GEOCHEMISTRY REPORT
on the
DOROTHY PROPERTY

NTS 93M/1, 8
Latitude $55^{\circ} 15^{\prime} \mathrm{N}$ Longitude $12608^{\prime} \mathrm{W}$

SUB-RECORDER

 RECEIVEDFFS 1 i 19.92
M.R. \# \qquad \$
for:
INTERNATIONAL CORONA CORPORATION and
TWIN PEAKS MINES LIMITED

Work performed by
INTERNATIONAL CORONA CORPORATION \#1440-800 West Pender Street Vancouver, British Columbia V6C 2V6

GEOLOGICALBRANCH

 ASSESSMENTREPORT

TABLE OF CONTENTS

SUMMARY AND RECOMMENDATIONS i
1.0 LOCATION AND ACCESS 1
2.0 PROPERTY DESCRIPTION 1
3.0 PHYSIOGRAPHY 1
4.0 PROPERTY HISTORY 2
5.0 GEOLOGY 3
5.1 REGIONAL GEOLOGY 3
5.2 PROPERTY GEOLOGY 3
6.0 1991 FIELD WORK 4
7.0 RESULTS 5
8.0 CONCLUSIONS AND RECOMMENDATIONS 5
STATEMENT OF EXPENDITURES 7
STATEMENT OF QUALIFICATIONS 8
REFERENCES 9

LIST OF TABLES
Following Page No.
Table 1 List of Claims . 1

LIST OF FIGURES Following Page No.

Figure 1
Property Location
1

Figure 2
Claim Map 1

APPENDICES

Appendix A

Appendix B
Appendix C

MAPS

Map 1

Assay Certificates and Sample Record Sheets

Selected 1971 Drill Logs
Statistics
Pre 1991 General Geology, IP
and Drill Hole Location Map
1:5,000 . In Jacket

SUMMARY AND RECOMMENDATIONS

The Dorothy property is located in the Babine region of the Omineca Mining Division, British Columbia. The property was originally staked by Evergreen Explorations in 1969, then vended to Twin Peaks Mines who formed a joint venture with Ducanex. Although a weak molybdenum and copper-in-silt anomaly reportedly drew interest to the area in the mid 60 's, the 1971 property report states the reason for acquisition was "structural appeal".

During 1970 several surveys were completed over the property including MAG, VLF-EM, soil sampling, geologic mapping and IP. Drilling commenced in late 1970 and 29 holes, totalling 9,795 feet (2973 metres), were completed by September 1971. Drilling and trenching revealed the Dorothy Pluton which is a member of the Babine Intrusive suite, a series of spatially and genetically related 49 55 Ma biotite-feldspar-porphyry (BFP) intrusives. They are associated with a number of porphyry copper deposits in the region. The Dorothy pluton was found to host consistent but weak disseminated copper mineralization (weighted average of the best mineralized 20 holes is 0.2% copper and 0.019% molybdenite). The low average copper grade of the drilled area was discouraging and no further work was done on the property until Coronas' 1991 program.

The substantial rise in gold prices since 1972 has increased the economic attractiveness of copper-gold porphyries. Two such mines, Granisle and Bell, have been developed in the area by Noranda, both of which are related to Babine Intrusives. The geologic similarities between Dorothy, Granisle and Bell prompted International Corona Corporation to re-sample the Dorothy drill core as it was not analyzed for gold content during the 1971 program. Four of the holes with the strongest copper mineralization were selected for re-sampling.

The average grade of the intervals sampled in the four drill holes was 0.28% copper and 56 ppb gold. Bivariate statistical analysis shows that gold and copper are highly correlative but the gold content of the mineralizing system is simply very low. Further exploration should be directed at finding higher grade copper zones in the areas of anomalous chargeability.

1.0 LOCATION AND ACCESS

The Dorothy Property is located on the 93M/1, 8 NTS map sheets in north-central British Columbia, centred on $55^{\circ} 15^{\prime} \mathrm{N}$ latitude and $126^{\circ} 08^{\prime} \mathrm{W}$ longitude (See Figure 1). Access is from Smithers (82 km southwest) or Houston (90 km south) by helicopter. Current logging activity is within a few km of the eastern boundary of the property. Favourable terrain would make building a road to the property relatively easy. Work on the property during the early 1970's was supported by a now overgrown cat road which led from a float plane landing on Haut Lake to the camp which lies near the centre of the property.

2.0 PROPERTY DESCRIPTION

The Dorothy property, located in the Omineca mining division, is comprised of a contiguous claim block (Figure \#2), consisting of four modified grid system mineral claims staked in 1991, 9 two post and four fractional claims which were staked during 1969 and 1970. There are a total 94 units, which with claim overlap covers an area of approximately 2000 hectares. A complete list of the claims and their status is provided as Table 1.

The property is owned 90% by International Corona Corporation and 10% by Twin Peak Mines Limited. International Corona is the operator.

3.0 PHYSIOGRAPHY

The Dorothy property is located within the northern limits of the Nechako Plateau, which Carter (1981) describes as follows:

```
"This area is one of low relief, dominated by
flat or gently rolling topography (Holland,
1964). Glacial drift obscures much of the
bedrock and ubiquitous glacial features include
glacial grooving and drumlin-like ridges,
numerous lakes, eskers and dry meltwater
channels. The northern boundary of the Nechako
area fairly sharply defined by mountainous
terrain (Omineca Mountains)."
```


TABLE 1
mineral title - canada
BABINE J.V. [1018]

mineral title - canada

Record Number	Claim Name	Previous Number	Units	Area (ha)	Record Date	Record Date
303987	DOT 1	303987	20	500.0	1991.09 .14	1992.09 .14
303988	DOT 2	303988	20	500.0	1991.09 .14	1992.09 .14
303989	DOT 3	303989	20	500.0	1991.09 .15	1992.09 .15
303990	DOT 4	803990	20	500.0	1991.09 .15	1992.09 .15
82072	DOROTHY 41	82072	1	25.0	1969.11 .07	2001.11 .07
82073	DOROTHY 42	82073	1	25.0	1969.11 .07	2001.11 .07
82078	DOROTHY 47	82078	1	25.0	1969.11 .07	2001.11 .07
82079	DOROTHY 48	82079	1	25.0	1969.11 .07	2001.11 .07
92377	DOROTHY \#533	92377	1	25.0	1970.09 .24	2001.09 .24
92390	DOROTHY 5 FR.	92390	1	15.0	1970.09 .24	2001.11 .07
92391	DOROTHY \#6 FR.	92391	1	15.0	1970.09 .24	1994.09 .24
92655	DOROTHY \#530	92655	1	25.0	1970.09 .29	1994.09 .29
92659	DOROTHY \#2 FR.	92659	1	15.0	1970.09 .29	1994.09 .29
13			89	2195.0		

Date: 1992.01.15
LISTOFCLAIMS
Dorothy property

Terrain on the property is mostly flat with swamp covering the north central and the southwestern areas while low north-south ridges cover the eastern and northwestern portions of the claims. Maximum relief is 300 metres ranging from 880 metres to 1180 metres elevation. Vegetation consists of mixed conifers, alder, devil's club and a variety of berry bushes and shrubs.

4.0 PROPERTY HISTORY

Weak copper and molybdenum-in-silt anomalies drew workers to the area during the 60 's. Prospecting revealed what was believed to be an unaltered intrusive, not resembling the distinctive biotite-feldsparporphyry (BFP) known to host many porphyry copper deposits in the region and as a result, claims were not acquired. Subsequent thinsection work however, indicated the intrusive is likely a trachytic variety of the BFP which has been subjected to two periods of alteration (Woolverton, 1973).

The original Dorothy claims were staked in October of 1969 for Evergreen Explorations and were subsequently vended to Twin Peak Mines Limited. Ducanex Resources Limited (Ducanex \rightarrow Lacana \rightarrow International Corona) formed a joint venture partnership with Twin Peaks whereby Ducanex held 90% and Twin Peaks 10% of the Dorothy property. International Corona has retained Ducanex's 90% interest in the property.

The 1970 field program entailed an IP survey, soil sampling, magnetometer and VLF-EM surveys and geological mapping. The IP outlined a large area (1000 metres $\times 1300$ metres) of coincidental chargeability high ($>5 \mathrm{~ms}$) and resistivity low (<1600 Ohm-Feet). This anomaly extends off the grid, both to the north and the south (See map 1). Trenching was completed using a cat to uncover what was described by Woolverton (1973) as "local zones of ore grade porphyry copper-molybdenum mineralization in a 0.2% copper background".

Between October 1970 and September 1971, 9,795 feet (2,973 metres) of drilling was completed in 29 holes. Drilling intercepted consistently anomalous but low grade copper mineralization (weighted average over the 20 best mineralized holes gives 0.2% copper and 0.019% molybdenite). The property lay essentially dormant until 1991.

5.0 GEOLOGY

5.1 REGIONAL GEOLOGY

Carter (1981) gives an excellent overview of the regional geology of the Babine District and an overview is given below.

The Dorothy property lies within the Intermontane Tectonic Belt which is bounded on the east by the Omineca Belt and to the west by the Coast Crystalline Complex. Stratigraphy in the area consists mainly of Lower Jurassic Hazelton Group volcanics and related sediments. To the north, the Hazelton rocks are overlapped by the Bowser Basin Sediments. The Skeena Arch, a transverse tectonic feature which separates the Bowser Basin from the Nechako Trough, dominated the stratigraphic development during the Jurassic, a period during which it was strongly uplifted. Faulting of the arch subsequently acted as a control for the emplacement of Cretaceous and Tertiary intrusives.

The six major intrusive suites found in the Mesozoic stratigraphy include the Topley ($173-206 \mathrm{Ma}$), Omineca ($121-181 \mathrm{Ma}$), Bulkley (7084 Ma), Goosly Lake (49-53 Ma), Nanika (47-56 Ma) and Babine (4955 Ma) (Carter, 1981). All suites have related economic metal deposits but Babine Intrusives are of particular interest in the area of the Dorothy Property as they host the mineralization there, as well as at Bell mine, Granisle mine, Morrison and several other properties.

5.2 PROPERTY GEOLOGY

In the area of mineralization on the property, bedrock is covered by as much as 30 metres of glacial till although outcrop is found more commonly on the eastern side of the property. Stratigraphy consists of intermediate volcanics of the Hazelton Group, which are very poorly exposed but appear to be mostly flows with occasional tuffs and breccias. Most of the property is underlain by two intrusive bodies; an Omineca granodiorite to diorite and a Babine BFP. The BFP "Dorothy Pluton," a multiphase, dioritic biotite-feldspar-homblende porphyry, is an elliptical body lying parallel to the main NW-SE tectonic trend. One to four mm phenocrysts of biotite, quartz and feldspar are clearly seen in hand specimen but hornblende phenocrysts and the groundmass of fine feldspar laths are usually identified only in thin section(Woolverton, 1972). Young felsite dykes cross-cut the older stratigraphy on the property.

Alteration on the property has been thoroughly studied by Woolverton in 1972 by thin-section work completed on 112 samples from drill core. The potassic zone, which hosts the copper mineralization, is found within the core of the BFP and is defined mainly by hydrothermal biotite. Peripheral to this is a large propylitic zone which is present in the outer rim of the intrusive and in the host volcanics. A moderately developed pyrite halo exists along the rim of the intrusive, just outside the potassic zone. Much of the potassic alteration was overprinted by a lower grade alteration (propylitic), resulting in either rimming of the hydrothermal biotite with fine chlorite or complete replacement of the biotite. Woolverton has postulated that this later alteration is related to a large, late intrusive body which has been emplaced at depth. Although this is certainly possible, it should be noted that overprinting of the potassic zone by lower grade alteration is not uncommon in porphyry systems (Sillitoe, 1973). After the main event of alteration and mineralization, a late phase of BFP was emplaced as a set of large dykes, in the potassic zone. This later phase is notably fresher, showing no signs of potassic alteration or mineralization, and is texturally distinct due to its' brecciated nature.

Copper mineralization, found in the potassically altered core of the BFP is weakly to moderately disseminated chalcopyrite with occasional molybdenite and rare bornite (1991 results show copper ${ }_{\max }=0.7 \%$ copper $_{x}=0.28 \%$ in four of the best drill holes)(See appendix C). Occasional stringers of chalcopyrite are present but do not contribute substantially to the overall grade.

6.0 1991 FIELD WORK

The 1991 field program entailed the re-sampling of four of the best mineralized 1971 drill holes (See appendix B for drill logs). This was done in an attempt to determine if strongly anomalous gold mineralization is associated with copper mineralization as it is in other BFP porphyries in the region, such as Bell and Granisle. Drill holes $2,10,14$ and 19 were among the best mineralized in the 1971 drill program and were chosen for re-sampling. Samples were generally taken over 10 foot intervals, down the entire length of the hole. Occasionally the condition of the core prohibited sampling at regular intervals (rotten or destroyed core boxes).

All samples consisted of a representative sampling of the intervals noted in Appendix A. All core samples were sent to Acme Analytical Laboratories where they were prepared and analyzed. Analysis included a fire assay for gold with an AA finish as well as 30 element analysis using ICP techniques (see Appendix A for results).

7.0 RESULTS

The univariate statistics (Appendix C) for both copper and gold indicate that they have relatively normal distributed populations as their mean(x) and median(M) are quite similar and their coefficient of variation(CV) is much less than one. The sampling procedure produced a data set strongly biased to samples with anomalous copper values. All of the core is biased because by definition, drill targets chosen on the property have an increased probability of intersecting anomalous copper values. The population was further biased because the four drill holes sampled were chosen because of their high copper assays ($\mathrm{x}_{\text {copper }}=0.28 \%$). Bivariate statistics (See chart in Appendix C) show that the gold and copper are highly correlative with a Spearman Coefficient of 0.604 and a Pearson coefficient of 0.622 . The low average gold values ($\mathrm{x}_{\text {gold }}=56 \mathrm{ppb}$) in conjunction with the significant correlation between elevated copper and gold values indicates a low gold content in the mineralizing system.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Extensive work during 1970 and ' 71 indicate a sizable mineralizing system related to the Dorothy Pluton. Although the identified copper mineralization is relatively low grade, potential for finding additional copper mineralization of equal or higher grade within the untested portions of the IP chargeability anomaly, is considered to be good. Based on the 1991 re-sampling it is unlikely that economically significant gold mineralization would accompany the copper mineralization. Low average gold values in a data set with high average copper values, in conjunction with a high correlation between the two elements indicates a low gold content in the mineralizing system.

Geochemistry Report

Dorothy Property - 1018
January, 1992

International Corona Corporations' objectives are to define an economic porphyry deposit with appreciable gold credits. The Dorothy property will not likely meet these objectives and further work is not recommended at this time.

Respectfully Submitted,

Stephen Robertson, B.Sc. Geologist.

Geochemistry Report

Dorothy Property - 1018
January, 1992

STATEMENT OF EXPENDITURES

January 22, 1992

FIELD PROGRAM

Salaries	M Tindall - Senior Project Geologist		
	1 day @ $\$ 300.00$		
	September 23,1991	$\mathbf{3 0 0}$	

S Robertson - Geologist
1 day @ $\$ 188.00188$
September 23,1991
M Galdiotis - Geologist
1 day @ \$225.00
225
September 23, 1991
Analysis $\quad 140 @ \$ 13.30$ (Acme Analytical) 1,862
Helicopter 3.1 Hours @ \$700.00 (Highland) 2,170
Food 1 day @ \$85 85
Lodging 1 day @ \$144 144
Field Transportation (Vancouver - Smithers) 330

REPORT PREPARATION

Salaries

$$
\begin{aligned}
& \text { S. Robertson - Geologist } \\
& 5 \text { days @ \$188 } \\
& \text { January } 13-17,1991
\end{aligned}
$$

Drafting 44
Total Expenditures 6, 288
Pac Withdrawal 1,712

STATEMENT OF QUALIFICATIONS

I, Stephen Robertson, of 1969 Lower Road, Gibsons, B.C. V0N 1V0 state that:

I am a 1989 graduate of the University of Alberta, Edmonton Alberta, with a B.Sc. in geology.

I have been employed in mineral exploration prior to my graduation and that I have been practising my profession since 1989.

I am presently on contract as a geologist with International Corona Corporation, \#1440-800 West Pender Street, Vancouver, British Columbia. V6E 2V6.

I am the author of this report which is based on public and property reports plus on site inspections.

I have no interest, direct or indirect, in the property discussed in this report.

This report may be used for development of the property, provided that no portion of it is used out of context or in such a manner as to convey meanings different from that set out in the whole.

Signed and dated in Vancouver, British Columbia this $/ 3$ day of Feb 1992.

Stephen Robertson, B.Sc.

REFERENCES

Carter, N.C. (9181): Porphyry Copper and Molybdenum deposits; West Central British Columbia. BCDM Bulletin 64. 150 p.

Sillitoe, R.H. (1973): The Tops and Bottoms of Porphyry Copper Deposits, in Economic Geology, Vol 68, pp 799-815

Woolverton, R.W. (1971): A geophysical Report of the Dorothy Claims, Omineca Mining Division, BCDM Assessment Report.

Woolverton, R.W. (1972): A Report on the Dorothy Property, Babine Lake area, BCDM Assessment Report.

APPENDIX A

ASSAY CERTIFICATES
 and
 SAMPLE RECORD SHEETS

Mo Cu Pb

84557 CORE	2	224	2	44	-2	7	4	504	1.38	3	5	ND	4	73	4	2	2	12	2.71	0064	25	5	. 49	520	\% 01	5	. 49	. 04	. 23	1	7	. 02
84558	7	156	2	33	$\stackrel{1}{1}$	6	5	1367	1.18	11	5	ND	2	73	3	2	2		2.91	. 062	23	4	. 62	397	¢01	3	. 40	. 03	. 20	1	5	
84559	124	917	2	48	. 8	5	4	4874	2.17	9	5	ND	2	112	2	3	3	6	6.63	. 026	14	4	1.46	271	801	3	. 32	. 04	. 15	1	8	
84560	161	1268	2	28	. 5	9	10	485	2.07	6	12	ND	1	39	. 2	2	5	17	1.24	. 023	5	8	. 45	88	02	3	. 55	. 05	. 95	1	26	-
84561	46	1617	3	32	. 9	9	14	262	2.69	8	13	ND	1	31	. 3	2	5	48	. 91	. 039	7	16	. 88	102	10	2	1.08	. 09	. 39	1	22	-
84562	74	621	2	20	.5	8	6	198	1.14	6	5	ND	1	23	.2	2	2	10	. 73	. 016	4	8	. 27	23	-01	3	. 43	. 06	. 09	2	7	
84563	39	1272	4	85	5	13	19	131	2.41	17	5	ND	1	30	. 9	2	2	37	. 74	. 056	8	19	. 66	81	. 07	3	1.01	. 12	. 35	1	26	-
84564	25	1366	2	39	. 8	10	14	196	3.25	2	5	ND	1	51	. 9	2	2	91	1.40	. 133	11	14	1.70	139	. 18	3	2.14	. 18	1.06	1	10	
84565	88	1273	2	44	3	8	11	197	3.33	2	5	ND	1	63	. 3	2	2	100	1.95	.149	10	12	1.77	164	. 20	2	2.36	. 22	1.12	1	12	-
84566	104	2814	2	47	1.2	11	23	195	3.74	2	5	NO	1	65	.3	2	5	83	1.32	. 122	11	11	1.48	105	¢15	2	1.91	. 14	. 70	1	130	-
84567	37	1733	2	58	. 8	8	14	265	3.37	2	5	ND	1	77	.2	2	2	83	1.94	-135	12	10	1.61	65	${ }_{11} 1$	2	1.91	. 10	.61	1	12	-
84568	401	2583	2	43	, 7	9	14	171	3.50	2	5	ND	1	67	. 9	2	2	85	1.64	1118	11	9	1.48	112	\%16	2	1.87	. 15	. 81	1	110	-
84569	98	3274	2	43	1.2	9	17	195	3.69	2	5	KD	1	70	5	2	2	91	1.52	-123	10	11	1.58	129	. 17	2	2.07	. 18	. 77	2	28	-
84570	81	2828	2	42	1.4	9	18	171	3.51	4	5	ND	3	61	4	2	2	96	1.28	,128	10	12	1.69	109	. 16	2	2.11	. 16	. 84	1	34	-
84571	135	3226	2	49	1.3	9	15	158	3.38	2	5	ND	1	50	.7	2	2	93	1.19	-117	9	11	1.63	62	17	2	1.99	. 15	. 93	1	40	-
84572	145	2453	2	54	1.2	10	16	286	3.80	5	5	ND	2	54	.6	2	3	92	1.49	. 133	11	11	1.66	85	14	2	2.17	. 14	. 82	1	31	-
84573	46	3366	2	49	1.1	9	18	220	3.95	4	5	ND	1	66	. 5	2	8	95	1.30	. 131	10	10	1.65	102	16	2	2.08	. 14	. 93	1	34	-
84574	138	3450	3	50	1.3	12	17	178	3.99	2	5	ND	1	75	. 5	2	5	98	1.51	. 124	12	12	1.64	121	-19	2	2.33	. 20	1.12	,	37	-
84575	166	3842	2	53	1.7	12	20	195	3.87	3	5	ND	2	81	. 9	2	2	91	2.15	.191	11	11	1.43	64	. 14	2	2.22	. 19	. 80	1	46	-
84576	427	1203	2	37	. 5	8	6	370	1.46	2	5	ND	4	1088	. 2	2	2	33	3.48	. 073	17	7	. 57	196	. 06	2	. 88	. 05	. 34	1	26	-
RE 84572	150	2389	2	52	. 8	10	17	286	3.75	5	5	ND	1	67	. 6	2	3	88	1.50	. 131	10	10	1.63	85	+14	2	2.11	. 13	. 79	1	36	-
84577	159	2056	2	30	1.0	11	8	182	1.80	2	5	ND	4	523	.2	2	2	43	2.25	. 083	18	10	. 76	176	. 11	2	. 92	. 06	. 42	2	41	-
84578	44	2073	2	58	1.2	11	11	385	2.64	4	5	NO	4	191	. 4	2	2	58	2.04	. 111	15	9	1.10	141	. 10	2	1.13	. 06	. 46	1	57	-
84579	47	3335	2	48	1.6	11	13	284	3.31	6	5	ND	3	149	. 4	2	4	90	1.84	118	15	17	1.43	136	18	2	1.53	. 08	. 90	\bigcirc	56	-
84580	84	3941	2	42	1.5	12	16	130	3.42	2	5	ND	1	72	. 3	2	2	96	1.51	104	11	19	1.42	113	20	3	1.60	. 09	1.07	1	120	*
84581	60	3891	3	42	1.1	11	14	151	4.05	2	5	ND	1	63	-8.	2	3	104	1.39	116	12	11	1.62	135	21.	2	1.71	. 10	1.22	1	100	-
84582	100	4495	2	39	2.0	14	18	171	3.18	4	5	ND	1	119	3	3	5	94	1.65	. 097	12	10	1.39	109	\% 20	2	1.52	. 08	1.09	1	59	-
84583	174	3982	2	39	2.0	15	13	692	2.66	3	5	ND	3	283	. 2	2	2	55	2.00	066	17	13	. 97	133	. 11	3	. 99	. 05	. 45	1	84	-
84584	161	2768	2	38	1.1	13	11	186	2.11	3	5	ND	3	135	. 5	2	2	56	1.34	. 081	15	15	. 96	169	, 14	3	1.06	. 06	. 54	1	64	-
84585	62	2437	4	35	-9	13	10	194	2.91	2	5	ND	2	140	2	2	2	67	1.56	. 084	16	14	. 95	163	-14.	2	1.06	. 06	. 55	1.	120	*
84588	51	1759	3	36	\% 4	13	9	172	3.22	2	5	ND	2	145	. 5	2	2	77	1.56	. 093	13	14	1.12	195	, 23	2	1.31	. 09	. 84	1.	100	-
84587	53	3533	2	39	1.2	15	14	178	3.91	3	5	ND	2	145	${ }^{3}$	2	3	100	1.24	. 055	11	17	1.02	161	. 22.	2	1.23	. 08	. 76	1	90	-
STANDARD C/AU-R	20	59	44	132	7.4.	73	32	1043	3.97	42	18	7	40	53	18.7	16	17	62	. 49	. 098	39	64	. 90	177	. 09	32	1.92	. 07	. 15	11	460	-

Samples beginning 'RE' are duplicate samples.

Samples beginning 'RE' are duplicate samples.

SAMPLE\#	$\begin{aligned} & \text { Mo } \\ & \text { pppn } \end{aligned}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{pam} \end{aligned}$	$\begin{array}{r} \mathrm{Pb} \\ \text { ppm } \end{array}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{aligned} & \text { Ag } \\ & \text { ppon? } \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppon} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppp} \mathrm{~m} \end{array}$	Fe \%	$\underset{\text { ppon }}{\text { As }}$	$\begin{array}{r} \text { U } \\ \text { ppom } \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Au}}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	cd	$\begin{array}{r} \text { Sb } \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{X} \end{gathered}$	\mathbf{x}	$\begin{array}{r} \text { La } \\ \text { ppom } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pprn} \end{gathered}$	Mg	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\frac{71}{\%}$	$\begin{array}{r} B \\ \text { ppm } \end{array}$	Al	$\underset{X}{\mathrm{Na}}$	$\begin{aligned} & K \\ & \chi \end{aligned}$	pom	Au* ppb
84625	171	4111	2	36	1.7	14	14	540	2.43	8.	5	ND	6	111	$\stackrel{2}{2}$	2	2	21	1.76	072	16	8	.78	87	. 03	4	. 93	. 04	. 38	2	36
84626	198	4130	2	46	2.5	18	15	334	2.49	6	5	ND	6	116	.2	2	2	33	1.90	. 077	15	11	. 83	68	. 06	3	. 80	. 05	. 33	2	50
84627	85	2363	2	40	1.6	17	12	194	2.68	3	5	ND	6	306	.2	2	2	39	1.35	. 091	13	13	. 84	86	. 08	2	. 94	. 05	. 38	2	39
84628	188	3199	3	40	2.1	15	18	144	2.33	4	5	ND	4	1129	. 3	2	2	32	1.56	. 074	13	10	. 70	74	. 06	3	. 79	. 04	. 37	2	48
84629	18	2470	2	43	1.3	12	7	177	1.85	3	5	ND	5	131	. 3	2	3	43	2.06	.082	17	12	. 80	239	. 11	3	1.00	. 05	. 50	2	51
84630	31	2032	2	36	1.1.	14	9	352	1.94	2	5	ND	8	52	$\stackrel{2}{2}$	2	2	37	1.09	. 081	21	12	. 56	292	. 07	2	. 68	. 05	. 31	2	44
84631	97	1587	4	34	2.2	13	10	718	2.03	5	5	ND	7	74	$\bigcirc 2$	2	2	17	1.95	. 072	16	7	. 54	85	. 01	3	. 54	. 04	. 20	2	26
84632	62	1328	2	29	\bigcirc	12	10	512	2.14	3	5	ND	6	102	. 2	2	2	19	1.66	. 072	12	6	. 57	84	. 03	2	. 54	. 04	. 24	1	30
84633	101	1426	3	29	1.0	12	9	301	2.07	2	5	ND	8	74	. 3	2	2	29	1.27	. 072	16	9	. 58	176	. 05	2	. 65	. 06	. 28	1	25
84634	60	1559	2	29	$\bigcirc .7$	13	13	199	2.33	2	5	ND	7	62	. 2	2	2	35	1.10	. 074	16	11	. 73	139	. 08	2	. 85	. 05	. 35	1	32
84635	132	1492	2	30	.7	13	12	198	2.24	2	5	NO	7	93	.2	2	5	39	1.02	. 073	19	12	. 80	139	. 08	3	. 96	. 05	. 37	2	34
84636	91	3982	4	43	2.1	13	17	222	2.20	8	5	NO	8	263	2	2	4	38	1.37	. 075	14	12	. 86	119	. 08	3	. 95	. 05	. 36	3	90
84637	335	2788	2	34	2.2	11	15	432	1.85	5	5	NO	8	392	. 2	2	2	27	1.80	. 063	15	9	. 68	132	. 05	3	. 74	. 04	. 30	2	42
84638	264	2390	2	27	2.9	12	11	1518	1.62	9	5	ND	8	791	. 2	2	2	12	2.30	. 067	14	7	. 58	84	. 01	6	. 38	. 03	. 20	1	26
84639	444	2914	3	36	2.7	10	11	737	1.50	9	5	ND	8	426	. 2	2	2	11	2.32	. 065	13	5	. 51	109	.01	5	. 53	. 03	. 19	2	40
84640	251	2126	2	35	2.5	10	10	729	1.80	6	5	ND	8	388	. 2	2	2	17	1.83	. 066	13	7	. 54	84	. 03	4	. 54	. 03	. 23	\% 3	41
84641	372	3253	4	38	2.2	13	11	513	2.02	6	5	ND	7	467	. 2	2	3	23	2.08	. 066	16	8	. 66	93	. 04	3	. 62	. 04	. 27	1	47
84642	140	2037	2	42	1.1	14	11	249	1.81	4	5	ND	7	257	. 2	2	2	30	1.44	. 072	16	11	. 62	180	. 07	2	. 69	. 04	. 30	1	44
84643	214	2983	2	40	1.6	12	9	167	1.40	5	5	ND	7	400	. 2	2	2	38	1.10	. 066	16	11	. 73	222	. 08	3	. 79	. 05	. 34	2	48
84644	147	2409	2	33	1.3	12	10	187	1.59	5	5	ND	8	290	\%2	2	2	44	. 99	. 076	17	12	. 84	251	.11	2	. 86	. 06	. 43	2	56
84645	378	2525	2	50	1.4	14	12	187	1.68	4	5	ND	8	240	. 2	2	2	43	1.02	. 074	17	13	. 87	244	. 10	3	. 95	. 05	. 40	2	50
84646	181	2814	2	52	1.5	12	12	231	1.70	3	5	ND	7	360	. 2	2	3	38	1.34	. 072	17	12	. 84	230	. 08	3	. 94	. 05	. 34	1	47
84647	145	3179	3	33	1.6	11	11	169	1.50	5	5	ND	7	597	. 3	2	2	30	1.77	. 075	17	9	. 63	221	. 08	4	. 70	. 06	. 34	2	52
84648	254	2777	2	34	1.6	11	12	268	1.60	4	5	ND	7	84	.2	2	2	29	1.86	072	15	8	. 67	132	. 07	3	. 71	. 03	. 31	\% 2	38
84651	78	1451	3	38	. 5	12	9	179	2.30	2	5	ND	6	43	. 2	2	2	58	. 48	. 091	18	12	1.04	381	. 23	2	. 99	. 10	. 64	1	29
84652	51	1078	2	27	$\stackrel{.7}{ }$	17	10	201	2.39	2	5	ND	7	48	. 3	2	2	61	. 67	. 089	21	19	1.13	424	. 20	4	1.07	. 08	. 56	1	20
84653	115	1249	2	27	. 7	12	8	139	2.14	2	5	ND	7	23	. 2	2	2	58	. 35	. 084	17	14	1.07	354	. 25	2	. 93	. 06	. 68	2	23
84654	70	1476	5	31	. 7	11	9	147	2.34	3	5	ND	7	31	. 2	2	3	58	. 38	. 088	20	12	1.04	338	. 24	2	1.00	. 09	. 66	2	25
84655	110	1407	2	34	. 7	12	9	228	2.54	3	5	ND	7	38	.2	2	2	55	. 65	. 089	18	12	1.05	310	. 21	2	1.09	. 08	. 60	2	31
84656	124	1734	2	31	. 9	15	9	184	2.74	\% 3	5	ND	7	33	. 2	2	2	56	. 66	. 096	24	13	1.08	322	. 21	4	1.08	. 07	. 64	2	43
84657	140	1694	2	34	. 8	14	9	232	2.30	3	5	ND	6	43	. 2	2	2	58	. 82	. 094	30	18	1.19	252	. 18	2	1.16	. 07	. 59	2	36
RE 84654	72	1478	2	32	. 8	11	8	149	2.42	\% 4	5	ND	7	31	2	2	2	59	. 39	. 089	20	12	1.09	334	. 25	2	1.01	. 08	. 66	3	24
84658	52	2307	2	44	1.6	18	12	329	2.67	14	5	ND	7	55	. 2	2	2	6	1.19	100	27	25	1.42	251	$\cdot 16$	4	1.40	. 06	. 55	2	51
84659	47	2459	2	39	1.3	18	13	242	2.94	11	5	ND	7	55	. 2	2	2	70	. 86	. 101	23	29	1.55	219	. 20	2	1.47	. 09	. 65	2	45
84660	72	1953	3	27	1.1	12	8	193	2.14	5	5	ND	6	35	. 2	2	2	54	. 71	.086	20	16	1.05	247	.15	4	1.05	. 07	. 46	1	51
84661	76	1640	2	30	1.0	9	10	207	2.72	\% 7	5	ND	7	91	$\bigcirc 2$	2	2	61	. 96	. 084	17	13	1.01	220	.14	2	1.29	. 11	. 45	3	39
84662	43	2287	2	33	1.5	12	12	176	2.89	10	5	ND	7	41	. 2	4	2	60	. 91	. 092	19	13	1.08	160	.12	2	1.20	. 08	. 41	4	51
STANDARD C/AU-R	21	61	43	137	7.5	73	32	1079	4.01	42	19	7	40	52	19.0	16	22	61	. 49	. 095	39	60	. 89	182	. 09	35	1.90	. 06	. 14	12	462

[^0]

Samples beginning 'RE' are duplicate samples.

DOROTHY PROPERTY

Analysis Results from 1991 Re-Sampling of 1971 Drill Core					
Sample Number	Drill Hole	$\begin{aligned} & \text { From } \\ & \text { (Feet) } \end{aligned}$	$\begin{gathered} \text { To } \\ \text { (Feet) } \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{ppm}) \end{gathered}$
84599	DDH-2	430	440	23	1365
84600	DDH-2	440	450	76	4452
84601	DDH-14	94	104	46	3636
84602	DDH-14	104	114	41	3051
84603	DDH-14	114	124	66	4899
84604	DDH-14	124	134	41	2934
84605	DDH-14	134	144	85	5564
84606	DDH-14	144	154	124	7028
84607	DDH-14	154	164	57	4247
84608	DDH-14	164	174	89	6657
84609	DDH-14	174	184	64	4685
84610	DDH-14	184	194	51	4056
84611	DDH-14	194	204	54	2962
84612	DDH-14	204	214	56	3977
84613	DDH-14	214	224	79	4590
84614	DDH-14	224	234	73	5926
84615	DDH-14	234	244	35	4377
84616	DDH-14	244	254	33	2379
84617	DDH-14	254	264	37	3004
84618	DDH-14	264	274	36	2940
84619	DDH-14	274	284	53	3490
84620	DDH-14	284	295	38	3828
84621	DDH-14	295	298	38	3164
84622	DDH-14	298	308	34	3030
84623	DDH-14	308	318	37	4027
84624	DDH-14	318	328	42	3381
84625	DDH-14	328	338	36	4111
84626	DDH-14	338	348	50	4130
84627	DDH-14	348	358	39	2363
84628	DDH-14	358	368	48	3199
84629	DDH-14	368	378	51	2470
84630	DDH-19	94	104	44	2032
84631	DDH-19	104	114	26	1587
84632	DDH-19	114	124	30	1328
84633	DDH-19	124	134	25	1426
84634	DDH-19	134	144	32	1559
84635	DDH-19	144	154	34	1492
84636	DDH-19	154	164	90	3982
84637	DDH-19	164	174	42	2788
84638	DDH-19	174	184	26	2390
84639	DDH-19	184	194	46	2914
84640	DDH-19	194	204	41	2126

DOROTHY PROPERTY

Analysis Results from 1991 Re -Sampling of 1971 Drill Core					
Sample Number	$\begin{aligned} & \text { Drill } \\ & \text { Hole } \end{aligned}$	From (Feet)	To (Feet)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{ppm}) \end{gathered}$
84641	DDH-19	204	214	47	3253
84642	DDH-19	214	224	44	2037
84643	DDH-19	224	234	48	2983
84644	DDH-19	234	244	56	2409
84645	DDH-19	244	254	50	2525
84646	DDH-19	254	264	47	2814
84647	DDH-19	264	268	52	3179
84648	DDH-19	288	295	38	2777
84651	DDH-19	204	214	29	1451
84652	DDH-19	214	224	20	1078
84653	DDH-19	224	234	23	1249
84654	DDH-19	234	244	25	1476
84655	DDH-19	244	254	31	1407
84656	DDH-19	254	264	43	1734
84657	DDH-19	264	268	36	1694
84658	DDH-19	288	295	51	2307
84659	DDH-19	204	214	45	2459
84660	DDH-19	214	224	51	1953
84661	DDH-19	224	234	39	1640
84662	DDH-19	234	244	51	2287
84663	DDH-19	244	254	24	1412
84664	DDH-19	254	264	70	3136
84665	DDH-19	264	268	51	2057
84666	DDH-19	288	295	32	1155
84667	DDH-19	204	214	35	2188
84668	DDH-19	214	224	39	2204
84669	DDH-19	224	234	42	1760
84670	DDH-19	234	244	64	1855
84671	DDH-19	244	254	72	3060
84672	DDH-19	254	264	77	1899
84673	DDH-19	264	268	107	2654
84674	DDH-19	288	295	99	2084
84675	DDH-19	204	214	105	2590
84676	DDH-19	214	224	116	3251
84677	DDH-19	224	234	81	2885
84678	DDH-19	234	244	125	4398
84679	DDH-19	244	254	70	2458
84680	DDH-19	254	264	59	1718
84681	DDH-19	264	268	113	4487
84682	DDH-19	288	295	130	4707
84683	DDH-19	204	214	102	4106
84684	DDH-19	214	224	120	5494

DOROTHY PROPERTY Analysis Results from 1991 Re-Sampling of 1971 Drill Core					
Sample Number	Drill Hole	$\begin{aligned} & \text { From } \\ & \text { (Feet) } \end{aligned}$	$\begin{gathered} \text { To } \\ \text { (Feet) } \end{gathered}$	Au (ppb)	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{ppm}) \end{gathered}$
84685	DDH-19	224	234	87	4569
84686	DDH-19	234	244	54	1846
84687	DDH-19	244	254	101	3526
84688	DDH-19	254	264	72	2331
84689	DDH-19	264	268	64	2962
84690	DDH-19	288	295	84	2359
84691	DDH-19	204	214	54	2633
84692	DDH-19	214	224	72	2265
84693	DDH-19	224	234	74	2891
84694	DDH-19	234	244	91	3935
84695	DDH-19	244	254	48	3202
84696	DDH-19	254	264	87	3217
84697	DDH-19	264	268	25	916
84698	DDH-19	288	295	44	1376

APPENDIX B

PROPERTY DOROTHY
DRILL HOLE \qquad \#2

LATITUDE _O North
DATE STARTED \qquad
DEPARTURE _ 8 West ___ DATE COMPLETED \qquad
DIP -45° East \qquad DRILLED BY \qquad
ELEVATION \qquad LOGGED BY \qquad Neil Thomsen \qquad

Depth	Geology	Sample No	Width	Cu	MoS_{2}
$0-7$	Casing.				
7-20	Acid dyke with sericite or muscovite.	141	13^{\prime}	Trace	Trace
	Minute amounts of diss py present				
20-30	Same as above	142	10^{\prime}	Trace	Trace
30-40	Acid dyke but is more broken and brecciated	143	10^{\prime}	0.08	0.01
	with slightly mineralized gtz \& calcite				
	stringers. Have change at 38^{\prime} to a harder				
	finer-grained acidic rock with more py				
	\& some cpy.				
40-50	A fine-grained, slightly porphryitic,	144	10^{\prime}	0.09	0.03
	light gray rock (possibly a bleached				
	hornfels(?) with py, cpy, some moly and				
	chlorite				
50-60	Same as above with variation from light	145	10^{\prime}	0.17	0.01
	to dark to light colour.				
60-70	Very broken core, still light, fine-	146	10^{3}	0.07	0.01
	grained rock with py and cpy. 50% recover.				
70-80	Same as above. 60\% recovery.	147	$70^{+} 6^{\prime}$	0.14	0.01
$80-90$	Same as above though mostly dark, fine-	148	10^{\prime}	0.14	0.02
	grained hornfels.				
90-100	Same as above with much py, cpy and some	149	10^{\prime}	0.15	0.03
	moly.				
100-110	Same as above, core badly broken and	150	70^{31}	0.21	0.03
	fractured, 75\% recovery				
110-120	Same as above with quartz stringers present	151	10^{\prime}	0.24	0.02
120-130	Hornfels badly fractured in all directions,	152	10^{1}	0.28	0.03
	with many minute gtz. stringers. Much py,				
i	cpy, some moly.				
130-140	Same as above	153	10^{\prime}	0.23	0.02

Enerquresz Expeonartiont tal.

Sheet 2
PROPERTY DOROTHY
DRILL HOLE
\#2
LATITUDE
DEPARTURE
DIP
ELEVATION

```
DATE STARTED
DATE COMPLETED
DRILLED BY
LOGGED BY Neil Thomsen
```

Depth	Geology	Sample No	Width	Cu	MoS_{2}
140-150	Same as above	154	10^{1}	0.34	0.02
150-160	Same as above	155	10^{\prime}	0.26	0.03
160-170	Same as above	156	10^{1}	0.24	0.03
170-180	Same as above	157	10^{\prime}	0.48	0.02
180-190	Fault at 183, then hornfels to 190	158	10^{1}	0.37	0.05
190-200	Same as above with fault at 198	159	10^{1}	0.51	0.02
200-210	Beginning at 201 have long shear zone...	160	10^{1}	0.15	0.05
	or contact zone with most of rock being				
	badly altered with much atz and calcite.				
	Have few pieces of BFP.				
210-220	Acid dike from $210-214$. Very little	161	10^{1}	0.14	0.01
	mineralization, then BFP, fractured and				
	al tered with some py and cpy to 220.				
220-230	Very badly altered or weathered core to	162	10^{\prime}	0.22	0.02
	222, then BFP to 230 though not much minera	1.			
230-240	Change at 230 back to hornfels with slight	163	10^{\prime}	0.32	0.01
	porphryitic texture, much py and cpy along				
	fractures.				
240-250	Hornfelswith slight porphyritic texture in	164	10^{\prime}	0.44	0.01
	spots, many minute qtz and calcite stringer	S,			
	with much py and cpy along fractures. No				
	preferred direction for fractures.				
250-260	Same as above.	165	10^{1}	0.43	0.02
260-270	Same as above	166	10^{\prime}	0.43	0.01
270-280	Have shear zone from 269 to 273, then dark	167	10^{1}	0.43	0.03
	BFP.				
280-290	BFP with qtz and calcite stringers, py, cpy	168	10^{\prime}	0.25	0.02
	along fractures and some diss.			1	

Sheet
PROPERTY DOROTHY
DRILL HOLE
\#2

elevation \qquad
DATE STARTED
DATE COMPLETED
DRILLED BY
LOGGED BY Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS_{2}
290-300	BFP with fault (?) or severe alteration	169	10^{\prime}	0.31	0.01
	at 297.				
300-310	BFP, though very dark and badly broken up.	170	10^{\prime}	0.16	0.01
310-320	BFP, very broken and soft with little	171	10^{\prime}	0.40	Trace
	mineral.				
320-330	Same as above	172	10^{1}	0.19	0.01
330-340	Change at 335 to hornfels which has less	173	10^{\prime}	0.32	0.01
	py and cpy as formerly.				
340-350	Hornfels with little py and cpy. Core is	174	10^{\prime}	0.21	0.01
	badly broken and fractured. A few qtz				
	stringers.				
350-360	Same as above	175	10^{1}	0.29	0.01
360-370	Same as above	176	10^{1}	0.27	0.01
370-380	Same as above with more qtz. stringers	177	10^{\prime}	0.43	0.01
380-390	Hornfels with many minute qtz stringers,	178	10^{\prime}	0.18	0.01
	small amounts of py and cpy along fracture	s,			
	slightly magnetic.				
390-400	Same as above with moly on some qtiz:stringe	rs 179	10^{1}	0.31	0.01
400-410	Same as above	180	10^{\prime}	0.32	0.02
410-420	Hornfels slightly porphyritic to 415, ther	181	10^{\prime}	0.27	0.01
	have BFP from 415-420. Contact between				
	the two rock types is gradational, not sha	rp.			
	BFP contains py, cpy, moly, mostly along				
	fractures.	-			
420-430	BFP, same as above	182	10^{\prime}	0.15	0.01
430-440	BFP with more gtz stringers, is lighter	183	10^{\prime}	0.12	0.01
	colored at 440.				
	-				
	-				

Sheet
4
PROPERTY DOBOTHY
DRILL HOLE \#2

DATE STARTED
DATE COMPLETED
DRILLED BY
LOGGED BY Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS
440-450	BFP, light colored with much cpy and py	184	10^{\prime}	0.26	0.01
	both along fractures and as large diss.				
	crystals. Fractures from $30^{\circ}-60^{\circ}$ with				
	less qtz stringers. Moly is present				
	along fractures.				
450-460	BFP. Same as above	185	10^{\prime}	0.16	0.02
460-470	BFP. Still much cpy.	186	10^{\prime}	0.29	0.03
470-480	BFP. Same as above	187	10^{\prime}	0.11	0.02
480-490	BFP less diss. cpy but massive pyrite along	188	10^{\prime}	0.06	0.01
	some veins and fractures.				
490-500	BFP with cpy and py along fractures and	189	10^{1}	0.07	0.02
	some diss. Some gtz stringers.				
500-510	BFP. Same as above.	190	10^{1}	0.07	0.05
510-520	BFP. Same as above.	191	10^{\prime}	0.06	0.01
520-530	BFP. Same as above	192	10^{\prime}	0.07	0.01
530-536	BFP. Same as above.				
	End of hole.				
	BFP - biotized feldspar porphyry				
	cpy - chalcopyrite				
	py - pyrite				
	diss - disseminated				
	qtz - quartz				
	mag - magnetic or magnetite				
	non mag - non magnetic				
	cu - copper				
	born - bornite				
	moly - molybdenum				
	-				

\qquad
PROPERTY DOROTHY
ORILL HOLE
\#10

LATITUDE $7+90^{\prime}$ North DATE STARTED \qquad
DEPARTURE $8+20^{\prime}$ West DATE COMPLETED \qquad
DIP -45° East
ELEVATION \qquad
DRILLED BY \qquad
LOGGED BY
Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS_{2}
0-35	Casing				
35-40	BFP with much cpy and some py, mostly in	44052 C	5^{\prime}	0.17	0.01
	very small diss. Slightly magnetic with				
	visible mag. occurring in spots. Fracture	5			
	at $0-20^{\circ}$ and $45^{\circ}-60^{\circ}$.				
40-50	BFP same as above	44053 C	10^{\prime}	0.10	0.01
50-60	BFP same as above	44054 C	10^{\prime}	0.12	0.02
60-70	BFP same as above but moly is now present	44055 C	10^{\prime}	0.14	0.02
70-80	BFP same as above	44056 C	10'	0.14	0.02
80-90	BFP with increase in cpy.	44057 C	10^{\prime}	0.16	0.03
$90-100$	BFP. Same as above, possibly some bornite	44058 C	10^{\prime}	0.15	0.01
100-110	BFP, same as above	44059 C	10^{\prime}	0.19	0.01
110-120	BFP, same as above	44060 C	10^{\prime}	0.21	0.02
120-130	BFP, same as above with more moly. Have	44061 C	10^{\prime}	0.18	0.01
	xenolith (?) or very steep-angled mafic				
	dykelet at 121'				
130-140	BFP. Same as above	44062 C	10^{\prime}	0.16	0.03
140-150	BFP. Same as above.	44063 C	10^{\prime}	0.18	0.02
150-160	BFP with mineralized xenolith at 151	44064 C	10^{\prime}	0.12	0.02
160-170	BFP. Same as above with xenolith(?) at	44065 C	10^{\prime}	0.19	0.01
	167. Have same mineralized gtz. stringers				
170-180	BFP with py and cpy, both diss and along	(44066 C	13'	0.20	0.01
	fractures. Magnetic moly present	170-183)			
180-190	BFP to 183 then post-mineral acid dyke,				
	chill margin $]^{\prime}$ wide				
190-205	Acid Dyke with xenoliths of BFP	N. S.			
205-210	BFP with py and cpy	44067 C	$5{ }^{1}$	0.19	0.02
210-220	BFP becoming more silicified with some	44068 C	10^{\prime}	0.10	0.02
	specularite present along with py and cpy.				

Evergusen Esplonationa- Cid.

Sheet
PROPERTY Dorothy

DRILL HOLE \#10

LATITUDE	$7+90^{\prime}$ North	DATE STARTED
DEPARTURE	$8+20^{\prime}$ West	DATE COMPLETED
DIP	- 45° East	DRILLED BY
ELEVATION		LOGGED BY Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS_{2}
220-230	BFP same as above	44069 C	10^{\prime}	0.24	0.02
230-240	BFP. Same as above	44070 C	10^{\prime}	0.11	0.02
240-250	BFP, same as above	44071 C	10^{\prime}	0.17	0.02
250-260	BFP about. 2 cpy and trace of moly. Very	44072 C	10^{1}	0.21	0.02
	little py.				
260-270	BFP with . 3 to .4 cpy. A little more moly	44073 C	10^{\prime}	0.28	0.02
	and some magnetite py same as above				
270-280	BFP about. 3 cpy and moly in quartz	44074 C	10^{\prime}	0.18	0.02
	stringers and on fractures and visible				
	magnetite. Little py				
280-290	BFP. Cpy same as above and magnetite.	44075 C	10^{\prime}	0.23	0.02
	Little more moly in quartz stringers and				
	a little more py.				
290-300	BFP kaol inized with diss. cpy . 3 and	44076 C	10^{\prime}	0.19	0.02
	moly on fractures. Little more py.				
300-310	BFP kaolinized with a little more cpy . 3	44077 C	10^{\prime}	0.28	0.02
	to .4 and more visible magnetite and some				
	moly on slip fractures. Little more py.				
310-320	BFP with more quartz stringers and	44078 C	10^{\prime}	0.26	0.07
	larger with more moly and cpy . 5 - . 6	!			
	py with some epidote. Very well fractured				
320-330	BFP with stringers of hornsfel and some	44079 C	10^{\prime}	0.26	0.03
	massive epidote. Cpy . 4 - .5. A little				
	less moly and py.				
$330-340$	BFP very well fractured. Traces of moly	44080 C	10^{\prime}	0.15	0.02
	and much less cpy .1-2. A little more	py			
340-350	BFP. Much more cpy . 3-.4, and a little	44081 C	10^{\prime}	0.38	0.03
	more moly.				
	,				

Sveigiresn siplonationt Std.

Sheet 3
DRILL HOLE \#10
LATITUDE $\frac{7+90^{\prime} \text { North }}{8+20^{\prime} \text { West }}$
DEPARTURE $\frac{-45^{\circ} \text { East }}{\text { DIP }}$
ELEVATION
DATE STARTED
DATE COMPLETED

LOGGED BY R. C. O'Brien

Depth	Geology	Sample No	Width	Cu	MoS_{2}
350-360	BFP with cpy about . 3 - . 4 kaolinized in	44082 C	10'	0.38	0.02
	sections. Traces of moly and a little				
	more py.				
360-370	BFP kaolinized in some sections better cpy	44083 C	10^{\prime}	0.19	0.03
	diss. Where kaolinized .2 or .3 more moly				
	on fractures and a little more py				
370-380	BFP with more stringers of hornsfel cpy	44084 C	10^{1}	0.18	0.04
	. 2 or .3. Traces of moly and py				
380-390	BFP with kaolinized sections very good dis	S. 44085 C	10^{\prime}	0.49	0.14
	of cpy in kaolinized sections . 5 or . 6.				
	Much more moly and a little more py.				
390-400	BFP. Diss cpy about. 3 or. . 4 . Some moly	44086 C	10^{1}	0.39	0.05
	and traces of magnetite.				
400-410	BFP with diss. cpy . 2 or .3 with traces	44087 C	10^{\prime}	0.37	0.04
	of moly and magnetite and more py				
410-420	BFP kaolinized in some sections with more	44088 C	10^{1}	0.43	0.06
	py and cpy . 3 or .4 in kaolinized sections				
	with more moly and traces of magnetite and				
	hematite.				
420-430	BFP with cpy . 3 or . 4 and moly. More py	44089 C	10^{1}	0.31	0.03
	with traces of magnetite				
430-440	BFP with less cpy . 2 or . 3 and less moly	44090 C	10^{\prime}	0.22	0.04
	still py with magnetite.				
440-450	BFP with cpy . $2-.3$ and moly on fractures	44091 C	10^{\prime}	0.29	0.04
	a little less py.				
450-460	BFP with cpy . 2 or .3. Traces of moly	44092 C	10^{\prime}	0.22	0.04
	with more py and some epidote				
460-470	BFP with kaolinized sections better cpy	44093	10^{\prime}	0.35	0.05
	diss. in kaolinized section . 3 - .4. More				

Sheet

LATITUDE $-7+90^{\prime}$ North	DATE STARTED
DEPARTURE $\frac{8+20^{\prime} \text { West }}{-45^{\circ} \text { East }} \quad$DATE COMPLETED DIP ELEVATION\quadLOGGED BY \quad R. C. 0^{1} Brien	

Depth	Geology	Sample No	Width	Cu	MoS_{2}
470-480	BFP with kaolinized sections less cpy . 2	44094 C	10^{\prime}	0.23	0.05
	to .3 and less moly and more py				
480-490	BFP, with kaolinized sections more cpy . 3	44095 C	10^{\prime}	0.28	0.03
	to .4 in kaolinized sections and more moly				
	less py				
490-500	BFP with kaolinized sections, less cpy . 2	44096 C	10^{\prime}	0.28	0.02
	to .3 and less moly more py				
500-510	BFP with less cpy . 1 - . 2 and traces of md	y44097 C	10^{\prime}	0.29	0.02
	much more py				
510-520	BFP with kaolinized section more cpy . 3 -	44098 C	10^{\prime}	0.55	0.02
	. 4 in kaolinized sections and more moly,				
	a little less py				
520-530	BFP with good cpy . $4-.5$ diss. Traces of	44099 C	10^{\prime}	0.36	0.02
	moly and less py				
530-540	Same as above	44100 C	10^{\prime}	0.36	0.02
540-550	BFP with a little less cpy . $3-.4$ and	44101 C	10^{1}	0.16	0.01
	more moly, py about the same. Some epidote				
550-558	BFP with about the same cpy . $3-.4$ and	44102 C	8^{1}	0.18	Trace
	just traces of moly and some epidote and				
	py and traces of magnetite				
	End of hole				
	BFP - biotized feldspar porphyry				
	Cpy - chalcopyrite				
		:			
	qtz - quartz \quad magnetite or magnetic				
	non mag - non magnetic				
	\qquad				
	moly - molybdenum				
	por - . porphyritic				
	N. S. - No sample.				

Evargusen Explonationa-Sed.

Sheet

DRILL HOLE \#14
LATITUDE $\frac{12+00 \text { North }}{\text { DEPARTURE } \frac{14+50 \text { West }}{-90^{\circ}}}$
DIP

ELEVATION \qquad

DATE STARTED July 24, 1971.
DATE COMPLETED
DRILLED BY
D. W. Coates LOGGED BY

Depth	Geology	Sample No	Width	Cu	MoS_{2}
60^{\prime} - 94'	Late BFP (?) looks like an F.P. dyke or an				
	andesite porphyry - f.g. original hbs. gon				
	to chlorite and biotites are silvery color	d			
	(sericite?). Some epidote! pyrite, not				
	magnetic hematite and spec., occasionally				
	grain f.g. cpy. 1 ft . shear at 75', all				
	fractures rusty, 45° chilled border at				
	94' against				
$94^{\prime}-100^{\prime}$	BFP, grey por. variety, some patches	5501	$6{ }^{\prime}$	0.36	. 035
	honey brown material - remains of hbs(?),				
	fine grey gtz. stringers, good cpy,				
	$\mathrm{cpy} / \mathrm{py}=2 / 1$, some MoS_{2}.				
$100^{\prime}-108^{\prime}$	Late phase (?) BFP as above except some	5502	81	0.14	. 002
	f.g. cpy, sheared at 100'				
108'-118'	BFP, grey por. variety al though biotites	5503	10^{\prime}	0.36	. 073.
	recognizable and brownish to fairly fresh,				
	no sign of hbs. Some gtz. veinlettes, good				
	cpy both f.g. dissem. and with gtz. Some				
	MOS_{2}.				
118 ${ }^{\prime}$ - 128^{1}	As above.	5504	10^{1}	0.43	. 063
$128^{\prime}-138^{\prime}$	As above except rock becoming darker and	5505	10^{\prime}	0.45	. 041
	less gtz. stringers, still good f.g. diss.				
	$\text { cpy. . minor } \mathrm{MoS}_{2}$				
$138^{\prime}-148^{\prime}$	As above	5506	10^{\prime}	0.48	. 032
$148^{\prime}-158^{\prime}$	As above, cpy falling off	5507	10^{\prime}	0.50	020
158' - 168'	As above	5508	10^{\prime}	0.34	. 019
	NOTE: From 118' onwards, h b's and bios.				
	very dark and felty - f.g.				
$168^{\prime}-178^{\prime}$	BFP breccia, good cpy, , some MoS_{2}	5509	10^{\prime}	0.42	027

Evoiquesw explonationt fid.

Sheet

PROPERTY DOROTHY

DRILL HOLE \#14
LATITUDE $\frac{12+00 \text { North }}{\text { DEPARTURE } \frac{14+50 \text { West }}{-90^{\circ}}}$
DIP
ELEVATION

DATE STARTED July 24, 1971
DATE COMPLETED
DRILLED BY D. W. Coates
LOGGED BY
R. W. Woolverton

Depth	Geology	Sample No	Width	Cu	MoS_{2}
178' - 188 ${ }^{\prime}$	As above.	5510	10^{\prime}	0.38	043
188' - 198 ${ }^{\prime}$	As above, some reduction in cpy.	5511	10^{\prime}	0.27	. 030
198'-208 ${ }^{\prime}$	As above, gypsum 202', MOS_{2} increasing,	5512	10^{\prime}	0.25	045
	some fracturing; crumbling				
208'-218'	Fractured BFP - incipient clay alteration?	5513	10^{\prime}	0.31	. 064
	Good MOS_{2}, fair cpy				
218'-228 ${ }^{\prime}$	As above, less crumbly	5514	10^{\prime}	0.39	032
228'-238'	BFP, $\mathrm{MOS}_{2}, \mathrm{cpy}$. , breccia	5515	10^{\prime}	0.46	. 031
238 ${ }^{\prime}$ - 248^{\prime}	BFP as above, diss. cpy., MoS_{2} with gtz.	5516	10^{\prime}	0.78	024
	veinlettes.				
248' - 258 ${ }^{\prime}$	As above	5517	10^{\prime}	0.19	. 040
258' - 268 ${ }^{\prime}$	BFP, crumbly, some sericite, fair MOS_{2} and	5518	10^{\prime}	0.26	. 018
	cpy.				
268-278 ${ }^{\prime}$	BFP, some cpy and MOS_{2}	5519	10^{\prime}	0.31	046.
278' - 2888^{\prime}	BFP, as above, may be a breccia	5520	10^{\prime}	0.25	042
288' - 298'	BFP, bleached in short zones (sericite)	5521	10^{\prime}	0.23	035
	with_more MOS_{2}				
298 ${ }^{\prime}$ - 308^{\prime}	BFP breccia, some cpy and MOS	5522	10^{2}	0.28	031
308-378'	BFP breccia as above, Cu increasing	5523	10^{\prime}	0.41	045
$318^{\prime}-328^{\prime}$	BFP breccia, bjotites scarce, some cpy, ,	5524	10^{\prime}	0.36	036
	qtz. stringers with MoS_{2}, felspars kaolin	zed.			
328'-338'	As above, slightly more crumbly	5525	10^{\prime}	0.36	. 037
$338^{\prime}-348^{\prime}$	BFP breccia, cpy and MoS decreases	5526	10^{\prime}	0.34	. 021
$348^{\prime}-358^{\prime}$	As above	5527	10^{\prime}	0.20	. 015
$358^{\prime}-368^{\prime}$	As above, crumbly	5528	10^{\prime}	0.27	. 015
368' - 378^{\prime}	BFP , darker, some cpy.	5529	10^{\prime}	0.22	. 004
	End of hole.				

Sheet \qquad 1
PROPERTY DOROTHY

DRILL HOLE \#19
LATITUDE $\frac{12+00 \text { North }}{\text { DEPARTURE } \frac{16+50 \text { West }}{-90^{\circ}}}$
DIP

ELEVATION

DATE STARTED _ August 9, 1971
DATE COMPLETED August 11, 1971
DRILLED BY D. W. Coates
LOGGED BY
R. W. Woolverton

Depth	Geology	Sample No	Width	Cu	MoS_{2}
0-94	Casing				
94-104	BFP, fractures and stringers oxidized,	5575	10^{\prime}	0.20	. 008
	some cpy, minor MoS_{2}				
104-114	Mainly grey por., badly broken	5576	10^{1}	0.14	. 017
114-124	As above	5577	10^{\prime}	0.12	. 011
124-134	BFP, some cpy and MoS_{2}, minor chl.	5578	10^{\prime}	0.16	. 020
134-144	As above	5579	10^{\prime}	0.16	. 011
144-154	As above	5580	10^{\prime}	0.17	. 032
154-164	As above, 157-161 ground accidently	5581	10^{\prime}	0.22	. 020
164-174	BFP, some zones of grey por. and grey por.	5582	10^{\prime}	0.26	. 049
	breccia, some cpy.				
174-184	Mixed BFP and grey por,	5583	10^{\prime}	0.20	. 057
184-194	Grey por, badly broken	5584	10^{\prime}	0.24	. 078
194-204	Mainly BFP, some cpy	5585	10^{\prime}	0.20	. 042
204-214	As above, minor grey por, with MoS 2	5586	10^{\prime}	0.37	. 049
214-224	As above, still no sign of hbs.	5587	10^{\prime}	0.24	. 026
224-234	BFP, occasional chl, or green sericite	5588	10^{\prime}	0.26	. 034
	(hbs?) . some atz, stringers with MoS				
	some cpy.				
234-244	As above, silicified zones	5589	10^{1}	0.26	. 019
244-254	As above, chl (?) increasing, less cpy.	5590	10^{1}	0.25	. 069
254-264	As above, some green sericite (?) often	5591	10^{\prime}	0.24	. 019
	bio(?)				
264-274	As above	5592	10^{\prime}	0.22	. 030
274-284	As above except more silicification and	5593	10^{\prime}	0.35	. 030
	cpy. Chl. disappears.				
284-295	BFP, no sign of hbs., good silicification,	5594	11^{1}	0.29	. 043
	some cpy and MoS_{2}.				
	End of hole.				

APPENDIX C

STATISTICALRESULTS

Statistical Analysis

Analysis of AG (PPM) from file DOT. DBF

$\mathrm{n}=$	140			
$\min =$	0.100	St. Dev $=$	0.776	
$\max =$	3.500	Var $=$	0.603	
$\mathrm{x}=$	1.568	$\mathrm{CV}=$	0.495	
$\mathrm{M}=$	1.450	$90 \%=$	2.700	(\pm)
$\mathrm{Q1}=$	1.000	$95 \%=$	2.900	(4)
$\mathrm{Q} 3=$	2.100	$98 \%=$	3.400	$(*)$

Analysis of AL (PCT) from file DOT.DBF

$n=$	140			
$\min =$	0.320	St. Dev $=$	0.491	
$\max =$	2.720	$\mathrm{Var}=$	0.241	
$\mathrm{x}=$	1.118	$\mathrm{CV}=$	0.440	
$M=$	1.000	$90 \%=$	1.940	(\pm)
Q1 $=$	0.800	$95 \%=$	2.160	$(\mathrm{~A})$
$\mathrm{Q} 3=$	1.230	$98 \%=$	$2.360 \quad(\downarrow)$	

Analysis of AS (PPM) from file DOT.DBF

| $\mathrm{n}=$ | 140 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\min =$ | 2.000 | St. Dev $=$ | 2.927 | |
| $\max =$ | 17.000 | $\mathrm{Var}=$ | 8.570 | |
| $\mathrm{x}=$ | 4.043 | $\mathrm{CV}=$ | 0.724 | |
| $\mathrm{M}=$ | 3.000 | $90 \%=$ | 8.000 | (\ddagger) |
| $\mathrm{Q1}=$ | 2.000 | $95 \%=$ | 10.000 | $(\mathrm{~A})$ |
| $\mathrm{Q} 3=$ | 5.000 | $98 \%=$ | 13.000 | $(\$)$ |

Statistical Analysis

Analysis of AU (PPB) from file DOT.DBF

$\mathrm{n}=140$				
$\min =$	5.000	St.Dev	$=29$.	
max $=$	130.000	Var	847.	
x	55.893	CV	0.	
$\mathrm{M}=$	50.000	90\% =	100.000	(1)
Q1 $=$	35.000	95\% =	116.000	(4)
Q3	73.000	98\% =	124.000	(${ }^{(1)}$

50.00
$35.00 \quad 73.00$

'. 00

Analysis of B (PPM) from file DOT.DBF

Statistical Analysis
Analysis of BI (PPM) from file DOT.DBF

$\mathrm{n}=$	140			
min $=$	2.000	St.Dev	0.837	
max	8.000	Var	0.701	
x	2.279	CV	0.367	
$\mathrm{M}=$	2.000	90\% =	3.000	(1)
Q1 $=$	2.000	95\% =	4.000	(1)
Q3 =	2.000	98\% =	5.000	(*)

Analysis of CA (PCT) from file DOT.DBF

$n=$	140		
$\min =$	0.350	St. Dev $=$	0.721
$\max =$	6.630	$\mathrm{Var}=$	0.521
$\mathrm{x}=$	1.421	$\mathrm{CV}=$	0.508
$M=$	1.310	$90 \%=$	2.110
$\mathrm{Q1}=$	0.990	$95 \%=$	2.310
$\mathrm{Q} 3=$	1.730	$98 \%=$	2.910

$n=$	140			
min	0.200	St.Dev	0.169	
max	0.900	Var	0.029	
x	0.296	CV	0.571	
$\mathrm{M}=$	0.200	90\% =	0.500	(\ddagger
Q1 $=$	0.200	95\% =	0.700	(A)
	0.300	98\% $=$	0.900	(*)

1.20		
3.20		
0.20	0.30	0.90

Statistical Analysis
Analysis of CO (PPM) from file DOT.DBF

$$
\begin{array}{rrrr}
n= & 140 & & \\
\min = & 4.000 & \text { St.Dev } & = \\
\max = & 37.000 & \text { Var } & = \\
x= & 12.871 & & \text { CV }
\end{array}
$$

$$
12.00
$$

10.00
15.00

4.00
12.87
37.00

Analysis of CR (PPM) from file DOT.DBF

12.00
$10.00 \quad 14.00$

Analysis of CU (PPM) from file DOT.DBF

Statistical Analysis
Analysis of FE (PCT) from file DOT.DBF

$n=$	140			
$\min =$	1.140	St. Dev $=$	0.700	
$\max =$	4.470	Var $=$	0.490	
$x=$	2.444	$C V=$	0.286	
$M=$	2.295	$90 \%=$	3.500	(\pm)
Q1 $=$	1.940	$95 \%=$	3.870	(4)
$Q 3=$	2.850	$98 \%=$	3.990	(4)

Analysis of K (PCT) from file DOT.DBF

$n=$	140			
$\min =$	0.090	St. Dev $=$	0.334	
$\max =$	1.830	$\mathrm{Var}=$	0.111	
$\mathrm{x}=$	0.513	$\mathrm{CV}=$	0.650	
$\mathrm{M}=$	0.380	$90 \%=$	0.930	(\pm)
$\mathrm{Q1}=$	0.300	$95 \%=$	1.120	(4)
$\mathrm{Q} 3=$	0.610	$98 \%=$	1.520	(\uparrow)

$$
0.38
$$

$$
0.30 \quad 0.61
$$

0.09
0.51
1.83

Analysis of LA (PPM) from file DOT.DBF

| $n=$ | 140 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\min =$ | 2.000 | St.Dev $=$ | 5.191 | |
| $\max =$ | 30.000 | $\mathrm{Var}=$ | 26.952 | |
| $x=$ | 15.236 | $C V=$ | 0.341 | |
| $M=$ | 15.000 | $90 \%=$ | 21.000 | (\pm) |
| $Q 1=$ | 12.000 | $95 \%=$ | 25.000 | (4) |
| $Q 3=$ | 18.000 | $98 \%=$ | 27.000 | (\downarrow) |

15.00

Statistical Analysis
Analysis of MG (PCT) from file DOT.DBF

$\mathrm{n}=$	140		
$\min =$	0.270	st. Dev $=$	0.359
$\max =$	2.140	$\mathrm{Var}=$	0.129
$\mathrm{x}=$	1.000	$\mathrm{CV}=$	0.359
$\mathrm{M}=$	0.935	$90 \%=$	1.610
$\mathrm{M}=$	0.740	$95 \%=$	1.690
$\mathrm{Q}=$	(1)		
$\mathrm{Q}=$	1.120	$98 \%=$	1.800

\square	$x-$

0.94
0.741 .12

6.27
1.00
2.14

Analysis of MN (PPM) from file DOT.DBF

$\mathrm{n}=$	140			
$\min =$	86.000	St.Dev $=439.798$		
$\max =$	4874.000	Var $=193422.71$		
$\mathrm{x}=$	331.014	$\mathrm{CV}=1.329$		
M $=$	220.000	90\% =	520.000	(1)
Q1 $=$	179.000	95\% =	718.000	(4)
Q3	334.000	98\% =	1149.000	(${ }^{\text {(}}$

220.00
179.00
334.00
$\square \square$
86.00
331.01
4874.0

Analysis of MO (PPM) from file DOT.DBF

Statistical Analysis
Analysis of NA (PCT) from file DOT. DBF

$n=$	140		
min $=$	0.030	St. Dev $=$	0.041
max $=$	0.220	Var $=$	0.002
$x=$	0.076	$C V=$	0.534
$M=$	0.060	$90 \%=$	0.140
Q1 $=$	0.050	$95 \%=$	0.180
Q3 $=$	0.090	$98 \%=$	0.200

Analysis of NI (PPM) from file DOT.DBF

$\mathrm{n}=$	140			
$\min =$	5.000	St.Dev $=2.528$		
$\max =$	22.000	Var	6.392	
$\mathbf{x}=$	12.479	CV	0.203	
$\mathrm{M}=$	12.000	90\% =	15.000	(1)
Q1 =	11.000	95\% =	17.000	(4)
Q3 =	14.000	98\% =	18.000	(*)

$$
11.00^{12.00} \quad 14.00
$$

5.00

Analysis of P ($P C T$) from file DOT. DBF

$n=$	140			
$\min =$	0.016	St.Dev $=$	0.023	
$\max =$	0.149	Var $=$	0.001	
$x=$	0.081	$C V=$	0.290	
$M=$	0.078	$90 \%=$	0.116	(\ddagger)
Q1 $=$	0.070	$95 \%=$	0.128	(4)
Q3 $=$	0.089	$98 \%=$	0.135	$(+)$

Statistical Analysis
Analysis of PB (PPM) from file DOT.DBF

$\mathrm{n}=$	140		1.317	
$\min =$	2.000	St.Dev		
$\max =$	15.000	Var	1.736	
x	2.507	CV	0.525	
$\mathrm{M}=$	2.000	90\% =	4.000	(1)
Q1 $=$	2.000	95\% =	4.000	(A)
Q3 $=$	3.000	98\%	5.000	(*)

$-\mathrm{x}$

$\vdots 00$
\vdots

3.00

.00	2.51	15.00

Analysis of $S B$ (PPM) from file DOT.DBF

$\mathrm{n}=$	140			
$\min =$	2.000	St. Dev $=$	1.457	
$\max =$	19.000	$\mathrm{Var}=$	2.123	
$\mathrm{x}=$	2.186	$\mathrm{CV}=$	0.667	
$\mathrm{M}=$	2.000	$90 \%=$	2.000	(t)
$\mathrm{Q1}=$	2.000	$95 \%=$	3.000	(A)
$\mathrm{Q} 3=$	2.000	$98 \%=$	3.000	($)$

7 \qquad
00
2.19
19.00

Analysis of $S R$ (PPM) from file DOT.DBF

$\mathrm{n}=140$			
$\min =23.000$	St.Dev $=186.271$		
max $=1129.000$	Var $=34696.780$$\mathrm{CV}=$l		
$\mathrm{x}=138.664$			
$\mathrm{M}=62.500$	90\% =	388.000	(\ddagger
Q1 $=45.000$	95\% =	523.000	(1)
Q3 $=132.000$	98\% =	702.000	(*)

Statistical Analysis
Analysis of $T H$ (PPM) from file DOT.DBF

| $\mathrm{n}=$ | 140 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\min =$ | 1.000 | St. Dev $=$ | 2.242 | |
| $\max =$ | 8.000 | $\mathrm{Var}=$ | 5.026 | |
| $\mathrm{x}=$ | 4.400 | $\mathrm{CV}=$ | 0.510 | |
| $\mathrm{M}=$ | 4.000 | $90 \%=$ | 7.000 | (1) |
| $\mathrm{Q1}=$ | 2.000 | $95 \%=$ | 8.000 | (1) |
| $\mathrm{Q} 3=$ | 6.000 | $98 \%=$ | 8.000 | (1) |

Analysis of $T I$ (PCT) from file DOT.DBF

$\mathrm{n}=$	140			
$\min =$	0.010	St.Dev	0.092	
max	0.460	Var	0.008	
x	0.112	CV	0.8	
$\mathrm{M}=$	0.080	90\% =	0.220	(f)
Q1 $=$	0.050	95\% =	0.280	(${ }^{\text {a }}$
	0.160	98\% =	0.420	(*)

Analysis of U (PPM) from file DOT.DBF

| $\mathrm{n}=$ | 140 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\min =$ | 5.000 | St. Dev $=$ | 0.963 | |
| $\max =$ | 13.000 | $\mathrm{Var}=$ | 0.927 | |
| $\mathrm{x}=$ | 5.150 | $\mathrm{CV}=$ | 0.187 | |
| $\mathrm{M}=$ | 5.000 | $90 \%=$ | 5.000 | (\ddagger) |
| $\mathrm{Q1}=$ | 5.000 | $95 \%=$ | 5.000 | $(\mathrm{~A})$ |
| $\mathrm{Q}=$ | 5.000 | $98 \%=$ | 7.000 | $(*)$ |

Statistical Analysis
Analysis of V (PPM) from file DOT. DBF

$\mathrm{n}=$	140	St.Dev $=34.801$		
$\min =$	6.000			
$\max =$	192.000	Var $=1211.090$		
$\mathrm{x}=$	54.100	$\mathrm{CV}=0.643$		
$\mathrm{M}=$	43.500	90\% $=$	95.000	(\ddagger
Q1 =	33.000	95\% =	104.000	(4)
Q3 =	61.000	98\% =	177.000	(*)

[^0]: Samples beginning 'RE' are duplicate samples,

