1991 Geochemical and Geophysical Report

on the

Ket 20 Group

(Ket 11, Ket 12, Ket 20, and Ket 21 claims)

Greenwood Mining Division British Columbia

North Latitude 49°03' West Longitude 119°41' NTS 82E/3

Prepared for

Crownex Resources (Canada) Ltd.

P.O. Box 25 Suite 100, 200 Granville Street Vancouver, B.C. V6C 1S4

Prepared by

W.R. Kushner, B.Sc

Coast Mountain Geological Ltd.

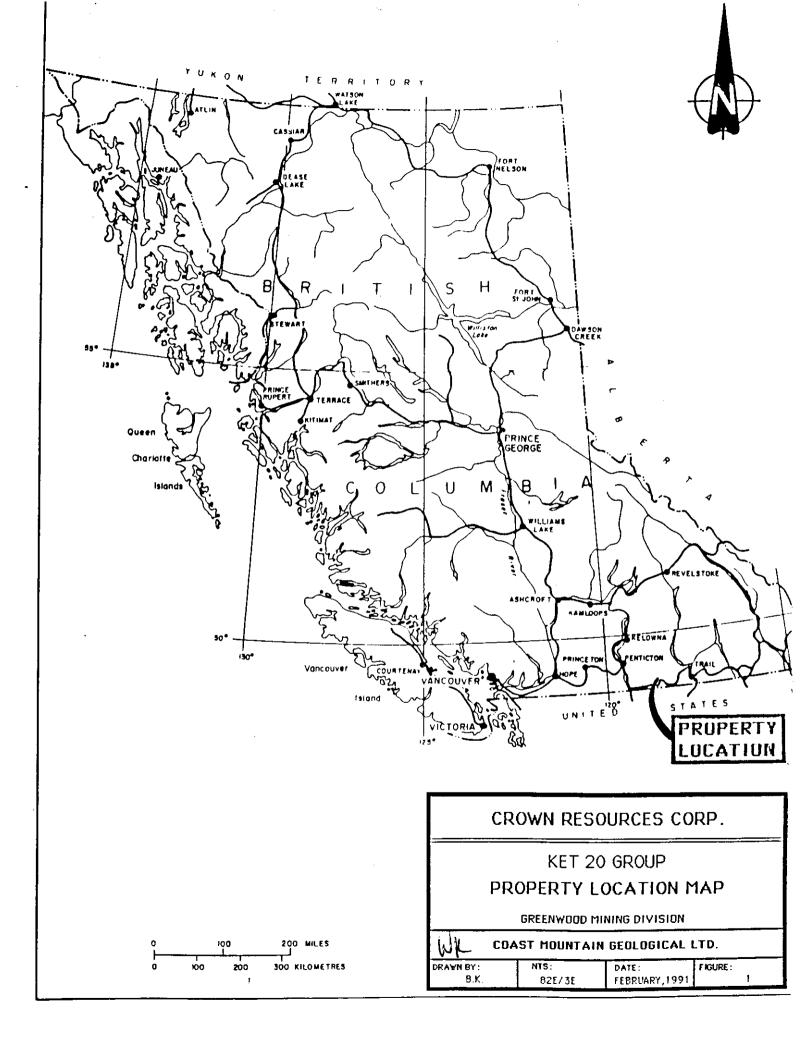
P.O. Box 11604 1410-650 West Georgia Street Vancouver, B.C. V6B 4N9

January 1992

COAST MOUNTAIN GEOLOGICAL LTD

1.0	INTRODUCT	PT ON	i		Page
1.0	1.1 Sum 1.2 Loca 1.3 Phys	mary ation and Access siography & Climate	2	SUB-RECORDER RECEIVED FEB 2 4 1992	1 3 5 5 6
	1.5 Prop	perty Description perty History Work Program	1	A.R. # \$ VANCOUVER, B.C.	5 5 6
2.0	GEOLOGY,	GEOCHEMISTRY & GEO	PHYSICS		
	2.2 Prop 2.3 Stru 2.4 Mine	ional Geology perty Geology acture eralization and Ass chemistry netometer Geophysic		Alteration IMAR 0 3 1992 R0.	7 9 10 10 11 11
3.0	DISCUSSI		ACTION:	MAR 0 3 1772 RU.	12
4.0	RECOMMEN	DATIONS			13
			histleno:	·····	
	ndix D	Contificate of N.	alvaia a	nd Analytical Proc	
Арре	ndix E	Rock Sample Desci			edures
Арре	ndix E		ciptions	_	edures
Figu Figu Figu Figu Figu	ndix E re 1 re 2 re 3 re 4 re 5 re 6 re 7	Rock Sample Desci	LUSTRATI Map Map nple Loca	TOWS Ition in in in	edures 2 4 pocket pocket pocket
Figu Figu Figu Figu Figu	re 1 re 2 re 3 re 4 re 5 re 6 re 7 e 1	Rock Sample Descr LIST OF II Property Location Claim Map Regional Geology Grid and Rock Sam Grid Geology Map Rock Sample Locat Magnetometer Surv	LUSTRATI Map Map nple Loca	TOWS Ition in in in	2 4 pocket pocket pocket

1991 Geochemical and Geophysical Report - Ket 20 Group


1.0 INTRODUCTION

1.1 Summary

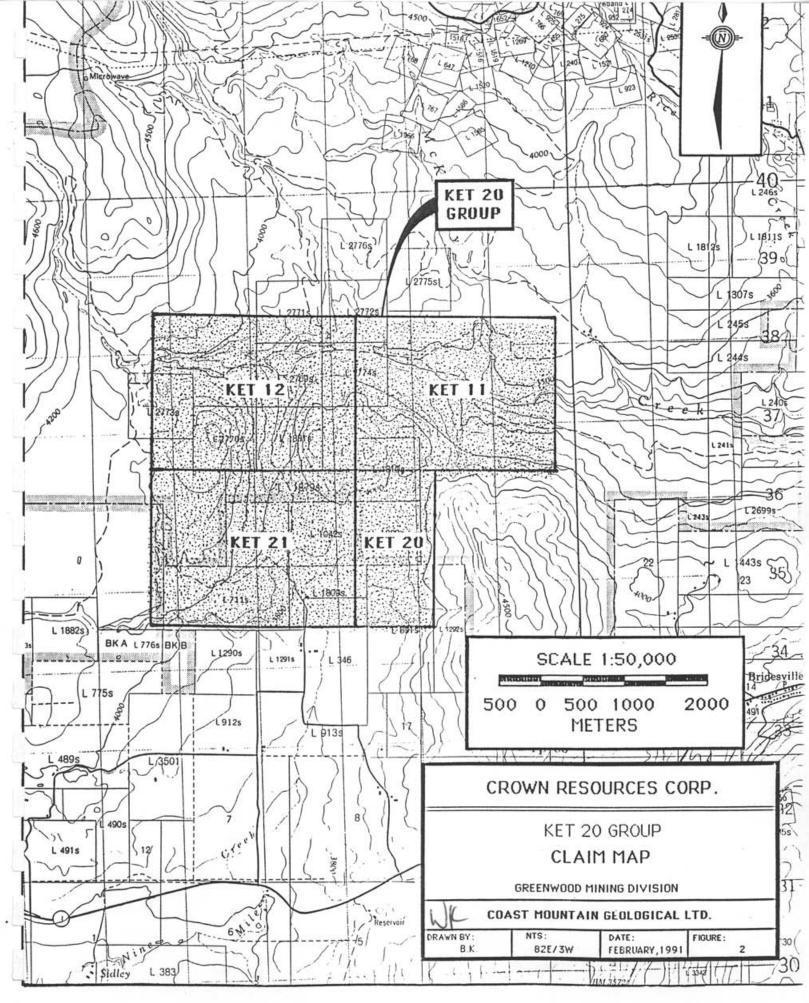
The 1991 exploration program on the Ket 20 Group (Ket 11, 12, 20 and 21 claims) consisted initially of reconnaissance prospecting traverses to determine access, claim boundaries, rock types and alteration assemblages. Subsequently, detailed prospecting, rock sampling, geological mapping and a magnetometer survey were conducted on a 7.5 line-kilometre grid on the eastern hill of the Ket 12 claim. Minor skarnification of the greenstones accompanied by widespread disseminated pyrite, pyrrhotite and magnetite mineralization and a complex swarm of dykes and sills of varying composition were the main exploration targets.

Detectable gold was found on the eastern side of the grid in an old trench which centered on a pyritic replacement or shear zone in light-gray quartzites. A grab from the trench dump returned 165 ppb gold and 2.0 ppm silver. Elsewhere, gold values were below or slightly above the detection limit. No significant base metals were encountered during the 1991 program, although minor enrichment of lead and zinc was found associated with quartz veining in another old trench located along the access road.

Four samples from the 1990 program were reassayed for platinum group metals, returning no significant values.

Skarnification in the form of epidote-carbonate-quartz-garnet alteration seemed to be intensifying towards the southern edge of the grid. Further reconnaissance prospecting of this area is recommended.

1.2 Location and Access


The Ket 20 group lies north of Highway #3 from the summit of the Anarchist Pass, approximately 14 kilometers east of Osoyoos (Figure 1). The approximate location of the centre of the Ket 20 group is north latitude 49°03' and west longitude 119°41'. The claims are located in the south central part of the NTS 82E/3 Osoyoos map sheet. Access to the Ket 20 group is provided by secondary roads off of Highway #3. Internal access to the individual claims is via farm and bush roads.

1.3 Physiography and Climate

Ŧ

Two small hills rising from a high plain provide a local relief of approximately 260 meters, from an elevation of 1100 meters in the Ket 11 claim at a McKinney Creek tributary, to 1360 meters at the summit of the westerly hill in Ket 12.

The high plains area is covered by natural grasses and pine trees while the upper parts of the hills are forested with pine, larch, poplar and minor birch. Marsh grasses, alders and willows are found in the drainages and marsh lands that lie on the northern edge of the claim grouping.

The climate is characterized by hot, dry summers and mild winters with little precipitation.

1.4 Property Description

The Ket 20 group is located within the Greenwood Mining Division of southern British Columbia and is comprised of 4 claims totalling 68 units and covering approximately 1700 hectares (Figure 2).

Crownex Resources (Canada) Ltd., a subsidiary of Crown Resources Corp of Denver, Colorado, is the registered owner of the claims. Table 1 summarizes the pertinent claim data.

TABLE 1: CLAIM STATUS-KET 20 GROUP

<u>Claim Name</u>	<u>Tenure Number</u>	<u>Units</u>	<u>Expiry Date</u> *
Ket 11	215192	20	03/12/92
Ket 12	215193	20	03/12/92
Ket 20	215195	8	10/12/92
Ket 21	215196	20	10/12/92

* Pending acceptance of this report.

1.5 Property History

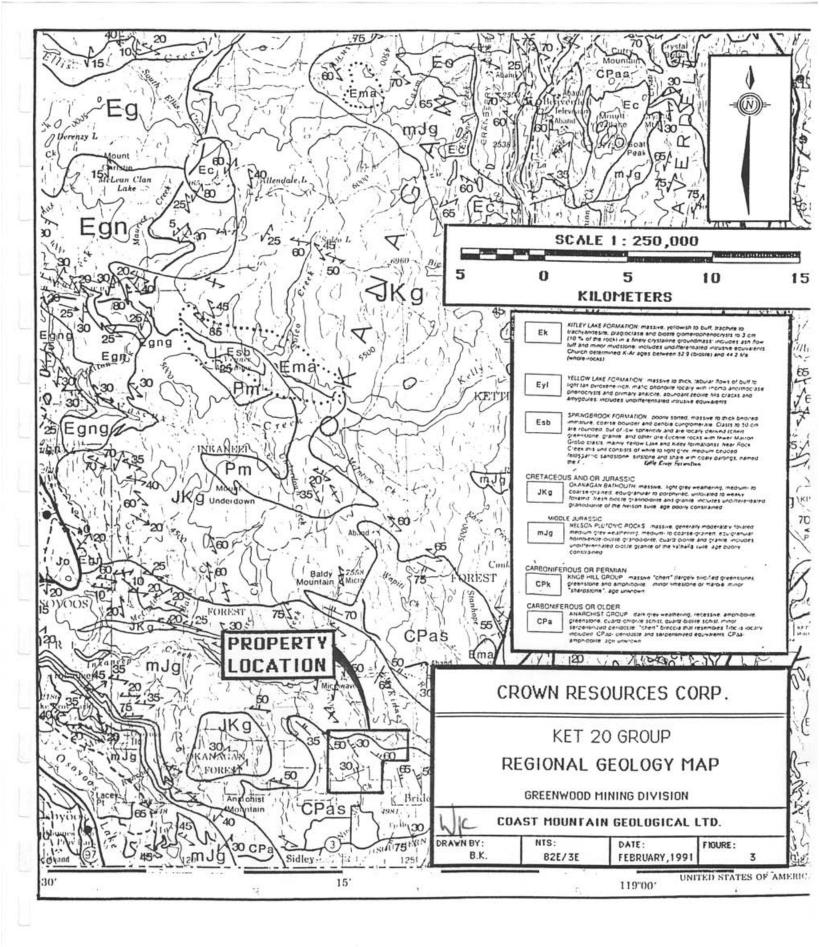
The area in the vicinity of the claim group has a record of exploration dating back to the turn of the century. Many trenches, shafts and adits were dug by independent prospectors, and most are without any record of work. The most significant work in the area were the placer deposits the McKinney Creek and the mines of Camp McKinney, located 11 kilometres north of the subject property, and

COAST MOUNTAIN GEOLOGICAL LTD.

worked from 1894 to 1962.

In the 1960's and 1970's numerous magnetometer, VLF-EM and soil geochemistry surveys were carried out, concentrating primarily on Cu-Ni deposits. Later surveys in the area concentrated on attempting to locate and delineate potential vent areas in the Kettle River Volcanics as a possible site for mineralization.

In the late 1980's, exploration in the Buckhorn Mountain skarn system, to the south of the claims in Washington State, produced significant results. In 1989 a regional airborne magnetometer and VLF-EM survey was conducted over the area by Terraquest Ltd. of Toronto, for Crown Resources Corp. of Colorado (Basil, 1990).


Anarchist Chrome lies one kilometre south of the Ket 20 Group. McKinney Camp and Dayton Camp, both gold camps, lie six kilometers north and four kilometers east respectively of the Ket 20 Group.

Very few prospects were noted while completing the reconnaissance program on this claim group, and no production appears to have been reported from the claim group. The nearest recorded production has come from the previously discussed McKinney and Dayton gold camps.

1.6 1991 Work Program

The 1991 Ket 20 field program was conducted in September; a total of 12 mandays were spent on the property. Initial reconnaissance

COAST MOUNTAIN GEOLOGICAL LTD.

prospecting was followed by 7.5 line-kilometres of grid layout using a hipchain and compass. Rock sampling and geological mapping was performed during grid establishment and a ground magnetometer survey was conducted over the completed grid.

Forty rock samples were collected from the grid, and another 13 samples from scattered exposures near the western edge of the Ket 20 claim, for a total of 53 rock samples.

TABLE 2: PERSONNEL

D.	RidleyGeological	Technician/Prospector
c.	RidleyGeological	Technician/Prospector
c.	Basil	Geophysical Technician

2.0 GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS

2.1 Regional Geology

The oldest rocks in the survey area are Carboniferous or older in age, belonging to the Anarchist Group (Figure 3). They are comprised of amphibolite, greenstone, quartz-chlorite schist, quartz-biotite schist and minor serpentinized peridotite, and occur throughout the Ket 20 group. The majority of the intrusive rocks in the area are Middle Jurassic age Nelson Plutonic rocks. These rocks are comprised of massive hornblende-biotite granodiorite, quartz diorite, diorite and granite. Overlying rocks of Eocene age occur regionally and consist of flows and coarse unconsolidated sediments. Pleistocene period glacial deposits occur at higher

COAST MOUNTAIN GEOLOGICAL LTD.

elevations, and fluvio-glacial deposits are the most extensive feature in the valleys.

2.2 Property Geology

Greenstones and quartzites with minor marble cap the easterly hill on Ket 12, while greenstones, massive serpentinites and propylitic diorite(?) outcrops on the westerly hill of the Ket 12.

Approximately 80% of the Ket 20 group is covered with unconsolidated glacial sediments. Exposure on the grid is limited to the west face of the ridge rising to the south and generally following along the baseline. Outcrops elsewhere form low, well-weathered knolls, generally covered with a thin layer of glacial till.

The grid area (Figure 5), is underlain by a north-northwest trending sequence of quartzite, greenstone, chloritic phyllite, altered greenstone and granodiorite, all of which are cut by a wide variety of dykes, sills and plugs(?) ranging in composition from rhyolite to gabbro.

Quartzite in the eastern portion of the grid consists of well bedded outcrop weathering light grey to off-white, with minor disseminated pyrite. The quartzite is highly folded along the greenstone contact at one exposure and may represent a faulted or sheared contact zone. A quartz vein with pyrite east of the grid

COAST MOUNTAIN GEOLOGICAL LTD.

was found to contain an open cut. The mineralization trends 160/85°E, which roughly parallels bedding.

A biotite-feldspar porphyry granodiorite dyke(?) cuts through the quartzites in the northeastern portion of the grid (based on widely scattered outcrops and by magnetometer responses). The unit is mineralized with disseminated pyrite and magnetite.

A band of relatively unaltered greenstone trends north-northwest through the midpoint of the grid. The greenstone is mineralized with 1-2% finely disseminated pyrite, pyrrhotite and magnetite, with slightly higher concentrations of magnetite near intrusives.

Quartz-carbonate-epidote-chlorite altered greenstone and schists cut by rhyolitic to gabbroic dykes and sills, form the largest unit on the grid. A gradational contact exists between the unaltered greenstones and this unit, and bands and lenses of relatively unaltered greenstones are found throughout. Small, poorly formed garnets appear in the more highly altered areas. The unit is mineralized with 3-5% pyrite and pyrrhotite, and up to 10% magnetite. The magnetite locally forms massive stockwork style veinlets in hairline fractures.

A magnesium-rich high temperature skarn(?) of limited extent was found to outcrop above the main access road near the baseline. It is characterized by wollastonite(?) sericite-calcite mineralization

COAST MOUNTAIN GEOLOGICAL LTD.

and is devoid of any visible metallic minerals.

A rhyolite dyke with 1% disseminated pyrrhotite trending 160/70°E outcrops along the main access road. A trench into the hillside above the road exposes a 1.5 metre quartz vein 1.5 meters trending 120/50°E.

The western portion of the Ket 12 claim consists of biotite schist, chert, siliceous tuffs and rhyolite in contact with a highly folded and contorted magnetite-rich serpentinite, characterized by a talcose, scaly texture.

2.3 Structure

Mylonites with a northwest orientation were observed in the quartzite outcropping on the easterly hill in Ket 12. A northsouth fault is suggested for the area between the two hills due to the difference in the two lithologies. Other structures noted were minor in nature. Due to the heavy glacial cover no continuous folding and faulting could be traced.

2.4 Mineralization and Associated Alteration

Localized areas of disseminated euhedral pyrite are found in greenstones. Stringers and clots of anhedral magnetite are strongly associated with serpentinite. Pyrite was found closely associated with quartz stringers and silicious replacement beds near intrusive contacts. Minor pyrrhotite, usually with magnetite,

COAST MOUNTAIN GEOLOGICAL LTD.

was observed in the greenstone in close proximity to epidote and calcite. Traces of pyrite(?) were found in the propylitically altered granodiorite of the west hill in the Ket 12 claim.

2.5 Geochemistry

Anomalous gold values were obtained from the trench dump on the eastern edge of the grid which returned 165 ppb Au (sample CR50R). A chip sample across 2 meters of the structure as exposed in the trench contained no detectable gold (Figure 5).

Gold values obtained during rock sampling of the grid in close proximity to the magnesium skarn outcrop were only slightly above the detection limit (15-25 ppb Au).

Samples collected from the trench discovered above the main access road, although elevated in lead (380 ppm) and zinc (592 ppm), contained no elevated precious metal values (Figure 4).

2.6 Geophysics

A ground magnetometer survey was carried out over the Ket 20 grid to aid in outlining a pyrite-pyrrhotite-magnetite mineralized greenstone/skarn unit. A total of 7.6 line-kilometres of data was collected from the baseline and lines 35+00N to 42+00N. A manually operated Genie G-816 Proton Procession magnetometer was used for the survey, with the sensor mounted on a 1.2 metre rod to reduce magnetic contamination from the operator. Data collection points

COAST MOUNTAIN GEOLOGICAL LTD.

were at 25 metre intervals along the baseline and lines, and were shortened to 12.5 metres in regions of marked variance in readings. A baseline/tieline looping method of survey was utilized, rather than a base station magnetometer system. As the diurnal variation over the course of the survey was found to be negligible (15-25nTgammas), in comparison to the 3600+ gamma range in values encountered, the raw data has been presented (Figure 6).

The magnetic field values ranged widely, from 54,600nT to over 58,200nT. Adequate exposure of the four basic lithological units found on the grid (quartzite, greenstone, altered greenstone and schists, granodiorite), permits ready definition of their respective magnetic signatures. A 150 metre wide band of anomalous high magnetics running the entire length of the grid in the vicinity of, and subparallel to the baseline, is of interest (Figure 7). This structure, open to the north and south, is coincident with the mineralized altered greenstones and schists along their contact with the greenstone unit. The 'banded' nature of this anomaly correlates well with the strongly foliated magnetite and pyrrhotite rich schists (the 160° foliation is parallel to the magnetic high trend).

3.0 DISCUSSION

Outcrop density on the grid was relatively adequate to trace rock units despite several critical areas which are virtually devoid of exposure. The magnesium skarn area is well exposed along the

southern contact, but rock outcrop to the north is extremely limited. A small soil sampling program centered on this skarn area would be helpful in the evaluation of this structure. It is of importance, in that the only detectable gold found in the altered greenstone unit was from this area. While values obtained were low, the high magnetic contrasts in this general area are worthy of further investigation.

Skarnification of the greenstones is open both to the north and south along strike and may be better mineralized at other points. Further reconnaissance prospecting of the Ket 20 group in this area would determine such.

The magnetometer survey proved an effective tool in tracing the greenstone/schist unit. Extending the grid and survey to the north and south should be performed to assist in delineation of the unit and outlining possible areas of mineralization. Such areas could then be examined by trenching.

4.0 RECOMMENDATIONS

Additional work on the Ket 20 group is recommended in the form of; i) An initial soil sampling program of 25-30 samples centred on the magnesium skarn area of the grid. The object of this program would be to determine whether any precious-metal enrichment is associated with this largely overburdened structure.

- ii) Reconnaissance prospecting and mapping of the north-south extension of the altered greenstone unit through the central portion of the group.
- iii) Detailed prospecting and mapping in the CR50R trench area as well as the western end of the Ket 11 claim to determine whether better gold values can be found along the quartzite-greenstone contact.
 - iv) Reconnaissance prospecting and mapping in the western portion of the Ket 12 claim.
 - v) Extension of the Ket 20 magnetometer survey if warranted.

Respectfully Submitted,

W.R. Kushner, Geologist Coast Mountain Geological Ltd.

1

COAST MOUNTAIN GEOLOGICAL LTD.

COAST MOUNTAIN GEOLOGICAL LTD. -

APPENDIX A

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, WILLIAM R. KUSHNER, of P.O. Box 1, Station 'A', Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Coast Mountain Geological Ltd. with offices at 1410-650 West Georgia Street, Vancouver, British Columbia.
- 2. THAT I am a graduate from the University of Alberta with a bachelor of Science degree in Geology (1987).
- 3. THAT my primary employment since graduation has been in the field of mineral exploration.
- 4. THAT this report is based on field work conducted by Coast Mountain Geological Ltd. on the Ket 20 Group property during September, 1991, and on information from government publications and reports filed with the Government of British Columbia.
- 5. THAT I did not work on the subject property.
- 6. THAT I do not own or expect to receive any interest in the property described herein, nor in any securities of any company rendered in the preparation of this report.

DATED at Vancouver, British Columbia, this 14th day of February,

1992

William R. Kushner, B.Sc. Geologist

COAST MOUNTAIN GEOLOGICAL LTD.

COAST MOUNTAIN GEOLOGICAL LTD.

APPENDIX B

STATEMENT OF EXPENDITURES

STATEMENT OF	EXPENDITURES	
PERSONNEL Geological Technicians: D. Ridley, 6 days @ \$240.00, C. Ridley, 6 days @ \$225.00,	'day 'day	1440.00 1350.00
VEHICLE Truck Rental: 6 days @ \$35/o Mileage: 425 kms. @ \$0.35/km		210.00 148.75
SAMPLE ANALYSIS 53 rocks @ \$15.00/sample 1 silt @ \$10.00/sample		795.00 10.00
ROOM and BOARD 6 days @ \$80/day (all inclus	sive)	480.00
EXPENSES Communications Field Expendables		39.10 63.00
MAGNETOMETER SURVEY 7.6 kilometers @ \$100/km.		760.00
MOB/DEMOB		300.00
REPORT PREPARATION		675.00
	Subtotal	6270.85
13.5% MANAGEMENT FEE		846.56
7% GST		498.22
	TOTAL COSTS	7615.63

_____ COAST MOUNTAIN GEOLOGICAL LTD. -

APPENDIX C

REFERENCES

1

---- COAST MOUNTAIN GEOLOGICAL LTD. -

REFERENCES

- Basil, Chris, 1990. Airborne Magnetic and VLF-EM Survey Report on the Ket 1-22 and Ket 24-32 Mineral Claims, Assessment Report for Crown Resources Corp.
- Geological Survey of Canada, Map 15-1961, Kettle River, British Columbia, Sheet 82E West Half Scale 1:253,440.
- Miller, B. and W. Kushner, 1991. 1990 Summary report on the Homestake and Daisy Fraction Claims, Assessment Report for Crown Resources Corp.
- Templeman, Kluit, D.S., 1989. Geology, Penticton, British Columbia, Geological Survey of Canada, Map 1736A, 1:250,000 Scale.

APPENDIX D

CERTIFICATE OF ANALYSIS and ANALYTICAL PROCEDURES

1

----- COAST MOUNTAIN GEOLOGICAL LTD. -

SOIL SAMPLING and PREPARATION

The soil grid was measured using hip chains and topo-fill thread. It was not slope corrected. A mattock was used to dig a hole in the soil at each station; soil samples were taken from the 'B' soil horizon, approximately 10 - 15 centimetres deep, unless stated otherwise. The samples were collected in kraft gusseted paper bags and sent to Chemex Labs Ltd. of North Vancouver, B.C., for analysis. At Chemex, the samples were oven dried at 60°C and sieved to minus 80 mesh.

ROCK SAMPLING and PREPARATION

Rock samples were taken from bedrock, except in cases where the sample is identified as a float sample. The rock chips were collected in plastic bags and also sent to Chemex Labs, where they were crushed to 3/16 of an inch. A 250 gram speciman was split Out and pulverized to 99% minus 100 mesh using a ring mill pulverizer.

ICP ANALYSIS

A 0.50 gram sample of the prepared pulp is digested with 3 millilitres of 3:1:2 HCL-HNO3-H2O at 95°C for one hour, diluted to 10 millilitres with water, and then analyzed for 30 elements.

GOLD ANALYSIS (Fire Geochem)

10 grams of pulp is ignited at 600°C for 4 hours and fused with F.A. flux. The dore bead is dissolved in aqua regia and analyzed by ICP.

GOLD ANALYSIS (AA)

A 10 gram sample is ignited at 600°C for 4 hours and digested with aqua regia at 95°C on the water bath for one hour. 50 millilitres aliquote is extracted into 10 millilitres of MIBK and analyzed by graphite furnace AA. ROCK CHIP ASSAYS

1

of 12 ELEMENTS for

`QUICK-SUMMARY' COMPILATION

							92.	
) KET 20 GROUP	SAMPLE AN	ALYSIS R	ESULT	5	i Si Si Magan			
91KT12:D12R: 91KT11:D70R: 91KT11:D71R: 91KT12:D72R: 91KT12:D73R:	Au Ag <5 0.2 40 0.8 <5 <0.2 25 0.6 <5 0.2	10 7 <5 6 <5 9	Ba Bi 0 <2 0 <2 0 2 0 2 0 2	1.33%	Cr 109 158 39 153 42	Cu Fe 36 1.71% 38 1.36% 32 6.94% 28 1.81% 56 3.43%	Pb W 16 <10 8 <10 <2 <10 6 <10 26 <10	Zn 174 20 84 30 52
91KT12:D74R: 91KT12:D75R: 91KT12:D75R: 91KT12:D77R: 91KT12:D78R: 91KT12:D79R:	<5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2	<5 <1 5 72 5 8	0 <2	1.48%	16 13 34 1 76 51	5 0.94% 4 0.91% 19 4.10% 54 5.07% 33 3.65%	6 10 6 10 <2 <10 <2 <10 18 <10	18 12 54 78 78
91KT12:D80R: 91KT12:D81R: 91KT12:D82R: 91KT12:D83R: 91KT12:D83R: 91KT12:D84R:	<5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2	<5 9 10 9 <5 3	10 <2 90 <2 90 <2 80 <2 80 <2 50 <2	0.73% 1.85% 1.01%	69	8 6.88% 13 3.99% 31 2.28% 33 8.76% 29 5.16%	<2 <10 6 <10 6 <10 <2 <10 <2 <10	92 74 22 86 54
91KT12:D85R: 91KT12:D86R: 91KT12:D93R: 91KT12:D94R: 91KT12:D95R:	<5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 0.4 <5 <0.2	10 1 <5 <5 <	10 <2 70 <2 10 <2 10 <2 20 <2	1.81% 1.64% 0.80%	244 132 117 158 133	351.11%444.82%603.74%801.08%544.22%	6 < <10 <2 <10 24 <10 380 <10 64 <10	16 44 80 592 156
91KT12:D96R: 91KT12:D97R: 91KT12:D98R: 91KT12D141R: 91KT12D142R:	<5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 0.2 <5 <0.2 <5 <0.2	10 10 11 <5	40 <2 60 <2 00 <2 20 10 50 6	0.26% 0.49% 0.38%	24	67 4.31% 22 3.66% 13 2.20% 439 1.92% 124 4.66%	4 10 10 <10 <2 <10 <2 <10 4 <10	94 54 52 16 28
91KT12D143R: 91KT12D144R: 91KT12D144R: 91KT12D145R:	<5 <0.2	<5 <	10 6 10 12 10 8	0.76%	533 933 340	9 4.53% 23 4.41% 37 2.88%	<2= <10 <2 <10 <2 10 <2 10	10 12 28
					- 19 A.			
91KT11:C50R: 91KT12:C51R: 91KT12:C54R: 91KT12:C55R: 91KT12:C55R:	165 2.0 15 <0.2 <5 0.2 <5 <0.2 <5 <0.2 <5 <0.2	<5 15 11 10 3	20 <2 30 8 70 <2 20 <2 40 <2	0.68% 1.27% 1.17%	123 42 40 104 107	362.02%578.11%663.38%213.08%772.68%	4 <10 <2 <10 42 <10 <2 <10 <2 <10 <2 <10	24 132 66 66 42
91KT12;C57R: 91KT12;C58R: 91KT12;C59R: 91KT12;C60R: 91KT12;C61R:	<5 <0.2	<5 20 1 <5 2 <5 3	00 <2 60 <2 60 <2 70 4 20 <2	0.73% 1.18% 0.56%		29 3.69% 35 3.99% 102 2.33% 45 1.76% 76 5.60%	22 <10 4 <10 <2 <10 <2 <10 <2 <10	74 108 52 42 62
91KT12:C62R: 91KT12:C63R: 91KT12:C63R: 91KT12:C64R: 91KT12:C65R: 91KT12:C66R:	<5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2 <5 <0.2	15 <5 1 5 5 1	70 <2 30 <2 30 <2 30 <2 60 <2	2 0.79% 4 1.89% 2 2.40%	97	16 3.56% 44 3.40% 5 4.44%	36 <10	86
		10 10	nn	1 ~ 700	- 7	1.7 7 100	26 /10	

91KT12:C69R: <5 <0.2 15 100 <2 1.62% 160 55 4.98% 26 <10 8 91KT12:C70R: <5 <0.2 <5 60 <2 0.11% 82 3 0.94% 6 <10 3 91KT12:C71R: <5 <0.2 10 60 <2 0.22% 90 27 4.10% <2 <10 9 91KT12:C97R: <5 <0.2 <5 100 <2 0.21% 39 16 1.04% 2 <10 2 91KT12:C98R: <5 <0.2 <5 140 6 0.40% 40 24 2.37% <2 <10 4 91KT12:C99R: 25 <0.2 5 160 <2 0.33% 31 23 0.99% 6 <10 3 91KT12C100R: <5 <0.2 <5 290 <2 1.41% 27 62 2.79% <2 <10 8
91KT12:C97R: <5 <0.2 <5 100 <2 0.21% 39 16 1.04% 2 <10 2 91KT12:C98R: <5 <0.2 <5 T40 6 0.40% 40 24 2.37% <2 <10 4 91KT12:C99R: 25 <0.2 5 160 <2 0.33% 31 23 0.99% 6 <10 3 91KT12C100R: <5 <0.2 <5 290 <2 1.41% 27 62 2.79% <2 <10 8

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION
	SEVENTEENTH STREET PLAZA
	1225 17TH ST., STE, 1500
	DENVER, COLORADO
	80202

raye Nuriver : 1-A Total Pages : 1 Certificate Date: 15-OCT-91 Invoice No. : 19122990 P.O. Number :

Project : MIDWAY Comments: ATTN: CHRIS HERALD CC:R. MILLER CC:J. SHANNON CC:M. SAWIUK

, 			CERTIFICATE OF ANA							NAL	YSIS A9122990									
SAMPLE	PREP CODE	Au ppb FA+AA	Ag	Al %	As ppm	Ba ppm	Be ppm	Bi PPa	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	۲ ۲	La ppm	Mg %	Mn ppm
91KT12:CR68R 91KT12:CR69R 91KT12:CR70R 91KT12:CR71R 91KT12:CR71R 91KT12:D93R	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.07 2.29 0.33 1.80 1.58	15 15 < 5 10 < 5	100 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.62 0.11 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	33 25 1 19 21	53 160 82 90 117	34 55 3 27 60	8.50 4.98 0.94 4.10 3.74	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	1.68 0.14 0.13 0.51 0.05	< 10 10 10 20 10	2.52 1.91 0.14 1.27 1.42	735 603 125 560 680
01KT12:D94R 01KT12:D95R 01KT12:D96R 01KT12:D96R 01KT12:D97R 01KT12:D98R	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.51 2.14 1.97 1.54 1.37	< 5 10 5 10 10	20 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.26	2.0 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 20 16 15 6	158 133 121 105 51	80 54 67 22 13	1.08 4.22 4.31 3.66 2.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < < 1 < 1 < 1 < 1 < 1	<pre>< 0.01 0.06 0.07 0.18 0.16</pre>	< 10 30 20 20 < 10	0.49 1.82 1.58 0.93 0.82	340 835 695 605 540
91KT27:D87R 91KT27:D88R 91KT27:D89R 91KT27:D99R 91KT27:D99R 91KT27:D91R	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 4.0 6.0 0.8	1.63 1.37 1.20 2.01 0.09	90 15 10 < 5 10	90 90 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 16 < 2	3.34 6.1 6.21 5.83 0.52	< 0.5 < 0.5 2.0 70.5 0.5	19 21 24 72 3	15 243 190 252 151	27 291 3870 5490 124	5.76 3.23 2.82 3.52 0.68	10 20 20 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.49 0.18 0.17 0.13 0.02	50 20 20 20 < 10	0.64 3.56 3.39 2.88 0.05	945 690 665 810 285
91KT27:D92R	205 294	< 5	< 0.2	2.28	40	100	< 0.5	•4	2.03	< 0.5	20	236	69	3.80	10	< 1	0.21	10	2.29	605
																		÷		
																	0	~	0	

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number 1-B Total Pages 1 Certificate Date: 15-OCT-91 Invoice No. :19122990 P.O. Number :

Project : MIDWAY Comments: ATTN: CHRIS HERALD CC:R. MILLER CC:J. SHANNON CC:M. SAWIUK

										CE	RTIF	ICATE	A9122990			
· / · · · · · · · · · · · · · · · · · ·	PREP CODE	Mo PPm	Na %	Ni ppm	P	Pb ppm	Sb PPm	Sc ppa	Sr ppm	Ti %	Tl PPm	U PPa	V ppm	W ppm	Zn ppm	<u> </u>
91KT12:CR69R 20 91KT12:CR70R 20 91KT12:CR71R 20	05 294 05 294 05 294 05 294 05 294 05 294	< 1 < 1 < 1 < 1 < 1 1	0.07 0.05 0.05 0.02 0.06	19 98 2 44 46	1430 1310 330 390 1110	4 26 6 < 2 24	< 5 < 5 < 5 < 5 < 5 < 5	10 6 < 1 2 8	40 40 13 12 32	0.48 0.37 0.04 0.13 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	192 124 13 43 95	10 < 10 < 10 < 10 < 10 < 10	118 84 32 98 80	
91KT12:D95R 20 91KT12:D96R 20 91KT12:D97R 20	05 294 05 294 05 294 05 294 05 294 05 294	2 < 1 3 2 < 1	0.01 0.03 0.02 0.02 0.05	21 53 39 28 3	170 400 1180 450 680	380 64 4 10 < 2	< 5 < 5 < 5 < 5 < 5 < 5	3 11 13 7 3	13 10 23 14 34	0.04 0.29 0.22 0.21 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 91 117 47 49	< 10 < 10 10 < 10 < 10	592 156 94 54 52	
91KT27:D88R 20 91KT27:D89R 20 91KT27:D90R 20	05 294 05 294 05 294 05 294 05 294 05 294	< 1 < 1 < 1 < 1 < 1 4 <	0.02 0.01 0.01 0.01 0.01 0.01	19 255 225 272 13	4100 510 440 590 510	4 < 2 22 22 2	< 5 < 5 < 5 < 5 < 5 < 5	4 6 7 < 1			< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	38 35 33 63 24	10 10 < 10 < 10 < 10 < 10	42 30 28 44 36	·
91KT27:D92R 20	05 294	< 1	0.01	288	640	12	5	9	45	0.01	< 10	< 10	66	10	38	BC

Ć.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA
	1225 17TH ST., STE. 1500
	DENVER COLORADO
	DENVER, COLORADO
	80202
	OVE OF

rage Nunicei : 1-A Total Pages :2 Certificate Date: 29-OCT-91 Invoice No. : 19123716 P.O. Number :

Project : MIDWAY Comments: ATTN: CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

<u></u>	·· <u> </u>								CERTIFICATE OF ANALYSIS						YSIS	A9123716				
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al ¥	As ppm	Ba ppm	Be PPm	Bi ppo	Ca %	Cd ppm	Co ppn	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg Ppm	K Ł	La ppm	Mg &	Mn ppm
91KT7CR116R 91KT7CR117R 91KT7CR118R 91KT7CR119R 91KT7CR120R	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.11 2.11 1.91 1.68 1.83	< 5 < 5 < 5 5 5	40 40 130 100 110	< 0.5 < 0.5 < 0.5 0.5 0.5	6 < 2 < 2 2 6	2.85 2.58 0.72 1.93 1.20	< 0.5 1.0 0.5 < 0.5 < 0.5	87 18 16 13 14	396 44 47 57 17	4 39 48 33 34	4.83 4.20 4.12 3.48 3.87	< 10 10 < 10 10 10	< 1 < < 1 < 1 < 1 < 1 < 1	0.01 0.16 0.71 0.41 0.45	< 10 30 20 30 40	4.63 1.65 1.50 1.30 1.19	685 730 585 610 555
91xt7CR121R 91xt7CR122R 91xt7CR122R 91xt7CR123R 91xt9CR124R 91xt9CR125R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.37 2.26 0.99 1.62 1.93	5 < 5 < 5 5 5	140 220 250 290 360	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 6	1.58 1.91 0.67 1.02 0.77	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 0 4 7 11	39 47 49 63 115	8 13 5 48 191	4.69 4.47 1.61 2.80 4.45	10 10 10 < 10 < 10 < 10	< 1 3 < 1 < 1 < 1 < 1	0.48 0.81 0.31 0.69 0.41	20 20 50 10 10	2.11 1.78 0.34 0.93 1.15	785 805 435 470 250
91KT9CR126R 91KT9CR127R 91KT9CR128R 91KT8D156R 91KT8D157R	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.41 1.13 2.57 1.59 2.81	< 5 < 5 < 5 < 5 5	1100 70 200 230 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 4 < 2 < 2	0.37 0.94 1.7 0.91 1.54	1.0 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 5 13 21 23	63 86 110 179 102	62 9 115 205 71	5.14 1.48 4.10 3.50 4.23	< 10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	1.92 0.33 0.37 0.47 0.59	< 10 10 10 10	2.01 0.33 2.05 0.82 1.48	825 260 690 190 200
91KT8D158R 91KT8D159R 91KT8D160R	205 294 205 294 205 294	< 5 10 < 5	0.2 0.4 < 0.2	0.44 1.58 1.81	55 10 15	80 210 60	< 0.5 < 0.5 < 0.5	22	0.48 0.52 0.19	< 0.5 2.5 < 0.5	< 1 37 28	117 201 136	33 254 77	1.65 8.07 3.80	< 10 < 10 < 10	< 1 < 1 < 1	0.09 0.22 0.42	10 10 < 10	0.37 0.88 1.75	35 140 300
91KT12CR097R 91KT12CR098R 91KT12CR099R 91KT12CR199R 91KT12CR100R	205 294 205 294 205 294 205 294	< 5 25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.75 1.58 1.04 2.34	< 5 < 5 5 < 5	100 140 160 290	< 0.5 < 0.5 < 0.5 < 0.5	< 2 6 < 2 < 2	0.21 0.40 0.33 1.41	< 0.5 < 0.5 < 0.5 0.5	2 6 2 10	39 40 31 27	16 24 23 82	1.04 2.37 0.99 2.79	< 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1	0.19 0.21 0.33 0.77	< 10 < 10 < 10 < 10	0.22	230 370 280 645
91KT12D141R 91KT12D142R	205 294 205 294	< 5 < 5	0.2	1.04 4.55	< 5 10	20 50	< 0.5 < 0.5	10 6	0.38	< 0.5	7 32 69	24 411 533	439 124 	1.92 4.66 4.53	< 10 < 10 < 10	< 1	0.06	< 10 < 10 < 10	0.75 6.25 11.90	155 345 625
91KT12D143R 91KT12D144R 91KT12D145R 91KT12D145R	205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2	0.13 0.13 0.11	< 5 < 5 10		< 0.5 < 0.5 < 0.5	6 12 8	0.04 0.76 0.02	< 0.5	63 88	933 340	23 37	4.41 2.88	< 10 < 10	<1< <1<	0.01	< 10 < 10	13.15 13.00	1150 510
91KT17CR82R 91KT17CR83R 91KT17CR84R 91KT17D125R 91KT18D140R 91KT27CR86R	205 294 205 294 205 294 205 294 205 294 205 294	< 5 10 < 5 < 5	< 0.2 < 0.2 < 0 < .2 < 0.2 < 0.2 < 0.2	2.03 1.07 2.69 0.94 2.18	< 5 5 20 < 5 25	310 40 600 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 4 < 2 < 2 < 2	0.21 0.21	1.0 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	28 7 15 4 27	65 35 12 98 50 8	43 169 75 136 33 11	4.15 5.12 3.09 4.10 1.83 6.58	< 10 10 < 10 < 10 < 10 10 10		0.63 0.25 0.06 1.42 0.07 0.40	< 10 < 10 < 10 < 10 < 10 < 10 30	1.87 1.32 0.43 1.52 0.54 1.57	290 750 175 325 160 895
91KT27CR87R 91KT27CR88R 91KT27D126R 91KT27D126R 91KT27D127R 91KT30CR085R	205 294 205 294 205 294 205 294 205 294	< 5 80 60	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.92 3.65 1.64 1.76 2.76	70 < 5 80 < 5 5	100 290 260	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 4	3.00	< 0.5 0.5 < 0.5 0.5 < 0.5 < 0.5	3 31 16 14 28	45 230 11 10 57	14 98 32 12 51	2.58 5.97 5.14 6.00 4.09	< 10 20 10 10 < 10	< 1 < 1	0.06 0.01 0.61 0.52 0.03	< 10 20 30 50 < 10	0.37 3.66 0.88 0.96 1.95	240 875 820 1270 515

CERTIFICATION:

Ć:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

ID: CHOWN RESOUNCE COM URATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE, 1500 DENVER, COLORADO 80202

:1-B) Nun Total Pages :2 Certificate Date: 29-OCT-91 Invoice No. : 19123716 P.O. Number

Project : MIDWAY

Comments: ATTN: CHRIS HERALD CC:R.MILLER CC:J.SHANNON CC:M.SAWIUK

••

										CI	ERTIF	ICATE	A9123716			
SAMPLE	PREP CODE	Mo PPm	Na %	Ni ppm	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti ¥	T1 ppm	U ppm	v ppm	W PPm	Zn ppm	
91KT7CR116R 91KT7CR117R 91KT7CR118R 91KT7CR119R 91KT7CR119R 91KT7CR120R	205 294 205 294 205 294 205 294 205 294 205 294	2 <1 <1 <1 <1 <1	< 0.01 0.05 0.10 0.06 0.07	1690 19 13 11 10	170 1010 1140 920 1040	< 2 2 4 4 12	< 5 < 5 < 5 < 5 < 5	6 10 8 9 7	102 · 93 52 143 65	< 0.01 0.04 0.27 0.24 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 111 95 90	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	12 70 64 56 62	
91KT7CR121R 91KT7CR122R 91KT7CR122R 91KT7CR123R 91KT9CR124R 91KT9CR125R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 1 < 1	0.09 0.09 0.05 0.10 0.06	7 4 4 3 24	980 970 600 670 1170	< 2 < 2 8 < 2 2	< 5 < 5 < 5 < 5 < 5 < 5	17 15 2 9 11	64 92 110 25 32	0.25 0.30 0.01 0.13 0.10	< 10 < 10 < 10 < 10 < 10	<pre>10 10 10 10 10 10 10 10 10</pre>	166 136 20 86 85	< 10 < 10 < 10 < 10 < 10 < 10	78 76 46 50 78	
91KT9CR126R 91KT9CR127R 91KT9CR127R 91KT9CR128R 91KT8D156R 91KT8D157R	205 294 205 294 205 294 205 294 205 294 205 294	2 < 1 1 2 < 1	0.05 0.04 0.04 0.11 0.23	8 3 13 87 65	640 930 570 1660 930	6 2 2 < 2 < 2 < 2	5 < 5 < 5 < 5 < 5	16 3 14 3 2	12 299 43 47 20	0.2 0.2 0.2 0.2 0.18 0.25	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	177 34 125 77 70	< 10 < 10 < 10 < 10 < 10 < 10	80 30 58 40 50	
91KT8D158R 91KT8D159R 91KT8D160R 91KT12CR097R	205 294 205 294 205 294 205 294 205 294	13 17 < 1 < 1	< 0.01 0.03 0.10	18 158 108 4	2130 2010 290 700 270	8 < 2 < 2 2	< 5 5 < 5 < 5	1 8 < 1	48 8 7 20	<pre>< 0.01 0.11 0.11 0.06</pre>	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	102 271 101 8	< 10 < 10 < 10 < 10	62 150 70 22	
91KT12CR098R 91KT12CR099R 91KT12CR100R 91KT12CR100R 91KT12D141R 91KT12D142R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 4 14 1	0.06 0.05 0.04 0.07 < 0.01	7 4 8 < 1 202	610 230 730 4 50 50	< 2 6 < 2 < 2 4	< 5 < 5 < 5 < 5 < 5 5	2 < 1 1 < 1 3	31 15 33 25 7	0.12 0.04 0.14 0.15 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 7 50 21 82	< 10 < 10 < 10 < 10 < 10 < 10	44 32 80 16 28	
91KT12D143R 91KT12D144R 91KT12D145R 91KT17CR82R	205 294 205 294 205 294 205 294	1	< 0.01 < 0.01 < 0.01	1195 1145 1365 	< 10 10 30	< 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5	3 4 3	36 <	0.01 0.01 0.01 0.12	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	23 22 16 110	< 10 < 10 10 < 10	10 12 28 92	
91KT17CR83R 91KT17CR83R 91KT17CR84R 91KT17D125R 91KT18D140R 91KT27CR86R	205 294 205 294 205 294 205 294 205 294 205 294	1 67 2 1 < 1	0.15 0.10 0.09 0.09	21 18 21 6 6	1010 330 410 290 3050	< 2 4 < 2 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5 < 5 < 5	13 4 12 1 5	14 21 23 14 71	0.11 0.11 0.17 0.07 0.02	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	154 65 139 15 57	< 10 < 10 < 10 < 10 < 10 < 10 < 10	124 150 94 20 80	
91KT27CR87R 91KT27CR88R 91KT27D126R 91KT27D126R 91KT27D127R 91KT30CR085R	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 < 1	0.10 0.01 0.03 0.03 0.05	2 98 15 11 23	350 1230 3530 3350 540	4 2 < 2 < 2 < 2 < 2	< 5 5 < 5 5 < 5 < 5	8 18 4 4 7	9 289 69 < 68 22	0.01 0.01 0.01 0.01 0.51	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 200 36 39 112	< 10 < 10 < 10 < 10 < 10 < 10	46 86 42 62 48	

CERTIFICATION:_

APPENDIX E

ROCK SAMPLE DESCRIPTIONS

1

----- COAST MOUNTAIN GEOLOGICAL LTD. --

(NOT MOUNTAIN BEGEOBICHE ETC.	(MUUNTA	Ann Gege		LTC.
--------------------------------	---	--	--------	----------	--	------

RUCK SAMPLE SHEET

Sampler <u>C.J. Ribley</u> Date

Property KET ZO GROUP

NTS _____87E/3

SAMPLE	le	. I	DESCRIPT	TON		1	4	155	AYS	3
NO.	Samp1 Width	Rock Typ	e Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Ag	Cu	Pb	ZA
91KT II CRSOR	float grab				TSL 2.5E: 37+25N! grab off dump from old trench			36	1	24
91 KTIZ CRSIR	grab		delista	banded Pyrth.	L.4IN: 20+25R: Sm. wicke X 10 m. long (2) OC: mofic witr. to the S.E.	15	< 0.2	57	22	/32
QIKTIZ CR54R	grab	cliorite	silwa	biotite magnetite	L42105N. 17+BZE: Strike 158°/dip slightly E.	<5	0.2	66	4z	66
91 KTIZ CRS5R	grab	diorite	Chlorite epidote	trace Py	L41NJ. 16+64E:	25	< 0.2	21	22	66
91 KT 12. CR56R	grab	græn- Stone	chlorite calcite	trace silvery Py	L41N: 17+24E. strike 174°/dip 54°E	25	20.2	77	4 2	42
91 KTIZ CRS7R	grab	diorite	chlorite silica	magnetite trace Py	L41N: 17+59E: gneiss-like lock to rock;	25		29		
91 KT 12 CR 58R	grab	green- stone	Chlorite Silica	trace Py	240N: 19E: strike 132°/dip 79°S	<5		35		1
91 KT 12 CR59R	grab	₹skarn	Chlorite calcute epidote		L40N1: 18E:	<5		102		52
91 KT 12 CR60R	grab	grano- diorite	Chlorite	trace Py	L40N: 17+75E: oc of chert w/sporadic Py in frend ? 0180? contact w/grams duorite	25		45		42
91 KTIZ CRGIR	grab	green slore	chlorite silica epidote	>2% magnetite	L40N: 17+25E:	<i>45</i>		76		
91 KTIZ CR62R	grab	Hyolite		Py	L39N:19E: in contact w/chloriteschist strike 0469/dip 50°W		4 0.2		36	
91KTIZ CR63R	grab	chlorite schist	calcite	Pg	L39N: 19 + 11E: Strike 002°/ dip 74° W		< 0.2	44	6	86
	grads	green sone	chlorite epidete calcute	Pg	L39N: 19 +25E: Skarny looking rock	15	ó.2	5	<2	76
91 KTIZ CR65R	grab	green stone		7.3% magnesite trace Py	L39N: 20+60E:			28	22	62
91 KT IZ CR 66R	grab	green stone	chlorite calcite epiaote		139N: 20+92E: trend 130°/dip to the N.			14		

[.ST	JN7	GL06LI	-

RUCK SAMPLE SHEET

Sampler <u>C.J.Rioner</u> Date

Property KET 20 GROUP

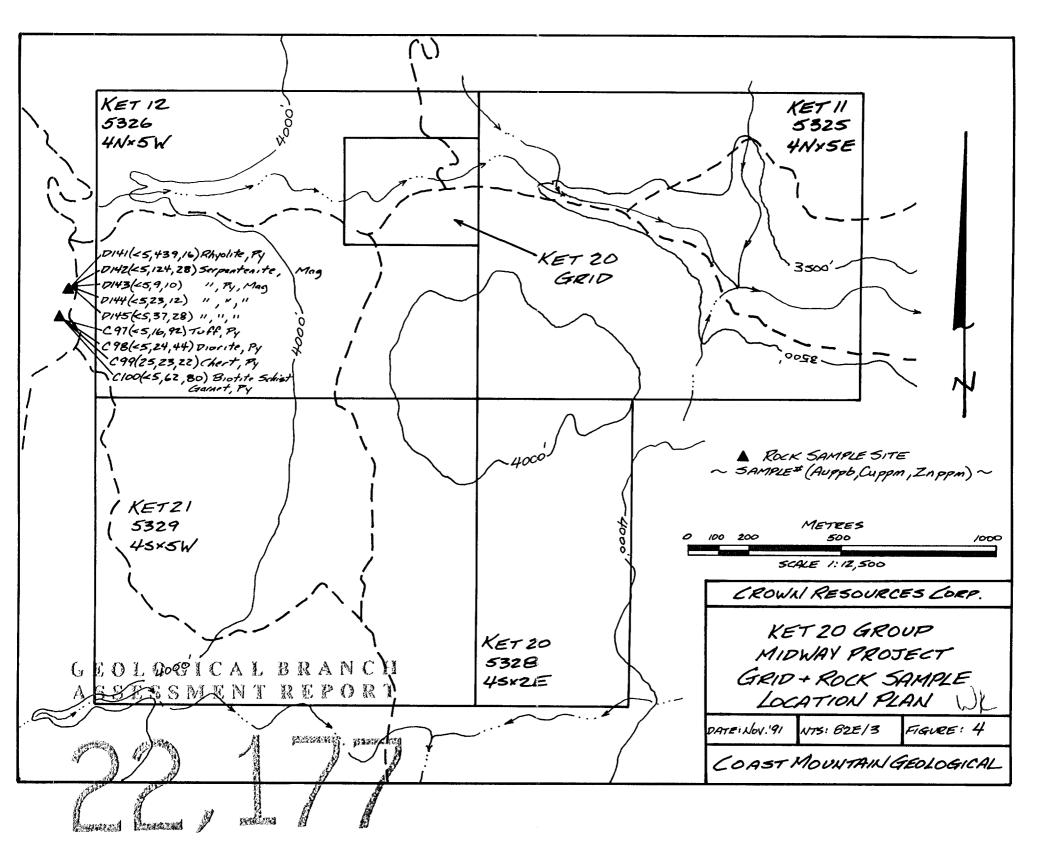
NTS 82E/3

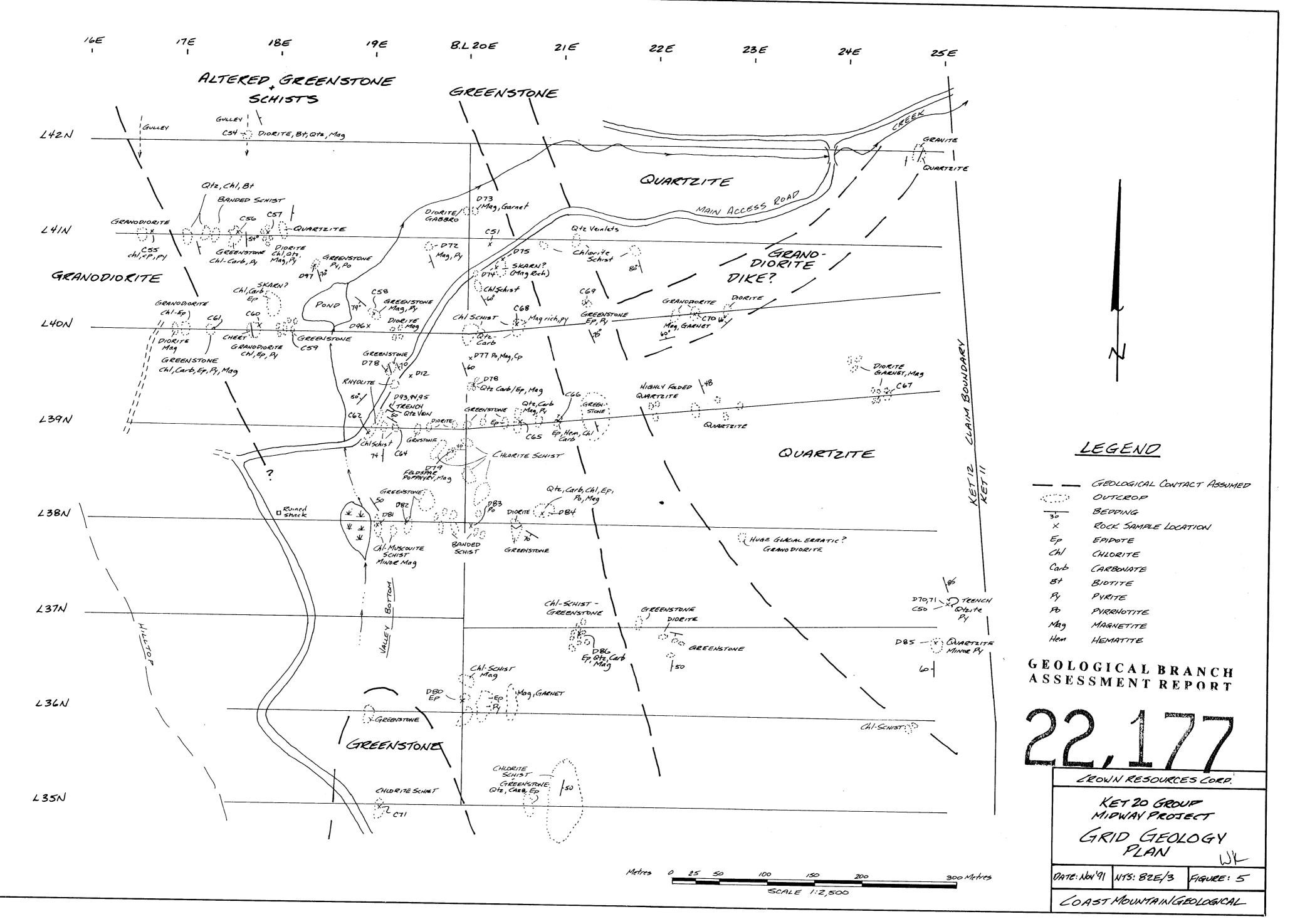
I SAMPLE		DESCRIPTION			1	ASSAYS					
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Aq	Cu	Рb	Zn	
91KT12 ER67R	grab	diorite	tiny garnets	magnetite	L 39N: 24+43E. Very coarse grained rock	<5	0.2	43	36	68	
91 KT 12 CR 68R	grab	green stone	Chlorite calcite	Pyrite magnetite) magnetite	<5	< 0.2	34	4	118	
91 KT 12 CR 69 R	grab	green stone	Chlorite calcite epidote	trace Dyrite	L40+15N: 21+25E: slightly skarry looking; non-magnetic	1 5	< 0.2	.55	26	84	
91KT12 CR70R	grab	z grano diorite		minior garnets magnetite	140N:22+38E: biotite + feldspar nich blebs of magnetite; strike 074°/dip 60°N	25	۲ 0.2	3	6	32	
91 KT 72 CR 71 R	grab	chlorite schist	silica	trace magnetite ?garnet banding	L35N: 19+16E: no visible sulphides: strike 018°/dip 76°W		2 0.2	27	4 2	98	
91 KT1Z CR97R	1.5m grab	* silicified tuff		>1% Py-finely dissern.	on hearing 121° = 200 m. from I.V. post SW3N strike 086°/dip to the N: slightly cherty	<5	< 0.2	16	2	Z 2	
91KT12 CR9BR	grab	diorite	Chlorite silica	trace Py	in 10m. E. of C98R; strike 0149/ dip to the W.	<5	۲ 0.2	24	<2	44	
91KT12 CR99R	grab	chert	· ·	trace Py	= 15m. N of C97R; / OC'S again Form. N. W. of shike 0620/ dip to the S.E. Sample: 1729/78	25	۲ 0.2	23	6	3Z	
91 KTIZ CRIOOR	grab	bioffite Schist	Chlorite silica	miner garnets trace Py	= 75m. N.W. of CR99R: strike 068°/dys to the N.W.??	∠ 5	۲ 0.2	62	42	80	
				<u>,</u>							
				-							

LOAS. IOUNTAIN DEOLUDICAL LTD.

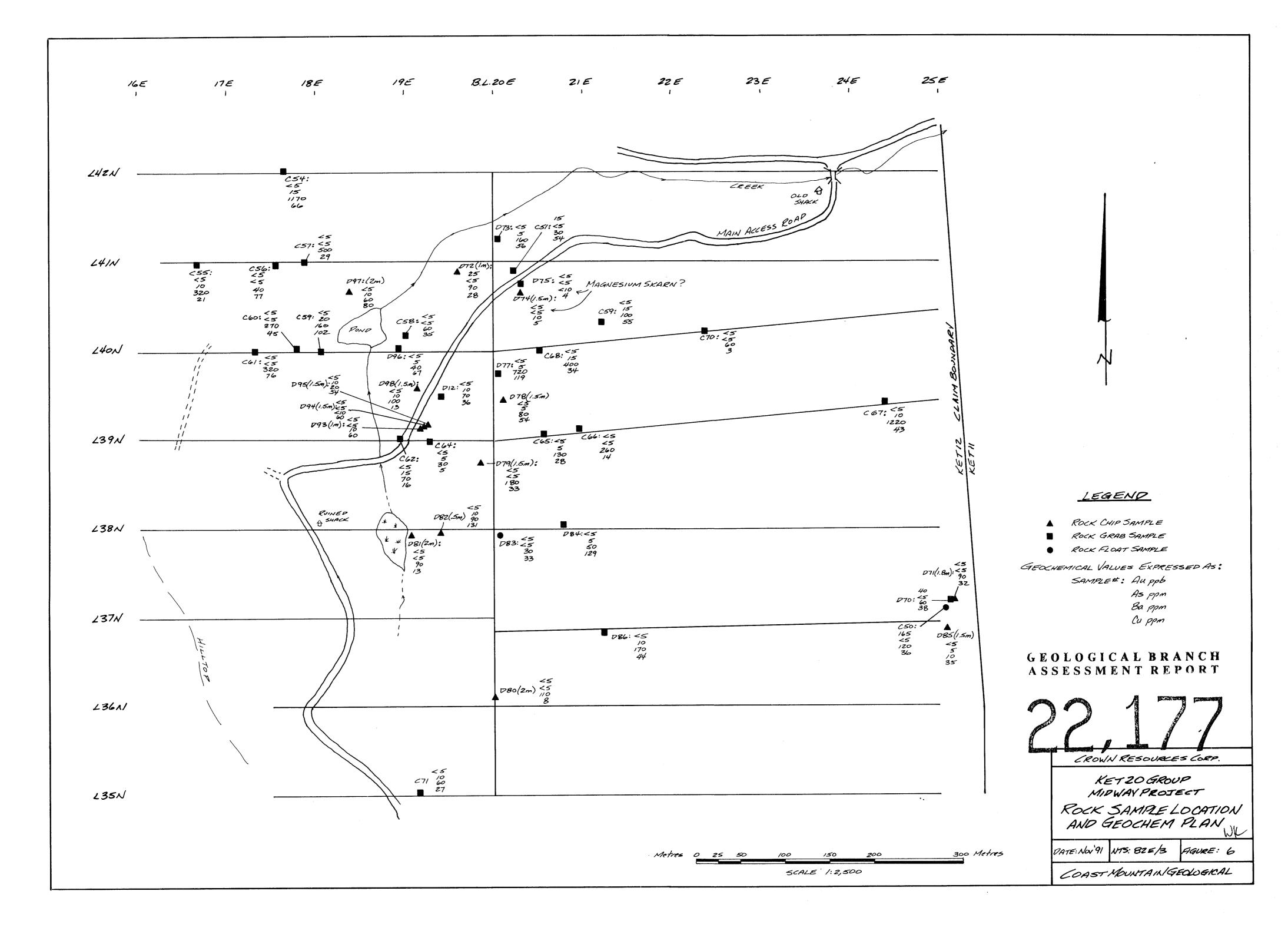
ROCK SAMPLE SHEET

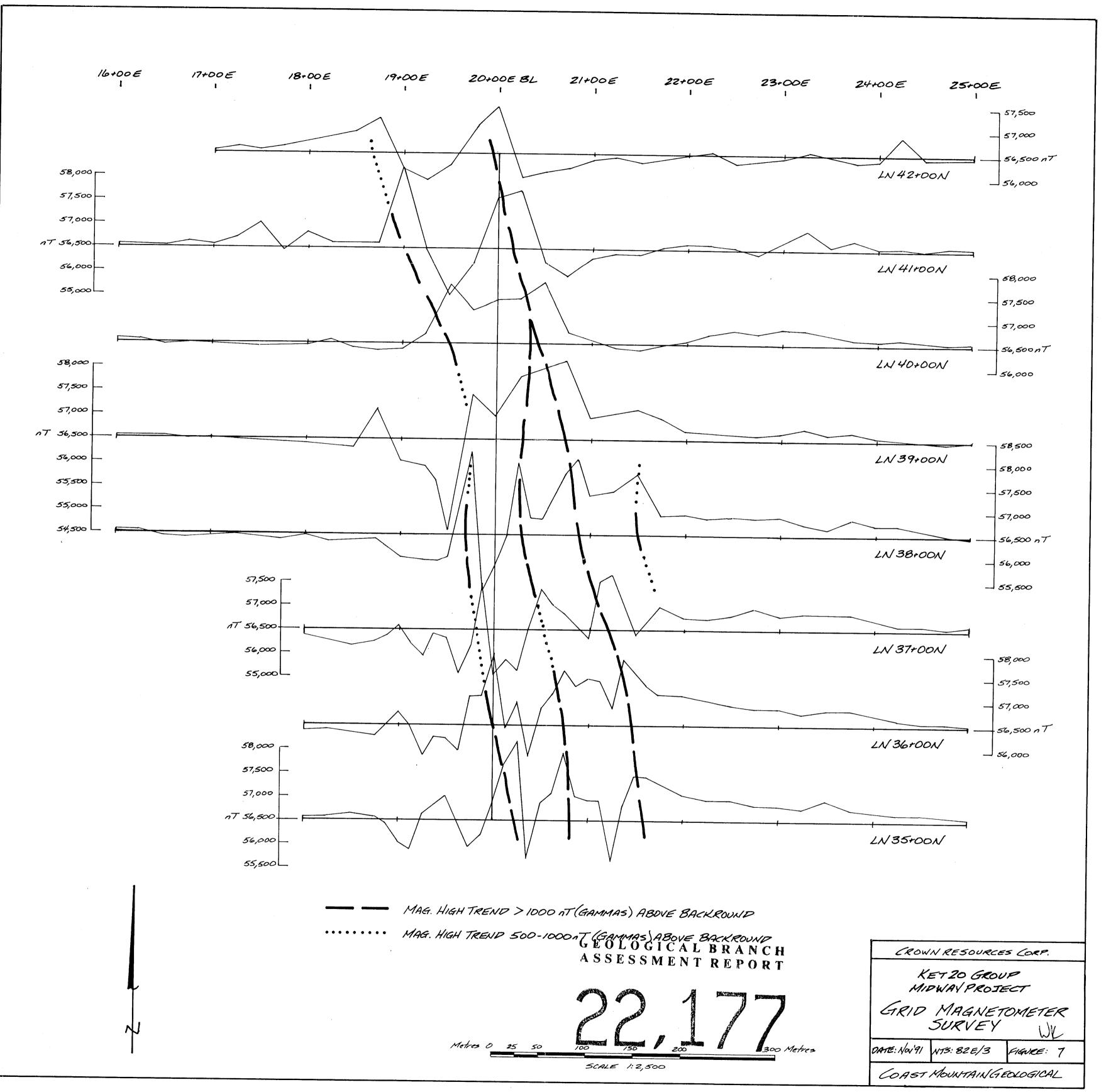
Sampler D. Ridley Date Sept. 1991


Property KETZOGroup


NTS BZE/Z

ASSAYS DESCRIPTION SAMPLE Sample Mineralization width Rock Tupe Alteration ADDITIONAL OBSERVATIONS NO Au Ag Cu Pb Zn silica 1-5% disem + 91 KT 12 = 60 m NE of old trench: siliceous 174 G stringers of pyrite <5 0.2 36 16 marble ? DIZR silica up to 1% pyrite old trench BL25E1 37+25N! = 3m E of A 91KT11 siliceous G vein system trends 160/85E: grab of best mineralization 0.8 38 meta-seds 8 40 20 D 70R muscovite chip across vein system DTOR 91 KTII • • .. n **2**2 84 <5 CO.2 32 1.8m D71R gtz carbonate, L 40195N: 19+60E: magnetite . rich chlorite schist maginetite rich chlorite 91 KT12 minor pyrite rare chalcopyrite. with atz-carb stringers: foliation trends 160/90 schiet 25 0.6 28 30 m 6 D7ZR minor epidote BLZOE: 41+30 d: exposed in skid trail: contains small poorly formed garnets: grades from diorite to gabbic over 2m; poor exposure: may be dyke? diorite chlorite minor magnetite 91 KT 12 G garnet fabbro 52 25 02 56 26 D73R wollastinite sericite (tak?) calcite no magnetite or above read = 50m SE of D73R: minor gtz-carb 91KT1Z skarn sulphides seen. 1.5m Stringers : small localized area. 25 202 5 6 18 D74R = 5m5 of D74R: calcite veinlets are flesh-91KT12 11 11 л G red colour: (siderite?): old trench? 25K0.2 4 12 D75R 6 91 KT 12 up to 3% pyrrhotite sub-crop rubble: dug up during road construction diorite gabbro -G rare chalcopyrite 54 (5 CO.2 /19 LZ D77R mottled chlorite gtz-carb effect similiar to gneissic texture. minor magnetite 91KT12 1.5m stringers 25 20.2 54 22 78 D 78R schist feldspar porphyry dyke minor magnetite trends 270/40N: in chloriteschist-greenstone 91KT1Z 25 6.2 33 18 1.5m78 wallrocks. D79R epidote fairly widespread (+ 25 sq m); garnets are magnetite-rich chlorite 91 KTIZ minor digem pyrrhotite garnets poorly formed. 2mschift 6.Z 25 9z 8 <2 DBOR chlorite minor magnetite Muscovite is common; foliation 144/50E; may represent fault or shear zone. 9tz-carb 91 KTIZ muscovite schist stringers muscovite? 74 45 6z 13 6 2mDBIR up to 2% disem siliceous in chlorite schist-greenstone: siliceous sulphide silica 91 KTIZ greenstone pyrrhotite rich section 50 cm wide: wallow non-magnetic 2 0.2 22 50cm 131 45 6 D 82 R fuult ytz-carb greenstone clasts comented by gtz-carbonate. 91 KT12 1-3% disem breccia? F healing possible subcrop: 2 0.2 33 42 86 pyrrhotite 45 D83R altered gtz-carb miner pyrrhetite subcrop rubble on hill top: 91KT1Z 6.2 129 42 54 epidote bandes 1-5mm bands of G 25 D84R schist magnetite


² J I 1


الاتين ST. Ul			noal Liv.	ROC	K SAMPLE SHEET	1 ~ ·		·		
Sampler <u>D</u> Date <u>5</u>	1. Rid jept. 1	<u>1e-1</u> 991		Property ^k	KETZO Group N	ITS	82	E/;	2	
I SAMPLE	la		DESCRIPT	TON	_1	L	م	ASS	AYS	;
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	AL	u Ag	3 Cu	Pb	Zn
91KTIZ D85R	7.5m	quartzite	e limonite	minor pyrite	trends 180/60W	<5	- 2 0.2		1	
91 KT1Z _ D86 R	G	green stone	epidote qtz-carb garnet	magnetite as clots + stringers	subcrep rubble: (10x20marea) ole of sunaltene greenstone is also magnetic.	45	az	. 44	< Z	44
91KTIZ D93R	lm	chloritic phyllite	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO	rare pyrite	footwall of quartz vein trench alongside main road.	/		60		
91 KT12 D94R	1.5m	quartz Vein		none seen	chlorite-bearing 1.5 m wide gtz vein trending 120/50E; old trench along main road:	<5	0.4	80	380	592
91KT 1Z D95R	1.5m	chloritic phyllite	quartz stockwork	minor pyrite- pyrrhotite	hanging wall of D94R vein:	<5	6.2	54	64	156
91 KT1Z D96 R	G	diorite	gtz-carb	minor pyrite	L40+50 N: 18+97E: brecciated gtz-carb healed+ flooded contact zone: fresh diorite ok 10mE. subcrop rubble.	25	2 0.2	67	4	94
91KTIZ D97R		schistose grænstene	silica	f-gr. disem pyrite- pyrrhotite up to 1%		25	- 20.2	22	10	54
91KT1Z D98R	1:5m	felsic intrusive	limonite	=1% disem pyrrhotite	intruded into contorted greenschist: across road from DIZR: wallow trends 160/70E	<5	6.2	13	4 2	52
91 KT12 D141 R	G	rhyolite		op to 3% pyrite	angular float or subcrop?; W side of Ketiz @ swamp + = 100 m W of read.	<5	0. Z	439	12	16
91KT1Z D142R	Zm	serpentinite	highly folded	minor magnetite	= 40 m SSW of DIYIR: contact zone between granodiorite (W) + serpentinite (E): zone trends 170/80E.	25	6.2	124	4	28
91KT1Z D143R	6	11	11	, , , , , , , , , , , , , , , , , , ,	=25m N of main road @ swamp: highly foldedt contorted.		6.2			
91KT12 D144R	IV	••				25	áz	23	< 2	12
91 KT12 D145R	4		••		@ 5 m E of D 144; up to 1% euledral pyrite.	5	۲ 0.2	37	22	28

.

.