

TABLE OF CONTENTS

SUMMARY AND RECOMMENDATIONS i
1.0 LOCATION AND ACCESS 1
2.0 PROPERTY DESCRIPTION 1
3.0 PHYSIOGRAPHY 1
4.0 PROPERTY HISTORY 2
5.0GEOLOGY35.1REGIONAL GEOLOGY35.2PROPERTY GEOLOGY3
6.0 1991 FIELD WORK 4
7.0 RESULTS 5
8.0 CONCLUSIONS AND RECOMMENDATIONS 5
STATEMENT OF EXPENDITURES
STATEMENT OF QUALIFICATIONS 8
REFERENCES

	LIST OF TABLES	Following Page No.
Table 1	List of Claims	
	LIST OF FIGURES	Following Page No.
Figure 1	Property Location	

.

riguie i		Ŧ
Figure 2	Claim Map	1

APPENDICES

ł

Appendix A	Assay Certificates and Sample Record Sheets
Appendix B	Selected 1971 Drill Logs
Appendix C	Statistics

MAPS

Map 1	Pre 1991 General Geology, IP	
-	and Drill Hole Location Map	
	1:5,000	Jacket

SUMMARY AND RECOMMENDATIONS

The Dorothy property is located in the Babine region of the Omineca Mining Division, British Columbia. The property was originally staked by Evergreen Explorations in 1969, then vended to Twin Peaks Mines who formed a joint venture with Ducanex. Although a weak molybdenum and copper-in-silt anomaly reportedly drew interest to the area in the mid 60's, the 1971 property report states the reason for acquisition was "structural appeal".

During 1970 several surveys were completed over the property including MAG, VLF-EM, soil sampling, geologic mapping and IP. Drilling commenced in late 1970 and 29 holes, totalling 9,795 feet (2973 metres), were completed by September 1971. Drilling and trenching revealed the Dorothy Pluton which is a member of the Babine Intrusive suite, a series of spatially and genetically related 49 -55 Ma biotite-feldspar-porphyry (BFP) intrusives. They are associated with a number of porphyry copper deposits in the region. The Dorothy pluton was found to host consistent but weak disseminated copper mineralization (weighted average of the best mineralized 20 holes is 0.2% copper and 0.019% molybdenite). The low average copper grade of the drilled area was discouraging and no further work was done on the property until Coronas' 1991 program.

The substantial rise in gold prices since 1972 has increased the economic attractiveness of copper-gold porphyries. Two such mines, Granisle and Bell, have been developed in the area by Noranda, both of which are related to Babine Intrusives. The geologic similarities between Dorothy, Granisle and Bell prompted International Corona Corporation to re-sample the Dorothy drill core as it was not analyzed for gold content during the 1971 program. Four of the holes with the strongest copper mineralization were selected for re-sampling.

The average grade of the intervals sampled in the four drill holes was 0.28% copper and 56 ppb gold. Bivariate statistical analysis shows that gold and copper are highly correlative but the gold content of the mineralizing system is simply very low. Further exploration should be directed at finding higher grade copper zones in the areas of anomalous chargeability.

Geochemistry Report Dorothy Property - 1018 January, 1992

ŧ

1.0 LOCATION AND ACCESS

The Dorothy Property is located on the 93M/1, 8 NTS map sheets in north-central British Columbia, centred on 55°15'N latitude and 126°08'W longitude (See Figure 1). Access is from Smithers (82 km southwest) or Houston (90 km south) by helicopter. Current logging activity is within a few km of the eastern boundary of the property. Favourable terrain would make building a road to the property relatively easy. Work on the property during the early 1970's was supported by a now overgrown cat road which led from a float plane landing on Haut Lake to the camp which lies near the centre of the property.

2.0 PROPERTY DESCRIPTION

The Dorothy property, located in the Omineca mining division, is comprised of a contiguous claim block (Figure #2), consisting of four modified grid system mineral claims staked in 1991, 9 two post and four fractional claims which were staked during 1969 and 1970. There are a total 94 units, which with claim overlap covers an area of approximately 2000 hectares. A complete list of the claims and their status is provided as Table 1.

The property is owned 90% by International Corona Corporation and 10% by Twin Peak Mines Limited. International Corona is the operator.

3.0 PHYSIOGRAPHY

The Dorothy property is located within the northern limits of the Nechako Plateau, which Carter (1981) describes as follows:

"This area is one of low relief, dominated by flat or gently rolling topography (Holland, Glacial drift obscures much of the 1964). bedrock and ubiguitous glacial features include grooving and drumlin-like ridges, glacial numerous lakes, eskers anđ dry meltwater channels. The northern boundary of the Nechako area fairly sharply defined by mountainous terrain (Omineca Mountains)."

TABLE 1

MINERAL TITLE - CANADA BABINE J.V. [1018]

Province	: B.C.	Operator :	ICC
Mining Division	: OMINECA	Recorded 1)	INTERNAT'L CORONA CORP 90%
Land District	:	Holder(s) 2)	TWIN PEAKS MINES LTD 10%
Lat./Long.	: 55°15' /126°08'	3)	
NTS	: 93M/1E,8W,8E	J.V. Part.(%):	1CC - 90%
Location: Nakir	nīlerak Lake	:	TWIN PEAKS ~ 10%

MINERAL TITLE - CANADA

Record Number	Claim Name	Previous Number	Units	Area (ha)	Record Date	Record Date
303987	DOT 1	303987	20	500.0	1991.09.14	1992.09.14
303988	DOT 2	303988	20	500.0	1991.09.14	1992.09.14
303989	DOT 3	303989	20	500.0	1991.09.15	1992.09.15
303990	DOT 4	303990	20	500.0	1991.09.15	1992.09.15
82072	DOROTHY 41	82072	1	25.0	1969.11.07	2001.11.07
82073	DOROTHY 42	82073	1	25.0	1969.11.07	2001.11.07
82078	DOROTHY 47	82078	1	25.0	1969.11.07	2001.11.07
82079	DOROTHY 48	82079	1	25.0	1969.11.07	2001.11.07
92377	DOROTHY #533	92377	1	25.0	1970.09.24	2001.09.24
92390	DOROTHY 5 FR.	92390	1	15.0	1970.09.24	2001.11.07
92391	DOROTHY #6 FR.	92391	1	15.0	1970.09.24	1994.09.24
92655	DOROTHY #530	92655	1	25.0	1970.09.29	1994.09.29
92659	DOROTHY #2 FR.	92659	1	15.0	1970.09.29	1994.09.29
13			89	2195.0		

Date: 1992.01.15

LIST OF CLAIMS Dorothy Property

Terrain on the property is mostly flat with swamp covering the north central and the southwestern areas while low north-south ridges cover the eastern and northwestern portions of the claims. Maximum relief is 300 metres ranging from 880 metres to 1180 metres elevation. Vegetation consists of mixed conifers, alder, devil's club and a variety of berry bushes and shrubs.

4.0 **PROPERTY HISTORY**

Weak copper and molybdenum-in-silt anomalies drew workers to the area during the 60's. Prospecting revealed what was believed to be an unaltered intrusive, not resembling the distinctive biotite-feldsparporphyry (BFP) known to host many porphyry copper deposits in the region and as a result, claims were not acquired. Subsequent thinsection work however, indicated the intrusive is likely a trachytic variety of the BFP which has been subjected to two periods of alteration (Woolverton, 1973).

The original Dorothy claims were staked in October of 1969 for Evergreen Explorations and were subsequently vended to Twin Peak Mines Limited. Ducanex Resources Limited (Ducanex --Lacana --International Corona) formed a joint venture partnership with Twin Peaks whereby Ducanex held 90% and Twin Peaks 10% of the Dorothy property. International Corona has retained Ducanex's 90% interest in the property.

The 1970 field program entailed an IP survey, soil sampling, magnetometer and VLF-EM surveys and geological mapping. The IP outlined a large area (1000 metres x 1300 metres) of coincidental chargeability high (>5 ms) and resistivity low (<1600 Ohm-Feet). This anomaly extends off the grid, both to the north and the south (See map 1). Trenching was completed using a cat to uncover what was described by Woolverton (1973) as "local zones of ore grade porphyry copper-molybdenum mineralization in a 0.2% copper background".

Between October 1970 and September 1971, 9,795 feet (2,973 metres) of drilling was completed in 29 holes. Drilling intercepted consistently anomalous but low grade copper mineralization (weighted average over the 20 best mineralized holes gives 0.2% copper and 0.019% molybdenite). The property lay essentially dormant until 1991.

Geochemistry Report Dorothy Property - 1018 January, 1992

ł

Page 3

5.0 GEOLOGY

5.1 **REGIONAL GEOLOGY**

Carter (1981) gives an excellent overview of the regional geology of the Babine District and an overview is given below.

The Dorothy property lies within the Intermontane Tectonic Belt which is bounded on the east by the Omineca Belt and to the west by the Coast Crystalline Complex. Stratigraphy in the area consists mainly of Lower Jurassic Hazelton Group volcanics and related sediments. To the north, the Hazelton rocks are overlapped by the Bowser Basin Sediments. The Skeena Arch, a transverse tectonic feature which separates the Bowser Basin from the Nechako Trough, dominated the stratigraphic development during the Jurassic, a period during which it was strongly uplifted. Faulting of the arch subsequently acted as a control for the emplacement of Cretaceous and Tertiary intrusives.

The six major intrusive suites found in the Mesozoic stratigraphy include the Topley (173-206 Ma), Omineca (121-181 Ma), Bulkley (70-84 Ma), Goosly Lake (49-53 Ma), Nanika (47-56 Ma) and Babine (49-55 Ma) (Carter, 1981). All suites have related economic metal deposits but Babine Intrusives are of particular interest in the area of the Dorothy Property as they host the mineralization there, as well as at Bell mine, Granisle mine, Morrison and several other properties.

5.2 **PROPERTY GEOLOGY**

In the area of mineralization on the property, bedrock is covered by as much as 30 metres of glacial till although outcrop is found more commonly on the eastern side of the property. Stratigraphy consists of intermediate volcanics of the Hazelton Group, which are very poorly exposed but appear to be mostly flows with occasional tuffs and breccias. Most of the property is underlain by two intrusive bodies; an Omineca granodiorite to diorite and a Babine BFP. The BFP "Dorothy Pluton," a multiphase, dioritic biotite-feldspar-hornblende porphyry, is an elliptical body lying parallel to the main NW-SE tectonic trend. One to four mm phenocrysts of biotite, quartz and feldspar are clearly seen in hand specimen but hornblende phenocrysts and the groundmass of feldspar usually identified only fine laths are in thin section(Woolverton, 1972). Young felsite dykes cross-cut the older stratigraphy on the property.

Alteration on the property has been thoroughly studied by Woolverton in 1972 by thin-section work completed on 112 samples from drill core. The potassic zone, which hosts the copper mineralization, is found within the core of the BFP and is defined mainly by hydrothermal biotite. Peripheral to this is a large propylitic zone which is present in the outer rim of the intrusive and in the host volcanics. A moderately developed pyrite halo exists along the rim of the intrusive, just outside the potassic zone. Much of the potassic alteration was overprinted by a lower grade alteration (propylitic), resulting in either rimming of the hydrothermal biotite with fine chlorite or complete replacement of the biotite. Woolverton has postulated that this later alteration is related to a large, late intrusive body which has been emplaced at depth. Although this is certainly possible, it should be noted that overprinting of the potassic zone by lower grade alteration is not uncommon in porphyry systems (Sillitoe, 1973). After the main event of alteration and mineralization, a late phase of BFP was emplaced as a set of large dykes, in the potassic zone. This later phase is notably fresher, showing no signs of potassic alteration or mineralization, and is texturally distinct due to its' brecciated nature.

Copper mineralization, found in the potassically altered core of the BFP is weakly to moderately disseminated chalcopyrite with occasional molybdenite and rare bornite (1991 results show copper $_{max}=0.7\%$ copper $_{x}=0.28\%$ in four of the best drill holes)(See appendix C). Occasional stringers of chalcopyrite are present but do not contribute substantially to the overall grade.

6.0 **1991 FIELD WORK**

The 1991 field program entailed the re-sampling of four of the best mineralized 1971 drill holes (See appendix B for drill logs). This was done in an attempt to determine if strongly anomalous gold mineralization is associated with copper mineralization as it is in other BFP porphyries in the region, such as Bell and Granisle. Drill holes 2, 10, 14 and 19 were among the best mineralized in the 1971 drill program and were chosen for re-sampling. Samples were generally taken over 10 foot intervals, down the entire length of the hole. Occasionally the condition of the core prohibited sampling at regular intervals (rotten or destroyed core boxes). All samples consisted of a representative sampling of the intervals noted in Appendix A. All core samples were sent to Acme Analytical Laboratories where they were prepared and analyzed. Analysis included a fire assay for gold with an AA finish as well as 30 element analysis using ICP techniques (see Appendix A for results).

7.0 RESULTS

The univariate statistics (Appendix C) for both copper and gold indicate that they have relatively normal distributed populations as their mean(x) and median(M) are quite similar and their coefficient of variation(CV) is much less than one. The sampling procedure produced a data set strongly biased to samples with anomalous copper values. All of the core is biased because by definition, drill targets chosen on the property have an increased probability of intersecting anomalous copper values. The population was further biased because the four drill holes sampled were chosen because of their high copper assays ($x_{copper} = 0.28\%$). Bivariate statistics (See chart in Appendix C) show that the gold and copper are highly correlative with a Spearman Coefficient of 0.604 and a Pearson coefficient of 0.622. The low average gold values ($x_{gold} = 56ppb$) in conjunction with the significant correlation between elevated copper and gold values indicates a low gold content in the mineralizing system.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Extensive work during 1970 and '71 indicate a sizable mineralizing system related to the Dorothy Pluton. Although the identified copper mineralization is relatively low grade, potential for finding additional copper mineralization of equal or higher grade within the untested portions of the IP chargeability anomaly, is considered to be good. Based on the 1991 re-sampling it is unlikely that economically significant gold mineralization would accompany the copper mineralization. Low average gold values in a data set with high average copper values, in conjunction with a high correlation between the two elements indicates a low gold content in the mineralizing system. Geochemistry Report Dorothy Property - 1018 January, 1992

Page 6

International Corona Corporations' objectives are to define an economic porphyry deposit with appreciable gold credits. The Dorothy property will not likely meet these objectives and further work is not recommended at this time.

Respectfully Submitted,

Stephen Robertson, B.Sc. Geologist.

STATEMENT OF EXPENDITURES

January 22, 1992

FIELD PROGRAM

Salaries	M Tindall - Senior Project Geologist	•	
	1 day @ \$300.00	\$	300
	September 23, 1991		
	S Robertson - Geologist		
	1 day @ \$188.00		188
	September 23,1991		
	M Galdiotis - Geologist		
	1 day @ \$225.00		225
	September 23, 1991		
Analysis	140 @ \$13.30 (Acme Analytical)		1,862
Helicopter	3.1 Hours @ \$700.00 (Highland)	2	2,170
Food	1 day @ \$85		85
Lodging	1 day @ \$144		144
Field Transpo	ortation (Vancouver - Smithers)		330

REPORT PREPARATION

Salaries	S. Robertson - Geologist	
	5 days @ \$188 January 13-17, 1991	940
Drafting		44

Total Expenditures	6, 288
Pac Withdrawal	1,712
TOTAL APPLIED TO CLAIMS	\$ 8,000

STATEMENT OF QUALIFICATIONS

I, Stephen Robertson, of 1969 Lower Road, Gibsons, B.C. VON 1V0 state that:

I am a 1989 graduate of the University of Alberta, Edmonton Alberta, with a B.Sc. in geology.

I have been employed in mineral exploration prior to my graduation and that I have been practising my profession since 1989.

I am presently on contract as a geologist with International Corona Corporation, #1440 - 800 West Pender Street, Vancouver, British Columbia. V6E 2V6.

I am the author of this report which is based on public and property reports plus on site inspections.

I have no interest, direct or indirect, in the property discussed in this report.

This report may be used for development of the property, provided that no portion of it is used out of context or in such a manner as to convey meanings different from that set out in the whole.

Signed and dated in Vancouver, British Columbia this /3 day of \underline{Feb} 1992.

Hipten Roberts

Stephen Robertson, B.Sc.

ţ

REFERENCES

Carter, N.C. (9181): Porphyry Copper and Molybdenum deposits; West Central British Columbia. BCDM Bulletin 64. 150 p.

Sillitoe, R.H. (1973): The Tops and Bottoms of Porphyry Copper Deposits, in Economic Geology, Vol 68, pp 799-815

Woolverton, R.W. (1971): A geophysical Report of the Dorothy Claims, Omineca Mining Division, BCDM Assessment Report.

Woolverton, R.W. (1972): A Report on the Dorothy Property, Babine Lake area, BCDM Assessment Report.

APPENDIX A

ĥ

ASSAY CERTIFICATES and SAMPLE RECORD SHEETS

Corona Corporation PROJECT 1040 FILE # 91-4808

^ر ر

ACHE ANALYTICAL

_

Page 2

 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm p	Co opm	Mn ppm	Fe %	As ppm	U ppm (Au ppm	Th ppm	Sr ppm	b) ppm	Sb ppm j	Bi ppnij	V mojo	Ca %	Р Х	La ppm p	Cr xpm	Mg X	Ba ppm	Τí X	B ppm	AL X	Na X	K X	P pm	Au* ppb	Cu %	
 					<u>teris</u> e					and the second s					Yaka w					(jewe)							·			they-			
84557 CORE	i 2	ZZ4	2	44		7	4	504	1.38	3	5	ND	4	73	4	2	2	12 2	2.71	.064	25	5	.49	520	201	5	.49	.04	.23	1 -1-	7	.02	
84558	7	156	2	33	.1	6	5	1367	1.18	្លារ	5	ND	2	73	्रु	2	2	62	2.91	.062	23 1/	4	.62	397	.01	3	.40	.03	.20		5 8	-	
84559 84560	161	1268	2	48 28	ر م	9	10	485	2.07	6	12	ND	1	39	.2	2	5	17 1	1.24	.023	5	8	.45	88	202	3	.55	.05	.15	ें। २२	26	-	
84561	46	1617	3	32	.9	9	14	262	2.69	8	13	ND	1	31		2	5	48	.91	.039	7	16	-88	102	10	2	1.08	.09	.39	្មា	22	•	
84562 84563	74	621 1272	2	20 85	5 5	8 13	6 19	198 131	1.14	6 17	5	ND ND	1	23 30	.2	2	2	10 37	.75	056	4 8	8 19	.66	81	.07	3	1.01	.12	.09	21	26		
84564	25	1366	2	39	.8	10	14	196	3.25	2	5	ND	1	51	.9	2	2	91 1 100 1	1.40	133	11	14 1	1.70	139	18 20	3	2.14	.18	1.06	ା 1 1	10 12	-	
84262	00	1213	2	44		•		197	·		-	NU	,	60		-	-				10			405		-		•/			170		
84566 84567	104	2814 1733	2	47 58	1.2	11 8	23	195 265	3.74	2	5	ND ND	1	65 77	-5	2	2	83 1 83 1	1.32	135	11	10 1	1.48	105 65	<15 211	2	1.91	.10	.70	81	12	-	
84568	401	2583	2	43	.7	9	14	171	3.50	2	5	ND	1	67	.9	2	2	85	1.64	118	11	9	1.48	112	16	2	1.87	.15	.81	1	110	•	
84569 84570	81	3274 2828	2	43 42	1.4	9	18	171	3.51	4	5	ND	3	61	.4	2	2	96 ·	1.28	.123	10	12	1.69	109	16	2	2.11	.16	.84	1	34	•	
84571	135	3226	2	41	1.3	9	15	158	3.38	2	5	ND	1	50	.7	2	2	93 [•]	1.19	117	9	11	1.63	62	.17	2	1.99	.15	.93	1	40	-	
84572	145	2453	2	54 70	1.2	10	16 18	286	3.80	5	5	ND	2	54 66	.6	2	3	92 4	1.49 1 30	133	11	11 1	1.65	85 102	214 216	2	2.17	14	.82	- 18 1 - 1911	31 34	-	
84574	138	3450	3	50	1.3	12	17	178	3.99	2	5	ND	1	75	ંડ	2	5	98	1.51	124	12	12	1.64	121	19	2	2.33	.20	1.12		37	•	
84575	166	3842	2	53	1.7	12	20	195	3.87	3	5	ND	2	81	.9	2	2	91 2	2.15	.111	11	11	1.43	64	ា4 ្ល	2	2.22	. 19	.80		40	•	
84576 BE 8/572	427	1203	2	37	. 5	8 10	6	370	1.46	2	5	ND	4	1088	.2	2	23	33 3	3.48 1 50	.073	17	7	.57 1 63	196 85	.06	2	.88	.05	.34	1 1	26 36	-	
84577	159	2056	2	30	1.0	11	8	182	1.80	2	5	ND	4	523		2	2	43 2	2.25	.083	18	10	.76	176	11	2	.92	.06	.42	2	41	-	
84578 84579	44	2073	2	58 48	1.2	11 11	11 13	385 284	2.64	4	5	ND ND	4	191 149	.4	2	2	58 2 90 1	2.04	.111	15 15	9 ' 17 '	1.10 1.43	141 136	10 18	2	1.13	.06 .08	.46		57	-	
0/500		70/4	_	·				170	 -		E		•	73		,	-	04	4 64	10/	44	4.1	1 / 2	447	20	7	1 60	00	1 07		120		
84580	60	3891	3	42	: 1. ⊃: [1]1:	11	14	151	4.05	2	5	ND	1	63	.8	2	3	104	1.39	116	12	11	1.62	135	.21	2	1.71	.10	1.22	i	100	-	
84582	100	4495	2	39	2.0	14	18	171	3.18	4	5	ND	1	119	.3	3	5	94	1.65	.097	12	10	1.39	109	.20	2	1.52	.08	1.09		59 84	-	
84584	161	2768	2	38 38	_∠.∪ 1.1	13	11	186	2.00	3	5	ND	3	135	.5	Ž	2	56	1.34	.081	15	15	.96	169	14	3	1.06	.06	.54	i i	64	•	
84585	62	2437	4	35	.9	13	10	194	2.91	2	5	ND	2	140	.2	2	2	67	1.56	.084	16	14	.95	163	- 14	2	1.06	.06	.55		120	•	
84586	51	1759	3	36	.4	13	9	172	3.22	2	5	ND	2	145	.5	Ş	2	77	1.56	.093	13	14	1.12	195	.23	2	1.31	.09	.84		100	:	
84587 Standard C/Au-R	20	3533 59	44	39 132	1.2 7.4	15 73	14 32	178 1043	3.91 3.97	42	5 18	ND 7	2 40	145	18.7	2 16	3 17	62	.49	.055	39	61	.90	177	.09	32	1.92	.07	.15		460	•	

Samples beginning 'RE' are duplicate samples.

Corona Corporation PROJECT 1040 FILE # 91-4808

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr C ppm pp	d Sb nu ppm	Bi ppm	V ppm	Ca X	P X.	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X p	W Au pan py	 ⊥≉ pb
8/588	64	2401	2	42	.9	14	13	182	3.83	2	5	ND	7	133	2 2	2	89	1.16	.148	24	14	1.12	258	. 25	2	1.44	.09	.89	े 2	52
8/580	140	3327	2	35	1 2	13	12	142	2.96	2	5	ND	3	50	z 2	2	103	.59	085	15	18	1.23	217	.30	2	1.48	.12	1.10 🚵	ា	71
9/500	77	2227	2	25	<u></u>	17	15	180	4 05	5	5	ND	1	53	2 2	2	192	.73	037	4	28	1.99	229	. 44	2	2.72	.22	1.83	3 1 - 3	30
84590	75	2201	2	*2	·····	1.5	1	107	7 55	8 5 -	ź	10		15 8	້	2	1/.8	0.2	070	ž	20	1 70	128	1	- 2	2 16	20	1 31 2	्र	45
84591	Y I	3017		21		47	14	107	2.43	្ន	2	ND	-		ວ, ເ	5	102	.00	079	7	22	2 4/	227	1.6	5	2 60	10	1 80	<u> </u>	~~
84592	66	2714	2	47	1 •1	15	14	201	3.0/	6	5	NU	I	- J	° ′	4	192	-05	-050	2		2.14	661		2	2.00	• 17	1.00	<u>د</u> ا	20
84593	123	4307	2	47	1.7	16	17	220	4.47	2	5	ND	1	52 🤍	23	2	177	.64	.036	6	28	1.93	195	.43	2	2.43	.14	1.74	2	81
84594	71	2523	2	40	1.1	13	13	524	3.16	2	5	ND	1	60 💮 .	3 2	2	141	.92	.026	2	23	1.67	194	• 34	2	1.94	.11].27 🛞	9 - I	55
84595	128	3449	2	38	1.5	14	15	186	3.58	2	5	ND	1	43 🦪	4 Z	2	177	.55	.033	3	29	1.80	180	.42	2	2.10	.13	1.52 🛞	81 - I	85
84596	99	3609	2	39	1.6	13	12	204	2.95	2	5	ND	1	43	3 2	2	130	.70	.053	6	20	1.28	115	.28	2	1.74	.12	1.08	1	76
84597	86	3675	Ž	38	1.4	14	12	183	2.85	2	5	ND	3	45 .	2 2	2	80	.70	.078	12	16	1.21	182	.22	2	1.28	.07	.81	े । ।	84
84598	83	1602	2	35	.8	13	8	387	2.20	2	5	ND	2	52 -	2 2	2	45	1.03	.092	18	15	.95	241	.13	3	.95	.06	.52	ji :	31
84599	82	1365	2	36	.6	13	8	275	2.22	2	5	ND	3	49 -	2 2	2	59	.84	.102	21	13	1.09	275		2	1.03	.06	.60 💮	1 . '	23
84600	59	4452	2	35	1.8	16	9	306	2.16	2	5	ND	2	103 .	2 2	2	43	1.10	.080	19	14	.89	Z28	.09	4	.92	.05	.36 🛞	2	76
84601	173	3636	2	55	2.7	17	12	650	2,65	2	5	ND	3	126	2 2	2	24	2.49	.114	22	15	.69	182	01	2	.93	.04	.18	1	46
84602	394	3051	ž	50	2.6	15	11	773	2.40	4	5	ND	3	132 🗧	2 2	3	· 18	2.10	. 135	20	11	.45	109	.01	2	.65	.04	.17 🔮	9 1	41
84603	470	4899	2	36	3.4	13	15	411	1.73	2	5	ND	7	80	3 2	2	35	2.20	.083	15	11	.72	138	04	2	.91	.04	.30	2	66
84604	135	2934	3	31	1.9	12	11	277	1.43	2	5	ND	5	65	3 2	2	40	1.25	.071	15	13	.71	134	05	2	.90	.04	.35 🛞	2	41
PE 84609	168	4501	2	31	24	16	26	172	2.64	3	7	ND	3	132	2 2	2	54	1,59	.079	12	14	.96	88	.09	2	1.03	.05	.46 🛞	8 1 - 1	73
9/405	266	5564	2	77	र्रर	14	16	227	1 80	2	5	ND	4	60	2 2	2	46	1.33	.072	18	13	.76	144	. 06	2	.93	.05	.35 🛞	8 1 0	85
04000	1/7	7028	2	74	7 E	17	10	204	2 30		5	ND	र	51 88	7 2	2	55	1 04	075	13	13	.94	118	8.07	2	1.03	.05	.40	Š. 1	24
04000	142	1020		50		14	.,,	200	2.37			10	-		Ŕ.	-									_					
84607	139	4247	2	36	2.9	13	15	274	2.16	3	5	ND	4	68	2 2	2	42	1.27	.080	14	12	.83	157		2	1.03	.05	.54 🛞	2	57
84608	182	6657	2	30	2.8	14	18	169	2.75	2	5	ND	4	55 🔆	5 2	2	62	1.01	. 084	15	16	1.06	150	្នារ	2	1.21	.06	.55 🛞	8 . - 1	89
84609	171	4685	2	31	2.7	16	26	171	2.63	2	5	ND	5	132 🛞	2 2	2	56	1.60	.075	13	14	.96	101	. 09	2	1.04	.05	.45 🛞	S1	64
84610	302	4056	3	24	2.1	17	37	151	3.41	2	5	ND	3	298	2. 2	2	58	2.10	.079	12	15	.92	72	2.11	5	1.06	.05	.50 🛞	8 1 -	51
84611	267	2962	2	25	1.6	12	14	191	2.14	Ž	5	ND	4	158	3 2	2	50	1.59	.089	14	13	.82	176	.10	2	1.00	.06	.48		54
84612	388	3977	2	28	2.2	13	19	326	2.05	2	5	ND	5	221	2.3	2	36	1.86	.083	16	11	.75	146	.07	2	.88	.05	.35	2	56
84613	150	4500	5	27	27	14	24	168	2.14	2	5	ND	8	70	2 2	2	43	1.04	.079	16	12	.83	155	.08	3	1.01	.05	.39 🛞	č1	79
04015	221	5074	5	74	20	17	27	20%	2 81	5	5	10	6	235	5 2	5	40	1.23	065	13	13	.86	96	.07	2	1.04	.05	.36 🖗	2	73
04014	474	1777		75		57	10	140	2 20	3.	Ě	ND	ž	526	5	2	26	2 26	075	15	ō	61	126	03		70	. 05	.26	2	35
04012	140	43//	*		<u>_</u>	10	47	907	4 20	5	ź	10	Ē	747	5 5		7/	1 47	077	18	10	6R	255	07	2	.81	.05	32		33
84615	213	2319	2	22		10	15	200	1.55	6	,	NU	,	J04				1.04		.0	10		~~~		-					
84617	145	3004	5	25	1.6	10	14	300	1.71	2	5	ND	- 4	702 📖	2 2	2	22	2.28	,080	13	7	.66	231	.03	2	.81	.05	.21 🛞	8 1	37
84618	215	2940	15	25	1.8	11	14	459	1.95	4	5	ND	4	540 📖	3 19	2	21	3.40	.074	12	8	.81	91	.02	3	.73	.06	.23 💥	1	36
84619	107	3400	2	29	1.5	11	10	116	1.46	2	5	ND	5	62	6 2	2	- 36	1.49	.073	17	10	.81	244	.07	2	.85	.06	.35 🎇	81 -	53
8/420	105	3829	2	56	21	11	10	255	1.47	5	5	ND	ž	441	2 2	2	24	1.69	.076	12	8	.70	164	.04	3	.66	.05	.29 🖉	2	38
04020	107	714/	- -	24	275. 2705	11	12	11/0	1 77	5	é	10	ŝ		7	5	10	2 31	075		5	.60	80	01	3	64	03	.20	8. T	38
04021	197	3104	د	24	2.7	(3	12	1149		6	2	NU	,			. 2	.0	2.31		,	,	,								
84622	219	3030	2	29	1.2	12	14	169	1.64	2	5	ND	4	53	2 2	2	35	1.74	.076	14	9	.74	142	.05	3	.74	.06	.31	91) 840	34 37
84623	301	4027	5	20	्राःइः	15	21	86	2.23	3 S	2	ND	2	္ ၀၁	* :	2	20	1.44	004	47	<u> </u>	.13	447	nr.	2	09	. UJ	· J / 🕅	84	42
84624	231	3381	4	24	1.4	12	20	146	2.12	2	2	ND	2	448	4	2	- 29	1.04	3072	13	ې ۲	.70	111	. UD	·	. 70	.03	••••	86.1 S 4 4 S - 7	
STANDARD C/AU-R	19	65	43	134	7.4	69	32	1056	4.02	%42 :	18	8	39	51 18	8 1 <u>9</u>	<u>17</u>	61	.49	091	- 59	- 29	.8/	179	09	ు	1.71	.08	. 14 🔅	14: 4	

Samples beginning 'RE' are duplicate samples.

Page 3

AA
ACHE ANALYTICAL

Corona Corporation PROJECT 1040 FILE # 91-4808

 \smile

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X F	As print F	U xpmn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	AL X	Na X	K Sin X ppn	l Au* n ppb
84625	171	4111	2	36	1.7	14	14	540	2.43	8	5	ND	6	111	.2	2	2	21	1.76	.072	16	8	.78	87	.03	4	.93	.04	.38	2 36
84626	198	4130	2	46	2.5	18	15	334	2.49 🚳	6	5	ND	6	116	.2	2	2	33	1.90	.077	15	11	.83	68	.06	3	.80	.05	.33	2 50
84627	85	2363	2	40	1.6	17	12	194	2.68	3	5	ND	6	306	.2	2	2	39	1.35	.091	13	13	.84	86	.08	2	.94	.05	.38	> 10
9/4021	100	3100	ž	40	2.4	15	18	166	2 22	Ĩ.	ŝ	ND	ň	1120	2 Z	5	2	22	1 54	074	13	10	70	74	n 4	ž	70	ñ.	77	·
04020	100	3177	2	17	ार्थ के प्राप्त के प्र जिल्ला के प्राप्त के प्र	12	7	177	1 95 200	7	5	10	5	171		5	7	43	2 04	097	17	10	80	220	41	7	1 00	05		, 40) E4
04029	1 10	2470	2	40		12	1	177	1.02	-	2	ND	,	121		2	3	43	2.00	.000	17	14	.00	2.37		5	1.00	.05		1 DI
84630	31	2032	z	36	1.1	14	9	352	1.94	2	5	ND	8	52	.2	2	2	37	1.09	.081	21	12	.56	292	.07	2	.68	.05	.31 🖉 a	2 44
84631	97	1587	- 4	- 34	2.2	13	10	718	2.03 🛞	5	5	ND	7	- 74	. 2	2	Ż	17	1.95	.07Z	16	7	.54	85	.01	- 3	-54	.04	.20	2 26
84632	62	1328	2	29	.7	12	10	512	2.14	.3	5	ND	6	102	.2	2	2	19	1.66	.072	12	6	.57	84	.03	2	.54	.04	.24	1 30
84633	101	1426	3	29	1.0	12	9	301	2.07	2	5	ND	8	74	.3	2	2	29	1.27	.072	16	9	.58	176	.05	2	.65	.06	.28	E 25
8/63/	60	1550	2	- 20	7	13	13	100	2.33	2	5	ND	7	62	2	2	2	35	1.10	.074	16	11	.73	139	0.8	2	. 85	.05	.35	1 32
	~	(22)	L	-		12					-		•			-	-									-				
84635	132	1492	2	30	27	13	12	198	2.24 🚿	2	5	ND	7	- 93	.2	2	5	39	1.02	.073	19	12	.80	139	.08	3	.96	.05	.37 2	2 34
84636	01	3982	4	43	2.1	13	17	222	2.20 🖔	8	5	ND	8	263	.2	2	4	38	1.37	.075	14	12	.86	119	.08	3	.95	.05	.36	5 90
8/437	225	2788	2	74	27.2	11	15	432	1.85	5	5	ND	Ā	302	2	- 2	2	27	1.80	063	15	Q.	.68	132	.05	3	.74	.04	30	2 42
0/(79	200	2700	5		2.0	42	44	1510	1 42		ś	110	ŏ	701	• • •	5	5	12	2 30	047	12	. , , , , , , , , , , , , , , , , , , ,	58	87	01	~	38	03	20	1 24
04030	204	2370	۵ 7		2. ,7-	10	4.4	777	1.02 10	<u>.</u>	5	ND	Š	171	<u>ि</u> • 5	5	5	44	2 72	045	17	5	E1	+00		š	57	03	10	2 7 20
84639	444	2714	3	20	6.6	10	11	131	1.20	7	2	КU	0	440	- -	2	2	14	2.32	.005	¢,	,		107				.05	•17 6.4	- +U
84640	251	2126	2	35	2.5	10	10	729	1.80	6	5	ND	8	388	.2	2	2	17	1.83	.066	13	7	.54	84	.03	4	.54	.03	.23 🔅	5: 41
84641	372	3253	- 4	38	2.2	13	11	513	2.02	6	5	ND	7	467	.2	2	3	23	2.08	.066	16	8	.66	93	.04	3	.62	.04	.27	1: 47
84642	140	2037	2	42	ঁণ গ্ৰন	14	11	249	1.81 🛞	4	5	ND	7	257	ે.2	2	2	30	1.44	072	16	11	.62	180	.07	2	.69	.04	.30	44
84443	214	2083	2	40	1.4	12	, i	167	1.40	5	5	ND	7	400	2	2	2	38	1.10	066	16	11	.73	222	.08	3	.79	. 05	.34 88 2	ž 48
9/4//	1 1/7	2/00	2	77		12	10	187	1 50	÷.	ŝ	ND	Ŕ	200	- Sec. 1	5	5	44	60	076	17	12	R/4	251	11	2	86	6	43 88	2 56
04044	1 1 1	2407	-			16	10	107			-	ND.	Ŭ	270		-	-	47	• • • •	5.63.5			••••			-				ê .
84645	378	2525	2	50	1.4	14	12	187	1.68	4	5	ND	8	240	.2	2	2	43	1.02	074	17	13	.87	244	.10	3	.95	.05	.40 🔣 1	2 50
84646	181	2814	2	52	1.5	12	12	231	1.70	3	5	ND	7	360	2	2	3	38	1.34	072	17	12	.84	230	.08	3	,94	.05	.34 🔅	1 47
84647	145	3179	3	33	16	11	11	169	1.50	5	5	ND	7	597	3	2	2	30	1.77	.075	17	9	.63	221	208	4	.70	.06	.34 🛞	2 52
8/4/9	25%	2777	2	37	14	11	12	268	1 60	2	5	ND	ż	84	2	2	2	20	1 84	072	15	8	67	132	07	3	71	.03	31 80	2. 38
04040	234	1/51	7	70	885. # 1	12	6	170	2 70	్ర	Ē	ND	4	7.3	5	2	2	58	1.00	001	18	12	1 04	381	27	2		10	AL 8880	5 20
04031	1 10	1421	3	20		12	7	177	2.30	С. С.	2	NU	D	42	87. -4 884	2	2	20	.40	- 071	10	16	1.04	100		2	. 77	. 10		
84652	51	1078	2	27	.7	17	10	201	2.39	2	5	ND	7	48	.3	2	2	61	.67	089	21	19	1.13	424	.20	4	1.07	.08	.56	1 20
84653	115	1249	2	27	- SE. 7:	12	8	139	2.14	2	5	ND	7	23	.2	2	2	58	.35	084	17	- 14	1.07	354	.25	2	.93	.06	.68 🛞 2	2 23
84654	70	1476	5	31	.7	11	9	147	2.34 🖄	3.	5	ND	7	31	2	2	3	58	.38	.088	20	12	1.04	338	.24	2	1.00	.09	.66 🔅 2	2 25
84655	110	1407	2	34	1949 7 1	12	, o	228	2.54	3	5	ND	7	38	.2	2	2	55	.65	.089	18	12	1.05	310	.21	2	1.09	.08	.60	2 31
9/454	126	173/	2	71		15	ó	18/	2 74	ँ	5	ND	7		2		2	56	66	006	24	13	1 08	322	21	ž	1.08	.07	. 64	2 43
04030	124	17.24	2				,	104			2	NU	'			-	-	50			24		1.00	366		-				
84657	140	1694	2	34	.8	14	9	232	2.30	3	5	ND	6	43	.2	2	2	58	.82	.094	30	18	1.19	252	.18	2	1.16	.07	.59	2 36
RE 84654	72	1478	2	32	.8	11	8	149	2.42	4	5	ND	7	- 31	.2	2	2	59	.39	.089	20	12	1.09	334	.25	2	1.01	.08	.66	5 24
84658	52	2307	2	- 44	1.6	18	12	329	2.67	14	5	ND	7	55	.2	2	2	66	1.19	.100	27	25	1.42	251	16	- 4	1.40	.06	.55 🛞 🍀	2 51
84659	47	2459	2	39	1.3	18	13	242	2.94	11	5	ND	7	55	2	2	2	70	.86	. 101	23	29	1.55	219	.20	2	1.47	.09	.65	2 45
04440	72	1057	7	27	11	12	R	107	2.14	5	5	ND	Å	35	2	5	5	54	.71	086	20	16	1.05	247	.15	4	1.05	.07	.46	1 51
	'`	.,,,,	5	-			5	.,,,			-		5			L	-		• • •							-				9 2
84661	76	1640	2	30	1.0	9	10	207	2.72	7	5	ND	7	91	.2	2	2	61	.96	.084	17	13	1.01	220	.14	2	1.29	.11	.45	5 39
84662	43	2287	2	- 33	1.5	12	12	176	2.89 💮	10	5	ND	7	41	.2	4	2	60	.91	.092	19	13	1.08	160	.12	2	1.20	.08	-41 🐲	<u>4</u> . 51
STANDARD C/AU-R	21	61	43	137	7.5	- 73	32	1079	4.01 🖗	42	19	7	40	52	19.0	16	22	61	.49	.095	- 39	60	.89	182	.09	35	1.90	.06	.14 🔬 1	2: 462

Samples beginning 'RE' are duplicate samples,

Corona Corporation PROJECT 1040 FILE # 91-4808

Page 5

-SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sib ppm	Bi ppm	V ppm	Ca %	P. X	La ppm	Cr ppm	Mg X	Ba ppm	T1 *	B	AL X	Na X	K Sh X ppa	Au*
84663 84664 84665 84666 84666	104 114 137 121 85	1412 3136 2057 1155 2188	2 2 2 2 3	38 39 34 37 33	.9 2.1 1.3 .6 1.8	16 20 10 10	12 15 6 7 7	255 261 200 274 634	3.22 2.89 1.89 2.05 2.32	4 7 2 5 12	5 5 5 5 5	ND ND ND ND ND	4 3 4 3	70 60 63 61 56	.2 .2 .4 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	72 63 37 37 32	1.17 1.39 1.55 1.66 2.11	.101 .088 .083 .087 .069	17 18 26 27 25	23 25 10 11 10	1.28 1.21 .82 .93 .75	297 170 306 335 225	17 11 04 04 02	3 1 3 1 3 1 2 2	.57 .30 .02 .92 .66	.12 .09 .07 .07 .06	.68 1 .54 2 .29 2 .27 2 .23 1	24 70 51 2 32 35
84668 RE 84673 84669 84670 84671	126 189 129 58 183	2204 2601 1760 1855 3060	2 2 2 2 2 2 2	35 32 29 33 30	1.0 1.3 1.1 1.3 1.8	12 11 • 10 11 12	8 12 8 10 14	213 168 173 245 168	1.92 2.37 2.15 2.42 2.90	2 14 4 8 4	5 5 5 5 5	ND ND ND ND	5 3 6 6	57 53 50 55 48	.4 .3 .2 .2 .2 .4	2 2 2 2 2 2	2 3 2 2 2	36 42 44 44 57	1.73 1.24 1.23 1.39 .81	.082 .078 .079 .078 .085	30 18 26 20 22	11 11 13 14	.86 .95 .89 .96 1.11	248 194 248 240 329	02 06 05 04 13	2 1 2 1 2 1 2 1 2 1 2 1	.06 .18 .14 .23 .34	.07 .08 .08 .08 .12	.19 .30 .26 .27 .51	1 39 95 42 2 64 2 72
84672 84673 84674 84675 84675	75 198 112 178 737	1899 2654 2084 2590 3251	2 2 4 4 2	29 33 36 34 29	1.1 1.5 2.7 2.7 2.4	14 12 11 13 13	13 12 11 10 10	161 176 531 512 275	2.91 2.45 2.26 2.07 1.82	8 13 16 6 5	5 5 5 5 5	ND ND ND ND	7 5 4 5 4	40 54 50 48 42	.2 .2 .2 .2 .2	2 2 2 2 2 2 2	2 2 2 2 2 2	59 44 30 34 36	.72 1.27 2.01 1.71 1.07	.087 .083 .084 .080 .078	14 18 17 19 20	14 12 8 9 11	1.19 1.01 .82 .96 .97	319 193 148 209 236	.14 .06 .03 .04 .07	2 1 3 1 3 2 2 1	.32 .22 .69 .93 .01	.10 .08 .05 .06 .07	.53 .31 .23 .25 .34	1 77 2 107 2 99 1 105 1 116
84677 84678 84679 84680 84681	97 76 189 257 500	2885 4398 2458 1718 4487	2 3 2 2 2	34 35 28 24 29	1.5 3.2 2.0 1.3 2.4	22 14 12 13 13	11 12 9 9 15	244 293 520 185 206	2.47 2.51 2.29 1.81 2.05	45446	5 5 5 5 5	ND ND ND ND	2 4 2 5 5	69 45 54 39 38	.7 .5 .4 .3 .2	2 2 2 3 2	3 2 2 2 2 2	61 54 50 58 33	1.48 1.33 2.08 1.08 1.29	.078 .089 .069 .083 .070	14 13 13 19 17	32 15 13 15 10	1.47 1.09 1.10 1.04 .77	210 150 142 199 135	.13 .09 .08 .12 .04	3 1 2 1 2 1 3 1 2	.57 .13 .07 .01 .65	.11 .08 .08 .09 .07	.61 .40 .45 .58 .29	2 81 2 125 1 70 1 59 2 113
84682 84683 84684 84685 84685 84686	237 174 226 187 175	4707 4106 5494 4569 1846	2 2 2 2 2 2 2	27 26 34 30 35	2.7 2.5 3.4 3.4 1.2	14 13 15 13 11	14 15 19 18 12	144 202 352 239 220	2.13 2.08 2.25 2.43 1.90	7 5 7 5 4	5 7 5 5 5	ND ND ND ND	4 6 7 5 4	35 34 35 36 40	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2 2	42 37 21 32 43	1.01 1.16 1.26 1.15 .98	.069 .068 .064 .068 .073	15 12 14 11 18	13 10 7 10 13	.87 .85 .57 .75 .98	164 133 94 113 187	.06 .05 .01 .03 .07	22342	.80 .70 .41 .66 .98	.06 .05 .05 .06	.35 .32 .19 .25 .34	2 130 1 102 1 120 2 87 2 54
84687 84688 84689 84690 84691	272 168 460 250 170	3526 2331 2962 2359 2633	3 3 2 3 2 3	45 37 34 33 32	2.1 1.3 2.2 1.7 1.9	14 13 10 12 14	11 12 10 12 13	431 238 504 321 336	2.15 1.88 1.74 2.17 2.41	6 2 3 3 2	5 5 5 5 5 5	nd Nd Nd Nd Nd	5 5 6 5	46 40 52 51 40	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 3 2 2	41 40 27 43 41	1.24 1.02 1.39 .91 .96	.067 .075 .065 .071 .070	18 14 15 21 21	13 12 8 12 13	1.05 .90 .72 .94 .88	137 160 110 115 89	.05 .05 .02 .07 .07	2 1 2 2 3 2	.06 .92 .63 .89 .92	.07 .07 .05 .07 .07	.33 .30 .23 .35 .37	1 101 1 72 2 64 2 84 1 54
84692 84693 84694 84695 84696	87 115 179 104 76	2265 2891 3935 3202 3217	4 5 3 5 3	42 40 33 31 41	1.6 2.2 3.5 1.7 1.7	14 12 12 13 12	12 12 15 13 13	376 371 433 205 172	2.61 2.34 2.13 2.15 1.93	2 3 4 2 2	9 5 5 5 5	nd Nd Nd Nd	5 7 6 6	39 35 32 34 29	.2 .2 .2 .2 .2 .2	4 2 2 2 2	2 2 2 2 2 2 2	46 37 35 47 51	.99 1.01 1.00 .80 .66	.082 .068 .062 .072 .069	16 14 11 12 14	16 11 10 13 15	1.03 .88 .82 1.01 .98	171 103 113 165 184	.07 .05 .05 .10 .11	3 1 3 3 2 1 2	.10 .96 .80 .00 .92	.06 .06 .05 .07 .07	.36 .30 .34 .50 .49	2 72 2 74 2 91 1 48 1 87
84697 84698 STANDARD C/AU-R	92 66 20	916 1376 58	3 2 43	33 24 131	.5 .5 7.3	12 12 70	9 10 32	195 134 1042	2.84 2.47 3.95	2 2 44	5 5 16	ND ND 7	6 5 40	38 34 53	.2 .2 18.8	2 2 19	2 2 17	60 60 60	.72 .58 .49	.093 .089 .087	15 13 41	12 13 60	1.10 1.08 .90	339 326 176	. 19 . 20 . 08	2 1 2 1 34 1	.14 .09 .92	.09 .09 .07	.68 .73 .15 1	1 25 1 44 1 451

Samples beginning 'RE' are duplicate samples.

	D	OROTHY F	ROPERT	Y	
	Analissia	Deerike ferm	1001 D - D	11	
	Analysis	Hesuits from	1991 He-Sa rill Coro	ampling	
Sample	Drill			Διι	<u> </u>
Number	Hole	(Feet)	(Feet)	(ppb)	(pom)
84557			20	(ppb) 7	<u>(ppn)</u>
84558		20	20		156
84550		20		5	017
84560		30		0	1069
84561		40	50	20	1200
84562		50			<u> </u>
84563		70			1070
84564		70	00		12/2
84565		80	90	10	1300
84566		90	110	12	12/3
94567		100	100	130	2814
04507		100	120	12	1733
04000		120	130	110	2583
04509		130	140	28	3274
84570		140	150	34	2828
84571		150	160	40	3226
84572	DDH-2	160	170	31	2453
84573	DDH-2	170	180	34	3366
84574	DDH-2	180	190	37	3450
84575	DDH-2	190	200	46	
84576	DDH-2	200	210	26	1203
84577	DDH-2	210	220	41	2056
84578	DDH-2_	220	230	57	2073
84579	DDH-2	230	240	56	3335
84580	DDH-2	240	250	120	3941
84581	DDH-2	250	260	100	3891
84582	DDH-2	260	270	59	4495
84583	DDH-2	270	280	84	3982
84584	DDH-2	280	290	64	2768
84585	DDH-2	290	300	120	2437
84586	DDH-2	300	310	100	1759
84587	DDH-2	310	320	90	3533
84588	DDH-2	320	330	52	2401
84589	DDH-2	330	340	71	3327
84590	DDH-2	340	350	39	2287
84591	DDH-2	350	360	65	3617
84592	DDH-2	360	370	 	
84593	DDH-2	370	380	81	4307
84594	DDH-2	380	300	55	
84595	DDH-2	300	400		2110
84506	DDH_2	400	400	76	2600
84507		400	410	70	3009
84508		400	420	21	1600
0-030	2011-2	+∠∪	430	31	1002

	D	OROTHY F	PROPERT	Y	
	Acchicio	Doculto from	1001 Po S	omolina	
	Analysis	of 1971 D	rill Core	anping	
Sample	Drill	From		Διι	Cu
Number	Hole	(Feet)	(Feet)	(nnh)	(nnm)
94500		(1 661)	440	<u>(044)</u>	1365
84600		440	450	76	4452
84600			104	10	3636
84600			104	40	3050
84602		114	104		4800
84603		104	124	41	2034
84605		124	104		5564
84605		104	144	104	7028
84607		154	104	57	1020
84607		154	104		6657
84600		104	1/4	64	4695
84609		1/4	104	<u> </u>	4060
84610		104	194	51	4050
84611	DDH = 14	194	204	54	2902
84612	DDH - 14	204	214	20	3977
84613	DDH - 14	214	224	79	4590
84614	DDH-14	224	234	/3	5926
84615	DDH-14	234	244	35	4377
84616	DDH-14	244	254	33	2379
84617	DDH-14	254	264	37	3004
84618	DDH-14	264	274	36	2940
84619	DDH-14	274	284	53	3490
84620	DDH-14	284	295	38	3828
84621	DDH-14	295	298	38	3164
84622	DDH-14	298	308	34	3030
84623	DDH-14	308	318	37	4027
84624	DDH-14	318	328	42	3381
84625	DDH-14	328	338	36	4111
84626	DDH-14	338	348	50	4130
84627	DDH-14	348	358	39	2363
84628	DDH-14	358	368	48	3199
84629	DDH-14	368	378	51	2470
84630	DDH-19	94	104	44	2032
84631	DDH-19	104	114	26	1587
84632	DDH-19	114	124	30	1328
84633	DDH-19	124	134	25	1426
84634	DDH-19	134	144	32	1559
84635	DDH-19	144	154	34	1492
84636	DDH-19	154	164	90	3982
84637	DDH-19	164	174	42	2788
84638	DDH-19	174	184	26	2390
84639	DDH-19	184	194	46	2914
84640	DDH-19	194	204	41	2126

DOROTHY PROPERTY								
Analysis Results from 1991 Re-Sampling								
		of 1971 [Drill Core					
Sample	Drill	From	То	Au	Cu			
Number	Hole	(Feet)	(Feet)	(ppb)	(ppm)			
84641	DDH-19	204	214	47	3253			
84642	DDH-19	214	224	44	2037			
84643	DDH-19	224	234	48	2983			
84644	DDH-19	234	244	56	2409			
84645	DDH-19	244	254	50	2525			
84646	DDH-19	254	264	47	2814			
84647	DDH-19	264	268	52	3179			
84648	DDH-19	288	295	38	2///			
84651	DDH-19	204	214	29	1451			
84652	DDH-19	214	224	20	1078			
84653	DDH-19	224	234	23	1249			
84654	DDH-19	234	244	25	1476			
84655	DDH-19	244	254	31	1407			
84656	DDH-19	254	264	43	1734			
84657	DDH-19	264	268	36	1694			
84658	DDH-19	288	295	51	2307			
84659	DDH-19	204	214	45	2459			
84660	DDH-19	214	224	51	1953			
84661	DDH-19	224	234	39	1640			
84662	DDH-19	234	244	51	2287			
84663	DDH-19	244	254	24	1412			
84664	DDH-19	254	264	70	3136			
84665	DDH-19	264	268	51	2057			
84666	DDH-19	288	295	32	1155			
84667	DDH-19	204	214	35	2188			
84668	DDH-19	214	224	39	2204			
84669	DDH-19	224	234	42	1760			
84670	DDH-19	234	244	64	1855			
84671	DDH-19	244	254	72	3060			
84672	DDH-19	254	264	77	1899			
84673	DDH-19	264	268	107	2654			
84674	DDH-19	288	295	99	2084			
84675	DDH-19	204	214	105	2590			
84676	DDH-19	214	224	116	3251			
84677	DDH-19	224	234	81	2885			
84678	DDH-19	234	244	125	4398			
84679	DDH-19	244	254	70	2458			
84680	DDH-19	254	264	59	1718			
84681	DDH-19	264	268	113	4487			
84682	DDH-19	288	295	130	4707			
84683	DDH-19	204	214	102	4106			
84684	DDH-19	214	224	120	5494			

DOROTHY PROPERTY										
	Analysis Results from 1991 Re-Sampling									
Sample	Drill	From		Αιι	Сп					
Number	Hole	(Feet)	(Feet)	(ppb)	(000)					
84685	DDH-19	224	234	87	4569					
84686	DDH-19	234	244	54	1846					
84687	DDH-19	244	254	101	3526					
84688	DDH-19	254	264	72	2331					
84689	DDH-19	264	268	64	2962					
84690	DDH-19	288	295	84	2359					
84691	DDH-19	204	214	54	2633					
84692	DDH-19	214	224	72	2265					
84693	DDH-19	224	234	74	2891					
84694	DDH-19	234	244	91	3935					
84695	DDH-19	244	254	48	3202					
84696	DDH-19	254	264	87	3217					
84697	DDH-19	264	268	25	916					
84698	DDH-19	288	295	44	1376					

APPENDIX B

.....

SELECTED 1971 DRILLLOGS

1

Evergreen Explorations Ltd.

Sheet 1

PROPERTY	DOROTHY	DRILL HOLE #2
LATITUDE	<u>O North</u>	DATE STARTED
DEPARTURE	8 West	DATE COMPLETED
DIP	-45 ⁰ East	DRILLED BYD. W. Coates
ELEVATION		LOGGED BY <u>Neil Thomsen</u>

. . .

 $\langle \cdot \rangle$

1

		-			
Depth	Geology	Sample No	Width	Cu	MoSo
07	Casing	·			
7 - 20	Acid dyke with sericite or muscovite.	141	13'	Trace	Trace
	Minute amounts of diss py present			<u> </u>	
2 <u>0 - 30</u>	Same as above	142	10'	Trace	Trace
30 - 40	Acid dyke but is more broken and brecciate	143	10'	0.08	0.01
<u></u>	with slightly mineralized gtz & calcite		<u> </u>		
	stringers. Have change at 38' to a harder			<u> </u>	
	finer-grained acidic rock with more py				
<u></u>	& some cpy.				
40 - 50	A fine-grained, slightly porphryitic,	144	10'	0.09	0.03
	light gray rock (possibly a bleached				
	hornfels(?) with py, cpy, some moly and			}	
	chlori te	· -			
<u>50 - 60</u>	Same as above with variation from light	145	10'	0.17	0.01
	to dark to light colour.				
60 - 70	Very broken core, still light, fine-	146	101	0.07	0.01
	grained rock with py and cpy. 50% recover				
70 - 80	Same as above. 60% recovery.	147	10+ 6'	0.14	0.01
80 - 90	Same as above though mostly dark, fine-	148	10'	0.14	0.02
<u>_</u>	grained hornfels.				
90 - 100	Same as above with much py, cpy and some	149	10'	0.15	0.03
	moly.				
100 - 110	Same as above, core badly broken and	150	10:5	0.21	0.03
	fractured, 75% recovery				
110 - 120	Same as above with quartz stringers presen	t <u>1</u> 51	10'	0.24	0.02
120 - 130	Hornfelsbadly fractured in all directions,	152	10'	0.28	0.03
	with many minute qtz. stringers. Much py,				
	cpy, some moly.				
130 - 140	Same as above	153	10'	0.23	0.02
			1		

Evergreen Explorations Ltd.

PROPERTY DOROTHY

DRILL HOLE #2

LATITUDE	DATE STARTED
DEPARTURE	DATE COMPLETED
DIP 45 ⁰	DRILLED BY
ELEVATION	LOGGED BY Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS
140 - 150	Same as above	154	10'	0.34	0.02
150 - 160	Same as above	155	10'	0.26	0.03
160 - 170	Same as above	156	10'	0.24	0.03
170 - 180	Same as above	157	10'	0.48	0.02
180 - 190	Fault at 183, then_hornfelsto 190	158	10'	0.37	0.05
190 - 200	Same as above with fault at 198	159	10'	0.51	0.02
200 - 210	Beginning at 201 have long shear zone 🧰	160	10'	0.15	0.05
	or contact_zone_with most of rock being				
	badly altered with much qtz and calcite.				
	Have few pieces of BFP.				
210 - 220	Acid dike from 210 - 214. Very little	161	10'	0.14	0.01
	mineralization, then BFP, fractured and				
	altered with some py and cpy to 220.				
220 - 230	Very badly altered or weathered core to	162	10'	0.22	0.02
	222, then BFP to 230 though not much miner	al.			
230 - 240	Change at 230 back to hornfelswith slight	163	10'	0.32	0.01
	porphryitic texture, much py and cpy along				
	fractures.				
240 - 250	Hornfelswith slight porphyritic texture in	164	10'	0.44	0.01
	spots, many minute qtz and calcite stringe	rs,]		
	with much py and cpy along fractures. No				
<u> </u>	preferred direction for fractures.				
250 - 260	Same as above.	165	10'	0.43	0.02
260 - 270	Same as above	166	10'	0.43	0.01
270 - 280	Have shear zone from 269 to 273, then dark	167	10'	0.43	0.03
	BFP.				
280 - 290	BFP with qtz and calcite stringers, py, cp	y 168	10'	0.25	0.02
	along fractures and some diss.				
			1		

Sheet <u>3</u>

PROPERTY DOROTHY

DRILL HOLE #2

- DATE STARTED LATITUDE DEPARTURE ______ DIP _____45⁰ ELEVATION _____ LOGGED BY <u>Neil</u> Thomsen

DATE COMPLETED DRILLED BY

Depth	Geology	Sample No	Width	Cu	MoS2
290 - 300	BFP with fault (?) or severe alteration	169	10'	0.31	0.01
	at 297.				
300 - 310	BFP, though very dark and badly broken up.	170	10'	0.16	0.01
310 - 320	BFP, very broken and soft with little	171	10'	0.40	Trace_
	mineral.				
320 - 330	Same as above	172	10'	0.19	0.01
330 - 340	Change at 335 to hornfels which has less	173	10'	0.32	0.01
	py and cpy as formerly.				
340 - 350	Hornfelswith little py and cpy. Core is	174	10'	0.21	0.01
	badly broken and fractured. A few qtz				
	stringers.				
350 - 360	Same as above	175	10'	0.29	0.01
360 - 370	Same as above	176	10'	0.27	0.01
370 - 380	Same as above with more qtz. stringers	177	10'	0.43	0.01
380 - 390	Hornfelswith many minute qtz stringers,	178	10'	0.18	0.01
	small amounts of py and cpy along fracture	s,	1		
	slightly magnetic.	<u></u>			
390 - 400	Same as above with moly on some qtz stringe	rs 179	10'	0.31	0.01
400 - 410	Same as above	180	10'	0.32	0.02
410 - 420	Hornfels slightly porphyritic to 415, then	181	10'	0.27	0.01
	have BFP from 415 - 420. Contact between				
	the two rock types is gradational, not sha	rp.			
<u></u>	BFP contains py, cpy, moly, mostly along				
	fractures.	1	Ţ		
420 - 430	BFP, same as above	182	10'	0.15	0.01
430 - 440	BFP with more qtz stringers, is lighter	183	10'	0.12	0.01
	colored at 440.		,		
<u> </u>	• · · · · · · · · · · · · · · · · · · ·				
··········					

DRILL HOLE <u>#2</u>

LATITUDE	DATE STARTED
DEPARTURE	DATE COMPLETED
DIP45 ⁰	DRILLED BY
ELEVATION	LOGGED BY Neil Thomsen

Depth	Geology	Sample No	Width	Cu	MoSo
440 - 450	BFP, light colored with much cpy and py	184	10'	0.26	0.012
- <u></u>	both along fractures and as large diss.				
	crystals. Fractures from 30 ⁰ - 60 ⁰ with				
	less qtz stringers. Moly is present				
·	along fractures.				
450 - 460	BFP. Same as above	185	10'	0.16	0.02
460 - 470	BFP. Still much cpy.	186	10'	0.29	0.03
<u>470 - 480</u>	BFP. Same as above	187	10'	0.11	0.02
4 <u>80 - 490</u>	BFP less diss. cpy but massive pyrite alon	g 188	10'	0.06	0.01
	some veins and fractures.				
<u>490 - 500</u>	BFP with cpy and py along fractures and	189	10'	0.07	0.02
	some diss. Some qtz stringers.				
<u>500 - 510</u>	BFP. Same as above.	190	10'	0.07	0.05
<u>510 - 520</u>	BFP. Same as above.	191	10'	0.06	0.01
520 - 530	BFP. Same as above	192	10'	0.07	0.01
530 - 536	BFP. Same as above.				
	End of hole.	· · · · · · · · · · · · · · · · · · ·			
<u></u>					
	BFP - biotized feldspar porphyry				
<u></u>	cpy <u>-</u> chalcopyrite				
<u> </u>	py - pyrite				
,,	diss - disseminated				
•	qtz - quartz	·····	ļ	-	
<u> </u>	mag - magnetic or magnetite		<u> </u>		
•	non mag - non magnetic				
	cu - copper		ļ		
<u> </u>	born - bornite				
	molymolybdenum		ļ	ļ	.L
	j			1	

vergreen Explorations Ltd.

Sheet ____

PROPERTY DORC

(

1

1

ć

DOROTHY

DRILL HOLE #10

LATITUDE7 + 90' NorthDATE STARTEDDEPARTURE8 + 20' WestDATE COMPLETEDDIP-45° EastDRILLED BYELEVATIONLOGGED BYNeil Thomsen

Depth	Geology	Sample No	Width	Cu	MoS
0 - 35	Casing				
35 - 40	BFP with much cpy and some py, mostly in	44052 C	51	0.17	0.01
	very small diss. Slightly magnetic with				
	visible mag. occurring in spots. Fracture	<u>s</u>			
<u> </u>	at 0 - 20° and 45° - 60° .				
40 - 50	BFP same as above	44053 C	10'	0.10	0.01
50 - 60	BFP same as above	44054 C	10'	0.12	0.02
60 - 70	BFP same as above but moly is now present	44055 C	10'	0.14	0.02
70 - 80	BFP same as above	44056 C	10'	0.14	0.02
80 - 90	BFP with increase in cpy.	44057 C	10'	0.16	0.03
90 - 100	BFP. Same as above, possibly some bornite	44058 C	10'	0.15	0.01
100 - 110	BFP, same as above	44059 C	10'	0.19	0.01
110 - 120	BFP, same as above	44060 C	10'	0.21	0.02
120 - 130	BFP, same as above with more moly. Have	44061 C	10'	0.18	0.01
	xenolith (?) or very steep-angled mafic				
	dykelet at 121'				
130 - 140	BFP. Same as above	44062 C	10'	0.16	0.03
140 - 150	BFP. Same as above.	44063 C	10'	0.18	0.02
150 - 160	BFP with mineralized xenolith at 151	44064 C	10'	0.12	0.02
160 - 170	BFP. Same as above with xenolith(?) at	44065 C	10'	0.19	0.01
	167. Have same mineralized qtz. stringers				
170 - 180	BFP with py and cpy, both diss and along	(44066 C	13'	0.20	0.01
	fractures. Magnetic moly present	170 - 183)			
180 - 190	BFP to 183 then post-mineral acid dyke,				
	chill margin l' wide				
190 - 205	Acid Dyke with xenoliths of BFP	N. S.			
205 - 210	BFP with py and cpy	44067 C	5'	0.19	0.02
210 - 220	BFP becoming more silicified with some	44068 C	10'	0.10	0.02
	specularite present along with py and cpy				

PROPERTY	Dorothy	DRILL HOLE	#10
LATITUDE	7 + 90' North	DATE STARTED	

(

(

DEPARTURE	8 + 20' West	DATE COMPLETED
DIP	- 45 ⁰ East	DRILLED BY
ELEVATION		LOGGED BY Neil Thomsen

			·····	·····	
Depth	Geology	Sample No	Width	Cu	MoSo
220 - 230	BFP same as above	44069 C	10'	0.24	0.02
230 - 240	BFP. Same as above	44070 C	10'	0.11	0.02
240 - 250	BFP, same as above	44071 C	10'	0.17	0.02
250 - 260	BFP about .2 cpy and trace of moly. Very	44072 C	10'	0.21	0.02
	little py.				
260 - 270	BFP with .3 to .4 cpy. A little more moly	44073 C	10'	0.28	0.02
	and some magnetite py same as above				
270 - 280	BFP about .3 cpy and moly in quartz	44074 C	10'	0.18	0.02
	stringers and on fractures and visible				
	magnetite. Little py				
280 - 290	BFP. Cpy same as above and magnetite.	44075 C	10'	0.23	0.02
	Little more moly in quartz stringers and				
	a little more py				
290 - 300	BFP kaolinized with diss. cpy .3 and	44076 C	10'	0.19	0.02
	moly on fractures. Little more py.				
300 - 310	BFP kaolinized with a little more cpy .3	44077 C	10'	0.28	0.02
	to .4 and more visible magnetite and some				
	moly on slip fractures. Little more py.				
310 - 320	BFP with more quartz stringers and	44078 C	10'	0.26	0.07
	larger with more moly and cpy .56	1			
	py with some epidote. Very well fractured				
320 - 330	BFP with stringers of hornsfel and some	44079 C	10'	0.26	0.03
	massive epidote. Cpy .45. A little				
	less moly and py.				
330 - 340	BFP very well fractured. Traces of moly	44080 C	10'	0.15	0.02
	and much less cpy .12. A little more	ру			
340 - 350	BFP. Much more cpy .34, and a little	44081 C	10'	0.38	0.03
	more moly.				
					I

ergreen Explorations Ltd.

ţ

1

 $\sqrt{2}$

(

#10 DRILL HOLE

LATITUDE _	7 + 90' North	DATE STARTE	D
DEPARTURE	8 + 20' West	DATE COMPLE	TED
DIP	-45 ⁰ East	DRILLED BY	RXX&XX&X&X&X
ELEVATION		LOGGED BY	R. C. O'Brien

Depth	Geology	Sample No	Width	Cu	MoS ₂
350 - 360	BFP with cpy about .34 kaolinized in	44082 C	10'	0.38	0.02
	sections. Traces of moly and a little				
	more py.				
360 - 370	BFP kaolinized in some sections better cpy	44083 C	10'	0.19	0.03
	diss. Where kaolinized .2 or .3 more moly				
	on fractures and a little more py				
370 - 380	BFP with more stringers of hornsfel cpy	44084 C	10'	0.18	0.04
	.2 or .3. Traces of moly and py				
380 - 390	BFP with kaolinized sections very good dis	s.44085 C	10'	0.49	0.14
	of cpy in kaolinized sections .5 or .6.				
	Much more moly and a little more py.				
390 - 400	BFP. Diss cpy about .3 or .4. Some moly	44086 C	10'	0.39	0.05
	and traces of magnetite.				
400 - 410	BFP with diss. cpy .2 or .3 with traces	44087 C	10'	0.37	0.04
	of moly and magnetite and more py				
410 - 420	BFP kaolinized in some sections with more	44088 C	10'	0.43	0.06
	py and cpy .3 or .4 in kaolinized sections				
· · · · · · · · · · · · · · · · · · ·	with more moly and traces of magnetite and				
	hematite.				
420 - 430	BFP with cpy .3 or .4 and moly. More py	44089 C	10'	0.31	0.03
¥	with traces of magnetite				
430 - 440	BFP with less cpy .2 or .3 and less moly	44090 C	10'	0.22	0.04
	still py with magnetite.				
440 - 450	BFP with cpy .23 and moly on fractures	44091 C	10'	0.29	0.04
	a little less py.				
450 - 460	BFP with cpy .2 or .3. Traces of moly	44092 C	10'	0.22	0.04
	with more py and some epidote				
460 - 470	BFP with kaolinized sections better cpy	44093	10'	0.35	0.05
	diss. in kaolinized section .34. More	2			
	molv less nv		1		

Sheet ____4

ť

Ć

Dorothy

DRILL HOLE #10

LATITUDE _	7 + 90' North	DATE STARTED
DEPARTURE	8 + 20' West	DATE COMPLETED
DIP	-45 ⁰ East	DRILLED BY
ELEVATION		LOGGED BY R. C. O*Brien

Depth	Geology	Sample No	Width	Cu	MoS
470 - 480	BFP with kaolinized sections less cpy .2	44094 C	10+	0.23	0.05
	to .3 and less moly and more py				
480 - 490	BFP, with kaolinized sections more cpy .3	44095 C	10'	0.28	0.03
	to .4 in kaolinized sections and more moly				
	less py				
490 - 500	BFP with kaolinized sections, less cpy .2	44096 C	10'	0.28	0.02
	to .3 and less moly more py				
500 - 510	BFP with less cpy .12 and traces of mo	1y44097 C	10'	0.29	0.02
	much more py				
510 - 520	BFP with kaolinized section more cpy .3 -	44098 C	10'	0.55	0.02
	.4 in kaolinized sections and more moly,				
	a little less py				
520 - 530	BFP with good cpy .45 diss. Traces of	44099 C	10'	0.36	0.02
	moly and less py				
530 - 540	Same as above	44100 C	10'	0.36	0.02
540 - 550	BFP with a little less cpy .34 and	44101 C	10'	0.16	0.01
	more moly,py about the same. Some epidote				
550 - 558	BFP with about the same cpy .34 and	44102 C	8'	0.18	Trace
	just traces of moly and some epidote and		1		
	py and traces of magnetite				
	End of hole				
	BFP - biotized feldspar porphyry		-		_
••••••••••••••••••••••••••••••••••••••	Cpy - chalcopyrite	· · · · ·			
	diss - disseminated		+ • • • •		
	atz - auartz	<u> </u>			
	mag - magnetite or magnetic				
	non mag - non magnetic				
	cu – copper				
<u></u>		······	<u>+</u> ···		
	molydenum	<u></u>			
<u> </u>	por - porpnyritic		·		
	1 n. s nu sampte.	ł	1	1	l

Evergreen	Explorations Ltd.
-----------	-------------------

ĺ

1

Ć

1

DRILL HOLE #14

LATITUDE 12+00 North DATE STARTED July 24, 1971. DATE COMPLETED DEPARTURE 14+50 West i -90⁰ DIP _____ DRILLED BY _____ D. W. Coates LOGGED BY _____R. W. Woolverton ELEVATION _____

				29	
Depth	Geology	Sample No	Width	Cu	MoS ₂
6 <u>0' - 94'</u>	Late BFP (?) looks like an F.P. dyke or an				
	andesite porphyry - f.g. original hbs. gone				
	to chlorite and biotites are silvery colored	ed			
	(sericite?). Some epidote: pyrite, not				
	magnetic hematite and spec., occasionally				
	grain f.g. cpy. 1 ft. shear at 75', all				
	fractures rusty, 45 ⁰ chilled border at				
	94' against				
<u>94' - 100'</u>	BFP, grey por. variety, some patches	5501	6'	0.36	.035
	honey brown material - remains of hbs(?),				
	fine grey qtz. stringers, good cpy,			<u> </u>	
·	cpy/py = 2/1, some MoS ₂ .				
1 <u>00' - 108'</u>	Late phase (?) BFP as above except some	5502	8'	0.14	.002
	f.g. cpy, sheared at 100'				
1 <u>08' - 118'</u>	BFP, grey por. variety although biotites	5503	10'	0.36	.073
<u></u>	recognizable and brownish to fairly fresh,				
	no sign of hbs. Some qtz. veinlettes, good				
	cpy both f.g. dissem. and with gtz. Some				
<u> </u>	MoS ₂ .				
1 <u>18' - 128'</u>	As above.	5504	10'	0.43	.063
1 <u>28' - 138'</u>	As above except rock becoming darker and	5505	10'	0.45	.041
	less qtz. stringers, still good f.g. diss.				
·	cpy., minor MoSo				
1 <u>38' - 148'</u>	As above	5506	10'	0.48	.032
148' - 158'	As above, cpy falling off	5507	10'	0.50	.020
1 <u>58' - 168'</u>	As above	5508	10'	0.34	.019
·	NOTE: From 118' onwards, hb's and bios.	·			
·	very dark and felty - f.g.				
1 <u>68' - 178'</u>	BFP breccja, good cpy., some MoS2	5509	10'	0.42	027
	· · · · · · · · · · · · · · · · · · ·		1	1	4

Evergneen Explorations Ltd. E

Ì

1

(

DOROTHY

DRILL HOLE #14

LATITUDE	12+00 North	DATE STARTED	July 24, 1971
DEPARTURE	14+50 West	DATE COMPLETED	
DIP	-90 ⁰	DRILLED BY	D. W. Coates
ELEVATION		LOGGED BY	R. W. Woolverton

Depth	Geology	Sample No	Width	Cu	MoS
178' - 188'	As above.	5510	10'	0.38	.043
188' - 198'	As above, some reduction in cpy.	5511	10'	0.27	.030
1 <u>98' - 208'</u>	As above, gypsum 202', MoS, increasing,	5512	10'	_0.25	.045
	some fracturing; crumbling				
208' - 218'	Fractured BFP - incipient clay alteration	5513	10'	0.31	.064
	Good MoS2, fair cpy				
2 <u>18' - 228'</u>	As above, less crumbly	5514	10'	0.39	.032
2 <u>28' - 238'</u>	BFP, MoS ₂ , cpy., breccia	5515	10'	0.46	.031
2 <u>38' - 248'</u>	BFP as above, diss. cpy., MoS ₂ with qtz.	5516	10'	0.18	,024
 	veinlettes.				· · ·
2 <u>48' - 258'</u>	As above	5517	10'	0.19	.040
<u> 258' - 268'</u>	BFP, crumbly, some sericite, fair MoS, and	1 5518	10'	0.26	.018
	cpy.			 	
2 <u>68 - 278'</u>	BFP, some cpy and MoS ₂	5519	10'	0.31	,046,
<u> 278' - 288'</u>	BFP, as above, may be a breccia	5520	10'	0.25	.042
<u> 288' - 298'</u>	BFP, bleached in short zones (sericite)	5521	10'	0.23	.035
	with more MoS ₂ .				
298' - 308'	BFP breccia, some cpy and MoS ₂	5522	10'	0.28	031
308 - 318'	BFP breccia as above, Cu increasing	5523	10'	0.41	045
318' - 328'	BFP breccia, biotites scarce, some cpy.,	5524	10'	0.36	036
	gtz. stringers with MoS2, felspars kaolin	zed.	ļ	· · · ·	
<u>328' - 338'</u>	As above, slightly more crumbly	5525	10'	0.36	.037
. <u>338' - 348'</u>	BFP breccia, cpy and MoS ₂ decreases	5526	10'	0.34	.021
<u> 348' - 358'</u>	As above	5527	10'	0.20	.015
<u>358' - 368'</u>	As above, crumbly	5528	10'	0.27 ·	.015
<u> 368' - 378'</u>	BFP, darker, some cpy.	5529	10'	0.22	.004
	End of hole.				
			1		ļ

vergreen Explorations Ltd.

ť.

Ç

DOROTHY

DRILL HOLE

#19

LATITUDE 12+00 North DATE STARTED	August 9, 1971
DEPARTURE 16+50 West DATE COMPLETER	D August 11, 1971
DIPOO DRILLED BY	D. W. Coates
ELEVATION LOGGED BY	R. W. Woolverton

Depth	Geology	Sample No	Width	Cu	Mos
<u> </u>	Casing				<u> </u>
94 - 104	BFP, fractures and stringers oxidized,	5575	10'	0.20	.008
	some cpy, minor MoS ₂				
104 - 114	Mainly grey por., badly broken	5576	10'	0.14	.017
114 - 124	As above	5577	10'	0.12	.011
124 - 134	BFP, some cpy and MoS, minor chl.	5578	10'	0.16	.020
<u>134 - 144</u>	As above	5579	10'	0.16	.011
144 - 154	As above	5580	10'	0.17	.032
<u> 154 - 164</u>	As above, 157 - 161 ground accidently	5581	10'	0.22	.020
<u> 164 - 174</u>	BFP, some zones of grey por. and grey por.	5582	10'	0.26	.049
	breccia, some cpy.			1	
<u>174 - 184</u>	Mixed BFP and grey por,	5583	10'	0.20	.057
184 - 194	Grey por., badly broken	5584	10'	0.24	.078
194 - 204	Mainly BFP, some cpy	5585	10'	0.20	042
204 - 214	As above, minor grey por. with MoS,	5586	10'	0.37	.049
<u> 214 - 224</u>	As above, still no sign of hbs.	5587	10'	0.24	.026
<u>224 - 234</u>	BFP, occasional chl. or green sericite	5588	10'	0.26	.034
• • • • • • • • • • • • • • • • • • •	(hbs?), some qtz. stringers with MoS ₂ ,				
	some_cpy.			 	
234 - 244	As above, silicified zones	5589	10'	0.26	.019_
244 - 254	As above, chl(?) increasing, less cpy.	5590	10'	0.25	.069
254 - 264	As above, some green sericite (?) often	5591	10'	0.24	.019
	bio(?)				
<u> 264 - 274</u>	As above	5592	10'	0.22	.030
<u> 274 - 284</u>	As above except more silicification and	5593	10'	0.35	.030
· · · · · · · · · · · · · · · · · · ·	cpy. Chl. disappears.	· · · ·			
284 - 295	BFP, no sign of hbs., good silicification,	5594	11'	0.29	.043
	some cpy and MoS2.		ļ		
	End of hole.				
			1	1	1

APPENDIX C

Ļ

STATISTICALRESULTS

ł

2807.9

Statistical Analysis

2.00

156.29

737.00

f

:

Statistical Analysis

ţ

0.02

0.15

Statistical Analysis

36.18

									DC	DROTHY I	PROPER	ΓY							
							Ca	relation	Coefficie	nts for Se	elected E	lements i	n Drill Co	ſe					
										Spear	man			•••••••				•	
					6 0					Pear	<u>son</u>	10	T L1	00		<u> </u>	AI	<u></u>	1 A
		AU	AG		<u>PB</u>	ZN	MO	<u>NI</u>	<u> </u>	MN	FE	<u>A5</u>	11	58		58	<u></u>		
	<u> </u>		0.500	0.604		-0.026	0.017	0.241	0.976	Normar Di		0.026	_0.067	-0 185	0.040	0.056	0.082	0 177	-0 106
AU			0.509	0.622	0.022	0.020	0.217	0.341	0.270	-0214	0.10	0.020	-0.007	-0.160	0.043	-0.011	0.155	0.232	-0.098
	1	0.6399	0.021	0.022	0.022	-0.118	0.452	0.362	0.303	0.052	-0.161	0.003	0.040	0.132	-0 158	0.025	-0.264	-0.116	-0.073
AG		0.527		0.755	0.135	-0.098	0.541	0.376	0.454	0.307	-0.152	0.118	0.228	0.134	-0.161	0.022	-0.283	-0.122	-0.067
		0.747	0.8501		0.04	-0.03	0.319	0.405	0.656	-0.171	0.152	-0,153	0.068	0.039	0.071	0.006	0.074	0.066	-0.244
CU		0.619	0.754		0.057	0.033	0.419	0.389	0.68	-0.089	0.141	-0.151	-0.104	0.165	0.076	-0.003	0.084	0.062	-0.269
		0.0555	0.1338	0.0791		-0.115	0.008	-0.051	0.074	0.007	-0.116	0.044	0.035	0.216	0.019	0.788	-0,163	-0.159	-0.076
PB		0.022	0.135	0.058		~0.137	0.011	-0.032	0.101	0.078	-0.114	0.063	0.069	0.051	-0.032	0.235	-0.191	-0.18	-0.07
		0.0063	-0.0746	0.0201	-0.1267		-0.21	0.005	0.063	0.08	0.429	0.178	~0.303	-0.073	0.391	-0.1	0.416	0.216	-0.14
ZN		0.014	-0.098	0.03	-0.137		-0.271	0.003	0.07	0.087	0.441	0.082	-0.303	0.083	0,346	-0.049	0.419	0.208	-0.126
		0.398	0.5891	0.5579	0.0446	-0.2684		0.021	0.159	0.055	-0.344	-0.04	0.201	0.288	-0.152	0.037	-0.29	-029	0.051
MO		0.215	0.541	0.419	0.011	-0.271		0.07	0.244	0.154	-0.42	-0.084	0.228	0.288	-0.183	0.016	-0.383	-0.342	0.031
A 11		0.5414	0.4709	0.5151	-0.0017	-0.0101	0.2052		0.323	-0.273	0.159	-0.041	0.18	~0.072	-0.107	-0.047	0.025	0.501	0.109
		0.370	0.376	0.389	-0.032	0.003	0.07	0.4014	0.324	-0.005	0.215	-0.045	0.194	-0.005		-0.020	0.104	0.556	-0.407
00		0.4357	0.5291	0.7158	0.100	0.0504	0.324	0.4211		-0250	0.399	-0.120	-0.107	0.074	0.103	0.02	0.286	0.13	-0.438
		-02776	0 1 1 5 4	-0.2184	0.0596	0.07	0.244	-0.2461	_0 3480	-0202	-0 177	0.262	-0.02	0.091	-0.127	0.010	-0.308	-0281	0.022
MN		-0.157	0.307	-0.091	0.078	0.087	0 154	-0.065	-0.262		-0.304	0.243	0.138	0.18	-0279	0.081	-0.46	-0.308	0.131
		0.2326	-0.0182	0.2522	-0.0987	0.4371	-0.2089	0.2178	0.4483	-0291		-0.142	-0.526	-0291	0.42	-0.04	0.852	0.495	-0.381
FE		0.18	-0.152	0.141	-0.114	0.441	-0.42	0.215	0.395	-0.304		-0.089	-0.496	-0.224	0,376	0.023	0.833	0.528	-0.337
	LN	-0.0228	0.1141	-0.1474	0.0451	0.1035	-0.0459	-0.0886	-0.1594	0.3288	-0.1677		0.145	-0.024	-0.095	0.013	-0.237	-0.035	0.153
AS		0.009	0.118	-0.154	0.063	0.082	-0.084	-0.045	-0.127	0.243	-0.089		0.153	-0.085	-0.104	0.056	-0.21	-0.059	0.164
		0.0984	0.2674	0.0111	0.0894	-0.333	0.2406	0.2527	-0.1642	0.118	-0.5327	0.1968		0.162	-0.469	-0.018	-0.56	-0.247	0.489
<u></u>		-0.043	0.228	-0.104	0.069	-0.303	0.228	0.194	-0.177	0.138	-0.496	0.153		0.124	-0.469	-0.023	-0.512		0.494
		-0.0738	0.1705	0.1503	0.1234	0.0086	0.262	-0.0199	0.1097	0.2071	-0.26	-0.0273	0.1813		-0.159	0.165	-0275	-0.287	-0.027
SR		-0.152	0.134	0.163	0.051	0.083	0.288	~0.005	0.133	0.18	-0.224	-0.085	0.124		-0.112	0.046	-0.25	~0.323	0.01
00		0.0149	~0.1329	0.0659	-0.0174	0.3261	-0.2159	-0.1263	0.1865	-0.2405	0.375	-0.1867	-0.5194	-0.1353		-0,017	0.53	0.225	~0.338
		0.047	-0.161	0.076	-0.032	0.346	-0.183	-0.122	0.213	-02/9	0.376	-0.104	-0.469	-0.112	0.0060	-0.071	0.48	0.207	-0.344
5 2		-0.0317	0.008	0.0194	0.4305	-0.0954	0.0439	-0.0464	0.0199	0.1253	-0.0014	0.0529	-0.0072	0.1222	-0.0208		_0.059	-0.005	-0.034
		0.011	-0.1024	0.004	-01631	-0.049	-0.1755	0.020	0.018	0.081	0.023	-0.050	-0.023	-02573	0.071	_0.05	-0.000	0.580	-0.4
Al		0.155	-0283	0.083	-0.1031	0.3930	-0.1730	0.1549	0.371	-0.46	0.0023	-0.3240	-0.541	-025/3	0.48	-0.09		0.644	-0.291
		0.3457	0.0459	0.2381	-0 1758	0 2101	-0.135	0.104	0.200	-0.40	0.000	-0 1580	-02273	-0.3257	0.1864	-0.0624	0.6794		-0,165
CR		0.232	-0.122	0.062	-0.18	0.208	-0.342	0.558	0.13	-0.308	0.528	-0.059	-0239	-0.323	0.207	-0.017	0.644		-0.141
		-0.0237	0.0026	-0.1557	-0.0023	-0,119	0.0344	0.0969	-0.335	0.0786	-0.3538	0,161	0.641	0.0949	-0.3494	-0.0241	-0.3484	-0.2317	
LA		-0.098	-0.067	-0.271	-0.07	-0.126	0.031	0.112	-0.438	0.131	-0.337	0.164	0.494	0.01	-0.344	-0.034	-0.291	-0.141	

•

:

•

LEGEND

Biotite Feldspar Porphyry (BFP) (Babine Intrusive) 1 2 Diorite or Granodiorite (Ominica Intrusive) 3 Volcanics - Mainly Andesites 4 Felsite _____Cut Grid Diamond Drill Hole Collar and Down Hole Extension () Outcrop Resistivity **く**800 Ohm - Feet

Chargibility 💙 5 m s

GEOLOGICAL BRANCH ASSESSMENT REPORT

INTERNATIONAL CORONA CORPORATION

DOROTHY PROPERTY Pre 1991 General Geology, IP and Drill Hole Location Map

0 100 200 300 Metres

Scale 1:5,000