1991 GEOLOGICAL REPORT

C

0

Π

on the

TASEKO PROPERTY

(Taseko 1-4 claims)

Clinton Mining Division British Columbia

North Latitude 51°14' West Longitude 123°29'

NTS 920/3W

Prepared for

CASCADE INVESTMENTS J.V.

P.O. Box 11604 1410-650 West Georgia Street Vancouver, B.C. V6B 4N9

Prepared by

D.E. Blann, P.Eng.

COAST MOUNTAIN GEOLOGICAL LTD.

P.O. Box 11604 1410-650 West Georgia Street Vancouver, B.C. V6B 4N9

January, 1992

NA

- COAST MOUNTAIN GEOLOGICAL LTD.

SUMMARY

The Taseko property is located on Taseko Mountain, approximately 9 kilometres east of Taseko Lakes, in west-central British Columbia. During September of 1991, Coast Mountain Geological Ltd. performed 15 man-days of geological mapping, sampling and prospecting on the property.

The property is underlain by andesite to basaltic tuffs, flows, volcaniclastic breccias, minor rhyolite and sediments; these volcanic and sedimentary rocks are cut by various dykes and irregular stocks of porphyritic hornblende diorite to granodiorite composition. Two predominant sets of shearing are evident through the property; northwesterly and northeasterly trending shears intersect in the area of Easy Peak. Propylitic, argillic and phyllic alteration assemblages occur, although overprinting has made differentiation difficult.

Two types of mineralization are apparent on the Taseko property. Northwesterly trending shear zones containing sphalerite, pyrrhotite, pyrite, and arsenopyrite occur on the east side of Easy Peak within a dyke swarm. Assays of up to 0.541 oz/ton gold and zinc have been returned from these shears. 1.7 ક્ર This mineralization is likely the source for the sulphide boulders found in the area of the pond and to the pass north of Easy Peak by previous work programs. The second type of mineralization appears shears that trend northeast, related to crosscuting the northwestern shear system, in the pass south of Easy Peak. In this location limonite, magnetite and hematite within easterly trending shears has returned gold values of up to 0.188 oz/ton and 274 ppb gold across 5.0 metres.

Further work is necessary to evaluate the high grade, and large tonnage low grade gold potential of the shear zones on the property.

GEOLOGICAL BRANCH ASSESSMENT REPORT

		ACTION:		
	TABLE OF	CONTENT	• • • •	
		FILE NO:		
1.0 INTRODUCT	ION	SUB-RECO	RDER	Page
1.1 Loca 1.2 Phys 1.3 Prop	tion and Access iography & Climate erty Description	FEB 2 4 M.R. #	1500	2 2 5
1.5 1991 Work	Program	VANCOUVER	, B.C.	6
2.0 GEOLOGY &	GEOCHEMISTRY			
2.1 Regi 2.2 Prop 2.3 Alte	onal Geology erty Geology ration and Minerali	zation		9 10 11
	m			13
4.0 CONCLUSIO	ns			14
5.0 RECOMMEND	ATIONS			15
6.0 STATEMENT	OF EXPENDITURES			16
7.0 REFERENCE	S			17
8.0 STATEMENT	OF QUALIFICATIONS			18
	APPEN	DICES		
Appendix A Appendix B	Rock Sample Descri Analytical Procedu	ption Sheets Ires and Assays		
	LIST OF ILL	USTRATIONS		
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Property Location Claim Map Regional Mineral C Regional Geology M Property Geology M Sample Locations a	Map Occurences Map Map And Assays	H	3 4 7 8 pocket pocket
	LIST OF	TABLES		
Table 1 Table 2 Table 3	Claim Information C.M.G. Personnel Rock Sample Summar	-y		5 7 14

1.0 INTRODUCTION

1.1 Property Location and Access The Taseko property is situated around Taseko Mountain in the heart of the Chilcotin Range of British Columbia. It is located approximately 9 kilometres east of Taseko Lakes, 215 kilometres north of Vancouver (Figure 1). The property is centred at approximately 51°14′ north latitude and 123°29′ west longitude.

Access to the area was provided by helicopter from Goldbridge. Road access is available to within 3 kilometres of the property via Williams Lake. In the future, a helicopter could be utilized to ferry equipment and supplies from the road to the property.

1.2 Physiography & Climate

The property is composed of fairly rugged, slightly glaciated terrain, with elevations ranging from 2040 metres at the northeast corner of the property, to over 3060 metres at the peak of Taseko Mountain.

The entire property is above treeline; alpine grasses and small shrubs occur at lower elevations, and small clusters of stunted alpine spruce occur at the northeast corner. Winters in the area are moderate with small accumulations of snowfall. The property can be worked from June to early November.

1.3 Property Description

The Taseko property is located within the Clinton Mining Division of B.C. and is comprised of four 20 unit M.G.S. claims, covering an area of 2000 hectares (Figure 2).

Chris Basil of Vancouver B.C., is the registered owner of the claims which are held in trust for Cascade Investments J.V. The pertinent claim data is summarized in Table 1.

TABLE 1: CLAIM STATUS

<u>Claim Name</u>	Record_number	<u>Size (units)</u>	Expirv Date*
Taseko 1	209328	20	19 Jan 1993
Taseko 2	209329	20	19 Jan 1994
Taseko 3	209330	20	19 Jan 1993
Taseko 4	209331	<u>20</u>	19 Jan 1993

Total:80 units

* Pending acceptance of this report

1.4 Property History

The Taseko Lakes area has undergone exploration since the early 1900's, when the Morris Mine was discovered. Gold bearing veins were discovered in the area at the Vick showings in 1932 and at the Pellaire occurrence in 1936.

Taseko Mines Ltd.'s Fish Lake deposit, situated approximately 20 kilometres north of the property, was first worked on by Phelps Dodge in the 1960's. This Cu-Mo-Au porphyry contains 180,000,000 tons grading 0.25% copper and 0.51 g/t gold. Other significant deposits in the area include the Poison Mountain prospect, located

approximately 75 kilometres east of Taseko Lakes, contains 175,000,000 tons grading 0.33% copper, 0.015% molybdenum and 0.3 g/t gold. The Pellaire and Taylor-Windfall precious metal vein deposits are also located in the area (Figure 3).

The Taseko property was explored in 1982 (Pollock, 1982). Utah Mines Ltd. conducted a brief program yielding anomalous values of gold, silver, copper, zinc and arsenic in both rock and soil samples, but did not return to the property.

Cascade Investments J.V. Ltd. staked the Taseko property in January of 1991, based on the property's mineral occurrences, and on mineral deposits in the vicinity (Fish Lake, Granite Creek, Taylor-Windfall etc.).

1.5 1991 Work Program

A total of 15 man-days were spent on the property in late September, 1991, conducting a program of geologic mapping on a scale of 1:10,000, sampling and prospecting. The following Coast Mountain Geological Ltd. personnel were employed to conduct the 1991 program on the property:

TABLE 2: C.M.G. PERSONNEL

Dave Blann.....Project Geologist Willie Kushner.....Geologist Chris Basil....Prospector

2.0 GEOLOGY AND GEOCHEMISTRY

2.1 Regional Geology

The Chilko-Taseko Lakes area lies on the boundary between the Coast Plutonic Complex to the southwest and the Intermontane Belt.

The Intermontane Belt consists of three northwest-southeast trending fault-bounded blocks of Triassic to Cretaceous aged sedimentary and volcanic rocks. Andesitic flows and associated tuffs and breccias constitute the bulk of the volcanic rocks and these are intercalated with waterlain tuffs, siltstones, shales, minor sandstone and carbonate rocks. These are unconformably overlain by scattered outliers of Miocene and Pliocene plateau lavas.

Plutonic rocks emplaced during Cretaceous and Tertiary periods are granodiorite, quartz diorite and diorite. They form the main mass of the Coast Mountains to the southwest, however, related dykes, stocks and sills intrude the volcanic and sedimentary rocks throughout the Taseko and Chilco lakes area.

The Taseko property (Figure 4), is located on the southwestern flank of what was once the Tyaughton trough, an Early Cretaceous volcanic island arc environment transitional to a marine sedimentary basin environment (McLaren, 1990). Intrusive rocks of the Coast Plutonic Complex truncate the volcanic and sedimentary sequences, and have uplifted the volcanic arc, exposing it to

erosion.

McLaren (1990) suggests the volcanic rocks in the Taseko area are related to those at the Brittania Mine and Harrison Lake; they may have once been part of a continuous volcanic arc that has since been dismembered, uplifted and eroded.

Large fault zones cutting through the Taseko Lakes region may be related to the major faults which affect precious metal mineralization in the Bridge River Camp, 80 kilometres to the southeast. The Bridge River area contains several past-producing gold mines (Bralorne, Pioneer), and has produced more gold than any other district in British Columbia.

2.2 Property Geology

The Taseko property is underlain by upper Cretaceous aged andesite to basaltic flows, lithic and crystal tuffs and breccias, and andesitic tuffaceous sediments and minor rhyolite trending northwards with moderate easterly dips. These rocks are extensively intruded by various phases of hornblende-feldspar porphyritic diorite to granodiorite. Fine grained felsic to intermediate dykes and irregular plugs crosscut both the volcanic and intrusive rocks. Dykes vary from 0.5 to 25 metres in width and occur in a northwesterly trending swarm, capped by volcanic rocks, in the area of Easy Peak on the east side of Taseko mountain (Figure 5).

The dominant structures are shears trending 330° and 040°, with related splays. The northwest trending, subvertical dipping shear zone is approximately 1 kilometer in width and extends from the southeast corner of the property to the northwest corner. Parallel faults occur in the valley and ridge to the east of Easy Peak. The northeast trending shear is also strong and cuts the main shear zone from the south-central to the east central portion of the property. At the intersection of these two shear zones moderate to extensively altered volcanic and intrusive rocks occur.

2.3 Alteration and Mineralization

On the east side of Easy Peak, moderate to strong chlorite-epidote and argillic to quartz-sericite-pyrite alteration of the volcanic and intrusive rocks is evident. Dykes contain disseminated pyrrhotite, pyrite, arsenopyrite, and minor chalcopyrite mineralization. Shear zones in proximity to the dykes contain pyrite, pyrrhotite and locally chalcopyrite, sphalerite, galena, and arsenopyrite in irregular lenses and pods. The mineralized shears are from 3 centimetres to 1.5 metres in width and trend northwesterly. Assays from this area have returned up to 1.7% zinc and 0.545 oz/ton gold. Anomalous arsenic values were returned from several samples.

Argillic to quartz-sericite-pyrite alteration occurs from the pass north of Easy Peak to the southeast corner of the property. This area is marked by prominent gossanous zones within highly sheared

volcanic rocks above the dyke swarm. A strong shear zone trending about 100° contains abundant botryoidal hematite, magnetite and limonite. This shear zone returned 0.188 oz/ton gold, minor silver and only traces of base metals (Figure 6). Approximately 100 metres to the south, a 5 metre chip sample of fractured and locally sheared quartz-sericite-pyrite altered volcanic rocks containing 1-2% pyrite returned 274 PPB gold. An adjoining 3 metre chip sample returned 91 PPB gold.

Thin, isolated pendants of hornfelsed and weakly skarned volcanic and sedimentary rocks occur on the east side of the main northerly trending drainage basin (Figure 5). Weak epidote and chlorite alteration of the volcanic and intrusive rocks is also present in this location. Alteration of the volcanic and sedimentary rocks in the northwestern portion of the property is limited.

2.4 Geochemistry

Fifteen rock chip samples, 13 grab samples and 24 float samples were collected from the property for a total of 52 rock samples (Figure 6). Four soil samples were also collected.

Of the rock samples collected from the property, eight may be considered anomalous, and are summarized in Table 3. Complete rock sample descriptions and assays are located in Appendices A and B, respectively.

13

TABLE 3: ROCK SAMPLE SUMMARY

<u>Sample</u>	Rock Type	<u>Mineralization</u>	<u>Cu(ppm)</u>	Zn(ppm)	<u>Au(ppb)</u>
F-D09 C-D12 C-D13	f.g. andesite m.g. volcanic hbl-feldspar crystal tuff	py,po,cp aspy,po,sp hem, mag,lim	3494 387 164	206 <u>0.41</u> 381	43 <u>0.541</u> 0.188
C-D14 C-K15 F-K10 F-K13 F-B01 C-B07	(") 5.0 metre diorite diorite gossan andesite monzonite(QM)	py, lim, hem aspy,po,sp,py,cp cp,bn,sp,gl sp,po mag,po,mal,py hem,mag	61 757 1068 350 175 6 2002	169 <u>1.70</u> <u>2.51</u> 6063 <u>1.25</u> 0.54	274 <u>0.028</u> <u>0.004</u> 122 <u>0.233</u> <u>0.008</u>

(Underlined values represent assay % Zn and oz/t gold, respectively)

3.0 DISCUSSION

The Taseko property is underlain by fine to coarse grained and porphyritc andesite, minor basalt and rhyolite, and sediments that have been intruded by various phases of hornblende diorite to granodiorite. The prevalence of dykes and irregular plugs, structures, and the alteration and mineralization around Easy Peak suggest that the area is the root zone of an eroded volcanic centre. This area appears bounded to the north by a fault trending northeast in the pass on the north side of Easy Peak. Structures and geology between Easy Peak and the northeastern side of the property suggest that the east side of this area has been downdropped into the valley floor as a graben, leaving only remanent volcanic-sedimentary pendants on the granite-granodiorite intrusion.

Copper-zinc-silver-gold (+/-arsenic, cadmium) mineralization occurs within gossanous shear zones in contact with the dike swarm along the east side of Easy Peak and in the pass to the north. Anomalous float samples from around the pond and the pass to the northwest would appear to have originated from these shear zones.

Argillic to phyllic (quartz-sericite-pyrite) alteration of the volcanic rocks along the ridge and south of Easy Peak hosts goldbearing hematite-limonite-magnetite shears. Several shears in this area have returned significant gold values (0.188 oz/ton, and 274 PPB over 5.0 metres). The variation of shear mineralization suggests there may be two distinct types on the Taseko property: gold-bearing base metal shears, and gold-bearing iron-rich shears. The iron-rich shears, may be related to a gold-bearing pyritic halo peripheral to the dyke swarm.

4.0 CONCLUSIONS

The Taseko property contains geological elements similar to the root zone of an intermediate to mafic volcanic centre subjected to propylitic and locally extensive argillic and phyllic alteration. Shear hosted mineralization in proximity to the dike swarm on the east side of Easy Peak is predominantly sphalerite and locally arsenopyrite. Gold values of up to 0.541 oz/ton were retuned from this zone. On the south pass of Easy Peak, shear related mineralization is comprised of magnetite-hematite-limonite and gold values of up to 0.188 oz/ton were returned from one of the shears.

4.0 RECOMMENDATIONS

Further work is required in the area of Easy Peak on the Taseko The 1991 work program has outlined a preliminary property. geological model and has returned several significant gold assays. The possibility of both small, high grade gold-bearing shears and large, low-grade gold deposits exists in the area of the Taseko property. A program of prospecting, mapping and sampling in the area around Easy Peak, and to the southeast, is required to determine the shear related gold potential of the property.

Respectfully Submitted,

Blann, P.Eng.

Ε.

Coast Mountain Geological Ltd.

16		
STATEMENT OF EXPEN	NDITURES	
MOB/DEMOB		925.00
PERSONNEL Project Geologist (D. Blann) 5 days @ \$375/day Geologist (W. Kushner) 5 days @ \$275/day Prospector (C. Basil) 5 days @ \$275/day	1875.00 1375.00 1375.00	4625.00
ASSAYS 52 rock chip samples @ \$13.55/samp 4 soil samples @ \$11.50/sample Fire Assays	le 704.60 46.00 107.00	857.60
HELICOPTER 2.3 hours @ \$721.50/hour		1659.45
REPORT, DRAFTING and REPRODUCTIONS		750.00
MISCELLANEOUS Supplies and Consumables Radio Rental 15 mandays @ \$10/day Vehicle 250 kms @ \$0.35/km 1 day @ \$35/day Camp Charges 15 mandays @ \$35/day	150.00 150.00 87.50 35.00 525.00	<u>947.50</u>
	SUBTOTAL	9764.55
13.5% MANAGEMENT FEE		1318.21
7% G.S.T. TO	TAL	<u>775.79</u> \$11,858.55

REFERENCES

- Basil, C.M., (1991): Summary Report of Mining Claims Held by Cascade Investments Joint Venture in the Chilko-Taseko Lakes Area, B.C., Private Report for Cascade Investments J.V.
- McLaren, G.P., (1990): A Mineral Resource Assessment of the Chilko Lake Planning Area, Geological Survey Branch, Mineral Resources Division, Bulletin 81.
- Tipper, H.W., (1963): Geology, Taseko Lakes, B.C., 1:253,440 Scale Geology Map, Geological Survey of Canada, Map 29-1963.

STATEMENT OF QUALIFICATIONS

I, David E. Blann, of 38233 View Place, Squamish, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1.) THAT I am a member of the Association of Professional Engineers of the Province of British Columbia.
- 2.) THAT I am a graduate of the British Columbia Institute of Technology in Mining Engineering Technology, and the Montana College of Mineral Science and Technology, Butte, Montana, in Geological Engineering (1986).
- 3.) THAT the information, conclusions and recommendations in this report are based on personal work on the property during 1991, and a review of relevant literature.
- 4.) THAT I have no direct or indirect interest in the Taseko property.

DATED at Vancouver, British Columbia, this <u>20</u> day of January, 1992

David Ellis Blann, P.Eng.

APPENDIX A

ROCK SAMPLE DESCRIPTION SHEETS

COMUT NOUNTHIN GEOLUGILAL LTU.

ROCK SAMPLE SHEET

10=1

Sampler D. BLANN Date <u>SEPT 25/9</u>

Property TASEKO

NTS

	1	, 1	DESCRIPT	ION	,	1	A	SS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Eu PPM	Pr NPM	Zn Ffin	Au PPp	Ag PPM
915-J-DI	6-5	SOIL			TALUSFAN BY CAMP	4Z	н	64	13	1.2
91F-T-DZ	F	V.F.G. VOLC.	SIL	Py, Po 32 SP Tr	SOUTH END OF LAKE - SEVERAL LAINERFLIZED PROLOFERS UP TO 1018	156	24	1028	24	1.0
916-T-D3	C-	AND. VOLC.	CHL-EP - ARG, SIL	Py 120	NEAR MONZONITE LATRUSION. QTZ- PHRITE VEINLETS FRACTURES 150 +040	200	3	138	i 9	0.3
916-J-D4	1.5	HUBL-	CHL	P-1 5 20 5P 1 20	STRONG SHEAR I CONTON HS N.P. Lung 50M Billow FROM KOY	202	5	6526	72	0.9
916-7-125	I.OM	AND- DIORITE	SIL, CAL	Po, Py Z-320	CONTACT SHEAR ILD' 130" DIDRITE/AND. WITH QTZ MONZ, WEAKWALLACT	135	7	100	[Z	0.5
91F-T-D6	F	F.G. DIORITE	\$12, LI+L.	Po, Py 1-5%	TALUS ON GLACIETE BAST OF KNOB	231	11	101	1	0.2
91F-T-D7	F	FELSIC	SIL - LIHL-EP- ARGILLIC	Po K1-5%	F.G. DYKE (DACIFICS) WITH DISS. Po	જુરુ	z	27	t	0.1
416-7-178	4~	DIORIFE	516-6176- IEP	841Po 10/0 TrCP	Trip, 1-3man H BTZ VIEINS NEAR CONTACT WITH VOLCANICS.	673	33	585	136	3.4
71F-T-D9	F	F.G. AND.	LITL-EP -WEAK ARC.	P-1, PO LIGO Tr CP	BIZVENDET STOCILOFRIC, WEAKLY BRECCIATED	3444	22	206	43	12.0
91F-T-DIO	<i>i</i> =	DIORITE	STRONG CHL-EP-	P.1, Po 5%	FRACTORED AND FILLED BY OTZ	250	4	48	ف	1.1
116-T-DI	1.0M	M.G. VOLC.	GTZ- SERILITE	Po 6190	FRACTURES 1654/65 E. AT CONTACT WITH HORNBLENDE PORPHYRY	67	5	672	10	0.5
116-1-1212	0.30	M.G. JOLC	QTZ WEAK CHL	ASPY, P., 5P . 1-5%	FRACTURE + FARATIC SITEARS	387	เซ	399/	18629	6.0
416-T-D13	G	HNBL - FELDSPM LTAL FUFF	CHL-EP	HENN-MAG- LINN	27BONG ON MRIDGE OF PASS MYLONIFIC SHEAR ZONE 100/45 5. INAWM	164	31	38I	ક જ જ	78
91C-T-14	5M	(+ - 1= TUF1=	ADVANCED ARGILLIC G-S-RY	Prizelo	PY DISS AND IN 1-2MM FRACTURES	61	16	i69	274	0.3
716-7-015	3,41	H-F TUFF	EP- B-S.P.	8-11%	CONTINUED NORTH FROM DIH IM SITEAR LOCALLY INTENSE GIZ-PUTRAC	115	13	39	41	0.4

CL.,UT I.UJ	NT	. GE)G	lune LT e.	ROC	K SAMPLE SHEET					
Sampler Date	<u> </u>	'91		Property	ASEKO	NTS				
SAMPLE	Sample		DESCRIPT	ION	ł	 	<u>A</u>	SS	AYS	;
NO.	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Fb	Zn	Aq	Au
91F T-B01	F	andriste	mod chl-ep	mag po mal py	magnetite veins	1756	378	IIZO9	24.5	6638
91F T-B02	F	11	sl dlep	veinfets of py pods of mag		124	z	120	.4	40
91F T-B03	F	volc/ sbude	adreme ep	trpy	Ate flooded	137	2	44	.2	10
JIF T-Bo4	F	Monz	gossenous	1% pyinblebs		85	z.	107	.2	28
91F T-BOS	F)]	11 sericite	1% po, py		634	4	69	,8	22
91F T-B06	F	volu	ep veinlets	strmgerspy 2/0		528	54	1604	4.0	4Z
91F T-B07	F	MONZ		hem, mag		200Z	198	5003	Z.5	5 /05
91F T-B08	F	volc	chl	mag up to 5%		325	68	634	2.5	210
91F T-B09	F	f/g MONZ	SOSEANOIS	magrich		445	z	7z	1.1	7
91F T-310	F	monz		dissem py+po	source on knob diredly above.	63	6	88	.3	4
91G T-B11	.3x .3m	sub vole/ monz	argilliz/ silicified	up to 2% py/po dissem + blebs		173	5	290	.2	5
91G T-B12	.3m ²	1	tr ch l-ep	11	slight mag	102	6	53	.1	19
91G T-B13	$2m^2$	favola	gossan somesencite	dissem py 1/2/0 slight mag	moderately silicous	163	4	z4	.1	122
91G- T-B14	$/m^2$	volc	bleached	hem	adjacent for 13	429	6	47	, 1	15
91G T-B15	lm^2	volc/ tuff	trep	11, po~1%	on ridge pars 8000' slighty silicious	602	231	320	·8	38
				·						

~ r cloit CIID

COAST MOUNTAIN GEOLOGICAL LTD.

Sampler_____

ROCK SAMPLE SHEET

Property	TASEKO
FOODLOTION	

1 11 17

Т

Date _	SEPT	191		Property	IASEKO	N	rs .			·	<u> </u>
SAMPLE	۱ مد	J	DESCRIPT	ION	J		1	A	SS/	4¥5	I
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL	OBSERVATIONS	Lu	Au	Aq	Pb	2
AICTK.KO	21	f.g. dib	slche, K.ep, K-spar, int.SIL	1-2% py	ep veins 1-2 cm intense silicification	<i>¬</i> .	,X	59	1.4	6	122
C·K02	- Im	f.g. dio	Ŋ	n tropy	intervely silicified		819	39)	23	Ą	222
S.KO3	,				SOIL SAM	RE					
C.K04	3.5	Hbe Dio	Int.chl. mod sil.	126 F.g. PY, PS	some oreas quite	bleached 130/89 NW, 185/85 NE, 150/90	116	22	Ś	3	48
C.KO5	15	F.P.	mod che, sil, tr. equit lim	1-2% po.py, cpy			127	3	4	2	136
F.KOb		Tio	int che trep, mod sil	5% po, tr py.cpy	float from cliffs in	nuedistay above.	200	2	ż	3	38
C.KO7	-Im	f.q. dio	extr. lim	1-2% vg po	from knob		190	7	.9	17	35
C.KOB	1.5	f.g. dio	chl, sl.ep, sl.g. [oxy.lin	1% Po			103	7	.2	9	38
C.KO9	.70	i.	ų	1-2°/0 po	10m down from	- Kob	28	7	.1	r	32
F·KIO	_	dio	extr. linn, chl	1% cpy, bn, 2-3% sphel, gal			dob	108	7,8	1914	25095
F·KII	-	c.g. dio	extr. lin che, tr.ep	5% po	Up to 5mm clots of		87	2	.3	3	59
F.KIZ		vfg dio	bleached chl. N. ep extr. lim	5-7% ps	Not too fractured	(FI 2.5), 2075/90	204	65	٨.	14	46
F.K13		gossan	extr. argillic, boxnosk str., comdetel, attd	5% shal, po			1/50	122	29	2	600
C·KI4	5m	f.q.dio	extr. sil, chl, bleached	3% po, tr. cpy, tr. Dy aspy	Im below Ko		219	70	1,0	5	97
C.K15	2m	subvolc (dio?)	extr. gossanous, extr. sil	10% sulphides - asp, po,			25%	800	3.2	7	575

C-CHIP G-GDAR C-FINAT

ΟύΑΝΤ Νυυ	NTAUN	I GEULUG	ILAL LTU.	ROC	K SAMPLE SHEET					
Sampler Date	BK.	•		Property <u> </u>	ÁSEKO	NTS				
	le	1	DESCRIPT	ION	J	L	A	SS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	<u> </u>	Au	A	Pb	3
G.K16	.25m	Fold. hbe XHE tubb	lin	3-5% po	above E. end of Lake.	157	6	<u> .\</u>	4	137
F.KI7						107	58	.8	14	200
S.KIB					SOIL SAMPLE	•				
C.K19	5m	volc	ertr. lun, int arg alt, ep	Ry along bractures	Some line as DIA and DIS - next to DI extremely gossanous	اک ^ا ج	16	5	2	112
RE.S.K03					SOIL SAMPLE					
RE.F.KO7	-	f.g dio	chl, lim	po, py disg that.		2,00	12	.8	24	86
				· · · ·						
							1			

C-CHID C-COAR C-CLOAT

COAST NOUNTAIN GEOLUGICAE LTU.

ROCK SAMPLE SHEET

NTS

Property TASEKO

SAMPLE	In .	, 1	DESCRIPT	ION	1	L	A	SSA	445	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Рb	Zn	Aa	An
91G T-B16	Imz	dkgrey slate	nil	blebs py 1/2%	170/80 70°/90 (fractures+ jointing)	50	9	45	.Z)(
9155 T-B01	silt	silt		÷	in creek below pass on west side filain	30	3	69	./	4
91G T- B17	Imz	andrsite	sericite	topy, her	gth rich 0	88	3	15	.1	z8
916 T-B18	1m ²	dilee	ep veins	hem inventets	highly blacked hornefils 75/80°w	677	B	32	. Z	13
91G T-B19	1	11)/	blebs hemtpy	· / _ /	214	3	31	.1	26
91G T-BZ0	n	volc	modef	11	bleastel + silici fied	121	2	43	.2	23
91G T-1321	ار	volc	17	st	· ·	89	Z	41	.	ZZ
<u> </u>										

APPENDIX B

ASSAY CERTIFICATES

- COAST MOUNTAIN GEOLOGICAL LTD. -

ASSAY PROCEDURES (from ACME LABS LTD.)

TRENCHING, SAMPLING and ROCK CHIP PREPARATION

rock samples were collected in plastic bags and sent to Acme Labs Ltd. of Vancouver, B.C., for analysis. The rock chip samples were crushed to 3/16 of an inch. A 250 gram specimen was split out and pulverized to 99% minus 100 mesh using a ring mill pulverizer.

SOIL SAMPLING and PREPARATION

The soil samples were collected from the 'B' soil horizon, approximately 10 - 15 centimetres deep, using a mattock. The samples were collected in kraft gusseted paper bags and also sent to Acme Labs Ltd. for analysis. At Acme, the samples were oven dried at 60° C and sieved to minus 80 mesh.

ICP ANALYSIS

A 0.50 gram sample of the prepared pulp is digested with 3 millilitres of 3:1:2 HCl-HNO3-H2O at 95°C for one hour, diluted to 10 millilitres with water, and then analyzed for 30 elements.

GOLD ANALYSIS (Fire Geochem)

10 grams of pulp is ignited at 600° C for 4 hours and fused with F.A. flux. The dore bead is dissolved in aqua regia and analyzed by ICP.

GOLD ANALYSIS (AA)

A 10 gram sample is ignited at 600°C for 4 hours and digested with aqua regia at 95°C on the water bath for one hour. 50 millilitres aliquot is extracted into 10 millilitres of MIBK and analyzed by graphite furnace AA.

ACME ANALYTICAL LABORATORIES LTD. 852 E. BARTINGS ST. ASSAY CASE COAST NOUNTAIR Geological Ltd. PRO	CERTIFICATE OJECT CASCADE TASEKO File # 91-4918R	
SAMPLE#	Cu Zn Ag** Au** % % oz/t oz/t	17-1
91C-T-D12 91C-T-D13 91C-TK-K15 91F-T-B01 91C-T-B07	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 92 15:41
91F-TK-K10 91F-TN-K08 91F-TN-K09 91F-TRN-D12 RE 91C-T-D12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FROM P
STANDARD R-1/AG-1/A	AU-1 .86 2.36 3.05 .098	ď

AG** AND AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: ROCK PULP Samples beginning (RE) are duplicate samples.

DATE REPORT MAILED: Han 17/92 SIGNED BY C. Mang, C. LEONG, J.WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JAN 14 1992

ANALYTICAL

		<u>M</u>	<u>ou</u> i	ntai	L n	Geo	<u>)10</u>	<u>gic</u>	<u>al 1</u>	td.		ROJ	EC	<u>r (</u>	S Var		E J	CAS	EKO		Fil	e	# 9	1-/	491	8	Pa	age	1	
SAMPLE#	Ho ppm	Cu ppm	Pb ppn	Zn ppm	Ag ppa	Ni ppm	Co ppn	Hn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr PPM	Cd PPm	Sb ppm	Bí ppna	V ppm	Ca X	P X	La ppm	Cr ppm	Hg 2	; Ba (ppm	• T • X	B PPM	Al X	Na X	к Х (V ppm
91C-T-D3	1	200	3	138	.3	28	23	516	4.25	39	5	ND	1	129	.3	2	2	70	1.34	.092	2	45	1.80	18	.11	2	3.17	,20	.08	<u>,</u>
91C-T-D4	1	202	5	6526	.9	25	10	1000	5.14	380	5	ND	1	98	26.9	3	2	57	1.63	.083	2	36	1.22	: 46	.09	5	4.32	.18	.47	19
91C-T-D5	2	135	7	100	.5	19	18	426	4.26	55	5	ND	1	285	-2	2	3	81	2.88	.088	2	30	1.21	38	. 19	2	5.07	.57	.04	
91C-T-D8	2	673	33	585	3.4	11	12	1562	5.34	37	5	ND	1	122	1.7	3	3	61	1.48	.108	2	17	1.64	27	. 19	4	4.27	.22	.14	Z
910-1-011	1	67	2	0/2	- 2	20	15	900	4.94	242	2	NU	I	203	1.0	2	2	11	3.04	.0/0	4	22	1.20	00	1.13	4	D.U0	. 70	.20	
91C-T-D12	1	387	18	3991	6.0	17	23	454	6.88	18402	5	14	1	108	27.3	16	2	59	1.84	.082	3	27	.85	83	.06	2	3.32	.27	.59	21
91C-T-D13	4	164	31	381	7.8	9	14	720	12.20	114	5	6	1	73	.6	8	2	115	.64	,143	6	10	1.13	- 59	.09	9	2.09	.07	.21	୍ଟ
91C-T-D14	3	61	16	169	.8	4	9	235	2.55	325	5	ND	1	105	2.0	3	2	38	.99	.076	3	11	1.02	- 14	:13	5	1.89	.14	.06	្នំ
91C-T-D15	2	115	13	39	.9	5	.7	246	2.95	37	5	ND	1	96	.2	3	2	36	.98	.080	3	11	.71	21	.20	2	1.69	.15	.08	
91C-TK-K01	4	642	6	175	1.4	42	45	557	5.77	142	2	ND	1	152	•9	2	2	50	1.58	- 042	3	22	.02	24	- 143	4	2.02		.02	
21C-TK-K02	4	819	4	222	2.3	12	51	411	4.33	78	5	ND	1	94	1.0	2	2	29	1.23	.087	2	16	.66	24	.09	2	2.18	.18	.08	1
91C-TK-K04	1	116	3	48	5	10	10	349	3.76	23	5	ND	1	245	.2	2	2	63	1.92	.104	3	21	.82	37	.21	4	3.07	.40	.06	<u>81</u>
91C-TK-K05	2	137	2	136	-4	7	10	303	2.79	18	5	ND	1	111	7	2	2	42	.72	.051	2	20	.71	40	.10	3	1.78	.26	.04	<u> </u>
91C-TK-K14	1	319	5	97	1.0	20	34	428	5.42	433	5	ND	1	161		Ş	3	74	1.46	.103	3	32	1.48	30	- 19	3	3.22	.30	.03	1
91C-TK-K15	11	151	ſ	15759	3.2	W	24	908	7.55	11113	2	ND	1	()	or .4	Ð	4	20	1.20	.030	۷	12	1.10	00	- 04	2	3.99	.21	.01	
91C-TK-K19	1 1	151_	2	112	.5	10	8	412	4.30	51	5	ND	1	. 85	5	2	2	86	.75	102	. 4	22	1.93	_29	.24	3	2.62	.15	.09	1
91C-TN-K02	1	18	2	116	.2	19	12	756	3.41	26	5	ND	1	177	.4	2	2	73	11.74	.011	2	17	2.79	13	.01	2	.43	.01	.01	1
91C-TN-K03	11	16	2	82	.2	8	16	941	4.01	29	5	ND	1	66	.3	2	2	90	5.37	,019	3	8	1.41	57	.02	6	.59	.01	.02	
91C-IN-KU4 01c-TN-K05		10	2	155	• • • •	17	12	439	6 51	10	2 5		1	102		2	2	61	6 NO	014	2	27	1 67) 120 154			.93	.01	.03	
716-1H-KUJ	1 '	17		1.7.7		27	10	1440	4.21			ND.	•	104	17	-	•	01	0.07	1010	-	20	1.07	124	•••		•••			
91C-TN-K06	1	8	2	69	.2	11	13	1037	4.32	5	5	ND	1	154	.2	2	2	65	8.87	.055	5	16	.64	98	.04	7	.75	.01	.07	Ĩ.
91C-TN-K14	14	116	2	26	-4	26	7	228	3.66	<u> </u>	្ទ័	ND	2	58	.2	2	2	90	.79	.061	4	81	1.37	115	.30	3	1.71	.10	.26	
91C-TRN-D1 01c-TRN-D2	18	167	2	20	· . 3	19	12	200	4.02	3	:) 5	ND ND	1	175		2	د ۲	87 87	2 38	074	: L	21	1.22	113	20	4	3 43	.13	.4/	81
91C-TRN-D3		145	Ž	29	3	30	13	279	3.12	3	៍ទ័	ND	i	106	.2	2	2	78	2.44	.072	5	60	1.24	20	.24	59	3.26	.07	.09	
			-																	나라 같은 것은 같은 것										
91C-TRN-D4	1	230	2	26	-4	. 9	12	311	5.58	2	5	ND	1	148	.2	2	2	167	3.55	.107	4	13	.94	17	.35	645	3.70	.08	.09	
91C-TRN-D5	1 2	265	Ž	29	- 55	15	13	249	4.56	2 : : : : : : : : : : : : : : : : : : :	5	ND	1	185		2	2	155	1.89	.096	2	50	.91	51	. 50	11	2.02	.20	.11	影響
916-188-00 016-104-07		120 582	2	20 77	2	20 8	22	242	4.39 5 KL		3	ци ПЦ	1	150	5	2	2	151	2.85	114	4	13	.52	25	31	86	2.78	.26	.08	盛恨
RE 91C-TRN-D3		154	2	29	3	30	13	279	3.18	2	5	ND	1	109	2	2	2	79	2.43	.069	5	61	1.24	20	.24	60	3.28	.07	.08	
	1										_		_			-	-		_			-				-	.			
91C-TRN-D8	7	566	2	25	-4	7	18	222	5.50	2	្ទ	ND	1	199	.2	2	5	166	2.45	,120	4	.9	.54	24	.30	6	2.83	.32	.08	J.
916-TRN-09	25	458 725	2	29	- 9	9 70	13	227	5.14	2	2	ND	1	102	8 Ş	2	2	189 70	2.58	-114 046) 5	1U 70	.5/	دد ≂≂	- 21 25	11	2.09	.30	10	
916-1KN-010 01C-TRN-n11	28	J2J 433	2	23	12	31	12	203	2.82	6	5	ND ND	1	38	3	2	3	73	.65	.060	5	71	1.34	108	24	2	1.37	.10	.25	
91C-TRN-D15	8	228	2	31	.4	20	14	235	3.89	3	5	ND	i	205	.2	2	Ž	107	1.71	125	5	37	1.24	103	.25	4	3.05	.38	.53	
•••			-								_	•	-			-	_		• •=					-			- <i></i>	<u> </u>	40	

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1-P3 ROCK P4 SOIL AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

עם החייהדם C ICONC | HANG- CONTINION D C

ACCAVEDO

Coast Mountain Geological Ltd. PROJECT CASCADE TASEKO FILE # 91-4918 Page 2

ACHE ABALTI

	SAMPLE#	No	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Øi	۷	Ca	P	La	Сг	Mg	Ba	Ţ	B	AL	Na	K W	Au**
		ppm	ppm	_ppm		ppn	ppm	ppm	ppm		ppm	ppin	ppin	ppn	ppa	bb iii	ppn	ppm	ppii			ppii	ppa	A	ppm		ppu				ppo
	91F-N-807	7	2053	2	86	1.3	22	23	1001	3.78		5	ND	1	114	.5	2	6	142	3.21	.076	2	13	2.04	14	.40	2 2	2.89	.01	.02 1	9
	91F-N-809	2	19	2	43	1	19	31	320	5.05	2	5	ND	1	92	4	2	2	106	.78	.073	3	41	1.68	- 37	. 19	2 2	2.06	.02	.03 2	8
	91F-N-B10	2	20	6		4	30	115	269	9.62	32	5	ND	2		7	2	2	. 99	41	125	6	_ 26	1.36	29	22	2 ;	2.22	.03	<u>.09 </u>]	7
Г	91F-T-B01	3	1756	378	11209	24.5	7	177	585	26.51	258	5	7	1	17	120.2	2	65	22	.58	.016	2	1	.63	3	.03	2 '	1.06	.01	.01 🔄	6638
	91F-T-802	5	124	2	120	.4	17	29	291	4.59	28	5	ND	1	106	1.2	2	2	160	.95	.116	6	27	1.20	125	.36	2 '	.88	.06	.30 1	40
	91F-T-803	3	137	2	44	2	25	11	529	2.68	50	5	ND	1	66	° .3	2	2	34	2.11	.069	4	33	.60	16	13	2 1	.33	.01	.03 1	10
- 1	91F-T-B04	3	85	2	107	.2	4	16	353	5.46	85	5	ND	1	147	1.3	2	2	56	1.07	. 106	4	5	1.06	49	.08	2 2	2.67	.05	.09 1	28
	91F-T-B05	40	634	- 4	69	.8	5	30	290	4.27	12	5	ND	1	269	.8	2	2	67	1.96	.072	2	8	.95	22	. 11	2 3	.61	. 12	.03 🔄 🚺	22
	91F-T-B06	2	528	54	1604	-4.0	5	29	1591	9.53	179	5	ND	1	63	9.1	2	7	125	.91	.074	2	24	1.74	24	11	24	.02	. 05	.02 👘	42
	91с-т-во7	ī	2002	198	5003	26.5	7	55	9597	5.71	129	5	ND	1	118	50.3	6	15	21	4.54	.039	3	2	.78	6	.10	2 1	.13	.01	.01 🧃	105
	910-1-808	1	325	68	639	2.5	10	26	1425	9.66	30	5	ND	1	146	4.4	5	4	144	1.83	.099	3	22	2.16	60	. 18	25	.47	.10	.04 2	210
	91C-1-B09	2	445	2	72	1.1	14	71	435	6.41	38	5	ND	1	62	.9	2	2	137	.80	.113	3	22	1.72	23	.24	2 2	.10	.04	.04 🔄	7
	91F-T-B10	2	63	6	88	.3	27	28	499	4.40	28	5	ND	1	119	.9	2	2	100	1.31	.104	4	26	1.56	22	.25	2 2	.44	.07	.02 2	4
	91F-T-D2	1	156	24	1028	1.0	13	15	884	4.96	239	5	ND	1	146	8.8	2	2	118	2.35	089	3	30	1.23	91	. 13	2 5	.19	.12	.16 1	24
1	91F-T-D6	3	231	11	101	.2	82	48	508	4.33	41	5	ND	1	206	.5	2	2	72	2.12	.101	2	127	1.50	28	.18	23	5.41	.10	.01 1	1
	91F-T-D7	15	85	2	27	្មា	26	7	211	1.89	7	5	ND	1	33	.2	2	2	83	.43	.068	3	75	1.36	13	.10	2 1	.18	.02	.02 1	1
	91F-T-D9	12	3494	22	206	12.0	22	23	1005	6.80	480	5	ND	1	157	1.9	47	27	89	1.35	.064	2	18	1.33	39	. 15	2 3	.44	. 05	.06 🛛 3	43
	91F-T-D10	2	250	4	49	1.1	9	42	617	5.59	60	5	ND	1	90	.2	5	2	- 99	.93	121	3	16	1.86	15	. 16	2 2	2.53	.04	.02 🕺 1	6
	91F-TK-K06	1	200	3	38	.4	74	37	370	3.61	44	5	ND	1	170	.4	2	2	60	1.52	,106	3	88	1.35	22	,22	2 2	2.50	.09	.02 3	2
	91F-TK-K07	4	280	17	85	.9	13	20	780	4.34	16	5	ND	1	75	.2	2	2	109	.74	.119	2	21	1.78	16	.22	2 2	2.16	.03	.01 🧃	7
	91F-TK-K08	3	108	9	38	2	14	23	460	4.22	28	5	ND	1	91	.2	2	2	134	1.08	.116	3	23	1.29	17	.24	2 2	2.24	.07	.03 1	7
	91F-TK-K09	2	78	2	32		12	20	374	3.84	817	5	ND	1	117	.4	2	2	123	1.27	.116	3	16	1.05	20	.26	2 2	2.24	.08	.03 1	7
- 1	91F-TK-K10	4	1068	1914	25090	7.8	5	28	2342	7.13	554	5	ND	1	81	112.0	2	12	65	.71	.068	4	5	1.37	89	.08	24	.34	.04	.23 1	108
	91F-TK-K11	2	87	3	55	- i i i i i i i i i i i i i i i i i i i	18	20	363	3.87	9	5	ND	1	183	.5	2	2	73	1.35	.092	4	49	1.02	23	.20	2 2	2.14	.07	.03 1	2
1	91F-TK-K12	2	204	14	46	.1	12	29	488	5.90	14	5	ND	1	106	.3	2	2	101	1.00	. 130	3	6	1.54	22	.25	2 2	2.11	.06	.04 1	65
	RE 91F-TK-K07	5	300	24	86	.8	11	20	796	4.54	18	5	ND	1	76	.6	2	2	114	.76	,123	2	20	1.84	16	.22	2 2	2.28	.04	.01 1	12
1	91F-TK-K13	1	350	2	6063	2.9	2	5	248	4.70	383	5	ND	1	- 4	33.0	6	2	9	.44	.011	2	7	1.25	1	.02	2	.59	.01	.01 🛞	122
- 1	91F-1K-K17	2	104	14	206	8	2	13_	1122	6.19	4328	5	ND.	1.	.37	1.4	4	2	46	.55	.069		5_	84	77	.06	2 2	. 94	.02	.49 1	58
•	91F-TN-K01	1	3717	2	41	3.8	12	50	507	5.24	26	5	ND	1	128	1.0	2	29	137	2.76	.116	4	10	1.07	7	.36	2 2		.02	.05 2	138
	91F-TN-K08	2	18592	4	184	25.6	18	75	650	5.73	18	5	ND	1	245	3.9	2	15	125	4.02	.088	2	11	1.24	15	.37	23	5.10	.08	.05 1	469
	91F-TN-K09	12	13360	2	74	13.2	20	114	564	4.11	9	5	ND	1	156	2.2	2	38	135	3.65	.086	2	8	1.09	10	.38	22	.55	.04	.03 5	388
	91F-TN-K10	1	1207	2	26	.7	13	14	617	2.72	8	5	ND	1	140	.3	2	3	89	4.43	.089	6	14	.94	11	.28	2 2	.35	.03	.05 🧃	7
	91F-TN-K12	3	7954	2	26	8.8	23	298	215	6.32	6	5	ND	1	147	.4	2	32	48	1.71	.031	2	20	.25	5	<u>, 15</u>	2 1	.02	.01	.01 🧃	75
	91F-TN-K13	8	1455	4	48	1.8	16	89	663	5.80	13	5	ND	1	204	.8	2	9	88	5.19	,093	7	4	.95	11	,30	2 2	.63	.03	.03 💮 🎗	17
	91F-TN-K15	1	6958	2	56	12.4	59	21	816	5.36	2	5	ND	1	177	.9	2	37	79	3.20	.141	11	32	1.37	129	, 19	22	.02	.02	.07 2	158
	91F-TN-K16	1	975	10	65	1.4	59	80	1477	10.82	16	5	ND	2	318	2.0	2	12	177	5.10	. 147	10	42	2.47	42	.26	23	.20	.02	.18 1	88
	STANDARD C/AU+R	20	63	45	131	0.7	69	- 11	1075	5.93	<u>88619</u>	25	ö	41	49	16.5	20	62	02	.41	.089	78	21	.87	174	-UY	32 1	.62	.00	14 211	400

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

Coast Mountain Geological Ltd. PROJECT CASCADE TASEKO FILE # 91-4918

Page 3

SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppra	Ag ppm	Ni ppm	Co ppm	Hn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr Mg ppm %	Ba T ppn	1 7 p	BAL pm %	Na X	K X	W /	Au** ppb
015-704-012		8568		50	<u>к</u> п	55	52	1633	9.05	6	5	ND	1	332	1.1	2	2	129	6.74 .096	4	38 2.32	34 .2	5	3 2.52	.02	.09	2	213
917-1KN-012		46		70	88 1	8	7	1226	4.79	18 2 -	5	ND	1	134	4	2	2	88	15.01 .011	2	8 5.56	111 📲0	1	2.20	. 02	.01 🕴	1	15
917-1KN-013		20%	2	25		47	30	107	6 74	20 X .	13	ND	1	149	. 8	2	ž	86	1.67 .093	2	75 1.57	66 .2	0	4 2.62	.35	.64	2 1 -	18
917-188-014 015 188-017	5	5/70	~ ~	106	0 4	10	35	430	5 27	8	ŝ	ND	1	165	2.4	2	2	123	3.43 .118	2	10.91	19 👫 3	9	8 3.65	.24	.07	1	137
911-1KN-017		72	7	20		10	25	304	3.27	Ř	ŝ	ND	i	155	11	5	2	124	5.52 .074	2	28 1.98	- 13 👬 3	6	8 6.45	.06	.08	1	35
91G-N-801		12	4	27	8 • 6 -	17	23	204	3.17		•		•			-	-			-			88 33			Nord		
916-N-R02	1	49	2	41	.2	24	37	457	4.72	10	5	ND	1	172	1.1	2	2	143	5.94 .094	2	40 2.55	- 11 🚜	2	8 7.26	.03	.06	1	27
916-N-R03	1	266	2	33	<u></u>	21	41	401	5.26	6	5	ND	1	272	.6	2	2	135	1.65 .081	2	33 2.59	54 3	18	4 4.29	.31	. 16	88 (-	- 39
010-N-R04	1	86	Ī	15	.2	13	22	143	4.17	7	5	ND	1	83	1.2	2	2	87	8.07 .059	2	25 .70	4 🔆 2	5	10 6.59	.02	.02	1	21
01C-N-R05	12	338	2	26	ā .	19	34	245	7.21	2	5	ND	1	183	1.0	2	2	114	2.04 .086	2	40 1.81	66 .2	7	4 4.30	.38	.22		- 37
01c-N-806	2	481	2	227	6	25	37	316	8.69	7	5	ND	1	146	1.1	2	2	136	2.28 .082	2	51 2.54	19 🔆 2	8	6 4.41	.09	.05	81	- 77
710 N 000	-		-											-									8					
010-N-R08	1	47	2	27	Š.1	10	15	775	4.08	2	5	NÐ	1	312	.7	2	2	80	6.42 .092	- 4	14 1.05	5 👸 2	5 1	26 2.75	.02	.01	2	- 8
01c-N-R11	2	12	2	27	8 i i	31	37	292	3.75	2	16	ND	1	87	4	2	2	73	.98 .072	2	82 1.50	31 👯 1	6	4 1.70	.13	.06	1	27
91G-N-B12	1	17	2	31	្លា	33	98	343	5.79	2	5	ND	1	115	.3	2	2	99	.67 .082	2	<u>74 1.92</u>	<u> </u>	0	2 1.79	.10	.05		10
916-T-811	1	173	5	290	.2	23	29	1030	5.45	47	7	ND	1	206	1.8	2	2	88	.97 .097	2	29 2.12	24 .1	2	5 3.47	.14	.02	88 1 -	5
91G-T-B12	1	102	6	53	81	19	19	388	3.12	62	5	ND	1	121	.3	2	2	76	.99 .129	2	29 1.37	23 8.2	2	3 1.90	.20	.01	1	- 19
	-																			_			9					
91G-T-B13	8	163	4	24	.1	11	26	255	4.42	67	5	ND	1	108	.5	2	2	66	.95 .117	2	11 .94	22 .2	Q	3 2.12	.23	.05	1	122
91G-T-B14	1	429	6	47	8 1 -	18	34	415	4.39	189	8	ND	1	70	3	2	2	71	.87 .121	2	27 1.57	16 .]	6	3 1.99	.12	.03	4	15
91G-T-B15	1	602	231	320	ි . 8	13	52	1085	9.96	55	12	ND	1	127	1.3	2	2	89	.79 .072	2	35 2.16	- 45 831	1	2 5.44	-12	.02		- 58
91G-T-B16	1	50	9	45	.2	40	13	198	5.19	14	5	ND	2	37	.7	2	2	52	.25 .019	- 4	26 .60	53 斗		3 3.78	.11	.22	88 2 -	11
RE 91G-T-813	8	162	2	24	.2	11	26	259	4.42	64	5	ND	1	107	.7	2	2	67	.93 .117	2	12 .93	23 ु.1	2	3 2.12	.23	.05	Z	100
	ļ									s. 1										_								
91G-T-B17	3	88	3	15	8.1	11	9	172	1.71	14	5	ND	1	42	.3	2	2	45	.47 .065	2	15 .59	12 [1]	9	Z .96	.10	.06		28
91G-T-B18	10	677	8	32	.2	6	- 31	222	4.82	69	5	ND	2	81	.4	- 4	2	- 31	.52 .033	2	21 .54	38 1	4	5 1.40	.07	.06	2	15
91G-T-B19	3	214	- 3	31	3.1 .	6	14	267	2.44	27	6	ND	1	104	.5	- 3	2	- 37	.87 .059	Z	11 .79	15 31	6	3 1.77	.16	.02	8 .	26
91G-T-B20	12	121	2	43	.2	17	16	378	3.88	24	5	ND	1	115	.6	2	2	92	.89 .086	2	23 2.36	22 .2	8	3 2.85	.21	.05	88 2 -	25
91G-T-B21	8	89	2	41	85 1 :	20	16	379	3.72	25	8	ND	1	85	.7	2	2	80	.76 .089	2	34 2.14	21 33	0	3 2.30	. 14	.06	88 2 -	22
																												-
91G-TK-K16	1	157	4	137	8.1	10	9	249	3.20	253	5	ND	1	239	1.8	2	2	57	2.89 .074	2	19.57	411	0	3 4.92	.58	04		9
916-TN-K07	1	293	2	17	.6	23	61	201	8.03	7	5	ND	1	140	.8	3	2	156	2.13 .084	2	25 .36	24 3.3		6 Z.05	.21	.04	2	.1
91G-TN-K11	2	841	3	38	6, 📎	17	34	232	7.89	2	5	ND	1	123	1.2	2	2	214	1.79 .102	2	16 1.91	28 32	0	4 3.58	.22	.15		14
STANDARD C/AU-R	21	65	43	130	7.2	- 73	32	1021	3.88	42	22	6	39	50	17.8	17	18	61	.47 .090	41	60.84	1/5	¥.	51 1.89	.06	.15	16	4/4

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

	LEGEND
а 1	GEOLOGICAL CONTACT -
	GEOLOGICAL CONTACT -
-	CHLORITE-EPIDOTE
	BOUNDARY ARGILLITE TO QUARTZ -
	SERICITE - PURITE BOUNDAR
	DIKE
	50- 6 BEDDING
	30° LO FRACTURING
	+ + + INTRUSIVE ROCKS: HORNBLENDE -FELDSPAR PORPHYRY, DIORITE, QUART MONZONITE/GRANODIORITE
	V V V VOLCANIC ROCKS: BASALT, ANDESITE, LITHIC- CRYSTAL TUEFS, FLOWS
	Py PYRITE
	PO PYERHOTITE
	Sp SPHALERITE
	HSP HRSENOPYRITE
	Mag MAGNETITE
	a
5	
	and the second
	-
	14
	and the second states with a
0	METRES
	CACADO LUCATION TH
-	C MOCADE INVESTMENTS J.V.
	TASEVA PONDEDTV
	TRISERO TROPERTY
	GEOLOGY PLAN
1.1.2	
PAT	E. DEC. 91 SCALE: 1:10;000 FIGURE: 5

