1991 Summary Report

on the

Ket 10 Group

(Ket 6, Ket 7, Ket 8, Ket 9 and Ket 10 claims)

Greenwood Mining Division British Columbia

North Latitude 49°03' West Longitude 119°05' NTS 82E/3

Prepared for

Crownex Resources (Canada) Ltd.

P.O. Box 25 Suite 100, 200 Granville Street Vancouver, B.C. V6C 1S4

Prepared by

W.R. Kushner, B.Sc

Coast Mountain Geological Ltd.

P.O. Box 11604 1410-650 West Georgia Street Vancouver, B.C. V6B 4N9

January 1992

TABLE OF CONTENTS

			_		Page
1.0	INTRO	DUCTI	ON		
	1.1	Summa	rv	LOG NO: MAR 0 3 1992 RD.	h
	1.2		ion and Access	ACTION:	
		Physi	ography & Climate	TOTOM:	3
	1.4	Prope	erty Description		5
		Prope	rty History	Military .	5
	1.6	1991	Work Program		8
				FILE NO:	
2.0	GEOLO	OGY, G	EOCHEMISTRY		
	2.1	_	nal Geology		8
	2.2	_	erty Geology	_	10
			Prospecting Obse	rvations	10
	2.3				16
			alization and Asso		16
	2.5	Geoch	nemistry	OGICAL BRANCI	H ¹⁷
			4001	SSMENT REPOR	T
3.0	DISC	USSION	ASSE	22 MENIMETOW	19
4.0	RRCO	MMENIOZ	ATIONS	- 1	20
4.0	ILLICO	THE CONTRACT OF THE CONTRACT O	THOME A		20
			PEN	D CES	ď
					•
Apper	ndix 1	A	Statement or Quali	fications	
	ndix :		Statement of Exper	nditures	
	ndix		References		
	ndix :			alysis and Analytical Proc	edures
Apper	ndix :	E	Rock Sample Descri	ptions	
			LIST OF IL	LUSTRATIONS	
					_
Figu:			Property Location	Map	3
Figu			Claim Map		4
Figu			Area Showings		7
Figu:			Regional Geology I		9
Figu: Figu:			Rock Geochem Plan		pocket
Figu			Road Cut Showings	gy and Rock Geochemistry	14
rıyu.	re /		Road Cut Showings	sketch map	T.44
			ፒ.ፒዴጥ ሰዩ	TABLES	
Tabl	e 1:	Claim	Status	4.4.44.4.4.4.1.1	5
		Person			8
			lous Rock Geochemi:	strv	17
7 /****	_ . .		1	1	- .

1991 Summary Report - Ket 10 Group

1.0 INTRODUCTION

1.1 Summary

The 1991 exploration program on the Ket 10 Group (Ket 6, 7, 8, 9, and 10 claims) was conducted between September and October 1991. Work consisted of reconnaissance prospecting, determining claim access and claim boundaries, rock types and alteration assemblages. Detailed prospecting, geological mapping and rock sampling were conducted where circumstances warranted.

Four areas were found to contain anomalous gold in rock samples and are recommended for further work:

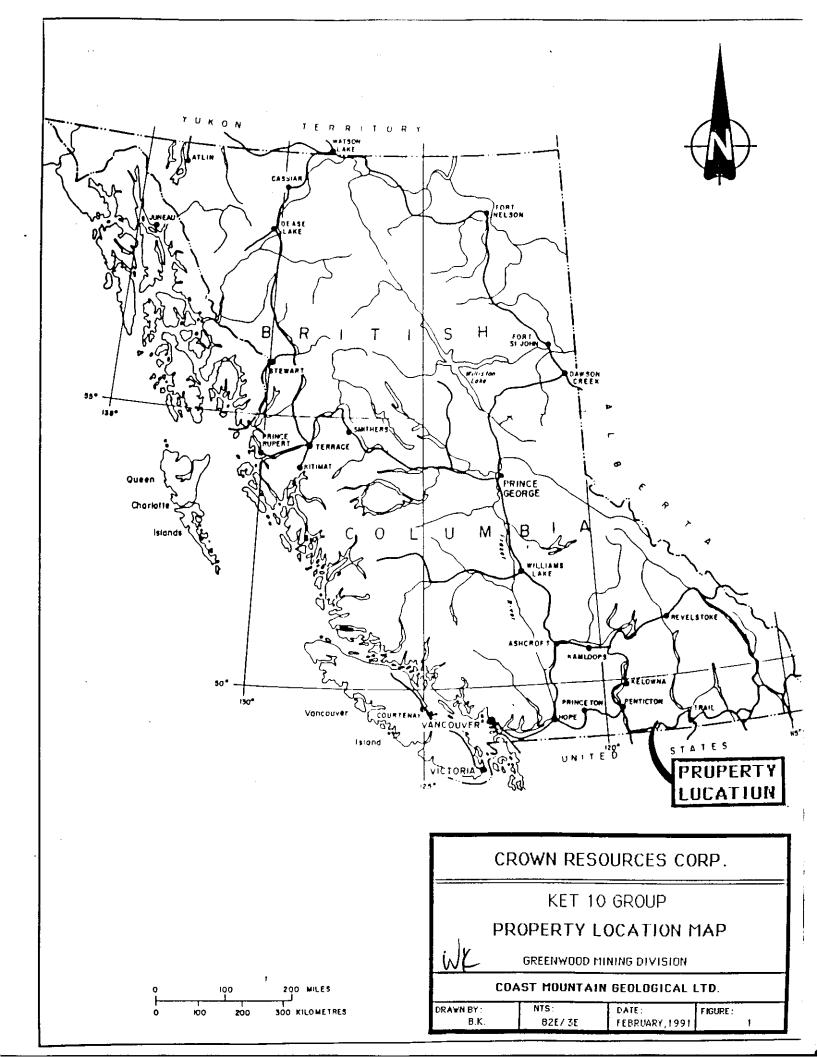
- i) a listwanite-bearing fault passing through the southern portion of the Ket 9 claim.
- ii) anomalous gold values in Rock Creek valley in the southern portion of the Ket 8 claim may represent a northerly extension of the mineralized structure that was the subject of Crown's 1990 drill program on the RM Group (Miller and Kushner, 1991).
- iii) shear related massive pyrrhotite-pyrite-chalcopyrite mineralization hosted in highly fractured and altered diorite at the Golden Gate prospect in the west-central portion of the Ket 8 claim. This area contained the highest gold value found on the Ket 10 Group to date (990 ppb).
- iv) a pyritic-siliceous shear zone in the south-central portion of the Ket 10 claim contains detectable gold.

Reconnaissance prospecting traverses were run over much of the Ket 7 and Ket 6 claims north of the highway. No significant mineralization and/or alteration assemblages were observed or

detected in rock sampling.

1.2 Location and Access

The Ket 10 Group lies along Highway #3 between Johnstone Creek Provincial Park and Bridesville, some 10 kilometres west of Rock Creek, British Columbia (Figure 1).


The centre of the property is located at approximately north latitude 49°03′ and west longitude 119°05′. It is located in the central part of the southwest quarter of the NTS 82E/3 Osoyoos map sheet.

Access to the Ket 10 group is provided by secondary road off of Highway #3. Internal access to the individual claims is usually via private farm and bush roads.

1.3 Physiography and Climate

High rolling hills varying from 1000 to 1300 meters in elevation are cut by the north-south and east-west drainage patterns of the Jolly-Rock Creek drainages which help to develop local reliefs of some 300 meters.

North slopes, gullies and rocky hilltops are usually tree covered with pine, larch and poplar. South slopes and flat areas are open and generally under cultivation.

The climate is characterized by hot, dry summers and mild winters with little precipitation.

1.4 Property Description

The Ket 10 group is located within the Greenwood Mining Division of southern British Columbia and is comprised of four claims totalling 94 units, and covering approximately 2350 hectares (Figure 2).

Crownex Resources (Canada) Ltd., a subsidiary of Crown Resources Corp. of Denver, Colorado, is the registered owner of the claims. Table 1 summarizes the pertinent claim data.

TABLE 1: CLAIM STATUS KET 10 GROUP

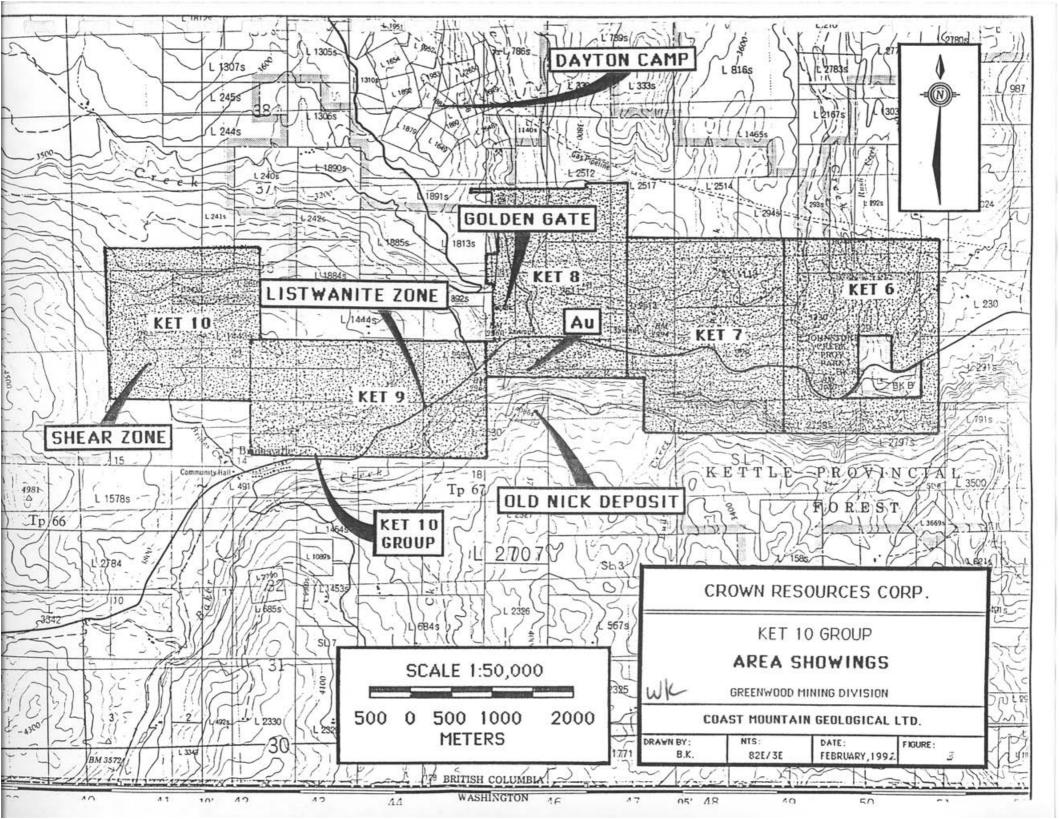
<u>Claim Name</u>	Record Number	<u>Units</u>	Expiry Date*
Ket 6	215187	20	01/12/93
Ket 7	215188	20	01/12/93
Ket 8	215189	20	01/12/93
Ket 9	215190	18	01/12/93
Ket 10	215191	16	02/12/93

Total: 94 units

1.5 Property History

The area in the vicinity of the claim group has a record of exploration dating back to the turn of the century. Many trenches, shafts and adits were dug by independent prospectors, and most are without any record of work. The most significant work in the area were the placer deposits of Rock and McKinney Creeks and the mines

^{*} Pending acceptance of this report.


of Camp McKinney, located 11 kilometres north of the subject property, and worked from 1894 to 1962.

In the 1960's and 1970's, following the staking of a nickel showing, extensive exploration and drilling programs were conducted by Newmont Mines Corp., Nickel Ridge Mines Ltd. and Utica Mines Ltd., concentrating primarily on locating Cu-Ni deposits. The Old Nick deposit (Figure 3), as this showing is named, contained 100,000,000 tons grading 0.22% Ni, with a sub-economic extraction recovery of 56% (Miller, 1991). Later surveys in the area concentrated on attempting to locate and delineate potential vent areas in the Kettle River Volcanics as a possible site for mineralization.

In the late 1980's, exploration in the Buckhorn Mountain skarn system, to the south of the claims in Washington State, produced significant results.

In 1989 a regional airborne magnetometer and VLF-EM survey was conducted over the area by Terraquest Ltd. of Toronto, for Crown Resources Corp. of Colorado (Basil, 1990).

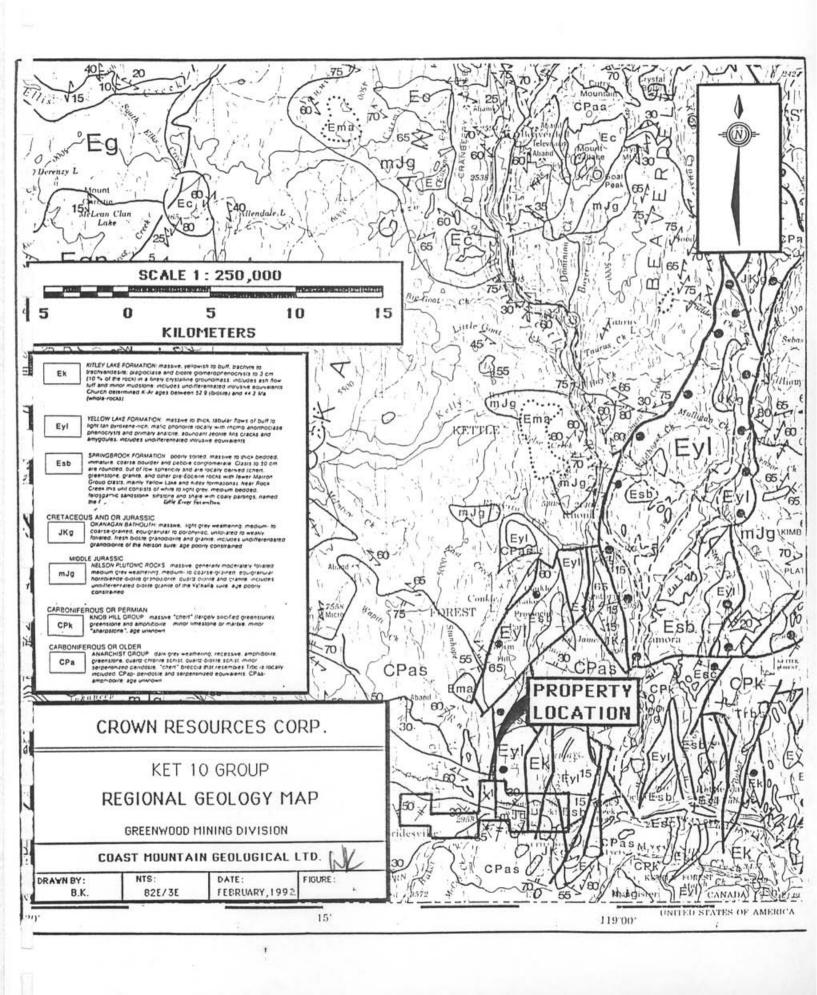
In general, very few prospects were noted while prospecting this claim group. The turn of the century Golden Gate (?) district may be just inside of the west edge of the Ket 8 claim where a weakly mineralized quartz vein has been prospected. Placer mining is evident in the Ket 8 claim along the Rock Creek drainage.

Prospects are found to the north in Dayton Camp, to the west on Anarchist Pass and to the south on Rock Mountain. With the exception of some very limited high grade tonnage shipped from Dayton Camp, production was not reported for any of the other prospects in the area, exclusive of the placer mining properties.

1.6 1991 Work Program

The 1991 field program was conducted during September and October. Initially, reconnaissance prospecting was carried out over most of the claim group to determine access, claim boundaries, rock types and alteration assemblages. Subsequent work was directed towards detailed prospecting, rock sampling and geological mapping of areas of interest determined during the initial phase of the program.

TABLE 2: PERSONNEL


- D. Ridley....Geological Technician/Prospector
- C. Ridley.....Geological Technician/Prospector

During the course of the present program, a total of 93 rock samples were collected and submitted to Chemex Labs., of Vancouver, B.C. (Figure 4). Sample descriptions and analytical results are presented in the appendices.

2.0 GEOLOGY and GEOCHEMISTRY

2.1 Regional Geology

The oldest rocks in the area are Carboniferous in age or older,

belonging to the Anarchist Group (Figure 3). They are comprised of amphibolite, greenstone, quartz-chlorite schist, quartz-biotite schist, and minor serpentinite. These rocks are intruded by Middle Jurassic age Nelson Plutonic rocks, which in turn are intruded and overlain by Tertiary and Eocene age rocks.

2.2 Property Geology

Traversing east to west across the Ket 10 group, from the Ket 6 to the Ket 10 claim, geology ranges from Tertiary age rocks on the east to Carboniferous in age to the west (Figure 4). Ket 6 and Ket 7 claim rocks consist of mainly coarse boulder and pebble conglomerate, dioritic (?) intrusive and rhom-porphyry. Similar geology on the Ket 8 claim is in contact with an altered biotite granodiorite of Jurassic (?) age. To the west, outcrops on the Ket 9 and Ket 10 claims are mainly Carboniferous age Anarchist Group rocks with highly foliated marble along the common boundary of the two claims. Foliated marble and associated rocks contain epidote and were investigated for additional contact skarn mineralogy. These rocks may belong to the Kobau Group, which is thought to be Carboniferous in age.

Rock outcroppings are best observed along drainage channels and in highway cuts, as most of the hillsides in this area are covered with glacial debris and cultivated for hay crops and pastures.

2.2.1 Prospecting Observations (Ridley, 1991)

Traverses in the southern portion of the Ket 7 claim were restricted to the north side of the Rock Creek valley. Additional prospecting of the south side of the valley in the extreme south of the Ket 6 and 7 claims is warranted.

The magnetic anomaly in the northwest corner of the Ket 7 and north-eastern portion of the Ket 8 claims was examined. The area was found to be underlain by a generally fine-grained diorite to gabbro in which magnetite was a main constituent of the rock. Outcrops were generally unaltered. Rock sampling failed to disclose any precious and/or base metal values.

The Golden Gate prospect (Figure 5), was found during the initial stage of the work program. The showings are located on the steep western face of the Jolly (Rock) Creek valley about 750 meters north of the eastern approach to the Rock Creek bridge on Highway 3 and about 85 feet above the creek. Access is via a road from the Jolly Creek campsite which follows the creek downstream about 1.1 kilometers to a pump-house. The showings are readily visible on the west side of the creek.

The showings consist of several trenches and one large open cut.

Massive pyrrhotite-pyrite-chalcopyrite mineralization and quartz

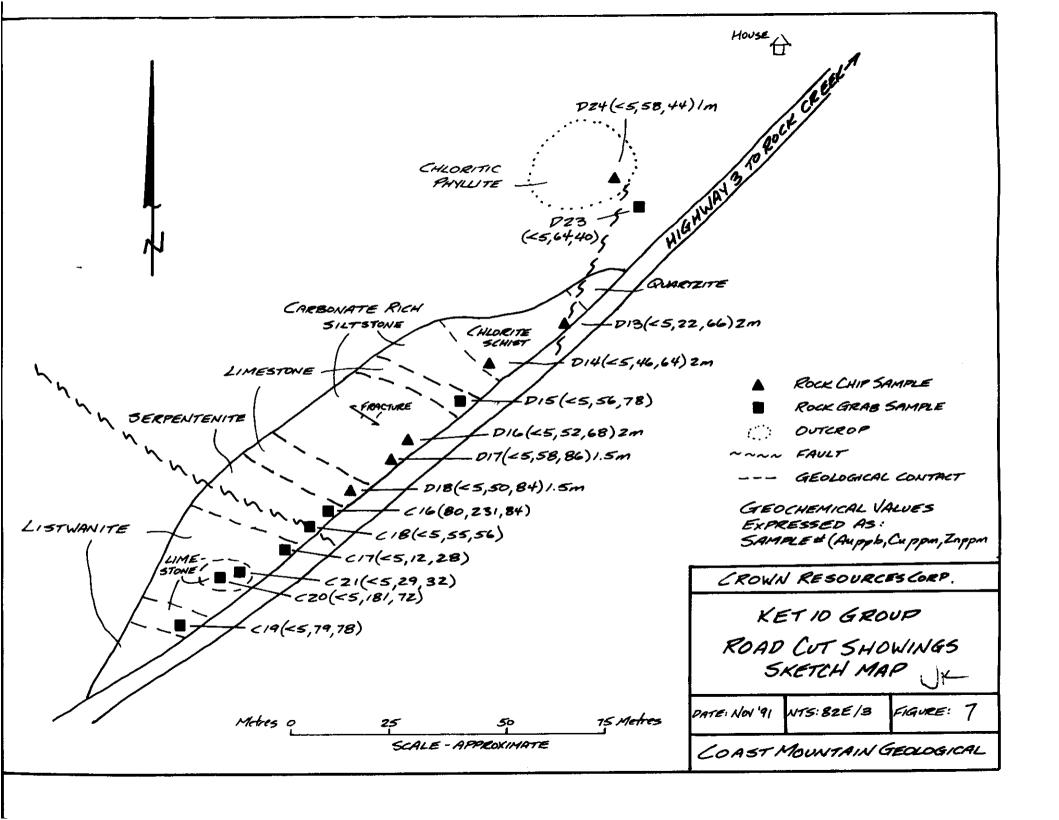
veins are hosted in highly fractured and altered diorite. The

diorite is well stained with limonite and outcreps usually contain

2-5% disseminated pyrite and commonly carry abundant magnetite.

The altered diorite continues northward roughly following Rock Creek and is assumed to represent the trace of a major fault of regional significance. Downstream towards the bridge, quartzites and related metasediments are found in outcrop.

The best mineralization found in this area to date is in a large open cut immediately above the pump-house (Figure 5). The cut exposes a zone of semi-massive to massive sulphide consisting of pyrrhotite-pyrite-chalcopyrite and minor sphalerite-bismuth (?) which is 1.5 metres wide and trends 160/70°W. A chip sample across 1 meter of the zone as exposed in the floor of the open cut returned 470 ppb gold, 1.8 ppm silver, 7220 ppm copper, 1770 ppm zinc and 10 ppm bismuth (91KT8;D148R).


Milky-white limonite stained quartz veins are found to surround this showing and were prospected in the past by a series of trenches (Figure 5). The veins are almost completely devoid of sulphides and commonly exhibit an alteration zone along the contacts in which the diorite host has been replaced by massive muscovite mica. This selvage commonly extends for tens of centimetres into the diorite host. Only one vein was found to contain detectable gold at 85 ppb (91KT8;D153R).

Quartzites, black phyllites and related metasediments were found to outcrop in Rock Creek valley, south of the bridge, in the southern portion of the Ket 8 claim. Barite veinlets accompany pyrite

mineralization at sample site 91KT8:CR112R. A general trend of quartzite outcrops in the vicinity is 035/60SE. Anomalous concentrations of barium are found in many of the samples in this area. The significance of this relationship, if any, is not known at this time.

Sandstone or siltstone float and poorly-exposed subcrop was encountered about 400 meters west of sample CR112R. The rock contains up to 3% fine-grained disseminated pyrite and magnetite and returned up to 160 ppb gold, 350 ppm arsenic, 619 ppm chromium, 1735 ppm nickel, and >15.00% magnesium (91KT8;CR111R). This area is close to the Old Nick prospect and near the apparent northerly extension of the mineralized structure drilled by Crown in 1990. Further work is required in this area to determine the true significance of these samples.

Detailed rock chip sampling was conducted along a road cut (Figure 6), exposed for about 40 meters along the north side of Highway 3 approximately 700 meters southwest of the Rock Creek bridge on the Ket 9 claim. The rock grades north to south from chloritic phyllite, quartzite, carbonate-rich siltstone, limestone, serpentinite, and listwanite, and contains breccia-like clasts of limestone and metasediments. The entire road cut is generally well mineralized with 1-2% disseminated pyrite and minor magnetite. Quartz-carbonate stockwork style veinlets are common and carry pyrite, pyrrhotite and rarely chalcopyrite. Epidote-chlorite

alteration overprints the entire exposure.

The southern end of the cut is a mixture of serpentinite, limestone, and mariposite bearing carbonate-rich alteration (listwanite?). A sample from near the contact or transition zone between the metasediments and serpentinite returned detectable gold of 80 ppb (91KT9;CR16R). No other gold values were obtained at this exposure.

A zone of listwanite alteration outcrops about 800 meters west and is roughly coincident with the apparent strike of the road cut structure. Mariposite and related green micas constitute up to 30% of the rock by volume. Milky-white, bull quartz veins are common and were explored by means of several trenches in the early days. A sample from the dump returned 70 ppb gold (91KT9;CR26R). entire area is well mineralized with 3-5% pyrite and occasional The outcrops are characterized by low, chalcopyrite. exposures which are readily weathered and covered by overburden. The zone is believed to continue westward passing just north of the town of Bridesville and possibly continuing on up and over the Anarchist summit. It is interesting to note the fact that anomalous gold values in soil samples were found on the Ana 3 claim some 6 kilometers westerly and may be related to the assumed extension of the listwanite structure.

A serpentinized fault zone, separating conglomerate to the west and

greenstone to the east, was sampled in upper Bride's Creek on the Ket 10 claim. It contained highly anomalous nickel, chromium, and bismuth (91KT10;CR25R). No gold was detected in this area.

A pyritic-siliceous shear zone was found in an old trench on top of the hill about 350 meters west of Bride's Creek. The zone trends 160/60°W and contains up to 10% pyrite in a siliceous, cherty shear 50 centimetres wide. A sample of dump material returned 70 ppb gold (91KT10;CR26R). Quartzites and boulder conglomerate outcrop sporadically over the hilltop.

2.3 Structure

Iron oxide argillic shears were noted in the south west corner and also to the west of the Ket 8 claim. Additional flat (?) argillic shears were noted at the base of the conglomerate north of Ket 8 in the Jolly-Rock Creek drainage. Anarchist (?) rocks in Ket 8 and Ket 9 tend to show foliation that strikes northwest and dips northeast.

2.4 Mineralization and Associated Alteration

Pyrite with quartz veinlets and/or in argillic shears were common, as are pyrrhotite and/or disseminated magnetite in epidote and calcite rich greenstones. Pyrite, calcite, chlorite, serpentine and quartz in propylitic altered granodiorite (?) is observable in Ket 8. Traces of molybdenum in quartz veins was noted between the Ket 8 claim and Dayton Camp.

2.5 Geochemistry

A total of 93 rocks samples were collected from the property in 1991. The samples were shipped to Chemex Labs Ltd. in Vancouver, B.C. for analysis. Contamination in the lab resulted in erroneous results for some of the samples. Subsequent resampling of the sites in question was conducted to provide correct results.

TABLE 3: ANOMALOUS ROCK GEOCHEMISTRY

Sample	Rock Type	Mineralization	<u>Geochemistry</u>
CR16 CR26 CR110 CR111 D21	serpentine shear zone sandstone " listwanite	po, py 10% py mag, py 10% py	80 ppb Au, 231 ppm Cu 70 ppb Au, 178 ppm Cu 160 ppb Au 140 ppb Au 25 ppb Au
		Golden Gate Sh	owings
D06	metasediment	s py, po, cp	990 ppb Au, >10,000 ppm Cu
-140	3 6	-06 "	4.4 ppm Ag, 3730 ppm Zn
D148	resample of	D06 "	845 ppb Au, >10,000 ppm Cu 4.2 ppm Ag, 3250 ppm Zn
D149	diorite	10% po, (mal)	105 ppb Au, 5070 ppm Cu, 1090 ppm Zn

The highest gold value found during the 1991 prospecting program was sample D06, a grab sample from the Golden Gate trench (Figure 5). Sample D148, a detailed 1 metre rock chip across the same site as D06 duplicated the original results. Gold values beyond the trench area were only slightly above the detection limit and no anomalous concentrations of base metals were found in this section of Rock Creek.

Anomalous gold was found in serpentinized quartzite (?) forming low, well-weathered and eroded outcrops on the north side of Rock

Creek in the southern portion of the Ket 8 claim (91KT8,CR110R and CR111R). Sampling returned the following values: 160 ppb gold, 350 ppm arsenic, 619 ppm chromium, 1735 ppm nickel and >15.00% magnesium. It is interesting to note that the Old Nick prospect discussed previously lies a short distance south on the northern-facing slope of Rock Creek canyon. This large sulphide body is hosted in quartzite and contains extensive mariposite alteration.

Barium anomalies tend to coincide with the postulated west/southwest trending fault zone and are related to detectable gold anomalies in the Rock Creek valley and through the southern portion of the Ket 9 claim. This zone contains abundant mariposite in the D21R sample site area and may be related to mineralization at the Old Nick prospect as evidenced by minor nickel-chromium enrichment.

Minor gold enrichment in a pyritic-siliceous shear zone on the Ket 10 claim was found (91KT10 and CR26R). Additional reconnaissance of this area may uncover better mineralization in the quartzite-conglomerate-greenstone package.

No significant precious and/or base metal mineralization or geochemical anomalies were found in the thick package of diorite and conglomerate overlying much of the Ket 6 and 7 claims.

3.0 DISCUSSION

While highly anomalous gold-copper-zinc anomalies were encountered at the Golden Gate showings, the mineralization appears to be related to a narrow shear zone and consequently of limited extent. The possibility of more substantial mineralization in the area exists in light of extensive fracturing and subsequent alteration throughout the Jolly (Rock) Creek area. In addition, Dayton Camp, which lies approximately 3 kilometers up Jolly Creek, contains precious metal enriched skarn mineralization which saw limited production in the early 1900's.

Past work by Crown Resources on the RM Group adjoining the southern portion of the Ket 8 and 9 claims, returned a drill intercept of 20 feet grading 0.26 ounces/ton (Miller and Kushner, 1991). The target was thought to be fault related and may possibly project onto the Ket 10 Group. Anomalous gold values obtained on the north side of Rock Creek below the bridge may be related to this structure. Further detailed prospecting and sampling is needed for this area.

The listwanite (?) structure which passes through the southern portion of the Ket 9 claim may be related to mineralization at the Old Nick showings and may possibly be related to mineralization at the Anarchist Chrome trenches and other various workings in this area. It is postulated this fault provided a pathway for the nickel-chrome related mineralization.

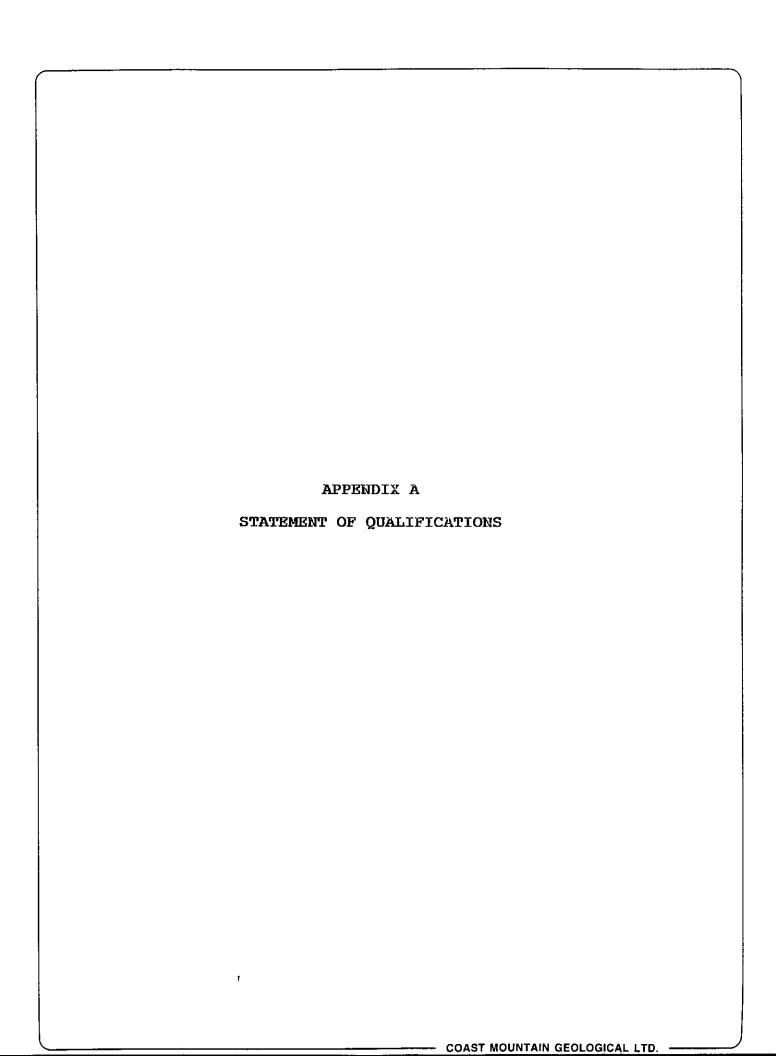
Work by Coast Mountain crews on Crown's Ana 3 claim approximately 6 kilometers to the west, indicated highly anomalous gold in soil samples near the postulated western projection of this structure. The true significance of this relationship is unknown at present but serves as a possible future prospecting model. Tracing the structure on surface with any degree of certainty is problematic due to the cover of overburden. The airborne VLF survey performed in 1989 indicate a conductive axis roughly coincidental with the hypothetical structure (Basil, 1990).

4.0 RECOMMENDATIONS

Four areas were found during the 1991 program to contain anomalous gold values:

- a) the listwanite bearing fault on the southern portion of the Ket 9 claim.
- b) the sedimentary unit in the Rock creek valley on the southern portion of the Ket 8 claim.
- c) the pyritic-siliceous shear zone on the south-central portion of the Ket 10 claim.
- d) the Golden Gate prospect on the west-central portion of the Ket 8 claim.

Additional work on the Ket 10 Group is recommended in the form of:


i) Detailed rock chip sampling of the extensive exposures of highly fractured and variably altered intrusive outcrops along Canyon road north of the Golden Gate area, coupled with a soil

geochemistry and magnetometer/VLF-EM survey over the known showings and their possible extension.

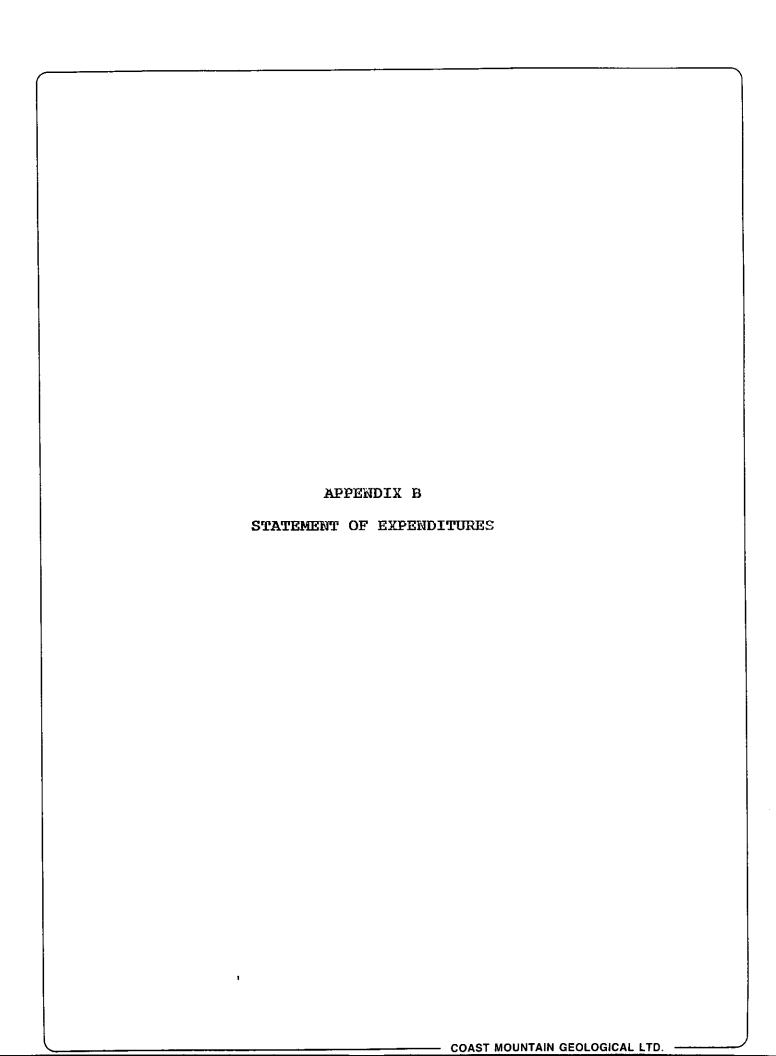
- ii) Reconnaissance prospecting followed by detailed rock and soil sampling and magnetometer/VLF-EM surveys in the CR110-111R area of the Ket 8 claim directed towards locating drill targets.
- iii) Prospecting and soil sampling along the assumed trace of the listwanite structure on the Ket 9 in order to determine whether any economic concentrations of precious and/or base metals are associated with this structure.
- iv) Reconnaissance prospecting of the Ket 10 claim to search for additional mineralized or altered sections as well as to assess the potential of the Cobo copper-nickel mineralized zone (BCMEMPR Asses. Rpt #2491 and 3079).
- v) Reconnaissance prospecting of the southwest corner of the Ket7.

Sincerely submitted,

Willie Kushner, B.Sc. Geology Coast Mountain Geological Ltd.

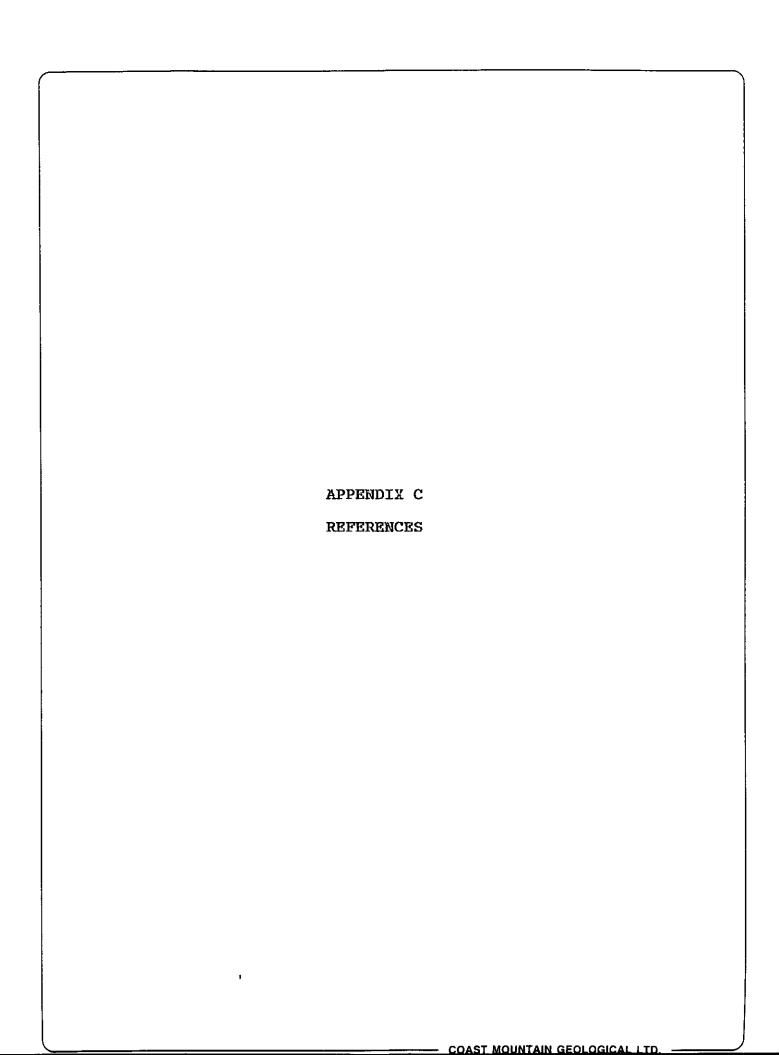
STATEMENT OF QUALIFICATIONS

I, WILLIAM R. KUSHNER, of P.O. Box 1, Station 'A', Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:


- 1. THAT I am a Geologist in the employment of Coast Mountain Geological Ltd. with offices at 1410-650 West Georgia Street, Vancouver, British Columbia.
- 2. THAT I am a graduate from the University of Alberta with a bachelor of Science degree in Geology (1987).
- 3. THAT my primary employment since graduation has been in the field of mineral exploration.
- 4. THAT this report is based on field work conducted by Coast Mountain Geological Ltd. on the Ket 10 Group property during September and October, 1991, and on information from government publications and reports filed with the Government of British Columbia.
- 5. THAT I did not work on the subject property.
- 6. THAT I do not own or expect to receive any interest in the property described herein, nor in any securities of any company rendered in the preparation of this report.

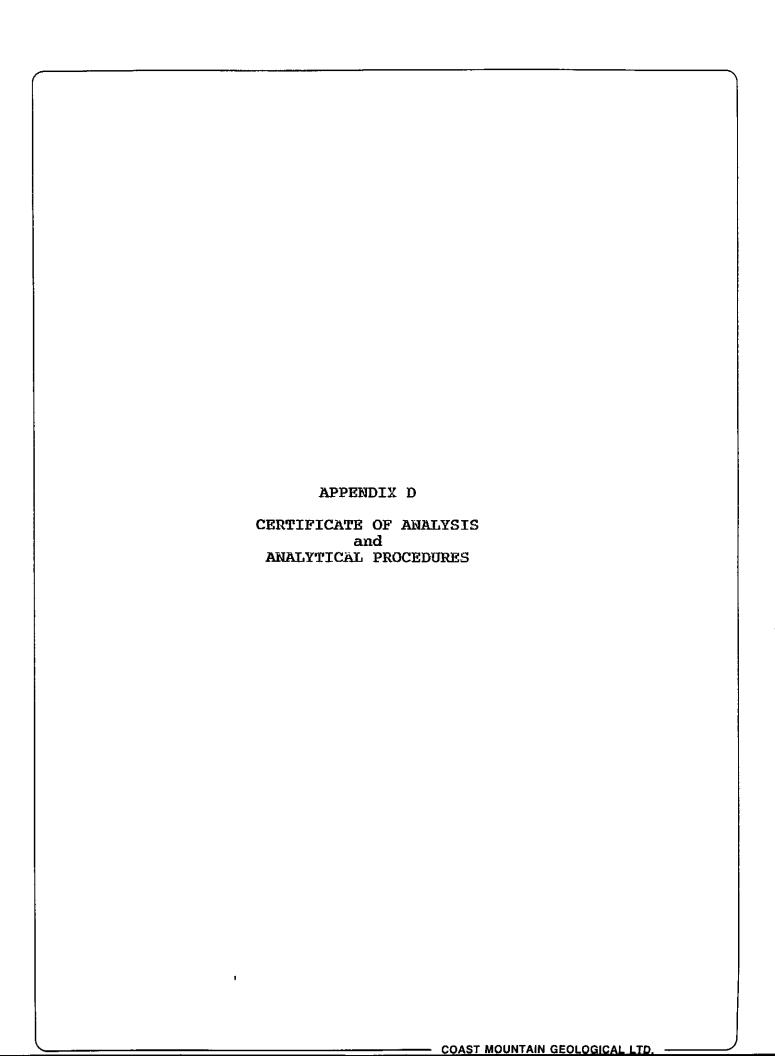
DATED at Vancouver, British Columbia, this 17th day of February,

1992.


William R. Kushner, B.Sc.

Geologist

STATEMENT OF EXPENDITURES


PERSONNEL Geological Technicians:	
D. Ridley, 10 days @ \$240.00/day C. Ridley, 10 days @ \$225.00/day	2400.00 2250.00
VEHICLE Truck Rental: 10 days @ \$35/day Mileage: 300 kms. @ \$0.35/km	350.00 105.00
SAMPLE ANALYSIS 93 rocks @ \$15.00/sample	1395.00
ROOM and BOARD 10 crew days @ \$80/day (all inclusive)	800.00
EXPENSES Communications Field Expendables	35.14 45.00
MOB/DEMOB	380.00
REPORT PREPARATION and PRODUCTION	700.00
Subtotal	8435.14
13.5% MANAGEMENT FEE	1138.74
7% GST	670.17
TOTAL COSTS	10,244.05

REFERENCES

- Basil, Chris, 1990. Airborne Magnetic and VLF-EM Survey Report on the Ket 1-22 and Ket 24-32 Mineral Claims, Assessment Report for Crown Resources Corp.
- Geological Survey of Canada, Map 15-1961, Kettle River, British Columbia, Sheet 82E West Half Scale 1:253,440.
- Miller, B. and W. Kushner, 1991. 1990 Summary report on the Homestake and Daisy Fraction Claims, Assessment Report for Crown Resources Corp.
- Ridley, D., 1991. Summary of 1991 Field work on the Ket 10 Group, Private Report for Coast Mountain Geological Ltd.
- Templeman, Kluit, D.S., 1989. Geology, Penticton, British Columbia, Geological Survey of Canada, Map 1736A, 1:250,000 Scale.

COAST MOUNTAIN GEOLOGICAL LTD.

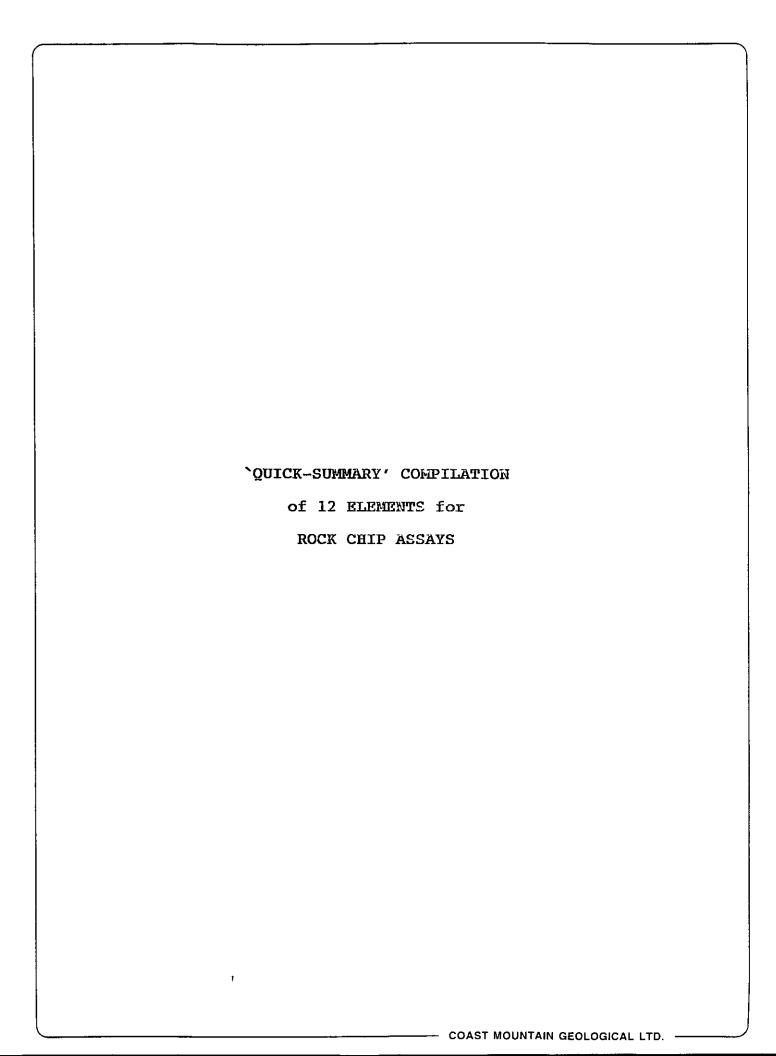
SOIL SAMPLING and PREPARATION

The soil grid was measured using hip chains and topo-fill thread. It was not slope corrected. A mattock was used to dig a hole in the soil at each station; soil samples were taken from the 'B' soil horizon, approximately 10 - 15 centimetres deep, unless stated otherwise. The samples were collected in kraft gusseted paper bags and sent to Chemex Labs Ltd. of North Vancouver, B.C., for analysis. At Chemex, the samples were oven dried at 60°C and sieved to minus 80 mesh.

ROCK SAMPLING and PREPARATION

Rock samples were taken from bedrock, except in cases where the sample is identified as a float sample. The rock chips were collected in plastic bags and also sent to Chemex Labs, where they were crushed to 3/16 of an inch. A 250 gram speciman was split out and pulverized to 99% minus 100 mesh using a ring mill pulverizer.

ICP ANALYSIS


A 0.50 gram sample of the prepared pulp is digested with 3 millilitres of 3:1:2 HCl-HNO3-H2O at 95°C for one hour, diluted to 10 millilitres with water, and then analyzed for 30 elements.

GOLD ANALYSIS (Fire Geochem)

10 grams of pulp is ignited at 600°C for 4 hours and fused with F.A. flux. The dore bead is dissolved in aqua regia and analyzed by ICP.

GOLD ANALYSIS (AA)

A 10 gram sample is ignited at 600°C for 4 hours and digested with aqua regia at 95°C on the water bath for one hour. 50 millilitres aliquote is extracted into 10 millilitres of MIBK and analyzed by graphite furnace AA.

KET 10 GROUP	SAM	IPLE A	NALYS:	IS RESE	11 725							
91KT8;D03R: 91KT8;D04R: 91KT8;D05R: 91KT8;D06R: 91KT8;D07R:		Ag <0.2 0.2 <0.2 <0.2 4.4 <0.2	As 40 25 20 <5 <5	9.8 <10 10 120 10 40	ex :2 :2 :2 :2 :2 :3	6.05% 0.13% 50% 0.19%	201 258 223 179 28	Cu 29 13 14 >10000 6830	Fe 1.39% 0.79% 1.76% 5.08% 5.57%	Pb <2 4 8 2 <2	W <10 <10 <10 <10 <10	Zn 6 8 32 3730 3950
91KT8;D08R: 91KT8;D09R: 91KT8;D10R: 91KT8;D11R: 91KT9;D13R:	<5 <5	<0.2 <0.2 <0.2 <0.2 <0.2	<5 <5 15 <5	20 10 50 10 170	.7 .2 .7	0% 5.74% 6.16% 5.04%	179 109 143 256 115	104 223 269 47 22	2.09% 3.71% 3.86% 1.20% 3.98%	<2 <2 <2 <2 2 6	<10 <10 <10 <10 30	46 124 46 30 56
91KT9:D14R: 91KT9;D15R: 91KT9;D16R: 91KT9:D17R: 91KT9;D18R:	<5 <5 <5 <5	0.4 0.6 0.4 0.6	<5 <5 <5 <5	330 1360 420 300 310	(2) (2) (2) (4) (4)	2 4 % 5 4 % 1 1 % 6 5 4 %	71 56 285 48 166	46 56 52 58 50	4.46% 5.95% 4.36% 5.45% 4.92%	4 8 4 2 12	40 60 30 50 50	64 78 68 86 84
91KT9;D19R: 91KT9;D20R: 91KT9;D21R: 91KT9;D22R: 91KT9;D23R:	50 <5 25 <5 <5	0.4 0.2 1.0 <0.2 0.4	<5 80 120 140 <5	376 380 30 10	Y . 3 6 3	1.00% 11.05% 5.35% 6.60% 57%	70 288 186 1150 276	97 21 2 8 64	4.78% 2.83% 2.59% 3.15% 3.69%	30 4 8 16 2	40 20 20 40 30	58 26 24 30 40
91KT9;D24R: 91KT8;D25R: 91KT7;D26R: 91KT10D27R: 91KT10D28R:	<5 <5	0.4 <0.2 0.2 <0.2 <0.2	<5 25 5 30 <5	90 310 340 20 120	. 2 . 2 . 4 . 4	2.44% 1.70% 1.65% 2.36% (.88%	349 39 39 1635 97	58 72 94 31 234	3.15% 3.98% 4.10% 3.65% 13.40%	6 28 36 <2 <2	20 <10 <10 20 <10	44 112 134 18 104
91KT10D29R: 91KT6;D30R: 91KT6;D76R: 91KT7D119R: 91KT8D146R:	820 <5 <5	1.8	5 30 <5 <5	140 60 40 130		4.82% -15.00% -15.00% -77% 0.15%		57 89 29 38 3730	1.76% 1.29% 0.77% 4.18% 4.48%	2 108 10 <2 4	<10 10 10 <10 <10	20 122 12 66 998
91KT8D147R: 91KT8D148R: 91KT8D149R: 91KT8D150R: 91KT8D151R:	470 105 35	4.2 1.8 1.6 <0.2 <0.2	<5 <5 <5 <5 5	<10 10 40 20 10	90 0 0	0.09% 0.14% 0.13% 0.64% 0.28%	144 70 100 53 139	>10000 7220 5070 387 162	4.95% 3.27% 4.23% 4.95% 4.26%	2 10 4 2 4	<50 <10 <10 <10 <10	3250 1770 1090 62 94
91KT8D152R: 91KT8D153R: 91KT8D154R: 91KT8D155R: 91KT8D156R:	85 15 10	<0.2 <0.2 <0.2 <0.2 <0.2	10 60 <5 <5 <5	10 10 40 230	2 2 4 2	0.12% 0.03% 0.73% 0.66% 0.91%	50 203 38 75 179	148 17 48 102 205	4.24% 2.10% 7.18% 6.14% 3.50%	4 10 <2 2 <2	<10 <10 <10 <10 <10	52 8 46 74 40
91KT8D157R: 91KT8D158R: 91KT8D159R: 91KT8D160R:	<5 10	<0.2 0.2 0.4 <0.2	5 55 10 15	250 80 210 60	42 2 <2 <2	1.54% 0.48% 0.52% 0.19%	102 117 201 136	71 33 254 77	4.23% 1.65% 8.07% 3.80%	<2 8 <2 <2	<10 <10 <10 <10	5(62 150 70

]	91KT8;C09R: 91KT8;C10R: 91KT8;C11R: 91KT8;C12R: 91KT8;C13R:	<5 <5 <5	A9 <0.2 <0.2 <0.2 <0.2 <0.2	As 10 40 <5 <5 <5	Ba 70 50 30 10 40	& <2 <2 <2 <2 <2 <2 <2	Ca 2.02% 0.70% 0.56% 0.21% 1.12%	Cr 173 66 76 19 53	Cu 62 148 76 112 173	Fe 4.76% 7.16% 4.83% 8.16% 5.22%	P6 <2 <2 <2 <2 <2 <2 <2 <2	<pre></pre>	2n 68 80 32 42 50
	91KT8:C14R: 91KT9:C16R: 91KT9:C17R: 91KT9:C18R: 91KT9:C19R:	80 <5	<0.2 <0.2 <0.2 <0.2 <0.2	<5 <5 80 20 <5	50 90 20 1140 230	<2 4 <2 <2 <2 <2	0.37% 3.56% 11.00% 8.52% 4.39%	26 97 821 285 220	52 231 12 55 79	4.19% 6.83% 2.97% 4.55% 3.73%	<2 <2 2 2 8	<10 <10 20 10 30	16 84 28 56 78
	91KT9;C20R: 91KT9;C21R: 91KT9;C22R: 91KT9;C23R: 91KT9;C24R:	<5 <5 <5 <5	0.6 0.2 <0.2 0.6 0.6	<5 <5 110 5 <5	630 120 20 210 330	<2 <2 <2 <2 <2	4.65% 2.60% 3.39% 0.65% 1.24%	243 267 724 21 32	181 29 2 25 30	4.46% 1.81% 2.44% 3.10% 3.02%	8 2 8 44 44	40 10 20 20 20	72 32 28 88 94
	91KT10C25R: 91KT10C26R: 91KT10C27R: 91KT6:C28R: 91KT6:C52R:	<5 70 <5 890 <5	<0.2 1.0 0.2 0.2 0.2	<5 <5 <5 15 <5	<10 140 470 1070 1040	82 <2 <2 <2 <2	1.54% 0.04% 0.65% 1.39% 1.40%	908 276 312 19 30	17 178 156 76 49	3.65% 2.05% 2.97% 3.41% 3.06%	8 4 6 60 34	40 10 <10 <10 <10	24 2 50 52 48
	91KT6;C53R: 91KT9C102R: 91KT9C103R: 91KT9C104R: 91KT9C105R:	< 5	<0.2 <0.2 <0.2 <0.4 0.8	20 10 <5 <5 <5	690	<2 <2 4 2 <2	2.59% 1.33% 0.99% 1.37% 0.27%	749 119 156 425 410	59 56 121 65 118	5.24% 3.60% 3.89% 1.20% 1.45%	<2 <2 <2 10 8	<10 <10 <10 <10 <10	42 62 68 162 390
	91KT9C106R: 91KT8C107R: 91KT8C108R: 91KT8C109R: 91KT8C110R:	<5 <5 <5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	5 <5	80 790 360 190 20	<2 <2 2 4 6	7.98% 1.71% 1.31% 2.73% 1.46%	237 37 141 120 619	54 16 84 74 8	5.43% 6.65% 4.84% 2.58% 4.39%	2 <2 2 <2 <2 <2	10 <10 <10 <10 30	64 124 74 32 38
ы	91KT8C111R: 91KT8C112R: 91KT8C113R: 91KT8C114R: 91KT8C115R:	<5 <5 <5	<0.2 <0.2 <0.2 <0.2 <0.2	-	20 2340 920 970 510	2 <2 <2 <2 <2	1.49% 0.42% 7.76% 0.53% 0.97%	525 297 144 262 29	7 54 86 63 30	4.48% 1.96% 3.56% 5.54% 4.29%	14 8 <2 10 8	30 <10 <10 <10 <10	38 56 42 78 86
	91KT7C116R: 91KT7C117R: 91KT7C118R: 91KT7C119R: 91KT7C120R:	<5 <5 <5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2		40 40 130 100	6 <2 <2 2 6	2.85% 2.58% 0.72% 1.93% 1.20%	396 44 47 58 47	4 39 48 33 34	4.83% 4.20% 4.12% 3.48% 3.87%	<2 2 4 4 12	<10 <10 <10 <10 <10	12 70 64 56 67
	91KT7C121R: 91KT7C122R: 91KT7C123R: 91KT9C124R: 91KT9C125R:	<5 <5 <5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<5 <5 5	250 290	2 <2	1.91%	39 47 49 63 115	8 13 5 48 191	4.69% 4.47% 1.61% 2.80% 4.45%	<2 <2 8 <2 2	<10 <10 <10 <10 <10	78 76 46 50 78
	91KT9C126R: 91KT9C127R:	<5	<0.2	<5 <5 <5	70	2	0.94%	63 86 110	62 9 115	5.14% 1.48% 4.10%	6 2 2	<10 <10 <10	80 30 58

Geochemists

Registered Assavers

North Vancouver, B.C. Canada

V7J 2C1

Phone: (604) 984-0221 Telex: 04-352597

Fax: (604) 984-0218

Analytical Chemists

October 20, 1991

Mr. R. Miller Crown Resource Corporation Seventeenth Street Plaza 1225 17th Street, Suite 1500 Denver, Colorado 80202 U.S.A.

Dear Bob:

Enclosed is the corrected Certificate of Analysis A9121763 with corrected values for gold. We are again sorry for the erroneous results first reported for gold certificate and the subsequent delay it caused your drilling program.

It appears we picked up some contamination mineralized set sent through the geochem prep circuit. Although we take every precaution to minimize contamination by having separate circuits for trace and ore grade samples, occasionally a client will mark that the samples are trace when in fact they should be going through the assay circuit. We do clean the circuits after every client batch but in this case some cross contamination occurred.

Also enclosed is a copy of A9122527, the 5 samples that pointed out to you that something was amiss. These are the samples that were taken from the same vicinity as the hole 27 samples on A9121763 but results were all less than the detection limit. We went back to reject and took resplits for the 6 samples from hole 27. Results on A9122670 confirm the less than values obtained initially on A9121763. reran all 27 samples from resplits on A9122752 and results showed all less than values except for 7 samples (45, 20, 55, 35, 55, 25, 35). Checks were done on these 7 samples and results agreed. All the hole 27 data again ran less than 5.

Mr. R. Miller Page 2 October 20, 1991

Copies of all these Certificates of Analysis are enclosed and there is, as we discussed, no charge. Please accept our sincere apologies for this problem, we understand it was particularly frustrating because the initial results worked out according to the skarn geology.

Sincerely,

Donna M. Baylis

Carna Beylio

Manager Client Services

cc: Chris Herald

J. Shannon M. Sawiuk

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 SEVENTEENTH STREET PLACE
1225 17TH ST., STE. 1500
DENVER, COLORADO
80202

Page Number 1.1 A
Tota s
Certificate Date: 20-SEP-91

Certificate Date: 20-SEP-91 Invoice No. : 19121763 P.O. Number :

Project: MIDWAY ATTN:CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

											CE	RTIFI	CATE	OF A	MAL	YSIS	/	49121	763	 	
SAMPLE DESCRIPTION	PREF		Au ppb FA+AA	Ppm Ag	Al &	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd PPm	Co ppm	Cr ppm	Cu PPm	Fe %	Ga ppm	PPm Hg	K 8	La ppm	Mg %	Mn PPm
91KT6CR28R	205 2	94	890 130	0.2	4.57	15	1070	1.5	< 2	1.39	< 0.5	10	19	76 105	3.41	20	< 1	0.81	200	0.86	415 265
91KT18CR31R 91KT27CR29R 91KT27CR30R	205 2 205 2 205 2	94	10 80 1130	0.2 < 0.2 < 0.2	2.88 3.38 3.03	10 < 5 20	320 240 610	1.5 < 0.5 < 0.5	< 2 < 2 < 2	1.54 3.57 4.05	< 0.5 0.5 0.5	14 29 30	55°	72 161 118	3.80 7.03 6.29	20 < 10 < 10	< 1 < 1 2	1.08 0.15 0.05	180 10 10	1.36 2.22 2.59	415 950 990
91KT30CR32R 91KT30CR33R 91KT30CR34R 91KT30CR35R 91KT30CR35R 91KT30CR36R	205 2		65 35 30 < 5 1500	0.8 < 0.2 < 0.2 < 0.2 < 5.8	0.36 0.52 0.63 6.02 6.36	5 15 < 5 < 5 90	20 30 30 80 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 6 < 2 < 2	0.17 0.19 0.16 0.46 0.10	>100.0 83.5 9.5 1.5 < 0.1	20 35 14 30	9 15 11 39 197	2310 > 1075 > 1155 > 89 1035 >	15.00 15.00 8.47	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.16 0.18 0.17 0.09 0.03	< 10 < 10 < 10 < 10 < 10	0.05 0.15 0.21 5.28 5.47	90 115 125 1060 1450
91KT6D30R	205 2	294	820 600	1.8	0.44	30 20	60	< 0.5		15.00	0.5 0.5	3	27	89	1.29	30 10	2	0.07	20	0.30	405 275
91KT27D31R 91KT27D32R 91KT27D33R	205 205 205 205	294	340 2180 345	0.2 1.2 0.4	2.18 2.31 3.25	20 60 25	160 120 110	< 0.5 < 0.5 < 0.5	2 < 2 < 2	6.7 7 185	0.5 2.0 1.5	19 33 30	285 355 161	37 132 81	3.06 7.24 6.60	10 20 10	< 1 < 1 < 1	0.21 0.21 0.15	10 20 10	4.42 1.45 2.56	655 745 900
91KT27D34R 91KT30D36R 91KT30D37R 91KT30D38R 91KT30D39R	205 2	294 294 294	310 50 60 100 55	< 0.2 0.6 < 0.2 < 0.2 0.2	0.28 2.32 0.72 0.53 1.91	15 20 60 5 20	50 50 20 30 10	< 0.5 < 0.5 < 0.5 < 0.5	2 12 14	0.19	< 0.5 1.0 >100.0 >100.0 >100.0	107 15 109 14 24	400 47 73 16	1475	4.52 8.45 >15.00 >15.00 14.70	10 < 10 < 10 < 10 < 10	< 1 < 1 < 5 3 1	0.01 0.26 0.12 0.16 0.02	< 10 < 10 < 10 < 10 < 10	4.23 1.76 0.41 0.19 1.36	835 1240 425 160 705
91KT30D40R 91KT30D41R 91KT30D42R 91KT30D43R 91KT30D44R	205 205 205	294 294 294 294	55 25 290 30 550	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.25 3.90 0.50 3.84 4.02	35 < 5 10 30 20	90 210 30 80	0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 < 2	2.05 4.51 0.36 0.04 3.86	3.0 1.0 3.0 0.5 0.5	30 30 2 63 25	38 159 14 144 83	70 97 107	6.79 5.36 1.75 >15.00 5.54	< 10 < 10 < 10 < 10 < 10	2 < 1 < 1 < 1 1	0.44 0.45 0.14 0.09 0.07	< 10 < 10 < 10 < 10 < 10	2.11 3.04 0.22 3.27 4.39	1380 795 370 680 1720

CERTIFICATION: B. Cagli

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 : ...OWN ..._ DUR()RPC DN SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202 Page per Total Pages I Certificate Date: 20-SEP-91 Invoice No. : 19121763 P.O. Number :

Project: MIDWAY

Comments: ATTN:CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

										CE	RTIF	CATE	OF A	NAL'	YSIS	A9121763
SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	bbw b	Pb ppm	Sb PPm	Sc ppm	Sr ppm	Ti %	Tl ppm	PP U	Ыбш А	PPm W	Zn ppm	
91KT6CR28R	205 294	3	2.34	12	2650	60	< 5	1	1760	0.21	< 10	< 10	80	< 10	52 50	1
91KT18CR31R 91KT27CR29R 91KT27CR3 0 R	205 294 205 294 205 294	3 < 1 < 1	0.14	32 26 35	4060 1220 970	20 10 < 2	< 5 < 5 < 5	2 16 24	559 268 274	0.17 0.18 0.33	< 10 < 10 < 10	< 10 < 10 < 1	95 210 202	< 10 10 10	60 84 90	
91KT30CR32R 91KT30CR33R 91KT30CR34R 91KT30CR35R 91KT30CR35R	205 294 205 294 205 294 205 294 205 294			14 10 19 8 36	140 410 90 570 180	24 144 10 8 80	< 5 < 5 < 5 < 5 < 5	2 3 6 30 27	11 5 7 6 4	0.09 0.11 0.14 0.33 0.02	< 10 < 10 < 0 . 10	10 < 10 < 10 < 10 < 10	13 32 61 236 178		>10000 >10000 1680 170 490	
91KT6D30R	205 294	< 1	0.01	16	320 160	108	< 5	2	268	0.01	< 10	< 10 < 10	21 8	10	122 100	
91KT27D31R 91KT27D32R 91KT27D33R	205 294 205 294 205 294	< 1 < 1 < 1	0.02	291 344 102	360 660 680	34 142 62	< 5 < 5 < 5	8 10 20	192 4°	0.03 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	61 86 188	20 10 10	70 378 206	•
91KT27D34R 91KT30D36R 91KT30D37R 91KT30D38R 91KT30D39R	205 294 205 294 205 294 205 294 205 294	< 1 3 7 1 < 1	0.03	2240 4 16 21 10	170 340 440 440 460	30 12 4 4 10	< 5 < 5 < 5 < 5	6 4 14	192 · 5 · 2 · 2 · 2 · 2	0.01 0.40 0.09 0.09 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	11 178 144 52 256	< 50	86 520 >10000 >10000 >10000	
91KT30D40R 91KT30D41R 91KT30D42R 91KT30D43R 91KT30D44R	205 294 205 294 205 294 205 294 205 294		0.03 0.02 < 0.01	23 35 8 15 34	600 350 110 200 360	42 10 27	5 < 5 < 5 < 5	6 11 < 1 14 20	20 37 6 3 67	0.31 0.34 < 0.01 0.01 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	201 214 7 118 153	10 10 < 10 < 50 20	1075 142 636 528 184	

CERTIFICATION: D. Carp

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HEMEX LABS LID.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. V7J 2C1

Project: MIDWAY Comments: ATTN: DE VINH

LANG MALLIACE J Pet

Certificate Date: 09-UC I-91 Invoice No. :19122752 P.O. Number :

		~	<u> </u>							- <u> </u>		CE	RTIF	CATE	OF /	ANAL'	YSIS		A9122	752	*	
Sample	PREP		Au ppb FA+AA) Ng	Al &	As ppm	Ba ppn	Be ppa	ni ppm	Ca \$	Cd ppm	ppa Co	bbw Cr	Cu pps	Fe %	Ga ppm	Hg Hg	K	la ppm	Mg &	ppn Mu
16CR28R	205 29		< 5		0.2	4.61 1.38	5 5	1090 130	2.0 < 0.5	4 < 2	1.48	< 0.5	8 1	37 79	58 96	3.16 2.37	30 (10	< 1	0.73	200	0.81	445
127CR29R 127CR30R	205 29 205 29 205 29	4	< 5 < 5		0.2 0.2 0.2	3.47 3.22	5 15	230 630	< 0.5 < 0.5	6 < 2	1.80 3.83 4.37	< 0.5 < 0.5 0.5	12 29 33	78 55 107	155 123	3.75 6.73 6.29	30 10 10	< 1 < 1 < 1	1.09 0.13 0.05	190 10 10	1.46 2.22 2.67	425 910 980
730CR32R 730CR33R 730CR34R 730CR35R	205 29 205 29 205 29 205 29	4	45 20 < 5 < 5	Y Y Y	0.4 0.2 0.2 0.2	0.35 0.55 0.58 6.30	< 5 5 < 5 30	30 60 50 90	< 0.5 < 0.5 < 0.5 < 0.5	< 2 2 16 4	0.19 0.12 0.58	>100.0 74.0 9.5 < 0.5	20 69 45	68 39 46	1085 1090 95	>15.00 >15.00 >15.00 >15.00 8.74	< 10 < 10 < 10 < 10	<1 <1 <1 <1	0.21 0.22 0.18 0.09	< 10 < 10 < 10 < 10	0.03 0.14 0.19 5.47	70 90 85 1075
730CR36R 76D30R	205 29	4	< 5 < 5		0.2	6.43 0.35	5 < 5	20 50	< 0.5 < 0.5	< 2 :	0.03 0.53 0.50	1.5 < 0.5	31 2	234 82 191	41 - 75	>15.00 0.83	< 10 30	< 1 < 1	0.02 0.06	< 10 10	5.47 0.25	360
#21031R #27032R #27033R	205 29 205 29 205 29	4	< 5 < 5 < 5	<	0.2 0.2 0.2	2.12 2.55 3:46	15 5 < 5	140 110 110	< 0.5 < 0.5 < 0.5	₹ 2 2 < 2	7.88 7.99 4.48	0.5 1.0 1.0	18 38 29	366 430 208	22 54 52	2.79 7.54 7.01	20 20 20	< 1 < 1 < 1	0.17 0.19 0.12	10 10 10	4.49 1.63 2.81	715 770 960
CT27D34R CT30D36R CT30D37R CT30D38R CT30D39R	205 29 205 29 205 29 205 29 205 29	4	< 5 35 55 25 35	< <	0.2 0.6 0.2 0.2	0.24 2.56 0.69 0.64 1.94	15 30 50 < 5 < 5	50 50 40 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 10 8 < 2	0.20	< 0.5 1.0 >100.0 >100.0 >100.0	103 20 107 18 28	450 56 104 50 35	1525	4.47 11.00 >15.00 >15.00 >15.00	10 < 10 < 10 < 10 < 10	< 1 < 1 4 < 1 < 1	< 0.01 0.26 0.11 0.21 0.02	< 10 < 10 < 10 < 10 < 10	4.43 1.92 0.38 0.17 1.38	845 1365 440 175 725
KT30D40R KT30D41R KT30D42R KT30D43R KT30D44R	205 29 205 29 205 29 205 29 205 29	14	< 5 < 5 < 5 < 5 < 5	< <	0.2 0.2 0.2 0.2 0.2	3.48 4.05 0.51 3.74 4.52	5 15 5 20 < 5	100 220 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 8 < 2	2.28 4.83 0.34 0.02 3.43	3.0 < 0.5 2.5 0.5	28 28 2 70 31	70 183 125 188 111	42 95 120	6.96 5.57 1.49 >15.00 5.71	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.46 0.45 0.15 0.08	< 10 < 10 < 10 < 10 < 10	2.25 3.20 0.22 3.17 4.48	1430 810 345 650 1335

CERTIFICATION:

검

01:06PM

P. 07

Analytical Chemiats * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221

... CHannel LARL ... J.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C V7J 2C1

Project: MIDWAY Comments: ATTN: DE VINH e Nu Total Pages .1-F

Certificate Date: 09-OCT-91 :19122752

Invoice No. : I P.O. Number :

NOV-08-1991

01:07PM

FROM CROWN RESOURCES

-											CI	ERTIF	ICATE	OF /	MAL	YSIS.	A9122752
Sample	PR	RP DR	bbw Wo	Na \$	bba ni	PPm P	Pp.	Sto ppm	Se ppm	Sr ppm	Ti 4	T1 PFm	pp o	bbar A	bbw M	pp a	
6CR28R	205	294	3	2.31	10	2600	50	< 5	1	1870	0.27	< 10	< 10	85	< 10	52	
18CR31R 27CR29R 127CR30R	205	294 294 294	< 1 < 1	1.22 0.12 0.04	32 22 32	4110 1240 1020	30 < 2 4	< 5 < 5 < 5	2 18 27	569 284 307	0.21 0.19 0.36	< 10 < 10 < 10	< 1 0 10	109 218 212	< 10 < 10 < 10	62 84 90	
730CR32R 730CR33R 730CR34R 730CR35R 730CR36R	205 205 205	294 294 294 294 294	4 3 3 < 1 6	0.01 0.01 0.02 0.01 < 0.01	12 11 15 8 41	110 330 90 570 140	16 114 10 12 2	< 5 < 5 < 5 < 5	2 3 5 33 27	2 1 1 7	0.10 0.12 0.12 0.43	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	11 33 54 249 176		>10000 >10000 1575 174 454	·
T6D30R T18D35R	205	294 294	< 1	< 0.01	13	300 170	2	5 < 5	1 2	265 48	< 0.01 0.07	< 10	< 10	19	< 10 < 10	24	
127031R 127032R 127033R	205	294 294	< 1 < 1	0.01 0.02	382 104	660 760	20 6	< 5 < 5	10 23		< 0.02 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	61 96 209	< 10 < 10 < 10	22 110 106	
T27D34R T30D36R T30D37R T30D38R T30D39R	20: 20: 20:	294 294 294 294 294	5 10 3	< 0.01 0.04 0.02 0.03 0.03	2280 9 15 13 6	160 340 410 460 410	< 2 8 4 8	< 5 < 5 < 5 < 5	10 8 6 15	212 8 2 1	< 0.01 0.43 0.10 0.15 0.20	10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	9 202 144 64 272	< 50	28 650 >10000 >10000 >10000	
T30D40R T30D41R T30D42R T30D43R T30D44R	20! 20! 20!		< 1 < 1 11	0.02 0.02 0.03 < 0.01 0.02	21 35 6 14 35	670 370 100 220 420	10 2 6 8	5 < 5 < 5 < 5 < 5	6 11 < 1 14 27	18 34 5 2 53	0.31 0.32 < 0.01 0.01 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	214 218 6 114 189	< 10 < 10 < 10 < 10 < 10	932 118 556 476 142	
		-														····	

7.08

컴

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: JURC RPOL N SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

age t ar :1 Total Pages :1 Certificate Date: 28-OCT-91 Invoice No. :19123647 P.O. Number :

Project: MIDWAY

Comments: ATTN: CHRIS HERALD CC:R. MILLER CC:J. SHANNON CC:M. SAWIUK

			•			·					CE	RTIFI	CATE	OF A	NAL'	YSIS	,	4912 3	647		
SAMPLE	PR CO		Au ppb FA+AA	Ag	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca &	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	M g %	Mn ppm
91KT8D146R 91KT8D147R 91KT8D148R 91KT8D149R 91KT8D150R	205 205 205	294 294 294 294 294	845 470 105	< 0.2 4.2 1.8 1.6 < 0.2	1.86 0.89 0.85 1.81 1.57	10 < 5 < 5 5 < 5	10 < 10 10 40 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 20 14 10 < 2	0.15 0.09 0.14 0.13 0.64	5.0 71.5 34.5 7.0 0.5	30 24 18 16 12	182 144 : 70 100 53	3730 >10000 7220 5070 387	4.48 4.95 3.27 4.23 4.95	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 3 < 1	0.08 0.02 0.04 0.14 0.10	< 10 < 10 < 10 < 10 < 10	2.55 0.85 0.80 1.83 1.31	760 190 180 555 370
91KT8D151R 91KT8D152R 91KT8D153R 91KT8D154R 91KT8D155R	205 205 205	294 294 294 294 294	10 85 15	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.47 1.06 0.71 1.32 1.59	5 10 60 < 5 < 5	10 < 10 10 10 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 4	0.28 0.12 0.03 0.73 0.66	1.0 < 0.5 < 0.5 0.5 0.5	16 24 4 30 20	139 50 203 38 75	162 148 17 48 102	4.26 4.24 2.10 7.18 6.14	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.06 0.10 0.05 0.11	< 10 < 10 < 10 < 10 < 10	1.30 0.88 0.34 1.29 1.20	480 230 100 575 265
91KT8CR107R 91KT8CR108R 91KT8CR109R 91KT8CR110R 91KT8CR111R	205 205	294	< 5 160	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.97 2.86 1.51 0.26 0.18	< 5 5 < 5 350 355	790 360 190 20 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 4 6 2	1.71 1.31 2.73 1.46 1.49	0.5 0.5 < 0.5 < 0.5 < 0.5	23 28 16 80	37 141 120 619 525	16 84 74 8 7	6.65 4.84 2.58 4.39 4.48	20 20 10 < 10 < 10		2.45 0.80 0.26 0.01		1.70 3.29 1.80 >15.00 >15.00	255 375 295 570 610
91KT8CR112R 91KT8CR113R 91KT8CR114R 91KT8CR115R 91KT8CR115R	205 205	294 294 294 294 294	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.04 3.42 2.79 1.92 3.94	10 10 < 5 < 5	2340 920 970 510 510	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.42 7.76 0.53 0.97 1.33	0.5 < 0.5 0.5 0.5 < 0.5	4 21 17 9 10	297 144 262 29 119	54 86 63 30 56	1.96 3.56 5.54 4.29 3.60	< 10 30 10 10	< 1 < 1 < 1 < 1 < 1	0.21 1.28 1.40 1.02 1.33	10 10 20 40 < 10	1.39 1.23 1.08 0.88 1.22	155 420 405 370 545
91KT9CR103R 91KT9CR104R 91KT9CR105R 91KT9CR106R	205 205	294 294 294 294		< 0.2 0.4 0.8 < 0.2	2.02 0.63 0.48 2.53	< 5 < 5 < 5 40	690 250 460 80	< 0.5 < 0.5 < 0.5 < 0.5	4 2 < 2 < 2	0.99 1.37 0.27 7.98	< 0.5 1.0 6.5 0.5	28 4 2 28	156 425 410 237	121 65 118 54	3.89 1.20 1.45 5.43	10 10 < 10 20	< 1 < 1 < 1 < 1	0.67 0.30 0.18 0.12	10 10 < 10 10	1.98 0.44 0.28 5.08	190 90 105 1000
				•																	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-B Total Pages :1 Certificate Date: 28-OCT-91 Invoice No. : 19123647 P.O. Number

Project:

MIDWAY

Comments: ATTN: CHRIS HERALD CC:R. MILLER CC:J. SHANNON CC:M. SAWIUK

														CE	RTIF	CATE	OF A	NAL	YSIS	A9123647	
SAMPLE	1	REP ODE		Mo ppm		Na %	Ni ppm	P	Pm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	TI ppm	ppm U	ppm V	ppm W	Zn ppm		
91KT8D146R 91KT8D147R 91KT8D148R 91KT8D149R 91KT8D150R	20. 20. 20.	5 29 5 29 5 29 5 29 5 29)4)4	1 1 < 1 2 < 1	(0.05 0.05 0.05 0.08 0.14	96 26 29 25 12	< 20 1: 1:	10 00 10 20	4 2 10 4 2	< 5 < 5 < 5 < 5 < 5	16 6 5 16 12	6 2 3 5 13	0.07 0.03 0.03 0.06 0.14	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	155 53 48 89 113	< 10 < 50 < 10 < 10 < 10	998 3250 1770 1090 62		3
91KT8D151R 91KT8D152R 91KT8D153R 91KT8D154R 91KT8D155R	20: 20: 20:	5 29 5 29 5 29 5 29	4	< 1 1 2 3 1	0	0.14 0.09 0.15 0.11 0.09	20 16 7 2 6	1] 37	80 70 70 70 90	4 4 10 < 2 2	< 5 < 5 < 5 < 5 < 5	15 11 2 18 16	14 2 5 17 28	0.08 0.08 < 0.01 0.10 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	97 83 17 203 163	< 10 < 10 < 10 < 10 < 10	94 52 8 46 74		
91KT8CR107R 91KT8CR108R 91KT8CR109R 91KT8CR110R 91KT8CR111R	20: 20: 20:	29 5 29 5 29 5 29 5 29	4	< 1 < 1 < 1 < 1 < 1	< 0		10 62 49 1735 1750		20	< 2 2 < 2 < 2 14	< 5 < 5 < 5 < 5 < 5	13 10 7 5 5		0.45 0.22 0.35 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	97 175 89 17 14	< 10 < 10 < 10 30 30	124 74 32 38 38		
91KT8CR112R 91KT8CR113R 91KT8CR114R 91KT8CR115R 91KT8CR115R 91KT9CR102R	20: 20: 20:	29 5 29 5 29 5 29	4	< 1 1 2 < 1	0	0.01 0.27 0.07 0.10 0.32	44 77 69 13 9	154 108 178 358 42	B 0 B 0	8 < 2 10 8 < 2	< 5 < 5 < 5 < 5 < 5	4 5 6 4 13	42 359 30 33 58	0.02 0.44 0.22 0.22 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	168 94 62 57 125	< 10 < 10 < 10 < 10 < 10	56 42 78 86 62		
91KT9CR103R 91KT9CR104R 91KT9CR105R 91KT9CR106R	205	5 29 5 29 5 29	4	2 4 12 1	0	0.08 0.01 0.01 0.02	95 44 64 111	170 358 137 52	80	< 2 10 8 2	< 5 < 5 < 5 < 5	5 2 3 15	25 35 26 266	0.37 0.04 0.02 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	114 77 395 102	< 10 < 10 < 10 10	68 162 390 64		
								·										·····			0

CERTIFICATION: S. Carghi

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

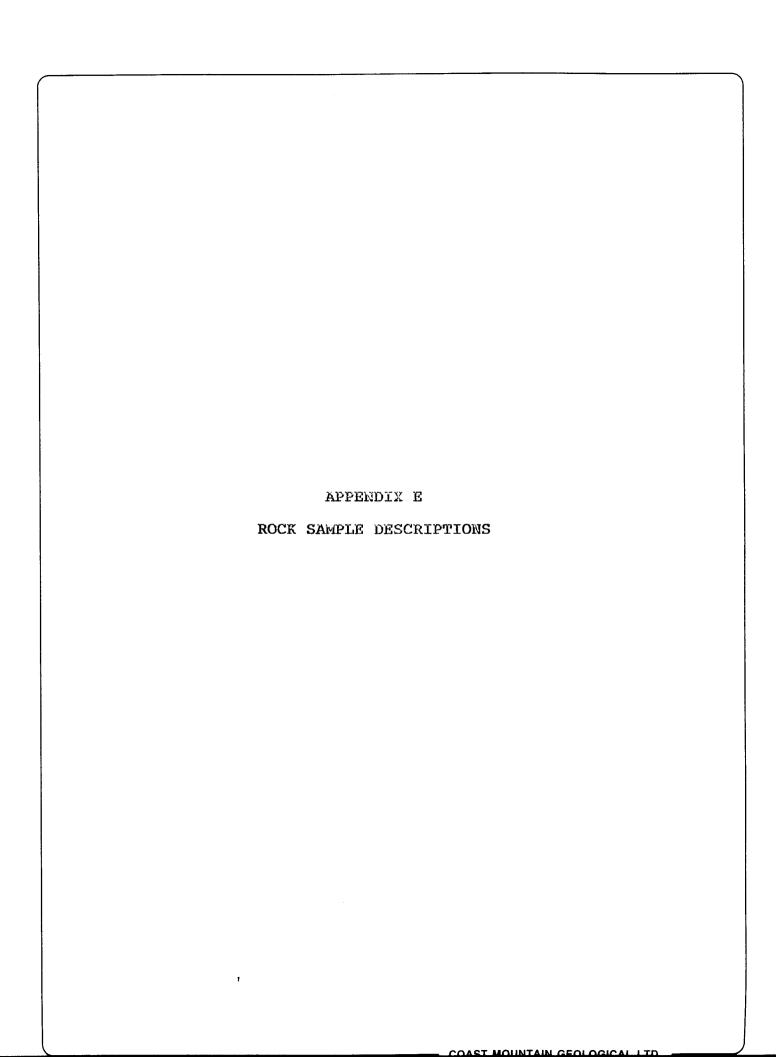
To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-A Total Pages :2 Certificate Date: 29-OCT-91 Invoice No. P.O. Number :19123716

Project: MIDWAY ATTN: CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

			- * ·					·		CE	RTIF	CATE	OF A	ANAL	YSIS		A912 3	3716			
Sample	PREP CODE	Au ppb FA+AA	Ag PPm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	PPm Cd	Co ppn	Cr ppm	Cu ppm	Fe %	Ga.	Ppm Hg	K %	La ppm	Mg %	Mn	
91KT7CR116R 91KT7CR117R 91KT7CR118R 91KT7CR119R 91KT7CR120R	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.11 2.11 1.91 1.68 1.83	< 5 < 5 < 5 5	40 40 130 100 110	< 0.5 < 0.5 < 0.5 0.5 0.5	6 < 2 < 2 2 6	2.85 2.58 0.72 1.93 1.20	< 0.5 1.0 0.5 < 0.5 < 0.5	87 18 16 13 14	396 44 47 58 47	4 39 48 33 34	4.83 4.20 4.12 3.48 3.87	< 10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.16 0.71 0.41 0.45	< 10 30 20 30 40	4.63 1.65 1.50 1.30 1.19	685 730 585 610 555	Mary and the
91KT7CR121R 91KT7CR122R 91KT7CR123R 91KT9CR124R 91KT9CR125R	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.37 2.26 0.99 1.62 1.93	5 < 5 < 5 5	140 220 250 290 360	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 2 < 2 2 6		0.5 0.5 < 0.5 < 0.5 < 0.5	11 10 4 7 11	39 47 49 63 115	8 13 5 48 191	4.69 4.47 1.61 2.80 4.45	10 10 10 < 10 < 10	< 1 3 < 1 < 1 < 1	0.48 0.81 0.31 0.69 0.41	20 20 50 10 10	2.11 1.78 0.34 0.93 1.15	785 805 435 470 250	
91KT9CR126R 91KT9CR127R 91KT9CR128R 91KT8D156R 91KT8D157R	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.41 1.13 2.57 1.59 2.81	< 5 < 5 < 5 < 5	1100 70 200 230 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 4 < 2 < 2	0.37 0.94 1.74 0.91 1.54	1.0 < 0.5 < 0.5 < 0.5 < 0.5	16 5 13 21 23	63 86 110 179 102	62 9 115 205 71	5.14 1.48 4.10 3.50 4.23	< 10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	1.92 0.33 0.37 0.47 0.59	< 10 10 10 10 10	2.01 0.33 2.05 0.82 1.48	825 260 690 190 200	The second second second
91KT8D158R 91KT8D159R 91KT8D160R 91KT8D161R	205 294 205 294 205 294 205 294	10 < 5 < 5	0.2 0.4 < 0.2 < 0.2	0.44 1.58 1.81 1.72	55 10 15 15		< 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2	1.36	< 0.5 2.5 < 0.5 < 0.5	< 1 37 28 19	117 201 136 41	33 254 77 82	1.65 8.07 3.80 4.15	< 10 < 10 < 10 10	< 1 < 1 < 1 < 1	0.09 0.22 0.42 0.80	10 10 < 10 30	0.37 0.88 1.75 1.40	35 140 300 795	
91KT12CR098R 91KT12CR099R 91KT12CR100R 91KT12D141R 91KT12D142R	205 294 205 294 205 294 205 294 205 294	< 5 < 5	< 0.2 < 0.2 < 0.2 0.2 < 0.2	1.58 1.04 2.34 1.04 4.55	< 5 5 < 5 < 5 10	140 160 290 20 50	< 0.5 < 0.5 < 0.5 0.5 < 0.5	6 < 2 < 2 10 6	0.40 0.33 1.41	< 0.5 < 0.5 0.5 < 0.5 0.5	6 2 10 7 32	40 31 27 24 411	24 23 82 439 124	2.37 0.99 2.79 1.92 4.66	< 10 < 10 < 10 < 10 < 10	< 1	0.21 0.33 0.77 0.06	< 10 < 10 < 10 < 10 < 10	0.99 0.39 1.65 0.75 6.25	370 280 645 155 345	
91KT12D143R 91KT12D144R 91KT12D145R 91KT12D145R 91KT14CR101R 91KT17CR82R	205 294 205 294 205 294 205 294 205 294	5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.13 0.13 0.11 1.36 2.73	< 5 < 5 10 < 5 5	< 10 < 10 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 12 8 2 < 2	0.76	< 0.5 < 0.5 < 0.5 < 0.5	69 63 88 1 5	533 933 340 89 65	9 23 37 117 43	4.53 4.41 2.88 2.01 4.15	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1		< 10 < 10 < 10 < 10 < 10	11.90 13.15 13.00 0.92 1.87	625 1150 510 345 290	
91KT17CR83R 91KT17CR84R 91KT17D125R 91KT18D140R 91KT27CR86R	205 294 205 294 205 294 205 294 205 294	10 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.03 1.67 2.69 0.94 2.18	< 5 5 20 < 5 25	40 600 40	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 4 4 < 2 < 2	0.21 0.21	0.5 < 0.5 < 0.5 < 0.5 < 0.5	28 7 15 4 27	35 12 98 50 8	169 75 136 33 11	5.12 3.09 4.10 1.83 6.58	10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.25 0.06 1.42 0.07 0.40	< 10 < 10 < 10 < 10 < 30	1.32 0.43 1.52 0.54 1.57	750 175 325 160 895	
91KT27CR87R 91KT27CR88R 91KT27D126R 91KT27D127R 91KT30CR085R	205 294 205 294 205 294 205 294 205 294	60	0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.92 3.65 1.64 1.76 2.76	70 < 5 80 < 5 5	100 290 260	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 4	5.67 3.48 3.00	< 0.5 0.5 < 0.5 0.5 < 0.5	3 31 16 14 28	45 230 11 10 57	14 98 32 12 51	2.58 5.97 5.14 6.00 4.09	< 10 20 10 10 < 10	< 1 < 1 < < 1 < 1	0.06 0.01 0.61 0.52 0.03	< 10 20 30 50 < 10	0.37 3.66 0.88 0.96 1.95	240 875 820 1270 515	
L	لــــــــــــــــــــــــــــــــــــــ																				

CERTIFICATION:


Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: CROWN HESOURCE CORPUHATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202 Page Number ..- C Total Pages :2 Certificate Date: 29-OCT-91 Invoice No. : 19123716 P.O. Number :

Project: MIDWAY

Comments: ATTN: CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

										CI	RTIF	ICATE	OF A	ANALY	/SIS	A9123716
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P P	Pp Pb	bbur 2p	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V Ppm	ppm W	Zn ppm	
91KT7CR116R 91KT7CR117R 91KT7CR118R 91KT7CR119R 91KT7CR120R	205 294 205 294 205 294 205 294 205 294	2 < 1 < 1 < 1 < 1	< 0.01 0.05 0.10 0.06 0.07	1690 19 13 11 10	170 1010 1140 920 1040	< 2 2 4 4 12	< 5 < 5 < 5 < 5	6 10 8 9 7	102 93 52 143 65	< 0.01 0.04 0.27 0.24 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	17 115 130 95 90	< 10 < 10 < 10 < 10 < 10	12 70 64 56 62	
91KT7CR121R 91KT7CR122R 91KT7CR123R 91KT9CR124R 91KT9CR125R	205 294 205 294 205 294 205 294 205 294	< 1 1 1 1 < 1	0.09 0.09 0.05 0.10 0.06	7 4 4 3 24	980 970 600 670 1170	< 2 < 2 8 < 2 2	< 5 < 5 < 5 < 5 < 5	17 15 2 9	64 92 110 25 32	0.25 0.30 0.01 0.13 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	166 136 20 86 85	< 10 < 10 < 10 < 10 < 10	78 76 46 50 78	
91KT9CR126R 91KT9CR127R 91KT9CR128R 91KT8D156R 91KT8D157R	205 294 205 294 205 294 205 294 205 294	2 < 1 1 2 < 1	0.05 0.04 0.04 0.11 0.23	8 3 13 87 65	640 930 570 1660 930	6 2 2 < 2 < 2 < 2	5 < 5 < 5 < 5 < 5	16 3 14 3 2	12 299 43 47 36	0.21 0.12 0.03 0.18 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	177 34 125 77 70	< 10 < 10 < 10 < 10 < 10	80 30 58 40 50	
91KT8D158R 91KT8D159R 91KT8D160R 91KT8D161R	205 294 205 294 205 294 205 294	13 < 17 < 1	< 0.01 0.03 0.10 0.08	18 158 108 20	2130 2010 290 960	8 < 2 < 2 6	< 5 5 < 5 < 5	1 8 11 10	48 < 8 7 41	0.01 0.11 0.11 0.32	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	102 271 101 141	< 10 < 10 < 10 < 10	62 150 70 68	
91KT12CR098R 91KT12CR099R 91KT12CR100R 91KT12D141R 91KT12D142R	205 294 205 294 205 294 205 294 205 294	< 1 < 1 4 14 1	0.06 0.05 0.04 0.07 < 0.01	7 4 8 < 1 202	610 230 730 450 50	< 2 6 < 2 < 2	< 5 < 5 < 5 5	<pre>2 <1 1 <1 3</pre>	31 15 33 25 7	0.12 0.04 0.14 0.15 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	46 7 50 21 82	< 10 < 10 < 10 < 10 < 10 < 10	44 32 80 16 28	
91KT12D143R 91KT12D144R 91KT12D145R 91KT14CR101R 91KT17CR82R	205 294 205 294 205 294 205 294 205 294	1 4	< 0.01 < 0.01 < 0.01 0.12 0.03	1195 1145 1365 19 21	< 10 10 30 67	<pre></pre>	< 5 < 5 < 5 < 5 < 5	3 4 3 4 8	36 <	0.01 0.01 0.01 0.10 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	23 22 16 57 110	< 10 < 10 10 < 10 < 10	10 12 28 46 92	
91KT17CR83R 91KT17CR84R 91KT17D125R 91KT18D140R 91KT27CR86R	205 294 205 294 205 294 205 294 205 294	1 67 2 1 < 1	0.15 0.10 0.09 0.08 0.03	12 16 21 6 6	1010 330 410 290 3050	< 2 4 < 2 2 < 2	< 5 < 5 < 5 < 5 < 5	13 4 12 1 5	14 21 23 14 71	0.31 0.11 0.17 0.07 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	154 65 139 15 57	< 10 < 10 < 10 < 10 < 10	124 150 94 20 80	
91KT27CR87R 91KT27CR88R 91KT27D126R 91KT27D127R 91KT30CR085R	205 294 205 294 205 294 205 294 205 294	(1) (1) (1)	0.01 0.03 0.03 0.05	2 98 15 11 23	350 1230 3530 3350 540	4 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5	8 18 4 4 7	9 289 69 < 68 22	0.01 0.01 0.01 0.01 0.51	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	9 200 36 39 112	< 10 < 10 < 10 < 10 < 10	46 86 42 62 48	

CERTIFICATION: S.

Sampler D. Ridley
Date Sept. 1991

Property Ket 10 Group

NTS 828/3

SAMPLE	t		DESCRIPT	ION	1	1	A	SS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Ag	Cu	Pb	Zn
91 KT8 D03 R	6	9tz vein	sericite limenite	rare pyrite	grab from trench Golden Gate Area; upin 21.5 m'wide 010/steeply Wdipping; in highly altered (skarny + scricite) granodiorite?	15	20.2	29	<z< td=""><td>6</td></z<>	6
91KT8 Do4R	2 m	11	11		chip across vein DoBR:	<5	0.2	13	4	8
91 KT8 D05 R	lm	highly aftered grandiante	sericite limonite silica	none noted		45	<0·2			32
91KT8 Do6 R	G	skarny met-seds?	epidete carbonale silica	semi-massive pyrite-chalcopyrite pyrrhotite	high grade portion: trenched area 10x8x5m	80			2	3730
91KT8 007R	G	. 11	(1	malachite f-gr. py-chalcopy.	makehite-stain; dump material @ DOG Trench. poorly exposed in floor of trench: minor magnetite	< 5	<0·Z	8677°	< Z	3050
91 KT8 DOS R	1.5m	granodicrite	silica carbonate liminite	opto 3% pyrrhotite	alony E edge of Dob Trench:		40 -2	104	<z< td=""><td>46</td></z<>	46
91KTB DO9R	3m	, <i>1</i> 1	11	miner pyrite- pyrrhetite.	continuation westward in Trench DOB from previous sample: sheer zone (seem wide) trends 170°/90		<0.2	223	۲Z	124
91KT8 DIOR	2:5m	. 11		• `	continue westward from DogR.			N		46
91KT8 DIIR	70cm	gtz vein	sericite	minor sporadic pyrite	= 25 m Easterly from DOB Trench: poorly exposed in sloughed trench: wallrx altered granodiorite.	<5⁻	৴৽ঽ	i	Z	30

Sompler D. Ridley
Date Sept. 1991

Property KET 10 Group

NTS 82E/3

	SAMPLE	1		DESCRIPT	TON	;	1	A	SS	AYS	;
	NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Aυ	Ag	Cu	Pb	Zn
	GIKT9 DI3R	2m	chlorite schist	silica	none visible.	Road Cut Showings: E end of cut: felicitiem 035/75W: gtz flooding	<5	0-2	22	6	66
	91KT9 D14R	2m	•(epidote silica carbonate	miner pyrpyrch along fractures	= 20 m W of Di3: same outcrop; trace chalco.	45	0.4	46	4	64
	91KT9 D15R	4 54 m.	limest.	earbonate epidote silica	1(()	= 10m vJ of D14: same outcrop: 2x2 m panel sample: limestone lens in limy greywdcke(?)	< 5	०.७	56	8	78
	91 KT9 D16R	2 52 15	limey greywacke	earbonate stockwork	optc 3% disem +fracture-fillings of pyrite	= 12 m Wof DI5: same outerop:	45	0.4	52	4	68
	91KT9 DI7R	1:5m	,1	"	•1	5m W of D16: same auterop: mineralized fractures trend 100/805	<.5	0.6	56	2	86
	91KT9 DIBR	41	limestone	11	minor f-grained pyrite	Emw DITR + 4mW of CIGR: same cuting	< 5	0.4	50	12	84
	91KT9 D19R	G	altered intrusive	eklorite silica	op to 3% pyrite minor magnetite.	= 350 m N of Hyway 3 from Gravel Pit: = 100 m W of N-S trending fence-line: subcrap(?)	50	0.4	97	30	58
	91 KT9 D20R	3m	listwanite with religions	carbonate silica mariposite	no visible sulphides	= 90m E of D19 + = 15m above E-W trending farm road: otz veins + stringers parallel faliation @ 100/75N:	45	0.2	21	4	26
	91KT9 D21R	65cm	,1) (11	= 25m E of DZO: old trench qtz vein 65cm wide sample of vein: wallrx see ERZZR: mariposite makes up = 40% of rock: vein trends 010/35W.	25	1.0	2	8	24
١,	91 KT9 D22R	lm.	11	11	11 11		< 5	ζ·2	8	16	30
Union	91KT9 D23R	G	dump material	gilica carbonate	41 16	above + = 60 m NE of DI3R (E. end "Road Cut" composite of dump in old trench: includes limey graywacke-siltstanato white quartite.	< 5	0.4	64	2	40
	91 KT9 D24R	lm	meta- quartzite	carbonate	1-2% pyrrhetite	= zom above Dz3: eldtrench; grab of most	< 5	0.4	58	6	44
يم	91 KT 8 D25 R	3×3 sq.m.	fine-grained diorite		mirior pyrrhotite - magnetite	NE Ket 8 hill (mest side): panel sample of outerep. major joints @ 165/90:	45	<u>خ</u> ک	72	28	1/2
ونط	91KT7 DZ6R	11	11		``	NEKet7 hill as @ DZ5: east side: outcrop relatively abundant across hill: same as DZ5-DZ6:	4 5	0-2	94	36	134
	91 KT10 D27 R	G	and broad.	serpentine chlorite carbonate	rare pyrite siderite is common	possible old trench in upper Bride's Cr.: CR25R is = 30 m N of this sample: #NB: high Ni-Cr. (1465+1635ppm)	45	<0.2	31	۷2	18

Sampler D. Ridley
Date Sept 1991

Property Ket 10 Group

NTS <u>82E/3</u>

I SAMPLE	l		DESCRIPT	ION	1	1	A	SS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Aq	Cu	Pb	Zn
91 KT 10 D28 R	40cm	siliceous shear	silica	upto 10% of-grain pyrite.	N of Chris Marchand's farmhouse on top of small knoll: @ contact between quartzite + conglomerate; 1601 old trench: heaviest sulphides right on contact 60W	<5	ર્ટ્સ	234	< 2	104
91 KT 10 D29 R	G	white quartzite		minor disem pyrite & 1%	=60 m NW of DZB: subcrop rubble: north browef small knoll:		40.2	57		
91 KT6 D30 R	1.5m	mottled conglomerate	hematite?	no visible sulphides	exposed outcreps just north of Hyway 3 and =100m E of Conkle L. Rd: matrix is bright red with white-gray limestone + charle cobbles: poor exposure = 3sq.marea.	gy ^o	1.8	89	100	122
91 KT6 D76 R					Duplicate of 91 KT6: D30R	V 1/5	0.2	29	10	12
91KT7 DII9R	G	mottled volcanic breccia	hematite epidote	none seen	Lake Koad.	< 5	V 0.2	38	<2	66
91KT8 DI46R	G	siliceous diorite	silica	1-3% disem pyrrhotite- malachite	@ Golden Gate trench beside DobR; malachiterrich section:	< 5	V 0.2	3730	4	998
91 KT8 D147 R	-				RE-SAMPLE OF 91KT8; DOGR	845	4.2	००००	2	3250
91 KT8 D148	lm	siliceous diorite	silica limenite	py-pyrrhetite to 5%; heavy chalco locally	Golden Gate trench: chip across mineralized structure 160/70W: cut off by mafic dyke 060/80MM contains miner py-cpy + malachite.	470	1.8	7220	10	1240
91 KT8 D149	50cm	**	11	up to 10% pyrrholite minor cpy - malachite	floor of Golden Gate trench zmw of D148	105	1.6	40 ⁴⁰	4	000
91 KT8	1.5m	• • •	11	pyrite to 3% well-disem. throughout.	Wend of Golden Gade french: 3 m W of D149: chip across zone: highly fractured:	35	ا ر	387		62
91 KT8 D151	1.2m	(1	,1	11	adjacent to RISO: 2 m downslope:			162		94
91 KT8 D152	75 cm	"	"	pyrite-pyrrhetite to 1%.	@ DogR: shearzone Im below DogR:	10	< 0.Z	148	4	52
91KT8 D153R	70cm		muscovite mica- sericite?	mo visible sulphides	=50 m Waleng contour from Golden Gatetrench. vein trends 140/90: abundant mica.	85			10	8
91KT8 D154R		silizeous diorite?		up to 5% pyrite	12 m Ecf CR-13+14: similar to wallrocks @ Golden Gate trench.	15	7		<2	46
91KT8 DI55R	1.5m))		N	6m W of D154R; as D154R	10	Z 0.2	/0Z	2	74

ROO' DUMP' I SUITET

10 4 c-

Sompler D. Ridley
Date Sept. 1991

Property Ket 10 Group

NTS <u>82E/3</u>

SAMPLE	. .		DESCRIPT	ION	1	L	A	SS	445	<u>;</u>
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Ag	Cu	Pb	Zn
91 KT8 D156 R	3m	skerred meta- seds	limonite	minor pyrite	= 100 m downstream of (13+14; E side: = 15m above creek.	< 5	1 ~	i	l	40
91 KT8 D157R	F	siliceous tuff?	silica limonite biotite	blobby pyrrholite		<5	< 0.2	7/	<2	50
91KT8 DISBR	lm	graphitic shear	graphite quartz carbonate	minor pyrite	= 100 m above junction of Mckinney + Jolly Cr.; on E bank of Mckinney Cr. just below how waterfull.		0.2	33	8	62
91KT8 D159R	lm	11	11	up to 3% pyrite	just above junction on Jelly Cr.; zone trends 160/65 NE.	10	0.4	254	<2	/5°C
91KT8 DIGOR	G	siliceous cliorite	wollastinite?	opte 3% disem. pyrrhotite.	subcrop: =15m W + 5m higher than DO5 trench.	<5	V0.2	77	<2	70
91KT8 DIGIR	2m	altered grans- diorite	chlorite highly fractured	none seen.	extensive outcrop just N of Golden Gate trench = 50m;	< 5	۷ 0.2	82	6	69
					13					
·										

Pa 1

Sampler C. J. RIOLEY
Date SEPT- OCT

Property KET 10 GROUP

NTS 82E/3

SAMPLE	l	DESCRIPTION			1	ASSAYS					
NO.	Sample \\'idth	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	An	Aq	Cu	Pb	Zn	
91KT 8: CR 09 R:	grab	² yabbro	-	2% Pirite	ELEV: 2870' STRIKE 2360 / dip 74°W -nomagnetic quality	1		1		68	
91 KT 8: CBIOR	grab	clionite		up to 5% Py	ELEV: 2870' 7 smar shear zone: evidence of slickensides: 5m. 5 of CROPR	< 5	102	148	42	80	
91KTB: CRIIR	grab	diorite	chlorite calcite	upto 5% Py	ELEV: 2870' Im. S. of CRIOR: small shear: slicken sides, strike + dip same as croqr:	< 5	10.2	76	<5	32	
91 K 18: CR 12R	Im. grob	dionte	chlorite calcite	Pyrite	Ervi 2870' Im. E of calle: Im wide shear; calcilé veining	₹5	<02	112	< Z	42	
91K18: CR13R	grab	disrite	Chlorite caeite	Pyrite magnetite	ELEV: 2903' 25m. wide shear zone. Xtremely alt - very mafic diorito: purple forance	< 5	<0.2	173	< 2	50	
91 KT8: CR14R:	grab	dionito	chlorite caleite ? silica	Pyrite	ELEV: 2903' - Im. N of CRIBR: subcrop very siliceous rock: yellow/ red gossans;		(0.2	52	<2	16	
91 KT9: CR 16R	grab	serpentine		Dyroho tite Porite	Trend: 132°; steep dip to the E. -in contact w/? calcareous shist	80	<0.2	231	< 2	84	
91KT9: CRIFR	grab	listuanite	calcite	Mariposite 300 Pyrite	OC = 10m. W of CR18R: shear zone every smou) numerous calcite veins; in contret w/ serpentante; on trend + dep w/ cr16R:	< 5	5 02	12	2	28	
91 KT4: CR 18R	grab	serpentine	calcite	>4% Py trace Chalco	= 12 m. Wol CRIBR; very calcarcous, almost brecciated: same trend as CRIBR; rock is xiremely fractured	< 5	₹0.2	55	2	56	
91KT9: CR19R	grab	Limestone		Py trace Chalco	several calcule veins from mm's to 4cm wide; mineral is poddy.	∠ 5	0.4	79	8	78	
91KT9: CR20R	grab	Limestone		75% Py	- Dave calling same rock. Liney greywacke; 4m. w of CR21R	< 5	0.6	181	8	72	
91KT9: CRZIR	grab	Limestone		Pyrite	19,20 tZIR are an taken in similar rock + mineralization across 15m. width	< 5	0.2	29	2	32	
91 KT9: CR22R:	55cm. grab	Qlz. vein		no uisible sulphides	7m.N.E. of Dair. ven is 40 cm. wide Simple taken of vent will took: Sticke 0540. almost vertical dip	<5	(02	2	3	28	
91 KT7: CR 23R	grab	diorite		trace Py	RLEV: 3723' clue of of Kleins 12513: well worn + weathered oc. 8160 strike	<5	06	25	44	83	
91KT7: CRZ4R:	grab (diorite		71% magnetite Pyrite	÷ 30-40 m € 01 CZ3 R; Sticke 0080 / clip 680 E	45	0,6	30	44	94	

Fuge

Sampler C. J. Ridley
Date SEPT-OCT/91

Property KET 10 GROUP

NTS 82E/3

	SAMPLE				TION		loob	; 			
	NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Aa	Cu	Pb	Zn
	91KT10: CR25R	grab	xonglomerale	chlinte colcite epidote	Pyrite	ELEV: 3986' - 1km. W. y T.O. post 35(KET 10 ammy trend, 086°/dip 82°: W. side of SE trend guy: greenstone oc on E side		7			24
/	91 KT10: CR26R	grab	shear	sinca	7 10% PY	Freeze '4084'; same trench as D28R; high grade grab off dump;	70	1.0	178	4	2
	91 KT10: CR27R	flout grab	meta- quartzaté	Chlorite	Spot malachite Py trace	÷ 300 m. S.E. 0) CR26R:	<5	0.2	156	6	50
	91 KT6 CR 28 R	float grab	diorite		magnetite	? couble from conflommate that hes to the N+E of sample: grane-dional hes to wet	890	.2	76	60	52
	91 KTG CR5 2 R	float grab	ti.	u	.1	duplicate of CRZER	K5	.2	49	34	48
\geqslant	CR 53R NOTES ON Pg. 4						18: 182		mg 13.05	Ni 2000	
	91KT9 CRIOZR	float grab	gtzite	calcite	finely dissem.	dk. red gossan: = 800m. N+200 m. W d KT9 LCP:	<5		5%		
	91 KT 9 CR 103 R	1.5m grab	black	Chlorite cakite	finely dissem. Pyrrh + Py	= 20m. 5 of C102: Slightly magnetic: 0820/5605	< 5	_	121		
	91 KT9 CR104R	3m. grab	black sed/qtaile	calcite Silvéa	graphite Pyrite	= 80=90m. Ve of 103 bleb of malachite 150°/84" N.E.	< 5	0.4	65	10	162
	91KT4 CRIOSR	grab	gtzite	Calcite Silvéa	graphite minor Py	= 100-120 m. W of 104 k;	<i><5</i>	0.8	118	8	3%
	91 KT9 CR 106R	float grub	? listuran	carbonate	Minor Py	\$ 15-20 m. N.E. 0/105R Sweral calcite veins: Subcrop	<5	62	54	2	64
	91KTB CR107R	grab	sand stone	caleite	trace Py blebs, Pyrrh	= 200 - 300m. E of Ket & I.D. port 1E	15	< 0.2	16.	42	124
	<u> </u>	grab	black Seds	chlorite Silica	traces Py	2 20m. E 0 107R.	45	× 0.2	84	2	74
	GIKT8 CRIO9R	grab	sand Stone		Py +: barite =: trace CPy	008/01-10		. 1	74	- 1	<u>3</u> z
	CRIVE	float grab	sand stone:		Serpentine? 3% magnetike/Py	@ 109R	160	< 0.2	8	<2	38

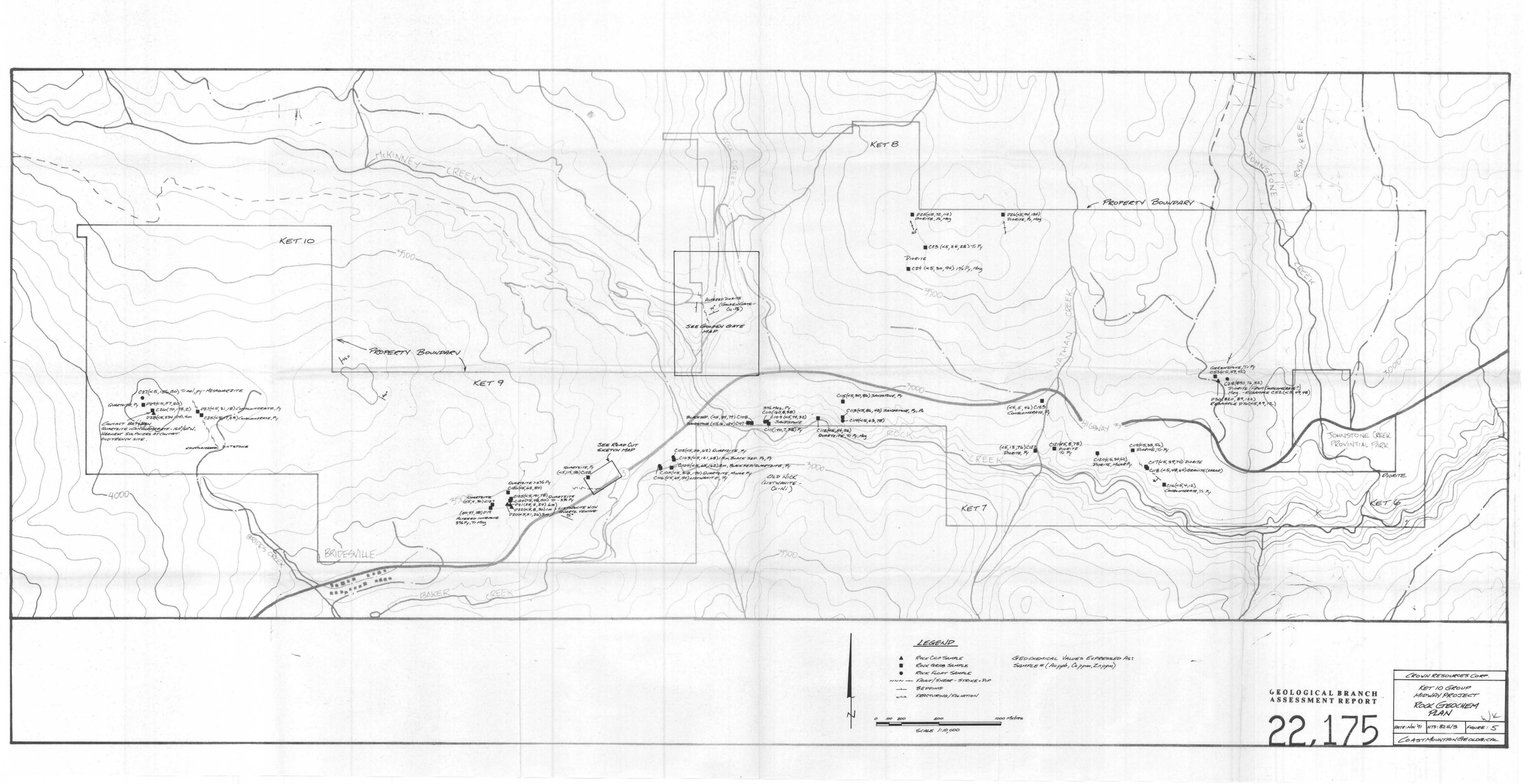
RULL SHEET

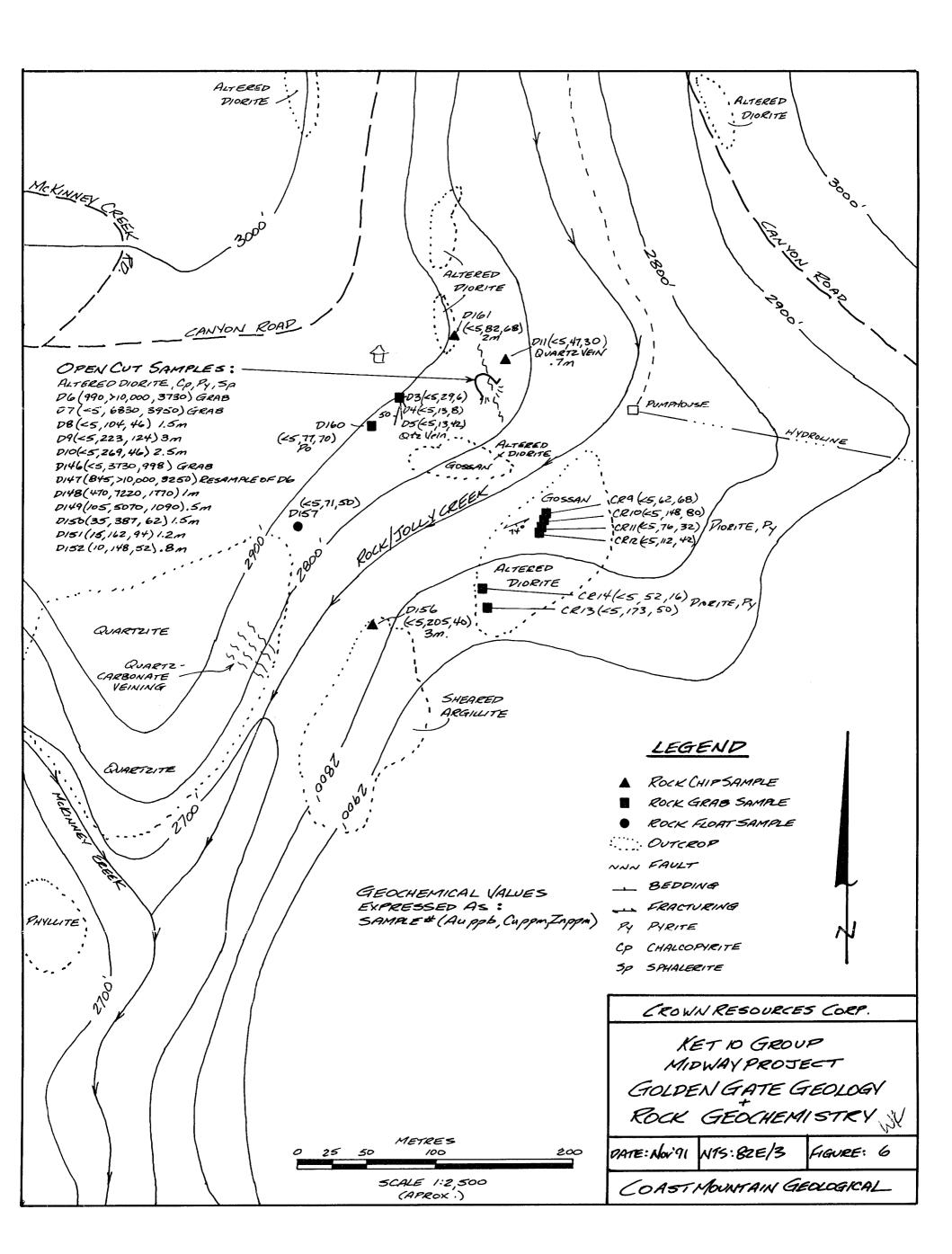
Sampler <u>C.J. Rides</u> Date <u>Oct. 19- Oct</u> 21/91

Property KET 10 GROUP

Pa 3 NTS <u>82E/3</u>

SAMPLE	DESCRIPTION			ION	,			ASSAYS					
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Ag	Cu	Pb	Zn			
91 KT8 112 CR =R	grab	gtzite	·	trace Py: barite 4?? magnetite	= 400 m. E of 110 R Strike 035°/60° SE	45	< 0.Z	54	8	56			
91KTB CRER	float grab	sand ? Stone		?serpontine serville Py	10m. 3. 0/ 110R + magnetite Subarop: angular	140	Z 0.2	7	14	38			
91K78 CR113R	grab	sand? stone	Chlorite carcite silica	finely dissem. Py, Pyrrh; magne hte		< 5	6.2	86	<2	42			
91KT8 CR114R	float	sand stone glistic breas	. Silvica	> 190 PY	@ 113R Foverlies sand stone? FOCK OCS on small cliffs above sample	<5	< 0.2	63	10	78			
91KTB CRIISR	grab	sand stone		munor Pgrite	125m N of 114R in same channel 088°/80°5	<ऽ	× 0.2	30	8	86			
91KTF CR116R	grab	onglo merate	carbonate	trace Py	Bosm. elev. = 100m. N.W of Ket 6+2 C.P. Calette veins: trend 0110	<5	۷ 0.2	4	∠ 2	12			
91 KT7 CR 117R	grab	dwrite	trau epidote	trace Py	825m. elev: 700m. N. of 116R in guily 1040/8605	∠5	6.2	39	2	70			
91KT7 CRIVBR	3m. grab	granite Sheav		:	@ 117R: in contact w/ cherite 1040/86°5	45	∠ 0.2	48	4	64			
91 KT7 CR119 R	grab	diorite	epidote	Py Ctraen)	880 m. elev: 400 m. Wol 1188:	<5	0.2	33	4	58			
91 KT7 CR 120 R	.5m grab	diorite	epidote silica	minor Py	890m. elev: 100m. N.W. of 1192 160°/58° S.W.	45	ح 0.2	34	12	62			
91 KT7 CR 121 R	grab	diorite	epidate	trace Py	860m. elev. 60m. W. of 120R 160°/88° SW	45	< 0.2	89	< Z	78			
91 KT7	grab	diorite	chlorite	sporadic Py	860m. elev: in NATHAN CK: 140°/76° S	<i>(</i> 5	ó.2	/3	<2	76			
91 KT 7 CR 123R	Grob	conglo merate	charite	Sporadie Py	910m. dev: & 150m. N of 122 0180/820 W	< 5	< 0.2	5	8	46			
91 KT9 CR 124R	grab	atzite	chlorite epidote	minor Py	i 30 m. N of DZIR:	<5	ó.2	48	<2	50			
91.KT9 CR125R	grah	glaite	calcite	7396 Py	210m N+W 0/124R.		< 0.2	· ł		78			


Praeu


Sampler C.J. RIDLEY
Date Oct ZI

Property KET 10 GROUP

NTS 82 6/3

SAMPLE	Sample Width	,	DESCRIPT	ION	ADDITIONAL OBSERVATIONS	1	ASSAYS					
NO.		Rock Type	Alteration	Mineralization		Au	Aq	Cu	Pb	21		
91 KT9 CR 126R	grab	atrite	calcite	>2% PY	50-60m. NW of DIGE: 1520/88°SW 20m. NE of DIGE:	<5	٧ ٥.2	62	6	80		
91 KT9 CR127R	grab	gtzite	chlomte epidote calcute		1	<5	< 0.2	9	2	30		
91KT9 CRIZBR	grab	ataite	chlorite calcute	71% Py	÷ 90-100m. AM of CZOR: 0220/860E	45	⊘. 2	115	2.	<i>5</i> 8		
91KT6 CR53R	grab	green Stone	chlorite calcite	traces of	100 M. W. Of CRZBZ: Strike on fracture 0120	<5	< ∂.2	59	<2	42		
												
									-			
							_	_				

GEOLOGICAL BRANCH ASSESSMENT REPORT

Constant of the second of the