	<u>_s</u>	0.1	3	<u> </u>	
		5-231	36.58	37.33	0.75	{	0.1	2	2	
		5-232	<u>37.33</u>	38.15	0.82	2	0-1	3	2	
		5-233	38.14	39.62	1.47	2	0.1	24	2	
5 -				02.00		-		<u> </u>		
		5-234	39.62	41.10	1.48	_ I	0.1	25	2	
Ì										
	Spic doca i atta it 1				<u> </u>					
ł	38.15- 19.55 - 1-2 % put as about.									
Ī	·									
0 +				[
			ł		<u> </u>			<u> </u>		<u> </u>
L L			L	l						

		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	6		0F	15	
HOLE No.								1
J91-		5						
INTERVAL	C. L055	LITHOLOGY	¥. U		S	M	A	
	+			۲ A		1-27 PY	-	Ť
					-	-	-	\mathbf{F}
	-				-	_	-	-
			_			-		
	-			-		-	-	ſ
			/_35	-	-	-	-	╞
					_ .	_	_	
						.		
				-	1	-	-	F
				-	-	-	-	ŀ
				_			_	
			- 5.1					
			40		-] -	ŀ
				-		2-3% 97	-	L
				i	•	~		
	$\left \right $			_		, (-	ſ
				-	-	2	-	╞
	╞╌┨] -	_	-	<u>></u> 7	-	\mathbf{F}
			-			/		
			_\$ [;] /	-	-	· - ·	-	ſ
·····			-/35		-	<u>{</u>	-	 ,
			- -	_	-	<u></u>	- .	Ļ
		57.91- 59.97 - Mina blue-ong chaladony in	-			3-59-	-	
· · · · · · · · · · · · · · · · · · ·		with pyrite and calete		-		17	-	-
<u>.</u>	╞╼╂	• u		-		1	-	1
					, Ç			
	·		51/30			25	cot. ey	-

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 7 OF 15

HOLE No.

Desire of

591-25

MINERALIZATION ALTERATION	БАМРЦ	FRON	то	NIOTH	Аи ррб	Ад ррм	As ppm	S6 ppm	49	
	5-235	41.10	42.67	1.57	2	01		T		
· · · · · · · · · · · · · · · · · · ·										
······································	5-236	4267	43.26	0.59	<u> </u>	0.1			<u> </u>	_
	1	<u> </u>								<u> </u>
······································	5-237	43.20	45.27	2-01	.1	0.1				
		· ·	ļ	ļ		<u> </u>	 	<u> </u>	<u> </u>	
	5-230	15.2	47.24	1.97	1	0.1		 		<u> </u>
· · · · · · · · · · · · · · · · · · ·		ļ	<u> </u>			·			ļ	<u> </u>
	<u>s-239</u>	47.24	48.15	1-01.	ſ	0.1	· .	ļ	<u> </u>	ļ
		 	 	 		<u> </u>	<u> </u>	ļ	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	5-2+0	48.25	49.55	1.30	1	0.1		ļ		L
		<u></u>	<u> </u>						ļ	
	5-241	49.55	<i>Ş1.</i> 0	1.45	2	0.1			.	
								· · ·		
	5.242	<u>4.0</u>	52.44	1.44		0.1	j. 4 -			
	C 941		54.04		1	0.1		<u> </u>		<u> </u>
	5-249	52.44	37.04	1.60	-	0.1	,'			
49.55 - 56.46 - 2-37. porte: putom	CTAL	50.00	66.60	1.41	1.2	0.7:				
1-3 may last	2.64	77.04	22.20	1. 7 9	•••	0.2				
fillinge. Some foristion - parallel	3-740	55.50	56.46	0.96	4	0.2	63	3	445	
handy man by facture also										
y of press	5-246	56.46	57.91	1.45	<u>: `</u>	0.2	90	2	540	
· ·										
	5-247	57.91	58.77	0.86	3	0.2	338	19	3250	
:				2	i k		~ J .	1		
· · · · · · · · · · · · · · · · · · ·	5-248	50.77	59.77	1.20	2	0.5	232	10	1650	
	·			5 d . 2						
· · · · · · · · · · · · · · · · · · ·	5-249	59.97	61.10	1.13	<u>.:5</u>	6.1	185	6	1100	
•]		<u>5</u> 4				1.5		·	
56.46-65.10- 3-57. pupite as above.	·			in.		ليور	ž		-	·
· · · · · · · · · · · · · · · · · · ·										
			1 4 4 1 1 1			لى _{المع} د : ار	<u></u>			
	 			- 20			~~~			
	╞╌╴╿		<u> </u>	·					، جامع و دوم ر	
	╞──┤	• •	i	··· .	<u> </u>		4-14 (b-14.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and a second	
69.74- CO O	╞──┤									
59.74-59.8- 4-5 cm vin d. 607. pyriti	┠───┠		<u> </u>		<u>· · </u>	··· ·	··· · · · · · · · · · · · · · · · · ·	 		
warand and on radicing componen	┟╌──┟		 				<u> </u>			
masen.			- 1 I	Sec. 8.	· · · ·	a anani in			Contract (

GRANGES EXPLORATION LTD DIAMOND DRILL LOG PAGE 8 OF 15 HOLE No. 391-25 C. L055 S INTERVAL LITHOLOGY مبد А IM J 60 61.5-68.17- Puda 3-5% የሃ to 5 cm. Some <1.mm som त (क्ष) with 67.10-63.54 'cl 67.06-68.17- Dad 1. dut ? 65 S. 68.17-68.65- Buccistid - carly stringe Phit 68.65-ARGILLITE, SILTSTONE 74.18 - 70 with RI cut by 3-5 Some cross - Cu 68.65-69.6- FAULT, Public 1 70 te Sh ડાં-2 60° cA, appointly parallel - 75 73.15-74.18 - Intermined angillite Dr - Fass . • -quy tuf 1 unit probably conclution with electra + This î 1 ć (C

PAGE 9

of 15

HOLE No.

591-25

0 -	MINERALIZATION ALTERATION	SAMME	FROM	то	WIDTH	PPb	Ag ppm		S6 ppm	Hg	
	· · · · · · · · · · · · · · · · · · ·	\$-25	<u>()</u>	62.10	1.0	2	0.1.	313	17	3300	╞
		5-251	62.10	63.2	21-1	ł.	01	363	23	3450	+
		5-2.52	<u>63.2</u> 0	64.01	0.B1	3	6.1	852	57	12000	ł
		5-253	64.01	65.10	1.09	3	0.1	364	15	2200	
		5-254	65.10	- 65.84	0.74	2	0.1	790	51	10500	
5 -	65.10-67.06 - 5.7% pyrite in	5-255	·	-		1	0.1	412	24	5700	F
	chlorite calite quarter flooded	<u> </u>									╞
	monise of repute suff.	5-256				3		616	39	62 <i>S</i> S	ŀ
	67.06-68.17 - Bto printe as above	8-257	6817	6865	0.40	• H	0.9	<u>275</u>	16	2450	ŀ
	6B.17-6B.65- 3-47 s pyrite in buccisty	5-258	68.65	69.84	1.19	1380	30.9	280	92	1700	
		5-259	69.84	7a Bo	0.96	140	11.0	129	42	790	
*	6B-63-74.18 - <17. nd - brown	5-260	70.80	72.90	2.10	4z0	21.2	3/3	88	3250	
	and chalcopyrite throughout.	š-261	72.90	73-80	0.90	1280	42.4	303	100	34so	-
	Predominantly associated with calcity stringers. Spondid 2-37;	5-262	73.60	74.18	0.28	5180	81.6	560	115	4800	
	punt in masser and stringen to	5-263		1. A.	1. 19 N.				<u>.</u>		
	contrarta atringus.			-			1.1		62	1900	
5 -	7 4.18 - 94.5 - 4-57. pyrite; predmining	5-264	<u>75.20</u>	76.2	1.00	590		425	49	(Z10	-
l	in myrder meers and stringing up to	5-26.5	76.2	77.2	1.00	5420	39:1	530	101	<u>8950</u>	_
	anglie but also up to so ca commute	<u>s-24</u> 7	17.2	78 Z	1.0	560		222 7	32	12.50	
*	estingues up to 2 cm.	5-267			1.05	420	12.8	122		1950	
	and galung ginnally associated	5-248		80.25	1:0	340	15.5	391		32.57	
	Ales with late white contents			2 - 2 2 - 2		2				-	
᠈᠊᠊{	straigen, 81.8- poorly zond aphiling										
Ī					-		27	1.5			

- -

GRANGES EXPLORATION LTD DIAMOND DRILL LOG PAGE 10 OF 15 HOLE No. 591-25 C. L055 INTERVAL LITHOLOGY SIMA ₩ J BO 74.18-87.13 INTERMEDIATE TO FELSIC AMYCDALDIDAL 2-5 04-TUFF TO TUFF BRECCIA, LAPILL) STRINGER ZONE Mettles ... dum to ×156.54 anygo an to agroup to com to be Ċ. 85 <1mm <u>jugati</u> Can 0-60 300 to mart rous croscut en たいで、 21 unit ait by 5-10% quart carbonate string to . The quart 90' to CA 5.-2 ite stringers truncate py commenty_ and 90 minuluge distinct amygdaloi Unit d mith aments e to I am. 87.13 - 111.97 INTERMEDIATE TO FELSIC COARSE- GAAINED TO LAPILLI TUFF TUFF light to medie to legilli tu m - 95 se an arr : - F 27 down to = 5% to Ban aning <1 - 5% (amage 1-2% 94.5-111.64 -SAmo to black chalcilony in cia matrix. Append to i i i Decis early silicification wer 87.3- 87.5 - White fault goinge. Onentation and 100 87.5- B7.7- D. chinty sedement (?)

GRANGES EXPLORATION LED DIAMOND DRILL LOG

PAGE 11 OF 15

HOLE No.

1

591-25

	MINERALIZATION	ALTERATION	SAMM	E FRON	то	W107#	Au ppb	Ag ppm	As ppm	. 56 реля	49	
[·· ··	5-269	80.29	81.25	1.0	350	19.4	163	36	2950	,
	<u> </u>		4.17	81.25	0.20		22	7.7	340	153	3250	+
				<u> </u>	02.90	1.05	520	<u> ^. /</u>	1.570		0230	<u>.</u>
			5-271	82.30	83.30	1.0	150	12.6	149	35	695	·
1 1	111.97 - Tracy	ephalinite and	5-272	83.30	84.30	1.0	470	10.7	5.44	25	400	
6	1 8	.7 - 2	5-273	84.3	95.30	1.0	290	15.3	733	45	610	
<u>.</u>	······································			96.00	0		200	11 7				<u> </u>
	· · · · · · · · · · · · · · · · · · ·		<u>}</u>	85.30	36.30	1.0	250	11.3	469 	43	1300	
			5-275	86.30	87.10	0.8	135	<u>15.2</u>	214	44	1900	
			5-276	87.1.	87.70	0.6	440	74.6	231	126	4600	
			5-777	87.70	84.70	10	310	15.9	352	99	2150	
<u> 89.3-</u>	Teracio stilmi	te in white quarty		•	N 2 - 4				۳.		21.50	
A	mgen		5-278	6 9.70	90.0	1.0	19	<u>83</u>	181	28	<u>585</u>	
			5-279	10.0	21.0	1.0.	490	30.6	160	126	3300	
	·		5-280	91.0	72,0	1.0	240	20.8	305	45	1350	
· · · · · · · · · · · · · · · · · · ·			5-281	920	93.0	1.0	270_	15.5	9/5	93	5950	
			5-282	93.0	94.0	 1.0'	106	17.7	585	-22	3000	
94.6		· 1.			• •							
<u>94.</u>	<u>-105.3- 4-77.</u> 5.	pyrte as. 74.12 t	5-283	74.0	75.0	10	<u>738</u>	<u>4174 -</u>	327	30	1578	
96.1 -	- 1		5-284	<u>95.0</u>	95.9	0.9	210	14:6	718.	45	475	
	- litre - guy	chaterdony brices		96.9	_		240		270.	36	310	
<u> </u> ;	dling.	U	5-286	96.3		'	440		小小	-79 -79	1400	
					المدقور فم	14.		-*	• /4S	وسج		
			5-287	97.3		1-0	320	19.7 J	/347 .911	80	Z65D	.
			5-288	98.3				15:9	410	50	1150	•
			5-289	99.30	10.30	1.0	280			91	2200	
			-1)	<u> </u>					

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG** PAGE 12 OF 15 HOLE No. 591-25 2201 S INTERVAL LITHOLOGY ¥ õ ى 100 2-3C5 -5:7 105.46 -105.85-Dr. Bu agreen to Incria e R - 105 dista que chi con 10 Si-2 1 0 ie suggesting æ les. illing. 10.0-11.2 - Blue - grey chal art he t Lati 1 with I lack chut P~ - 110 63-<u>111.97-</u> shullite 111. marthering light to dark que grained Sı. 5 <u>|||.97-</u> ARGILLITE Black to dark blue 113.95 my ange 53 minan sittetime. မြိ 113,2-113 - FAULT Pulperi 90° CA <ī-3 مد 30 **7**-3. and 64 - 1151 _ 113.95 -INTER MEDIATE FINE TO MEDIUM - GRAINED TUFF 116.9 オー -quy 207 Xuff estimet 84 Eti سه ا FAULT - Coman 116.2 - 116.9. bonellel CA 45° 16-9-ARGILITE SILTSTONE 118.2,8 Blo ٩Ľ <u>ب</u>ال 44 rittom. 120 118.20-119. COAKSE- GAMINED TUFF NTERMEDIATE มหระเทศแหน่หรือสายเหลือสายงานก่อว่าได้มีสามอยู่สามอยู่สามอยู่สามอยู่สามอยู่สามอยู่สามอยู่สามอยู่สามอยู่สามอยู่ส

GRANGES EXPLORATIONETED

PAGE 13 OF 15

HOLE No.

591-25

				<u>.</u>				. <u> </u>		_	
100	MINERALIZATION ALTERATION	SAMM	FROM	ro	MIDTH	Au ppb	Ag ppm	As ppm	S6 opm	Hg.	
700		290	100.3	0101.3	1.0	350		969		5400	<u></u>
		- <u> </u>		<u> </u>	·	<u> </u>					_
		5 211	101.3	102.3	1.0	720	10.0	401	46	295	-
		5-292	102.3	103.3	\$ 1.0	260	11.9	1043	76	2100	
		<_191		104.1	1.0	700	al	Ki 35	7.0		-
			109.2		1.0	200	<u>-1.</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	10	2150	+
	105.3-106.68- 1070 Prysite proom.	5-294	104.3	105.3	1.0	210	11.6	684	70	1800	
105-	in stringers to 2 cm wide	-		100.					<u> </u>		_
	at 30° to 90° to CA associated	5-275	1053	·*••3	1.0	410	30.0	1385	186	6450	
	with and along the selvages of	5-296	10/- 7	(4.9.9		7.1	1/-0	101			-
	carbonate strungers.	7-276	<u>/////////////////////////////////////</u>	(*7.5	1.0	-< YO	25.9	1367	208	5650	\vdash
	0	5-797	107.3	108.5	1.0	252	11.3	150	70	/550	
	106.68 - 110.3 - 5 - 6 % pyrite along						· ·	<u></u>	10		
	stringens to 3 mm and as buccia	S-29B	108.3	107,3	1.0	210	13.1	656	65	1050	1
	matrix	┇								!	
	- M ov	3-279	09.3	110,3	1.0	320	15.8	968	76	පිති	
110 -	110.3-111.3 - Bucciety interval flooded				· ·	_ 1					
	110.3-111.3 - Buccusted interval flooded	5-300 1	10.3	111.3	1.0	220	19.5	1263	166	3/50	
	chelcidany along stringer and	5-3011	11.3	111.27	0.67	31	26	/07	7	270	
	fragment selveges and massive									~ //	_
	to handed betryoid pyrite	5-3021	<u>11.97</u>	112.78	0.81	28	1.9	57	4	120	
		5-3031	12.75	113.99	1.17	Z6	0.7	43	2.5	75	
											•
115-	111.97 - 113.95 - 1 % proste in this	5-3041	13.95	15.42	1.87	220	4.3	<u>583</u>	14	280	
		5-305 11	5.82	16.9	1.08	380	4.4	974	M	190	
	113.95 - 116.9 2-3% fine - granit										
	dusemmented projecte.	5-306 11	6.9 1	18.28	1-39	12	0.9	59.	2	125	
ŀ											
ļ	116.9-118.28- Sparadin <1-37. pupite	5-307/1	18.28	120	<u>0.72</u>	90 (<u>, 7 .</u>	352	2	355	
s t	Crimulated politica parallel 1.	<u></u>					001			• • • •	
	18-28-119-0-1-2.72 dissuminated printe.	5-308 1	νoμ	20-5	<u>. 24</u>	57	0.8 1		21-1	50	•
	119.0-125.60 - <12 Durite									 `	
120-											
ŀ								<u></u>			
		- -					_			. 1	

HOLE No.		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	14)F j	5	
- 591-2 1					·		.	
INTERVAL	C. L055	LITHOLOGY	~ 5		S	Μ	A	
19.0-125.60		ARCILLITE SILTSTONE Black angillite and lidle flue-guy silleton. Poorly think lamineted.		لڑ ٭-		<12 97 -	-	- 120
				-	-	- - -	-	-
				- _/	-	-	-	- 125
25.60-		MEDIUM- GRAINED ARGILLACEOUS SANDSTONE Midium to dark guy midium - grained conditione with black and white graine to 0.5 mm.	54/	7475	-	Dem	-	·~
		rinon black angillacione bide near top of.	 ,	/ - T		-	_	
27.7~134.11		INTERDED SILTSTENE, ARGULLITE AND MINOR SANDSTONE Durke Ulue-grey siltetone (50%) black angidlite (30%) and conditions. Poorly builded	50/ /44 	יא":2' ר	- "		-	- 130
		<i>o</i> 0	-			Í, 1.	- 	
			50		مور د <u>مور</u> در ارژ با			
					134. E	- 11. 9. 11 .	·	- 135
			-				-	
								۲
			та <u>н</u> а Т 1919 - С 1919 - С 1919 - С 1919 - С	· - · ·	2.# e. 		- - 	- 140
	49998							

GRANGES EXPLORATION LTD

State of the state

HOLE No.

HOLE No.							-		
591-25									
MINERALIZATION ALTERATION	SAMPLE	FROM	ro	HIOTH	Ац ррб	Ag ppm	As pp=0	56 . ppm	
,	5-309	120,5	121.16	0.66	16	0.8			
	5-310	121.14	123.8	2.69	6	0.4			-
	5-311	123,85	125.60	1-75	8	0.5			
	5-312	12560	126.50	0.9	6	08			
	5-313	126.50	127.70	1-20	8	0.7			
125.6 - 127.7 - Tomen	s-314	(27.7	128.80	1.10	5	0.5			
· · · · · · · · · · · · · · · · · · ·	5-315	128.8	130.10	1.30	6	10.0	59	27	80
127.7- 134.11 - Tracia pyrite	5-316	13010	131.oL	D.96	6	12.2	88	39	70
	5-317	131.06	132.50	1.44	5	0.5			
1301 - 130,25 - Questo - Contracti	5-318	132.5	134.11	1.61	6	0.2		:	
130.1 - 130.25 - Quarty - Conternationalistic - flooded decide zone . Bonne.			E. 0. ji						
								· · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·							1		
							: : : : : : : : : : : : : : : : : : :		
							5.1 1		
······································									
· · · · · · · · · · · · · · · · · · ·						· •			
						· .×		1:4-4. 	5 a. a.

Sample J-91-25 26.9 m

Contact: Strongly Sheared Latite/Andesite Flow (Unit 2Gr), Cherty Argillite (Unit 7J/N)

About 2/3 of the sample is a strongly foliated latite/andesite flow containing equant to lathy plagioclase (35-40%) grains averaging 0.05-0.07 mm in length and lensy patches of opaque (2-3%) averaging 0.1-0.3 mm long in a groundmass of finer grained plagioclase and sericite. Sericite-muscovite (20-30%) is concentrated in lenses up to 1.5 mm across parallel to foliation.

A few lenses up to 1.2 mm long are of extremely fine grained sericite (0.3%).

Ankerite (4-5%) forms slightly to strongly elongated patches averaging \emptyset .7-1.5 mm long.

The other 1/3 of the sample at one end of the section is a cherty argillite contains scattered lensy fragments up to 1.5 mm in size of latite/andesite flow in a moderately foliated groundmass dominated by aphanitic, moderately interlocking plagioclase/quartz. Several lenses up to several mm long are dominated by coarser grained sericitemuscovite. Ankerite forms disseminated grains averaging 0.05-0.07 mm in size and several replacement patches up to 1.5 mm in size. The argillite is replaced by an irregular veinlike zone up to 3 mm wide of extremely fine to very fine grained pyrite with less abundant interstitial quartz, and patches of ankerite. Among pyrite grains, quartz is recrystallized to comb-textured aggregates." A few coarser grains of pyrite up to 0.5 mm in size have elongate overgrowths of quartz showing delicate comb textures.

Sample J-91-25 45.4 m

Strongly Sheared Amygdaloidal Latite/Andesite Plow (Unit 2Gar); Pyrite-(Quartz-Ankerite) Veinlets

The rock was sheared strongly and brecciated slightly. Lathy plagioclase grains (2-3%) averaging 0.01-0.2 mm and locally up to 0.3 mm long are set in a groundmass of lathy to equant plagioclase averaging 0.03-0.05 mm in size with 5-10% sericite and 1-2% disseminated opaque/Ti-oxide. Sericite is concentrated moderately in certain bands up to a few mm across.

Elongate patches up to a few mm long and 1.5 mm wide are of extremely fine grained quartz and less ankerite (10-12%). Textures are similar to those of amygdules in less deformed andesite/latite flows in the suite. Some large amygdules contain fine to medium grained patches (7-8%) of ankerite and much less quartz and pyrite. Some coarser patches of pyrite (up to 0.5 mm in size) are partly rimmed by elongate aggregates of quartz showing delicate comb textures.

Sericite (0.3%) forms lenses up to 1 mm long; these may represent flattened amygdules or replacement patches.

Irregular to lensy replacement veinlets and patches (5-7%) are of very fine to fine grained pyrite with less quartz and ankerite.

SN/PLE#	\$102 A1203 Fe203 Ng0 1200 Na20 K20 T102 P205	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
J91+2-21.2 J91-3-15.5 J91-7-35.0 J91+7-39.0 J91-8-65.2	72.05 11.60 3.88 .77 00 .05 6.54 1.98 .03 65.00 9.95 8.69 .35 70 .12 7.90 1.76 .59 37.49 13.50 6.85 4.77 574 4.54 .83 1.18 .18 38.34 12.43 7.71 3.09 745 5.83 .20 1.36 .25 63.84 13.75 5.44 1.62 .63 .09 8.28 1.54 .26	01 .007 1106 25 26 122 24 20 2.9 100.01 01 .003 2249 67 18 131 41 23 4.5 99.99 442 .015 387 623 10 94 23 20 14.6 100.33 451 .012 189 860 100 125 20 14.6 100.33
J91-10-69.0 J91-11-88.0 J91-12-166.5 J91-12-173.6 J91-15-91.0	69.41 11.33 4.44 .37 1776 .11 7.79 1.95 .57 54.61 15.27 4.72 2.17 54.81 5.42 1.84 1.32 .22 53.45 14.26 9.63 2.72 5.21 1.62 3.66 1.80 .60 56.93 13.43 7.78 3.63 3.67 .66 5.03 .77 .26 29.07 13.20 11.60 6.70 657 1.57 2.72 1.08 .19	2 1.0 .019 1373 233 10 50 7 61 8.4 100.14 2 .002 784 243 13 11 26 48 6.0 100.10 5 .006 1046 147 12 66 9 24 7.2 100.13 5 .012 707 246 10 45 16 44 16.9 100.42
	46.04 15.77 9.14 4.43 402 1.89 5.52 1.53 .31 59.10 13.03 8.62 3.16 4.09 .66 1.52 .29 65.12 12.13 6.33 2.70 7 .08 7.63 1.31 .35 57.65 12.90 11.38 5.32 .92 .09 5.52 1.39 .44 59.22 15.23 7.64 3.94 .93 2.01 4.22 2.01 .45	27 .007 1010 141 10 11 18 87 8.0 100.16 16 .002 288 247 25 152 37 79 5.0 100.08 18 .003 2173 130 17 152 22 76 3.0 100.02 33 .002 1518 75 22 166 56 66 3.8 100.05 11 .002 1891 109 21 163 50 60 3.9 100.03
	59.74 16.41 4.76 3.19 22 .28 5.96 1.42 .07 60.81 10.80 10.64 3.04 222 .06 5.67 1.18 .29 62.99 12.76 8.13 2.02 67 1.45 7.23 1.40 .36 62.26 11.54 9.78 2.93 53 .18 7.14 1.23 .34 49.69 10.77 14.85 6.84 650 .43 .70 .98 .32	25 .005 3724 247 15 42 42 24 4.4 100.06 10 .002 3086 126 20 186 35 77 2.1 99.99 23 .002 1350 80 18 93 39 30 3.6 100.00 23 .002 123 150 21 194 32 26 8.4 100.16
J91-21-49.0 J91-22-45.0 J91-22-130.2 J91-22-177.1 J91-22-103.0	46.62 14.41 15.25 1.76 2221 4.99 1.55 2.04 .62 62.61 10.92 9.01 2.19 1.36 .39 1.93 1.59 .39 46.62 15.29 16.18 4.12 2117 4.21 .95 3.27 .65 55.90 18.36 6.80 2.60 14.93 .09 8.93 2.00 .53 65.23 14.40 3.44 2.42 4.9 .05 6.92 .66 .14	109 .002 1113 81 16 113 28 20 9.5 100.20 15 .002 203 109 23 181 44 46 6.4 100.10 102 .002 1314 99 28 166 36 90 3.5 100.04 102 .002 1035 63 33 206 31 79 3.0 100.04
J91-22-208,5 J91-22-211,5 J91-24-164,7 RE J91-22-177.1 J91-24-207.3	70.20 13.65 3.76 2.55 111 .05 5.78 .94 .10 54.36 15.48 10.93 8.35 .25 .05 3.38 1.51 .23 44.84 16.27 14.50 5.09 5.21 .07 4.42 1.60 .49 55.80 18.19 6.84 2.66 197 .05 9.13 1.97 .53 54.95 12.97 11.80 3.06 .471 .06 4.27 1.55 .40	123 .005 609 40 10 85 21 28 5.1 100.05 9 778 .002 1213 665 21 76 20 85 6.5 100.05 12 .002 1296 100 30 167 35 77 3.5 100.02 125 .002 1694 250 19 133 28 47 4.7 100.07
J91-25-26.9 J91-25-45.4 J91-26-42.6 J91-26-105.2 J91-27-32.65	\$1.21 15.96 7.89 2.11 77.49 3.81 2.90 2.43 .57 \$0.89 15.41 8.40 1.83 77.44 3.94 2.88 2.43 .54 \$1.52 16.07 10.06 2.73 77.08 .16 4.72 1.38 .35 \$7.90 12.68 8.98 3.31 .04 .05 4.55 1.63 .48 \$4.73 16.02 6.47 3.42 \$77 4.09 1.85 2.35 .60	2 224: .002 1876 237 33 1103 45 79 5.4 100.07 3 241 .002 1228 129 23 117 29 62 5.0 100.08
J91-27-60.5 J91-27-68.0 STANDARD: SO-4	74.21 9.88 3.60 .88 1.98 4.12 .73 1.79 .47 57.38 14.99 8.47 3.90 1.52 1.92 2.53 2.39 .62 67.81 10.29 3.56 .98 1.61 1.33 2.05 .57 .23	7 0.002 1002 1738 339 14 134 26 20 4.3 100.05 7 0.6 .002 800 166 14 103 16 24 2.1 100.00 2 0.7 .002 2205 162 20 144 36 29 5.9 100.11 3 .005 795 207 29 321 23 20 11.2 99.98
	200 GRAN SAMPLES ARE FUSED WITH 1.2 GRAN OF LIBO2 SAMPLE TYPE: CORE <u>Samples beginning 'RE' are</u>	AND ARE DISSON VED ON 100 MIS ST WYOT

and a state of the

ł

ແມ່ນຊື່ມຂີ່ຮູ້ເຮັດເຮັດທີ່ຈະກະທາດຈາກການຈາກຈາກຈາກເຮັດການຄາດເຮັດເຮັດແຜ່ນເຮັດເຮັດແຜ່ນດາຍ ແລະ

		ppan p	prit pp	mi pon	Perili Ppr	 ppm	ppm	, ,	200 PF	m pp	m ppm			ppn p	pm p		×		pom p	or les pm	x pp	a m X	B	ר <u>-</u> א	~x	, , ,	A) ppb
	\$209 \$210 \$211 \$212 \$213	2	20 1 12 1 42 1	2 111 8 82 4 108 9 110 5 338	.1 7 7 5 .1 4 .5 3 .1 5	63 27 34	382 636 810	19.28 2 5.58 13.43	71 37 61	5 X 5 X 5 N 5 N 5 N	0 1 0 1 0 1	38	2222	25222	2 2 2	27 23 2	3.76 1.38	. 144 - 178 - 248 192 - 202	2	12 1. 8 . 11 1. 8 1. 8 1.	87 51 3 60	6 501 6 01 4 01 8 01 9 01	5 3 3	.67 .80	.03 .02 .02 .02 .02	. 15 . 17 . 15		
South and a state of the state	\$214 \$215 RE \$211 \$216 \$217	1 1 2	21 1 12 12 1	5 116 5 137 7 104 2 210 5 115	.1 2 .1 3 .1 3 .1 3	18 26 15	376 610 753	3,08 5,51 5,34 6,03 4,23	21 33 28	א 5 א 5 א 5 א 5 א 5 א 5	0 1 0 1 0 1	84 71 88 120 185	.2 .2 .2 .2 .2 .2	2 2 2 2 2	2 2 2	23 2 22 2 34 3	2.44	.272 .285 .231 .218 .223	4	6 1, 11 1. 10 1. 7 1. 6 1.	01 3 46 3 23 3	2 01	2 3 2	1.21 1.18 .66 1.31 1.82	.03 .02 .03	. 15 . 17 . 10	1 2 1 2	135 230 255 245
	\$218 \$219 \$220 \$221 \$222		13 12 20		.1 1 .1 1 .1 1	12	1589 1146 1494	7.77 8.19 7.05 7.95 6.61	3 2 19	א 5 א 5 א 5 א 5 א 5	0 1 0 1 0 1	161 148 107 169 148	.2 .2 .2 .2 .2	22222222	2 2 2	88 67 75	3.82	.224 .213 .140	7 7 7 5 7	9 1. 8 1. 7 1. 8 1. 8 1.	65 5 38 3	3 .01 6 .01 0 .01	3222	2.78 3.12 2.89 2.53 2:60	.03 .02 .02 .02	.04 .03 .08	1 2	115 40 65 225
and the second second	\$223 \$224 \$225 \$226 \$227	1	18 15 1 12	2 106 9 165 3 137 8 126 8 111	1 1 1 1 1 1 1 1	17 14 14	1196 1087 965	4.97 6.39 5.75 6.28 4.18	5 2 2	א 5 א 5 א 5 א 5 א 5	D 1 D 1 D 1	175 153 128 113 121	22222	2 2 2 2 2	2 2 2	35 4 45 4 42 4 45 2 27 4	4.89	,171 ,163 ,173 ,172 ,182	5 5 6 8 6	7 1. 7 1. 7 1. 7 1. 7 1. 7	20 5 05 6	5 .01 2 .01 6 .01	2 2 2	1.87 2.15 2.21 2.58 1.60	.02 .02 .02	.11 .12 .14		95
a second and a second as a second as a second as a second as a second as a second as a second as a second as a	\$228 \$229 \$230 \$231 \$232	1 1 1 1	24 1 16 1 12 1 15 1	3 160 4 116	511 1 1	16 15 13 16	1052 1268 1319 1220	<u>č</u>	5 3 2	5 N 5 N 5 N 5 N	D 1 D 1 D 1	162 161 157 137 136	.2. .2. .2. .2. .2.	2222	2 2 2	35 4 33 4 42 5 47 4 46 4	4.79 5.24	.176 .166 .169 .189 .189	6 4 5 6 7	7 71. 91. 81. 61.	02 5 17 5 25 7	4 .01 1 .01	4 2 2	1.92 1.85 2.26 2.60 2.33	.02 .02 .01	.14 .13 .10	1 1 1 3 1 1 1 2	85
	\$233 \$234	1	7 1	×	1 2 1 1	20 20	1531 1171	8.00 7.07	25	5 NI 5 NI		184 155	2	2 2	2 2	44 <i>8</i> 41 5	5.53 5.60	. 181 , 152	4	81. 71.	54 3 2 <u>5</u> 3		2	2.46 2.03			1 1	230 450
	\$235 \$236 \$237 \$238 \$239	1 13 1 21 1 16 1 23 1 17	13 14 9 12 16	109 138 121 126 121	. i i i i i i i i i i i i i i i i i i i	13 14 17	1263	6.29 5.17 5.46	30	5 K 5 K 5 K 5 K 5 K	10 1 10 1 10 1	146 132 141 135 96	,2 ,2 ,2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2	31 25 26		179 149 164 189	5 5	7 1. 6 1. 6 1. 6 1. 7 1.	08 02 96 10	52 .01 57 .01 56 .01 53 .01 58 .01	2 2 2 2 2	2,25 1.87 1.23 .86	.02 .03 .03	.13 .15 .16 .17		2 85 1 300 1 425 1 650 1 235
- - - -	S240 S241 S242 S243 S244	1 21 1 16 1 17 1 15 1 16	14 11 8 12 8	164 113 115 73 135	1 4 1 3 1 3 2 3	15 15 15	1082	4.68 4.34 4.97 4.53 4.50	18 27 25	5 h 5 h 5 h 5 h 5 h	10 1 10 1 10 1	100 140 127 126 112	.2 .2 2	2 2 2 2 2 2 2	2 2 2	24 24 24	6.03 5.61	.225 .239 .214 .219 .180	6 5 6	6. 51. 71.	90 <i>d</i> 06 5 01 5	70 .01 52 .01 50 .01 50 .01	2 2 2	. 68	.03 .03	.18 .18 .16	878	1 175 2 240 1 440 1 185 1 220
	5245 5246 5247 5248 5249	1 13 1 16 7 23 5 16 3 18	20	160 97 71 113 110	882 Z	13	372	3.32 6.22 9.77 8.53 7.08	on.	5 X 5 X 5 X 5 X 5 X	1 D	80		3 2 19 10 6	~	14	3.88 2.59 3.73 5.38 4.92	231.2(1)	4		40 '	3 01 6 01 6 01 8 01 8 01	3 3 4	.55 .32	.03 .03 .02 .02 .02	.17 .12 .15		1 445 1 540 3 3250 2 1650 3 1100
	\$250 \$251 \$252 \$253 \$254	5 14 7 11 17 16 3 12 9 13	13 11 15 13 15	213 146 65 81 97		13 24	565 705 665 631 545	6.62 4.83 13.67 5.81 9.89	313 363 852 364 790	5 h 5 h 5 h 5 h	10 1 10 1 10 1		č. 2. 2.		22222	14 9 9 14 7	2.83 3.59 2.16 4.80 3.38	, 128 , 121 , 129 , 150 , 152			00 2 24 2 20 -	22 01 25 01 10 01 28 101 17 01	4	.66 .30 .58	.03 .02 .02 .02 .02	. 15 . 13 . 15	1 1 1	2 3300 1 3450 3 12000 3 2200 2 10500
a sa	\$255 \$256 \$257 \$258 \$259	8 12 12 10 8 8 19 157 21 34	15 13 12 118 360	69 96 26 621 301	0.9 10.9 100 100 100		772 1980 1236 304 229	6,69 10.42 5.95 5.00 3.40	412 518 275 280 129	5 M 5 M 5 M 5 M 5 M	10 1 10 1 10 1	66 78 150 33	2	92	2	8 7	2.83 4.28 5.53 .93 .95	177 102	4	15 1.	59 2 49 -		2	.50 .28 .38 .22	.02 .01 .01 .01	.19 .14 .13 .11	1 1 138	1 5700 3 6250 1 2450 0 1700
														•												- 17	~~~~	

L

100000	óununuk	nanananan ontonanan anganan angan angan ang	oonintratereese	ამბდითანებინი კარი	a states a states a	NUNCHARDON ON AND		ooogxexectectecte	BONDOLSSING	SUPERSTRUCT
\$302 \$303	\$301 -	\$296 \$297 \$298 \$299 \$300	\$291 \$292 \$293 \$294 \$295	\$286 \$287 \$288 \$289 \$289 \$290	\$281 \$282 \$283 \$283 \$284 \$285	\$276 \$277 \$278 \$279 \$280	5269 5270 5271 5272 5273 5274 5275	5265 5266 RE 5262 5267 5268	\$260 \$261 \$262 \$263 \$263 \$264	• • •
3	6	10 11 11 11 11	4 7 7 10 16	8 9 7 9 15	14 7 5 5 4	18 11 5 12 5		23 9 22 15 9	24 36 23 14 10	Мо ррп (
8 6		ిని	16 15 13 14 19	15 17 16 20 24	15 16 11 14 20	81 24 16 22 21	31 242 47 29 32 30 41	36 91 32 31		
	32	35 28 31 23 30	35	49 54 42 48 53	56 49 32 46 39	104 67 27 58 57	1048 601 69 54 44 76 62	117 448 125 347	385	
		21	270 139 111 89 178	154 298 93 271 358	92 102 128 123 135	123 23	1406 228 32 86 220	139 1062 540 2335		
300.001		12 20	10.8 11.9 9.4 11.6 30.0	13.7 19.4 15.9 22.1 30.0	15,5 12,7 11,4 14,6 18,2	74.6 15.9 8.3 30.6 20.8	19:4 47:7 12:6 10:7 15:3 11:3 15:2	83.6 12.5 1515	81.6	AU PEN I
3	5 6	4 5 6 8	4 4 6	7 4		16 7 6 4 5	7 7 9 7 9	6 13 6 7	15 9	NI Purio
7	13 12	16 16 15 17 15	11 9 12 13 13	11 13 15 12 13	8 10	9 6 6 1	13 15 18 14		8 5 19 19	
231 1000	999 768		354 105 265 123 411	111 592 84 122 391	117 1670 181	211 255 2087	302 257 88 196 348	98 113 73 190	241 281 121 151 130	Mrs ppm
2.79	6.09 3,44	15.21 8.67 12.59 14.32 16.40	6.51 6.25 6.84 8.43 13.95	5.27 8.18 6.94 7.54 9,66	6.08 4.02 5.10 6.96 7.48	2.83 3.88 2.88 5.84 6.19	2.40 <u>4.18</u> 2.32 4.13 5.05 3.24 3.23	3,48	3.20 6.29 5.53	
) 3273	- 888548	1385 1367 750 656 965 1263	635 684		327 718	231 352 181 760 305	340	222 541 222 591	560 555	Asi Penti
5	5	2	5	5 5 5 5 5 5	5 5 5 5 5	5 5 5 5 5	5	5 5 5 5	5 5 5	U U
ъD	NO DK	ЧŅ	ND ND	סא סא סא סא	ИО ИД ИО ИО	ע ע ע ע ע ע	ND DX DX DX DX DX DX DX DX DX DX DX DX DX	и И И И И И И И И И	ND ND ND ND ND	An Vn
- 7	1 2	1 2 1 1 3	1 1 1 1	1 1 1 1	1 1 1 1	1	1 1 1 2 1 1	1 1 1 1 1	1 1 1 1	Th xpm
19		14	34 16	26 40 19 23 32	43 24 71 24 24	115 64 62 102 33		33 24 29 57	43 30 24 39 35	S: PPTI
- 33993	- Mi 2	53222	1.2045	1, 6 1, 0 4, 7 1, 1	623337	5 2 7 5 6 5	16.0 10.2 1.2 .4 .6 .6	3,8 17,2	423 1672 6.8 1.4 .7	- 63 P20
§ 2	7	208 70 65 76 166	76 70 70	79 80 50 91 139	93 55 30 45 36	126 99 28 126 45	1 <u>53</u> 35	32 106 38 32	88 100 115 62 49	sb ppm p
2 2	3 3	2,22222	222222	22222	22224	22222	2 2 2 2 2 2	2 2 2		Bi pm p
- 4	11 5	6 7 5 6 6	6 5 7 5	8 8 8 8 8	6 13 15 8 8	6 12 10 4 7	11 10 11 12	12 6 8 12	8 5 10 14	V pm
. 19	1.35	.99 .46 .36 .31 .27	.53 1.10 .56	.61 1.63 .54 .60 1.19	.86 .55 6.10 .79 .58	.97	1.01 .68 .91 1.34	.35 .40 1.04	.39	Ca X
033	,137 :049	- 33160)	171 174 173 190 130	184	346	.053 .165 .181 .116 .169	106 .101 .164 .201	082 216	041 014 049 152 187	
18	9	6	7 8 4	7	3 7 5 6	3 6 7 3 4	3 4 5 6 5 5 6	6	2 4 3 5 6	La Spon p
3	4	- 6	7 19 4 6 7	7 9 14 5 7	6 7 5 22 5	16 6 8 6 19		5 6 25 7	9 8 20	
. 86	1.73 .95 .86	.07 .05 .06 .07 .16	.18 .05 .09 .11 .10	.12 .22 .19 .20 .23	.33 .43 .82 .11 .12	. 17 . 20 . 47 . 16 . 14	.09 .20 .14 .03 .07 .17 .15	.10 .11 .08	13 12 24	Hg X (
82	40 30	9	16 16 14 10	20 15	28 31	32 41 25	19 0 44 29 19 35	10 🕅	21 .0 22 .0 12 .0 17 .0 17 .0	Ba 🛔
01	.01 101	.01 .01 .01 .01 .01	01	.01 .01 .01 .01	01	.01 .01 .01 .01)18			UI X Pi
3	7	2 2 5 2 4	3 4 6 5	5 4	3 2 5	3 2 3	2. 5 5 2 5	2. 2. 2.	2. 2. 2.	8 ×n
1.35	.92 .70	. 25	.23 .17 .20 .30 .21	.21 .27 .47 .27 .28	, 18 , 52 , 72 , 22 , 35	.12 .29 .44 .15 .21	.28 .22	ZZ . 26 . 32 . 19 . 26 .	26 . 20 . 33 . 50 . 59 .	
.01	.01	.01 .01 .01 .01 .01	.01 .01 .01 .01	.01 .01	.01 .01	.01 .01	01 . .01 .01 .01	01 . 01 . 01 .	01 . 01 . 01 .:	Na X
.30	.32	.18	.18 .20 .25 .18	.18 .27 .20	.23 .20 .18	.25 .26 .14	18 .20 .24 .25 .19	20 17 17	11 17 29	
-28813 - Z		1 24 1 25 1 21 1 32 1 22	1 26 1 20 1 21 1 41	1 32 1 35 1 28	1 10 1 13 1 21	1 31 1 1 1 49		1 542 1 56 1 522 1 522 1 42 1 34	1 420 1 1280 1 5180 1 660 1 590	
26		0 10 20 8	0 21 0 21 0 24 0 18 0 64	0 14 0 26 0 11 0 22 0 22 0 54	0 595 6 300 8 155 0 41 0 3	0 460 0 215 9 58 0 330 0 135	0 32 0 69 0 40	0 12 0 52 0 19) 34) 48) 19	, bb K
75	20	50 50 80	00 50 00	50 50 00	00 50 75	50 35 30 .	00 10 00	50 50 200 250 250	50 00	
									Π	

AA				Gr	ang	es	In		-	JEC			UK		VER	1:	34	F	ILE	∦ #	- <u> </u> 91-		- <u> </u> 09
SAMPLE# -J91-25	Мо ррпп		Pb ppm		- X50.007.0		Co ppm	Kn ppn	Fe	As Pen	U Inqq	Au ppm	Th ppm	\$r ppn	Cd.	Sb ppm		V PPril	Ca X	P. ¥	La ppm	. Cr pom	Mg X
\$307 \$308 \$309 RE \$313 \$310	1 1 1 1	. 18 19 21 42 99	18 25 7 11 6	140 125 55 93 60	1.7 .8 .5 .8	34 14 16 16 19	33 15 11 14 13	1618 614 1733	8.41 6.00 3.66 5.03 3.82	352 142 6 10	5 5 5 5 5 5 5	סא סא סא סא	1	25 113 68 94 60	202224	2 2 2 2 2	2 2 2 2 2 2 2	70 34 19	.53 3.44 1.65 3.08	.069 .081 .037 .042	2 5 12 6		2.90 1.80 .99 1.96

S307 S308 S309 RE S313 S310	1. 18 1 19 1 21 1 42 1 99	25 7	140 125 55 93 60	1.7 .8 .4 .5	14 16 16	11	1618 614 1733	8.41 6.00 3.66 5.03 3.82	352 142 6 10 5	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	25 113 68 94 60	20.222	2222222	2 2 2 2 2 2 2	19 20	.53 3.44 1.65 3.08 1.03	.081 .037 .042	2 5 12 6 10	54 16 14 16 10	2.90 1.80 .99 1.96 .92	65 75 85	.01 .01 .01 .01	2 4 2	3.77 2.67 2.01 2.55 2.14	.01 .01 .01	.30 .33 .23	90 51 10 2 6	355 150 40 45 65
\$311 \$312 \$313 \$314 \$315	1 123 1 83 1 41 1 119 1 138		85 95 89 72 90	7 5 5 6		15 14 15	1038 1716 649	3.72 3.98 5.19 3.61 2.92	18 18 6 24 50	5 5 5 5 5	20 20 20 20 20 20	1 1 1 1	90 79 96 58 88	222222	2 2 2 2 2 27	2222222	20 21 16	2.19 3.13 1.83		13 11 6 16 12	12 15 17 12 7	1.08 1.32 1.96 1.03 .92	45 90 57	.01 .01 .01 .01	5 3	2.10 2.10 2.54 1.90 .97	.01 .01 .01	.44 .34 .24	8 6 5 6	75 55 40 65 80
\$316 \$317 \$318 \$TANDARD C/AU-R	1 113 1 101 1 12 19 61	13	49 58 79 132	12.2 5 2 7,3		11 13	. 536 984	3,92 3,91 5,91 4,01	88 17 42	5 5 5 15	ND ND ND 7	1 1 1 36	122 45 46 53	.3 .3 .2 18.5	39 2 2 15	2 2 23	17	5.73 1.19 1.90 .49	058 074	5 12 10 37		1.52 1.01 1.50 .87	83 58	.01 .01 .01 .09	5	.73 1.85 2.44 1.91	.01	,44 ,37	4 5 · 6 510 ·	70 40 50 1400

!

Page 4

Al Na X W Au* X X X ppm ppb

Kg Be TI B X ppm X ppm

•

ACAL MALTTICLL

Xg POD

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

. .

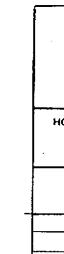
GRANGE	S EXPLORATION LTD		 The specific set of the set of
	ND DRILL LOG		
			SELECT A
· · · · · · · · · · · · · · · · · · ·			PAGE OF 2
HOLE No.			ente da El Constante de Constante de Constante de Constante de Constante de Constante de Constante de Constante Constante de Constante
J91	-26.	· · ·	
PURPOSE	<u> </u>		······
			,
To test coi	neident chargeability	and magnetic hi	ghs.
		·	• *
10696,363 N / 10064.85			
LOCATION 1700 N	GROUND ELEV.	BEARING	TOTAL LENGTH
073E	397.411 m	270°	222.50 m
DIP	DIP TESTS AVA 52.9	VERTICAL PROJECT	HORIZONTAL PROJECT
52°	170.69 52.5	171.40 m	135.70 m
LOGGED BY DATE	222.50 53* CONTRACTOR		DATE STARTED Oct 19
/	J.T.T.	BQ	DATE COMPLETED Oct 20
Toss FAWAGA Oct 2/91	5.1.1.	δų Statestas dalautos da	Contrage Contrage
103.63-121.14 Inte	illite with minor inter modiate Lapilli Tuff illite with Minor interbul		·
103.63-121.14 Late	emodiate LApilli Tuff		·
103.63-121.14 Inte	emodiate LApilli Tuff		·
103.63-121.14 Late	emodiate LApilli Tuff		·
103.63-121.14 Inte	emodiate LApilli Tuff		·
103.63-121.14 Inte	emodiate LApilli Tuff		·
103.63-121.14 Late	emodiate LApilli Tuff		forus
103.63-121.14 Late	emodiate LApilli Tuff	del sillistión + Sonotsi	forus
103.63-121.14 Late	æmediete Lapilli Tuff illite with Minor interbede	del sillistar + Sandsı	
103.63-121.14 Inte	emodiate LApilli Tuff	del sillistar + Sandsi	
103.63-121.14 Inte	æmediete Lapilli Tuff illite with Minor interbede	del sillistar + Sandsi	
103.63-121.14 Late	æmediete Lapilli Tuff illite with Minor interbede	det sillstrær + Særdsi	
103.63- 121.14 Inter 121.14- 222.50 Arg	mendiete Lapilli Tuff illite with Minor interboli	del sillistria + Sandisi	
103.63- 121.14 Inter 121.14- 222.5D Arg	mendiete Lapilli Tuff illite with Minor interboli	del sillistar + Sandsi	
103.63- 121.14 Inter 121.14- 222.50 Arg	mendiete Lapilli Tuff illite with Minor interboli	det sillstrær + Særdssi	
103.63- 121.14 Late 121. 14- 222.50 Acqu	illite with Minor interboli	del sillistar + Sandsi 	
103.63- 121.14 Late 121. 14- 222.50 Acqu	illite with Minor interboli	del sillistar + Sandsi 	
103.63- 121.14 Late 121. 14- 222.50 Acqu	mendiete Lapilli Tuff illite with Minor interboli	del sillistar + Sandsi 	
103.63- 121.14 Late 121. 14- 222.50 Acqu	illite with Minor interbolic illite with Minor interbolic intervals intervals	del sillistar + Sandsi 	
103.63- 121.14 Lata 121. 14- 222.50 Acqui SIGNIFICANT MINERALIZED 125. 80 - 13411 - Gus, 139.11-135-0 590.94	illite with Minor interbolic illite with Minor interbolic intervals intervals	del sillistar + Sandsi 	
103.63- 121.14 Late 121. 14- 222.50 Acqu	illite with Minor interbolic illite with Minor interbolic intervals intervals	del sillistar + Sandsi 	tous
103.63- 121.14 Lata 121. 14- 222.50 Acqui SIGNIFICANT MINERALIZED 125. 80 - 13411 - Gus, 139.11-135-0 590.94	illite with Minor interbolic illite with Minor interbolic intervals intervals	Let sillstoor + Sandsi 	torus

£

[

[_

Γ


[

[

[

[[[

GRANGES EXPLORATION LTD DIAMOND DRILL LOG PAGE 2 OF 24 Ċ HOLE NO. J91-26 C. L055 NTERVAL SM LITHOLOGY А J 0 CASING 0-<u>6,10</u> 1 12 (Jere -3 4 -5 8.90 SANDSTONE ς, ~ medium grey colore 80 7 - fine to medium graince 72 0 - massive, with indistinct bedding 8 ٩ 0-102.60 Acquilite 5- 13 (F) -misor (\$ 10%) siltstone and sand store beds -10 - agailite is black in cobre with The sondstone - bedding is indistinct to non-eristent in the - bedding is indistinct to non-eristent in the Gagillite, generally visible only in the more coarse intervals - rare, thin, light geven intermediate tulf bods - occassional calcile veins, 2-5 mm across esually - 11 12 SZ 13 5 419 et stup Angles to CA 2 Ą -14 15 s. 12.40-16.00 -minor quarte- carlonete steingens generally oriented at 10°-B0° to CA - <1°6 pyrile with Iraces of red-bran sphakeite 16 17 LIB No. 19 20

[.

Ē

 $\left[\right]$

[

GRANGES EXPLORATION LTD DIAMOND DRILL LOG Ĩ.

PAGE 3 OF 24

HOLE No. 591-26

·		_							T	
MINERALIZATION ALTERATION	SAMPL	E FROM	то	HIOTX	Au PPb	Ag ppm	As ppm	S6 ррт		
· · · · ·										
		· ·					L	<u> </u>		
						1				
					-					
	T									
			_							
· · · ·										
· · · · ·	1									
					<u> </u>					
	Bool	11.0	13.0		25	4.9	536	3		
12.40 - 16.00										
- puartz- carbonate stringers with 21% pyrite and Traces of Red-brown Sphalerite.	B602	13.0	4.0		36	4.6	139	2		
< 1% pyrite and Traces of										
Red-brown Sphalerite.	3003	14.0	IS.o		7	2.9	44	2		
							•			
	8004	15.0	16.0		9	1.3	26	2		
						· · ·				
			-							
				,						
						· ·				
		I		1				. 1	1	

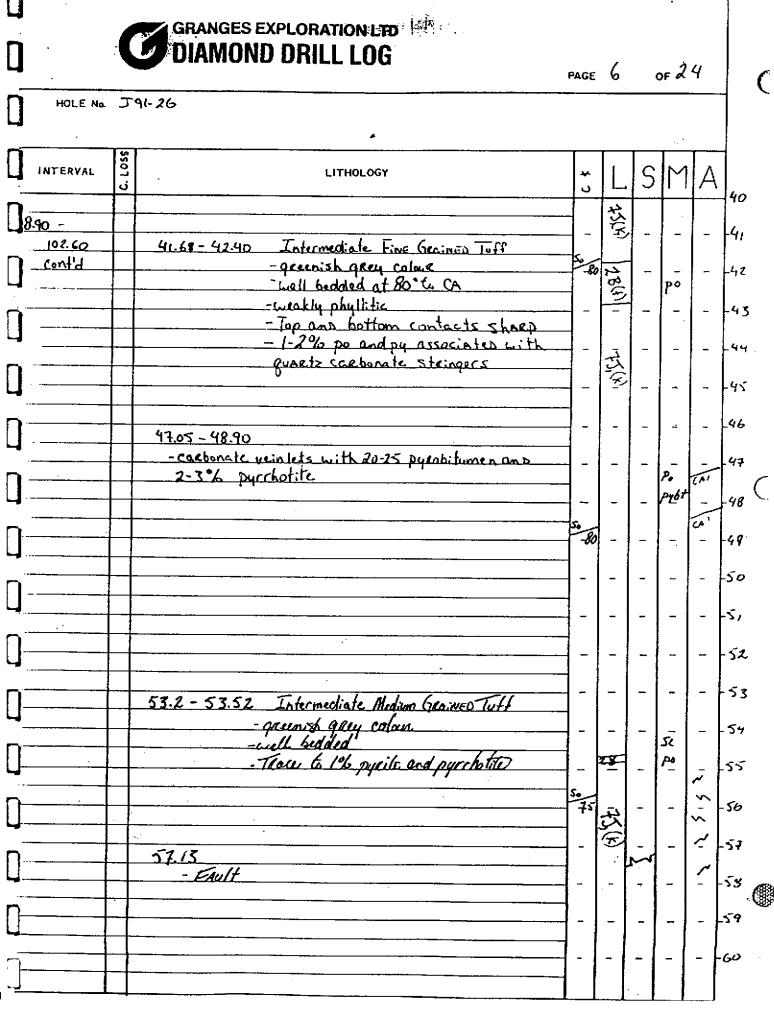
0	HOLE No.	Jan	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	4		0F Z	24	C
	INTERVAL 8-90 -	C. LOSS	LITHOLOGY	* J		S	M	A	- 20
	<u>102.60</u> .cont'D				75/4)	-	_	_	-22
	·		23.50 -Ininue calcite veins		75	-	-	- -80	-23
	· · · · · · · · · · · · · · · · · · ·				-	-	-	-	-25 26
				- 5.90	-	-	-	-	-27 -28 C
	· · · · · · · · · · · · · · · · · · ·			- 90 	- 75	-	-	-	-29 30
	· · · · · · · · · · · · · · · · · · ·				-	-	sī.	1 2 1 5	-31
	·		32.0-34.83 Sanostone -medium grey, medium graines - weakly calcareous - grain size uniform throughout the		- 743	-	_	(*) 40	-33
			- Battom contact sharp at 80° to CA. with lip-up clasts of argillite		80.	- -	-	-	-38
U			in the sandstons		-	-	- -	الا الم الا الح	-37
					-	-	-	1 2 2 31	- 38 -39
 [-		-	-	-	_40

.....

1

.

·


[
[
_
[
с. Г
_
i

		· · · · · ·	
GRANGES EXPLORATION		D	¢ i i
DIAMOND DRILL	LOC	ì	

page 5 of 24

HOLE No. 391-26

·										
MINERALIZATION ALTERATION	SAMPLI	FROM	TO	ЫІОТ Ж	Au ppb	Ag g/t	As ppm	Sb ppm		
		· · ·				[1	
· · · · · · · · · · · · · · · · · · ·		1					1			
		1								[
	1	ľ						1		
	1						<u> </u>	·		
······	1	<u> </u>						<u> </u>	<u> </u>	
		<u> </u>					<u> </u>	<u> </u>		
· · · · · · · · · · · · · · · · · · ·										
		<u> </u>						<u> ·</u>		
	<u> </u>	<u> </u>						<u> </u>	 ;	
			<u> </u>					 		
			<u> </u>					<u> </u>		
	<u> -</u>						┨───		i	
· · · · · · · · · · · · · · · · · · ·									 	
		 	· · · ·					<u> </u>	 	
			· · · · ·							
	<u> </u>			`		<u> </u>		27		
quartz CARBONAte stringers with Trace pyrite and sphalerite.	8005	27.5	29.0	_ ·	_ +	ō.3_	20	2	<u> </u>	
Trace pyrite and sphalerite.	 	•	ļ							·
· · · · · · · · · · · · · · · · · · ·	<u> </u>									
-							1.5			
Trace sphalerite and pyrite	B006	30.4B	31.90		4	0.4	17	2		
· · · · · · · · · · · · · · · · · · ·				•						
							_			
		_ ·								
·										
· · · · · · · · · · · · · · · · · · ·										
······································										
Someanic anothe Rachamate staingers	8001	37.3	38.7		6	0.7	26	2		
Sporadic quarte carbonate stringers with Traces of sphalerite and pyrite					•	· ·				
with is needs on spinateous tall fighting	ദഹദ	38.7	40.:	; ;	6	0.4.	วน	Z		
		- - -		· –	<u> </u>	° 1-				
								· ·		
· · · · · · · · · · · · · · · · · · ·										
· · · · · · · · · · · · · · · · · · ·					·			i.		
	┝╌╌┨									
·			{	{		——ł				
			[

Applications of the second devices and the second devices of the second dev

GRANGES EXPLORATION LTD DIAMOND DRILL LOG 1

PAGE 7

of 24

HOLE No. J91-26

			<u>.</u>				,	.:		
MINERALIZATION ALTERATION	1				Pp⊾ Au	Ag	٨s	56		
MINERALIZATION ALTERATION	SAMPLE	FROM	TO	NIOTH		g/t	စုမှာ	ppm -		
	1									_
	Boog	40.2	41.68	1.48	3	0.4	27	2		
41.68 - 42.40		·				ļ				
- 23% pyrchotite, 1% pyrite	Boio	41.68	42.40	0.72	3_	0.1	2	Z		
· · · · · · · · · · · · · · · · · · ·					-1		7/	2		-
·····	Boil	42.40	43.60	1.20	¥	0.7	36			
	-					}				
	 									
	1									
				-						
47.05	BOIZ	46-8	4808	1.28	13	<u>IJ</u>	3Z	2		
- 5mm carbonate vain with					-	00				
25% pyeobitumen, 2-3% pyrchotite	Bor3	4808	49.45	1.53	29	0.8	32	2		
······································	72	40			71	07		र		
	0014	7442	5060	612	<u>ar y</u>	0.1	-24-	->+		
······································										
					:					
						-				
									_]
		•								
·					· · · · · · · · · · · · · · · · · · ·					
	BOIS	2772	54.1_	0.95	62	1-1	89	<u>s</u>		
53.20-53.52			<i></i>			- 2			-	
- Trace sphalerite and pyrchatite	<u> 60/6</u>	54.1	55.0	0.90	_8_	д. 0	JZO	5		{
	Ran	550	55.9	100	3	22	178	12		
	0014	- 0.0	22.1	<u>vrv</u>		aur	ц., г. °			
53.52 - 57.3	BOIR	55.9	\$7.3	1.40	2	2.6	190	6		
- Treace 21% pyrite with Trace pyrhotite and sphelesite found in rare quarte carbone te stringers										
purchatite and schelerite found in										
Real quarte carbonete stringers										
Ŧ						ļ	 			
·										
			[[
										{
				}						[
				I			1	L		

]	······································					1	
]	GRANGES EXPLORATION LTD		8	OF	24		in the second second second second second second second second second second second second second second second
HOLE No.	J91-26					_	•••
1					•		
INTERVAL		* U		SI	1/	1	
<u>8.90 -</u>				4			
102.60 Cont'd			-	85	- -	- 61	
Cont.d_		· · · · · · · · · · · · · · · · · · ·	ふ				
-			-	-		-62	
j			-	-	- -	-63	
				603	_ _	-69	
J			-	-	- -		
·· ·······			-	- 5		-65	
		· · · · · · · · · · · · · · · · · · ·		_	- -	-66	
		S		5	ĩ -		
]		50 	-	-	- -	67	~
	67.30 - 72.30		ス	_	1	-38	<u> </u>
]	- 1-2% quarte contomate veint	18 1-4 mm wide,			- ť	1	
	- less facunt ventets at 80-4		-	- -	- -	-69	
]	quartz carbonate , hosting Tac		_		_ _	70	
	of pyrchetite, sphaleuite and p	yeite			1	2 T	
			-		- -	(+ 1 /	
J			·		_ _	172	
7				P	7		
		-85	ا د	- . P	- 0	-73	
Ţ			죄		.	74	
J							
<u>ר</u>			-	- -	- -	-75	
			-	_ _	- -	-76	
	*·		/				
	· · · · · · · · · · · · · · · · · · ·	-	- /	· [.	• -	-77	
	•		-	_ _	. _	-78	
J		50 90	TT A				٢
·			9	- -	- -	<u> </u> ++9	
			-	- -	_	-80	
·				ł	1	1	

Ē.
[
C C

GRANGES EXPLORATE	ON LTD
GRANGES EXPLORATI	LOG

PAGE 9

of 24

HOLE No. 391-26

•						-	.			
MINERALIZATION ALTERATION	SAMPL	E FROM	то	WIDTH	Au ppB	Ag g/t	As ppm	56 ppm		
						 				_
							1			
	Reiß	177	15.00	1.55	4		28	2		
	POIA	. <u>\$>t</u>	02.22	533		0.9	20	_ ≺ 		
64.90	<u> </u>	65.25	66-65	1.40	3	0.6	23	5	_	
- QUARTZ CARbonate vein with TRACES_	Bozi	66.65	68.0	1.35	হ	0.6	19	2		• • • •
of pyrite and sphalecite	B012	68.0	69.6	1.60	1	0.3	19	3		4
66.40	B023	69.6	70.80	1.20	3	0.4	21	2		
- Trace Sphalerite	8074	70.80	72.0	1.20	4	0.4	19	7		
72.3 - 73.15	<u> </u>	71.0	73.15	45	2	0.4	18	2		_
			•						1	
- TRace -> 1% pyrite, sedimentary (?) Trace pyrchotite in Rare Veinlets										
			_						-	
76.50- 77.5	8016	16.5	11 <	10	4	0.5	20	z		
76.50-77.5 - Trace pyrcholite and pyrite in quarte carbonate staingers.			11.4		+		50			
quaetz carbonate staingers.										
	+	-	*			_				
				·					-+	
				T	T	Ţ	·			P

page 10 of 24

Ĉ

HOLE No. 391-26

INTERVAL	C. L055	LITHOLOGY	* 5		S	M	Α	_
8.90 -			5. -8	- -	-	-	-	
10 z. 60 Cont'd				45(4)	-	-	-	
· · · · · · · · · · · · · · · · · · ·			-		-	- Сру	-	
			-	-	-	-	-	
		85.50 - 86.30 Intermediate Fine GRAINED TOFF (7)	-	- 18	-	-	-	
··		- possibly a dyke (7) - fine grained, mottled, light granish-gray to dark granish-gray. -darker Areas more silicified	-		-	مج	5.	
		-dacker Areas more silicified	_	_	_	<i>.</i>	_	
···		· · · · · · · · · · · · · · · · · · ·	-	-7		<u>zr</u> di	_	-
			Su Pr	47.(4)	-	-	-	
·		91.30 - Small Recumbert fold with limbs at 80% of	-	-	-	-	-	$\left \right $
		·	-	-	<u>ب</u>	-	-	
····			-	—		-	-	
····		· · · · · · · · · · · · · · · · · · ·	-	-		-	-	
· · · · · · · · · · · · · · · · · · ·			גר: -		_	_	-	
	••		. 1	-	-	-	-	
			-	· . -	-		-	-
······			-			-	-	
			-	-	-	-	-	 -

GRANGES EXPLORATION	N LTO								 	
HOLE No. 3791-26	· · · · ·		. <u> </u>		<u>+</u>		PAGE		ofŹ	- 4
MINERALIZATION ALTERATION	БАМРЦ	FROH	то	ыютн	Аи ÞрЬ	Ag g/t	As ppm	Sb ppm		
						· · ·				
			······································							
83.50	<u> </u>	83.8	85.2	1.50	7	0.9	27	2		
Trace chalcopyrite	Bozg	85.2	86.4	1.20	7	0.5	1	3		
				1.30			27	4		
88.4				1.30		0.8		2		
Teace galence and sphalerite.	<u> </u>	89.1	902	1.0	6	0.9	20	2		
				3 A						
· · · · · · · · · · · · · · · · · · ·										
			·]						
· · · · · · · · · · · · · · · · · · ·						<u> </u>				_
			-			· .				
		· .								
	_			·			·			_

[

[([[[

[[[[[]]]

Ì

P

HOLE No. JAI - 26

INTERVAL	C. L055	LITHOLOGY	.≁ ∪_		S	M	A	
890 -				1	1			1'
102.60		101.95 - 102.50	_	ł _	_	-	. 	
Cantid		- Black Argillite with + 20% febric volcanic		75			1	
.com.c.		fragments	1	12	_			
		-fragments are grey to light geserial-grey, angular	5.					Γ
		to sub-angular and usually 2-4mm access	T /	<u> </u>				
		with some as large on them	-	TS/2A		L		Г
· · · · · · · · · · · · · · · · · · ·		- Lagmontal component increases do un hole.		2.4				
			80	1	┟╍╌┥		-	ſ
						2	-	
		102.50 - 102.60 - FAULT Grage	_		-			ſ
	f f			1				
107.60 -		Arg: Macenus Toff	50	1.	-	- -	-	ŗ
103.63		- Gerenich Black in lolacer with 250% fragments	Č.	1D		Py		ĺ
6 × 200 - 1		- Fragments are dominantly felsic volcanic, Angular ta	-	_	-	-	_	ŀ
		Sub-Angular with a small proportion of sortstore						
+		feagments that are generally more counded and of	-	-	-	-	-	F
		smaller size						
		- bottom contact is a fault	-	-	-	7	-	ſ
·		- upper contact gradational				ir.		
			-	-	-	10%		ſ
105.63-	<u>†-</u> -†-	Intermediale Fine Grained Tuff				1		Ļ
104.10		- light again to again colorer and well be dated	-	-	-	-	-	Γ
1.0.1.1	\square	- light gruen to grey colour and well bedded - bottom contact gradational, Top contact a fault.						
· · · · ·			-	_ ·	-	-		Γ
10410		Fault						L
· <u>· · · · · · · · · · · · · · · · · · </u>	\square		-					ŀ
104.10 -		Intermediate Capilli Tutt						
121.14		- medium generish grey colour	_	-	-	-	_	
		- nokelithic						L
· · · · · ·		- fragments diverse in a speakance with the most		-		-		ſ
	Ηt	elundant (=40%) logilli siced schaunded intermediate	:					
· · ·	<u> </u>	faggments similar in composition to groundmass	-	-	-	-	-	ſ
		- Som to 15mm elonate, flattened dark green chbaitie						
······		+racmints (20%)	-		. Ý	-	-	ŀ
		- anoular to sub-anoular felsic fragments 5-25mm across	· .		%			
··	╏──┤╴	often with quarte overgeouths.	-		r - 1	-	512	ť
	╞╼╼┨┙			10			31	
	╏╌┨╴		-	[·	-	-	-	Ľ
	┟┼	intermediate (?) volconic frequents, light purple in colour		Ĺ			۲۶	ſ
	╞╌	- Bottom contract sharp.	-	-	-	-	-	- •

PAGE D OF 24

(⁶

Ĺ

Ĺ

į.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

HOLE No. J91-26

MINERALIZATION ALTERATION	SAMPLE	FROM	то	W107H	Аи ррб	Ag ppm	As ppm	Sb ppm	
· · · · · · · · · · · · · · · · · · ·	B032	{0l·2	107.6	1.40	23	2.0	58	5	
	<u>8033</u>	102.6	104.1	1.50	78	21	99	3	
	Bozy	104.1	105.5	1.40	101_	0.7	<u>46</u>	2	
104.10 - 121.14 - 1% pypite	BOJS	1055	106-9	140	78	0.8	47	2	
			108.5	ł				2	
· · · · · · · · · · · · · · · · · · ·	8037	108.5	109.7	1.20	<u>95</u>	0.7	78	2	
	<u>B038</u>	109.7	111.10	1.40	700	0.9	102	2	
	8039	(11.10	[12.6	1.50	<u>24</u> 0	1.0	333		
	8040	[12.6	<u> [4.0</u>	1.40	200	0.9	61	2	
	ઉભ્ય	114.0	{ 5.7	130	87	<u>,</u> /	123	2	
15.82-118.87 50% Core Reconsey	B042	45.7	118.9	3.20	97_	1.0	120	2	
	B043_	1(8.9	120.2	[.30	200	ON	49	2	
			121.19						
	Bous	(1114	111.5	1.36	57	27	62	2	
							· · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·									<u>_</u>
· · · · · · · · · · · · · · · · · · ·				·					_

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

HOLE No. J91-26

N									
	C. L 055	LITHOLOGY	÷ 0		S	Μ	A		~
· · · · · · · · · · · · · · · · · · ·		118.87-121.14		2D -		-	S:, -	-121	
		- Quartz corebonate flooding and veining Resulting in suficification and abliteration of original textures		-	_	-	-	-122	
1 /21-14-		Argillite	-	7 3 (k	-	-	-	-423	į
/35:20		-minare (<10%) this siltstone beds -quarte calcile stringers, 1-3mm wide at moderate le steep angles to CA. Usually	5-75	270	-	- 99	-	-774	•
N		no more than 1-2/10cm with occasional somet intervals containing intense, sulfide		-	-	- P1 GL	_	-125	-
· · · · · · · · · · · · · · · · · · ·		bearing, staingers Splaluito, alura, gerenoppite and cholopyrite are found sponodically in Trace amounts within the stringers		-	-		-	-126	
		amounts within the strangers			-	11 54	5r.13	.128	C
			 -	- 11/01	_	-	-	129	
			-	打,(k) -	-	-	-	_/30	
<u>n</u>			-	-	-	-	-	-13/	
n			50	-	-	-		-/32	
					_	-	_	-133 -134	
			-	_	-	235	11 81	-135	
135.20- [] 158.14	-	- 50% interbedded siltsbres and sandstones 500m.	-	-7.	-	- .	-	-136	
0		- Tops down hole	-	i) fr	-	-	-	_137	
N	╶┨╶┨		BO	-	-	-	-	.138	
ų n			-	-	-	-	-	_139	
			-	-	-	-	-	_140	

PAGE 14 OF 24

Ć

HOLE No 591-26

[[

[

Γ

[(

MINERALIZATION ALTERATION	SAMPLE	FROH	то	МІРТИ	Аи <u>р</u> рь	Ag ppm	As pp=	Sb ppm	
		· ·							
	Boys	127.5	1240	1.50	43	27	63	2	╞
125.80	8047	124.0	125.4	1.40	19	2.7	45	2	 1
3cm at massive pyrite Trace galena	B048	175.4	(26.95	1.55	270	5.9	249	4	
26.95 - 127.50	Bo49	[26.95	127.5	0.55	147	89	1197	51	
20.45 -127.30 Genetz CARboncte Vein 127.0 - 127.15 60% pyrite	Boso	127.5	128.7	1.20	120	20	116	9	
TRACE Sphalerite	<u>B051</u>	1287	1301	1.40	180	1.7	67	4	
	Bosz	1301	131.4	1.30	140	1.7	56	2	F
127.50-135.80 2-3 mm wide ate-CARbonate stemmers	8055	(31.4	132.9	1.50	BO	1.8	63	2	
2-3 mm will ale-CARbonate strongers it so: 60° to CA with a clensity of 2-3/10 cm	βοτή	32.9	(રૂલ.)	120	330	2.8	/22	3	
Teags of Red Bean sphaluite, and	BOSS	134.1	<u> 35.0</u>	0.90	419	1.0	202	9	
galenc. 51% pyrite.	8056	135.0	136.3	<u>1.30</u>	116	1.4	41	2	
	Bost	136.3	137.7	1.40	3	0.9	<u>34</u> .	Z	
34.11-135.0 intense quarte carbonate Marting with 5% pyrite and 1% sphaleste.	$\left \right $								
with 5% pypite and 1% sphalerite.								· · ·	
							4		
······									
· · · · · · · · · · · · · · · · · · ·		·					4 - 19 - 14 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19		
	1						1	.	

PAGE 15

of 24

	C	GRANGES EXPLORIDE	16	PAGE	- /6		DF Á	74
HOLE No.	J91-2	6			•			
INTERVAL	C. L055	LITHO	LOGY	÷		S	Μ	A
						_		
····							43 54 21 21	300
<u></u>	╉╂───				1.1.1			
			······································			· -	-	-
·	╆╌┠───	······································			-	-	-	-
······				5.	-	-	-	-
					-	_	-	-
- •			······				_	-
				T			-	
	 			1	-	-	-	-
÷					-	-	-	-
				 	12551	-	-	-
				<u></u> 51	4	-	- [-
		· · · · · · · · · · · · · · · · · · ·		—] -			_	-
			······			.:	_	_
		· · · · · · · · · · · · · · · · · · ·	<u>:</u>					_
						8		
				50/	Ţ		45	
					-	-	₩.	- -
58.14-		Argillite minor (<10%) thin si	· · ·			-	-	- -
222.50		minor (<10%) thin si	Itstone beds				-	-
						_	_	-
	•			50	N.			_
	- 1				1.1	1		- [′

				el 1 C-1 Riel			• • • •			
GRANGES EXPLORATION DIAMOND DRILL LU	ig Ig						PAGE	.17	OF	24
HOLE No 391-26		-				<u>.</u>				
MINERALIZATION ALTERATION	занны	FROM	ro	MIDTH	Au ppb	Ag ppm	As ppm	S6 ppm		
•		· · · · ·	<u> </u>					<u> </u>		
141.20- 141.6	Boss	140.0	141.2	1.10	11	0.6	46	2		
- quartz carbonate stringers, 70% across internal	B 059	141.2	141.6	0.40	20	0.8	532	4	<u> </u>	1
- pale beaux sphaleeite (%) - Traces of Aspy, galena(?)	<u> </u>	1416	142.4	0.80	10	0.5	55	7	 	
			<u> </u>		·	· ·			· .	
							· · ·			
•										†
									-	
										<u> </u>
								:		
		· · · ·								ļ
15510-1520	<u> </u>	15265	154.05	1.40	.14	1.4	70	4	25	
155.60 - 157.0 - minar quarte contrate stringers	B062	154.05	155.6	1.55	27	1.5	83	5		
- minor quarte spectorate stringers with Tabars of Sphaleniter Galena and alseno pyrite	<u> </u>	155.6	157.0	1.40	73	1.0	1363	4		
	B06 9	151.0	1583	1.30	41	1.1	282	3		
		-								

.

F

:

1

.

•

÷

.....

.

J

а. 1919 - 1

2

....

73)

i segura

.....

.

÷.; ;

-

•

[[[

[[[[

..

.

		ANGES EXPLORED AMOND DRILL LOG	PAGE	18).) c	of Z	4.	C
HOLE No.	<u>J</u> 91-26				 -			
INTERVAL	C. L 055	LITHOLOGY	*	L	S	M	A	- (60
158.14				1				
222.SD Conta				-	-	-	-	-161
				-	-	-	-	- 16
								- 16
				3.69	-	-	_	
··· 	·			1	-	-	-	16
		· · · · · · · · · · · · · · · · · · ·	5	1_	-	-	-	6
	 	<u></u>	_					
··				-	-	51 44 14 14	2~	-16
				-	-	CP1 P1	12	- 16
					-		<u>نيم</u> [[(
-			_	1				
				-	-	-	-	L/61
·		· · · · · · · · · · · · · · · · · · ·		-	-	-	-	./7
:					_	_	-	17
·				_				[]
<u>-</u>				-	·	-	-	-17.
			 		_	-	_	-17.
<u>.</u>		÷		17				
<u>-</u>					in-	-	-	-17
· · · · · · · · · · · · · · · · · · ·	.				30	-	-	-17
· · · · · · · · · · · · · · · · · · ·	· · ·			₹ <u>1</u> 5		_	-	170
- + - ;			S	:+: 		-	-	<i>⊧</i> ′‡
· · · · · · · · · · · · · · · · · · ·				- 20	-	-	-	-7
+. 	┨─┤────	,			,			-174
<u> </u>						-		-182

GRANGES EXPLORATIONED

PAGE 19 OF 24

. -

HOLE	No.
------	-----

[.

 $\left[\right]$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•			<u>.</u>	•••••		<u>.</u>				<u> </u>
160.8 Bass 1604 K13 35 1.8 64 5 -2.41mm genetic contensate weinlats - - - - at 80° to ch with Tence sphalwite - - - - - - and 1% pypite - - - - - - - - and 1% pypite - <td< th=""><th>MINERALIZATION ALTERATION</th><th>злире</th><th>FROM</th><th>то</th><th>ыоты</th><th>Au ppb</th><th></th><th>1</th><th>1</th><th></th><th></th></td<>	MINERALIZATION ALTERATION	злире	FROM	то	ыоты	Au ppb		1	1		
160.8 -2.4mm quantz contrarate veinlets at 80° to CA with Teace sphalecita Gab 1% pypito 166.4 Trace chalimpyridi , galanc, 5 phelecita 168.5 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 8069 1900 1908 3 0.7 29, 2 169.65 Tence Antimony (.7) Pyrile 160.7 100 100 100 100 100 100 100 100 100 10	•			1				1.022			
-24mm quantz contracto veinletz at 80° to Ca with Teace sphalevite and 1% pypito Box 1% blo 01619 15 1.0 79 2 166.4 Treese chalcopyticto, galenc, spheleidz 8062 1674 169.0 12 1.5 29 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 169.65 Teace Chalimo											
-24mm quantz contracto veinletz at 80° to Ca with Teace sphalevite and 1% pypito Box 1% blo 01619 15 1.0 79 2 166.4 Treese chalcopyticto, galenc, spheleidz 8062 1674 169.0 12 1.5 29 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 169.65 Teace Chalimo					1						
-24mm quantz contracto veinletz at 80° to Ca with Teace sphalevite and 1% pypito Box 1% blo 01619 15 1.0 79 2 166.4 Treese chalcopyticto, galenc, spheleidz 8062 1674 169.0 12 1.5 29 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1098 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 8069 1900 1908 3 0.7 29, 2 169.65 Teace Chalimony (.?) Pypili 169.65 Teace Chalimo											
and 1% pyetto and 1% pyetto Boss 166.9 166.4 Trace challengy sidd gallenc, 5phaleids Boss 167.0 169.9 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 20 1.7 34 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 160.0 1709 3 0.7 29. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7	160.8	Bass	160.4	161.3		35	1.8	64	5		
and 1% pyerto and 1% pyerto Boss 166.9 166.4 Trace challengy ridd, gallenc, 5phaleida Boss 167.0 161.9 15 1.0 39 2 169.65 Trace Internory (.?) Pyerite Boss 169.0 1600 20 1.7 34 2 169.65 Trace Internory (.?) Pyerite Boss 1600 1608 3 0.7 29, 2 169.65 100 1008 008 3 0.7 29, 2 169.65 100 100 1008 100 1008 100 1008 100 1008 100 100	-2.4mm quartz contonate veinlets		· 								
and 1% pyetto and 1% pyetto Boss 166.9 166.4 Trace challengy sidd gallenc, 5phaleids Boss 167.0 169.9 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 20 1.7 34 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 169.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 169.65 Texa Intimony (.?) Pyetts Boss 160.0 1709 3 0.7 29. 2 160.0 1709 3 0.7 29. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7 20. 2 170.0 1709 3 0.7	at BO° to CA with Teace sphalerite							L	<u> </u>		<u> </u>
Bots 166.4 15 10 39 2 166.4 154 15 10 39 2 166.4 154 190 12 1.5 24 2 166.4 164.0 164.4 190 12 1.5 24 2 166.5 Texa Chilimony 7 Pyrili 8082 1690 1700 20 1.7 34 2 169.65 Texa Chilimony 7 Pyrili 8069 1700 1001 1015 3 0.7 29 2 169.65 Texa Chilimony 7 Pyrili 8069 1700 1001 1015 3 0.7 29 2 169.65 Texa Chilimony 7 Pyrili 8069 1700 1015 3 0.7 29 2 169.65 169.0 1001 1015 3 0.7 29 2 10 10 10 10 10 10 10 10 10 10 10 10 <	and 1% pipite						<u> </u>	<u> </u>			<u> </u>
Bots 166.4 15 1.0 39 2 166.4 15 164.9 15 1.0 39 2 166.4 164.9 15 1.0 39 2 166.4 164.9 15 1.0 39 2 166.4 164.9 15 1.0 39 2 166.5 Texee Challeopyieto, gallane, sphaleritz Bots 164.9 12 1.5 2.9 2 169.65 Texee Challeopyieto, gallane, sphaleritz Bots 164.9 160.0 170.0 20 1.7 34 2 169.65 Texee Challeopyieto, gallane, sphaleritz Bots 160.0 170.0 20 1.7 34 2 169.65 Texee Challeopyieto, gallane, sphaleritz Bots 160.0 170.0 20 1.7 34 2 169.65 Texee Challeopyieto, gallane, sphaleritz Bots 160.0 170.0 20 1.7 34 2 169.65 Texee Challeopyieto, gallane, sphaleritz Bots 160.0 170.0 20 1.7 29 2 169.65 160.0	• • •								L	L	
166.4 Trace chalcopyrido, galana, sphaleidi: 8067 1674 169.0 12 1.5 29 2 8068 1690 1900 20 1.7 34 2 169.65 Teau Antimony (.?) Pyrite 8069 1900 19085 3 0.7 29. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-								<u> </u>		<u> </u>
166.4 Trace chalcopyrido, galana, sphaleidi: 8067 1674 169.0 12 1.5 29 2 8068 1690 1900 20 1.7 34 2 169.65 Teau Antimony (.?) Pyrite 8069 1900 19085 3 0.7 29. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											I
166.4 Trace chalcopyrido, galena, sphalenitic 8067 1674 169.0 12 1.5 29 2 8068 1690 1900 20 1.7 34 2 169.65 Trace Antimony (.?) Pyrite 8069 1900 1908 3 0.7 29. 2 0 0 0 10 10 10 10 10 10 10 10 10 10 10 1									<u> </u>	Į	
166.4 Trace chalcopyrido, galena, sphalenitic 8067 1674 169.0 12 1.5 29 2 8068 1690 1900 20 1.7 34 2 169.65 Trace Antimony (.?) Pyrite 8069 1900 1908 3 0.7 29. 2 0 0 0 10 10 10 10 10 10 10 10 10 10 10 1									ļ	 	ļ
166.4 Treese chalcopyridit, galance sphalenite: Boli 1674 169.0 12 1.5 29 2 Boli 167.9 19.0 20 1.7 34 2 169.65 Treese Antimony (.7) Pyrite: Boli 1900 1909 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 29. 2 Boli 1900 1900 3 0.7 20. 2 Boli 1900 1900 3 0.0 20. 2 Boli 1900 1900 3 0.0 20. 2 Boli 1900 3 0.0 20. 2 Boli 1900 3 0.0 20. 2 Boli 190	• • • • • • • • • • • • • • • • • • •										<u> </u>
Ross 169.0 1700 20 1.7 34 2 169.65 Teace. Antimony (.?) Pyrili 8069 1100 1101 3 0.7 29. 2 8069 1100 1101 1015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 11015 3 0.7 29. 2 8069 1100 1015 3 0.7 29. 2 8069 1100 1015 3 0.7 3 3 0.7 8069 100 100 1015 10		B056_	166.0	167.4		15	1.0	<u>79</u> .	2	L	ļ
Ross 169.0 1700 20 1.7 34 2 169.65 Teace. Antimony (.?) Pyrili 8069 1100 1101 3 0.7 29. 2 8069 1100 1101 1015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 11015 3 0.7 29. 2 8069 1100 1015 3 0.7 29. 2 8069 1100 1015 3 0.7 3 3 0.7 8069 100 100 1015 10	166,4					-					ļ
Ross 169.0 1700 20 1.7 34 2 169.65 Teace. Antimony (.?) Pyrili 8069 1100 1101 3 0.7 29. 2 8069 1100 1101 1015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 1100 11015 3 0.7 29. 2 8069 1100 11015 3 0.7 29. 2 8069 1100 1015 3 0.7 29. 2 8069 1100 1015 3 0.7 3 3 0.7 8069 100 100 1015 10	Trace Chalcopyanto, galena, Sphalinita	B067	167.4	69.0		12	1.5	29	2		
169:65 Tence. (Intimony (.?) Pyrifi: 3 0.3 29:2 8069 1700 170% 3 0.3 29:2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.					· ·				Ì
		8068	69 <i>D</i>	170.0		20	1.7		2		
	169.65 Teace Antimony (?) Pyrite					· · · ·				L	
Image: Sector of the sector		<u>8069</u>	1700	17295		<u> </u>	0.1		Z	<u> </u>	<u> </u>
Image: selection of the	· · · · · · · · · · · · · · · · · · ·					<u>.</u>	·		÷.,		┨───
Image: selection of the	······································		<u> </u>		 				-		
Image: series of the series								्राजन	. <u>.</u>		
Image: series of the series	· · · · · · · · · · · · · · · · · · ·					<u> </u>				+	┨───
Image: Second second	······································	<u> </u>							•	<u>`</u>	
Image: Second second		┦──┥									 _
Image: Second second				· .				5 1 2 3 5 5 5			
1 1	······································								<u> </u>	•	
····································	· · · · · · · · · · · · · · · · · · ·						 		· •		
····································		<u> </u>									
		┨─┤			· · · ·						
		┨──┤						3-35 -5 5 7-75			- -
	· · · · · · · · · · · · · · · · · · ·	┨──┤					-	1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
		┟╴╴╏		[:] -						<u></u>	
		┼──┨						3. 140 201			
		╁───╂									
		┞──┤		201				1. * ** 3. f. (3)	4.04	27 	
		╞──╏						<u>- 168</u> 3	<u> </u>		
	······	┢──┤									
	· · · · · · · · · · · · · · · · · · ·	╂───╂		<u> </u>			1.1			- ** •	

	1	DIAMOND DRILL LOG	PAGE	20) (or 2'	4	
HOLE No	J91	-76			 			
INTERVAL	C. L055	LITHOLOGY	*		S	M	Α	
158.14-						ł		ן
222.50	╶╂╴╂	180.40-180.55			-	-	-	$\left \right $
.cont'd	╋	Fault Gouge						
				-	-	-	-	ŀ
·····				-	-	_	-	-
		·			·			
·	╉┉┠		—	-	-	-	-	╞
	1							
			100	[]	-		-	ſ
				-	-	-	-	ŀ
	┥╌┨╴		[
·		······································		さい	-	-	-	ŀ
			1	$\left \widehat{F} \right $				
				-		-	-	ŀ
	╉╌┠	······································		- 1	-	-	-	ŀ
	╉╋		-					
	++-	· · · · · · · · · · · · · · · · · · ·	- -	-	·	-	-	-1
				- I		_		-
	┇╌╽╴	·	50	1				
	╉╌╋		-/-		-	-	-	ł
	╏╌┟╴		-	1.1.2	$\langle X \rangle$	11		
		<u>-</u>			X	27	-	
· •		*****	4 -	-	$^{\prime}$	_	-	4
······	┨─┼─	101 -2 107 -2						
• · ·	╉┈┟╴	192.0-193.2 Faultzons		ن بر د	- - -		-	4
······································		- 1-4cm intervals of fourt oner alternation			а			
		- 1-4cm intervals of fault garge altrageting with 1-8cm intervals or competent acquilito	1.	 	-	-	-	
<u> </u>		· · · ·	180		2.0472 2007 - 1	_	-	-4
···	┫╢		-		ella sonto tegisti Li te internet			
 •`	╏╴╏╴		- -)			:-	-	1
·		n and a second sec				[_	1
						400 - 00 44 15	-	-
			1				-	2
		and the second second second second second second second second second second second second second second secon Second second			ricke Cont		. [

Ε [[[((Γ

GRANGES EXPLORATION DIAMOND DRILL L)G						PAGE	21	0	١F
HOLE No. 591-26		-					·			
MINERALIZATION ALTERATION	SAMPLI	FROM	то	WI07H	Ац <u>р</u> рь	Ag ppm	As	Sb pom		_
180.4 -fault Gouge with 1-206 pyrite		180.1	1809	0.8	2	0.3	20	2		
	B071_	1809	1B1.9	1.0	1	0.2	l g	2	 	_
		· · ·							<u> </u>	
			 							_
										-
· · · · · · · · · · · · · · · · · · ·						 				-
	-				<u> </u>		· · ·	-		_
			_						ļ	_
				-						_
								· 		
									ļ	-
Fault Zone with TRAC Pyrite	807Z	191.4	1927	1.30	7	0.4	21	Z	6	-
					- 7		23			-
	BOT3	16+	1424	1.0	<u>_</u> †	0.4	<u>دن</u>	2		
				·						-
			{							_
										-
							2. 7 2.			-
									- -	
										-
-	╶╁──┼									-
		·	9 - 19 ¹					- (*) *	. •	-
										1
				-			行行			,

i an N≩ Ì

		7/	PAGE				•	-
HOLE No	741	~ 26			·			
INTERVAL	C. LOSS	LITHOLOGY	*	L	S	Μ	A	
15 <u>8.14</u> -			_	· ·	ſ			
222.50 Contid		203.2-204.22 -foult gauge	-1 -	-	-	-	-	╞
coma						_	_	
		· · · · · · · · · · · · · · · · · · ·		-	ستر ا	, . _	-	+
			4	-	۳.			
				-	~	- St	لريم محر	ľ
			<u>_</u>	_	_	SK PY	7	
				-	-	-	-	╞
			150					
	╶╁╌┼╾	· · · · · · · · · · · · · · · · · · ·	<u>ا ج</u>	-	-	-	-	F
					_	_	_	
··· <u> </u>		· · · · · · · · · · · · · · · · · · ·		تد	-	-	-	+
· · · · · · · · · · · · · · · · · · ·			-	ACK ACK				
			-1-	3	· -] -	-	ŀ
				· . —	_	-	-	$\left \right $
			4	•				
				»— ;	-	-	-	ł
			- ;			_	_	L
				 	[[ſ
				i.≟ .	-	-	-	╞
·			- 50					
	- - -		- 85		: - -	-	-	┟
			-			_		L
				-				
· · · · · · · · · · · · · · · · · · ·				nista Santa		-	-	┢
•••	╶┥╴┥				2 			
· · · · · · · · · · · · · · · · · · ·	╶┼╼╍┠╍╸		 ~		·•• · · ••	3 -	-	ł
				1.25	:: :::::::::::::::::::::::::::::::::			L
						1		1
			- Per		_	-	-	ŀ
		a contraction of the second second second second second second second second second second second second second		12.3	متر ب		ł	1

PAGE 23 OF 24

HOLE No. J91-26

[[

[(

MINERALIZATION ALTERATION	SAMPLE	FRON	TO	WIDTH	Au ppb	Ag ppm	As ppm	56 _ppm		
•		<u> </u>								\vdash
		•							<u> </u>	-
	B079	2051	2042	1.10	7	1.2	72	4		╉─
203.3-204.22	Ţ, ,	-						Ľ		\Box
Foult gouge with Trace - 1%_ pupite.	\$07\	204.2	205.2	1.0	64	68	187	5	 	+
P4p)!e.	B#76	905.Z	206.3	1.10	5	0.8	38	ス		1
204.22 - 205.05	Ro77	206-3	207.7	(140	7	0.4	34	3		╀
- 10-15% quartz carbonate						:]_
- 10-15% quaetz carbonate stringers hosting 1% pyrite AND TRACE Sphalerite	Boffs	<u> 1077</u>	243	1.60	6	0.3	32	2		╋
UNIS LICACE. SUNKIPECITE	- B079	10A 3	<u>210.65</u>	1.35	2	0.3	42	2		\downarrow
	B080	21065	212.0	1.35	1	0.3	27-	:2		+
· · · · ·						0.3		Z		\square
	ିଡେଥା	212.0	<u>414 [</u>	U.YU		0.3	20		 	\dagger
	B082	9129	<u>a13</u> B	୦ନପ	10	0.3	29	3	[\square
·								- -		╞
								· · ·		\top
· · ·								-	1	
								1	-	
						I			L	╞
			· · ·					<u>.</u>		
									<u> </u>	-
· ·										4
									<u> </u>	\vdash
	_									-
. · ·	·							÷		<u> </u>
						· ·				_
									 	╞
									 	∔
									L	╂
· · · · · · · · · · · · · · · · · · ·					•					
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	
· ·								e v i		•
								#77.5		F

		GRANGES EXPLORATED TO THE STATE OF THE STATE	PAGE	24	0	f 20	Ĝ
HOLE No.	29	71-26			-		
INTERVAL	C. L055	LITHOLOGY	*	L	S	Μ	A
				_	_ :	-	
····		222.50 END of Hok		TJA)	-	-	-
· · · · · · · · · · · · · · · · · · ·				-	-	_	-
<i>4</i> ,				-	-	-	-
- <u></u>				-	-	-	-
·	╉┈╂			-	-	-	-
				-	-	_	_
				_	_	-	_
	┼┼				_	_	_
				_	_	-	_
					_	_	
······································			-				
				· . .		-	-
		· · · · · · · · · · · · · · · · · · ·		: 	. .	-	-
. <u></u>			-	-	. —	-	-
				2000 2000 2000		-	-
			-	-	-	-	-
						-	-
			-			-	-
					-		-

(1) A second se second sec

Sample J-91-26 42.4 m

Contact: Latite Tuff (Unit 2/4A) with Calcite Replacement Patches; Mudstone (Unit 7J) with a lens of Siltstone (Unit 7K)

The latite tuff contains minor equant grains of quartz up to 0.05 mm in size in a well foliated, extremely fine grained groundmass dominated by sericite and plagioclase, with wispy to well defined seams of Ti-oxide parallel to foliation. In a band up to 2 mm wide near the argillite contact, the tuff contains abundant lenses averaging 0.1 mm in size of ankerite.

Calcite (20-25%) forms replacement patches up to a few mm across of very fine to fine grained aggregates. One lens 2.5 mm long is of fine grained calcite with minor opaque at one end.

A lens parallel to foliation 1.5 mm long is of medium grained guartz with minor carbonate at one end.

The argillite is extremely fin e grained and dominated by sericite and less plagioclase with abundant wispy seams of opaque. Dusty opaque colors the rock a medium brown in thin section.

Lensy to irregular replacement patches (2-3%) are of extremely fine grained, colorless sericite.

Near the contact with the tuff in a band parallel to

foliation averaging 1 mm wide, the argillite contains abundant disseminated grains of pyrite. In about half of the layer, pyrite forms disseminated grains averaging 0.03-0.05 mm in size. Towards one end of the layer, pyrite is concentrated in dense patches up to 1.5 mm long and 0.5 mm wide.

In the argillite is a discontinuous layer up to 21.5 mm wide of siltstone. It is similar to the argillite but contains 5-7% detrital grains of quartz and plagioclase averaging 0.03-0.05 mm in size.

Sample J-91-26 105.2 m

Heterolithic Latite Lapilli Tuff (Unit 2D.5u,4u.2u)

Numerous types of fragments ranging from less than 0.5 mm to several mm in size are set in a moderately foliated, aphanitic groundmass of plagioclase, sericite, and much less chlorite. The major fragment types include non-porphyritic, very fine to extremely fine grained, trachy-latite to trachy-andesite flows, and well foliated, sericite-rich fragments of uncertain origin (fine tuff or argillite).

Flows (15-17%) contain minor lathy plagioclase grains up to 0.2 mm in size in a groundmass of finer grained, lathy to equant plagioclase, K-feldspar, chlorite/sericite, and minor to moderately abundant opaque. Some flow rocks are replaced slightly to strongly by patches of ankerite.

One elongate flow is dominated by extremely fine grained, equant plagioclase and less K-feldspar, with several seams and irregular patches rich in sericite and scattered concentrations of extremely fine grained pyrite.

Sericite-rich fragments (10-12%) are elongate parallel to foliation and dominated by extremely fine grained sericite.

Minor fragments (1-2%) averaging 0.05-0.2 mm in size are of crystals of quartz and less abundant K-feldspar and plagioclase. One quartz grain is 0.6 mm across.

The groundmass is dominated by zones of aphanitic plagioclase and less abundant sericite and chlorite, and lenses and seams rich in sericite with locally minor abundant chlorite.

A few veinlets (3-4%) averaging 0.15-0.3 mm wide and locally up

Sample J-91-26 125.6 m Argillite (Unit 7J); Veins of Quartz-(Ankerite-Pyrite); Replacement Patch of Quartz-Pyrite-Galena-Sphalerite-Chalcopyrite-(Electrum)

The argillite contains scattered detrital grains averaging 0.02-0.03 mm in size of quartz and minor muscovite in a groundmass dominated by plagioclase and sericite with minor disseminated Ti-oxide and opaque and minor seams of carbonaceous opaque. Pyrobitumen forms a very few grains up to 0.02 mm in size.

A vein up to 2.5 mm wide is of quartz with much less ankerite. Quartz in the vein is sheared moderately and recrystallized slightly to moderately to extremely fine subgrain aggregates with interlocking grain borders.

A few strongly contorted veinlets averaging Ø.1-0.3 mm in width are of quartz and K-feldspar with minor to locally moderately abundant patches of ankerite, pyrite and chalcopyrite, and trace amounts of pyrrhotite and sphalerite.

The replacement patch is dominated by fine to medium grained pyrite (30-35%) and quartz (20-25%). Interstitial to pyrite are moderately abundant quartz and ankerite (4-5%), and locally abundant galena (3-4%), sphalerite (1-2%), and chalcopyrite (0.5%). Galena forms interstitial patches up to 1.5 mm in size. Medium orangish brown sphalerite forms patches up to 0.7 mm in size and generally contains abundant exsolution blebs of chalcopyrite averaging less than 0.003 mm in size. Chalcopyrite forms patches up to 0.5 mm in size. Pyrrhotite (trace) forms a grain 0.07 mm in size enclosed in a grain of ankerite interstitial to pyrite.

Light yellow electrum/native gold forms two subrounded grains Ø.Øl mm in size in a veinlet in pyrite associated with galena and minor sphalerite(?).

Quartz with minor ankerite forms very fine to fine grained patches up to a few mm across bordering the pyrite-rich patch. Quartz shows evidence of shearing and partial recrystallization. Against pyrite, some quartz was recrystallized into comb-textures aggregates.

Ankerite forms a patch up to 2.5 mm across of medium to coarse grains interstitial to pyrite.

J91-2-21. J91-3-15. J91-7-35. J91-7-35. J91-8-65. J91-10-69 J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-16-12 J91-17-69 J91-18-77 J91-18-77 J91-18-77 J91-18-77 J91-18-77 J91-18-76 J91-18-77 J91-18-76 J91-18-77 J91-18-76 J91-18-77 J91-20-74 J91-21-49 J91-22-13 J91-22-13 J91-22-13 J91-22-13 J91-22-14 J91-22-15 J91-22-16 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-22-21 J91-25-45 J91-25-45 J91-25-45 J91-26-10 J91-27-66			<u>× ×</u>	X	5 64 X 2 X 1	×	*												
J91-3-15. J91-7-35. J91-7-39. J91-8-65. J91-10-69 J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-16-12 J91-16-72 J91-18-76 J91-18-77 J91-18-76 J91-18-74 J91-18-72 J91-22-45 J91-22-45 J91-22-12 J91-22-12 J91-22-12 J91-22-12 J91-22-20 J91-22-20 J91-22-21 J91-22-20 J91-22-21 J91-22-20 J91-22-21 J91-22-20 J91-20-20 J91-20-20		7.05 11 X	0 3.68	.77	HUM	01		<u>*</u>	× 41	iii:	k ppa	,		наў рах 1111			<u>×</u>		
J91-7-35. J91-7-39. J91-8-65. J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-16-12 J91-16-12 J91-17-89 J91-18-77 J91-18-76 J91-18-77 J91-18-76 J91-18-22 J91-22-45 J91-22-45 J91-22-12 J91-22-12 J91-22-12 J91-22-12 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-22-20 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-25-45 J91-25-45 J91-27-56 J91-27-56		5.00 9.9	5 A.KO	77	雲	.021	5.54 1 7 00 1	1.YX	.03		7 1106		26 [1	22 2	20	2.9	100.01		
J91-7-39. J91-8-65. J91-11-88 J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-16-12 J91-17-87 J91-18-76 J91-18-77 J91-18-76 J91-18-79 J91-18-89 J91-18-74 J91-18-89 J91-18-94 J91-18-94 J91-22-45 J91-22-45 J91-22-17 J91-22-17 J91-22-17 J91-22-10 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-22-20 J91-22-20 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-27-45		.49 13.5	0.07 0 6 85	4 77	祖物	. 51	7.90 1	1.7D	.59		5 2249		18	31 4		4.5	99 . 99		
J91-8-65. J91-11-88 J91-12-16 J91-12-17 J91-12-17 J91-15-91 J91-16-12 J91-17-87 J91-17-87 J91-18-76 J91-18-76 J91-18-76 J91-18-76 J91-18-76 J91-18-22 J91-22-45 J91-22-12 J91-22-12 J91-22-12 J91-22-12 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-22-20 J91-22-45 J91-24-45 J91-24-45 J91-24-45 J91-24-45 J91-24-45 J91-24-45		3,34 12.4	3 7.71	3.00	検察	5.43	20 1	1+10	.18 18		5 387		10 🔡	94 2			100.33		
J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-15-91 J91-17-85 J91-17-14 J91-17-17 J91-18-76 J91-18-77 J91-18-79 J91-18-94 J91-18-94 J91-18-94 J91-22-45 J91-22-45 J91-22-12 J91-22-12 J91-22-20		5.64 13.7		1.62	Heel	4.54 5.83 .09	9,28 1	1.56	.25		2 189 5 1722		10 H	16 2 72 2		13.4	100.29 100.06		
J91-11-88 J91-12-16 J91-12-17 J91-15-91 J91-15-91 J91-17-85 J91-17-14 J91-17-17 J91-18-76 J91-18-77 J91-18-79 J91-18-74 J91-22-45 J91-22-45 J91-22-12 J91-22-12 J91-22-12 J91-22-20 J91-22-20 J91-22-21 J91-22-20	AQ 0 40	> /.1 .4	.	Ì	ЩU	1			璧	翻				Щ Г	~ 20	4,0	100.00		
J91-12-16 J91-12-17 J91-15-91 J91-15-91 J91-15-91 J91-17-89 J91-17-89 J91-17-17 J91-18-76 J91-18-77 J91-18-89 J91-18-94 J91-18-94 J91-18-94 J91-18-94 J91-21-49 J91-22-57 J91-22-12 J91-22-13 J91-22-12 J91-22-20 J91-22-21 J91-22-20 J91-22-21 J91-22-20	-RR N 154	7.41 11.3 6.61 15.2	7 1 72	2 12	经设备	ir /a .	7.79 1		.57 8	011 .00	2136		10 5	24 3			100,02		
J91-15-91 J91-16-12 J91-17-89 J91-17-89 J91-17-14 J91-17-17 J91-18-76 J91-18-77 J91-18-89 J91-18-92 J91-20-74 J91-21-49 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-12 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-22-20 J91-22-45 J91-22-20 J91-22-45 J91-22-45 J91-22-45 J91-25-45 J91-25-45 J91-27-56 J91-27-56	166.5 53	.85 14.2	6 9.63	2.72	8185	1.62	T. 66 1	1.80	·22		7 1373 2 764	233	10 13	58			100,14		
J91.16-12 J91.17-87 J91.17-87 J91.17-17 J91-18-76 J91-18-76 J91-18-89 J91-18-94 J91-18-12 J91-22-45 J91-22-45 J91-22-17 J91-22-17 J91-22-12 J91-22-12 J91-22-20 J91-22-21 J91-22-20 J91-22-20 J91-22-20 J91-25-45 J91-25-45 J91-25-45 J91-27-56 J91-27-56	175.6 56	.93 13.4	3 7,78	3.63	3187	.66	5.03	.77	.26	351 .00	5 1046	143	12 1	14 2 56 1	. –	6.0			
J91-17-89 J91-17-14 J91-17-17 J91-18-76 J91-18-76 J91-18-89 J91-18-89 J91-18-12 J91-20-74 J91-22-45 J91-22-45 J91-22-13 J91-22-10 J91-22-20	91.0 29	5.85 14.2 5.93 13.4 9.07 13.2	0 11.60	6.70	667	1.57	2.72 1	1.08	.57 .22 .60 .26 .19	.01	2 707		10	56 1 55 1		7.2	100.13 100.42		
J91-17-14 J91-17-17 J91-18-76 J91-18-76 J91-18-89 J91-18-94 J91-18-94 J91-18-94 J91-20-74 J91-22-45 J91-22-13 J91-22-13 J91-22-10 J91-22-20		5.04 15.7		4.43	20	1.89	5.52 1		5563	議員	7 1010	17.4	10						
J91-17-17 J91-18-76 J91-18-77 J91-18-89 J91-18-94 J91-18-94 J91-21-49 J91-22-73 J91-22-73 J91-22-13 J91-22-13 J91-22-10 J91-22-20	89.6 59	γ.10 13.0	3 8.62	3.16	2 😚	4.09	.66 1	.52	.29	16 .00	2 288	241	10 H 25 M	73 1. 54 3		8.0	100.16		
J91-18-76 J91-18-77 J91-18-87 J91-18-89 J91-18-94 J91-20-74 J91-22-47 J91-22-47 J91-22-17 J91-22-17 J91-22-17 J91-22-12 J91-22-20 J91-22-21 J91-22-20 J91-22-22 J91-22-22 J91-22-25 J91-25-45 J91-25-45 J91-27-32 J91-27-62 J91-27-62	149.0 65.	5.12 12.1	3 6.33	2.70	1177	.08	7.63 1	.31	.35 🗓	18or	3 2173	130	17 1	15 Z		5.0 3.0			
J91-18-77 J91-18-89 J91-18-92 J91-18-12 J91-20-74 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-45 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-25-45 J91-25-45 J91-27-56 J91-27-56	172.0 (57.	7.65 12.9	0 11.38	5.32	間效	.09	5.52 1	1.39	.44 🕖	18 .00 35 .00 16 .00	2 1518	75	22	60 S	- 10 - 44	3.8			
J91-18-89 J91-18-94 J91-18-12 J91-20-74 J91-22-45 J91-22-45 J91-22-13 J91-22-17 J91-22-10 J91-22-20 J91-22-21 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60	76.1 59	9.22 15.2	3 7.64	3.94	Li de	1.89 4.09 .08 .09 2.01	4.22 2	2.01	.45 🏭	14 .00	2 1891		21	63 S		3.9			
J91-18-94 J91-18-12 J91-20-74 J91-22-55 J91-22-13 J91-22-17 J91-22-10 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-42 J91-24-20 J91-27-32 J91-27-60 J91-27-60	77.3 59	.74 15.4	1 4.76	3.19	88	ł	5.96 1	.42	.07	00 .01	0 897	37	24 3	61 5	1.4	7,	100.14		
J91-18-12 J91-20-74 J91-22-45 J91-22-45 J91-22-13 J91-22-17 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-42 J91-22-42 J91-27-60 J91-27-60	·87.0 (60,	D.81 10.8	0 10.64	3.04	2 22	.06 !	5.67 1	.18	.29	25 .00	5 3724	247	15	48 4		4.4			
J91-20-74 J91-21-49 J91-22-45 J91-22-13 J91-22-17 J91-22-10 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-27-56 J91-27-56		2.99 12.7	6 8.13	2.02	1057	1.45	7.23 \	1.40	.36 4	10 .00	2 3086		20	66 3		2.1			
J91-21-49 J91-22-45 J91-22-13 J91-22-17 J91-22-12 J91-22-20 J91-22-21 J91-22-21 J91-22-21 J91-22-20 J91-22-20 J91-22-20 J91-22-20 J91-22-45 J91-25-45 J91-25-45 J91-27-60 J91-27-60 J91-27-60	123.4 62	2.26 11.5	4 9.78	2.93	1051	.18	7.14 1	1.23	.34 朡	2300	2 1350	80	18	91 J	30	3.6	100.00		
J91-22-45 J91-22-13 J91-22-17 J91-22-10 J91-22-20 J91-22-21 J91-22-21 J91-22-21 J91-22-20 J91-22-20 J91-25-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60		2.69 10.7		6,84	16-50	.43	.70	.98	.29 .36 .34 .32	627 .00	2 123	150	21	62(3.	26	8.4	100.16		
J91-22-13 J91-22-17 J91-22-10 J91-22-20 J91-22-21 J91-22-21 J91-22-22 J91-22-20 J91-22-20 J91-25-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60	49.0 46	5.62 14.4	1 15.25	1.76	12123	4.99	1.55 2	2.04	.62	074 .00	2 877	289	23 1	以1 68 2	\$ 50	10.5	100.24		
J91-22-17 J91-22-20 J91-22-20 J91-22-21 J91-22-21 J91-24-16 RE J91-22 J91-24-20 J91-25-25 J91-25-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60	45.0 62	2.61 10.9	2 9.01	2.19	11436	.39	1.93 1	1.59	.39	QQ: 00	2 1113	81	16 🔢	13 2	20	9_5	100,20		
J91-22-12 J91-22-20 J91-22-21 J91-22-21 J91-24-16 RE J91-22 J91-24-20 J91-25-25 J91-25-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60	130.2 46	1.02 15.2	9 16.10	4.12	R 127	4.21	.95 3	1.27	.65	151 .00	2 203	109	23	81 4		6,4	100.10		
J91-22-20 J91-22-21 J91-24-16 RE J91-22 J91-24-20 J91-25-26 J91-25-45 J91-26-10 J91-26-10 J91-27-32 J91-27-60 J91-27-60	10111 22 101 n 20	2.61 10.9 5.62 15.2 5.90 18.3 3.23 14.4	0 0.80	2.60	1122	.09	8.93 2	2.00	.53	<u>121</u> .00	2 1314	99	28	66 3			100.04		
J91-22-21 J91-24-16 RE J91-22 J91-25-26 J91-25-45 J91-25-45 J91-26-10 J91-27-32 J91-27-60 J91-27-60						.05	6.9Z	• 66	.14	08].00	2 1035	63	33	206 3		3.0	100.04		
J91-24-16 RE J91-22 J91-25-26 J91-25-45 J91-25-45 J91-26-42 J91-26-10 J91-27-32 J91-27-60 J91-27-60	208.5 70	0.20 13.6	5 3.76	2.55		.05	5.78	.94	.10	10) .00	2 1119	38	26	1	5 52	÷.	100.02		
RE J91-22 J91-25-26 J91-25-45 J91-25-45 J91-26-42 J91-26-10 J91-27-32 J91-27-60 J91-27-60	211.5 54	.36 15.4	8 10.93	8.35	训 25	.05 :	3.38 1	1.51	.23	331 .00	5 609		10 翻	85 2	28	5.1	100.02		
J91-24-20 J91-25-26 J91-25-45 J91-26-42 J91-26-10 J91-27-32 J91-27-60 J91-27-60	104.7 44	.84 16.2	7 14.50	5.09	53	.07	4.42 1	1.60	.49 🔡		2 1213		21	76 Z	86	6.5	100.08		
J91-25-26 J91-25-45 J91-26-42 J91-26-10 J91-27-32 J91-27-60 J91-27-60	26"1/1.1 55	4.36 15.4 4.84 16.2 5.80 18.1 4.95 12.9	Y 6.84	2.66	谢???	.05	9,13 1	1.97	.53 🔢		2 1296		30 1	1673 3	5 77		100.02		
J91-25-45 J91-26-42 J91-26-10 J91-27-32 J91-27-60 J91-27-60	207.3	4.95 12.9	11.80	2.00		.06	4.27 1	1.55	.40 []	45t .00	2 1694	250	19 🕌	33) Z			100.07		
J91+26-42 J91-26-10 J91+27+32 J91+27-60 J91+27-60	26.9 51	1.21 15.9	6 7.89	Z.11	7.49	3.81	2.90 2	2.43	.57	28 .00	2 1247	335	21	40 2	7 108	5.1	100.04		
J91-26-10 J91-27-32 J91-27-60 J91-27-60	**>.4 50	0.89 15.4	1 8.40	1.83	7.44	13.96	2.88.2	2.43	56 44	1.92 .00	2 974	246	23 J	41 2			100.08		
J91+27+32 J91+27-60 J91+27-68	-42.4 [51	1.52 16.0	7 10.06	2.73	12:08	. 16 .	4.72 1	1.38	.35 🙀	දුද් .00	2 1876	237	33 3	1053 4	5 79	5.4	100.07		
J91-27-60 J91-27-68	32.45	7.90 12.6 4.73 16.0	0 8.98	3.31	適合	1.05 ·	4.55 1	1.63	.48	ÇQ .00	2 1228	129	23 14	17 2	9 6Z	5.0	100.08		
J91-27-68						4.09	1.85 2	2.35	.60 世	151 .00	2 1756	339	14 靜	34 2	5 20	4.3	108.05		
	60.8 74	4.21 9.8 7.38 14,9 7.81 10.2	8 3.60	. 88	1194	4.12	.73 1	1.79	.47	06 .00	z 800	166	14	1519 103 1	8 74	21	100.00		
STANDARD'	-68.0 [57	7.38 14,9	9 8.47	3,90	12.53	[1.92]	2.53 2	2.39	.62	071 .00	2 2205	162	20	03 1 44 3	5 20	5.9	100.00		
	<u>w 50-4 [67</u>	<u>.81 10.2</u>	y 3.56	, 98	51.6	1.33	2.05	.57	.23		5 795		29	521 2	3 20	11.2	99.98		
	.200	D GRAN SA Ample typ	HPLES A	RE FUS	ED WI	TH 1.2	GRAN	OF LI	1802 AX	O ARE D	sano)	ЕD/Дж	100 MLS						
DATE RECEIVED: NOV 15	5 1991 DAT	TE REPO	DRT HA		•	1	1				7-7	7	·	7 A.V. P	A 1		, ,,,,,,,		
					* /\	61	n l	91.	010	מ עבטי	* 1~~·)	1.7.74	מירי י	. JUYE,	ς,μεθ	(G, J.	WANG; CEA	TIFIED B.C. ASSA	TERS
				4.1			1						1						

1								
	SAMPLEN J91-26	Mo Cu Pb Zn ppm ppm ppm ppm	AG NI Co Mn Fe A	U Au Th Sr and porn porn porn porn	d Sb Bi V Ca nippmippmippmi X X	La Cr Hg Ba T	8 Al Na K V Au*	Xg
	8001 8002 8003 8004 8005	1 112 32 174 1 106 43 149 1 127 18 110	4.9 47 16 390 3.79 53 4.6 52 19 362 4.21 13 2.9 51 19 498 5.28 4 3.51 18 652 4.38 2 3.6 2.0 856 4.92 2	6 5 ND 1 76 9 5 ND 1 69	3 2 15 1.27 697 2 2 20 1.03 089 2 2 26 1.74 10 2 2 26 1.74 10 2 2 25 3.15 109 2 2 29 6.85 21	5 22 1.30 60 01 5 26 1.64 64 01 7 25 1.57 64 01	3 1.24 .01 .31 1 25	ppb 310 290 145 80 95
	8006 8007 8008 8009 8010	1 14 12 91	4 57 18 609 4.70 1 7 42 14 951 4.05 2 4 5 14 843 4.28 2 4 5 16 696 4.15 2 4 5 16 576 5.76	2 5 ND 1 310	2 2 28 3.69 10 2 2 23 5.30 09 2 2 24 5.63 098 2 2 24 5.63 098 2 2 23 4.21 101 2 2 2 1 7.89 080	5 25 1.30 76 01 5 26 1.38 55 01 7 26 1.16 53 01 4 5 .80 85 01	3 2.14 .01 .25 1 4 3 1.93 .01 .17 6 3 2.09 .01 .23 1 6 3 1.92 .01 .23 1 6 3 1.92 .01 .22 3 3 4 1.66 .01 .26 1 3	75 105 50 70 25
	B011 RE B016 B012 B013 B014	1 111 12 103 1 129 14 123 1 122 16 115 1 110 17 113 1 113 22 118	7 53 16 778 4.20 36 8 33 15 1121 4.58 32 28 14 740 4.36 32 8 25 13 800 4.41 32 28 14 867 4.84 35	5 NO 4 185 2 5 ND 2 168 2 5 ND 3 179 2 5 ND 3 186 2 5 NO 3 207 2	2 2 24 4.81 099 11 2 20 4.59 127 2 2 26 4.52 13 2 2 26 4.52 13 3 2 28 5.44 122	2 9 14 1.35 68 01 2 8 17 1.35 63 01 5 8 17 1.40 60 01	4 2.28 .01 .23 1 8 5 2.10 .01 .27 1 32 4 2.28 .01 .23 1 13 4 2.32 .01 .21 1 5 4 2.39 .01 .21 1 11	55 70 105 85 90
:	8015 8016 8017 8018 8019	1 131 20 97 1 102 24 94	1 29 11 1287 4.73 85 2:0 33 15 1145 4.69 30 2:2 31 14 1167 4.27 72 2:6 31 14 957 4.08 90 9:30 13 677 3.86 21	5 NO 3 173 2 5 NO 3 172 2	2 2 16 4.75 08 3 2 20 4.67 122 12 2 17 4.69 11 6 2 22 3.60 12 2 2 27 5.02 10	5 9 14 1.38 68 01 6 9 11 .99 60 01 9 16 1.31 57 .01	4 2.41 .01 .21 1 13 4 2.13 .01 .28 24 4 1.52 .01 .25 24 4 2.01 .01 .26 62 4 2.07 .02 .20 8	65 60 85 55 55
	8020 8021 8022 8023 8024	1 128 12 119	6 30 14 522 3.99 23 6 27 14 503 4.18 15 3 26 14 539 4.23 15 4 28 15 619 4.44 23 4 27 14 563 4.45 15	2 153 5 DX 2 153 2 5 DX 2 191 2	5 2 27 3.39 107 2 2 27 2.84 105 3 2 29 3.15 111 2 2 31 3.62 12 2 2 31 3.62 12 2 2 30 3.38 13	5 8 16 1.28 64 01 5 8 19 1.36 83 01 9 20 1.39 98 01	4 1.94 .02 .20 3 3 2.01 .02 .19 1 2 4 2.18 .02 .22 1 4 2.24 .02 .21 3 5 2.31 .02 .24 4	85 65 80 70 85
	B025 B026 B027 B028 B029	1 119 13 118 1 134 12 115 1 107 12 103 1 49 13 101 1 105 11 96	4 28 14 609 4.54 16 5 44 16 658 4.41 22 9 38 14 795 4.17 27 5 16 9 668 4.64 11 7 37 14 581 3.93 27	5 HD 3 184 2 5 NO 2 206 2 5 HD 2 211 2 5 ND 1 228 2 5 ND 2 128 2	2 2 30 3.57 12 2 2 30 4.47 19 2 2 27 5.11 10 3 2 12 3.73 10 4 2 24 2.94 10	5 8 22 1.46 82 01 3 9 19 1.39 75 01 5 6 10 .86 63 01	4 2.22 .02 .23 1 2 4 2.27 .02 .24 1 4 4 2.19 .02 .21 1 7 3 1.44 .02 .19 1 7 4 2.07 .01 .22 11	80 75 70 25 105
	8030 8031 8032 8033 8034	1 97 14 108 1 102 10 96 1 95 15 96 2 51 14 93 2 25 5 111	8 49 13 708 3.52 23 9 49 14 548 3.58 23 2 0 33 14 834 4.20 51 2.1 18 13 1086 4.43 23 7 10 16 1796 5.26 4	S ND 2 210 2 5 ND 2 155 5 5 ND 2 171 5 7 5 ND 1 77 5 ND 1 103 5	2 2 23 4.773 08 2 2 24 3.26 08 5 2 27 2.92 10 3 2 23 1.54 09 2 2 41 3.27 09	5 8 24 1.35 71 01 5 6 17 1.39 75 01 5 5 11 .90 75 01	4 1.91 .01 .20 7 4 1.93 .01 .20 6 3 2.09 .02 .28 23 5 1.44 .01 .32 78 2 2.56 .01 .24 101	85
	8035 8036 8037 8038 8039	1 20 6 93 1 16 3 93 1 19 6 86 1 26 9 98 1 32 19 117	8 15 1812 5.36 6 8 7 14 1932 5.13 5 7 10 16 1849 5.42 7 9 11 18 2144 5.68 10 10 13 17 2176 5.17 33	8 S ND 1 77 20203	2 2 36 3.45 11 2 2 42 3.86 10 2 2 45 3.13 09 2 2 47 3.64 09 2 2 47 3.64 09 2 2 48 3.67 08	4 7 8 1.41 50 0.1 5 6 9 1.32 70 0.1 7 5 9 1.25 41 0.1 6 5 10 1.22 55 0.1 6 5 10 1.22 55 0.1 2 4 10 1.05 4.3 0.1	2 2.31 .01 .22 1 95	20 20 30
	8040 8041 8042 8043 8044	1 23 6 82	34 11 14 3827 3.73 4	5 ND 1 146 5 ND 1 67 5 ND 1 67 5 ND 1 67 5 ND 1 444 5 ND 1 99 3	2 2 2 46 4.68 06 3 2 2 54 2.09 09 2 2 41 2.50 09 2 2 43 11.73 04 3 2 14 2.89 13	5 4 11 .87 65 01	2 1.95 .01 .22 200 3 1.82 .01 .22 87 2 2.06 .01 .27 97 2 1.71 .01 .15 200 4 1.01 .01 .25 280	45 40 10
	B045 B046	1 102 13 106 1 96 13 76	227 46 15 1093 4.04 6 237 39 13 1056 3.54 6	5 NO 1 131 5 NO 1 93	2 2 2 23 3.28 09 2 2 2 21 2.89 08	8 5 18 1.22 57 01 8 6 17 1.09 56 01	2 1.92 .01 .27 57 2 1.72 .01 .26 57	50 50

					[
ALL ALL TICAL		Grange	s Inc.	PROJEC	י טאטא	K RIVER	134	FILE # S	1-5240		Page	
SANPLE# J91-26		Pb Zn Ag xom pom pom	Ni Co M ppmippmipp		U Au ppm.ppm	Th Sr Col ppm ppm ppm	Sb Bi ppm ppm		La Cr Mg Ba Spom ppm % ppm	TjiB Xippm		V Aut Hg m ppb ppb
B047 B048 B049 B050 B051	1 283 18 7 161 1 108	10 101 2 7 10 927 5 9 65 239 8 9 62 286 2 0 65 177 1 7	45 16 129 40 16 156 18 9 273 25 15 166 36 16 132	1 5.61 249 6 7.59 1197 6 4.94 116	5 XD 5 XO 5 NO 5 NO 5 NO 5 NO	1 128 /2 1 127 2-3 1 149 22 1 153 16 1 212 18	4 2	2 28 3.16 09 2 22 3.30 09 2 14 5.42 04 2 15 3.27 09 2 13 3.85 10	78 3 9 .79 33	01 31. 01 2. 01 21.	04 .02 .31 57 .02 .32 93 .01 .18 19 .02 .32 62 .02 .34	19 45 270 245 147 2000 120 115 180 70
8052 8053 8054 8055 8055 8056	1 123 1 135 1 8 119 22	17 99 77 31 122 1.8 194 208 2.8 241 2635 7.0 26 97 1.4	58 16 89	4 4.32 63 5 4.02 122 4 3.97 202	סא 5 סא 5	1 184 2 1 147 2 1 76 5 1 197 18.7 1 201 2	2 3 9	2 22 4.63 10 2 27 3.36 10 2 23 1.27 10 2 24 4.01 00 2 25 4.14 05	7 22 1.50 92 2 7 20 1.22 57 2 4 22 1.14 46	01 2 1. 01 3 1. 01 2 1.	36 .02 .30 76 .02 .26 10 .02 .26 08 .01 .18 76 .02 .26	1 140 50 80 95 330 80 1 479 770 1 116 35
B057 B058 B059 B060 B061	1 101	15 86 9 20 105 6 39 3388 8 51 427 5 87 549 4	31 16 90 33 13 152	9 4.01 355	5 NO 5 ND 5 ND 5 ND 5 ND 5 NO	1 168 .2 1 115 .2 1 157 27 8 1 136 2.8 1 106 3.8	2 4 7	2 28 3.54 .05 2 20 2.44 10 2 9 4.60 05 2 19 2.43 10 2 33 2.29 01	8 3 9 1.47 59 4 7 12 1.34 104	101 Z 1. 101 4 . 101 4 .	97 .02 .25 95 .03 .29 78 .02 .30 85 .03 .31 49 .02 .23	1 3 25 1 11 20 20 745 1 10 70 1 14 165
8062 8063 8064 8065 8066	4 78	44 316 5 192 465 0 40 151 1 515 900 18 27 110 10	29 17 127	8 4.65 83 7 3.90 1363 1 5.05 282 8 4.63 64 0 4.60 35	5 ND 5 ND 5 ND	·1 117 1.4 1 155 2.9 1 68 22 1 108 5.1 1 110 22	4 3 5	2 15 1.45 劉紹	7 15 1.44 131 5 23 .86 71 5 23 1.39 63 0 7 9 1.13 101 0 7 23 1.60 118	.01 2 . .01 2 1. .01 2 .	03 .03 .29 91 .02 .20 58 .02 .22 73 .02 .31 95 .02 .28	27 95 73 125 41 45 135 190 15 70
8067 8068 8069 8070 8071		129 367 15 965 1003 17 30 128 7 14 87 3 11 79 2	41 16 94 56 17 94 45 15 94	34 3.79 25 50 4.66 34 57 4.55 25 59 4.07 20 56 4.11	5 HO 5 ND 5 ND 5 ND 5 NO 5 NO	1 258 8.6 1 249 2 1 320 2	2 2 2	2 26 4.42 0 2 29 4.14 1 2 34 4.34 1 2 27 6.02 0 2 29 5.68 0	2 6 24 1.28 113 7 34 1.66 108 4 5 24 1.29 143	.01 3 1. .01 2 2. .01 2 1.	73 .02 .25 90 .02 .25 32 .03 .24 86 .04 .22 90 .03 .25	12 95 1 20 215 1 3 50 1 2 40 1 35
8072 RE 8068 8073 8074 8075	1 97 1 105	10 88 4 890 973 1.7 23 113 4 145 377 1.2 122 2654 6.8	39 16 9	72 4.26 2 15 4.46 3 78 4.36 2 45 4.94 7 61 5.81 18	5 NO 5 NO 5 NO 5 NO 5 NO 5 NO	1 245 8 4 2 237 1 98 4 5	2 2 4	2 33 4.55 0 2 27 3.94 0 2 31 3.58 1 2 42 1.32 1 4 43 1.51 0	7 20 1.32 98	.01 2 1 .01 2 2	09 .04 .23 80 .02 .25 10 .03 .22 21 .04 .26 17 .03 .13	7 65 15 210 1 7 75 7 95 64 445
8076 8077 8078 8079 8080	1 131 1 127 1 108 1 117 1 100	12 97 B 14 110 4 13 95 3 13 91 3 11 114 3	39 17 8 31 16 9 35 14 9 47 16 7 34 13 7	41 3.98 3 56 4.62 3 30 4.16 3 24 4.09 4 55 3.78 2	5 ND 5 NO 5 NO 5 NO 5 ND 5 ND	3 317 2 303 2 287	2	2 26 3.60 1 2 29 5.19 1 2 27 5.51 1 2 26 4.28 0 2 24 4.82 0	7 19 1.32 76 8 16 1.31 80 03 6 19 1.28 71 28 7 22 1.23 86 92 7 17 1.15 80	01 22 01 22 01 22	.06 .02 .24 .19 .02 .23 .03 .02 .22 .03 .02 .21 .85 .02 .21	5 55 7 85 6 120 2 70 1 95
BO81 BO82 Standard C/AU-R	1 78 1 112 19 61	11 86 3 11 98 3 38 132 6 9	21 11 9 43 16 6 69 33 10	20 3.78 2 80 4.20 2 55 4.02 4		2 314		2 30 3.50 🕅	89 5 11 1.27 64 06 7 22 1.41 76 90 40 58 .88 178	.01 3 2	.96 .02 .18 .03 .02 .20 .90 .06 .15	1 75 10 80 13 480 1500

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

•>

.

• •

PAGE I OF 21

GRANGES EXPLORATION LTD

J91-27

HOLE No.

٥

Q

 $\left[\right]$

J

ſ

(JEFF GRID)

UNUK RIVER PROJECT

COUL-3

PURPOSE

STRATIGRAPHIC

LOCATION 17+00 N /3+38E	GROUND ELEV. 482m ALTIM	BEARING 270°	TOTAL LENGTH 187, 15 m
DIP - 45°	DIP TESTS 94.49 46° 30' 178.31 47° HEAD 47°	VERTICAL PROJECT	HORIZONTAL PROJECT
LOGGED BY DATE	CONTRACTOR	CORE SIZE	DATE STARTED SEPT. 21 /199
JEFF TESAR /GORD ALLEN OCT 22 / 1991	J.T. THOMAS	B.Q	DATE COMPLETED SET 22/99
SUMMARY LOG (m)			
00-3.25 OVERBURDEN	CASING	<u></u>	· · · · · · · · · · · · · · · · · · ·
•	FINE TO MEDIUM-GRAINED	TUFF	<u> </u>
	LAPILLI AMIGOALOIDAL TUFF		
	E NEDIUM TO COARSE-GRAIN		
	MEDIUM TO COARSE-GRAIN		
	TRADEDO ANTA ARCULA	76	
2.80-116.47 ARGILLITE (GRAPHITIC), MINOR SILTST	ONE Fossil belemi	ute of (SALMONRY.F
16.47 - 123.03 INTERMEDIA	TE CORESE-GRAINED TUE	F TO LAPILLI TUFF	
-	INTERMEDIATE VOLCANIC &		
	DIATE MEDIUM-GRAINED TO		
	EOUS TUFFACEOUS SEDIME		
	DIATE TO MAFIC LAPILLI T		
	XED FINE-GRAINED SAND		RGILLITE
171.40 - 185.15 ARGILLIT			
			and the second sec
•			
SIGNIFICANT MINERALIZED	INTERYALS (m)	SAMPLE SE	RIES: H 277- H 315 5 319- 5 366
			RIES: H277- H 315 5 319- 5 366
<u> 80,65 - 81.45 57 Py</u>	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
<u> 80,65 - 81.45 57 Py</u>		<u>t</u>	5 319 - 5 300
80.65-81.45 57 Py	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
<u> 80,65 - 81.45 57 Py</u>	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
<u> 80,65 - 81.45 57 Py</u>	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
<u> 80,65 - 81.45 57 Py</u>	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
80,65- 81.45 57 Py 135.50-143.50 6-7% 1	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
80.65-81.45 57 Py	; breccia ground mass componen	<u>t</u>	5 319 - 5 300
80,65 - 81.45 57 Py 135.50 - 143.50 6- 7× 1	; breccia ground mass componen	<u>t</u>	5 319 - 5 300

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 2 OF 21

()

HOLE No.

J

Ο

J91-27

e***								ł
NTERVAL	C. L055	LITHOLOGY	++ 0	Ĺ	S	Μ	А	U
00 - 3.25		OVERBURDEN / Casing 00-3.05/		_			_	
						-	_	
				Ō		-	_	
3.25 - 3 <u>9.9</u> 0	0	INTERMEDIATE FINE TO MEDIUM-GRAINED TUFF H- Wall contact not dimercally. Foot-wall contact						
T		gradational Gray in colour. Granular Texture with fine to medium grain size. Massive structure.	-	-	_	•		5
		In places phyllitic. Quarts - carbonate winlets and stringers scattered throughout the interval	_	 	-	-	 Li-1	
		In places Black, corbonaccous silica filling cracks at all angles to C. A, giving sporadic	• -	2 9-8	-	-	-	-
]		intervals an appearance of Breccia. In places narrow bands of tectonic breccia, often flooded	-		-	-	-	$\int c$
1		with quarts-carbonate matrix, vugay. Mineralize by traces to 2% of pyrite. Upper part linvonitie.	- 4	-95		- - 7		-
 		865-8.80 Narrow Brecciated Band, Kooded with guarts - carbonate matrix. Unggy, core Briken up. Dominant	-	-	· -	Ē.	-	-10
J		direction 65° to C.A. Chloritic.	• -			ру -	-	-
]				Ar 8,	_	• -	-	-
1			•	121	1		-	-
 			-	-	-	7	-	
J		14.95 - 15.10 Narrow Brazilated Band. flooded with quarty-carbona matrix. Juggy. Core Broken up. Pominaat direction To	ج	- <u>B</u> Ŧ		۰	51.5	-15
]		11)	- .	-		л.,	-	-
	-		-	BAC	-	.7	-	-
			-	r T	-	-	-	
]			- 10	-		-	-	-
1		19.80 - 19.95 Phyllitic tuff mineralized by stringers of pyrite which are parallel to the foliation planes.	¥- ,) ⊒, , ,			-	-20
	-	Exact right are particle in particle parts.		1.12		-		

GRANGES EXPLORATION	N LTD									
	UG		n tean	· · · ·		•	PAGE	3	OF.	21
HOLE No J91-27				-						
MINERALIZATION ALTERATION	SAMP	LE FRO	н го	HIDT	H Au	Ag g/t	As ppm			
		<u> </u>								
					_					
				-						
										•••
					1					-
······································										<u>-</u> .
		<u> </u>				-				
							_			
				<u> </u>	ļ		-			
			·							
tr Py	H277	12_65	14.15	1,50	16	03	.2	2		
2% Ry; narrow stringers, disconinated	H 278	14,15	15.65	1.50	13	0.5	Z	2		
							-	-7	·	
tr-1% Ry; stringers, disseminated.	H,279	1565	17.15	1,50	3_	0.4	2	2		
1-2% Py; parrow stringers disseminated.	H 280	1715	18.65	1.50	1	b.y	2	· 2		
		_	-		- !					— —-
2% Py ; _ 11	<u>H 281</u>	18,65	20,15	1,50	l	05	3	Z		
· · · · · · · · · · · · · · · · · · ·										

, Iters Iters	GRANGES EXPLORATION LTD DIAMOND DRILL LOG					_
HOLE No.	J 91-27	PAGE	<u></u> 4		oF 21	
INTERVAL		بر ن		S	Μ	А
	20.50-20.60 Gouge / Fault, flanked by somes of Brocciated tuff, flooded with quarts- carbonate matrix. Dominant angle 85°		-	-	(. . +	_
		= =	-	-	B) -	-
			-	¥-	-	_
		 	-	-	- . -	-
· · · · · · · · · · · · · · · · · · ·				-	• - •	-
			- 4 0 - 4	-	-	_
			- 2; A-	-	12	-
			-	-	1 -	-
			-	-	•	-
·			-	 X	-	- 5ī-1
			-	, (K)	-	-
••••			-	-	-	-
			 	-	-	- / -

GRANGES EXPLORATION LTD	
GRANGES EXPLORATION LTDIA CONTRACTOR	PAG
—	FAQ

HOLE No.

丁91-27

[[

[(

PAGE 5 OF 21

Sь Ag ٨s WIOTH Ppb Aα MINERALIZATION ALTERATION SAMPLE FROM TO g/t የያማ ppm 4282 20.15 21.65 1.50 2 1-2% By; narrow stringers, disseminated 0.4 2 2 H183 21.65 23.15 1.50 4 0.4 3 2 % Rj ; 2 to Ry H284 23.15 24.65 1.50 1 0.4 2 2 H215 28.80 29.90 L10 4 0.5 2 tr Py 2 1~2% Ry; narrow stringers, disseminated H286 29,90 31.55 1.45 2 0.4 5 2 tr Py H 287 31.35 32.45 Q 90 2 1 0.4 2 4288 32,45 33.72 1.27 1 0.5 2 2 tr Ry H189 33.72 35.30 1.58 5 0.5 3 2 1-2% Ry; narrow stringers, disconinated Z H290 35,30 36,58 128 2 0.4 Z <u>+ Ry</u> • •

		GRANGESEXPEORATION LTD DIAWOND DRIEL LOG	PAGE	6		DF 2	
HOLE No.		J91-27			• •		
INTERVAL	C. LOSS	LITHOLOGY	<u>بر</u> ن		S	Μ	4
39.90-64.00		INTERMEDIATE TAPILLI ANYGOALOIDAL TUFF		6			1.
··		H- Nall contact gradational. F-Nall contact]_	D. (A)	<u>ا</u>	-	si-
		gradat. Grey in ideur fragmental texture with		-124			
	<u> </u>	apilli up to 3 cm. Nobla carbonate, medium	-	يتسو [× -	- 1	51
		grained matrix. Vessicular texture throughout	4	20	置		Se
	2.00	the internal with variable intensity. Amy pulle	∦ -	:		-	-
·	2.	are while rarbonaceous, subangular and for	4	1		2	
		winded, Anarthmoning parroy carbonate - quarte	-	-	-	1	-
		stringers throughout the interval. Their intervity	-	1		ľ.	Si
		increase down the hole. Weakly soricitic. In	-	-	-	-	-
		places tuff grades into fine-grained. Hod strees	tus.			.	
	\neg	4].45-42.60 Minor Lautt zone. 4 narrow bands of gouge	-	· -	-	-	-
			L			2	
		which are flanked by narrow brease interstab flow with timonitic quarty-carbon, matrix Dominant	7-	12	-		-
·····		direction 90° to the C.A. Core Broken up.		E	1	•	
		Sencitic peakly.	1 -	3	-	- .	-
			1.	07		•	
] _	.4	-		-
			_	-	-		_
		55.88- 64.00 Increase in silica content. Also amygdaloid	l	· .			
	<u> </u>	It agments are tominant. Common Bands of	-	-	_	_	-
···		Dlack duerty (calbonaccous : matrix				/.	
	.: 1	Antrease in intensity of quarty-carbonate stringers; 7-8% of the interval H-wall	-		_	-	-
···-		stringers 7-8% of the interval H-wall		1			
		Contact gradattende in places lapiti texture	-	-	-	-	-
		grades to fragmental increase in mineralization					
		by pyrite. F-walcontact gradational.	-	[· -	-	-	-
·	-						
			-**	۰ <u>۰</u>	-	-	-
				1.			/
			-	[-]	-	1	/-
						4	
			-	12	1 -	7	-
·			•	โต้	-	5	St-
			-	E.	┝ <u></u>	1,	~~. (h.
·····					'}	$\langle $	<u> </u>
	<u>_</u>		. –	10		2	-
			•			γ	
	E		- 1	1.5.5 1.5.5 1.5.5	- 1	<u> </u>	_

PAGE 7 OF 21

HOLE No.

J31-27

MINERALIZATION ALTERATION			и то		1 ppb	Ag g/t	L PP#		
r ~ 1%. Ry; discarninated	H.29	39.9	7 41.4s	1.65	1	0.4		2	
tr By	H29	2 41.45	5 42.60	2 1.15	1	0.3	3	2	
		<u> </u> ,					+		
							-		
			<u> </u>				_		
1~2% Ry; narrow stringers, blobs, disceminated	#293	45.72	47.22	1.50	4	<i>a</i> .7		7	·
1% Py; 11	H.294	47.22	48.62	1.40	2	0.6	7	2	
tr-1%. Ry; disseminated	H 295	48,62	50.30	1.68	1	0.6	6	2	
2% Ry ; disseminated , norrow stringers .	H.296	50,30	5180	150	1	0.6	22	6	
2% Py; 11	11.100	-					<u> </u>		
	4297	52.80	53,30	1,50	×	0.5	26	2	
-2%Rj II	HIT8	53,30	54,80	1.50	3	2.5	22	2	
-2% Ry; 11	H299	54.90	56.80	1.50	2 (9.7	22	Z	
Х.Р. — II —	4 700				7				
<u>/ /</u>	H 300				7 p	·.)	53	7	
3% Py;	<u>H30 </u>	57.80	59.30	1.50	3	2.5-	ŦĹ	5	
	· · ·								
<u>'/ P.j</u>	H302	5930	60.80	150	6_0	.4	166	3	
3% A, - 11	H303 (50,80	62 30	1.50	z b	5	97	7	
						-			
	╂╌╼╂╴		-+	-+-		-+			·

		GRANGES EXPLORATION LTD DIAMOND DRILL LOG			•			
				PAGE	E	3	OF 21	
HOLE N	.	J91-27					·.	
INTERVAL	C. 10\$5	LITHOLOGY				S	MA	4
·	_					<u> </u>		60
<u></u>			· · ·		2	-	7	
				1_	(a)-'0	_	51	r
· · · · · · · · · · · · · · · · · · ·	1]	20		R	1
			·. · · ·	-	-	-	- -	-
•					مى مىرا	-		-
4.00-57.0	<u>o</u>	INTERMEDIATE MEDIUM TO COARSE TUFF		-	Γ-	- -	/si-	2
	-	Hang Wall contact gradational . F-1		<u>, </u>	-CIS		[2] -	- 65
	+	40° sharp, marked by quarty-carbonate in true width). Grey to dark-greif in	cin Hem		2 8-			
		qranular texture with medium to c				: -	7	1
		Size. In places blackish anastomesing h	19(T)W	-	$\langle \mathfrak{T} \rangle$	_	2:/_	
· · · · · · · · · · · · · · · · · · ·	+	stringers of chert giving the rock of			5	۲	V ·	
		pattern Theorem is uniform, mineraliz norrow bands or bloks and discominate		 6	X Z	<u> </u>	<u> </u>	\mathbf{F}
	-	siliceaus		ي پې	N			
00-69.10	<u> </u>	THEFACEORC HEOVINTE COLORS		8			1	
00 0140		TUFFACEOUS MEDIUM TO COARSE-GRAINED SAN I- Nall contact 40°, sharp marked by	DSTONE	6 -2	P.	-	r-1 -	- 70
	-	carbonate veinlet (4 cm in true widte)		/	X		ST -	
·		contact gradational (Trey in claur	with	5				1
		minor inclusions of argillite. In place	ce and ve	7 -	1.0		: : ا رتب	2
		Minor inclusions of arginite in places	poorly bedge	123. M	<u>ا^ر</u>	2	C6-	1
.10 - 82,80		SILTSTONE INTERBEDDED WITH ARGILLATES		/		- - 29- 5-	57	F
		H-Hall contact gradational _ F Hall	ontact	be		1		}
····.		gradational. Dark grey sittstone into with Black argitite (fops downhold)		сі 44. т.			1	
		quartz-carbonote stringers or join		ata V Siraki Siraki	ň	- 1		- 75
		becigtion flooded with quarter can	Bengte	en e L e Li		يەت يېرى 1. 1. 1.	<u>/</u>	F
		matrix. Increase argillite content da	wnhole-	4	N.		3	A.
	• =	172.00 - 72.90 Fault Jone Rock Brecisted the	ined set				-	ł
	3.5	inclases gauge flooded with contract	- Y - 1 -					
		matrix, also graphitic. Scase offen	CONTRACTOR A			N.		6
		along 60° to the core axis		-1				F
2	يو دي. منه			1				
								- 80

PAGE 9 OF 21

HOLE No.

J 91-27

· · · · · · · · · · · · · · · · · · ·			·	<u>.</u>						
MINERALIZATION ALTERATION	SAMPLI	FROM	то	WIDTH	Au ppb	Ag ppm	As ppm	S6 ppm		
2-3% Py; partou bands, single string, specks diarras.	H304	62.30	64.00	1.70	3	0.8	323	27		<u> </u>
2-3%py; 11	<u>#1305</u>	64.00	65.50	1.50	4	0.7	218	24	<u>у</u> .	
1~2% Py; stringers, specks, disceminated	H306	65,50	67.00	1.50	4	0.3	30	. 2		
1	H 307	67.00	69,10	210	7	0.7	નન	2		
. 1% Py; - 11	H308	69.10	70,50	1.40	10	06	31	9		
tr. Ry; narrau concordant pyritic bands	H 309	70,50	72.00	1.50	39	2-0	<u>इन</u>	31		
·										
· · · · · · · · · · · · · · · · · · ·										
				·					. — — — — — — — — — — — — — — — — — — —	
		·								

GRANGES EXPLORATION LTD

PAGE 10 OF 21

HOLE No. 591-27 C. LOSS INTERVAL LITHOLOGY S А * J 8060 - 81.45 80 Band of Breasted orgillite flooded with quarty-conton patrin Ż 7k)₇₃ 51-1 C6-1 82.80-(I GPAPHINC) ARGILL ME MINDE SILTSTONE 116.47 Black in colour argillite interBedded with minor grey sittetone Sittstone Ydecreanes down the the interval grades hole and into argillite, In places increase in mineralization By pyritic bands. Bedding planes at 80° to C.A tops down hole Argilite is graphilic , , 85 89.85- 89.95 Minor fault Narrow land of garge at 650 to C.A. 2 graphitic, flanked by narrow bands of Broxinted 7⁷(k) aryillite, flooded with quarty-carbonate metrix quarty-carbonate stringer striking parallely to the C.A (G.ALLEN) 90.00 - 116.47 53 90 17. 22 (3); (4) JLT. ちん \$ PY Co 2 cm ingu Ρ. Intimity 25 3.0 Ş. 75 (z_{i}, \cdots, z_{i}) , , Υ.÷. - 100 82

PAGE 1

0F 21

HOLE No.

591-27

MINERALIZATION ALTERATION	SAMPL	E FROM	то	W107H	Ац ррб	Ag PP"	As 1 ppm	1
tr Ry; narrow stringers parallel to the Beddingple	H 310	79.34	80.65	1.31		0.2		2
5% Py; breccia groundmass component, string,	H 31	80,65	81,45	0.90	2	0.5	10	2
often maitomoring, Blubs, disseminated.								Z
17 Ry; norrow stringers parallet to the Bedding planes., disseminated.	H 312	81.45	8230	0,85		0.Z	8	~
tr-17.Ry -11 -	<u>H313</u>	82.30	83 8 0	150	4	0.2	10	2
tr-17.R	H 314	83.80	85,28	1.48	4	0.1	13	2
	H 315	8954	90,94	1.40	16	0.3	25	5
90.94 - 113.7 - 5170 pyrite concentrated	5-319	90.94	92. 4 0	2.[6	3	0.Z	25	3
with a calcaness matrix.	3-320	92.40	93.60	1-20	4	<u>(</u>).2	35	4
	5-341	93.60	95.08	1.48	3	0.3	33	6
	5-322	<u>95.08</u>	96-50	1.42	2_	<u> </u>	र्वय	2
· · · · · · · · · · · · · · · · · · ·	5-323	91.50	97.94	1.44	Z	<u> </u>	80	2
	5-324	97.94	9 7-3 8	44		0.4		2
	<u>5-375</u>	99.30	100.80	1.42	2	0.2	32	2
							-	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG **X**

Π

			•	PAGE	12	20	^{)F} 2	<u>}</u> 1	(
L	HOLE No.					÷			
	591-27						·.		
J	INTERVAL	LITHOLOGY		-		S	M	A	
	······			J					- 100
				-	124	_		_	_
					יבויט)'(וב				
_		102-45-102-66- white contamente	stringen - loucia	-	(بر بر	-	¢√	-	_
		- zon		-	-	-	-	-	-
				_	_	_	_		
								- [•
				-	-	-	-	- -	-105
		106.68 Fossil Beleminte		-	-	-	_		
 		100 00 TOSSIL Delemente						5	
1-				-	-	-	-	-	
				1244	-	/	-		C
				ř	ķ				
		112-5-115.91 - FAULT - Broken			- [x	1	-	-	
		112-5-115-91 - FAULT - Bulan Polyshil production ales an	1	-	- /	7-	-	- -	- 110
		Minor gauge. Doughly 507.	con loss between	~	_ /		_	-	
1		112.78 and 115.82, pulally	down to 115.62.	60		7. ·			
-				-	- 1	′	-		
1				-	- 🕺		-	-	
1-				-	- 1		-	- -	
L				·	- 🕻	-		-	115
1		6.1-116,47 - Queity - carbonate to	turger - baseccio		Ŕ	G			
		zom. to children and	0		1	P	HZ S		
	.47-	INTERMEDIATE COARSE- GRAIN	ED TUFF TO	55	2	- P;	-	-' -	
┢	123.03	APILLI TUPE		. .	0	_ .			
t		Mothed midning film - grug	and black cooner-	ĺ	9				
F		distinct milie que aphant	the monolithin	- -	• • •	-] -	- -	- -	_
\		-somete to I can flatted	in the plane of 1000	.			. _	. L	120
- ا		mande of thech of the	d foriation - paulle					ľ	

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

HOLE No.

[

ſ

591-27

_				1	1	1	<u> </u>	1	 _	T	-1	
- 100	MINERALIZATION	ALTERATION	SAMM	E FRON	то	HIDTH	Au ppb	Ag PPm	As ppm	S6 ppm		
100			5-321	6 100.80	102.32	1.52	+ · · · · · · · · · · · · · · · · · · ·	03	<u> </u>	2	<u>+</u>	
			_	<u> </u>		<u> </u>			20		<u> </u>	
			5-32	7 102-3	2103.90	11.48	3	<u>þ3</u>	26	2	· 	
			5-328	103.8	105.25	1.45	4	0.4	37	3		
										<u> </u>		1
•			5-329	105.24	10648	1.43	6	6.4	35	6	<u> </u>	<u> </u>
								0.11	711	ļ		<u> </u>
105-			<u> </u>	106.60	108.12	1-44_	_(0.4	34	4_	╂──	┨──-
100			5-331	108.12	102.85	1.73	4	0.4	32	6	<u> </u>	
		·····					_					
			5-332	109.85	111.50	1-65	4	06	<u>74</u>	7	<u> </u>	<u> </u>
6		· · · · · · · · · · · · · · · · · ·	<-12 I		112.96	• AL		<i>D</i> .4	41	7	 	╂──
K.						/	<u> </u>	2.7		<u> </u>		+
			S-334	112.96	113.70	0.74	2	0.6	43	2-		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						<u> </u>			 	
			5-335	<u>113. /</u>	116-27	2.77	7	0.4	33	5_		<u> </u>
110-		· · · · · · · · · · · · · · · · · · ·	5-336	116.47	118-05	1.58	4	0.3	72	z		╂
								<u> </u>		~	_	<u>}</u>
			5-337	118.05	11980	1.75	3	0.1	20	Z		
			-			. 0.1	7	~ -			. <u>.</u>	
		······································	S-338	107.001	20.70	6.701	<u>a</u> [0.2	x2	2		
				-								· · · ·
-115 -	·····					-+						
	116.47 - 123.03 - 2- :	+ 70 spondie	+									ł
	printe along fracts	me and in 1-2m	~									
ł	ducontinuous foliate	on - parallel				-						
ŀ	hands.	• •	╉┈╾┠					;	 _			
() ()			╂──╂									
Č [·····	<u> </u> -						-+	—†		
ļ				•								
120-			<u> </u>									
ł			╂──╂╸						<u> </u>]
l					1		ļ					

PAGE 13 OF 21

Ц								<u>_</u>
n		GRANGES EXPLORATION LTD						
U		DIAMOND DRILL LOG						
n			PAG	. /	4	OF ;	21	
U	HOLE No.				•			
	591-2	7						
	INTERVAL	LITHOLOGY	.	Т	1			-
		<u>.</u>	5		- <u>`</u>		A	
		1-2 mm blue - grug patches' which could be frogen			20-	QC,	y sr i	120
		Churte material may be a silice - rich till		° –		150	-	ŀ
		or an attration of the adjacent tuff . Only			j -	181	y _	
_	· · · · · · · · · · · · · · · · · · ·	Black sont spondually moderately silicions.	-			2- 2 17		
	·	Black parts praisfully selectful angellacions tiff		4	-	27-	 51-2	1
		119.8-121.28- Quarty and mine conforte]-	_	1 -	ey]	ļ
		stringen zone. 20% white quarty - conformate				1-27	Se-	
••• 4 ÷		stragers subparallel to 90 cA. Stragers to 2 cm		-	F -	17	<u> </u>	125
	23.03-	SILICEOUS INTERMEDIATE VOLCANIC POCK	70	1 _	4 _	_	_	 -
	124.5	Black cherty groundware with 20-30%	- 70					
nĽ		Smalled to foliation. Could be from to any adul		-	-	-	-	-
Ц_		or patchy alteration. Cut by miner i mm		_			_	
n-		filture guy chalerdonic stringers and mesers to 3 m						
	4.5-	INTERMEDIATE MEDIUM- GRAINED TVEF TO		-	-	-	-	F
	143.50	LAPILLI TUFF	51	1			_	- 130
U_		Midnim grige fim - ground soft sincitic					_	
~		to 1 cm. Unit contains, 10%. When any		-	-	-	-	-
		chalendary in inigular foliation - sanallel						
_		stringers up to Some wide.					_	Γ
		Unit cut by = 5% white 1-5 cm quarty - contrarate stringers 30-60° cg crosscutting	_	-	-	-	-	-
		firsting	1			5-12	51-2	[
]	-	1 -	Py	-	ſ
Ч		130-1 - Kinke banded (Ill) foliation	51	_	-	1	-	- 135
		134-137- June 1 - 3 mm blue - guy quart amadule			.	12		
Ч		in nogen progniste to 3 cm. I provide maggios] -	-	-	<u> </u> .	-	Γ
		132 6 - 142 Gri Midler + 1 - 1 - 1 - 1		-	-	11-152	-	
	· · · · · · · · · · · · · · · · · · ·	133.5-143.5- Moderately situafied.	-	•		<u></u>		
	*	133.5-143.5- Supplie Zone - Print spridly				5- <u>1</u> 7 -(7	-	
U		whited to small think bound flow- grug all		-		:-:-	-	-
		the Some wide (String & Imm).				810.		
			5	. - ₹	-	1	-	- 140
ł	I					1	ł	

.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 15 OF 21

HOLE No.

591-27

		T	<u> </u>	1	1	1		<u> </u>	· · · · ·		
- 120-	MINERALIZATION ALTERATION	SAMPL	é from	го	WIOTH	Au PPb	Ag ppm	As ppm	Sb ррт		
1		5-331	120.7	121.24	0.58		0.1	21	2		Í_
		5-34	0 121.20	8/22./0	0.87	27	01	26	. 2		╞
						2- 1					
		5-34	122.10	123.03	0.93	2	0.1	24	2		╞
ļ		5-34;	123.07	12450	1-47	1	0.1	16	. Z		
	123.03-124.5 - 22 price preformently					-					Ļ
125-	in stringers adjacent blin. grey	5-343	124.50	125.94	1.45	\$	0.1	15	: Z		┝
		5-344	125.95	127.47	1.52	3	0.1	25	2		
F	124.5-133.5 1-22 pinte along fractures and foliation - smalled	5.445	1-7-7-4-7	128.94	7	7	0.1	22	3		
F	barde to 5mm.										
		5-346	128.94	130.50	1.56	3	0.]	18	2		
		5-3 4 7	130.50	132.0	1.50	7	0.1	37	2	-	
-	· · · · · · · · · · · · · · · · · · ·	c 7				2		48			
130		<u>סדכ-י</u>	132-0	133.5	1.50	<u> </u>	0.	<u> ₹8</u>	2		
ŀ		5-349	133.5	134-5	1-0	32	0.1	187	6		
		5-350	134.5	135.5	1.0	4	0.2	93	2		
- -		5-351	1355	36.5	1.0	1	0.	57	3		
	33.5-134.5- 5-7% fame-grained	5-352	136.5	137.5	1.0	2	0.1	124	2		<u></u>
	projete in inequilar Stringing and foliation - ponallel bande up to 1 cm wide.	5-353	137.5	38.9	1.4	-	0.1	152	2		
135-	inde. 36.5-137.5 - 10-157. pyrite as above.	5-354	38.9	140.0	<u> - </u>	2	0.1	406	. Z		
Ļ	37.5-138.9 - 5-7 % pyint	-+									,
. –											
											_ .
	8.9 - 143.5 - 8-10% pyrite acabove. In										-
	2.9 - 143.5 - 8-10% printe as drove. In some ports printe appress to be mitrix										
140										-+	
									-+-		

GRANGES EXPLORATION LTD **DIAMOND DRILL LOG**

PAGE 16 OF 21

HOLE No. 丁97-27 C. L055 INTERVAL SM LITHOLOGY * А S munded light - gry masses - 140 142-143 - Chaily spaced - 10 Si-Z N 9 6up to 3 min in a to Sun. Carl sulitic testure weath ARCILLACEOUS TUFFACEOUS SEDIMENT 143.50-Minima to dark grey fine - pained-diment with an argillacione component. 144.30 fine - grained tufforegen ۶ī Poorly bidded. 60 <u>ب</u> بر -27. <u>مرجم</u> eŦ 144.3 -[cl-1 INTERMEDIATE TO MARIC HAPILLI TVFF 74 - _1 j-d -145 phyllitic 151.7 hight to doub grun - manuel 17,17 chi grow 40-507 Com quinch - quy Qõubk -_* 1 equente 12 _ randy olistion . Fragmente are at (20.5 mm) madelica z(?, and grand fildspan phinoenysite 94 144.3-147.3 - Wrale quarty struger _ 3 57. Se= nous to --- 150 with some associated darks grun 85 -5 m opained chlorite. _ Ζ oru. V bx INTERMIXED FINE- CPAINED SANDSTONE 151.7-50/ Z* 757,8, SILTSTONE AND ARCILLITE 171.40 And the gray to missim - aram derle gry to bla intervale. de sittete angellite a - 1*5*5 151.7-154.5 - Weak granty - carbonate - chlorite stringer zone stil mane a vine to 10 cm allel to core arcia. 10% win motivid ligen 2 . _ 1 之 Buchin Schund 59.7-159.7 con A. A. A. · 129**1**293 -160

PAGE 17 OF 21

HOLE No.

J91-27

	MINERALIZATION ALTERATION	БЛМРЦ	FROM	то	ыюти	Au ppb	Ag ppm	As ppm	5ь ррт		ĺ
°∔		5-355	140.0	141.0	1.0		0.1	304	2		
╞	· · · · · · · · · · · · · · · · · · ·					0					4
	· · · · · · · · · · · · · · · · · · ·	I <u>≻356</u>	111.0	142.0	1.0	i .T	0,	222	13		-
		5-357	142.0	143.0	1.0	5	0.1	265	18		
-			<u> </u>								1
	143.5 - 104 3 - 1-27 0 + .	<u>p-358</u>	143.0	143.5	0.5	X	0.	<u>407</u>	18		┨
	143.5 - 144.3 - 1-27. pyriti; disseminated and in foliation - ponally	5-359		149.30	0.8	11	0.1	100	2		┨
s –	bande to 2 mm.			1							1
	A	5-340	144.30	145.83	1.53	5	<u>e</u> it	2	3		4
ť	144.3 - 147.3 - 17. pyrte generally associated with questy stringers.	5-3(-)	IAE = 1	147-3	, , , , ,	1	0.1	z	7		ł
Ē	and the for the standing .		<u> 120</u> 2	2.11.5	1.41	·	<u> </u>	~	_		t
Ľ	147.3 - 187.15 <17. pyrete dang	s-361	147.3	148.89	1-55	3	0.1	4	2		I
-	147.3 - 187.15 <17. pyrete dang fractures, discuminated and in ludding - parallel banks to I mm.	c. 744				10	0.1	2	2		╀
	subarry - franchis tranks to I mm.	5-363	/48.85	150.29	1.45	.0	0.		~		ł
		5-364	150.28	151.7	1-42	(8	0,1	3	2		I
∘∔											ļ
	· · · · · · · · · · · · · · · · · · ·										┞
· E	······										ł
											I
-	·										┞
										· · ·	╞
											Ĺ
+-											
											-
											Ĺ
											-
											:
·											
-											
•╆					<u> </u>		-+				~
			·								-

HOLE Na 391-2			PAG	۰ ۲	18	, (OF	21	
INTERVAL	C. L 055	LITHOLOGY	~	- 11		S	ĪM		-
				, , , ,	- 7	<u> </u>	<17.	···	+ 16
	┼╌┠╴				7- X-	-	PZ	-	\mathbf{F}
			<u>5</u> ª		۲. ا	(
	╉╼╄╸			0		[-	-	ſ
·····			- -	-	-	-	-	-	ł
	<u> 1</u>	1.54 - 163.4 - Shrand subponallel to con aria.	1_		. }	(. (~	_	_	
	+ +-	b) eale bricera zon.	- 50		- 6	(r			
			12	1 -	-	-	-	-	- 16
<u> </u>	╁╼╌┠─		ľ-	-			-	_	-
			-						
	┠╌┞─] -	-		-	-	-	F
			- -	-		-	_]	-	- I
		9.60 - 167.93 - Quarty - Continuate - flooded	 		:			1	
		buin zone, subparallel to bidding.		1		Ē	30.1	-	-
_			-	' -	1	- [2	-	-170
			1_	-]		_	_	
1. 40 - 187. 15		Darke me to black think limineted siltet			4I -			ĺ	
		Darla my to black think liminated siltet.	5.	1-1			-	-	
· · · · · · · · · · · · · · · · · · ·	- 9-		-	-		_	-	_	-
	- (A) - (L)	dependent the moding. Connally Common							
			-	-	-	-	-	-	-
			50	1-	-	-	-	-	- 175
			71						
			-	-	-		-	-	
·			-			- 1	·	-	
			٠.			•			
	-		-	-			-	-	ß
		and the second second second second second second second second second second second second second second second	50			÷.	<u>_ </u> .	-	6
			70		3-i - 5	1			
								- -	-180
	_	· · · · · · · · · · · · · · · · · · ·	<u>.</u>					1	

HOLE No.	RATION LTD	<u> </u>				<u>_</u>	PAGE	19
J91-27								
MINERALIZATION ALTERATION	SAMPLI	FROM	ŦO	W10T	Au Ppb			56 ppm
								<u> </u>
				1	 			
								╂──
						-	†	<u> </u>
				<u> </u>				}
				<u> </u>			 	
				<u> </u>				<u> </u>
							<u> </u>	<u> </u>
		<u> </u>			· .			
		_			.			
]	
	5-36507	7.43	73 04	. 41	6	0.1	8	2
							_0	
			_					
								-+
		·						

.

GRANGES EXPLORATION LTD DIAMOND DRILL LOG • . • • PAGE 20 OF 21 HOLE No. 591-27 C. L055 INTERVAL S LITHOLOGY مد А J. - 180 00 180.3-181.3 - Quent - C. .t. 212 Ş٥ 10% white quarty - conton 500 ZON pint Min ~<u>17</u> -_ ۴Y _ ---- possible graded bed suggesting tops down _ 185 -45 _ 106.3-187.15 - FAULT - Broken Con rubble Ę Shrand 45° & 20° CA. Hole alian (Pode traft) 187. 1S \bigcirc E.b.H _ ------ 190 -------۰. . . . ' -. _ - ji - i -115 • . . . and the second second Í -1 ្បី <u>.</u> - -. R : 200 . 1029-00 - -CONTRACTOR S

GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 21 OF 21

HOLE No.

ſ

791-27

	371~27			• •							
[180 -		SAMPLE			WI07H				56 ррт		
–	1803-181.3- Stringer 300. 417. pyinte	5-366	180.3	101.3	1.0	2	0.1	15	2]	
	• , · · ·	<u> </u>							<u> </u>	ļ	
		 					 		ļ		
Γ	· · · · · · · · · · · · · · · · · · ·			 			ļ				
L.									 		
_											
									<u> </u>	<u> </u>	
- 185 -											
						·					
_											
										I	
L											
-											┨]
								·			
190-											
<u>ا</u>											
ŀ									[
⊾ -											
		-+					-				
[195-		<u> </u>									
-		†									
~ [-									
					<u> </u>						
Te -			[
<u>-</u> `@								-]	
			·								
- zoo+		<u> </u>		<u> </u>			<u> </u> -		$ \rightarrow $]
~ -			<u> </u> {					<u> </u>			
					<u></u>						

Sample J-91-27 32.65 m

Andesite Flow; Zoned Replacement Patch of Ankerite-Calcite-Quartz-Pyrite-(Chlorite)

The host rock is a uniform andesite flow which was sheared slightly to moderately. Wispy opaque and semiopaque seams in the groundmass define a weak foliation parallel to the planes of shearing.

Plagioclase (40-45%) ranges from lathy grains up to 0.15 mm long to equant grains as fine as 0.01-0.03 mm in size. The latter are intergrown with chlorite (8-10%) of similar grain size. A slightly preferred orientation of lathy grains defines a weak flow foliation.

Ankerite (3-4%) forms disseminated patches averaging 0.05-0.15 mm in size.

Opaque (pyrite?) (2-3%) forms disseminated grains averaging 0.02-0.05 mm in size.

The replacement patch is zoned strongly.

Along one margin is a thin selvage of fine to medium grained pyrite with interstitial very fine grained quartz and chlorite. Quartz was recrystallized in comb-textured aggregates against pyrite grains.

Near the host rock and near one end of the section in zones up to a few mm wide are patches of very fine to fine grained ankerite containing abundant dusty opaque (black in hand sample). Some ankerite grains have euhedral terminations against coarse calcite. Ankerite patches are cut and replaced by patches of coarse to very coarse grained calcite with minor to abundant very fine to medium grained quartz (colorless in hand sample).

In the core of the replacement patch is an elongate V-shaped zone which is outlined by a rim up to 1 mm wide containing abundant extremely fine to very fine grained pyrite. Along one side of the patch, just inside the pyrite rim is an elongate inclusion of andesite flow(?). It contains scattered clusters of ragged plagioclase grains averaging 0.1-0.2 mm in size in an extremely fine grained groundmass containing scattered aggregates of pyrite 0.01-0.02 mm in grain size enclosed in patches of chlorite. Ankerite forms minor disseminated grains, possibly of replacement origin. Opaque (pyrite?) forms minor disseminated grains averaging 0.05-0.80 mm in size.

The core of the V-shaped zone is of very fine ankerite with less calcite, minor guartz, and moderately abundant disseminated pyrite grains averaging 0.02-0.05 mm in size.

At the extreme end of the section is a thin zone of host rock andesite flow as in the main patch at the other end of the section.

Sample J-91-27 60.0 m Amygdaloidal Aphanitic Latite Flow; Early Replacement by Chalcedonic Quartz-(Ankerite); Later Replacement by Quartz-Calcite-Pyrite-Sericite-Chlorite

The host rock (35-40%) contains minor lathy plagioclase grains over 0.05 mm long in an extremely fine grained groundmass dominated by plagioclase with moderately abundant dusty opaque.

Amygdules (10-12%) are mainly from 0.1-0.2 mm in size, with a few from 0.2-0.5 mm across. Smaller ones are of single grains or a few grains of quartz. Some larger ones contain aggregates of very fine grained quartz and less abundant pyrite and muscovite. Those over about 0.5 mm across are mainly of extremely fine grained quartz which appears to have been recrystallized from coarser grained aggregates. Some contain porphyroblasts of ankerite as in the replacement patches.

A few amygdules up to 1 mm across are of very fine to fine grained aggregates of ankerite and pyrite with minor to moderately abundant, extremely fine to very fine grained patches of quartz, sericite, and chlorite.

Early replacement $(4\emptyset-45\%, \text{grey in hand sample})$ is of extremely fine grained, chalcedonic quartz. Ankerite forms equant to elongate porphyroblasts averaging $\emptyset.2-\emptyset.7$ mm in size. Some patches are cut by veinlets up to $\emptyset.1$ mm wide of very fine grained quartz, which is associated with the coarser grained replacement patches.

Several veinlets averaging 0.05-0.1 mm in width cut the host rock. These consist of extremely fine grained aggregates of quartz and sericite, and may be associated with the early replacement.

Π

Later replacement (17-20%, white in hand sample) is dominated by very fine to fine grained quartz, which commonly is slightly to moderately strained and slightly recrystallized. Near borders of many patches are aggregates of fine grained pyrite surrounded by quartz with less sericite and chlorite. Sericite and chlorite are especially concentrated along borders of the replacement patches against the host rock. Quartz forms comb-textured aggregates growing outwards from pyrite crystal faces. A few patches contain cores of medium grained calcite. Medium orange brown sphalerite forms a very few ragged grains up to 0.2 mm in size in quartz.

Sample J-91-27 60.6 m

Brecciated Slightly Porphyritic, Amygdaloidal Aphanitic Latite; Matrix of Quartz-Pyrite

Phenocrysts up to 0.8 mm in size of plagioclase (0.2%) are altered slightly to sericite and ankerite.

The groundmass (35-40%) contains scattered lathy plagioclase averaging 0.03-0.07 mm long in a groundmass of aphanitic to extremely fine grained lathy to equant plagioclase and dusty semiopaque. Extremely fine grained sericite is moderately abundant in a few diffuse patches.

Amygdules (5-7%) averaging $\emptyset.07-0.2$ mm in size are of single grains or clusters of a few very fine grains of quartz. Larger amygdules averaging $\emptyset.3-\emptyset.7$ mm in size commonly contain patches of very fine grained quartz recrystallized in part to extremely fine grained aggregates. Medium orange sphalerite forms a few patches up to $\emptyset.2$ mm in size. Chlorite forms scattered clusters of a few, very fine grained flakes.

Two veins (2-3%) up to 1.2 mm wide in the largest fragment are dominated by very fine to fine grained pyrite with much less interstitial chlorite, and minor interstitial quartz and sericite.

The breccia matrix contains border zones dominated by extremely fine grained quartz (30-35%). Ankerite (2-3%) forms scattered, ragged patches averaging 0.05-0.15 mm in size, and locally up to 0.3 mm across. A few elongate ankerite grains are form 0.5-1 mm long. Cores of zones are of fine to medium grained quartz (10-12%) and minor pyrite (1%). Sericite (1%) forms scattered clusters of extremely fine grains, mainly near borders of fragments.

Pyrite (3-4%) is concentrated in irregular patches in the smaller fragments as extremely fine to locally fine grained aggregates.

A coarse pyrite grain in the breccia matrix contains a veinlet 0.02 mm wide of chalcopyrite and a few inclusions up to 0.02 mm in size of pyrrhotite. Other coarse grains contain minor inclusions of one or more of chalcopyrite, sphalerite, and pyrrhotite. Sample J-91-27 68.0 m Andesite/Latite Coarse Tuff (Unit 2C)

Fragments up to 2 mm in size are of a variety of andesite flows. One fragment contains a few equant phenocrysts of plagioclase from Ø.2-0.4 mm in size and a few prismatic ones up to Ø.6 mm long in a groundmass of lathy plagioclase up to Ø.2 mm long and interstitial plagioclase and moderately abundant opaque. Another 2 mm across is similar but lacks plagioclase phenocrysts.

One fragment 2 mm long contains moderately oriented lathy plagioclase grains averaging 0.05-0.07 mm long in a groundmass replaced by fine to medium grained, skeletal, porphyroblasts of ankerite.

A few fragments are of andesite/latite and latite containing lathy plagioclase up to 0.1 mm long in a groundmass of aphanitic plagioclase and abundant extremely fine grained opaque.

One ragged fragment 2.5 mm long and two 1.5 mm long are of an extremely fine grained andesite flow with a weak flow foliation and moderately abundant opaque in the groundmass. It contains 7-10%, commonly flattened amygdules averaging 0.1-0.3 mm in size of extremely fine grained sericite.

One latite flow fragment 2 mm long has well developed perlitic fractures, with ellipsoidal surfaces ranging in major diameter from \emptyset .l-l mm. The glass was recrystallized to extremely fine grained plagioclase which, in turn, was altered slightly to sericite.

One latite/dacite fragment 1.5 mm across contains phenocrysts of quartz and plagioclase in an extremely fine grained groundmass dominated by cherty plagioclase/quartz, with 2-3% sericite and 1-2% disseminated, extremely fine grained opaque.

A few fragments up to 1.5 mm long are of latite pumice; they consist of extremely fine grained sericite with lensy patches of extremely fine grained sericite outlined by dusty to aphanitic opaque.

Quartz forms a few grains up to 0.4 mm across.

Plagioclase forms a few grains up to 0.5 mm in size; alteration is slight to sericite.

The groundmass is dominated by sericite and plagioclase, with moderately abundant dusty to extremely fine grained, disseminated opaque and wispy seams rich in opaque. Sericite is moderately to strongly oriented in the foliation plane. Pyrite (1-2%) forms single grains and clusters of grains averaging $\emptyset. \emptyset 2 - \emptyset. \emptyset 5$ mm in grain size.

A few irregular, lensy replacement seams and lenses are of very fine grained pyrite and minor quartz.

Sample J-91-27 71.0 🗰

Argillaceous Andesite Tuff (Unit 2Bj.1/2Gau.1/2Gu)

One fragment up to 1.5 cm long is of extremely fine grained, amygdaloidal andesite/basalt. The groundmass is variable and in places contains very abundant opaque. Amygdules up to $\emptyset.7$ mm in size are dominated by sericite and minor chlorite and ankerite.

One equant fragment 3.5 mm across contains an equant phenocryst of plagioclase 0.5 mm across in a groundmass of extremely fine grained plagioclase-sericite, with 5-7% disseminated pyrite.

A few fragments up to 2 mm long are of aphanitic to very fine grained andesite, and contain lensy patches of sericite which may represent flattened amygdules.

A few fragments are of slightly porphyritic latite, and contain minor plagioclase phenocrysts in an extremely fine grained groundmass dominated by plagioclase and sericite.

Most fragments are from $\emptyset.1-\emptyset.3$ mm in size. They are of a variety of aphanitic to very fine grained volcanic rocks, plagioclase aggregates and single grains, and quartz grains.

The groundmass is dominated by aphanitic plagioclase and carbonaceous opaque; the latter is concentrated in seams parallel to foliation, and generally obscures any other minerals.

Sample J-91-27 118.1 m Metamorphosed Latite/Andesite Flow (Unit 2G); Seams of Opaque; Vein of Chalcedonic Quartz-Ankerite

Plagioclase (\emptyset .2%) forms prismatic phenocrysts averaging \emptyset .2- \emptyset .3 mm long.

The groundmass is dominated by lathy to equant plagioclase averaging 0.03-0.1 mm in grain size. Sericite (1%) forms local concentrations of extremely fine grained flakes. Ankerite (1-2%) forms scattered, irregular replacement patches. Pyrite (1-2%) forms disseminated equant grains averaging 0.02-0.04 mm in size. Apatite (0.2%) forms acicular grains averaging 0.1-0.2 mm long. Carbonaceous(?) opaque (2-3%) is concentrated irregularly in the groundmass in dense patches up to 3 mm in size.

Opaque (2-3%) forms irregular seams averaging 0.05-0.1 mm in width.

Veins and replacement patches up to a few mm across are dominated by extremely fine grained, chalcedonic quartz, in which patches averaging Ø.1-Ø.15 mm in size are in approximate parallel optic orientation. A few patches up to 1.5 mm in size, mainly in one vein, are dominated by extremely fine grained sericite with much less quartz. Sericite was recrystallized slightly in small kink folds. Ankerite (1-2%) forms a few, irregular very fine grained patches up to 1.2 mm in size in the cores of patches of chalcedonic quartz.

Sample J-91-27 137.4 m Brecciated Amygdaloidal Andesite/Latite Flow (Unit 2Ga); Matrix of Pyrite-Quartz-Ankerite

A few elongate phenocrysts of plagioclase average 0.2-0.3 mm long. The groundmass is dominated by lathy plagioclase grains averaging 0.07-0.12 mm in length. Ankerite (3-4%) is concentrated in some patches as ragged, disseminated grains up to 0.1 mm in size. Chlorite (0.3%) forms scattered lenses up to 0.2 mm long. Pyrite (0.5%) forms disseminated grains averaging 0.02-0.05 mm in size. Ti-oxide (minor) forms elongate grains averaging 0.02-0.03 mm long.

Amygdules (4-5%) vary widely in size and texture. A few amygdules from 0.3-0.9 mm in size are of very fine grained quartz. Some are recrystallized slight to extremely fine grained aggregates. An amygdule 1.2 mm across has a thin border zone of very fine grained quartz and a core of extremely fine grained quartz and ragged grains of ankerite. A few larger amygdules are of extremely fine grained quartz with irregular patches of ankerite. On the border of one is a veinlike zone up to 0.3 mm wide of very fine grained ankerite and moderately abundant pyrite.

In the breccia matrix, pyrite (17-20%) forms clusters of grains averaging 0.02-0.07 mm in size, and a few grains from 0.1-0.25 mm across. Interstitial to pyrite is very fine grained quartz showing comb textures.

Quartz (17-20%) forms aggregates recrystallized aggregates with well developed comb textures extending outwards from pyrite grains. Some of these are tightly folded. Ankerite (3-4%) forms irregular, very fine grained patches intergrown with guartz.

Ti-oxide forms a few patches up to 0.1 mm in size of extremely fine grained aggregates in pyrite.

Sample J-91-28 52.8 m

Sheared Latite Lapilli Tuff with Fragments of Sheared Basalt Flow (Unit 2Dr.1Gur); Veinlets of Chalcedonic Quartz, Ankerite

Fragments (30%) up to 2 cm long are of sheared basalt flows containing plagioclase grains averaging 0.02-0.03 mm long in an opaque-rich groundmass. Seams of opaque define a prominent foliation.

The groundmass (60%) is dominated by extremely fine grained sericite with much less abundant plagioclase. Wispy seams of semiopaque define a prominent foliation, along which the rock was sheared strongly and kink folded. Pyrite (2-3%) forms disseminated grains averaging 0.02-0.05 mm in size.

Irregular replacement patches $\{3-4\%\}$ are of very fine to fine grained pyrite with minor interstitial patches of sericite and quartz. The latter forms comb-textured aggregates outwards from pyrite grains. Pyrite $\{1-2\%\}$ also forms disseminated grains averaging $\emptyset.l-\emptyset.4$ mm in size; many of these have partial rims of comb-textured aggregates of quartz.

Other irregular replacement patches and veinlets up to 0.5 mmwide are of extremely fine grained, chalcedonic quartz (4-5%). A few veinlets also contain patches of fine grained ankerite (1%).

		NET IN STREET	
SAXPLE#	\$102 A1203 Fe203 Ng0		Cr203 Ba Sr Lo 22 Y Nb LOI SUK
J91-3-15.5 J91-7-35.0 J91-7-39.0 J91-8-65.2	72.05 11.60 3.88 .77 65.00 9.95 8.69 .35 37.49 13.50 6.85 4.77 38.34 12.43 7.71 3.09 63.84 13.75 5.44 1.62	01 .05 6.54 1.98 .03 01 10 .12 7.90 1.76 .59 01 74 4.54 .83 1.18 .18 26 105 5.83 .20 1.36 .25 47 50 0.28 1.54 .26 26	1.007 1106 25 26 122 24 20 2.9 100.01 .003 2249 B7 18 131 41 23 4.5 99.99
J91-12-166.5 J91-12-175.6 J91-12-91.0	56.93 13.43 7.78 3.43 29.07 13.20 11.60 6.70	.11 7.79 1.95 .57 .91 5 .68 5.42 1.84 1.32 .22 10 5 .22 1.64 1.32 .22 10 5 .22 1.62 3.66 1.80 .60 1.28 5 .22 1.62 3.66 1.80 .60 1.28 5 .66 5.03 .77 .26 1.55 1.57 1.08 .19 52	.004 2136 88 10 124 31 20 2.9 100.02 .019 1373 233 10 52 7 61 8.4 100.14 .002 784 243 13 114 26 48 6.0 100.10 .006 1046 147 12 66 9 24 7.2 100.13 .012 707 246 10 45 16 46 16.9 100.42
J91-17-39-6 J91-17-149-0 J91-17-172.0 J91-18-76.1	46.04 15.77 9.14 4.43 59.10 13.03 8.62 3.16 65.12 12.13 6.33 2.70 57.65 12.90 11.38 5.32 59.22 15.23 7.64 3.94	04 1.89 5.52 1.53 .31 127 53 4.09 .66 1.52 .29 16 77 .08 7.63 1.31 .35 16 92 .09 5.52 1.39 .44 33 92 2.01 4.22 2.01 .45 17	.007 1010 141 10 173 18 87 8.0 100.16 .002 288 247 25 55 37 79 5.0 100.08 .003 2173 130 17 15 22 76 3.0 100.02 .002 1518 73 22 76 3.6 100.02 .002 1518 73 22 766 56 66 3.6 100.05 .002 1891 109 21 165 50 60 3.9 100.03
J91-18-94,7 J91-18-94,7 J91-18-123,4 J91-20+74,8 4	59.74 16.41 4.76 3.19 60.81 10.80 10.64 3.04 62.99 12.76 8.13 2.02 62.26 11.54 9.78 2.93 49.69 10.77 14.85 6.84	22 .28 5.96 1.42 .07 106 9/22 .06 5.67 1.18 .29 25 9/7 1.45 7.23 1.40 .36 10 50 .18 7.14 1.23 .34 10 51 .43 .70 .98 .32 24	
J91-22-130.2 J91-22-177.1 J91-22-183.0	62.61 10.92 9.01 2.19 46.62 15.29 16.18 4.12 55.90 18.36 6.80 2.60 68.23 14.40 3.44 2.42	2 21 4.99 1.55 2.04 .62 07 1636 .39 1.93 1.59 .39 1.09 2 17 4.21 .95 3.27 .65 15 1931 .09 6.93 2.00 .53 12 49 .05 6.92 .66 .14 D8	002 877 289 23 168 28 59 10.5 100.24 002 1113 81 16 113 28 20 9.5 100.20 002 203 109 23 181 44 46 6.4 100.10 002 1314 99 28 166 36 90 3 60.10
1			.002 1119 38 26 162 15 53 2.6 100.02 .005 609 60 10 85 21 28 5.1 100.05
J91-26-42.4 J91-26-105.2 J91-27-32.65	51.52 16.07 10.06 2.73 57.90 12.68 8.98 3.31 54.73 16.02 6.47 3.42	7. 49. 3.81 2.90 2.43 .57 .28 7.44 3.94 2.88 2.43 .54 .10 7.08 .16 4.72 1.38 .35 .23 6.04 .05 4.55 1.63 .48 .21 5.77 4.09 1.85 2.35 .60 .15	.002 1247 135 21 160 27 108 5 1 100 0
J91-27-60.6 7 J91-27-68.0 5 STANDARD SO-4 6	74.21 9.88 3.60 .88 57.38 14.99 8.47 3.90 57.81 10.29 3.56 .98	1.92 4.12 .73 1.79 .47 06 1.52 1.92 2.53 2.39 .62 107 1.61 1.33 2.05 .57 .23 13	.002 800 166 14 103 18 24 2.1 100.00 .002 2205 162 20 144 36 29 5.9 100.11 .005 795 207 29 321 23 20 11.2 99.98

COLL

DATE RECEIVED: NOV 15 1991 DATE REPORT MAILED: Nov 30/91.

	Granges Inc.	PROJECT UNUK F	VIVER FILE # 91.	5479	
SAMPLE#	\$102 A1203 Fe203 X X X X	HOO 200 Ho20 K20 T102 X X X X X X	P205 Pro Cr203 Ba Sr X 3 X ppa ppa	La 2213 Y X5 L01 ppan poper pa⊐a ppan X	SUM X
J91-27-71.0 J91-27-118.1 J91-27-137.4 J91-28-30.5 J91-28-52.8 J91-28-66.8 RE J91-28-66.8 RE J91-28-80.1 J91-28-80.1 J91-28-109.85 J91-28-109.85 J91-28-115.7 STAMDARD S0-4	57.65 16.32 5.98 54.14 10.13 15.04 63.38 10.77 3.00 57.15 12.64 9.77 49.72 11.99 19.52 63.36 10.65 3.05 55.37 13.22 13.89 50.34 14.75 8.23 66.21 13.30 6.45 59.18 14.76 9.93	2.90 2.18 3.39 2.25 .88 1.65 2.87 3.79 3.87 1.09 2.40 3.82 1.56 1.88 1.45 739 5.90 .43 .99 1.37 5.23 2.43 3.16 2.16 3.79 4.24 1.51 1.46 2.10 1.44 7.24 5.66 .37 1.00 2.29 1.05 2.24 1.65 1.02 3.42 5.05 .07 5.35 2.41 2.84 53 .05 5.29 .63	.31 11 .003 2653 174 .72 02 .003 2739 158 .46 05 .002 775 196 .15 17 .013 287 442 .48 13 .002 586 173 .45 19 .002 248 124 .13 17 .012 251 434 .22 20 .002 544 157 .02 554 157 .002 829 39 .012 251 434 .002 554 157 .02 54 157 .002 829 39 .35 .19 .004 904 59	34 233 42 51 8.8 20 225 36 20 5.6 23 170 18 98 8.1 10 66 10 20 6.1 16 155 26 44 5.2 24 216 35 89 4.8 10 68 11 20 6.8 52 246 31 25 8.9 13 178 33 20 9.4 17 203 30 20 4.4 10 151 24 20 4.4	\$9.81 \$9.87 \$9.98

Spepie type: CORE. Somples beginning (RE! are duplicate samples.

LEAR BALLYIICAT		
SAMPLE#	Mo'Cu Pb Zn Ağ Xi Co Kn Fe AS U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti B Al Na K U Au Hg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
\$319	29 35 13 181 2 35 6 682 3.38 23 5 ND 1 181 6 3 2 23 6.08 055 3 3 1.63 60 01 2 .71 .02 .09 3 535	
\$320 \$321 . \$322 \$323 \$324	42 44 16 319 2 54 7 385 3.51 35 5 ND 1 105 31 4 2 17 3.59 050 2 4 .97 50 001 2 .36 .02 .08 1 4 6 2 23 3.52 047 2 3 1.27 54 01 2 .36 .02 .08 1 4 6 2 23 3.52 047 2 3 1.27 54 01 2 .36 .02 .08 1 4 6 2 23 3.52 047 2 3 1.27 54 01 2 .36 .02 .00 1 3 3 3 5 ND 1 144 3 2 2 27 4.14 047 3 5 1.23 67 01 2 .86 .02 .09 2 .86 .02 .09 2 .86 .02 .09 2 .00 2 .86	
\$325 \$326 \$327 \$328 \$329	27 58 16 356 2 55 8 342 3.89 25 5 NO 1 70 3.6 2 2 25 2.53 048 2 6 1.00 72 0.1 2 1.01 .02 .09 2 880 27 54 16 397 3 58 7 329 3.84 28 5 NO 1 57 2 2 26 2.11 043 2 7 1.02 74 01 2 .92 .02 .10 3 775 34 55 18 598 4 64 6 395 3.36 37 5 NO 1 119 219 2 2 20 4.19 057 2 6 .90 73 01 2 .86 .02 .09 3 510 34 55 18 598 4 56 6 377 5 NO 1 108 6.4 2 27 3.36	
\$330 \$331 \$332 \$333 \$334	24 49 26 250 4 54 7 429 3.37 34 5 ND 1 104 2.7 4 2 22 3.87 046 2 6 .95 53 01 2 .67 .02 .09 1 1 395 20 53 24 328 6 36 8 432 3.98 32 5 ND 1 111 3 9 6 2 23 3.90 046 2 4 .85 51 01 2 .67 .02 .09 1 1 395 14 41 34 464 6 44 5 350 2.62 34 5 ND 1 74 5 8 8 2 23 2.98 026 2 6 .72 71 01 2 .36 .02 .10 4 335 27 48 26 611 6 53 6 548 3.59 63 5 ND	
\$335 \$336 \$337 <u>\$338</u> \$339	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
\$340 \$341 \$342 \$343 \$344	1 14 16 94 1 128 446 3.41 22 5 NO 1 123 2 2 14 3.56 233 8 3 .60 86 01 5 .50 .04 .15 1 27 275 1 14 15 95 1 14 25 292 4.07 26 5 NO 1 92 2 17 2.12 220 7 4 .37 68 01 3 .62 .03 .10 1 2 240 1 11 0 94 4 14 987 2.58 15 5 NO 1 123 2 2 188 8 20 .55 51 .01 4 .69 .04 .06 1 165 1 14 8 83 1 6 18 729 2.63 25 5 NO 1 222 2 18 7.65 166 6 2 1.16 54	
\$345 \$346 - \$347 \$348 \$348 \$349	1 15 10 96 5 14 648 3.69 22 5 ND 1 161 13 2 2 14 4.44 185 6 4 .96 60 0.1 4 .38 .04 .10 1 2 210 1 13 8 126 1 5 667 3.46 18 5 NO 1 164 2 2 2 14 4.47 70 6 12 .91 69 0.1 4 .38 .04 .10 1 2 210 1 18 9 219 6 25 287 2.46 37 5 NO 1 169 2 7 2 17 4.85 76 5 3 .94 64 .01 5 .63 .04 .10 7 365 1 14 7 129 6 28 287 2.46 5 NO 1 77 2 2 19 2.23 76	
\$350 \$351 \$352 \$353 \$354	8 20 16 197 12 4 20 440 12.15 93 5 NO 1 122 .2 6 2 12 3.52 148 5 10 .46 35 0.1 2 .56 .03 .10 1 4 600 25 9 2 146 19 38 327 14.59 259 5 NO 1 107 2 2 2 11 3.15 163 6 3 .52 53 01 2 .56 .03 .10 1 4 600 12 9 1 52 5 NO 1 86 2 2 15 2.66 12 .57 .03 .10 1 235 12 9 11 52 1 53 367 16.17 186 2 2 2 15 2.06 119 3 1 .54 31 .01 2 .68 .03 .08 2 1050 1 38	
RE \$350 \$355 \$356 \$357 \$358 \$359 \$360	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
\$361 \$362 \$363 \$364 \$365	1 25 5 100 4 7 887 5.88 2 5 ND 1 74 2 2 2 26 1.75 075 7 9 1.17 42 01 2 2.36 .03 .14 1 30 1 12 8 81 3 3 857 3.00 2 5 ND 1 50 2 2 2 12 1.51 081 14 11 1.07 39 01 2 2.36 .03 .14 1 3 35 1 7 12 94 2 4 419 3.22 5 ND 1 28 2 2 7 .59 043 19 7 1.05 51 01 2 1.61 .01 .14 10 35 1 133 10 98 43 16 729 4.56 5 ND 1 236 .2 2 2 2 2 2 2 2 2 </td <td>Ŵ</td>	Ŵ
\$366	1 113 16 143 44 14 667 3.83 5 NO 1 408 2 2 2 23 5.37 088 4 27 1.28 56 01 2 1.81 .02 .16 2 180	

	Granges Ind	. PROJECT UNUK	RIVER 134 FILE # 9	91-5240	
ACRE ANALYTICAL				91-5240	Page 3
SAMPLE# Mo Cu J91-27- ppm ppm	Pb Zn Ag Ni Co P xxm pxm pxm pxm pxm pxm			La Cr Hg Ba ti B Al	
H277 1 15	3 119 13 1 9 80	9 4.25 2 5 ND 1		ppm ppm X ppm X ppm X	
X278 2 16 X279 1 17	7 116 5 1 11 118	9 5.80 2 5 ND 1	205 2 2 2 2 9 4.15 31 281 2 2 26 7.03 21 319 2 2 200 7.36 22	5 1 .80 145 011 2 1.57	.05 .18 1 16 20 .04 .17 1 13 50
H280 1 16 . K281 1 13	2 113 4 1 10 121 5 109 5 1 11 121	5 5.10 2 5 ND 1	205 2 2 2 2 9 4.15 (31) 281 2 2 26 7.03 21 319 2 2 20 7.36 22 289 2 2 34 6.34 10 316 3 2 2 33 8.20 17	6 1 1.12 168 01 2 2.16	.03 .13 3 45 .04 .16 1 35
N282 1 12 N283 1 16	2 105 .4 1 9 145	8 5.15 2 5 NO 1 :	250 2 2 2 43 7.29 113		.03 .14 1 1 35 .04 .11 1 2 35
H284 1 12	2 111 24 1 10 126	7 5.41 2 5 ND 1	235 .2 2 2 20 6.45 17 263 .2 2 2 41 6.58 137	4 2 1.48 88 01 2 .98	.03 .13 1 4 75
N285 1 19 N286 1 19	3 131 .5 1 10 128 7 95 .4 1 9 127		219 2 2 2 43 5.43 133 309 2 2 2 6 8.87 103	6 3 1.52 159 01 2 2.58	.05 .16 1 1 60 .04 .13 1 4 50 .04 .13 1 2 60
K287 1 16 K288 1 13	4 90 4 2 9 87	7 4.06 2 5 ND 1 ;	204 .2 2 2 37 5.31 126		.06 .16 1 40
H289 1 13 H290 1 21	3 118 225 1 10 145	1 5.87 3 5 ND 1	215 .2 2 2 48 5.65 120 271 2 2 2 53 7.74 122 221 2 2 2 43 6.07 143 207 2 2 2 62 5.65 145	6 2 2.04 155 01 2 2.79	.05 .13 1 45 .03 .11 5 45
H291 1 16		8 5.24 2 5 xD 1 6 5.56 3 5 xD 1	221 2 2 2 43 6.07 143 207 2 2 2 62 5.65 145	6 2 1.71 157 01 2 2.65	.04 .14 1 2 45 .04 .09 1 1 35
H292 1 15 H293 3 16	2 107 3 1 11 115 10 95 7 2 7 34		177 .2 2 2 66 4.84 115		.04 .03 11 1 20
H294 2 14 H275 1 14	7 65 6 2 5 25 2 44 6 1 5 55	5 2.36 7 5 ND 1	61 .2 7 2 17 1.96 185 60 2 2 2 13 1.80 178 80 2 2 2 18 2.63 186	9 3 .24 155 02 3 1.13 10 2 .17 196 01 3 .87	.06 .18 1 4 40 .06 .18 1 2 25
X296 3 14 H297 2 13	8 81 .6 4 7 48	5 4.04 22 5 ND 1	60 2 2 2 13 1.80 78 80 2 2 2 18 2.63 86 68 12 6 2 18 2.28 56	1 1 .31 253 202 5 1.34	.07 .20 1 1 25 .06 .18 1 35
H298 2 13	7 73 5 2 5 52 6 72 5 1 5 62	2 3.30 22 5 NO 1	74 2 2 2 15 2.66 170 84 2 2 2 20 2.91 182	9 2 .19 144 01 3 .89 10 1 .40 214 02 3 1.40	.05 .17 1 2 35
K299 2 11 K300 3 17 K301 2 11	6 72 5 1 5 62 5 92 7 3 7 73 8 181 5 3 10 40 6 155 5 2 8 42	Z 4.42 53 5 NO 1	164 2 2 2 17 5.37 76	8 5 .36 158 01 2 1.01	.07 .19 3 30 .05 .17 2 80
K302 4 14			63 .2 5 2 12 2.05 .129		.05 .17 1 4 180 .03 .10 3 90
H303 5 14 H304 7 19	6 128 5 3 7 40	9 4.20 97 5 NO 1 1	49 2 3 2 18 1.81 128 106 .2 .7 .2 10 2.97 .143		.05 .10 1 6 80 .03 .09 1 2 90
H305 11 14 H306 1 7	7 88 8 3 16 27 6 80 7 4 18 61 2 57 3 2 6 122	9 6.27 218 5 NO 1 1	61 .2 27 2 17 1.84 30 168 .2 24 2 39 3.99 149	5 1 .54 42 01 2 .75	.05 .09 1 3 460 .06 .05 1 4 370
8307 4 12	4 122 7 3 11 58			800383	.01 .01 4 100
H308 4 13 H309 5 20	9 104 6 3 10 24 23 101 210 11 9 86	2 6.60 66 5 ND 1 1 3 5.44 31 5 ND 2 8 6.61 56 5 ND 1 1 6 6.32 216 5 ND 1 1	192 3 2 2 36 3.65 134 23 2 9 2 18 .46 059	7 4 2.67 123 .04 2 3.13 7 4 1.67 69 01 2 1.97	.03 .15 1 7 130 .02 .12 1 10 130
	3 81 7 4 18 63 4 83 2 8 7 158	В 6.61 54 5 ND 11 6 6.32 216 5 ND 11 6 3.67 12 5 ND 12	192 3 2 2 36 3.65 134 23 2 9 2 18 .46 059 130 .3 31 2 24 3.75 084 171 .2 9 2 40 4.05 153 215 .3 2 2 32 8.44 071	5 5 2.53 52 01 2 2.17 7 3 2.25 59 02 2 2.17	.01 .10 39 375
X311 42 9				333333	.01 .06 1 2 355
<u> </u>	403603.92	3363543	208 4 2 2 6 9.59 079 364 .4 .2 .2 .12 .12.58 .041		.01 .01 1 2 190 .01 .05 1 1· 210
H315 10 11 H314 11 24 H315 32 34	17 157 2 12 5 5 11 157 1 22 6 2 18 270 3 41 6 7	00 3.24 10 5 ND 1 40 3.78 13 5 ND 1 03 3.24 25 5 ND 1	104 1 2 2 12 2.86 050 39 3 2 2 17 1.24 054 212 2.6 5 2 35 6.03 048	4 3 1.45 87 01 2 1.40 4 7 1.29 57 01 2 1.30 3 5 2.10 75 01 2 .46	.02 .09 4 375
<u> </u>	18 270 3 41 6 7	03 3.24 258 5 ND 1 :	212 226 5 2 35 6.03 048	4 7 1.29 57 01 2 1.30 3 5 2.10 75 01 2 .46	.03 .10 4 775 .02 .06 16 455

	ND DRILL LOG		PAGE OF 9
HOLE No.	·		
J91-:	28		
			·
PURPOSE			
DRILL TI	EST 900 zone	between Hole	e7q9.
			•
LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
L9+00N/1+50W	~ 390m.	225°	
2 m at 120*			170.69
DIP -45°	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
7 -	39.62m 45.5" 131.06m 45.7"	121.5m.	120m
LOGGED BY DATE Oct 22/	CONTRACTOR	CORE SIZE	DATE STADYED Dal-
GFMCARTHUR Oct22/	J.T. Thomas.		DATE STARTED OCT22
	v. 1. Inomas.	BQ.	DATE COMPLETED OF 23
SUMMARY LOG			
0-6.18 CASING.	54.4-54.86 Fruit	109.5	5-127.92 Littie Lapilli puple
6.18-10.85 Sandstone	58.86-55.6 hiftice		-136.75 Siliceoustuff By.
10.85-13.5 FAULT	55.6-66.45 que	wit- 136.75	- N4.4 Lithic Lopilli - purp
10.85-20.8 Availute	66.45-67.7 Lapelle		-170.69 Argellite - faulteda
10.8 - 29.2 fine tuff. 19.2 - 30.0 Lapelli	67.7-76.7 fresh	•	gte vened.
30 - 30 8 Fiow, Vercular	76.7-78.4 Lapelli		10.69 EOH
30.8-34.75 Find bonded	78.4 - 86.4 Lapitus 86.4 - 89.4 anglieces		
34.75-35.75 Flow vancilar	89.4-91.0 fre Asht		
15.75-36.7 angillacion craniel			
26.7 - 57.15 Tuff or Dyke	93.8-94.2 frietutt		
37.15-46.3 Lapillie - Pyrit	i 94.2 -9715 angelloeu		
16.3.46.8 angellacionshift	97.15-97.65 tuj-dy	Le?	
6-8-50.8 meduen-hilf-	97.65-98.8 Lapelli	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
D.B-51.02 lapellie	98.8-101.9 Angellet	C is at the start	1. and the second second
51.82-53.65 Amplilie	10.9-106.2 flow	۵۰۰ - ۲۰۰۰	
SIGNIFICANT MINERALIZED I	106.2-109.55 drylla	eren treffic and the provide	
37.3-46.3 pgvd 5-101	/ <u> </u>		
16.7-78.4 py po + SL TL		د د رفته ورو در در از در به برسیم می در . در از رفته ورو در بار در از در بار در از در از در از در از در از در از در از در از در از در از در از در از در ا در از در ا	a se que de la companya de
BS.1 - pry-po-SL TL	-1 (0)) - 1 - 1		n na haine an an tair an an tair an tair an tair an tair an tair an tair an tair an tair an tair an tair an tai
21.92-136.75 - Py-po-SL 3. 144.4-160 - Th pa-py-epy	-3/. (700 cone) Zoned Sphale	ente ante	
144 1-160 TE-PA-Py-CPy			
		and the second second second second second second second second second second second second second second secon	
		۲. ۵۰ د موجود در معد میکارد و میکارد. ۲. ۲۰ د موجود در معد میکارد و میکارد و میکارد و میکارد و میکارد و میکارد و میکارد و میکارد و میکارد و میکارد و م	
			and the second second second second second second second second second second second second second second second

		GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	2)F C]	
HOLE No.		J91-28						
INTERVAL	C. L 055	LITHOLOGY	÷ ↓ ∪	L	S	Μ	А	
0-61	8	CASING.						
6.18-7	7	Rubble		- 1	-	-		7
77-1	6	55 gren nedium arained feldspathic sondstore						
		marsing minor argettike chapes 1-2 / lenoutic			Ge :	ļ -	- Li	-8
		factures, cover content faulted.]_		10	_	-	-9
			_	7	E	ł		
		n and a start of the second second second second second second second second second second second second second		-	12%	·	-	- 10
					200			
				5	~~~~	-	-	- #
				5	<u></u>	-	_	-n
<u> </u>	 			R	ر ا			
	. 		-1	2	4-	-	-	-13
		10.85-13.5 fauttgouge graplike	1		~~~			(
			30		-	-	-	114
			-		_	-	-	-15
			50		توجير برم			
		15.25-16 faultgarge, graphite	1 = 2	-2	~~~. 	-		-16
<u>.</u> .	\vdash		20					17
•			1 .				-	F17
		17.6-18.5 calcaceous esterdato.	5	<u> </u>	ас і та 1 — С	·	-	-18
			- 15					
					<u>ः ः</u>	-	-	19
		minor full bonds in availlile - locally gave ain	30		سمیر زر مدر			
			5	دين سود البريير ا الوح	بر بر ت		-	120
20.8 - 29	.2	Internediate greenish - grey fire to pedium		<u>E</u>			`=	-21
• • • •		tuff, Joliated, locally angulacerso		9 - 26	6			
					10			22
	4-6.44			3			1	11-
			- 18 N	10	21.4		ŀV	- 23
	_		2.00	E I	14. M. F.		[]/	- ZY
				N		87	™ (∮ .	مر المار الم
	(x .]						ß	-2SV
	-11-1 							int 1
	運う						0	126
	7					-91		۰.

GRANGES EXPLORATION DIAMOND DRILL							PAGE	<u>2a</u>	OF
HOLE Na J91-28									
MINERALIZATION ALTERATION	SAMPLE	FROM	TO	ыюти	Au ppb	Ag ppm	As ppm	Sb ppm	
fantt gouge	M179	10.8	14.0		18	1.3	35	4	
Тт-ру	NIBO	ાર્ચ	12		10		<i>a</i> 6 [.]	2	
<i>it</i>	MiBi		16			0.3		2	
31 	<u>Mi82</u> Mi83		17 18			0. D.			
£1		18					<u>!</u> 9_		
И	H185	19_	20			0.]			
1	MIB6	20.0	20.	3	/7	0.1	46	9	
1-2%. py	<u>H187</u>	20.8	2 2		7	0.1	6,	2	
Гт - ру	<u> Hi88</u>	27	29 ·		1	0.1	3	z	
<i>P</i>		2 3				0.[2	
11	MAO	24	25		1	0.1	Z	2	=

[

[

Ч									
			GRANGES EXPLORATION LTD						
Гİ			DIAMOND DRILL LOG						
L			DIAMOND DIALL LOU	PAGE	3	0	F 9		
				AGE	<u> </u>		<u>'</u> 1		C
Н	HOLE No.								- U#
	HOLE HA	7	91-28						
			11-20						
		5		1					
	INTERVAL	2 507	LITHOLOGY	-			M	Δ	
4		ר- ט		၂ ၂				T.	
				1		-			-27
				1				$\left \right\rangle$	9t.
Ц				-	-	-	PJ.	7	- 78
				4		[\mathcal{P}	1	
	29.230	.0	Interreducite, tapelli tuff, grey green, locally angulares	a –	. 7	- 1	-	-	-27
			dark onen hand green flaggest molled gun green upper contact	1	er				
		-	dark opren haft green fragest, molted guy green upper contact sharp at 70° lower about 20°		205		_	_	-30
Н	30.D - 308		Black resicular, subceas flastop? pydisourips 1-21] _			- 1	:15	90 97.
	30.0 - 50.		back vestcator, success for the providence	1	16an		ej	3/0	
Ч			lower contact sheared at 40°	-	T 2	-	-0	-	-3/
	308 - 34.	15	Internediate open green flowbaded, inequargereeing	-	26			65	
				4	2 <u>4</u> 6	1-	-	$\mathbf{\nabla}$	-32
Ч				11				\sim	91.
]_	_	2	_	5	-33
			37 5 4]				1	
Ц			33.5 guge	1					_ 4
			21. 21 2 - Tal a har abit him	1 -	-	-		_	34
			34-34.75 gange 70° - core loso - gtz Vybacken	┥		متر شر	fy.	00	leone -
	34.75-35.	25	Black vescentar, seliceans flow top (as above) dess py	-	- 1	-	بتر	°.	35
			4 wilps 1-2% lower entact faulted.	4	IGe.		-	-	San P
	35.75 - 36.7	0	mokled at grey-green orgulacion coase tuff to fie tuff, by Tr	- 1		~_	2	4	-36
			argellacous, natix and sove frequents, gtr 5%, goinged.		28-4		-	1	qv.
Ч	36.7-37.15			1	شسيه	~~~			g Jubber.
			at vered fault, sipported _ 40°, blue - black while gtc.	1 -	34	سمتقويها	-	Contraction of the second seco	sponded.
	37.15-37.3			1		Nr	-	5	
Ч	37.3-46.	3	Mottled grey-green Lapelli or hif breceia. Decenated -	-	-	ستر ا	6 1	\mathbf{V}	-36
	· ·		Strong daning 30% ; bhull, black, + while gv with py vering	5/		ľ	. · ·	$\langle \lambda \rangle$	
Г			and deserveded 5-10%, colliform banded chalesdorie	10	-	- 1	ΓĊ.	<i>ι-</i> Υ	-39
L			at verning with black carbon residua, inequilar ven	4				4	G ¥.
			hu ceia, - duo py.	_	_	-	Ŕ	K	40
L	·····		lover & upper contacts failted		5	l	($\langle \rangle$	
					Ē		Ţ	1.0	a.
٦				1 -		}	1	57X	
ᅱ				1	Ř		1.	19	ŀ
	<u></u>			- -	ō	-	197	1/2	-12
Ч				-	À			h	ar
				4 -	3	-	12	' [- #3
Г							1	X	-
Ľ				110		_	$\left \begin{array}{c} c \\ c \end{array} \right $	117	<i>d</i> .1
Ì		-		4/0] _	7]	171	Ţţ
Ч				ſ		1	المعتر	[].	ev
L				1 -	- 1	-	۴L	1/	- 45
٦				51			المسجر	· ۲	
ہے	•			1-10	-	~~	ايتر ا	يتحم	-41
	46.3-46.8		Mettled pheared dk. quey-quer acquilaccers Lift	1	24.5	in	12		qv 🛸
٦			Mettled sheared dk guy-guer argulaccers tiff ater failed, py v. 2-3%.	1_			14	4	-47
Ļ	46.3-50.8		Taken durt are aces lie to media full locally evallacions		المعد			14	<i>·</i> ·
	~~~~ <u>~~~~</u>		atv. 5%, py 1-21- Johand.	1	ZABE		ا نه ا	μ	
5		L	- y , / / / / / / / / / / / / / / / / /						48



PAGE 3A OF 9

HOLE No.

[ [

[

591-28	<u> </u>	1	I	<b>r</b> 1			r	rr	 r
MINERALIZATION ALTERATION	SAMPLE	FROM	то	MIOTH	Ац ррб	Ag ppm	∧s ppm	56 ррт	
1-2% 04	M192	26	27		T	01	2	2	
<u>1-2% ру</u>	M193	21	28			0.1	2	2	   <b>-</b>
<u>N</u>	MITH	28	29		1.	0.1	2	2	 
1/	HI95	29	30		1	0.	2	2	  
st	M196	30	30.8		<u>Ľ</u> T	0.1	19	2	  
	нят	30.8	20		3	0. I	2	2	 
TF-11. py			20		Ĺ				 
2j	M198	32	33		[	0.1_	2	2	 
<i>u</i>	<u></u>	33	34.75		_ 3	0.1	2	2	 
1-2°1.pg	1/200	34.75	35.75		9	01	89	2	 
/ //	H201	35.75	37.3		<u> </u>	01	ス	2	
3-5%.04	H 202	37.3	38		4	0.)	15	2	
<u>3-5'l. py</u>		38	39			0.1	11	2	 
3-57. ру									 
<u>3· /. p.</u>	11204	39	40			0.1	42	4	 
3. 1. ру	4205	40	41		2	0.1	45	4	 
3% ру	M20b	41	42		4	0.1	2	2	 <u> </u>
5°1. py	M207	42	43		3	01	14	2	
5-10 [°] lo py	1/208	43	44		3	0.1	800	93	 <u> </u>
5-10 % py	MZOG	<u>44</u>	45		7	0.2	301	37	 <u> </u>
5-10 %. py	4210	45	46		2	01.	273	21	 <u> </u>
		46			8		173		
3-5% py	•		<u> </u>				9		 <u> </u>
3-5%. ру 1-2%. ру	122	47_	70						 <u>t                                    </u>
1-2-1. py	M2B	48	49		2	0.1	41	Z	 <u> </u>
•					1		<b>I</b> .		

			Hedd 46°						1
			GRANGES EXPLORATION LTD						
			DIAMOND DRILL LOG	PAGE			of C	5	-
					4				
	HOLE No.		J91-28						
_		5		1	Γ.				-
-	INTERVAL	C. L055	LITHOLOGY	* 5		S	M	Α	- 10
	46.8-50.8		Tuternediale grey- green fre to sed fuff, locally and accord	-				5	- <b>4</b> 8 9 ¹
			foliated, git 51. 3 py 1.2%	5.	-	-	Р <u>1</u> Т.	VL	- 49
			The 1 and A. Will Contraction	70	±j	-	Pj	5	-50
	50.8-51.	<u>β</u> 2	gV1-21. py Tr-11., phased	- -		<b>—</b> .	•-		-51
-		<u> </u>	shap upper + lower contacts at 70°		230			( n	
	57.82-53.	65	Greenish black argullede with fuff intercalations	10	- 75/4	-		Z	-52 9√
		$\left  \right $	locally, gtr-py 5%. Ithated., buccased	5	77	-	Ð	4	-53
	53.65- 54.4	Ł	Internediate grey-green fre tuf, Johaked 54.4-54.86 fault gouge		240	يتير	+	-	- 54
	54.4-55-6		54.4-54.86 fault gouge greenst-black arguille with fire to coars and		7.4		17	2	<b>1</b> 1 - 55
			foliated, pyx 1-2%	-	N/6		بر ا		6
_	55.6-66	142	Internediate grey-green fine to medium tuff, foliated gtr-py-po v 1-2% savigular	1-	-	-	e	J.	-56
	6tert:	<u> </u>	Contacts sharp at 70° upper + love.	51		-	E.	í s	-57
4			Company is anapay to appertate	'	¢ S	_	1	F.	-58
Ч	· · ·	·   ·		51	4-8		ŗ;		G
Ч	······	·	· · · · · · · · · · · · · · · · · · ·	15	A	_	- Fr	~	-59 1×
Π					-	-	-		- 60 4v -
Ч	· · · · · ·			20	-	-	·	-	-61
				1_		_	_	_}	- 62
				-				۲.	
Ļ					-	متمهم	-	5	-63
Ļ					-	-	-	-	- 64
Ļ				1.		-	₽°/ -	12	- 65
┛					·				_ / •
Ļ	66.45-67	<b>?</b> 7	Mottled d'Egrey green Lapelli tuff with dark green	]	670	-	- :::		- 66 CUm
۲	 		anastanoing Chlorik stugers, py des 1-2%	-  -	25 _t x	-	Py	1	-67
ſ	67.7-76.7		Internediate grey-green fine to nedum tuff; Johaded.	] -	-1	-	-	-	-68
Ľ			1-21. 9til migular						69
<b>-</b>									-7



PAGE 4A OF 9

HOLE No.

Ľ,

J91-28 Sь As. Au Ag ALTERATION NIOTH MINERALIZATION SAMPLE FROM ro Ppb ₽Pm. የየማ ppm py 3°1. 3 2 7 0.1 M214 51 52 5 py 5'l. 215 52 120 0.1 2 53 py 2-5']. py 1']. py 1']. py 1-2']. py -po 1-2']. py -po 1-2']. Ş 2 3 1216 53 0.1 54 M217 54. 2 2 01 5 55 4 18 0.1 2 M218 55 52 2 2 01 57 6 H219 56 2 2 2 01 M220 57 58 ру Та-11. Ру Та-11. 2 121 6645 67 Q.l19_ Z MIZZ 67 68 2 0.1 Z 2

			PAGE	5	0	۶Ĝ		(e
1 .		J91-28						
INTERVAL	C. L055	LITHOLOGY	* J		S	M,	4	
67.7-76.	_	Intermediate groy-quer for to reduin ful, placed. 1-2%.					ζ	-69
		gradational Contact		-	Ĭ	/	->	70
			51	-   .	- #	۶° -	- 	- 71
				2.4+B4.	4	-	 کر	72 9V
				24	- سہ	-		73
-  т				-	-	<u>60</u>	-	-74
	 		10	-	- 	- 12 9-1	2	-75- 9V
T	-			-	1	1	2	71
<u></u>	4.	Intermediate dark green - grey green notiled, lopelli full . Tokated, masternosing Chloute Find py 11-7		ele-	-			CH6( 77
		gti - cllou le - py - ps - splatuite rein, 76.6-77.0.		20 ₂ 2	-	أستها	2	78
78.4 - 86.4		Intermediate grey-green medicin to lapelli fuff, pleated		-	-	-		79
• 		Jaulled contacts to op 80°, bottom.		-	t	-	-	- <b>8</b> 0
				*		-	~	G√ 8)
<b></b>				0-0	1	-	.	82
▲ 			51	8-	- ₩	_ /	~	47 83
				_		-	_	Jei
T	-	B5.1 gtchl - py-po, splalerite V.						P5-
					X	<	$\neg$	
<u> </u>		Bl. 4 Jant broken + garge Faltradiate dark grey grey with green coarse ask to			23~		-	.96
		Lapelli fragrest in a fuffacions angulacions matrix		YO .	Ţ,	4	A	ghu C
۰		pattery flattered fragrents., some angellik chips	- 77	20.0	$\frac{1}{\xi}$	-	80	-88 🔨 91
		Slap lower contact 75°		C75	-	-	-	
89.5-910		Takendete grey ques fin ash, argulaccessocally py v. Tr	<u> </u>					90



PAGE 54

of 9

HOLE No.

[ [

MINERALIZATION ALTERATION	<b>ЗАМРІЕ</b>	FROM	ro	W107H	Au P ^{pb}	Ag ppm	As ppm	56 ppm	
······································									
								-	
									: —
					<del></del>				
		-7/	-17		14	0.5	10	2	
y 1-27. To sphalente	M223	_/6							
ry 1-2'l. To sphalente py 1-2'l.	M224	77	78		2	0.5	21	3	
	M225	78	79		al_	1.4	२५	4	
· · · · · · · · · · · · · · · · · · ·									
									-
Fr py.	<u> 176</u>	<u>84</u>	85		14	0.1	3	2	
r py-po-sphilerite	H227	85	86		4	0.1	12	2	
		86	87		7	0.7.	85	2	
- <u>р</u>				[					
									[
······································				<b></b>	l 	<b>  </b>			

بمحسبين المرابعا ومروا المدار والمعادية

**GRANGES EXPLORATION LTD** ľ **DIAMOND DRILL LOG** PAGE 6 OF G Π HOLE No. J91-28 L 0 55 S INTERVAL LITHOLOGY ي. J ن - 90 *> Internediale guy-quer for Ash, locally agellaces, py V To 89.5-91.0 , Ait 91. 'rj H - brokes 91.0 97 Je, Ju, e 91.0-93.8 Dithic hapelli tuff mediate grey-green with Tarely of fragrests, angular to sounded Herolithic **5**1 92 22. 10 and pale felsic pagnets <u>chloutie:</u> <u>angilaceno</u> stapiontact. PJ mon gtz, Tepy ---93 拫 93.8-94.2 Internediate grey-green first triff in hyle phospeostacts 28 9¥ æ 94.2-97.15 Intermediate dark any-ann. lapille tuff with angular coarse and to lapille in mixed fuffacions - angulacions making 25. -15 S 20 ۶H 92 70 # 17 97.15-97.65 Internediate ney-quen fire graned volconic triff ordyke. 22 av ₩ 91 97.65 - 98.8 Internediate medium to conseash 51 70 and hapelli fuff 2D; - Kogsents angular to rounded, arguilite a volcanic fragments 99 in fine volcanie ast matrix, locally angulaceous + Black anguilule with 20% come ash , angular flattered <u>98.8- 101.9</u> - 100 了-20 51 100.4-102.2 btoken. massive bedded. fol. 75 Stip I to CA on 30' fractive pla 101 ť 101.9-106.2 Interreduale grey-green fire granied Vesicular, breesaked flow, TF diss pd., shorp lower contact 80° 102 ٩v 103 Vanealor 104 Ū. ٣. ٩v -los Mothed grey bleve - green as guilaceons fire tuff 06-2-109.55 -106 8 107 77 G٧ Ŧ うや 108 109.55 fault gauge <u>30</u> PY 109 Bluist-purple grey-grees Lith Hetrolitic felsic punce to angulite 1.55 - 122 92 Lithie hapille to tul breeco angular to bubs -110 Sand to 6 cm. pickesk whome frag? Thon-ou 1-2% dos

[(

Ì

# GRANGES EXPLORATION LTD DIAMOND DRILL LOG C

PAGE 64 OF 9

HOLE No.

J91-28

	MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIOTH	Αu ρρь	Ag ppm	As ppen	Sb ppm		
┢		· · · · ·									
							· ·				
								· · · · · · · · · · · ·			
								•			
					-						
· • - · - ·			· · · · · · · · · · · · · · · · · · ·								
<b> </b>											
$\vdash$										<u> </u>	
$\vdash$											
$\vdash$											
									i		ļ
_	· · · · · · · · · · · · · · · · · · ·										
┢		<u> </u>						ļ			
		<u>}</u>									

			GRANGES EXPLORATION LTD	PAGE	7	o	F	ł	
D	HOLE No.	J	91-28						
	INTERVAL	C. LOSS	LITHOLOGY	c *		S	Μ	А	
Ц	109.55 - 12	2.	reportie place to angellite, angular to	-  -	-	-	-	60	9V. 112
D			beal gr.v. foliated, To diss patpy 1-21.	51 60	-	-	æ	-	- 113
d			110.4-110.5 (dyte?) on fag.		«.J	-	, I .: Z)	-	- Inf - Inf
Π					5 N	_	ግዮ የየ 	-	-14
					1221		ي. ج	_	- u T
					-	- к	-	-	-118
						{	I . I	-	-119 v
					-	-		- 50	121 GV
	122.92-1	21	.75 Silicanus pali blue aren tull Breccia with		-	74	<b>,</b>	L 4	-122.
	102.12-1	<u> </u>	Vesicular fragments, free banded fragments, while gt v. bluish chalcedonic gt v. veris and dess py-po-splatente		-	<b>平</b>	- <u>F</u> F	了. - @	-123 GV -124
[- ]			375%. pale ened phalente, with dark reddish sini gte-sulphide, crackle biscera.		-		<del>ዩ</del> . የጋ አ	β_ χ s	9V -125
[-] 			124-127 strong V. bx mineralization wakens down hole to dess py-po.			X	れにかり	¥.	124
					ير. بور	*   -	- 8 <u>7</u> -	1	-127 Q√ -128
					/2' DEs	-	10. - R	Å	- 129
					5	TT TT	جم . ا . <del>ا</del> ی	$ \chi $	-130
		-			-	_	5	Ā	-131 GV 132



# GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 7A

of 9

HOLE No.

[

[ [

[

[

 $\left[ \right]$ 

J91-28

MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Ац ррб	Ag ppm	As ppm	Sb ppm	
·									
•									
Ру-ро 3%	M229	jzo_	121		24	0.8	9.3	2	
ру-ро 3%	H230	<u>  Z </u>	17 <b>E</b>		26	0.8	55	2	
ру-ро 5%	M231	122	127.92		1240	1.9	175	2	
py-po-sl 3-5%	MZ32	127.92	124		<u>59</u> 0	<i>д</i> .6	288	14	
py-po-sl 3-5%	H235	124	125		270	2.5	291	10	
p1-p0-22-3-5/	H234	125	126		340	6.2	235	2	
py-po-sl-3-5%	M235	126	127		<u>a60</u>	2.3	153	2	
py-po Tisl. 31/	M236	127	128		2	1.0	30	2	
Py-po 3%	H237	128	129		1110	2.0	98	2	
	H238	129	130		a	3.1	174	12	
ру-ро 3-5%	Mz39	130	131		<b>29</b> D	J.3	86	र	
ру-ро 3-5%	HZ40	131	132		250	1.8	139	9	

П			and the second second second second second second second second second second second second second second second						1	
U										
			GRANGES EXPLORATION LTD		·					
П				-1992 v						
U			<b>DIAMOND DRILL LOG</b>		~		· _			
				PAGE	8	0	F 9			0
n	HOLE No.			· · · · ·		-				
U	HOLE NO	-				-				
		J	91-28							
Π		18		<u> </u>		r —				
U	INTERVAL	1 055	LITHOLOGY	*		15	IMI	A		
		ن		<u></u>				7 \	-132	
Π	122.92 -	-	136.75		ſ		••	$\checkmark$	130	
U		<u> </u>	chalcidonic crackle Bx + diss sulphides po-py		-	· _	'-	X	-133	
_			Siliceons tuff breecia		1		PY,	$\sim$		
					ş,	_		1	- 134	
u			large white gtv po		'n		2	11	sv.	
			0 1 1	·	Ē	-	'·_·	14	-135	
		T			~~		aj.	/		
			Contact gradatural.		m	_	[2]	-	- 136	
	· · ·		e and a second second second second second second second second second second second second second second second	2			po-		91	
	136.75-	1/5	14.4. Bluesh pupple gey-green Lithic Lapille		-	_	ן <u>-</u> ן	-	-137	
ف		Τ	petrolethic, unded bargula hegents, telsicity			. '				
$\mathbf{n}$		1	napic chlorike frage, sounded gt fragents. Tr py-po			_		_	-138	
		1	dess. amor while at 1. 1-2% weak blacks	-   -		1.s	· -	_	120	
	·	1		<b>-</b>		XA	•	-	- 139	
		1	faulted confact lower. 40°	–	-	1		-	1.07	
		1	Juint the ornautic course of		<b>m</b>		PM		- 140	(
		1			· 1/5, 10		,-+	-	- 140	ν.
	]	1-			5				14.	
		1			lā.	<b>-</b> .	-	-	- 141	
		+	and the second second second second second second second second second second second second second second second	12	3	<u>.</u>			_	
	··· <u></u>	+	n and a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a sta	To	-	- 1	1-14	-	-142	
				14	Č,	3.2		:		
	,	+		-	-	-	× −,	-	-143	
	·	-				ي و ا		·.		
					· _ · ·	1.2	-	,	-144	
-	144.4 -	1-	10.89 Black angellite, graphilie ships & gauge			$\tilde{r}$		6		
	1007.7		the strands and the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the			<b>~</b>	<u> 1</u>	5	-145	
U	·····						24. −	$\sim$		
-			minor flas.	- 3	-	<u></u> -	1 1	1	-146	
Π		+		ः दे	6	4.2	P1	$\mathcal{T}$	54	
U		$\square$	145.97-146.4 gter with dyke pagrests	្រុ			P1.	ん	-147	
				iFj	12		[]	1		
Π	کے ۔ ذکر ا		gtivers with black carbon stypletes.			H	P/r	11	- 148	
Ļ			ghy with queensh chimite -po.	-  P				T		
<u></u>		- 6		<u>.</u>			ğ <b>-</b> :	3	- 144	
					1.4			$\mathcal{I}$		
Ļ		7.5			1.12			/H	- 150	_
<b>~</b> 7						200		1	1	
					1888	A A A A A A A A A A A A A A A A A A A	17	$\langle \mathbf{y}  $	-157	- 11 C
<b>U</b>								1		
: 1		12.10				2H		ſхЛ	-152	
	s	1.45				r'r		$\Pi$		
ر 		133		e le la	1935 			<u>حرا</u>	•	



page BA. of 9

HOLE No.

591-28

MINERALIZATION ALTERATION	SAMPLE		ro		PPb	Ag ppm	As ppm	56 ррля	
у-ро 3.5%	M241	132	133		210	1.2	116	2	
11	M242	133	134		190	1.6	91	10	
Ц	N243	134	135	· · · · · · · · · · · · · · · · · · ·	680	3.4	104	10	
<u> </u>	MZ44	135	136	<u>.</u>	12	1.0	56	2	
	M245	136_	137		180	0.7	114	2	
11	MZ46	137	138		220	0.1	56	2	
						•			
						· · · ·			
									·
		: 							
TR-Ру-ро	<u>H247</u>	146	147		130	0.1	10	2	
ч	M248	[47]	148		5	0.1	17_	2	
ų	<u> 17249</u>	148	149		4	0.1	16	2	
tt	MISO	149	150		6	0.3.	31	2	
11	11251	150	រប		2	0.)	48	2	
u	N252	เภ	152		3	0.1	72	2	
	<u></u>	152	153	;	2	D.I	35	2	

. . . . . . GRANGES EXPLORATION LTD DIAMOND DRILL LOG PAGE 9 or 9 HOLE No. J91-28 INTERVAL SM Ŀ ېنې د د А LITHOLOGY -153 144.4 -170.69 . . . स्र Black argellite, graphitic gruger slips 9 strong atte vering 90% Tr py-po desserv. Inregular mensels cree ulated bidding, contented 154 10 155 men folds にいい野 ダウ 156 156.4.156.5 Greenshdyke? З 157 20. £" 公式 158 4 158.2-162.5 gt.v. Bx 98x 159 ł : 7 _ -160 . ÷. 161 ないがいたいため · . B. ( E . E . D. ( D. -163 ł • : . Ĵ. -164 ł : Ĥ 1 165 ÷ ł 166 -----!. 1 1 2 1 2 1 ł 5+ 167 80 5 ł T : ; -/67 ; ł 1 ţ 1 1.1 169 <u>ر</u> ر : i a a la .; ?1 170 <u>,</u> 1: 1111 • ; 11 . • 10 È. ÷. 171 Ŧ. 1 EOH 170.69 į: . • • • • . Δ. 1 - 由于中于 ÷ 1 Ð interpretention in the



PAGE 9A. OF 9

HOLE No.

ر]

J91-28

MINERALIZATION ALTERATION	SAMPLE	FROM	то	ыюти	Au	Ag	As ppm	S6 ppm		
			ļ		РРЬ	ppm	rr**	·		_
- <u>Py</u> - <u>Po</u>	HZSU	เรง	154		5	05	31	4		
,]										1
14	H255	154	155		2	0.2	139	2		
		·				<b>v</b> • -				
			1		4	0.2	77	2		┼─
<u> </u>	HZSG	155	156	ļ.,	4	U.X	32	~		∔
13	H257	128	157		6	0.3	19	2	. <u></u>	+
	M2SB	157	158		4	6.7	59	2		
<u></u>						<u> </u>	_~ 1			<b>†</b>
								2		╂──
<u> </u>	M259	158	17.6	<u> </u>	آد_	0.1	24	<u> </u>		
					. <u></u>					-
	H260	159	160		1	0.]	42	2		<u> </u>
	NaL1	160	161		<1	0.1	63	Z		
• •			141		!		~ v			1
										<b></b> -
										1
					·					
· · · · · · · · · · · · · · · · · · ·							· · ·			<del> </del>
					<del>_</del>	<b> </b>				1
				<u> </u>						1
					- <del></del>					1
						<u> </u>				
								<u> </u>	. <u> </u>	+
										1
										1
									<u> </u>	╂──
								└──┤		
									<u> </u>	╞
										1
	<u> </u>			·· ·						1
										t
·		. <u></u>								╂
										–↓
				]						<b>I</b>
										-

# Sample J-91-27 137.4 m Brecciated Amy

D

ſ

#### Brecciated Amygdaloidal Andesite/Latite Flow (Unit 2Ga); Matrix of Pyrite-Quartz-Ankerite

A few elongate phenocrysts of plagioclase average  $\emptyset.2-\emptyset.3$  mm long. The groundmass is dominated by lathy plagioclase grains averaging  $\emptyset.07-0.12$  mm in length. Ankerite (3-4%) is concentrated in some patches as ragged, disseminated grains up to 0.1 mm in size. Chlorite (0.3%) forms scattered lenses up to 0.2 mm long. Pyrite ( $\emptyset.5$ %) forms disseminated grains averaging  $\emptyset.02-0.05$  mm in size. Ti-oxide (minor) forms elongate grains averaging  $\emptyset.02-0.03$  mm long.

Amygdules (4-5%) vary widely in size and texture. A few amygdules from 0.3-0.9 mm in size are of very fine grained quartz. Some are recrystallized slight to extremely fine grained aggregates. An amygdule 1.2 mm across has a thin border zone of very fine grained quartz and a core of extremely fine grained quartz and ragged grains of ankerite. A few larger amygdules are of extremely fine grained quartz with irregular patches of ankerite. On the border of one is a veinlike zone up to 0.3 mm wide of very fine grained ankerite and moderately abundant pyrite.

In the breccia matrix, pyrite (17-20%) forms clusters of grains averaging 0.02-0.07 mm in size, and a few grains from 0.1-0.25 mm across. Interstitial to pyrite is very fine grained quartz showing comb textures.

Quartz (17-20%) forms aggregates recrystallized aggregates with well developed comb textures extending outwards from pyrite grains. Some of these are tightly folded. Ankerite (3-4%) forms irregular, very fine grained patches intergrown with quartz.

Ti-oxide forms a few patches up to Ø.1 mm in size of extremely fine grained aggregates in pyrite.

#### Sample J-91-28 52.8 m

# Sheared Latite Lapilli Tuff with Fragments of Sheared Basalt Flow (Unit 2Dr.1Gur); Veinlets of Chalcedonic Quartz, Ankerite

Fragments (30%) up to 2 cm long are of sheared basalt flows containing plagioclase grains averaging 0.02-0.03 mm long in an opaque-rich groundmass. Seams of opaque define a prominent foliation.

The groundmass (60%) is dominated by extremely fine grained sericite with much less abundant plagioclase. Wispy seams of semiopaque define a prominent foliation, along which the rock was sheared strongly and kink folded. Pyrite (2-3%) forms disseminated grains averaging 0.02-0.05 mm in size.

Irregular replacement patches (3-4%) are of very fine to fine grained pyrite with minor interstitial patches of sericite and quartz. The latter forms comb-textured aggregates outwards from pyrite grains. Pyrite (1-2%) also forms disseminated grains averaging Ø.1-0.4 mm in size; many of these have partial rims of comb-textured aggregates of quartz.

Other irregular replacement patches and veinlets up to 0.5 mm wide are of extremely fine grained, chalcedonic quartz (4-5%). A few veinlets also contain patches of fine grained ankerite (1%).

#### Sample J-91-28 30.5 m

## Amygdaloidal Basalt/Andesite Flow (Unit lGa.2Gu); Vein of Quartz-Calcite; Veinlets of Calcite

The rock contains 7-8% lathy plagioclase grains averaging  $\emptyset. \\ \emptyset2- \\ \emptyset. \\ \emptyset4$  mm long in a patchy groundmass of two main types. The dominant type (50-55%) contains abundant opaque, which obscures any other minerals. The less dominant type (20-25%) forms interstitial patches and seams dominated by equant plagioclase averaging  $\emptyset. \\ \emptyset1$  mm in grain size, with interstitial chlorite, sericite, and opaque.

Amygdules (15-20%) averaging 0.5-1.2 mm in size and locally up to 3.5 mm across are of a few textural and compositional types. Many are dominated by extremely fine grained, chalcedonic quartz. Some of these are concentrically zoned, with coarser grained rims surrounding finer grained cores. Some have thin rims of chalcedonic quartz and cores of fine to very fine grained quartz. One of these has a core 0.4 mm across containing an aggregate of extremely fine grained opaque with minor interstitial quartz. Another 0.6 mm long is dominated by similar opaque.

A few amygdules up to a few mm across have rims of chalcedonic quartz, a central zone of trace to abundant medium grained calcite, and a core of fine grained quartz containing irregular patches of very fine grained opaque averaging 0.03-0.07 mm in size; the texture suggests that this opaque might be pyrobitumen.

Ragged patches of ankerite up to 0.5 mm in size occur in cores of some amygdules. In others, thin partial shells of ankerite occur near the margins. A few have cores of medium grained ankerite and fine grained quartz.

Some large amygdules are composites of coarse mosaic patches of radiating aggregates of chalcedonic quartz.

One amygdule 2.3 mm across has a core of very fine grained quartz and a rim  $\emptyset$ .2 mm wide of extremely fine grained, chalcedonic quartz. Between the two are a few irregular patches of extremely fine grained sericite.

Several amygdule-like to fragment-like patches (7-8%) up to several mm across have broad cores of andesite/latite dominated by equant grains of plagioclase averaging 0.03-0.04 mm in size with moderately abundant interstitial chlorite and minor to locally abundant patches of ankerite. Many of these are rimmed by zone of chalcedonic quartz averaging 0.2-0.4 mm wide.

One fragment 2.5 mm across consists of a granular aggregate of carbonate grains averaging 0.01-0.02 mm in size, with interstitial selvages of opaque.

One fragment (?) 1.1 mm across consists of muscovite, chlorite, and abundant dusty opaque, mainly in chlorite.

Opaque (0.5%) forms irregular veinlets up to 0.07 mm wide.

A vein up to 3 mm wide is dominated by fine to medium grained guartz, with patches of finer grained quartz and of medium to coarse grained ankerite. Muscovite forms a few flakes up to 0.25 mm in size. Late veinlets (1%) up to 0.2 mm wide are of calcite and minor quartz.

## Sample J-91-28 66.8 m Strongly Sheared Andesite/Basalt Flow Unit lG/Ar)

 $\Box$ 

Near one end, the rock contains disseminated lathy plagioclase grains averaging 0.02 mm long in a chlorite-rich groundmass with abundant wispy semiopaque/opaque seams parallel to foliation. Textures suggest that this is a strongly sheared andesite/basalt flow.

Much of the sample is well foliated, and dominated by chlorite with moderately abundant to very abundant dusty to extremely fine grained opaque. A strong foliation is defined by parallel orientation of chlorite and seams of opaque. Dark layers contain abundant opaque as disseminated grains to dense patches; some layers contain moderately abundant cubic pyrite grains averaging 0.1-0.3 mm in size. This rock probably is a more strongly sheared variety of the rock with the fine plagioclase laths.

Tight folds are outlined in some layers by wispy sericite-rich seams.

Replacement veins and patches (4-5%) up to 1 mm wide are dominated by chalcedonic quartz with irregular patches of calcite/ankerite. Other patches are dominated by very fine grained ankerite with much less quartz.

# Sample J-91-28 80.1 m Sheared Argillaceous Intermediate Coarse Tuff (Unit 2Cjr) (note: no offcut block)

Plagioclase forms a few phenocrysts or crystal fragments up to Ø.6 mm in size; alteration is moderate to ankerite/limonite.

Some lensy fragments up to a few mm long are of extremely fine grained andesite flow dominated by plagioclase (altered moderately to sericite) with less abundant interstitial opaque and chlorite.

A fragment 2.5 mm long and elongate parallel to foliation is of latite tuff(?); it is dominated by extremely fine grained plagioclase with wispy seams of sericite parallel to foliation.

A few fragments up to 1.5 mm long are dominated by aphanitic grains which give the fragment a light to medium grey or brown color and semiopaque appearance. Two fragments are replaced moderately by anhedral to euhedral porphyroblasts of ankerite. The fragments probably are felsic flows.

One fragment 1.5 mm across is of a very fine grained latite flow containing abundant sericite after plagioclase and abundant disseminated pyrite grains.

Pyrite (2-3%) forms euhedral grains averaging 0.2-0.3 mm in size, and a few up to 0.6 mm across.

The groundmass is dominated by extremely fine grained chlorite with moderately abundant to very abundant dusty to extremely fine grained disseminated semiopaque and opaque grains. In a few layers, the abundance of semiopaque and opaque is high enough to make the whole layer semiopaque. Sericite (1-2%) is concentrated in lenses parallel to foliation.

A few replacement patches and lenses (2-3%) up to 0.4 mm wide parallel to foliation are of very fine grained quartz with minor to moderately abundant ankerite.

Several veinlets (4-5%) up to 0.3 mm wide of sericite and less ankerite and chlorite were sheared into discontinuous, isoclinal folds. A few patches up to 1.5 mm in size are of similar, extremely fine grained sericite.

#### Sample J-91-28 109.85 m Trachy/Latite Tuff (Unit 2/5 C/D) Note: no offcut block

K-feldspar (2-3%) forms crystal fragments up to 1.2 mm across; larger ones are altered moderately to ankerite. Plagioclase (0.3%) forms crystal fragments averaging 0.1-0.2 mm in size. Quartz (0.1%) forms angular grains up to 0.4 mm in size.

A few fragments from 1.1-2.5 mm across are of extremely fine grained trachy-/latite; they contain minor K-feldspar phenocrysts in a groundmass dominated by plagioclase/K-feldspar, with moderately abundant disseminated opaque and patches of ankerite.

The groundmass consists of equant plagioclase grains averaging 0.003-0.005 mm in size intergrown with sericite flakes. The latter are oriented strongly parallel to foliation. Numerous ragged patches up to 1.5 mm long are dominated by sericite. Pyrite (2-3%) forms porphyroblastic grains up to 1 mm in size.

A replacement band up to a few mm wide is of very fine to fine grained pyrite with interstitial quartz and ankerite. It occurs within a zone 5 mm wide containing elongate patches, possibly large fragments(?) of sericite-rich material. One of these contains two patches up to 1.2 mm in size of fine grained quartz.

A few lensy replacement patches up to 1 mm long are of very fine grained quartz with much less abundant chlorite and pyrite. One contains a grain of medium orange brown sphalerite Ø.1 mm across.

Wispy lenses of semiopaque cut irregularly across the foliation and are folded openly to tightly.

#### Sample J-91-28 115.7 m Heterolithic Latite Lapilli Tuff (Unit 4/5D)

Fragments (4-5%) up to 8 mm in size are of extremely fine grained to aphanitic latite/trachyte flow, locally with minor phenocrysts of K-feldspar.

K-feldspar (1-2%) forms fragments averaging  $\emptyset.1-\emptyset.3$  mm in size, and a few up to  $\emptyset.5$  mm across. Quartz ( $\emptyset.5\%$ ) forms crystal fragments averaging  $\emptyset.2-\emptyset.4$  mm in size. Plagioclase ( $\emptyset.2\%$ ) forms fragments up to  $\emptyset.4$  mm in size; alteration is slight to moderate to sericite. Pyrite ( $\emptyset.5\%$ ) forms fragments up to  $\emptyset.7$  mm long of extremely fine grained aggregates.

Ragged fragments (4-5%) up to 1.5 mm in size are dominated by foliated chlorite with minor sericite.

One rounded fragment 1.2 mm across is of hypabyssal dacite(?); it contains very fine to extremely fine grained K-feldspar, plagioclase, and much less quartz and patches of sericite/muscovite in a sparse, extremely fine grained groundmass dominated by plagioclase.

Zircon forms one subrounded grain 0.08 mm across.

The groundmass is dominated by extremely fine grained plagioclase, with abundant wispy to dense seams of sericite/muscovite parallel to foliation. Pyrite (4-5%) forms disseminated grains averaging 0.05-0.15 mm in size and a few coarser patches up to 1.5 mm in size.

Replacement lenses (1-2%) up to a few mm long are dominated by pyrite; in some patches, pyrite is surrounded by very fine grained quartz.

#### Sample J-91-28 125.6 m

Γ

#### Andesite/Latite Flow (Onit 2G); Replacement Patch of Quartz-Pyrite-Pyrrhotite-Sphalerite

The host rock (22-25%) is dominated by lathy to anhedral plagioclase grains averaging 0.03-0.05 mm in size. A patch 0.5 mm across of extremely fine grained guartz and minor sericite and patches of Ti-oxide and acicular grains of apatite may represent altered hornblende phenocrysts.

Ti-oxide forms patches up to 0.15 mm in size of prismatic grains averaging 0.02-0.03 mm long. Pyrite forms disseminated, subhedral grains averaging 0.01-0.02 mm in size. Pyrrhotite forms disseminated patches averaging 0.01-0.03 mm in size. Ankerite forms scattered, subhedral porphyroblasts up to 0.08 mm in size.

The rock is cut by a few veinlets (1-2%) up to 0.2 mm wide of quartz and minor to abundant pyrrhotite and minor chalcopyrite, and minor pyrite and ankerite.

The replacement patch (73-76%) is dominated by zones rich in quartz and others rich in sulfides. Quartz-rich patches show a variety of textures. Some patches up to 1.5 cm long consist of parallel aggregates of very coarse grains. Others are of equant fine to medium grained aggregates.

Patches of very fine grained aggregates may represent earlier replacement of the host rock. Some of these contain minor euhedral porphyroblasts of ankerite averaging  $\emptyset.05-\emptyset.1$  mm in size. Sericite (2-3%) forms extremely fine grained patches associated with some patches of very fine grained quartz, especially where these border sulfides or coarse grained quartz.

Pyrite (20-25%) forms anhedral grains and clusters averaging 0.1-0.5 mm in grain size. Interstitial to some pyrite patches, quartz was recrystallized to irregular comb-textured aggregates.

Pyrrhotite (10-12%) and medium orange-brown sphalerite (5-7%) occur in interstitial patches among pyrite grains. They also form very fine to fine grained patches up to 2 mm in size bordering pyrite aggregates. Some coarse grains of sphalerite contain disseminated, exsolution inclusions of pyrrhotite.

Arsenopyrite (0.5%) forms clusters of euhedral grains averaging 0.015-0.025 mm in size enclosed in sphalerite and pyrrhotite, mainly near borders of pyrite grains.

Chalcopyrite (minor) forms grains up to 0.07 mm in size with pyrrhotite and sphalerite and in the adjacent host rock, and a few grains up to 0.03 mm in size enclosed in pyrite.

Pale yellow electrum forms a subrounded grain 0.0025 mm across in pyrrhotite.

Ankerite (0.5%) forms a few patches up to 0.2 mm in size on quartz-sulfide borders.

	Gran	ges	Inc.	PR	OJECI	עט	JK F	VEF	1	FILE	E #	91-	•5479					Pag	e 2	
SAMPLE#	sio2	AL203	Fe203 X		COO Ho2	0 x20 x x	T102 7	12.		Cr203 X	8а рра	'\$r pqan	La Zra pom pom	ү ррж	¥Ь ppm	LD) X	SUK X	,		 orec.
191-27-71.0 191-27-118.1 191-27-137.4 191-28-30.5 191-28-52.8	57.65	16.32 10.13	5.98 15.04 3.00	.88 1.09 1.45	34 2.1 165 2.8 3240 3.8 7139 5.9 5 25 2.4	73.79 21.56 0.43	3.87	.72 .46 .15	1053	.013	2739 795 287	174 158 196 442 173	34 233 20 225 23 170 10 68 16 155	42 36 18 10 26	98 20	8.8 5.6 8.1 6.1 5.2	99.81 99.87 99.87 99.86 99.86 99.87			F.
J91-28-66.8 RE J91-28-30 J91-28-80.1 J91-28-86.9 J91-28-86.9 J91-28-109.	0.5 63.3 55.3 50.3 50.3	6 10.65 7 13.22 4 14.75 1 13.30	3.05 3.89 3.89 5.8.23 6.45	1.44 2.29 3.42 2.84	165 .(	6,3	7 1.00 5 1.02 5 2.41	.13 .22 .61 .02		.006 .002 .002	251 1161 564 829	124 434 88 157 39	24 218 10 58 52 248 13 178 17 203	35 11 31 33 30	25 20 20	6,8 8.9 9.4 4.4				
J91-28-115. STANDARD SO		B 14.70 1 10.4	6 9.93 1 3.43	3.60	1601	x 5.5 4 2.1						188	28 292	24 20		11.3	100.14 99.98			 <del></del>

Sprole typet CORE. Samples beginning 'RE' are duplicate samples.

., .

<u>р</u>

		}	$\square$			C			<u>}</u>				ليت		]				1								]			<u> </u>
×18(	45 5		354		8	344	3.42 3.72	26		ND NO	1 195, 1 150		2	2	13 16 (	7.69 6.96	084 088	3	3 2	.82 .74	69 0 64 0	11 2- 11 2		.02 .02			1 <b>~~</b>	580 395		
N181 N182 N183 N184 N185	38 8 33 4 26 3 22 3 25 3	3 14 7 11 5 12	484 270 152 144 188	3 73 50 1 34 1 3 3	) 9 7 8	360 470 908	5.37 3.51 3.25 3.26 4.37	22 13 13 19 37	5 5 5	ND NO ND ND ND	1 101 1 124 1 116 1 186 1 114	3.9 1.6 1.6 1.4	2 2 6 11	2	13 / 11 / 15 :	4.47 4.58 7.62	057 057 059 057 057	23334	2 4 1	.89 .99 .23	58 0 64 0 60 0 60 0 57 0	1 2 1 2 1 2	.88 1.00 1,28	.02 .02 .01 .01 .01	.13 .13 .11	1 1 1 1		365		
H186 H187 H188 H189 H190		39 12 82	151 125 126 132 142		29 28 23	345 980 1166 1459 1160	4.75 4.08 4.44	46 6 3 2 2	5 5 5	D D D D N D N O N O	1 37 1 192 1 213 1 269 1 160	.3	9 2 2 2 2 2 2	2 2 2	99 100	4.03 4.98 5.57	.077 .081 .079 .076 .086	4 3 3 3 3	19 28 27	1.38 1.62 1.67	50 .0 62 .0 163 .0 81 .0 70 .0	1 2 3 2 2 2	2.02 2.76 2.75	.01 .03 .07 .06 .06	.11 .22 .19	1 1 1 1 1	1	340 110 50 70 115		
K191 X192 X193 K194 X195	1 1 1 1 1 1 1 1	2 2	76 64 68		23 5 24 5 22	1404 1292 1754 1433 1324	4.38 4.87 4.31	2 2 2 2 2 2	5 5 5	nd No No Nd	1 204 1 191 1 324 1 244 1 154	.2	222222	2 2 2	110 153 92		059	4 3 3	30 34 26	1.67	50 ( 35 ( 27 ( 61 ( 75 (	1 2 11 2 11 2	2.37 2.40 2.40	.04 .05 .04 .03 .01	.08 .02 .11	1 1 1 1 1	2 1 1 2	60 50 45 60 45		
x196 M197 RE M194 X198 X199		0 2 1 2 3 2	109		5 25 5 21 5 24	1273 1030 1399 1306 1210	2.99 4.17 3.86	19 22 22 2	5 5 5	םא סא סא סא	1 243 1 159 1 238 1 172 1 279	.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	49 89 60	4.68	045 073 057 057 057	3 4 3 3 3	26 25 29	1.50 1.63 1.59 1.88 1.91	185 (0 61 (0 121	2 2 11 2 12 2	2.56 2:35 2.92	03 .03 .03 .03 .02 .02	.37 .11 .28		1 3 4 1 3	110 65 45 40 35		
K200 K201 K202 K203 K204	1	0 2 8 3 4 2 5 2 2 2	120 80 91	41 -1 -1 -1	5 24 7 20 5 21 7 11	1208 741 1433 1309 1634	5.79 4.34 5.33 3.23	89 2 15 11 42	5 5 5	N0 N0 N0 N0	1 256 1 91 1 160 1 162 1 140	,2 ,2 ,2	2224	2 2 2 2 2	68 73 99	6.24 2.49 4.86 3.48 4.71	054 096 104 091 038	25442	321	1.36 1.55 1.09 1.50 1.45	69 ( 53 (	2 2 2 2 2 2	2.83	5 .03 5 .02 5 .04 5 .04 5 .01	.14 .08 .07		1 4 1	205 80 195 240 365		
HZO5 H2O6 Standard C/Au-r	1 1 18 5	3 2	2 52 2 111 2 132	28.13	3 15	1947 1268 1052	4.17	45 2 39		ОИ ND R	1 117 1 127 37 51	. 882	2	2	35 59 55	4.07	055 088 090	3 4 38	1 1 . 60	1.25	56 99	21 2 22 2 29 32	1.91	.02	. 19	- 18 A - 18 - 18 - 18 - 18 - 18 - 18 - 1	4	415 220		
M207 M208 M209 M210 M211	1 3 21 4 4 5 4 7 3 6	5 5 12 6	113 85 75 123 134	(1) (1) 1 (2) 1 (1) 1	2 20 1 29 1 29 1 29 0 27	1188	4.71 14.29 8.48 11.92	14 800 301 273	5 5 5 5	עא סא סא סא	1 108 1 65 1 76 1 86 1 82	2 2 2 2 2	2 93	2	50 28 17 38	4.34 2.49 4.17 3.18	.094	4	2 3	1.22 .65 1.11 .93	56 .0 26 .0 27 .0	)1 2 )1 2 )1 2	1.50 1.02 .59	02 02 02 02 02 01 02 01 02 01	.14 .14 .13 .15		3 3 7 2	195 3250 3550 3700 5800	· · · · · · · · · · · · · · · · · · ·	
RE M216 M212 M213 M214 M215	1 4 1 3 1 5 1 5 1 5	2 6 2 2 4	125 82 105 94 131		5 21 1 22 3 22	1403 1310 1538 1432 1432 1121	6.00 6.91 6.75	9 61 3	5	ע סא אס אס אס	1 190 1 146 1 216 1 201 1 160	.2 2 2	2 2 2 2 2 2 2	2 2 2	50 93 80	7.04 5.26 6.87 6.09 5.14	.126 .101 .103	45444	1 3	.92 1.05 1.10	29 34 47 37 38	01 3 01 3 01 3	2,00	.02 .03 .03 .03 .03 .03 .02	.14 .12 .12		7 2 7			8
N216 M217 M218 N219 N220		5 39 4 44 5 6	115 345 241 109 95		6 24 8 23 2 13	5 1361 4 1128 5 1281 7 1732 2 1501	6,93 5,87 6,84	5472	5 5 5 5 5	סא סא סא סא	1 189 1 132 1 143 1 241 1 205	235 141	222222	22222	59	6.63 4.36 4.86 7.28 5,75	106 109 139 088 093	4444	1	.96 1.15 1.09 1.57 1.09	31 🐒	01 4 01 2 01 2	2.72	9 .02 2 .01 1 .02 7 .02 8 .03	, 12 , 10 , 12		120 3 2 18 6	335 255 70		
N221 N222 N223 N224 N225		5 4 5 6 6 48 3 9 6 87		5	5 3: 9 2: 9 2: 9 2: 0 2:	3 905 B 955 2 661 4 1034	7.64 6.14 4.21 6.31	2 10 21 29	5555	NO NO ND ND ND	1 59 1 135 1 127 1 49 1 69	2 1.0 1.3	22224	22222	74 58 52 60		.121 .107 .077 .110	34464	1 2 4	1.75 1.56 1.35 1.29 1.52	34 63 50 40	02 Z 03 Z 01 3 01 2	3.2 2.3 1.7 2.0	9.02 7.02 6.02 8.01 1.01	.12 .22 .18 .14	1++++++++++++++++++++++++++++++++++++++	2 2 14 2 21	110 60		
H226 H227 H23 M225	1 1 4 1 1	5 17 4 13 5 6 6 16	60	.1 .C .8	1 1 1 2 7 2 5 1	8 1149 0 1273 7 1352 1 758	5.70	6 22 2 85	5 5 5 5	ND ND ND	1 174 1 100 1 17 1 3	L	2	2	53 43 26 17	4.46 4.01 3.90 .39	133 136 121 1058	6 6 3 5	1	1.31 1.70 1.61 .95	- 57 🖏	01 01 01 01	1.4	1 .02 3 .02 3 .01 1 .01	.24 .29 .34		14	110 70 55		

ł

		· · · ·		<u>]</u>		]		٦		<b></b>		] 		7		]				<u>]</u>		<u>ן</u>									
	SAMPLE* J91-28	Хо ррл	Cu · ppn		Zn ppm	AG peni	Ni ppnnş		Mn ppm	Fa X	(A) 950)	U ppm	Au ppm p	Th : prin pr	sr of Sr of	d Sb m ppm	B 1 ppm	۷ اتموم	Ce X	P Z	La ppm		Ng X 1		B Kippm	Al X	Na X	X X P	V ∧u* om pob	Kg ppb	
-	N231 M232 M233 M234 M235	1 41	8 - 20 6 - 50	3 45 6 81 0 41	134 282	2.6	6 4 4 1 4	8 9 8 7 9	151 138 145 622 540	3.86 5.12 5.02 6.41	175 288 291 235 153	5 5 5 5 5	ND ND ND 2 NO	1 2 1 1 1 1 1 1	18 15	2 Z 2 14 3 10 5 2 0 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 8 9 18 17	.38 .25 .22	-118 .071 .068 .081 .070	6 6 6 8 8	4 4 18 1 3	.24 .10 .07 .52	46 .0 35 .0 35 .0 39 .0 36 .0	2 4 2	.61 .27 .24 .87	.01 .01 .01 .01 .01	.30 .16 .14 .15	1 1240 1 590 1 270 1 340	105 1250 2050 1750 1750	· · ·
	M236 M237 M238 M239 M240		3 2! 6 19 4 31 7 3 9 20	9 43 0 37 1 137	219 7 57 2 103	2 2 0 2 3 1 2 2 3	2 2 1 4	5 6 8 9 7	510 523 162 887 323	4.57 4.50 5.58 7.08 4.45	30 98 174 86 139	5 5 5 5 5	NO ND ND ND ND	1 1 1 1 1 1	15 17 14 3 17 5 15 7	2 2 2 2 1 12 1 2 7 4	222222	16 24 7 15 15	.29 .22	.081 .099 .078 .067 .075	8 11 7 6 7	3 15 3 2 4		37 .0 49 .0 32 .0 40 .0 43 .0	2	,89 .25 1.12	.01 .01 .01	.17 .17 .18	1 111 1 20 1 29	2 140 0 325 0 1000 0 845 0 935	
_	N241 M242		8 2 3 1		2 17 7 11		4		359 243	4.29 5.04	116 91		ND ND		17 1 <u>3</u>	2 2 2 10		15 14	, 19	.077 .075	7	20 2	.33 .18	56 .0 40 .0		.62 .48	.01 .01		1 21 1 19		
	M243 N244 N245 N246 M247	1 1 1 1	22 18 11 12 33	89 21 24 12 4	128 74 89 170 46	3.4	4		296	7.81 5.68 5.79 9.46 3.05	104 56 114 56 10	5 5	NO NO ND ND ND	1 1 1	15 16 18 35 46	2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2	7 19 47	.24 .24 .41	.090 .087 .127	6 6 5	3 3 12 3 7	,17 ,17 ,60 1,98 ,88	38 0 56 0 63 0 48 0 64 0	1 2 1 3 2 2		.01 .01	.23 .17 .16	1 680 1 12 1 180 1 220 1 130	2 70 50 70	
	H248 H249 H250 H251 H252	1 1 1 1	71 90 92 109 25	6 8 10 8 . 2	57 75 69 74 41		29 31 34 35 13	14 16 18 21 9	730 891 1058 683 898	4.07 4.65 5.27 5.79 2.55	17 16 31 68 72	5	סא סא סא אס אס	12	77 91 65 80 65	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222	35 38 36	4.83 5.12 6.54 2.92 3.98	,121 ,112 ,139	4	18 16	1.09 1.16 1.17 1.40 .91	73 0 69 0 64 0 88 0 53 0	1 Z 1 Z	1.70 1.86 1.84 2.12 1.30	.02 .02 .02	,16 ,15 ,21		150 180 170	¢
	#253 #254 #255 #256 #257		57 91 150 163 96	11 20 2 8 8	36 65 63 61 102	-5223	14 35 29 31 30	13 21 19 20 19	808 590 475 416 375	3.14 4.76 5.06 5.45 5.74	35 31 139 32 19	5 5 5 5 5	04 07 07 07	1 2 1 1 1 1 1 1 1 1	76	2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	29 23 30	4.81 2.87 2.19 1.77 1.51	138 117	4 3 3	13 13 14	.74 1.07 1.11 1.05 1.46	70 ( 91 ( 79 ( 83 ( 78 (		1.06 1.74 1.76 1.70 2.20	.01 .01 .02	.21 .18 .19		2 150 5 195 2 110 4 135 5 145	
-	K258 K259 K260 K261 K262	1 1 1 2		7	65 35 142 71 106		30 11 20 11 12	24 9 13 8 8	744 322 633 680 870	5.85 2.60 3.70 3.39 3.94	59 34 42 63 73	5 5 5 5 5	0 0 0 0 7 0 7 0 7 0	1 2 1 1 1 1 1 1 1	98 90 156	2 2 2 2 3 2 2 2 2 2 18	2 2	20 24 26	3.85 1.25 2.90 2.37 4.25	079 083 084	32	12 13 28	1.13 .87 1.26 1.39 1.27	58 🕄		1.77 1.18 1.80 1.84 5.63	.02 .01	.12 .15 .13		125 5 35 1 75 4 25 360	
	H263 H264 K265 M266 M266 M267	19 13 5 9 8	15 15 12	33 25 22	1077 571 296 613 703	18.8 11.5 11.6 11.3 7.3	7 9	32 27 17 6 6		13.89 11.97 7.22 3.28 4.39	822 399 413 369 417	5 5 5	סא d א d א	1	104 95 94 72 63	.2 76 2 37 2 30 3 50 3 37	2 7 ) 2 ) 2	5	2.52 1.36 3.19 2.64 2.39	116 115 104	3 5 5	11	.35 .04 .07 .10 .26	23 39 50	01 01	2 .26 2 .26 3 .22	.01 .01 .01 .01 .01	.18 .19 .17	1 24 1 29 1 16	0 3050 0 880 0 730 0 1750 0 1650	
	H268 H269 H270 H271 H272	12 5 18 6 1	24 34 48	15 25	295 738	2:5 1:5 2:3 1:0	6 4 5 7 6	5 5 8 8	173 322 92 201 95	3.47 2.72 3.04 3.72 3.57	322 806 313	55555	NO ND ND ND ND	1 1 1 1	17 41 16 17 19	2 1/ 4 / 2 2: 8 1/ 2 :	3 2 3 2	2 4	.54 .99 .49 .57		5 6 5 7 5 7	3	.21 .21 .14 .17 .14	55 55 47 48 56	01 01 01	3.50	01. 5 01. 01	.18 .22 .21	1 13 1 16 1 1	0 675 0 330 0 400 8 590 4 310	
	H273 M274 RE H270 H275 H276	2 1 18 1 5	54 35 55	17 26 32	105 302 2810	1.1 2.4 1	4 3 4 6		83 99 91 229 112	3.87 4.66 3.09 5.11 7.89	823	5 5 5 5 5 5 5	NO NO ND	1 1 1	12 12 16 17 2 12	2 2	6 2 2 2 7 2	2426	.41		87		.06 .19 .14 .22 .13	36	01 01	4 .29 5 .62 4 .63 5 .57 5 .55	01 2 .01 2 .01 3 .01 7 .01 5 .01	.24	1 1 16 1 3	9 310 4 170 0 405 2 830 0 2700	
	H277 H278	1	78 63	21			7			5.28	75/ 814			1	29	.3 1 2	4 1	2 6	94 65	,15 ,16	) 2, 5	12 2	.20 .41		01 01	3.71	2 .01	.27 .22	21	0 205 0 310	a second a far

	••• 		
	ES EXPLORATION LTD		
DIAMO	OND DRILL LOG		
		11日間 - 11日間 - 11日日 11日日 11日日 - 11日日 11日日 - 11日日 11日日 - 11日日	PAGE 1 OF 17
HOLE NO. J91.	-29 (JE	FF GRID )	COUL 3
PURPOSE			······
	CHECK THE POSSIBILITY		
INT	ERSECTED IN HOLE I	11-12 EXTENDING NOR	TH.
			·
LOCATION	GROUND ELEV.	BEARING	TOTAL LENGTH
8+50N / 1+21E	460 m (ALTIN)	270°	146.30 m
DIP - 50°	01P TESTS 124.97m - 45°	VERTICAL PROJECT	HORIZONTAL PROJECT
	146.30 head - 50°		
LOGGED BY DATE	CONTRACTOR	CORE SIZE	DATE STARTED OCT 23,19
TEFF TESAR oct. 24   1991	J.T. THOMAS	B.Q.	DATE COMPLETED oct 24, 19
SUMMARY LOG (m)			
	The Length C		
00 - 9.14 OVERBURDE	•	TO I ADVIST TUTT	
	INTE CONDER CONINED		
	IATE COARSE-GRAINED T		LITE
7.75-83.20 FINE TO M	IEDIUM-GRAINED SANDST		LITE
7.75-83.20 FINE TO M 23.20-84.40 FAULT ZO	1EDIUM-GRAINED SANDST DNE	DNE NITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M</u> 13.20-84.40 FAULT ZO 14.00-143.00 INTERME	IEDIUM-GRAINED SANDST	ONE NITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M</u> 3.20-84.40 FAULT ZO 24.00-143.00 INTERME	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	ONE NITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 14.00-143.00 INTERME</u>	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	ONE NITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 14.00-143.00 INTERME</u>	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL TO LAPILLI TUFF MINOR ARGILLITE	
<u>7.75-83.20 FINE TO M</u> 3.20-84.40 FAULT ZO 24.00-143.00 INTERME	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL TO LAPILLI TUFF 11NOR ARGILLITE	
<u>7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 14.00-143.00 INTERME</u>	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M</u> 3.20-84.40 FAULT ZO 24.00-143.00 INTERME	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 14.00-143.00 INTERME</u>	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M</u> 3.20-84.40 FAULT ZO 24.00-143.00 INTERME	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
<u>7.75-83.20 FINE TO M</u> 3.20-84.40 FAULT ZO 24.00-143.00 INTERME	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
7.75-83.20 FINE TO K 3.20-84.40 FAULT ZO 24.00-143.00 INTERME 13.00146.30 FINE-GRA	1EDIUM-GRAINED SANDSTR DNE EDIATE FINE-GRAINED T	DNE WITH MINOR ARGIL	
7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 14.00-143.00 INTERME 13.00-146.30 FINE-GRA	AEDIUM-GRAINED SANDST DNE DIATE FINE GRAINED T AINED SANDSTONE NITH N	DNE WITH MINOR ARGIL	
7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 4.00-143.00 INTERME 13.00-146.30 FINE-GRA 516NIFICANT MINERALIZED	AEDIUM-GRAINED SANDST DNE DIATE FINE GRAINED T AINED SANDSTONE WITH M DINTERVALS (m)	DNE WITH MINOR ARGIL	
7.75 - 83.20 FINE TO K 3.20 - 84.40 FAULT ZO 4.00 - 143.00 INTERME (3.00 146-30 FINE-GRA 516NIFICANT MINERALIZED 39.50 - 55,75 7-	1EDIUM-GRAINED SANDST DNE EDIATE FINE - GRAINED T AINED SANDSTONE NITH M AINED SANDSTONE NITH M AINER SANDSTONE NITH M NITERVALS (m) 8 % Pyrite ; runastomosin	ONE WITH MINOR ARGIL	
7.75 - 83.20 FINE TO M 3.20 - 84.40 FAULT ZO 4.00 - 143.00 INTERME 13.00 146-30 FINE-GRA 516NIFICANT MINERALIZED 39.50 - 55.75 7-	AEDIUM-GRAINED SANDST DNE DIATE FINE GRAINED T AINED SANDSTONE NITH N	ONE WITH MINOR ARGIL	H316-H395 Mols, disseminated ts disseminated
7.75 - 83.20 FINE TO K 3.20 - 84.40 FAULT ZO 4.00 - 143.00 INTERME (3.00 - 146.30 FINE-GRA 516NIFICANT MINERALIZED 39,50 - 55,75 7- 123.16 - 135.00 3-4	1EDIUM-GRAINED SANDST DNE EDIATE FINE - GRAINED T AINED SANDSTONE NITH M AINED SANDSTONE NITH M AINER SANDSTONE NITH M NITERVALS (m) 8 % Pyrite ; runastomosin	ONE WITH MINOR ARGIL	H316 H395 Abbs, disseminated. Is, disseminated.
7.75-83.20 FINE TO M 3.20-84.40 FAULT 20 400-143.00 INTERME 43.00146-30 FINE-GRA 516NIFICANT MINERALIZED 39.50 55.75 7- 123.16 - 135.00 3-4	1EDIUM-GRAINED SANDST DNE EDIATE FINE - GRAINED T AINED SANDSTONE NITH M AINED SANDSTONE NITH M AINER SANDSTONE NITH M NITERVALS (m) 8 % Pyrite ; runastomosin	ONE WITH MINOR ARGIL O LAPILLI TUFF MINOR ARGILLITE MINOR ARGILLITE O LAPILLI TUFF MINOR ARGILLITE O LAPILLI TUFF MINOR ARGILLITE MINOR ARGILL	H316-H395 Bobs disseminated Is disseminated
7.75-83.20 FINE TO R 13.20-84.40 FAULT 20 14.00-143.00 INTERME 143.00-146-30 FINE-GRA 143.00-146-30 FINE-GRA 145.00-146-30 FINE-GRA 145.00-3-4	1EDIUM-GRAINED SANDST DNE EDIATE FINE - GRAINED T AINED SANDSTONE NITH M AINED SANDSTONE NITH M AINER SANDSTONE NITH M NITERVALS (m) 8 % Pyrite ; runastomosin	ONE WITH MINOR ARGIL O LAPILLI TUFF MINOR ARGILLITE MINOR ARGILLITE O LAPILLI TUFF MINOR ARGILLITE O LAPILLI TUFF MINOR ARGILLITE MINOR ARGILL	H316-H395 Bobs, disseminated. Is disseminated
7.75-83.20 FINE TO M 3.20-84.40 FAULT ZO 24.00-143.00 INTERME 43.00-146-30 FINE-GRA 516NIFICANT MINERALIZED 39,50-55,75 7- 123.16 - 135.00 3-1	1EDIUM-GRAINED SANDST DNE EDIATE FINE - GRAINED T AINED SANDSTONE NITH M AINED SANDSTONE NITH M AINER SANDSTONE NITH M NITERVALS (m) 8 % Pyrite ; runastomosin	ONE WITH MINOR ARGIL	H316-H395 Bobs disseminated Is disseminated

1.1.2.2.2.2.2.2.2.

statementaria de la companya de la companya de la companya de la companya de la companya de la companya de la c

-

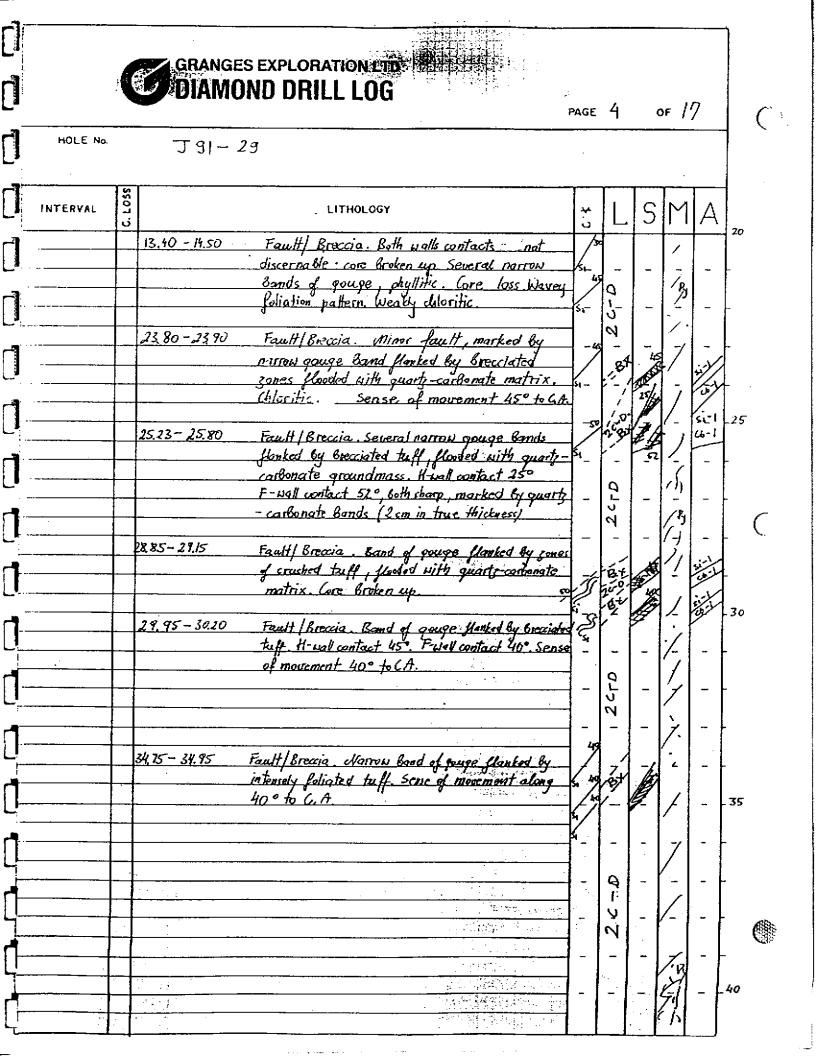
]

]	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	AGE	2	o	F /	7	
HOLE No.	J91-29						
INTERVAL		c +		S	Μ	A	0
p - <u>9.14</u>	OVERBURDEN / CASING	-	-	-	_	-	-
			<b>—</b>	-	1	-	-
]		-	_	-		-	-
· · · · · · · · · · · · · · · · · · ·		-		-	-	-	-5
·		_	1 A O	-		-	-
·		. <b>-</b>	-	:- ••		-	
· · · · · · · · · · · · · · · · · · ·					_	-	-
.14 <u>- 5.7, 75</u>	INTERMEDIATE COARSE-GRAINED TO LAPILLI TUFF	×	20-D 15x	- 65	-		- 10
·····	Gray to blue-grey in coour. Granular texture with warse grain size, grading in places into fragmental with kepilli up to 2 cm. Inplaces		26-0-1	H H H	کر کر کرچ	(6-1 Si=1 (1-2)	-
····	phyllitic structure. In pares brecciated due to tectonic movements with narrow Bonds of gouge or crushed tuff flanked by goiner of		2C-01		· • 7	-	-
·	Bucciation often flooded with guarts canconate matrix. Prospece of bluich, more stringers	۲: کر حر	20-04	4. A. W	Х Х		
	of black abbritions throughout the core in places swarms of quarts cartonate stringers at all angles to the core axis. Intervallits mineralized	10	語行		-	-	-15
	by pyrite with variable intensity through out it Lower part of the interval is in fullled control with s	<b>t</b>	<b>D</b> IL.		ري. ميتري	- 4	-
	9.50-9.70 Breccia / Fault. Gouge band flatter By concise of crushed tuff. Adoritic Corr Coston up		いた。		Ż	-	- - ·
	10.67-11:65 Brecin   Fault H-wall contact 65 marked bring quarty-carbonate band F-wall contact on the procession					-	_
	Strong flattening fastice in places george Conds. Common contorted foliation				X		-20

-----

HOLE No. J91-29	·····		·					3	
MINERALIZATION ALTERATION	SAMPLI	FROM	то	нтотн	Au ppb	Ag g/t	As ppm	Sb ppm	
						. 			
······································									
tr By	H 316	9.14	10.67	1.53	60	1.5	160	2	
1-2% Ry; marrow stringers of py along foliation plane	H 317	10 <u>.</u> 67	II.65	0.98	260	4,0	721_	24	
1% B; sporadic narrow stringers, disseminated.			· ·						
(fault: core loss)									
	H 320	-							
						· · · · · · · · · · · · · · · · · · ·			
17. Rg;	H 32				-		•		
	<u>H 522</u>								
<u>17. rj; — 11</u>	H323	19.00	20,50	150	210	1.7	344 	4	

Ľ


С [

[

[(

[

[ [ [





page 5

of 17

HOLE No.

۲ ۲

[(

丁91-29

MINERALIZATION ALTERATION	блине	FROM	то	ыютн	₽ ^{\$} \$	Ag g/t	As ppm	56 ppm	
-2%. Py ; sporadic norrow stringers, disseminated.	H 324	20.50	22.00	1.50	110			2	
	H\$\$5	2200	23.50	1,50	86	<u>[.0</u>	160	7	
?ZRj ; 11	H326	23.50	25,23	173	520	ગ્ર.વ	859	16	
tr Bj.	<u>H 327</u>	<u>25:23</u>	25.80	0.57	490	2.9	927	26	
-2%. Ry;	<u>H 32</u> 8	2580	2730	1.50	230	1.3	604	-11	
<u> </u>	H 329	29,30	28,80	1,50	188	1.5	456	7	
2 % Ry;	H 330	28.80	3030	1.50	220	2.7	760	15	
2 % By; 11	<u> </u>	3080	3/,80	1,50	/25	1.4	540	7	
II	H332	31.80	<u>33,50</u>	1.70	122	1.9	265	7	
	H.383	3350	35.00	(50	209	<u> . </u>	530	11	
(I	H 334	<u>25.00</u>	36.5t	1,50	290	2.8	700	18	
-3% Py - 11-	H335	36.50	38,00	1.50	106	3.0	305		
<u> </u>	H 336	3800	39.50	150	180	<i>д.</i> 6	603	22	
"4". Py; anastomoning bands, stringer, blobs *	<u>4</u> 337	3950	41.00	<u>(.50</u>	420	6.9	1321	49	
zone . Increase in Quarty-carbonate stringers.									

	<b>_</b> ,,,,								]	
			GRANGES EXPLORATION CTO	PAGE	6	c	DF /	7		ſ
	HOLE No.		J91-29		<u> </u>					C
<b>[]</b> -	INTERVAL	C. LOSS	LITHOLOGY	*		S	M	A		
					3, - 0	-5	AS A	-	40	
	·		41.90-42.70 Fault / Crushed sone. Angular fragments of tay within quarty-carbonate matrix core Brokow up. H-wall contact 50°, Frwall contact 60, both	4 	20-0	50		62 5≓2		
			marted by narrow bend of gouge.		-	-	S.SYC	_		
					- 0 0 1	-	* * *	5 <u>'</u> -1 (6-1	45	
					12 6-	_	1.1	-	-	(
					-	-	7	-		Ç
	· · · · · · · · · · · · · · · · · · ·		49.50 - 50.80 Crushed zone, lotereal intensity fallated, crushe brecciated. Core Broken up Dominant direction part to the Core Axis. No change in lithology. Decrease of quartz-carbonate stringers downlote.	M in	120-041		シチュ	-	-50	
				S, S, S —	(#) Q	-	To Ba	—		
					Jт	-	A LI	-		
	······································		55.75-57.75 Hanging wall of the fault which separates	-		A SK	2.77	si <u>-</u> 1 (6-1	-55	
			Intermediate tuff interval from sectimentary on Interval Begins with quarty-carbonate icin 12 im wide. Berecisted taff, flooded with quarty- carbonate matrix Intervely foliated bottom		5000 ×		11	- 5;-2 16-2 11-2	-  -	
			of the interval grades into gouge with contort pattern of foliation F-wall contact of the interval slickenside of the fault, 40° alloritie taut		NX N		-	-	ł	
	57.75-83.20		FINE TO MEDIUM-GRAINED SANDSTONE WITH MINOR ARGIN	4-	2 2 7			- -	.00	
									]	



丁91-29

PAGE 7 OF 17

HOLE No.

 $\left[ \right]$ 

Ì

SЬ Au Ag As **MINERALIZATION** ALTERATION WIOTH SAMPLE FROM τo ъpЪ g/t ppm. ppm H338 41.00 41.90 0.90 450 7.4 1353 48 7-8%. Py; Anastomosing bonds (up. Jem. wide) stringers and Blobs . Disseminated # H 339 41.90 42.70 0.80 310 7.7 852 7-8% Py; anastom bands stringers, blobs dissem. 69 (fault mineralized by pyrite) 4340 42.70 44,00 1.30 198 4.7 847 36 8-10%. Ry; anastroning bands stringers, blobs, disconin. * H341 4400 45.50 L50 215 9.5 803 102 7-87 B; * H342 45.50 47.00 1.50 240 7.7 782 340 8-10% R; 7-8% Py; * H343 47.00 48.50 1.50 146 76 952 146 * 4344 48,50 4950 1.50 119 6.4 517 99 2-3% Ry; spora dic stringers, Blobs, disseminated H345 4250 50.80 1.30 58 2.0 191 34 5-6%.Ry * H346 5080 5200 120 120 6.6 326 44 * #347 52.00 53.40 1.40 520 14.8 2408 269 8-10% Py , anastomoring stringers bands, specks, diarna 6-7% Rg ; 4348 53.40 5480 1.40 110 5-2 300 98 4349 54,80 55,75 095 230 6.4 585 93 H350 5575 577 200 330 2.5 1002 29 2-3% Ry - sporadic stringers, Blobs, disseminated (core loss) and of the lower part of prittie pore. 0.9 42 H151 57.75 58.60 0.85 14 tr-17. R1; disseminated 6

		GESEXPLORATION		er en en en en en en en en en en en en en	8	OF	= 17
HOLE No.	丁91-3	29		1100			
·							
INTERVAL	C. LOSS	LITHOL	OGY	مید /ب	L	S	MA
		H-wall contac	t sharp, slickenside of fo	ult 400 /			•
		to C.A. Flanked do	winhold by come of Brech	ated .	-	-	-   -
		with (angula	n frogments of sandite Bonate matrix wookly	ne floored			•
	<u>      </u>	with quartz-ca	Bonate matrix weakly	delocitic _	10	-	-   -
			r, dartic texture with		7		
		mealum grain siz	<u>r. In places poorty inte</u> lite In places Braceinst		C) K-X 72	-	
·		laults F-wall	The In places Breceinster poradic quartz-carboonte	dringer,		. 	·   _
· · <u> </u>		Mineralized by u	very minor pyrite (tras	a)			:
			J 77		چ ا	_	-   -
			• ••••••••••••••••••••••••••••••••••••	/	1.	65	47
-+	66.00-66.20	) Breacia Fault. No	of intensely physlific son of intensely physlific son nt 65°. Unggy stringen	mked H	- <u>E</u> x		- /0
		<u>downhole by band</u>	of intensely phyllitic sou	ndstone //	F		•
		<u>Sense</u> of movement	nt 65 - Uugy sinngen	<del>of gaons i</del> st-	X-71(3)	- I	-   -
+	<u> </u>	-carbonate	<u> </u>				•
		· · · · · · · · · · · · · · · · · · ·			74		
					-	_	
	6980-70.00	Breccia / Crushed	zone Core Broken up. 7	Tagments			· .
. <u></u>		of sandchane flood	led with quarty-carbonati	e ground nas		<b>7</b> 1	- 12
· • • •	· · · · · · · · · · · · · · · · · · ·				·   -	-	-   -
						1 1	
·							
• 							
• 					. <del>.</del>		
· · · · · · · · · · · · · · · · · · · ·						Г.	
· · · · · · · · · · · · · · · · · · ·			e andre Marie et		-		
· · · · · · · · · · · · · · · · · · ·					_		
· · · · · · · · · · · · · · · · · · ·			2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.554) 2 (1.5		-		
·					<u>()</u> - <u>(</u>		
·				50	(j)		
·				50 			
·	<u> </u>		inted soudstore at 15°	50 50 60 <i>C.A</i>			
			inted soudstore at TS.	5. 5. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.			
·	<b>J2</b> 80-77.5		inted soudstore at 750	50 50 60 C.A 			  
·	<b>.</b>	90 Narrow band of Greek	iated sandstore at 75°	50 50 60 C.A 			
·	11280-77.1	90 Narrow band of Greek	inted soudstore at 750	50 50 60 C.A 			

and	GRANGES EX	PLORATI	ON LTD		
and and	GRANGES EX	DRILL	LOG		

PAGE 9 OF 17

HOLE No.

۲ ۲

L

[(

丁91-29 S۶ Au Ag As ALTERATION MINERALIZATION HIDTH SAMPLE FROM TO g/t ppb ppm ppm H352 58.60 60.60 2.00 2 tr By 30 10 b.z 4. . . ... - 2 . a -•• *,* * ÷ . 1 ٩, . 

		DIAMOND DRILL LOG	AGE	10	O	of l'j	7	
HOLE No.		े जना- 29						
	1			<b></b>	<del>.</del>		T	ļ
INTERVAL	C. L055	LITHOLOGY	÷		S	Μ	Α	
· · · · -				A		-	1	
			-	(2) K-X	-	~	-	ŀ
	-			× v				
···	-		-	12	-	-	-	╞
· ····		marked by gouge band	r.			•		
83.20 - 84.40			_		T.	<i></i>	4-7	ţ
01.10				8	1/L	U/L	ú.Y	
		by zone of Breaciated rade, floaded with quarty- carbonate matrix. Breaciated rome consists of	s		1-30	1	r- !	)- 
		angular or fand rabangular clasts of grey interne	diate					ŀ.
· · · · · · · · · · · · · · · · · · ·		traff flooded with pyritic, quartz-carbonate		-	-	V	-	- 1
·		and deloritic matrix. Strong Hettening fabric.				1		
		In places bands of blackish, cherty groundmass.	-	-	-	X	-	ſ
· ·· ·· ·		Foot-hall contact 50°, sharp.		[				
			-	Ŷ	-		-	ľ
84.40-143.00		INTERMEDIATE FINE -GRAINED TO LAPILLI TUFF	:	4		1		
		H-wall contact sharp 50°. Foot-wall contact 75	-	Ц	~		-	[
		shap. Grey in colour Granular texture with	_	· · · ·	_	_		
		fine to course grain size. Down hole grades				1		
·····		into kipilli. In places any gdaloidal	-	1	_	187	-	- 9
		Massive structure , is places phyllitic. Variable				.,		
		intensity of silicification. In places breccuated		_	-	J.	_	Ļ.
· ·		Lapilli tuff is moderately sericitic.				- ,		ŀ
			-	đ	·		_	ŀ
		87-96-93.80 Amygdaloidal fragments predominant	· •	3	-	1		
			-	-		[-,]	-	┝
		·	4			-6		
			1		2	1/2	6-I	F
	i i i e	9380 - 95.10 Breccia, Zone of crushed taff, flooded with	/ (C	X Y V	<b>€</b> #	4		
		quarty-carbonate and writic metrix. Both Halls	4	N <u>_</u>	S.	-	-	-9
		of contact not discorrable : core Broken up. Phylitic	51					
	<b> </b>		· -	-	-	-	-	F
		95.10-114.50 Lapilli fragment predominent. Strong flattening	• . •	e .		$ \mathcal{A} $		ĺ
<del>.</del>		fabric, in places lapilli fragments are rotated.	-				-	-
	्र	Common Watrey pattern of foliation Moderately	ц., с.	ુરુ	-	5	Se-2	
		sericitie- Fost-wall contact sharp 50	-54	<u>م</u>	-	1	-	-
	10,2** 10,2**			ġ		1		
		AN 教育的	-		-	-4	-	-
· · · · · · · · · · · · · · · · · · ·								
			دور در ا و موجد ا	اليكرية ما الراسيسي	.	A		_)(

HOLE NG			. <u>-</u> .				PAGE	: //	
J 91-29									
MINERALIZATION ALTERATION	SAME	LE FRO	н то	WIDT	H Au ppł			Sb ppm	
tr By.	÷] 35	3 823	0 83,2	0 0.90	4	0.1	28	2	-
4~5% Py ; norrow irregular stringers parallel to foliation	¥ H35	4 83.2	0 84.4	0120	92		484		
planes. Scattered Blobs. 1-2% Ry; sporadic stringers, specks, disseminated	H 355	5 84.40	2 86.00	1.60	Z	2.0	77	2	
	H 35 (	8600	0 87.90	1.90	4	2.1	52	2	
	H 35	7 87.90	89.50	1.60	72	3.2	224	7	
	<u>H 358</u>	89.50	91.00	1.50	49	2.8	///_	IJ.	
<u> </u>	H 359	9[00	92.SC	1,50	212	3.4	225	12	
	H360	92,50	93.80	1.30	58z	3.6	491	21	
8-10% By; anastomosing stringers, blobs, specks, office	H 361	93.80	95_10	1.30	54	2.5	186	-11	
1-2% By ; sporadic stringers, specks, disseminated. (core lose)	H362	95.10	97.54	2.44	15	0.1	/6	2	
1-2 f. Ry ; sporadic bands, specks, stringory, dissen.	<u>H 363</u>	<u>97.54</u>	99.00	1.46	3	0.1	25	2	
2-3% Ry;	H364	99.00	100,50	150	8	0.1	24	2	

[

3 3 4 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	17	OF	12	1	AGE	NPLORATION CONTRACTOR OF A CONTRACT OF A CONTRACT ON CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT	DIAMON		
5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7		•.			<u></u>		J91-29		HOLE No.
Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	MА	SN			 שי	LITHOLOGY	1		INTERVAL
Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o									÷
Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	7		-		-4				
Since Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec	- 1	- 4	-	1	5				
Since Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec	ry -   -		_		51				
Since Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec	X	ł	· :						
Since Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec	-	-   :	-		15				····· <u></u>
Ill4.50 - 117.45 Intermediate fine-grained phyllitic toff Ill4.50 - 117.50 Intermediate fine-grained phyllitic toff Ill4.50 - 117.50 Intermediate fine-grained phyllitic toff Ill4.50 - 117.50 Intermediate fine-grain	4 -	- 14			2	<u> </u>			•
14.50-117.45 Intermediate fine-grained phyllitic toff H- vell contact S0 ^a sharp f will contact gradational . Meakly delaritic	- Se-	_ [ -	_	7	/_×			_	
14.50-117.45 Intermediate fine-grained phyllitic toff H- vell contact S0 ^a sharp f will contact gradational . Meakly delaritic	1		_	1				-	
Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State		- //-			51 51				
II4.50 - 117.45 Intermediate fine-grained phyllitic toff H-well contact 50° sherp F well contact gradational . Neakly dilaritic		- 0	ମ -	(	-/				
II4.50 - 117.45 Intermediate fine-grained phyllitic toff H-wall contact 50° sharp F wall contact gradational . Neakly dilaritic	<del>ا</del> م							-   ·	<u> </u>
II4.50 - 117.45 Intermediate fine-grained phyllitic toff H-wall contact 50° sharp F wall contact gradational . Neakly dilaritic	· ~ /		<b>*</b>	100	ब्र     - C				
II4.50 - 117.45 Intermediate fine-grained phyllitic toff H-well contact 50° sherp F well contact gradational . Neakly dilaritic		·- /-	:	1	2			-	
II4.50 - 112.45 Intermediate fine-grained phyllitic teff 	- A		÷.	)  	$\mathbb{P}$				
III4.50 - 1172.45 Intermediate fine -grained phyllific toff H-well contact 50° sharp F well contact gradational . Neakly dilacitic in a statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the statistic in the stat				\$	7				.*
II4.50 - 117.45 Intermediate fine-grained phyllitic toff H-well contact 50° therp. F. Well contact gradational . Weakly dilaritic			-		1				
114.50 - 117.45 Intermediate fine-grained phyllitic toff H-wall contact 50° sharp. F-viel contact gradational - Neakly diloritic in intermediate N N 									
III4.50 - 117.45 Intermediate fine -grained phyllitic tuff H-wall contact 50° sharp T-well contact gradational . Neakly diloritic	· - / /	-	(a) (a) (b)		,				
	ľ			· 7./		Intermediate fine grained phyllitic biff	114.50 - 117.45	_	
		9	<u>.</u>		1	H-wall contact 50° sharp. I well contact			
	- 5e-	A	6					1	
			N.	2	14				
				. I.,	K				
		Sec.			5				
			10.0	掾	逐			29 3-3-3	
			e Q		炒草				
	-   -				Ĩ.				

.....

. .

GRANGES EXPLORATION L DIAMOND DRILL LO	<u> </u>						PAGE	13	OF
HOLE No. J91-29						_			
MINERALIZATION ALTERATION	SAMPL	FROM	то	WID7H	Au ppb	Ag g/t	As ppm	56 89m	
<u>2. 7. R. ; sporadic lands, stringers (narrow irregular,</u> specks, disseminated )	<i>. H</i> 365	10050	10200	150	1	<u>0.</u> 1	- 	2	
			103,50			0.1		2	
		•-•							
<u>11</u>	H 367	103.50	105:00	150	1	0.1	4	2	
	H 368	105.00	10650	1.50	3	0.1	5	2	
	H 369	10650	1080	1.50	4	0.1	10	2	
	H 570	108.00	109.50	1.50	7	0.1	12	2	
				. 60					
	<u>H371</u>	109.50	111.00	1.50	Z	0.	10	2	
	H 372	<i>i</i>   .00	42.50	1.50	2	0.1	6	2	
	H 373	112.50	11400	1.50	1	0.1	7	2	
(I	H 374	#4.00	115,50	1.50	3	0-1	25	2	
11	H375	115,50	11700	1.50	1	0.3	26	2	
	HZ	117.00	118,50	150	Ż	0.3	5	2	
			11 0 30		<u> </u>				
	H 377	118.50	120.00	1.50	1	0.4	24	2	

		GRANGES EXPLORATION LTD	PAGE	14	c	of 17	7	) (
	HOLE No.	J91-29						
Ū,	INTERVAL	LITHOLOGY	*	L	S	Μ	A	120
				2 Pre)	-	K ¥	-	-
]	· · · · · · · · · · · · · · · · · · ·	121.72 - 135.00 Significant increase in silicification throughout the interval, thus change in colour to blue-groy Increase in mineralization by pyrite. Sparadic quart - carbonate stringers.			-	<i>I</i> 7.	_	-
]		- carbonate stringers.		_	-	-     	-	-
<b>]</b>	·	:		-	-	[AJ	-	- 125
- - -				-	-	- - - / /	- si-2	-
			-	-	-	41 4 4	-	C
<b>]</b> -				50	-	$\frac{f_{f}}{f}$	-	
			- 40	1.64	-	F	÷	130
_! -¶				-	-	₽	-	
 - <b>1</b>				-	-	7.	-	_
			- - -	-	-65	/ 	-	- -
╺ ╺ ╺		135.00 - 135.93 Breccia / Fault. H-wall contact 65° sharp, marked by intensely faliated rock. F-wall contact 60° sharp, marked by 7cm band of gauge .Sericity.	-	20.	1/10	/ /,	522	- 135
			-	-	-	$\frac{1}{t}$	-	-
	·····		-	201	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Serl	
			-	-	-	[] []	-	- 140
					1			

محمد وينفر المالية المالية المالية المراجع



PAGE . 15 OF 17

HOLE No.

[ [

 $\left[ \left( \right. \right. \right]$ 

C C

丁91-29 Ag SЬ As Au ALTERATION MINERALIZATION SAMPLE FRON TO NIOTH ppm ppb ppm ppm 2 0.4 H 378 12000 121.92 1.92 21 2% R1; sporadic stringers, specks, disseminated H 379 121 92 123,16 1.2.4 1 0.9 65 2 --- 11 -----3-4% By; narrow irregular stringon, single Bands, disen. H380 123.16 124.35 1.19 20 2.4 235 16 1381 124.35 125.90 1.55 1732 14.0 4217 133 5-6% Ry; -11-* H382 125.90 127.40 1.50 212 3.4 361 31 4-5% R - 11 -3-4% Ry; -- 11-* #383 12740 12890 1.50 312 4.4 511 30 # H 384 128.90 130.50 1.60 3112 766 9756 186 3-4 % R; -- 11 -* H385 130,50 13200 1.50 1932 53.5 3749 173 ----- II -* H386 132.00 133.50 150 1392 209 2954 97 ·11 -* H387 B3.50 135.00 150 342 6.3 1184 54 11. 1-2 × Py H388 135.00 135.90 0.90 101 3.0 215 3 4389 135.90 13740 1.50 210 5.4 698 37 2-3% Ry; narrow stringers, specks, discominated. 3-4% Ry; 4390 137.40 138,90 150 191 4.8 465 36 - 11-H391 13890 140.40 1.50 177 31 489 15

						. <u> </u>			]
ĺ		(	GRANGES EXPLORATION LTD DIAMOND DRILL LOG	PAGE	16	c	o∈ I	7	C
	HOLE No.					-	-		
	INTERVAL	C. LOSS	LITHOLOGY	* 5	L	S	Μ	Α	_ 140
					1	-	:/ej	Se-	-
				1	40	-	1.	-	-
			· · · · · · · · · · · · · · · · · · ·		5	-	[	-	
	·		141.15 - 143.00 Intermediate lapili ash tuff (pumise); sericitic. H-Wall contact 40° sharp F-Wall contact 75°, sharp		7LIX(J)	-	-	-	14 <del>5</del>
	43.00 — 146.30		FINE-GRAINED SANDSTONE WITH MINOR ARGILLITE H-wol contact 75° charge Dark-grey in colour.		-	-	-	-	
			clastic texture with fine grain size. Hassive structure In places inclusions of argillite, Hineralized by traces of Py.		-	<del>.</del>	-	-	C
	146.30		END OF THE HOLE	-		-	_	-	-
					-	-	-	-	-
				   -	-		-	-	_
					-	-	-	-	-
					-	-	-	-	122
					_	-	-	-	
					-	-	_	-	
Ū					-	-	-	-	 160
Ĺ					-		-	-	

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec



PAGE 17 OF 17

HOLE No.

[((

[

MINERALIZATION ALTERATION	SAMPLE	FROM	TO	MIDTH	Ац ррь	Ag ppm	As ppm	Sb ppm	
2-3 7.Py; parrow inequals stringers, specks, dissem	4 392	140240	141,80	1.40	90	2.z	373	3	
3-4%. Bj	H.393	141 PO	143,00	1.20	৯১০	3.5	વિયવ	25	
tr By	H 394	143,00	144,60	1.60	35	<i>[.</i> ]	203	7	
tr By	H395	144.60	146.50	1,70	8	0.4	18	2	
	-	· · · ·							
······································									
									 ╞
									 ╞
· · · · · · · · · · · · · · · · · · ·		· .							
	┨╼┈┨							{	 ┢

SAMPLE#	Mo Cu Pb Zn Ag Ni pan pan pan pan pan pan	l Co Kn, Fe 2AS U nppπ ppm, X ppm ppm p	AU Th Sr CC Sb B ppm ppm ppm ppm ppm ppm	i V Ca P La Cr Kg Ba m ppm X Y ppm ppm X ppm	B AL Na K V Au* Hg X ppm X X X ppm ppb ppb
x352 x353 x354 x354 x355 x356	1         40         9         59         2         18           1         28         7         70         15           4         17         51         110         3         39           1         10         12         82         20         5           1         13         17         106         24         8	5 12 1260 4.01 28 5 9 42 811 5.39 484 5 5 14 528 4.12 77 5	NO 1 181 2 2 NO 1 139 2 20 ND 1 50 2 2	2         19         4.09         070         5         13         2.13         61           2         15         3.09         066         4         11         1.89         66           3         28         1.46         101         3         11         1.77         41           2         15         .79         212         7         10         1.60         45           2         34         .32         101         5         12         2.53         36	01 5 .99 .01 .22 192 355 01 3 1.58 .01 .26 11 2 65
н357 н358 н359 н360 н361	1 13 17 70 28 7 1 11 15 46 34 6 3 12 22 70 36 4	8       14       588       4.38       224       5         7       17       413       4.86       11       5         6       13       348       4.62       225       5         4       13       326       3.53       491       5         5       12       1297       11.64       186       5	ND 1 18 42 11 ND 1 25 22 12 ND 1 54 4 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0         2         1.65         .01         .25         49         75           01         5         .88         .01         .20         212         220           01         2         .64         .01         .20         582         310
x362 x363 H364 H365 X366	1 10 6 73 11 3 1 14 7 177 1 2 1 12 6 125 1 2	2       11       510       3.81       16       5         3       10       1028       3.66       25       5         2       14       505       5.07       24       5         2       11       806       3.54       7       5         1       10       768       4.57       7       5	ND 1 126 2 2 ND 1 119 12 2 NO 1 151 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10     2     .92     .01     .22     1     3     280       10     3     .98     .02     .29     1     8     280       10     4     .91     .02     .25     1     1     215
H367 H368 H369 H370 Re H367	1 11 10 94 11 2	3       7       633       2.45       4       5         2       8       673       3.73       5       5         1       10       661       3.37       10       5         2       13       945       4.34       12       5         2       7       615       2.27       5       5	ND 1 133 2 2 ND 1 123 2 2 ND 1 145 22 2	2       14       4.51       164       7       5       .53       95         2       11       4.94       195       6       5       .34       75         2       15       3.90       194       7       5       .49       76         2       18       5.96       196       6       6       .85       70         2       13       4.43       153       6       5       .51       86	i     01     4     .71     .02     .26     1     3     150       3     01     2     .86     .02     .28     1     4     225       0     01     2     1.05     .02     .25     1     7     240
X371 X372 X373 H374 X375	1 11 9 77 1 11 4 103 1 16 6 97	2         12         875         4.22         100         5           1         8         795         3.19         10         5           2         9         804         3.17         7         5           2         9         341         3.41         25         5           1         12         208         4.18         26         5	NO 1 120 22 2 NO 1 153 22 2 NO 1 62 22	2       24       4.94       187       6       7       .99       73         2       12       3.67       196       7       6       .91       84         2       9       4.11       212       8       5       .54       87         2       13       1.56       208       7       7       1.61       54         2       21       .89       220       8       4       3.68       44	3       1.32       .02       .27       1       2       70         1       0.1       2       1.15       .02       .28       1       1       85         6       0.1       2       1.67       .01       .23       1       3       140
H376 H377 X378 X379 H380	1 14 13 125 4 11 9 3 106 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ND         1         69         2         2           ND         1         49         2         2           ND         1         47         2         2	2       18       1.04       245       6       4       3.25       6         2       16       1.54       237       5       7       2.67       4         2       15       .97       293       7       6       3.16       5         2       21       1.06       2.16       6       6       3.28       4         2       15       .56       178       4       8       1.34       1	4 01 2 2.04 .01 .29 1 1 75 8 01 3 2.39 .01 .37 1 1 110 6 01 2 2.41 .01 .26 1 1 215
H381 H382 H383 H384 H385	9 15 13 108 13 4 3 9 15 63 4 4 11 30 112 339 76 6 2	7         7         913         8.09         221         5           6         13         127         8.00         361         5           7         8         412         4.08         51         5           23         20         866         6.41         9758         5           44         36         280         9.30         3749         5	NO 1 28 2 31 NO 1 37 2 30 ND 1 71 3 186	2       4       1.86       055       2       8       1.28       1         3       8       .55       144       4       5       .29       1         2       3       1.26       031       2       9       .60       2         2       6       2.38       036       2       12       .71       2         2       9       1.06       045       2       11       .18       1	3       01       2       .38       .01       .22       1       212       1600         7       .01       2       .37       .01       .16       1       312       705         3       .01       2       .23       .01       .19       1       3112       2150
x386 x387	7 30 36 OA 82838 3	20 25 201 / // 338/5 5	5 ND 1 51 2 97 5 ND 1 47 2 54	2 11 1.20 040 2 13 .38 1 2 8 1.19 039 2 9 .28 2	7 01 2 .29 .01 .23 1 342 785
H388 H389 H390 H391 H392	1 32 11 107 3 0 1 43 20 103 5 4 1 39 11 130 4 8 1 26 14 48 3 1 126 19 72 228	27         23         37         33         681         6.27         215         5           43         41         618         8.11         698         5           54         48         344         5.83         665         5           41         36         606         6.44         487         5           21         26         640         6.23         373         5	ND         1         167         2         3           ND         1         69         2         37           ND         1         59         2         36           ND         1         62         2         15           ND         1         62         2         15           ND         1         71         .3         13	2         65         1.59         044         2         41         4.07         3           2         31         1.05         049         2         19         1.76         2           2         20         .80         082         2         12         .84         3           2         50         .82         038         2         26         2.31         2           2         31         .97         119         3         13         1.55         4	1 01 2 .72 .01 .31 1 191 485 7 01 2 1.89 .01 .21 177 255 5 01 2 1.14 .01 .27 1 90 165
к393 Н394 Х395		25 32 735 6.78 1949 5 16 15 818 3.71 203 5	5 NO 1 62 2 20 5 ND 1 118 3 7 5 ND 1 224 2 2	2 46 .89 082 2 22 2.40 3 2 12 1.82 082 4 4 1.12 10 2 12 4.07 059 3 5 1.82 10	1 201 4 .60 .01 .38 35 55

٩.

. ____

· i

Grances Inc. FROJECT UNUK RIVE 001*#885#W#GeohcitaeScreeVancouverascev6043e4

ļ			38.00	18822988	(6) (CB			50 <del>00</del> 00	與強制	0.5942	1011111		31.82,03			à <b>8</b> 9972		969 C.			6.069.05	e de la composition		86. ISA	1999 - 1998 Ang tanàng ang tanàng ang tanàng kao mangkao kao minina mangkao kao minina mangkao kao minina mangkao kao minina	1940 B					3.83				<u> California (Maria</u>	a dhaan 2000 i
	sample# J91- 29			Cu ppm			n KA N SPR		ו קודג		Мл рра		neAs pon					ن 20				Ca X	р Х	La ppm	Cr ppm	Kg X	8а ррл	1) X		Al X	Xa X		VA PPM P		Kg ppb	
	H316 H317 H318 H319 H320		2 2 1	39 30 47 43 75	74 42 22	172 205 215 112 112		4 3 3	2	36 30 30	1864 1949 1664 1427 1486	7.69 7.25 5.69	160 721 400 273 722	5 5 5 5 5 5 5	0 ОХ ОХ ОИ				2 24 3 2 14	2 2 2	125 94 147 161 151	1.49 .55 .30	043 035 046 050 042	2 2 2	40 73 83	4.69 4.63 5.54 5.10 4.81	38 41 44	.01 .01 .01 .01	2 2 2	3.68 2.06 4.10 4.50 4.41	.01 .01 .01	.15 .10 .10	1 2 1 2	20 68	90 385 240 20 30	(
	X321 X322 X323 X324 X325		111	49 23 28 31 27	28 22	- 84			57 54 51	33 30 29	1538 1488 1197		81751		ИО ИО ИИ ИИ ИИ	1 1 1 1 1			4 2 4 2 4 2 7	2 2 2	140 146 116 90 130	.58	039 046 044 042 042	2 2 2	81 67 55	4.84 5.55 4.63 3.86 3.76	55 53	,01 01	2 2 2	4.19 4.46 3.48 2.87 3.06	.01 .01 .01	.14 .15 .17	- 20 G - 1	22 10	50 25 40 15 30	Ň
	H326 H327 RE H332 H328 H329		1 1 1 1	46 55 44 62 75	91 38 37	171 17 244 152 201	1 2. 5 2. 5 1.	8	53 52 . 55	33 30 34	1858 1287 1467	5.88 7.14 6.06 6.42 6.00	\$927	5	ND ND	1			6 16 7 26 7 6 2 11 4 7	2 2 2		.61	,040	2 2 2	33 66 47	4.36 4.29 3.54 4.38 4.12	43 69	01	2 2 2	2.53 2.06 3.09 2.58 3,30	.01 .01 .01	.19 .18 .22	<b>331:2</b>	90 20 30	120 275 135 80 80	
	H330 H331 H332 H333 H334		1 1 1 1	105 52 45 32 85	70 38 22	79 27 23 10 29	B 1. 1 1. 3 1.	4918	33 54 56 54	31 30 33 32	1441 1260 1186 1230	5.97 6.34 6.85	540 265 530 700	5 5 5 5	ND	1	46		8 15 0 7 7 7 6 11 18	2 2 2	91 117 115 111 134	.46 .40 .22	048	222	66 66 69	3.23 3.83 3.48 4.17 3.51	52 - 47		2 2 2	2,54 3,50 3,09 3,83 3,45	.01 .01 .01	.18 .19 .20	1 1	25 22 09	385 110 135 85 180	
	x335 x336 x337 x338 x338 x339		1 1 2 3	41 49 55 33 25	26	12	42. 16. 37.	6 9 4	40 35 33	36 36 41	1044 839 539	6.13 6.39 9.22 12.26 9.64	: 608 1321 1353	5 5 5	אס סא סא סא	1	55 48		5 11 7 22 2 49 2 48 2 69	22	33 25	.46 .43		2 2 2	22 14 8	2,94 2,25 1,26	16 14	01 01	2	2.89 1.07 .73 .58 .46	,01	.28 .26 .31	1 1 1 4 1 4	80 20 50	90 200 210 370 620	
	H340 H341 H342 H343 H344		2 4 3 4 8	18 25 23 23		4	49. 27. 57.	576	54 43 46	48 44 40	118	7.21	803 782 952	5 5 5	ОК ОИ ОИ ОИ	1 1 1	33 24 38	5 8,	2 36 2 102 4 340 7 146 1 98	4	12 13 11	.40 .29 .84	053	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 6 6	. 18 . 12 . 34	17 20 18	01 01 01	2 5 3	.43	.01 .01 .01	.31 .33 .23	1 2 1 2 1 1	215 240 46	345 490 375 1600 1000	
	H345 H346 H347 H348 H349		1 2 11 2 5	16 23 38 22 21	107 32	22 7 7 1 3	4 343	6 8 2	53 52 50	51 49 48 48 34	145 216 100	5.52 11.15 6.12	326 2408 350	5 5 5	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	20 25	7 (1). 5 (1). 5 (1).	6 34 4 84 2 268 2 98 8 93		14 14	.40	051	2 2 2	7 7 6	1 1	3 11 20	.01 .01 .01	3 3 2	.48 .37	.01 .01	.34 .34 .31		120 520 110	365 440 520 645 850	
	H350 H351 Standard C/AU-R	2	4 1 20	16 9 59	- 10	38		2			277 785 1074	4.04		5		1	80	) 🎆	8 29 8 6 5 15	. 2	16	.78 2.46 .49	\$060	3	2	1.6	5 45 28 2180	01	2	.81 1.55 1.90	.01	. 23		14	305 95 1500	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG ANALYSIS BY FLAMELESS AA. Samples beginning 'RE' are duplicate samples.

U 31

DATE PECEIVED: OCI 30 1991 DATE REPORT MAILED:

SIGNED BY'S

Page 1 NOV - 4 1991

	EXPLORATION FIELD		
			PAGE   OF 3
HOLE No.			·····
J91-30	า		
		the part of the second second	·····
PURPOSE			
To Tast	TAD ZONE IN F	RONT of Hole J91	1-20
10 1231	100 20 10 10		- <u>-</u> -
· · · · · · · · · · · · · · · · · · ·		apadatana ang Ang ang ang ang ang ang ang ang ang ang a	
LOCATION	GROUND ELEV.	BEARING #	TOTAL
L7+00N 0+26E	v454m.	270°	41.45m
DIP	DIP TESTS	VERTICAL PROJECT	HORIZONTAL PROJECT
		29	
-45	41.45 -45.5°		28n
LOGGED BY DATE Oct 24 41	CONTRACTOR	CORE SIZE	DATE STARTED OCT 24/4
C C N(0) Oct 24 [9]	J.T. THOMAS	BO	DATE COMPLETED Oct 21/
G.F. MCAETHUR			
SUMMARY LOG			
0-3. Caring			· · · · · · · · · · · · · · · · · · ·
3-5.3 Silty Angellete			· · · · · · · · · · · · · · · · · · ·
5.3-6.8 Vesicular flor	W (DATUR) Pyretic		
6.8-12.4 Tuff breeced			
12.4-23.2 Tuffbuccia	weak alter py-po Trsl		
23.2-25.9 Lettic tap 25.9-31:1 11 Lettic tap	Ili Tuff /sed		
25.9-31.1 Tuff buccu	<u>a py po</u>		
<u>31.) - 33.5 Lapille (</u>			
33.5-346 Lithic La 34.6-36.83 Silicitud.			<ul> <li>A set in the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of</li></ul>
36.6-37.2 fault.			
36.83-41.45 -tuffer			
			<ul> <li>The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se Second second r/>second second sec</li></ul>
		<u>.</u>	
		942 (MAR)	
	· · · · · · · · · · · · · · · · · · ·		an an an an an an an an an an an an an a
SIGNIFICANTE MINERALIZED	INTERVALS		
6.8-12:4 10% Py			
	·		an air an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha Tha an tha an
5.3-6.8 10-20% py 20.6 -11- spectante			
25.9-31 14 5-10% PY-P	o		and the second second second second second second second second second second second second second second secon
31.6 36.8 5-107. py-p	o		
	·		
11. The state of the second state of the second			CONTRACTOR AND A CONTRACT OF A
	·		

GRANGES EXPLORATIONIED OF 3 PAGE 1 ſ HOLE No. J91-30 C. LOSS S *  $\left|\right|$ А INTERVAL LITHOLOGY Ú, 0-3.04 CASING 3 3.04-5.3 @ Block Argillite, que Siltstone, stue といて ¢ 9 2 5.1-5.2 gouge - 5 - -----00 resider Grey vesicular flow, anastomosing py vens 10-20%. vesicules 1-2 cm. gt filled, molked atta. 5.3-6.8 V265 6 7 6.8- 12.4 Grey tuff breccia atur · charly disa 10% 8 Ay lesses gray to black dieity natice, vencular hagrents 1foliated ٩ 4√ •t0 and the second second second second second second second second second second second second second second second S STATE SAL A STATES AND A STATES ..... 11 Ĩ? 72 E S qV ala de la colta de 12 A LANGER reccia, blk charty to silve 12.4-23.Z. 13 + + vend 5%, 9 to venere <u>24-po</u> Juur 1. burger and icigte Sein Bx. weak - 14 4**4**..... flow bonded pageets. , bleached ₽<u>₽</u>₽ 15 and the second ..... 16 ie 7 ( 1970 x-5 ųΝ ÷ ( 17 18 aN . . . ÷ 19 20 ्रद्भवि de letter se se qvi 🛛 ·۴ 21 120 6 while gter with po- raddial speaking 1/2 **.** 25 atul 22 Pres to f 1 2.て

Ć Ĺ 

### GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 24

of 3

HOLE No.

та	1 75
J 7	1-51)

MINERALIZATION ALTERATION	SAMPLE	FROH	то	ыюти	Ац ррб	Ag ppm	As ppm	St ppm	
· · · · · · · · · · · · · · · · · · ·									
Т-ру	<u> H</u> 262	4	5.30		4	0.1	73	18	
Py-51.	Mz63	5.30	6		530	18.8	722	76	
<u>py- 15%</u>	HZ64	6	-6.8		240-	11.5	399	32	
<u>py20%</u>	H265	6.8	8		290.	11.6	413	30	
py 10%.	11266	8	9		160-	11.3	369	50	
ру-5% ротн	N267	9	10	·	180 (	7.3	417	37	
-py-po_1-21/	<u>H268</u>	0			140-	<i>a.</i> 5	279	18	
<u>py-po 3%</u>	MZ.69	<u>.</u> 1	12		130-	15	322	8	
-py-po 5%.	H270	12	13	· ,	160-	<i>a</i> .3	806	23	
py-po_5-7%	11271	13	14		18	1.0	313	ID	
<u>py-po 5%</u>	M272	14	15		4 -	0.7	59	3	
Pg-po 71	M213	15	16		19	24	<i>8</i> 68	20	
Py-po 8%	112.74	16	17		4-	1.1	218	6	
py-po_8%	HZ75	11	18		32	15	455	7	
P-3-po 10%	M176	18	19		770	176	3714	97	
Py po 10%	M277	19	20		210	<u>[.] -</u>	754	14	
py-po 7%. Tr sphalvite inghu.	M178	20	21		140	1.3	143	5	
P1-P0 5%	H279	21	22			2.3	414	41	+
. N	11280	22	23		7/	0	363	2	-

and a second second second second second second second second second second second second second second second

GRANGES EXPLORATION LTD PAGE 3 OF 3 HOLE No. J91-30 C. LOSS S INTERVAL A LITHOLOGY J 23 Creyish - purple littic hapelle tuff - fire ask, coarse hoto lettice pagents in barded frie and native des py-po 5% weak fabric 23.2-25 9 24 рjро 2440 Cr.1 61 25 कि -26 25.9 - 31.1 Greyish - barge-green notfled Tuff breecia, with flow banded progrests, locally silveres matrix ; gtv 3% -27 Stopy duss in nature, fraguest bleached seins, py suns po weak fabric, wapy pageets, bk charly vers locally -28 3/2 E (5,0) - 29 chart . የት 430 31 2600 (2) E <u>31.1 - 3</u>3.5 Guenn- any coase, ast to hapilli, closely pocked fragment 32 Debranded in fire matric fragments costern pale spots (veneredes?) Chelled uno to frequents, py po diso 2-3 -33 fabrie, dark wapg clowhie makie, weat selling 5 34 33.5-34.6 fine to coarse ash. betrouthie foggest's badded greyest grees pumple 51 35 Trpa 2032 -34.6 - 36.8 3 ush grey to due gray hapelli full - strongly selice food stone 9√ buc cruding, fault gauge, goulation, rordon qt vers 30% - 36 py-pa deas - unspy veril 5-10% .6-37.2 fault gauge. 37 Locally budded quenced dress for 36.83-41.44 graphitic argulide, Black 19 Steeredy broken, at varied, for -38 ۲. نار Conforted beddenglocally gv 1-39 11日44月1 그 그는 우수 요구 [ -40 (1) 例:感题: . ي المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم ويتوجع المراجع ا 41 2 ..... 42 EOH 41.45 

the second constrained in the constrained of the second second second second second second second second second



PAGE 3A. OF 3

HOLE No.

[(

MINERALIZATION ALTERATION	SAMPLI	FROM	то	WIOTH	Ац ррь	Ag ppm	As ppm	S6 ppm	
ру-ро-5%.	M281	23	24	·		0.2		2	
11	M282	24	25		16-	0.1	2	2	
21	N283	25	<u>26</u>		21	0.6	693	2	
?y-pa ~ 10 ⁻¹ .	M284	26	27	·	-01	0.7	66	2	
ł ł	M285	27	Z8		3′	0.7	81	2	
<u>ئۇ</u>	r1286	28	Z9		13-	3.1	197	7	
4.	M287	29	30		95	8.1	4079	59	
2 <u>y-po 10%.</u>	M288	30	31		33	6.4	<b>967</b> 2	/75-	
2 <u>7-po_2%</u>	HZB9	31	32		22´	2.1	128	3	
у-ро 3%	4240	32	33		13	(.4	107	2	
2y-po 3%.	MZQI	33	34.6		5	1.0	155	2	
y-po 10%	M292	34.6	3.55		9-	0.1	44	z	
zy-po_8%	M293	<u>35</u> 9	36.83		7-	0.1	38	z	
 Г- ру	11294	36.8	38		2:	0.1	28	7	
								•	
Г <u>~</u> ру	M295	38	39		6	0.1	27	3	
¥	<i>п12</i> 96	39	40		6-	2.5	32	3	
le le le le le le le le le le le le le l	M297	40	4145		1-	0.5	31	2	

									<u>v</u>		
	} ₽	동 영 동 영	1	0 3050 880 730 1,750 0 1,750	0 675 0 675 10000 110000 1100000	9 310 4 170 6 405 2 830 2 2700	0 205 0 310	~~~~~~	10 150 33 100 95 230 230 230 230	22 220 13 210 5 130 7 195	2 370 6 580 6 1100 1 1550 50 1700
( 	ge 🤄	*2 da 2 mad	5	1 530	2000 2000 2000 2000 2000 2000 2000 200	5ut	1 24	N - N N -	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************
L	Рас	X X X R	01.18	01 .15 01 .19 01 .19 01 .17	01 -18 01 -18 01 -18 01 -22 01 -27	01 .21 01 .24 01 .28 01 .28	01.27 01.22		01 .37 01 .37 01 .37 01 .37	01 129	01 19 02 15 02 15
		~ ¥¥	. 63 .	25 25 25 25 25 25 25 25 25 25 25 25 25 2	អូដូទំនំដូ	52.53	. 12	2.01 . 2.601 . 1.71 .	1.158 1.15 1.15 1.01	2.12	33 84 192
	-	• 5 0	n		N 10 N 10 M	40400		~~~~~	~~~~	~~~~~	<u>3</u> 3 3 3 
U		11 ×	58	22000 2282%	55 56 56 56 56 56 56 56 56 56 56 56 56 5	255 000 255 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 000 250 0000000000	0 0 7 7 7 5 7 5		00000 5376 53	55 55 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	65 10 65 10 61 10 62 0 180 0 180 0
	а	б т т	1.27	35	2222	22448	20		1.22 97 .38 .76	56 77 77 78	1.72 1.52 1.47 .89
	532	ភ្នំ	0	NN==N	เกลี่มเทง		5 12	~~~~~	- 11 - NM	0-0000	5 5 3 3 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9
	י ר ס	5 G 5 K	. Internet	000000 000000	00000 000000 00000	100000 100000			NONNY	- -	062 071 054 092 3
	±+ ₽	× B	30.438		54 54 54 54 54 54 54 54 54 54 54 54 54 5	38 25 25 25 25 25 25 25 25 25 25 25 25 25	2 S	ងួននំ <b>នំន</b> ំ ភូមិភូនទំនំ	201-1-5 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-25 25-2	34 1 35 35 85 0 70 1 1	75 28 76 76 76
	FIL	> E	74	~~~~NN	ህሳሳኮኮ	MM-3-91-	<b>ð</b> ö	6 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2025t	10 2 16 1 16 1 74 7	9 6 23 9 11 5 56 56 56
п	9 4	<u> </u>	8	00000	~~~~~	~~~~~	2 N N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NNNNN	~~~~~	70000
	Ч	ຊ ອິສ ຊ	37 €2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	23288 88250 88250	3425	•	ontho	~ <u>~</u>	No vine	m m vz. 000
	RIVER	rs Ppg		22222 222223	713226	12825 12825 1285	29 22	\$\$3 <u>\$</u> 3	5665C	277280 377280 377280	252 452 164 52 52
		두뼕	-							~~~~~	285 28 7 28 28 7 28 7 28
	UNUK	P ₩ D ₩	5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 S 5 S	<i>~~~~~~</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ECT.		R	10000 1000 1000 1000	0-0-0 MO NO - N NM 0 - N	000000 700000 700000 700000 7000000	754 754	2 10 2 0 10 2 10 2 0 2 10 2 0	82528	86675 36675 36675	28 32 31 42
J	PROJECT	ах Ч	3.94	3.89 4.39 4.39 4.39	22.25	7.87 7.87 7.89 7.89	7.02 5.28	232525	945588 345788	7.288.20	1.02
	Ď	둔뗪	1	368 145 145 449 4495	173 322 92 95 95	83 99 229 112	456 319	369 548 1017 1590 1590	555 464 3316 3316	813 516 869 1068 924	874 1043 1029 1102 1102
	йн	ී ස්	Ð	32 44 44 44 44 44 44 44 44 44 44 44 44 44	000000	\$2005	22	48084	20245 20255	2-5	730-788 130-788
	sepu	IN BY	12	800000 20000	041120	4-4-4-6	- ^ ^	1010-00	P. P	- 40	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	Grang	2 100	90	077 18. 571 11. 296 11. 613 11. 703 7.	311 21 314 12 738 21 738 11	224 2 105 1 302 2 810 1 626 17	194 197	2101 2101 2549 733	3252 3552 3552 3552 3552 3552 3552 3552	274 132 266 119 119	236 320 136
U		<del>ደ</del> ፳	~	552255	25225	83 58 43 5 83 58 43 5	% 5	262 362 362 362	86640 9777-10	88852 8	19 17 17 18 18 18
		Ho CU Ppm ppm	2 15	22228	468467 463267 468267	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 78 1 - 63	+112 523 524	8 23-1355 23-1355	13322	17 23 19 23 19 23
		~ ~		<u> </u>						<u></u>	
											4 5 7 7 NOARD C/AU-R
	3	SAHPLE#	2	23932	36525	H273 H274 RE H270 H275 H276	F 82	K279 H280 H281 H283 H283	N284 N285 N285 N285 N287 N287 N287	289 291 292 292	× 3 3 3 5
U		9 - 5/	M262	H265 H265 H265 H265 H265 H265	M268 H269 H270 H271 H271 H272	~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H277 H278	XXXXX	XXXXX	XXXXX	Ϋ́́Ϋ́́Ύ, Ϋ́́Ύ
		, Ъ					_				
L. <u>,</u> .			<del></del>	<u> </u>					_		

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

÷



# Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 6080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

November 1991

Job 268

 Report for: Gord Allen, Granges Inc., 2300 -885 West Georgia Street, VANCOUVER, B.C., V6C 3E8

**Unuk River Project** 

Samples:

.Summary:

Electrum or locally native gold were identified in most samples which assayed over 1 gm/ton gold. Electrum is most abundant in one sample in association with cinnabar. In this sample electrum is intergrown with another precious-metal-bearing phase, designated Mineral X. In other samples, electrum is most common in association with veins and replacement patches of sphalerite and galena. Less abundant electrum occurs in the same samples as inclusions and veinlets in pyrite.

Gold occurs in electrum and probably in Mineral X. Silver occurs in major amounts in electrum and Mineral X, and probably occurs in minor amounts in tetrahedrite and galena. No other minerals were identified in which silver is a major phase.

Most samples are of a few major rock types, including the following:

- 1) argillite, minor siltstone/greywacke
- 2) and esite/basalt flow, commonly amygdaloidal
- 3) K-altered andesite flow
- 4) and esite/latite flow/trachy-latite flow
- 5) intermediate tuffs, lapilli tuff
- 6) felsic lapilli tuff

Some samples are sheared strongly, especially in holes 25 and 28.

John & Vayne

John G. Payne (604)-986-2928

#### LIST OF PHOTOGRAPHS

The following photos illustrate textures of electrum and sulfides. They were taken in ordinary reflected light with a blue filter. Unless otherwise stated, the length of the photos is 1.6 mm. Description No. Sample native gold in quartz and associated with sphalerite; Ø: 2-6.0 m host rock contains abundant disseminated pyrite. 2-25.7 m electrum in coarse sphalerite, Length of photo 0.40 mm. 1 electrum inclusions in pyrite (with minor chalcopyrite 2 and tetrahedrite/telluride), Length of Photo 0.40 mm electrum with tetrahedrite, galena, and sphalerite in 3 4-31.9 veinlet in pyrite. Length of photo 0.40 mm framboidal pyrite with pyrite overgrowths, inclusions of 4 galena in pyrite, patch of sphalerite, gangue of carbonate electrum intergrown with Mineral X, associated with 7-64.3 5 cinnabar in quartz. Length of photo: 0.40 mm. Mineral X with minor tetrahedrite in quartz containing 6 abundant extremely fine grains of cinnabar. 7 10-63.8 electrum interstitial to pyrite and with galena, associated with major patch of sphalerite intergrown with ankerite and quartz; one side of photo is argillite. 8 electrum intergrown with galena in large patch of sphalerite, minor electrum and galena in inclusion and veinlets in pyrite, interstitial quartz and minor ankerite. pyrite grains with interstitial patches of sphalerite 26-125.6 9 (with exsolution blebs of chalcopyrite), chalcopyrite, and galena. Non-reflective grains are quartz and ankerite. pyrite grains surrounded by and corroded slightly by 10 galena. light yellow electrum with galena and chalcopyrite 11,12 and minor sphalerite in veinlet in fracture in pyrite. Length of photo: 0.40 mm. 18-123.4 pyrite grains with interstitial pyrrhotite and minor 13 chalcopyrite; gangue is quartz. (continued)

#### LIST OF PHOTOGRAPHS

### (continued)

The following photos illustrate textures in quartz. They were taken in transmitted light with crossed nicols and a blue filter. The length of photos is 1.60 mm unless indicated otherwise.

No. Sample Description

- 14 27-60.0 extremely fine grained, early chalcedonic, quartz replacement with elongate porphyroblasts of ankerite; cut by late veinlet of slightly coarser grained quartz.
- 15,16 27-137.4 quartz showing curved, comb-textured aggregates against pyrite. Quartz contains scattered patches of ankerite.

ND LOT SLA	× 2.4 1.6 1 × 2.9 × 1.3 × 1.3 × 1.4 × 1.3 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4 × 1.4
Nb Lol	132         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         <th2< th=""> <th2< th=""></th2<></th2<></th2<>
203 BA Sr Lu	2240     2240       2240     2240       387     623       387     623       1706     25       1722     101       1722     101       1722     101       1723     233       1046     147       1722     101       1723     233       1046     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147       1010     147   <
HIRENINA CONTRACTOR	<ul> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>8.1</li> <li>9.1</li> /ul>
8 8 8 8 8 7	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ALZOS FEZOS NGO	11.88 12.88 12.85 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12
ALTERNITZING SAUPLES SUPLES SUPLES SUPLES SUPLES SUPLES	J91-2-21.2     72.05       J91-2-21.2     72.05       J91-7-35.0     37.49       J91-7-35.0     38.24       J91-7-35.0     38.24       J91-12-65.2     65.00       J91-12-155.6     55.00       J91-12-155.6     55.00       J91-12-155.6     55.00       J91-12-155.6     55.00       J91-12-155.6     55.00       J91-12-155.6     55.00       J91-15-155.6     55.00       J91-15-156.0     55.10       J91-15-156.0     55.10       J91-15-156.0     55.05
3	101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12 101-12

**~**•

· · · · ·

**L_7+ H_3

A S

DUDRI PROFILI POLOT

-----

	6,003	01€r	L	:		ì
	<b>└─</b> ┨					
	┝┛╣					
(				·		
	3e 2					
<b>-</b>	Page					
		Х. ^к	881	385 883	8 8 8 <u>8 8</u> 8 8 8 8 8 8 8 8 8	3 <u>8</u> 8.8
ī		ΞĦ	8 49 4 8 49 4		40804	4.4
-				223	******	22
Ĩ		~ 8	38	222	81228	22
	6		50	C 955	**************************************	\$2
	91~5479	5	78	N22	3282F	10
-	1 1 6	5	174	83E	424 434 157 39	188
	#		2653	£93	8255288 825228	\$P
<b>_</b>	FLLE	с ¹² 83 4			865 865 86 866 86 86 866 86 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 86 866 866	
-	-	0 10 10 10		et mi	1992:SANG	
Ĵ	RL VER	NS X	ñŔ	3:23	ទុជនុទ្ធ	S.S.
-		K20 T102 P205	స ప్	88,2	22.12	1.47
	UNUK	т 8 Ч	22	156	31.35	_
		<u>ន្</u> ទ×	81 ₽	1.82 1.56 5.90 .43 2.43 3.16	3.66	
		X X X X X X X				
-	PR	₽× ¥	8.8	856	82832	38
	no.	53*	2.81	186	5.45 5.45 6.45	2.93 2.45
-	Granges Inc. PROJECT	SID2 A1203 Fe203 Mg0 X X X X X	1.1	54.14 10.13 15.04 1.09 3 63.38 10.77 3.00 1.45 57.15 12.64 9.77 1.37	40.72 11.99 19.52 3.79 63.36 10.65 3.05 1.44 55.37 13.22 13.89 2.29 50.34 14.75 8.23 3.42 66.21 13.30 6.45 2.84	59.18 14.76 9.93 3.60 67.71 10.41 3.43 .99
	e Ç t	¥ ×8	2×2 2×2	1282	22020	1817
	Gra	5	\$÷5	2.35	\$13.8.8.8 \$13.8.8.8	59
J			0.		5.8 5-30.5 5.9 5.8	15.7
		LE#	0-17-75-191	191-28-30.5 191-28-30.5 191-28-52.8	J91-28-66.8 RE J91-28-66.8 J91-28-80.1 J91-28-80.1 J91-28-86.9	191-28-115.7 STANDARD 50-4
		surpl.e#	161	555	161 161 161	191 STA
Ĩ						:

<u> Sirrole typet cost. Sarroles beginting 'st' are duplicate sarroles.</u>

· --

1

;

ר_ הכ ח⊂ר_ הכ _ _ + - - +

. . . . . .

P



PAGE 1 OF 13

UNUK II

#### HOLE No.

T91-1 (TARN CREEK GRID)

PURPOSE

TO TEST DOWNDIP EXTENTION OF SHEAR ZONE IN ARGILLACEOUS TUFFS WITH QUARTZ VEINING, WITH YALVES UP TO 12,000 ppb Au OVER I m. ALSO TO TEST CONTINUITY OF POORLY -EXPOSED MINERALIZATION IN FOOTWALL ROCK TO SH OF SHONING, ADJACENT TO THE

* HOPE PLUG" - AFELSIC DOME POSSIBLY OF DILLUORTH AGE, TOTAL LENGTH GROUND ELEV. **BEARING** LOCATION 2.45° 3275 N 2575 E 1340 m (ALTIM.) 114.6 .... HORIZONTAL PROJECT. DIP TESTS VERTICAL PROJECT. DIP - 45° 108 m - 38° 30' DATE STARTED SERT. 4 LOGGED BY DATE CONTRACTOR CORE SIZE DATE COMPLETED SEPT. 5/9 BQ TK J.T. THUMAS C. ALLEN SEPT 6/91 SUMMARY LOG TUTERVAL LITHOLOGY LITHOLOGY NTERVAL 62.45-81.00 THTERMEDIATE FALL TO MEDIUM- GAMMED PARLITE 0 - 3.05 CASING TVAF 2.05-7.55 MAFIC TUFF / LAPILLI TUFF 255-9.60 MAFIC TO INTERMEDIATE E-G PAYLIMICTUFF BI.00-831 B ARGILLITE AND TUFFACEOUS SEDIMENT 9.60 - 44.20 MAFIL TO INTERMEDIATE MEDIUM GRAINED TUFF \$3+8-9284 INTERMEDIATE FINE TO MEDIUM - GRAVED TUFF OR TUFFACEOUS SEDIMENT 42-19.57 MAFIC TO TNT. F-G PHYLLITIC TUFF 99.84-10285 INTERMEDIATE FINE-GRAINED TUFF 19.57-20-40 PAULT / QUARTZ VEIN ZONE 103.85-110.00 BRECCIATED INTERMEDIATE ASH TVERT 20.40-22.42 ARGILLACEOUS MARIE TUFF LAPPILLI (?) 22-42-29.94 MAFIC TO ENTERMEDIATE PHYLLING TUFF 110.0-114.60 APHYRIC FELSIC INTRUSIVE (?); 29.98 - 4102 ARCHLACEOUS TUFF / LAPILLI TUFF ; HUPE PLUG, * SULPHIDE ZONE 41.02-45.0 INTERMODIATE COARSE- GRAINED PHYLLING TUFF 15.0-50-52 INTERMEDIATE TO MARIC LAPILLI TUFF 50.52-53.0 INTERMEDIATE (?) FINE - GRAINED TURF 530-58.52 ARCILLACEOUS FINE - GRAINED TUFF / ARCILLIT 58.52-59.65 MEDIUM - GRAINED GANDSTONE TUFTACHUS SOST. 59.65-62.45 ARGILLITE / ARGILLACEOUS SANDETONE SIGNIFICANT MINERALIZED INTERVALS 29.90 - 37.5 7-107. PYRITE; DISSEMINATED, IN DISCONTINUOUS PULIATION-PARALLEL BANDS AND IN STRINGERS 7-8% PYRITE IN SPORADICALLY SINICIFIED BARCUA ZONE 37.5 - 38.3 5-87. PYRITE (AS 29.98 TO 37.5) 38.92 - 40.4 1.5 m QUARTZ STRINGER WITH 207. FACH OF PYRITE AND SPHALERITE 41.03 042 103.85 -11460 5-10% DISSEMINATED AND FRACTURE- RELATED PYRITE. TRACES PED-BROWN

SPHALERITE. TRACES CALENA.

ę

# GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 3 OF 13

HOLE No.										
191-1										
	T	T	1	1.	<u> </u>	1	1		1	1
MINERALIZATION ALTERATION	SAMPLE	FROM	то	HIDTH	Au	Ag	As	. 56		1
	ļ	<u> </u>	ļ	<u> </u>	1 66 6	<u>g/t</u>	የየማ	pp.m		
· · · · · · · · · · · · · · · · · · ·	1	<u> </u>			ļ		<u> </u>		<u></u>	
							·}	<u> </u>	<b>}</b>	<u> </u>
						-		-		
		<u> </u>								
· · · · · · · · · · · · · · · · · · ·										
	-									-
roducte chloritie = anicitie alteration								-		
Fromphi consulte I smeather attraction	┨		<u> </u>		<b> </b>	<u> </u>	╂───			<u> </u>
14-21 - 2-37 - 4 - + +1			1	+			1	1	1	1
24-2.6 - 2-37. punite committed		1	1	1		· · ·	<u> </u>	†÷	<u> </u>	<u> </u>
former forout sounde.	1		1	1				1	<u> </u>	<u> </u>
	1		1	<u>†-</u>	1	1	1	1		1
	1		1		1	1			1	
				1	1	1		1		
						1				1
Rock compared langely of chlority, sinite										
and celeite. Barry.										
						L		<u> </u>		
			<u> </u>	<u> </u>			<u> </u>		·	
				ļ			[		<u> </u>	
							ļ		<b> </b>	
-								<b> </b>	<b> </b>	
								<u> </u>		
· · · · · · · · · · · · · · · · · · ·										
	·									
									<b> </b>	
1.2 cm white questy - contraste atingues 50-60° cA. Barren.										
50-60° cA. Barrin.							-			
							_·			
			<u>.</u>							
· · · · · · · · · · · · · · · · · · ·									···	
				· · · ·	·· · ·	-				<u> </u>
· · · · · · · · · · · · · · · · · · ·	-									
	191-1-1	18.<<	0.57	1.02	- 2	0-2	4	3		
Quel some nino aduse D + Heli				0.83			16	7		
duch zone. prince gauge. Quantiz flooding. Quit - automate atringues to 1 cm. Trans chalcopyrite	2	20.40	21.13	0.73	3	0.4	23	2		
chalcommits									1	
<u> </u>		-1			. 1					{

# GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE S OF 13

нα	Ł	F	No.

I

1-91-1

MINERALIZATION ALTERATION	SAMPLE	FROM	То	міотн	Au PPb	Ag g/t	As ppm	56 ррт	-	
			22.87			1	24			┦
	5	22.87	23.95	1.08	2	0.3	<u> </u>	3		╉
										╉
noc an action lite of the							<b> </b>			╉
21.95-22.25 - 507 white quarty in stringers up to 2 cm. Trace printe.							ł			╉
- and the star of the star of the star										$\dagger$
22.50-22.70- 507. white quarty as above				•						t
Trou pyrite										Ť
27.5-29.98 - Predominantly enicitic physlite										
		<u> </u>								
SUNPHIDE ENRICHED ZONE 175-44.6										_
	6	27.43	<u>28.97</u>	1.54	15	0.9	42	· 6		╀
27.5 - 29.0 1-27. fin - grained duraminted		20				<b>.</b>	4			$\left  \right $
22.0 - 29.98 3-52 punte discumented and	-4	<u>28.97</u>	<u> 29.98</u>	1.01	47	5.7	163	28		╞
in foliation parallel banda to 2 min.	· e	20.90	21.3	1 02	320	11.2	.599	62		┢
in formation product varias to a string.		<u>47.7 p</u>	21.0	1.42	540	11.2	- 2 2 /	32		┢
29.98 - 37.5 - 7-102 punte; disseminated in		-								t
chloutie groundmass, discumated in some									· · · <b>-</b>	T
lithic pragments and in discontinuence										Γ
foliation - forallel bounde up to Simm	2	31.0	32.0	1.0	42	3.0	361	20		
thick Printe typically associated with				· .						_
angtocuptelline blue grug quanty leners	./0	32.0	33.0	1.0	59	3.1	947	22		
and accurated stringers up to Sim.										
Pyrite stringers also concenting foliation at all orgene to core. Cremilities stringers	-11	<u>33.0</u>	34.0	1-0	.47	3.3	1138	27		┡
_ at all orgene to cove. Crimilated etringers									-	┞
376 20 2 1 11 1.1.1	12	340	35.0	1.0	150	2.3	_998_	_34		┝
37.5-38.3 - spondually reliable		ic al	36.0	1.0	44	2.2	201	19	•	┢╌
Credely Inerin - fulling questo straining	_ <u></u>				-77	<u> </u>	391	-7		$\vdash$
7-87. avrite in meeter to 5mm	14 3	6.0	37.0	1.0	7	4.5	317	31		
38.92 - 40. 4 - 5-87. pyrite; disen.	15	57.0	37.5	0.5	32	4.8	2.52	43		
and in bonde to com parallel to			· .							
foliotion sprodically silicified.	16 3	7.5	38.30	0.8	54	17.1	465	86		 
() F	<u>-</u>	<u>· .   .</u>				· [				
	17	8.30	3 <u>8-92</u>	0.62	240	9.5	830	47	<b> </b>	
				. <u>.</u>			<b> </b>			
· · · · · · · · · · · · · · · · · · ·	18 3	8.92	<u>6.0  </u>	-05	590	9.4	2343	77	<u> </u>	

## GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 7 OF 13

HOLE No.

	191-1									 
10	MINERALIZATION ALTERATION	SAMPLE	FROM	TO	NIOTH	Аи ррь	Ag g/t	As pp=0	56 ррпт	
40		171-1-19	40.0	41.0	1.0	350	8.8	2458	52	
	A1. 03 - 1.5 cm quarty stringer puellel to foliation (50'cA) with 20% Q	20	41.0	41.78	0.75	35	1.8	269	20	
	pyrite and sphalinity.	h	41.78	42.07	0.29	660	1B.2	6352	105	
	Poch poundances compress predominatly	22	42.07	43.0	0.93	170	3.5	1414	29	
	<b>T</b>		43.0	14.0	1.00	51	36	168	26	
15 -		24	44.0	45.0	1.0	25	1.4	15B	12	 
									-	 
	49.54 - 50.52 - B-107. pyrite: disseminated and in ing la massa to 1 cm.		<del>1</del> 2.54	56.52	0.98	27	2.6	286	20	
50 -	•	4	5052	51.00	0. <del>1</del> 3	8	1.4	42	14	
	50.52-50.9 - 5% pipite in 1-2 min brands parallel to bidding/foliation in rock.	27	51.00	52.18	1.13	6	0.4	26	4	 
	51.68-51.83 - Quarty - About vin 60 - 90 . CA.	28	52.18	52.78	0.60	3	0.3	ßo	19	 
	BOMM. 52.18-52.78-FAULT/GOUGE ZONE	29	52.78	54.35	1.57	B	0.3 1	32	6	
	57. pyrite in broken stringers.	30	54.35	55.05	0.70	_4	0.6	35	13	 
	53.0-55.0- Bistin core. Shrand graphitic surfaces. 2-5? fin- grandolisements	31	55.05	56.50	1.45	6	0.6	20	5	 
ļ	pyrite 5-10 × white quarty - aubmate atringers to 1 cm parallel to change. 54.50 - 5mm but of fire- grained pyrite.		56.50	57.60	1.10	7	0.6	32	16	 
	57.6 - 58.52 - 3-57. my fine-grained durument	- 33	57.60	58.5Z	0.98	4	0.9	57	ZB	 
	- sond Jubard ( do 1 cm) pyrath .	34	59.52	59.65	1,13	6	0.8	53	20	 
		35	59.65	60.53	0.88	3	0.2	18	9	4.
60 -					· ·					 



Control of

## GRANGES EXPLORATION LTD DIAMOND DRILL LOG C

PAGE 9 OF 13

HOLE No.

T91-1

				·	<b>-</b>			r	<b>T</b>	r	<b>-</b>	<b>.</b>
	,		SAMPLE	FROM	то	ыюти	Аи ррь	Ag g/t	As ppm	56 ррм		
	60	Pervesine suicitic alteration throughout wit. Weak to moderate										
		wit with to made to										
		62.0-64.0 - 2-37 very fine -grained dimen.								<u>_</u>		
		prpute.							-			
Π												
U.		Min spondie disseminted pyrite to			. <u> </u>						<u> </u>	
		270.										
	65 -											
	-											
							-					
							· · ·					
$\square$		· · · · · · · · · · · · · · · · · · ·										
					·····							
n	カー										<del></del>	
								· · · .				
	_ ·											
J												
											_	
	[											
_	f											
Π												
		· · · · · · · · · · · · · · · · · · ·									· .	
-	75											
Π	l								- · · ·			
	ł	· · · · · · · · · · · · · · · · · · ·						<u> </u>				
-	ł						•••••					
Π	ŀ			•			<u> </u>					
L)	⊦							•			<del> </del>	
<b>\$</b> 9	a I					ł						
	· 1				[							
	ļ											
	Ļ											]
	80 :-											
Π.		·			· _	۰.				l		
-										Ī		I

Q
[],
[] /~

# GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 11 OF 13

MINERALIZATION ALTERATION	SAMPLE	FROM	то	WIDTH	Аи РРЬ	Ag g/t	As ppm	S6 ppm	
			<del> </del>		Pr 4		1	1 Perce	
· · ·								+	+
							<u> </u>	1	+
3.18-99.84 - Trace amite to			[				<u> </u>		+
3.18-99.64 - Trans pyrite to			1	1		[	<b> </b>	<del> </del>	1
				1				1	+
								1	1
		 		1				<u> </u>	<u> </u>
	-11							f	1
				<u>†                                    </u>				<u> </u>	1
								1	1
······································				1					1
· · · · · · · · · · · · · · · · · · ·							[	<u> </u>	
				11					1
				1-1					1
	-11			1					1
				1					1
4		1		1					1
				1-1					├
	1-1			1 1					
		†							
				† †				<u> </u>	
	-1			1					
		· ·		┢╸╶╽					
				╞╴╏					
				╏╴╴╏			<u> </u>		<u> </u>
	1			† †					
		†		┟───┟		†			
		†		╂╼╼╼╂	†				
		†	;		†	†			
	-1	†		<b>├</b> ──┼			1		
i				┟╾╌╌┟		$\rightarrow$	†		
				╏───┤		†			
				┟╍╌╴┟					
				┢┅──┼			†		
		-+		┟───┼		<del>-</del>  -			
				┣───╁		<u> </u>			
		†		┟──╂			{		
		t-		┟───╁	-+		+		
	_╂╌━╌╂╴				$\rightarrow$	+			

### GRANGES EXPLORATION LTD DIAMOND DRILL LOG

PAGE 13 of 13

.

•2

Q

	HOLE No.										
	791-1										
	MINERALIZATION ALTERATION	SAMPLI	FROM	ro	HI0TH		Ag g/t	As ppm	Sb ppm		
100	97.84-103.85- pervoine moderate		<u> </u>	ļ	ļ	<b> </b>	<b> </b>	1	<b> </b>	1	
	sincite alteration.	[ []91~1 ~]	101.45	101.75	0.5	9	1.1	14	5	┨	
	101.7-101.8 57. pyrite in ingular								Ľ		
	magine of shim bounded chundred		<b> </b>		<b> </b>	<b> </b>	<b> </b>	<u> </u>		<u> </u>	
	intuine (?) 103.85-105.37 - 5-8 % pyrite; diesemented	27	103.05	104 10	0.05	22.0	1.9	270	 ,<		┨──┤
	and in incoular masses to I can Truite									<b> </b>	
105 -	in matrix in bricing and in small shearest	38	/04.70	105.57	0.67	450	3.7	408	1-1		┢──┤
	105.37 - 107. 12 - 2 - 47. discumsted pyinte.	39	105.37	106.35	0.98	250	1.7	116	Z		
	108.10-109.0 - 7-87. pyrite; dissimilate	<u> 1</u> 0	106.35	107.1Z	0.77	38	0.1	94	3		
n	and along frosture at 20 to CA. * Trace aphalinte and goling in			108.10					11	[	$\left[ - \right]$
	pyrite stringen										
	_ 109.0 - 110.0 - 5-77. purite predominantly	<u>4z</u>	<u>{0.B.10</u>	107.00	0.90	220	7.1	<u> 482</u>	24		
↓ <b>.</b> J [ó. –	along frotune 30. to core oscia	-13	107.00	110.0	10	240	4.9	287	14		
	110.0 - 114.60 - 57. pyrite along		110.0	111.0	1-0	20	0.6	42	3		
	hand concentrations to 10% across	45	111.0	112.0	1.0	36	1.5	50	5		
	* 10 cm. Trous ud-brown sphelite.										
	· · · · · · · · · · · · · · · · · · ·	<u>46</u>	112.0	113.O	1.0	860	2.6	200	8	]	
		47	113.0	114.0	1.0	15	1.4	1300	11		
1 115-		48	1/4.0	114.60	0.6	390	2.0	2565	23		
				· · -							<b>  </b>
							·				
					$\square$	$\neg$					
120											
п ¹ 2° +			<b>†</b>						<u>;</u> [		
n (								46			
	a kana ara ara ara ara ara ara ara ara ara										

- -- -- -

		ו		<b>_</b> [	<b></b>	Ľ		C			ב					]	Ç				]		)							<u></u>
LC.		Gra	inge	85 (	Inc.	PF	OJE	TOT	UNU	KR	IVE	R 1	34	Fl	LE :	# 9:	1-44	166				Ра	ge	6				-		i cou
SAMPLE#	Мо ррп	Cu ppn	Pb ppm		Ag PPM	Nî pom	Со ррп	Nn ppn		As POM	U Ppn	Au ppm	Th ppm	Sr ppm	Cd pon	Sb ppm	B{ ppm	V ppm	Ca P X X	La ppm	Cr ppm	Hg X	Ba ppm	T.  X	8/ ppm	X	Xa X	K X	222.22	ku* opb
J91-4-11 J91-4-12 J91-4-13 J91-4-41 J91-4-42	2 1 3 1 1	8 7 6 6	12 5 8 4 3	67 78 62 88 86	.5 .2.4 2.2	15 13 10 8 13	26 21 16	974 1345 1405 1351 1744	6.46 6.68 9.18 7.48 7.97	17 13 80 12 16	5 5 5 5	ND ND ND ND ND ND	1 1 1 1 1	89 127 125 149 215	.2 .2 .2 .2 .2	13 8 18 3 6	22222	18 43 21 27 33	3.37 .171 4.41 .184 4.74 .170 3.61 .215 4.59 .210	გ 5 8 8	6	.48 .92 1.33 1.03 1.05		.01 .01 .01 .02 .02	4 .4 3 1.4 2 1. 2 2.4 2 2.4	39 . 15 . 10 .	.02 .03 .03 .05 .05	.16 .22 .20 .18 .15	1 1 1 1 1	35 11 52 25 7
191-4-43 191-4-44 191-4-45 191-4-46 191-4-47	1 1 1 1	5 4 3 7	2 7 5 2 9	111 92 83 110 92	12224	7 11 9 10 31	20 14 15	2055 1708 1413 1749 1012	8.78 8.98 7.56 8.53 6.76	7 50 14 6 54	5 5 5 5	ND ND ND ND	1 1 1 1	258 182 235 368 127	.2 .2 .2 .2 .2	2 14 6 2 34	22222	46 28 26 45 52	5.48 .206 4.65 .181 5.11 .199 7.13 .181 4.88 .194	7 6 7 3	6 6 6	1.21 1.39 1.26 1.85 1.54		.02 .01 .01 .02 .01	2 2. 2 1. 2 1. 2 2. 2 1. 2 1.	76 98 80	.05 .03 .05 .05 .04	.13 .10 .15 .07 .16	1 1 1 1	4 9 14 2 8
J91-4-48 J91-4-49 J91-4-50 RE J91-4-54 J91-4-51	1 4 14 14 2	13 5 9 14 11	5 7 10 109 16	121 48 112 371 141	1:1 3.7 8.5 6.7 7.5	35 19 8 22 7		1620	7.08 12.96 13.19 9.20 6.55	128 108 433 201 100	5 5 5 5 5	ND ND ND ND	1 1 1 1	118 115 58 57 45	.4 .2 .2 3.9 .3	62 49 38 34 24	2 2 2 2 2 2	27 15 33 26 20	4.55 .139 5.77 .105 2.14 .116 1.71 .144 1.80 .219	22446		1.47 1.43 .95 .82 .41	54 31 24 28 41	.01 .01 .01 .01 .01	3 . 2 1. 2 1. 2 1.	70 41 09	.02 .02 .01 .01 .01	.18 .14 .20 .21 .33	1	20 410 9 30 230
J91-4-52 J91-4-53 J91-4-54 J91-4-55 J91-4-56	\$1 13 14 28 37	40 12 14 29 30	24 64 107 37 27	87 234 345 37 43	19.1 11.2 6.6 9.2 7.2	14 24 21 23 20	25 45 30 40 38	642 490 571	23.12 13.67 8.84 15.67 15.13		5 5 5 5 5	ИО ИО ИО ИО ИО	1 1 1 1	67 53 54 53 39	.3 2.1 3.6 .3 .2	79 59 35 53 39	2 2 2 2 2	21 31 25 37 29	1.93 .124 2.61 .144 1.63 .134 1.46 .125 1.17 .120	44344	5 8 7 8 6	.72 .50 .78 .95 .61	23 22 28 27 21	.01 .01 .01 .01 .01	2 1. 2 . 2 1. 3 1. 3 1.	92 05 48	.01 .01 .01 .01 .01	.19 .28 .20 .25 .24	11111	380 64 32 80 59
J91-4-57 J91-4-58 J91-4-59 J91-4-60 J91-4-61	37 40 11 2 1	27 33 17 13 6	16 16 26 19 10	56 75 120 155 146	5.5 5.9 1.9	12 16 16 3	27 40 31 31 16		12.44 15.17 8.88 6.80 3.29	231 239 44	5 5 5 5	ND ND ND ND	1 1 1 1	92 34 82 77 29	.2 .3 .5 .3 .6	15 19 25 10 4	2 2 2 2 2 2	47 26 35 46 18	2.26 .123 .93 .130 2.39 .191 1.89 .170 .73 .020	5 3 5 4 12	8 7 8	1.07 .49 1.23 1.69 1.13	29 22 34 33 48		2 1. 2 1. 2 1. 2 1. 2 2. 5 1.	13 39 03	.01 .01 .01 .01 .01	.22 .24 .25 .24 .31	1 1 1 1 1	41 31 87 22 2
J91-4-62 J91-4-63 J91-4-64 J91-4-65 J91-4-66	1 1 1 8	5 9 10 9 13	8 7 6 7 10	142 166 51 55 66	1.1 1.7 .9	3 4 8 26	•••	487 992 2011 2264 860	3.66 6.92 5.79 4.98 5.95	26 33	5	nd Nd Nd Nd Nd	1 1 1 1	30 33 372 497 78	.4 .2 .2 .2 .2	5 8 9 5 19	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 62 33 40 32	.74 .050 .78 .166 8.83 .119 12.36 .109 1.44 .116	11 6 6 10 4	7 6 6	1.29 2.72 1.35 1.70 1.65		.01 201	5 1. 3 2. 2 1. 2 1. 3 1.	75 30 91	.01 .01 .01 .02 .01	.46 .27 .21 .16 .25	1 1 1 2 1	8 5 44 16 8
191-1-1 191-1-2 191-1-3 191-1-4 191-1-5	1 1 1 1	91 126 105 141 167	6 12 16 13 2	63 81 67	.8 .4 .6	6 9 12 12 12	23 25 25	1285 1386 1604 2024 1203	5.41 5.75 6.83 6.86 6.72	16 23 24	5 5 5	ND ND ND ND ND	1 1 1 1 1	320 331 314 297 350	-22.22	3 7 2 2 3	2 2 2 2 2 2 2	97 100 166 120 102	4.37 305	6 6 5	4 9 8	1.55 2.52 3.45 2.91 2.39	53 506 55 135 94	.01 .01 .01	3 2. 4 2. 2 3. 2 2. 4 3.	11 36 33	.02 .01 .01 .01 .01	.26 .19 .10 .19 .31	1 1 1 1 1	3 3 3 6 2
T91-1-6 T91-1-7 T91-1-8 STANDARD C/AU-R	1 1 1 17	84 152 98 58	23 26 - 321 37	621	3.7 11,2	12 13 17 70	24 26	2052 1595 114 1036	5.28 4.09	163 599	5 5	סא אס 7	1 1 37	211 177 137 51	- C - C - C - C - C - C - C - C - C - C	8 28 52 15	2 2 2 19	93 35 22 54	2.88 281	5 4	7 8		121 60 50 176	201	7	.79 .62	.01 .01 .01 .06	.56 .59 .35 .15		45 47 320 450

•

Samples beginning 'RE' are duplicate samples,

1

.

					Gra	ange	98 :	Inc.	PROJ	ECT	บทบ	ĸ I	RIVER	134	FI	LE	<b># 91-4</b>	466				Page	<i>'</i> 7	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Nİ ppm.	Co ppm	Mn ppm	Fe As Z ppm	U ppm	Au ppm	Th ppm	Sr Co pon por		Bł. ppm.;		Ca P X X	La ppm	Cr ppm	Mg X	Ba Ti ppm X	B AL ppm %	Xa X	K W X ppm
191-1-12 191-1-13	1	52 69	30 54	34 48	2.3	18 16	32 32	48 196	5.55 998 6.97 391	5	ND ND	2	186 .2	34 19	2	29 47	.72 .250	5	5	.20 .83	41 .01 45 .01	3.68 41.29	.01 .01	.37 1 .33 1
T91-1-14	1	162	852	3979	44.5	16	31	107	4.84 317	ś	ND	2	180 16.5	31	Z	29	.77 .244	5	11	.30	49 201	4.79	.01	.38 1
191-1-15 191-1-16	1	99 134	42 493	61 2272	4.8	18 11	31 15		6.36 252 2.85 465	5 5	ND ND	2	179 22 90 8.5		2	30 12	.69 .233 .37 ,127	5 3	6 7	.22	27 .01 55 .01	3 .71 3 .30	.01 .01	.40 1
191-1-17	1	85	115	362		12	18		3.11 830	5	KĎ	1	<b>%</b> 110	47	2	17	.44 143	4	7	.06	53 .01	4 .41	.01	.27 1 1
191-1-18 191-1-19	2	194 448	110	1365		13 12	18 22		4.51 2343	5	ND ND	1	118 3.9 136 4	77 52	2	19 23	.48 .144	4	9 5	.09 .10	38 .01 78 .01	3.41	.01 .01	.25
T91-1-23 T91-1-24		169	16 14	52 62	3.6	13 10	27	674 1196	4.24 188	5	ND ND	1	189	26 12	2	23 41	1.27 .211	5	45	.45 1.70	24 .01 97 .01	4 .80 3 1.88	.01 .01	.41 1
		136	19	112		10		1355		5	ND	-		20	2	35	2.00 .229	5		1.03	62 .01	2 1.08	.01	.32 1
191-1-25 191-1-26		42	11	72	- 8138	6	14	152	2.21 342	5	ND	3	44	14	2	8	.17 2009	10	3	.22	74 .01	4 .61	.01	.30 1
191-1-27 191-1-28		38 30	7 10	83 72		7 5		554 945	3.48 380	5 5	ND ND	3 2	145 213	8 19	2 2		1.13 .016	9	3	1.08 2.21	42 .01 89 .01	2 1.23 2 1.04	.01 ,01	.15 1
T91-1-29	1	29	33	221	.3	6	9	1161	3.66 32	5	ND	2	169 14	6	2	9	3.90 .045	8	2	2.16	58 .01	2 1.01	.01	.22 1
191-1-30 191-1-31	5	25 16	18 6	47 20	5.2355.55 6	43		1846 2074		10 11	ND ND	1 2	492 11		2		11.69 2053	۰.		4.65 6.51	63 .01 86 .01	2.33	.01 .01	.17 1
RE 191-1-28 191-1-32	Ī	32	8 6	- 68		5	8	965		5	ND ND	23	220 280	5 22	2	10	3.94 013	ຶ່ <b>9</b>	2	2.28	87 01 75 01	3 1.03	.01	.24 1
191-1-33	ŝ	22 34	17			4	7	2894	3.27 57	5	ND	1		5 28		11	6.99 065			2,87	56 .01	2,28	.01	.18
191-1-34	3	29				4		1992		5	ND ND	1	169	5 20 5 9			5.09 .072			1.47	68 .01 46 .01	2,55		.27
191-1-35 191-1-36	2	19 32	28	100	) ((1)		9		4.45 14	5	ND	3	97 🕅	0 5	2	21	1.66 042	Ś 14	4	1.87	159 01	3 2.05	.01	.17
191-1-37 191-1-38	8					73	8 11	407 250	3.25 270 6.51 488			1	220 111 2.	8 15 0 11		8 29	1.70 .030			1.13		2.60		
T91-1-39	3	11	32	36	1 327	3	10		6.29 116		ND	2	136 2.			41	1.38 .119	8 6 7		2.37				
T91-1-40 T91-1-44	37	7	7				13		6.62 94		ND ND	23	81 26	3 3 2 3	2	59 11	.75 177			2.05				
T91-1-45 T91-1-46	19		35	23	7 🕅 5	4	32	128	2.50 50	ĝ 5	ND	32	20 10 1.	7 5	2	13 2	.17 .040	រ្វ៍ 17	' 6	.73	42 .01	2 1.0	.02	.16 1:
							4			8		2		2 11	_	-	.15 .00	ŝ.		, .18				
T91-1-47 T91-1-48	8	9 14					1		2.50 1300			2		2 23		- 1	.05 00 .48 09	5 12		5 .23				

Samples beginning 'RE' are duplicate samples.

.