	10: MAR 1 0 19	RD. 92
FILE N	0:	

GEOLOGICAL BRANCH

ASSESSMENT REPORT

- **1**/1

GEOLOGY AND TRENCHING

ON THE

LENNAC LAKE PROPERTY

(JAKE 1-9 AND ALEX 1-9 CLAIMS)

OMINECA MINING DIVISION

Mapsheet: 93 L/9 and 16

Location: 54 degrees 45' N 126 degrees 20' W

NTS: 672000 E 6070000 N

Owner: Kennecott Canada Inc. 138-200 Granville St. Vancouver, BC V6C 1S4

Operator: Kennecott Canada Inc. 138-200 Granville St. Vancouver, BC V6C 1S4

Authors: Hans Smit Colin Harivel

Date: March 6, 1992

SUMMARY:

The Lennac Lake property is located on the west side of Babine Lake 16 kilometres southwest of the town of Granisle. The property hosts porphyry style mineralization associated with dioritic porphyry dykes which intrude Jurassic Hazelton Group volcanic rocks.

Amax Canada Ltd. explored the central part of the property in the early 1970s. Amax outlined a 3.5 km northwest-southeast by 1.2 km northeast-southwest zone of propylitically altered, pyritic volcanics associated with an en echelon series of northeast trending dykes aligned along a northwest trending zone.

Amax undertook geological mapping, geophysics (Mag/IP), soil geochemistry, trenching, percussion drilling (44 holes) and diamond drilling (5 holes). This work outlined two mineralized zones within the larger propylitic zone.

The West molybdenite zone contains copper and minor within a dyke and the surrounding volcanic host mineralization Mineralization is associated with fracturing, rock. quartz stringers and some potassic alteration. Amax outlined a 300 metre zone of 0.2% copper with lower copper grades metre by 300 surrounding.

The East zone is centered 1.2 kilometres southeast of the West zone. In this zone, copper mineralization occurs within propylitically altered volcanics with carbonate +/- quartz stringers. Grades are generally less than 0.1% copper.

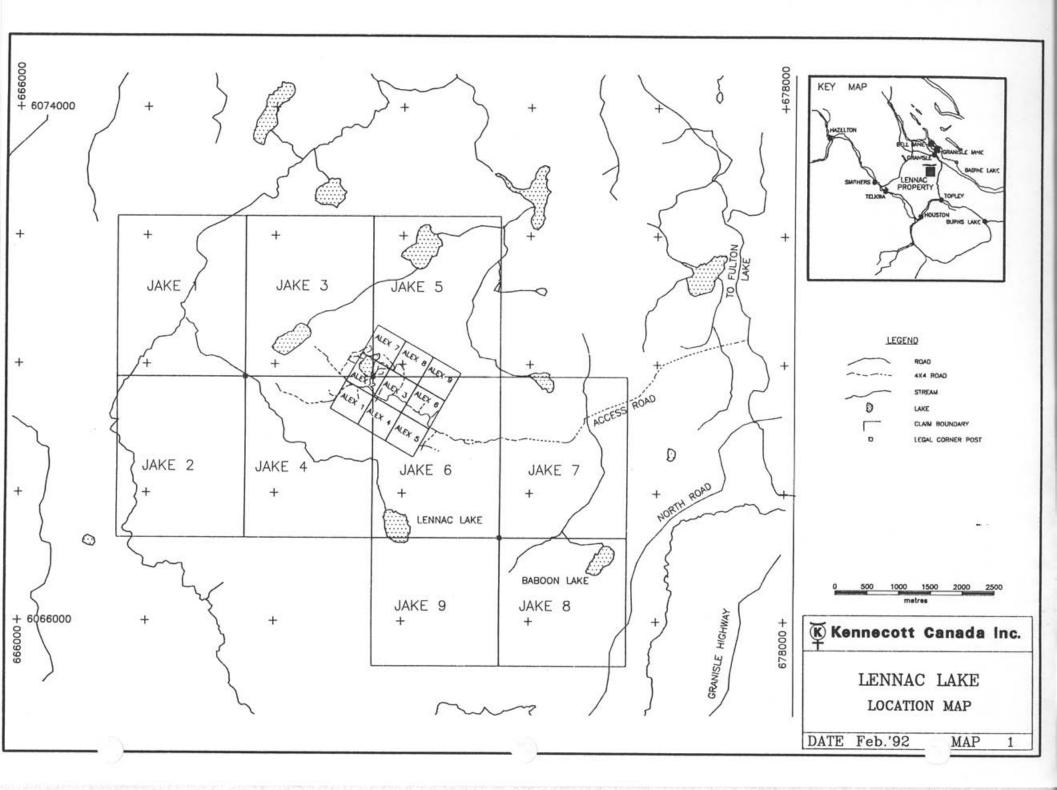
Amax allowed the claims to lapse and the property was restaked by L. Bourgh in 1990 and 1991. In 1991 Kennecott Canada Inc. optioned the Alex 1-9 two-post claims from L. Bourgh and overstaked them with the Jake 1-9 four-post claims.

Exploration by Kennecott in 1991 is detailed in this report. included geological sampling, prospecting, grid Work mapping, refurbishing, limited soil geochemistry and trenching. Exploration was directed towards evaluating the potential for significant gold values associated with copper mineralization on the property. The work plan included evaluating the work done by Amax, searching for new mineralization, and testing previously discovered and new mineralization for gold content.

Work in the West and East zones confirmed the findings by Amax. Work east of the East zone found two new mineralized zones. The Suratt showing contains copper mineralization associated with a zone of silicified volcanics. Results in the 0.2 to 0.3% copper range were obtained from chip samples in this zone. The zone is unlikely to contain significant tonnage.

Molybdenum mineralization associated with quartz stringers was discovered south of the Suratt showing. Up to 1106 ppm Mo was returned from samples in this zone. The size of this zone is unknown, but it may be considerable. Further work is required to better define the extent and grade of mineralization in this area and to the southeast.

Gold results from samples from all zones were low (mostly <50 ppb) except for one sample which assayed 1.84 gm/tonne gold. The high gold content of this sample is probably related to narrow late shears.


TABLE OF CONTENTS

			Page
	1.0	INTRODUCTION	
		1.1 Location and Access	3
		1.2 Physiography	3
		1.3 Claim Status	3
		1.4 Summary of Work	5
		1.5 Property History	5
	2.0	GEOLOGY	
		2.1 Regional Geology	7
		2.2 Property Geology	8
	• •		
	3.0	1991 EXPLORATIOM PROGRAM	11
	4.0	CONCLUSIONS AND RECOMMENDATIONS	14
	-		
	5.0	BIBLIOGRAPHY	15
	6.0	STATEMENT OF COSTS	16
	7.0	STATEMENT OF QUALIFICATIONS	17
TABLE	S:		
	Table	1 Claim Status	4
			-
MAPS:			
	Man 1	Incetion Man	~

Map 1	Location Map	2
Map 2	Geology and Mineralization	back pocket
Map 3	Sample Locations	back pocket
Map 4	Soil Sample Locations	13

APPENDICES:

Appendix	1	Figure 1-7 (Sketch Maps)
Appendix	2	Sample Summaries
Appendix	3	Geochemical Certificates
Appendix	4	Exploration Methods

1.0 INTRODUCTION:

1.1 Location and Access

The Lennac Lake property is located on the west side of Babine Lake, 16 kilometres southwest of Granisle, BC and 55 kilometres east of Smithers, BC.

Access to the property is via a secondary forestry road that intersects the highway to Granisle 30 kilometres north of Topley. This road is followed for approximately seven kilometres northward towards Fulton lake. From this point, a four-wheel drive road runs westward through the center of the property for seven kilometres.

1.2 Physiography

The property lies in the relatively flat area west of Babine Lake. Elevations range from 880 metres to 1050 metres. Continental glaciation has resulted in numerous low ridges and morraines with lower regions occupied by swamps and shallow lakes. Outcrop is sparse throughout the property. Overburden varies from a thin layer of glacial till to thick (possibly greater than 50 metres) layers of glacial outwash sands and gravels.

The property is covered by lodgepole pine, spruce, balsam fir and poplar. Thick alder patches occur locally.

1.3 Claim Status

The property is comprised of nine two-post claims (Alex 1-9) and nine four-post claims (Jake 1-9) which completely overlie the two-post claims. The two-post claims were staked by Leonard Bourgh in June of 1991. In July of 1991 Kennecott Canada Inc. staked the Jake 1-9 claims totalling 172 units and in August Kennecott obtained the Alex claims from L. Bourgh.

Some of the Jake claims were subsequently reduced in size.

KENNECOTT CANADA INC. LENNAC LAKE PROPERTY CLAIM STATUS

NAME	RECORD #	RECORD DATE	EXPIRY	UNITS (AFTER	REDUCTION)
ALEX 1 ALEX 2 ALEX 3 ALEX 4 ALEX 5 ALEX 6 ALEX 7 ALEX 8	300613 300614 300615 300616 300617 300618 300619 300620	JUNE 9/91 JUNE 9/91 JUNE 9/91 JUNE 9/91 JUNE 9/91 JUNE 9/91 JUNE 9/91 JUNE 9/91	1992 1992 1992 1992 1992 1992 1992 1992	1 1 1 1 1 1 1 1	
ALEX 9	300621	JUNE 9/91	1992	1	
JAKE 1 JAKE 2 JAKE 3 JAKE 4 JAKE 5 JAKE 6 JAKE 6 JAKE 7 JAKE 8 JAKE 9	$\begin{array}{c} 301611\\ 301612\\ 301613\\ 301614\\ 301615\\ 301615\\ 301616\\ 301617\\ 301678\\ 301619\\ \end{array}$	JULY 10/91 JULY 10/91 JULY 10/91 JULY 10/91 JULY 10/91 JULY 10/91 JULY 11/91 JULY 11/91 JULY 11/91	1992 1992 1994 1994 1994 1994 1994 1994	20 20 16 16 16 20 20 12 16	

TABLE 1 CLAIM STATUS

1.4 Summary of Work

The 1991 exploration program on the Lennac Lake property included geological mapping, prospecting, trenching, chip sampling, and re-establishing an old grid.

The program was divided into two parts. The first part was carried out from August 15 to 23, 1991. During this time, Colin Harivel mapped part of the property around the main showings, Pat Suratt prospected throughout the central part of the property, and Lynn Bishop re-established an IP grid originally placed in 1972.

The second part of the program was carried out from September 10 to 16, 1991. During this time, trenching was done using a skidder-mounted backhoe by Joe Hidber under the supervision of Colin Harivel. Kaaren Soby assisted Colin.

In total, 30 man-days were spent mapping, prospecting and sampling, 110 rock samples and 44 soil samples were collected and geochemically analysed, 60 metres of trench were dug, and 21.5 metres of grid were re-established (two metres re-cut, the rest flagged). In addition, the access road was brushed out and a few mud holes repaired.

All samples were sent to Min-en Laboratories in Smithers and analysed by 31-element ICP and by AA for gold.

1.5 Property History

1

The Lennac property is centered on an area explored by Amax Canada Limited in the 1970s. Amax staked the Thezar #1-132 Lake in 1971. claims north of Lennac In the same year, they prospected the property and carried out soil mapped and geochemical and geophysical (Mag/VLF) surveys. Trenching was undertaken in this year with some possible further trenching in 1972.

This work outlined a 3.5 kilometre NW-SE by 1.2 kilometre NE-SW zone of pyritized volcanics associated with porphyritic dykes. Within this pyrite zone, two zones of copper and molybdenum mineralization were found.

The West zone contains copper and lesser molybdenum mineralization within a porphyritic dyke and within surrounding volcanics. Surface sampling returned grades of up to 0.26% copper.

The East zone, 1.2 kilometres southeast of the West zone, contains copper mineralization within propylitically altered volcanics.

In 1972. Amax established a grid totalling 31 line-kilometres of cut-line. An IP survey was carried out over the grid. Results the show a very high P.F.E. response in an arcuate from survey pattern around the West zone with a lower, but still anomalous in the center over the known copper mineralized zone. response. This classic IP response over a mineralized porphyry indicates a potential zone in the order of 600 metres by 900 metres mineral in size. This corresponds well with known mineralization.

The IP response over the East zone was weaker and indistinct.

Amax continued exploring the property with 44 percussion holes totalling 3462 metres in 1973. Thirty-six holes were drilled in around the West zone. Drilling outlined a central copper and zone averaging 0.2% copper on the east side of a porphyry dyke 300 metres in area and continues to at that is 300 metres by The zone is surrounded by a 1% copper least 100 metres depth. zone.

Eight percussion holes were drilled in the East zone. The best copper grades were 0.17% and 0.11% over 90.5 metres and 86.9 metres respectively.

In 1974, Amax drilled five diamond drill holes totalling 919 metres to further test the West zone. Results were similar to those from the percussion holes.

Amax subsequently allowed the property to lapse.

1

The area in the southeast of the property, around Baboon Lake, was worked as the Jacob property by British Newfoundland Exploration in the 1970s. They carried out an IP survey, geological mapping, and limited drilling.

In 1974, three diamond drill holes were drilled totalling 180 metres. In 1976, 11 percussion holes were drilled totalling 450 metres. The only data available from this work are the diamond drill logs without assays in an assessment report.

No subsequent work has been recorded in the area covered by the present claims. The central part of the property was staked by Leonard Bourgh as the Cu 1-6 four-post claims in 1990, and the subsequent Alex 1-9 claims in 1991. These claims have been overstaked by the Jake 1-9 four-post claims.

2.0 GEOLOGY:

2.1 Regional Geology

The area around the Lennac Lake property is principally underlain Jurassic Hazelton Group volcanics and lesser sediments. by The fault contact with Triassic Takla Group are in Hazelton rocks volcanics and lesser sediments east of the property. To the sediments overlie the north, younger Cretaceous Skeena Group Hazelton To the south, Tertiary Ootsa Lake Group rocks. and Endako Group andesites and basalts overlie the rhyolites Hazelton rocks.

Three ages of intrusives occur in the area. Jurassic Topley Intrusions are quartz monzonite to granodiorite in composition and are the intrusive equivalents to the Hazelton Group volcanics. A large area south of the property is underlain by Topley intrusives.

Late Cretaceous Bulkley Intrusions occur as quartz monzonite to quartz diorite plugs throughout the area.

the area around Babine Lake, Tertiary Babine Intrusions occur In small plugs and dykes. They range in composition from quartz as quartz diortie and characterized by monzonite to are biotite-feldspar porphyries. Extrusive equivalents to these intrusives are found north of Granisle.

Mineralization in the area includes porphyry prospects in all three ages of intrusives, as well as the Granisle and Bell deposits 25 kilometres northeast of Lennac Lake which are associated with Babine intrusives.

The Bell Mine is notable due to the relatively high gold content of the ore (0.01 oz/ton gold with 0.48% copper).

Precious metals are found in shear hosted vein structures in the Hazelton volcanics to the east and south of Lennac Lake. The currently producing Dome Mountain Mine is 20 kilometres west of the property. 2.2 Property Geology

2.2.1 Lithology

The Lennac Lake Property is underlain by Jurassic Hazelton volcanic rocks which have been intruded by a number of diorite porphyry dykes.

Leary and Allen (1971) divided the Hazelton rocks in the area explored in 1991 into three units. Work in 1991 verified this work. The southwestern part of the area is underlain by red-purple volcanics consisting of lapilli tuffs to volcanic breccias. This unit is characterised by angular red, maroon, and green andesitic fragments and grey feldspar grains in a dense, fine grained, purple to green matrix. Green to purple, massive, feldspathic flows or agglomerates with round andesitic bombs up to seven centimetres occur locally.

A northwesterly trending unit of grey-green volcanics outcrops to the east of the red-purple volcanics. It is characterised by grey-green andesitic to dacitic flows, massive, tuffs and breccias with abundant feldspar crystals in a fine grained dense and matrix. Flow volcaniclastic rocks are almost indistinguishable from each other as clasts are of indentical composition to the matrix. Minor red-purple volcanics occur intercalated with this unit.

East of the grey-green volcanics, Leary and Allen (1971) grouped massive green flows, red, green and purple volcaniclastics and minor sediments into an undifferentiated volcanic and minor sedimentary unit as rock exposure is too poor to define individual units. This area was not explored in 1991.

Along the eastern contact of the grey-green volcanic unit mapped by Leary and Allen (1971), a unit was mapped as rhyolite breccia in 1971. Work in 1991 indicates that this unit is a result of bleaching and silicification of Hazelton Group andesitic volcanics instead.

The dykes are comprised of medium to coarse grained euhedral to subhedral phenocrysts of plagioclase (25%), quartz (5 to 10%), biotite books (3 to 8%) and hornblende (1 to 5%) in an aphanitic light to dark grey groundmass (Leary and Allen, 1971). In hand sample they look identical to the Babine intrusive biotitefeldspar porphyries (BFP) which host copper mineralization at the Bell and Granisle deposits. One age date from the Lennac West zone gave a date of +/- 77Ma (Carter, 1981). This is older than the +/- 50Ma age for the Babine Intrusions, and would make the Lennac dykes part of the Babine iintrusions. There is a 1500 metre wide dyke/stock in the northwest of the property. Several smaller (up to 300 metre wide) northeast trending dykes are aligned along a northwest trending zone.

2.2.2 Structure

The Hazelton volcanic rocks appear to dip moderately northeasterly. The dykes trend northeasterly and may be emplaced within en echelon tension openings along a northwest structure. Aligned phenocrysts occasionally show a weak foliation striking northeasterly and dipping vertically within the dykes.

Steeply dipping northeasterly and northwesterly joints are common. Some fractures contain alteration and/or sulphide minerals.

2.2.3 Alteration

1

A large hydrothermal alteration system trends northwesterly in the area of the porphyry dykes. It is up to 1.3 kilometres wide and over 3.5 kilometres long. Exploration in 1991 extended the zone to the southeast and it is still open in this direction.

Volcanic rocks in the zone are variably propylitically altered and commonly contain disseminated and lesser fracture controlled pyrite. The propylitic alteration results in chlorite and epidote replacement of mafic minerals with associated calcite.

Intrusive rocks are sometimes weakly argillitized and also commonly contain pyrite.

Potassic alteration with secondary biotite development and K-feldspar along fractures occurs within intrusive rock in the West zone.

Quartz +/- carbonate stockwork development occurs in zones where copper and molybdenum mineralization has been found.

Silicification and bleaching of volcanics occurs locally in the volcanics, especially at the Suratt showing.

2.2.4 Mineralization

Pyrite occurs throughout the widespread propylitic alteration zone both as disseminated grains and as lesser fracture controlled pyrite. Copper and molybdenum mineralization occur in discrete zones within this larger alteration zone. There are four main mineralized zones, the previously discovered East and West zones and the Suratt showing and quartz stockwork hosting molybdenite south of the Suratt found in 1991.

i) West zone

The West zone occurs within a porphyry dyke and the surrounding volcanics. Pyrite, chalcopyrite, chalcocite, magnetite and minor molybdenite occur along fractures, with quartz stockwork and as disseminated grains. The best grades are in a higher grade core on the east side of the dyke and are associated with potassic alteration. A 300 metre by 300 metre wide zone of 0.2% copper has been indicated by previous drilling. Lower grade copper surrounds this zone in the dyke and host volcanics. A zone of high pyrite occurs outward from the copper mineralization.

Five composite samples were taken in 1974 from diamond drill core drilled in the higher copper zone. All contained less than one ounce silver and trace gold per ton.

ii) East zone

The East zone occurs within propylitically altered volcanics 1.2 kilometres southeast of the West zone. Pyrite, chalcopyrite, magnetite and minor sphalerite occur on fractures, within quartz-carbonate stockwork and occasionally as disseminated grains. Mineralization has been found intermittently over an 800 by 800 metre area. Grades are generally less than 0.1% copper.

iii) Suratt Showing

Suratt showing was found along the access road by prospector The Suratt in 1991 one kilometre east of the main East zone Pat occurs within a unit previously identified as trenches. Τt by Leary and Allen (1971). "rhyolite breccia" The unit is believed to lie close to a fault zone and to have resulted from silicification and bleaching of the host dark green Hazelton Group volcanic rocks. Trenching has revealed that the rocks become gradually darker and less silicified away from the central bleached, brecciated and silicified zone.

Sulphide mineralization includes disseminated pyrite, chalcopyrite and variable tetrahedrite. The highly altered and mineralized part of the zone is up to 25 metres wide and trends northwestward. Its strike length is unknown. Grades from chip samples graded 797 to 2455 ppm copper and 1 ppb to 40 ppb gold. Grabs from the zone graded up to 9862 ppm copper and 118 ppb gold. The style of mineralization found at the Suratt showing was not found anywhere else on the property.

iv) South of Suratt

Trenching 200 and -80 metres south of the Suratt showing weathered pyritic volcanic rock with weak quartz uncovered associated molybdenum and minor copper stockwork and Grades of 25 to 1106 ppm molybdenum and 127 to mineralization. were obtained from chip samples in this area. 1253 ppm copper The geometry and extent of this zone are unknown.

3.0 1991 EXPLORATION PROGRAM:

3.1 Introduction

Exploration in 1991 was undertaken to investigate the possibility that the property, demonstrated by previous operators to have Babine-porphyry bulk tonnage potential, might have undiscovered or insufficiently tested gold values associated with copper mineralization.

The work plan included:

- 1) Verification of previous geological mapping and amplification of the mapping where necessary.
- 2) Sampling of sulphide mineralization in and around identified zones of potential.
- 3) Intense sampling of previous trenching, with average sample size of 10 kg.
- 4) Use of an experienced prospector throughout the area while other work was continuing.
- 5) Backhoe trenching in areas where:

- i) soil geochemical anomalies from a 1971 soil survey were not adequately explored.
- ii) promising float was found in areas of insufficient previous trenching.
- iii) current prospecting had found new mineralization.

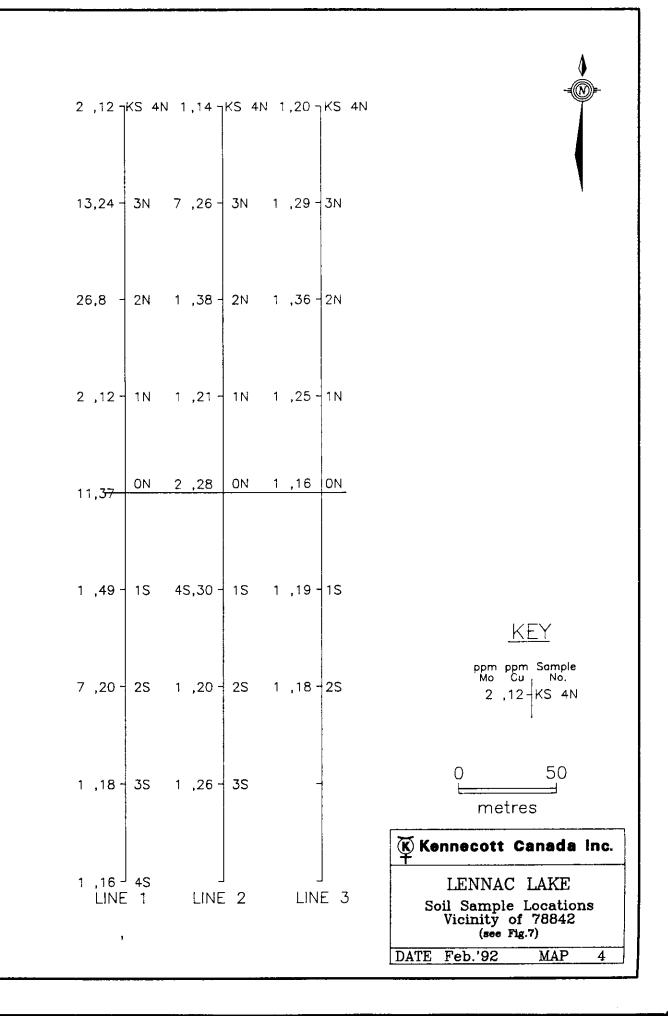
3.2 Results

As described in the section on geology, work in 1991 confirmed the mapping done by Leary and Allen in 1971 except for the area around the Suratt showing. Geology is shown on Map 2.

Sample locations are shown on Map 3 and Figures 1 through 7. Thirty-one rock samples collected while mapping were analyzed. Most are from the West and East zones. Another 31 samples were collected from around the West zone and Suratt showing areas during prospecting. These samples tended to be biased towards well mineralized chips.

Samples from the West zone graded up to 0.50% Cu and up to 60 ppb Au. Those from the East zone graded up to 0.27% Cu and 35 ppb Au, though most samples graded less than 100 ppm Cu and 10 ppb Au in this zone. Prospecting samples from the Suratt showing graded up to 0.31% Cu and 20 ppb Au.

Large 10 kg samples were taken in mineralized zones in an attempt to get more representative grades. Sampling was not biased toward well mineralized chips for these samples.


Results from these samples in the West zone graded up to 0.21% Cu and 50 ppb Au. Grades were more commonly in the 0.1 to 0.15% Cu and 20 to 30 ppb Au range. In the East zone, samples graded up to 0.12% Cu and up to 1.84 gm/t gold. However, the high gold value was highly anomalous and is probably related to some late shears in the area sampled. Results from the East zone were more typically in the 0.1% Cu and less than 10 ppb Au range.

Chip samples taken after trenching of the Suratt showing graded up to 0.25% Cu and 40 ppb Au and grabs graded up to 0.99% cu and 118 ppm Au. Samples commonly graded in the 0.1 to 0.3% Cu and 10 to 40 ppb Au range.

Grab samples from trenches south of the Suratt showing, in the area of quartz stockwork with molybdenum, graded from 170 to 1253 ppm Cu, 25 to 1106 ppm Mo and 3 to 40 pb Au.

Trenching was undertaken in the Suratt showing area and the molybdenum stockwork area to the south as described above. Trenching was also undertaken in the West zone east of the lake and in the area of individual soil anomalies from the 1971 soil survey north of the lake.

revealed no discoveries Trenching in the West zone of pits were dug in areas where well significance. These mineralized or altered float was discovered by the prospector and there were no nearby trenches. In the more southerly pit, a contact zone between porphyry intrusive and altered Hazelton To the north green andesitic rocks volcanics was encountered. were variably mineralized with were found. The rocks disseminated pyrite and minor chalcopyrite (see Fig. 2).

5.0 BIBLIOGRAPHY:

Carter, N.C.

1981 Porphyry Copper and Molybdenum Deposits West-Central British Columbia; Ministry of Energy, Mines and Petroleum Resources, Bulletin 64

DePaoli, G.M. and Allen, J.F.

1972 Geophysical Report on Ground Magnetometer and Induced Polarization Surveys on the Lennac Lake Copper Property; Assessment Report No. 3808

Hodgson, C.J.

1974 Lennac Lake Drill Program, March to April 1974; Assessment Report No. 5031

Leary, G.M. and Allen, J.F.

1

1972 1971 Geochemical and Geophysical Report, Lennac Lake Cu Property; Assessment Report No. 3807.

6.0 STATEMENT OF COSTS

ITEM	REMARKS	COST
Wages; C.Harivel	16 days x \$275	\$4,400.00
Wages; P.Suratt	8 days x 220	\$1,760.00
Wages; K.Soby	-	\$840.00
Wages; L.Bishop	10 days x \$100	\$1,000.00
Linecutter/Brusher	4 days x \$210	\$840.00
Camp rental/setup		\$1,920.00
Camp materials		\$579.00
Camp supplies		\$300.00
Food		\$788.00
Field supplies		\$464.00
Equipment rental	saw, radios	\$280.00
Truck rentals		\$698.00
Truck gas		\$297.00
Airphotos/maps		\$394.00
Map plotting/photoco	pying	\$426.00
Sample analysis		\$2,119.00
Supervision/planning	-	\$2,000.00
Backhoe rental	40 hrs x \$70	\$2,800.00
Lowbed		\$324.00
Report writing	5 days x 250	\$1,250.00
Drafting		\$500.00
Report supplies/copy	ing	\$30.00

TOTAL COSTS

\$24,009.00

7.0 STATEMENT OF QUALIFICATIONS:

I, Hans Q. Smit, of Telkwa, British Columbia, do hereby certify that:

I am a graduate from the University of British Columbia with a B.Sc. Honours (Geology).

I have been involved in the mineral exploration and mining industry for eleven years.

I am a fellow of the Geological Association of Canada.

I am employed by Kennecott Canada Inc. of 138-200 Granville St., Vancouver, BC.

I visited the Lennac Lake property on several occasions in 1991.

I am the co-author of this report.

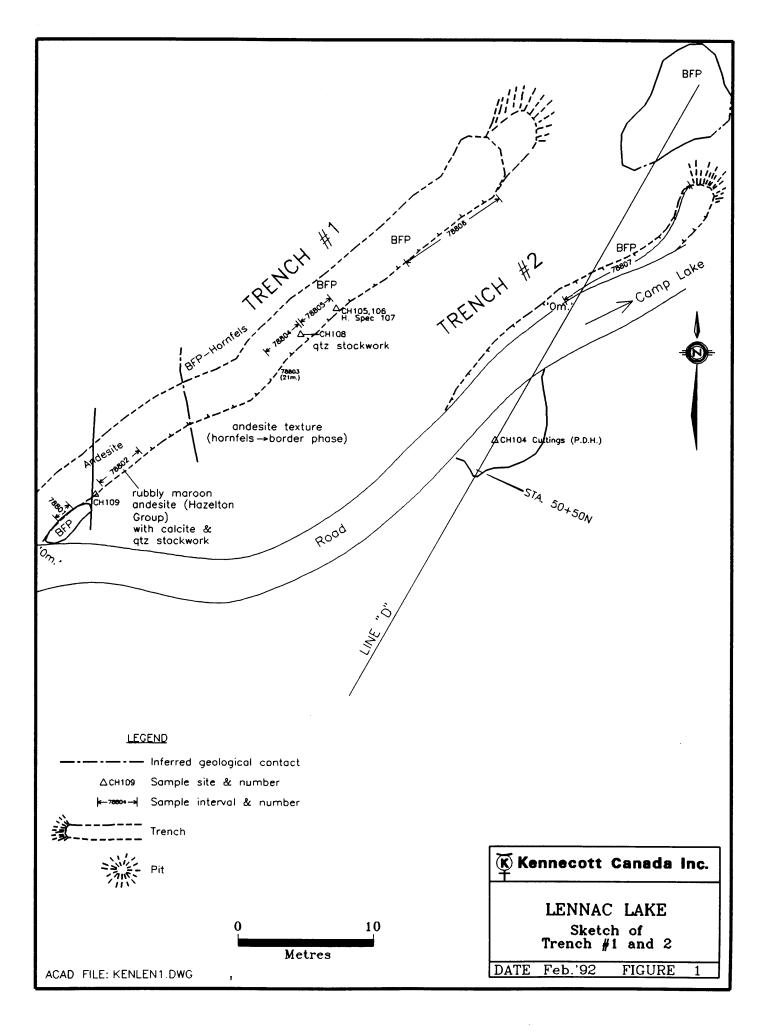
mark 6/92 Date

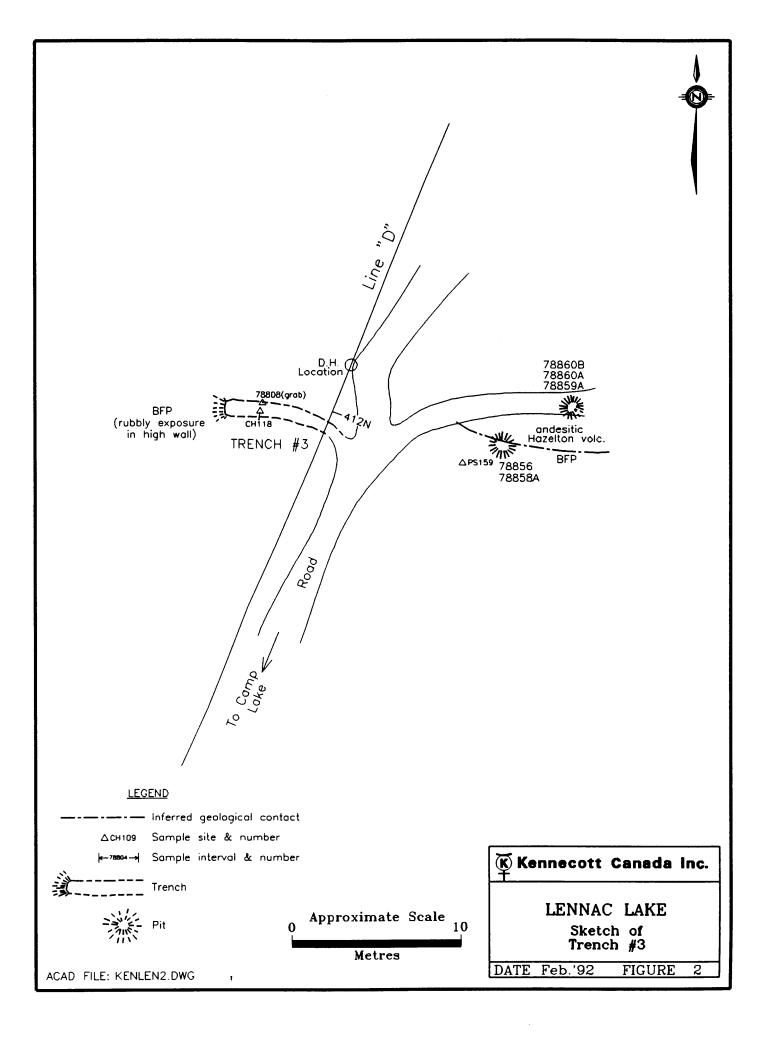
-17-

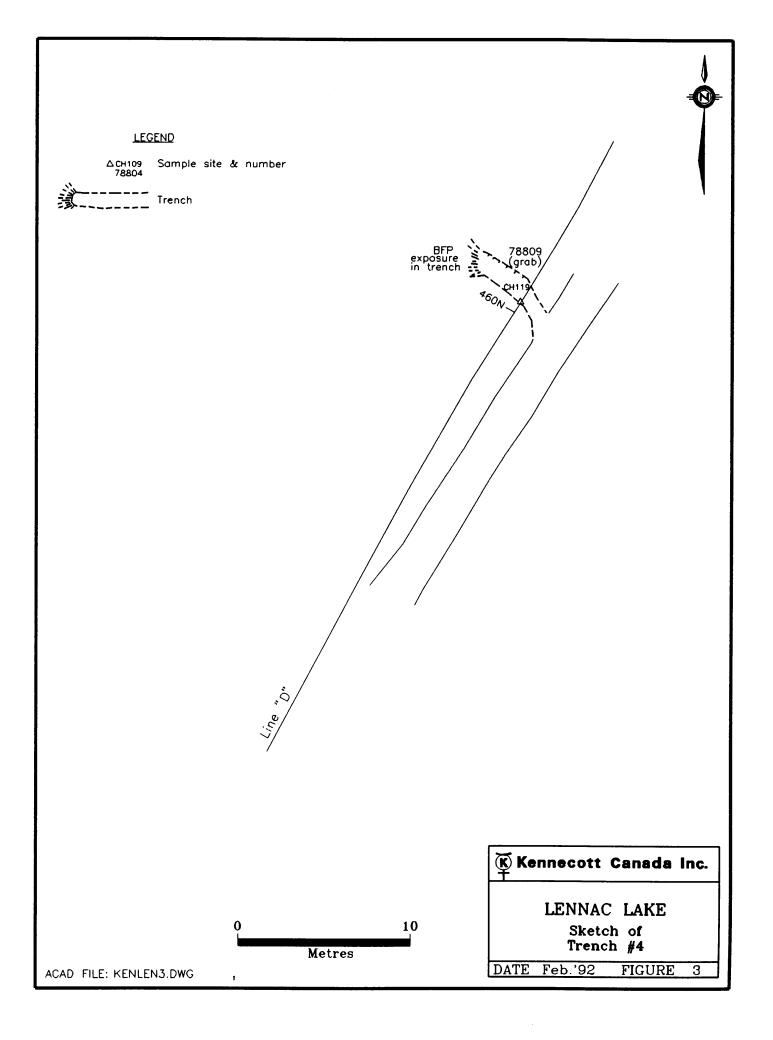
AUTHOR'S STATEMENT

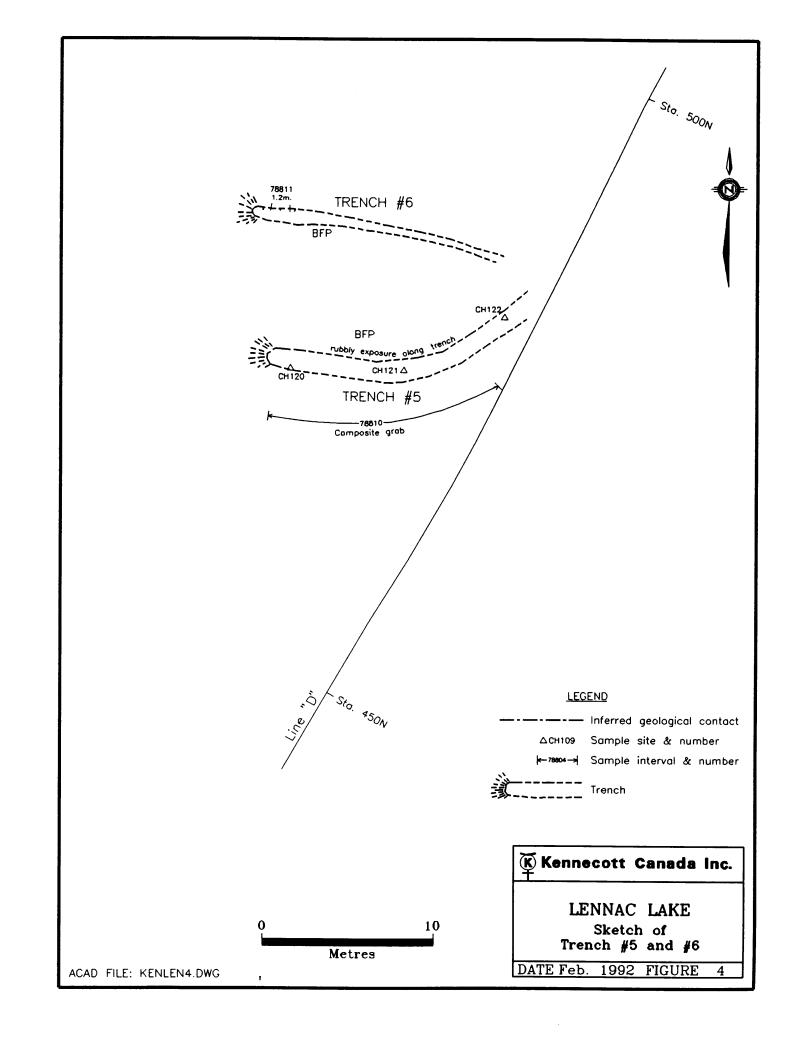
- I, Colin Harivel, do hereby state that:
- 1. I am a mineral exploration geologist with business address P.O. Box 233, Smithers, B.C., V0J2N0,
- 2. I graduated from the University of British Columbia in 1972 with a B.Sc. in geology and I have since then practised my profession in Australia, Canada and the United States of America,
- 3. I am a Member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia,
- 4. I have explored for and am familiar with the characterisitcs of ore deposits of the type that may be contained in the Lennac Lake area property, the subject property in this report, and
- 5. I visited the property in August and September, 1991, and this report is based on a literature review and on observations made by me and by associates who were present on those dates.

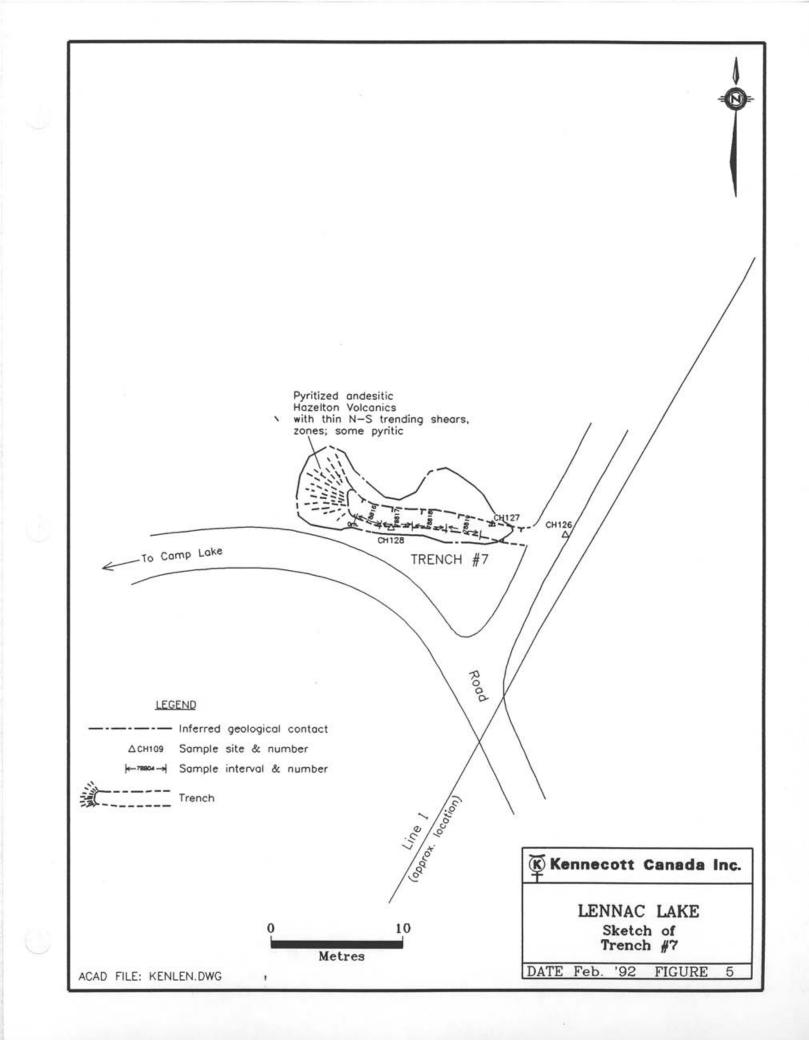
Signed:

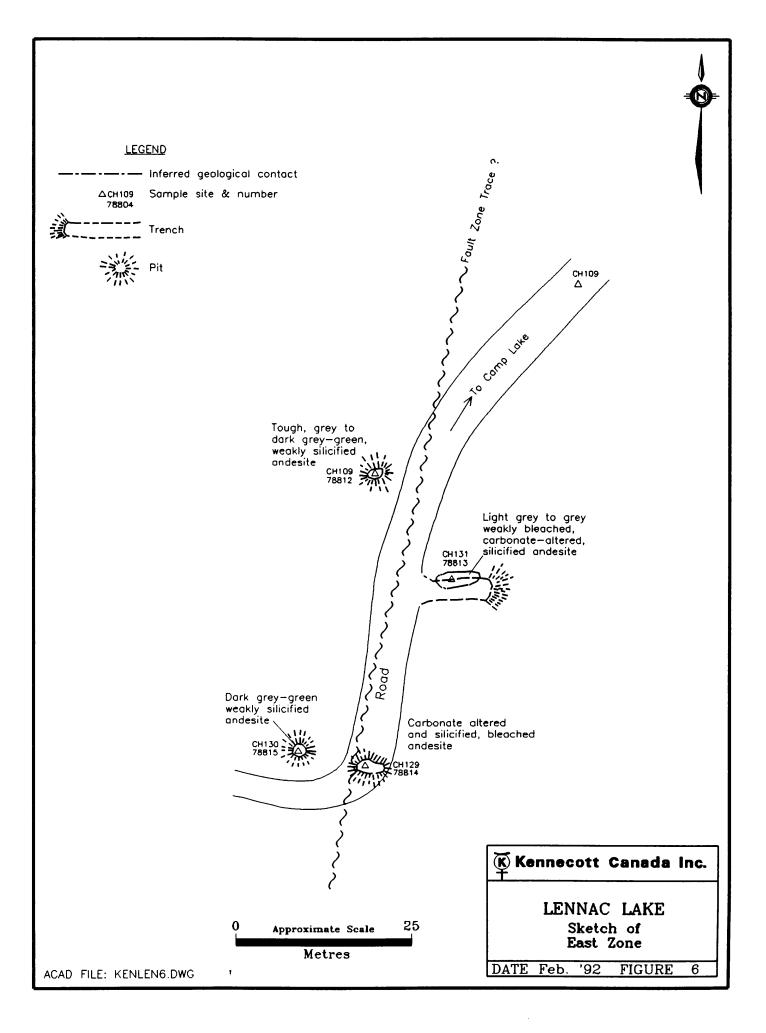

COLIN HARIVEL, B.Sc., P.Geo

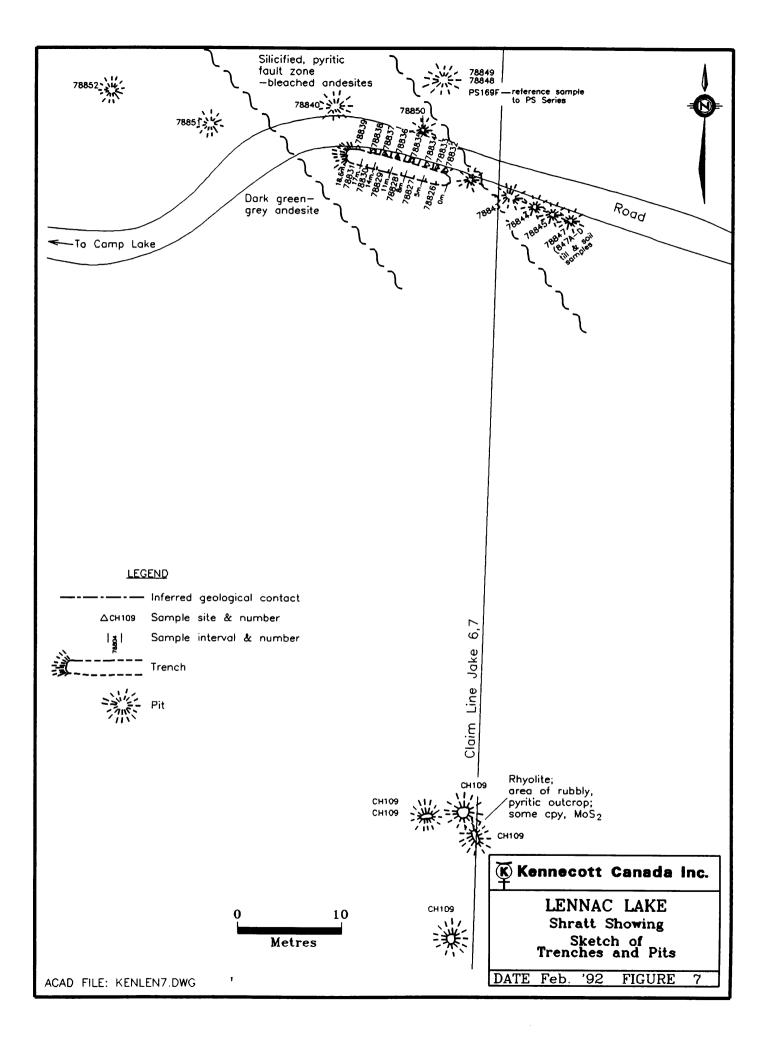

March 5th, 1992


APPENDIX 1


,


FIGURE 1-7 SKETCH MAPS





APPENDIX 2

SAMPLE SUMMARIES

KENNECOTT CANADA INC. LENNAC LAKE PROJECT 1991 CHIP SAMPLING

LARGE ROCK SAMPLE (10KG)

SAMPLE		LOCATION]	LITHO.	MINERAL/ALTER	Cu	Mo	Au	
	(metres)					ppm	ppm	ppp	

samples from Amax trenches

78801	grab	West zo	one	BFP	₩-сру	1411	5	5	ļ
78802	3.3	West zo	one	volc	w-stwk	1546	18	10	
78803	grab	West zo	one	BFP/volc	cpy; qtz stwk	1718	3	40	
78804	3.0	West zo	one	BFP/volc	cpy;py;moly; qtz	1497	7	10	
78805	3.0	West zo	one	BFP/volc	stwk	1090	8	30	
78806	grab	West zo		BFP	qtz; w-cpy	781	5	5	
78807	grab	West zo	one	BFP	qtz; w-cpy	1297	22	50	
78808	grab	West zo		BFP	qtz; w-cpy	2095	6	20	
78809	grab	West zo		BFP	carb	696	3	5	l I
78810	grab	West zo	one	BFP	ру; w-сру	561	12	5	
78811	1.2	West zo		BFP	lim	458	7	5	
78812	grab	East zo		volc	py;cpy	1204	18	10	
78813	grab	East zo		volc	qtz;carb; py;w-cpy	94	1	5	
78814	grab	East zo	one	volc	qtz;carb; py;w-cpy	22	1	5	
78815	grab	East zo		volc	qtz;carb; py;w-cpy	344	1	5	ł
78816	3.0	East zo		volc	qtz;carb; py;w-cpy	910	45	5	ł
78817	3.0	East zo	one	volc	qtz;carb; py;w-cpy	1164	58		assay
78818	3.0	East zo		volc	qtz;carb; py;w-cpy	1275			(1.84 §
78819	3.0	East zo		volc	qtz;carb; py;w-cpy	1140	138	40	-

samples from 1991 trenches

78826	5.0	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	1251	7	21
78827	3.0	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	1157	9	17
78828	3.0	Suratt; Tr-1	alt rhy?	<pre>sil; cpy;tetr</pre>	2455	10	40
78829	3.0	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	892	9	21
78830	3.0	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	1117	5	12
78831	1.6	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	797	28	10
78832	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	3127	6	100
78833	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	2252	4	43
78834	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	2520	9	15
78835	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	3152	8	17
78836	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	3272	21	31
78837	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	9862	20	118

SAMPLE	WIDTH (metres)	LOCATION	LITHO.	MINERAL/ALTER	Cu ppm	Mo ppm	Au ppb
78838	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	3205	6	31
78839	grab	Suratt; Tr-1	alt rhy?	sil; cpy;tetr	2641	5	37
78840	grab	Suratt; Tr-2	alt rhy?	w-cpy	504	17	26
78841	grab	285m S. of Sur.	volc	py; q-stwk; w-moly	170	105	30
78842	grab	215m S. of Sur.	volc	q-stwk; moly	127	1106	17
78843	grab	18m E. of Tr-1	alt rhy?	sil; cpy;tetr	1670	15	10
78844	grab	35m E. of Tr-1	alt rhy?	sil; cpy;tetr	1972	8	31
78845	grab	50m E. of Tr-1	alt rhy?	sil; cpy;tetr	1839	3	20
78846	not taken			-			
78847	grab	68m E. of Tr-1	volc	carb	35	1	1
78848	grab	20m N. of Tr-1	volc	ру	86	1	7
78849	grab	20m N. of Tr-1	float;rhy	sil	3074	2	14
78850	grab	12m N. of Tr-1	rhy?	sil	788	4	5
78851	grab	80m N. of Tr-1	rhy? brxx	w-сру	355	9	12
78852	not taken						
78853	1	40m NW of 78842	BFP?	сру	340	25	5
78854	grab	40m NW of 78842	float; BFP		1253	49	40
78855	grab	35m E. of 78842	BFP	q-stwk; moly	405	85	3
78856	grab	West zone	BFP/volc	ру	2641	25	2

KENNECOTT CANADA INC. LENNAC LAKE PROJECT 1991 CHIP SAMPLING

GRABS FROM MAPPING AND PROSPECTING

,

SAMPLE	ТҮРЕ	LOCATION	LITHO.	MINERAL/ALTER		Cu ppm	Mo ppm	Au ppb
CH 101	rock	West Zone	BFP	q-stwk; cpy,mgt	not	analy	sed	
CH 102	rock	West Zone	BFP	grey; carb; cpy		4974	42	5
CH 103	rock	West Zone	BFP	q-stwk; cpy,py,mgt		2597	40	5
CH 104	cutting	West Zone		i ngs from a PDH		1619	22	60
CH 105	rock	West Zone	BFP	q-stwk; cpy	not	analy	sed	
CH 106	rock	West Zone	BFP	q-stwk; cpy	not	analy	sed	
CH 107	rock	West Zone	BFP	coarse grain	not	analy	sed	
CH 108	rock	West Zone	volc	q-stwk; cpy	not	analy	sed	
CH 109	rock	West Zone	volc	fract; weath	not	analy	sed	
CH 110	float	West Zone	volc		not	analy	sed	
CH 111	float	West Zone	volc		not	analy	sed	
CH 112	cutting	West Zone	sand cutti	ings from a PDH		319	2	5
CH 113	float	West Zone	BFP	ру	not	analy	sed	
CH 114	float	West Zone	BFP	i-py		47	1	5
CH 115	rock	West Zone	BFP	i-py	not	analy	sed	
CH 116	rock	West Zone	BFP	i-py		140	2	5
CH 117	rock	West Zone	?	propylitic		348	1	15
CH 118	float	West Zone	BFP	fresh	not	analy	sed	
CH 119	rock	West Zone	BFP	10% py		829	8	5
CH 120	rock	West Zone	BFP	saussuritized; py		243	5	5
CH 121	float	West Zone	BFP	q-stwk; cpy		1159	54	5
CH 122	rock	West Zone	BFP	k-spar; q-stwk; cpy		382	8	5
CH 123	float	West Zone	qtz di	fine grain	not	analy	sed	
CH 124	cutting	West Zone	sand cutti	ings from a PDH		65	2	5
CH 125	float	West Zone	volc	fresh; amygdules	not	analy	sed	
CH 126	float	East Zone	volc	grey feld ppy		79	2	10
CH 127	rock	East Zone	micro-di	bleach; cpy,moly		2716	202	35
CH 128	rock	East Zone	volc	grey; cpy		510	34	5
CH 129	rock	East Zone	volc	qtz,carb; cpy		16	1	5
CH 130	rock	East Zone	volc	propy; brxx; cpy		138	6	5
CH 131	rock	East Zone	volc	propy; brxx; cpy		97	1	5
CH 132	rock	E as t Zone	volc	propy; brxx; cpy		768	8	5
CH 133	rock	East Zone	volc	grey; unaltered	not	analy	sed	
CH 134	float	East Zone	volc	grey; epid		39	1	5
CH 135	rock	East Zone	volc	epid; sausseritzed		14	1	10
CH 136	float	East Zone	volc	green		7	1	5
CH 137	rock	East Zone	volc	green-grey		7	1	5
CH 138	float	East Zone	volc brxx	carb		14	1	5
CH 139	float	East Zone	BFP	fresh		8	2	5
CH 140	float	East Zone	volc aggl	10% py		9	1	5

SAMPLE	ТҮРЕ	LOCATION	LITHO.	MINERAL/ALTER	Cu ppm	Mo ppm	Au ppb
CH 141	rock	East Zone	volc	ру	7	1	10
CH 141 CH 142	rock	East Zone	dyke	grey; py	63	1	5
CH 143	rock	S. of Suratt	congl	weath; py	25	1	2
CH 144	rock	S. of Suratt	congl	sil; py; rhy?	12	ī	1
CH 145	rock	S. of Suratt	congl		30	1	5
PS 150	rock	prospecting	intrusive	sil; py;w-cpy	198	1	5
PS 151	rock	prospecting	diortie	epid; py	12	1	5
PS 152	rock	prospecting	BFP	epid;k-spar; py;w-cpy	37	2	10
PS 153	float	prospecting	intrusive	i-py	39	1	10
PS 154	rock	prospecting	volc	epid; py	44	1	5
PS 155	rock	prospecting	volc	bleach rhy brxx	24	4	5
PS 156	float	prospecting	BFP	sil; py; bi	10	1	5
PS 157	float	prospecting	intrusive	sil;bi; rust	14	1	5
PS 158	float	prospecting	BFP	q-stwk; py;cpy;mgt	3536	7	110
PS 159	float	prospecting	BFP	q-stwk; py;cpy;mgt	1626	10	15
PS 160	float	prospecting	intrusive	q-stwk; py;cpy;mgt	849	11	25
PS 161	float	prospecting	intrusive	k-spar; i-py	32	1	10
PS 162	rock	prospecting	?	propyl; py;w-cpy	406	1	5
PS 163	rock	prospecting	BFP	propyl; w-py; bi	10	2	5
PS 164	rock	prospecting	volc	propylitic	32	1	5
PS 165	rock	prospecting	volc	epid;cc; py	16	1	5
PS 166	float	prospecting	volc	bleach rhy brxx	449	4	10
PS 167	float	prospecting	volc	bleach rhy brxx; py	170	7	5
PS 168	float	prospecting	volc	blea. rhy brxx; py;cpy	170	8	10
PS 169	float	prospecting	BFP	k-spar; q-stwk	20	3	5
PS 170	float	prospecting	volc	rhy?; blea,; py;cpy	2713	5	5
PS 171	rock	prospecting	volc	rhy?; blea,; py;cpy	3131	24	20
PS 172	rock	prospecting	volc	rhy?; blea,; py;cpy	86	1	5
PS 173	rock	prospecting	volc	rhy?; blea,; py;cpy	513	3	5
PS 174	rock	prospecting	volc	rhy?; blea,; py;cpy	177	51	5
PS 175	rock	prospecting	volc	rhy?; blea,; py;cpy	1901	8	10
PS 176	rock	prospecting	volc	rhy?; blea,; py;cpy	28	7	5
PS 177	rock	prospecting	intrusive	rusty	17	1	5
PS 178	rock	prospecting	volc	chl;epid	257	1	5
PS 179	float	prospecting	volc	rhy?; bleach	9	1	5
PS 180	rock	prospecting	BFP	ру	18	1	5

KENNECOTT CANADA INC. LENNAC LAKE PROJECT

SOILS FROM PITS

SAMPLE	LOCATION	Cu ppm	Mo ppm	Au ppb	
832A	Suratt showing	84	1	5	
832B	Suratt showing	87	1	5	
832C	Suratt showing	22	1	5	
843A	Suratt showing	207	2	10	
843B	Suratt showing	90	1	5	
843C	Suratt showing	20	1	10	
847A	Suratt; E. side	52	1	35	
847B	Suratt; E. side	70	1	10	
847C	Suratt; E. side	90	1	5	
847D	Suratt; E. side	19	1	5	
848A	Suratt; NE side	71	1	5	
852A	Suratt; W. side	52	1	5	
855A	North of lake	39	1	5	
855B	North of lake	20	1	5	
856A	North of l a ke	21	1	5	
857A	North of lake	36	1	10	
857B	North of lake	19	1	10	
859A	West zone	633	14	5	
860A	West zone	589	14	5	
860B	West zone	37	1	5	

APPENDIX 3

GEOCHEMICAL CERTIFICATES

COMP: KENNECG. CANADA

يام مود الدار الدار الدارية

MIN-EN LABS - ICP REPORT

FILE NU: 15-0517-RJ1+2 DATE: 91/08/29

PROJ: 02-399 P.O. 626-01 ATTH: J.MARR/S.BISHOP/H.SNIT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

IN: J.MARR/S.BI	SHOP/H	.SNIT									(604)980)-5814	OR ((604)98	8-4524	•											* RO	CK •	(AC	I : F.
SAMPLE NUMBER	AG PPH	AL PPM		B PPH	BA PPM	BE PPH	BI	CA PPN	CD PPN P	CO C PH PP			L1 PPM	HG PPN	MN PPN F		NA N PM PS		P 1 PM P		SR PPH	TH	TI PPM		/ ZN				CR AU	- VE
EN CH 102 EN CH 103 EN CH 104 EN CH 104 EN CH 112 EN CH 114	2.1	13180 12970 11830 27340 29930	424 19 41 4	5 1 1 1	239 272 189 137 194	.1 .1 .1 .1	7 1 12 6 10 1	16310 4430 8300 13960 16380	.1 .1 .1 .1	21 497 20 259 21 161 15 31	4 38670 7 39940 9 36750 9 43830 7 52720	9650 8070 4570 7430	4654	13580 12680	314		40 80 60 70	1 8 1 6 1 10 1 10	00 2 40 80	29 9 19 13 9	13 9 13 53 62	1 1 1 1 1 1	2318 3223 1457 2392 5508	127.4 128.4 88.9 127.1	53 547 37 523	2 2 3 3	2 3 1 3 5	5 5 4 4	57 59 54 53 53	6
EN CH 116 EN CH 117 EN CH 117 EN CH 119 EN CH 120 EN CH 121	1.4	41930 25980 8290 13030 13950	76	1 1 1 1	194 43 233 178 201	.1 .1 .1 .1	4 2 14 3 1 8	21010 16330 12610 7860 6750	.1 .1 .1 .1	13 14 30 34 10 82 12 24	0 38360 8 44630 9 29650 3 28570 9 23720	1790 1280 3190 3510 3140	2656	3260 16220 8890 11490 11570	27 224 157 191	2 71 1 34 8 7 5 4 54 5	50 30 30 70	1 11 1 9 1 10 1 11 1 11	10 70 50 30	14 15 15 9	78 43 17 17 14	1 1 2 1	623 3196 781 1917 1360	20.4 99.1 58.	3 8 5 28 28 5 23	34344	2 4 1 2 2	1 4 4	23 57 70 63	•
EN CH 122 EN CH 124 EN CH 126 EN CH 127 EN CH 128	1.2 1.2 9.8	13620 20080 22240 8750 19970	12 7 9 25 11	1 1 1 1	184 163 75 37 27	.1 .1 .1 .1	13 1 1 4	8490 7260 12910 17920 18580	.1 .1 .1	14 6 17 7 8 271	2 28580 5 53190 9 41960 6 28750 0 38810	3550 3700 9750 2200 6630	6 6 6 4	11760 10400 16990 6980 16460	217 241 220 859 2	8 9 2 18 2 29	00 80 20 00	1 10 1 8 1 8 1 9 1 11	50 70 30 10	37 13 9 22	1 15 1 38 1 56 3 39 1 32	1 1 1 1	1770 1130 3092 111 1199	71. 97. 124.8 92.0	3 47 32 3 24) 62	42454	21312	5 5 4 6 1	93 96 61	
EN CH 129 EN CH 130 EN CH 131 EN CH 132 EN CH 132 EN CH 134	1.1	7820 18520 6710 18410 35290	25 5 17 16 4	1 1 1 1	183 13 22 49 1389	-1 -1 -1 -1	92 11 101	25510 23960 12970 14250 24160	.1	14 13 5 9 21 76	6 34580 8 48580 7 29790 8 56070 9 51750	2610 1130 2570 2990 1800	10 2 14 14	22090 4480 16150 29870	503 468 224 203 1228	1 8 6 12 1 13 8 12 1 5	20 90	1 11 1 9 1 11 1 10 1 8	60 20 60	14	32 26 13 35 65	1	2137 131 2487	- 35.6	37 27 25	33343	1 2 1 3 2	3 2 3	58 43 46 42 51	
EN CH 135 EN CH 136 EN CH 137 EN CH 138 EN CH 139	.1 .1 .9	22190 30450 28260 23210 14320	1 5 6 10 14	1 1 1 1	67 85 38 202 161	.1 .1 .1 .1	2 2 2 1 10 1	19490 20440 19040 15650 14980	.1 .1 .1	16 20 16 1 12	4 58710 7 49490 7 52200 4 39550 8 29480	930 1800 1510 2150 1390	15 12 11	28230 26490 28430 13480 14090	1095 817 771 1026 454		20	1 90	50 10	6 12 10 14 11	30 30 22 58 26	1	288	98.0 119.9	53	13345	41221	1 2 2	46 29 38 20 24	
EN CH 140 EN CH 141 EN CH 142 S 150 S 151	1.1	28210 25610 26710 7120 24340	6 10 1 6 1	1 1 1 3	53 77 347 78 193	.1 .1 .1 .1	14 1 18 1 2	25100 18010 12610 9520 14200	.1 .1 .1	16 6 10 19	9 43410 7 47530 3 52890 8 42890 2 57800	3270 2860 11330 980 600	11 4 4	20900 18950 19080 2660 25500	871 632 291 390 1090	1 11 1 6 1 31 1 2 1 8	20 10 60		20 70 00 ·	11 9 3 12 6	37 29 47 25 36	1 1 1	1371 3292 4403	113.0 108.3 169.2 60.4	71 64 24 68	3221	24414	4 4 2	54 51 52 40 31	
s 152 s 153 s 154 s 155 s 156	1.5	15570 24520 25290 5520 5140	14 1 14 16	42224	328 146 163 77 463	.1 .1 .1 .1	15 1 15 1 1	1850 5170 5120 720 25060	.1	19 3 21 4 4 2	7 21710 9 54540 4 57740 4 10480 0 20620	1290 4820 5440 350 2350	9 9 8		592 598 575 1061 788	2 7. 1 16 1 16 4 3 1 5	50 50 70		50 50 80 '	6 9 6 16 18	32 40 40 41 74	1	108 3438 3640 31 51	47.8 137.0 144.2 11.0 37.2) 51 2 57) 58	5 2 2 1 4	144	4 4 3	90 58 47 66 70	
5 157 5 158 5 159 5 160 5 161		8620 8920 20820	25 98 10 1	1 1 1 5	139 187 130 132 201	.1 .1 .1 .1	4 3 13	8410 9230 5340 5140 8560	.1 .1 .1	13 1 13 353 11 162 16 84	4 31600 6 23690 6 22970 9 51010 2 50520	1750 3250 2890 10060 1800	546	5430 7830 16400		1 2 7 3 10 2 11 10 1 7	70 40 60 00	1 8	90 90			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 754 739 3115 1 51	30.2 54.2 57.1	51 43 43 43	34431	1 1 3 1	5 3 5	45 88 55 72 44	۱
5 162 5 163 5 164 5 165	.6 .3	19670 13600 20760 20920	4 8 3 1	1 1 1	34 42 39 220	.1 .1 .1 .1	51	25480 2630 20160 16770	.1	6 1 14 3	6 61590 0 25570 2 42420 6 54840	1880 1120 1710 580	10 9	10460 12020 19890 26740	883 339 661 1466	1 1 2 30 1 31 1 70	00 50		50 ⁻ 70 ⁻	18 11 12 16	37 21 22 27	1 1 1 1	589 955 460 1620		3 41 48	2542	1 1 2	43	69 74 57 80	
																		hede e barran dare rea												
								,																					-	
																								* · · · =						

COMP: KENNECUTT CAMADA PROJ: 02-399 P.0.626-01

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2

FILE NO: 15-0549-RJ1+2

DATE: 91/09/04

ATTN: S.BISHOP/J.MARR/H.SMIT

(604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

TH: S.BISHOP	7 J. MAN	IR/H.SP	411								(004) 92	SU-2814	OR (604)98	8-452	4											• RO	CX *	(ACT:F
SAMPLE NUMBER	AG PPM	AL PPN	AS PPN	B PPN	8A PPN	BE PPN	BJ PPM	CA PPH	CD PPM	D0 PPN	CU PPN	FE PPM	K PPN	LI	MG PPM	MN PPM	NO PPN	NA PPN i					SR T PM PP			V ZN PN PPN				R AU-ME
PS 166 PS 167	3.1 1.1	4210 4870	72	1	55 42	.1 .1	1	5300 16760	.1	2 1	449 170	4520 3730	1150 1830	3 5	1380 2610	258 312	47	20 60	23	190 340	33 13	1	10 26	1 31	9	8 18	1	1	3 (50 1 33
PS 168 PS 169 PS 170	.9 .1 11.3	4900 6840 5360	29 16 797	1	45 35 225	.1 .1 .1	1 2	5370 4450 6680	.1 .1 1.3	1 5 2		3920 15700 7090	1740 890 1920	3 4 3	1640 4570 1830	278 486 529	8 3 5	20 730 30	2 2 5	300 230	20 10	1	8	1 24 4 90 1 23) 15.		- 4	1	8 18	8
PS 171 PS 172	22.6	6150 13910	955 23	1 2	84 706	.1	13	4760 62350	4.8	_	2713 3131	5810 28280	2260	4	1830 1440 31560	299 865	24	40 1590	5	390 400 3110		01	17 27 08	1 24		5 234	2		4 8	4 2
PS 173 PS 174	3.2	4440 4100	108 342	1	62 107		1 2	3410 1420	-1	1 2	513 177	3820 6290	1740 1980	3	830 480	320 177	3 51	30 30	- 4		52	12		1 19 1 17	5.	.9 41 .6 26 .7 64	1	1	4 16	
PS 175 PS 176	<u>3.8</u>	4600	245	1	<u>389</u> 30	<u>.1</u> .1	1	2580 940	.1	<u>3</u> 1	1901	5700	1840 1630	2 3 1	590 300	478 81	8	<u>30</u> 20	5	350 300	32 13	7	<u>16</u> 16	<u>1 16</u>	5.	4 60	1	1	3 8	2 1
PS 177 - PS 178	.3 2.6	11730 26280	7	1	41 26 64	.1 .1	25	24720 18670	.1	8 37	17 257	3320 26680 75920	1750 660	10	9850 33590	1336	1	490 330	8 '	880 1500	15 3	1	15 33	1 6468	6. 54 273	.4 101	5	1 5	3 6	8 4 0
PS 179 PS 180	.4	3130 11160	19 8	1	47	.3	3	11670 16530	.1	2 10	18	6630 24110	1120	9	4730 8890	243	1	370 250	3 '	280 130	10 16	1	22	4 23	53.	4 57	24	1	3 5	2
78801 78802 78803	1.2	11220 20150 16520	63 1	1	228 271 189	.1 .1 .1	6 12 12	7980 6610 9000	.1 .1 .1	21 19	1411 1546 1718	27520 43460 41520	6620 13260 8510	5	11440 16930 15220	191 334 363	5 18 3	540 1200 1040	1	900 990	9 7 8	1	15 19 20	1 1714 1 3387 1 3313	76 174 136	8 48	3 2 2	32	5 4 5 6	15 12 1 13 4
78804 78805	1.6	18420 16500	1	1	342 255	_1 _1	11 12	9340 7540	.1	18 18	1090		8590 7970	8 7	15220 16230 13750	388 389	7 8	1050 1240	1 '	070 1030	10 9	1	22	1 2970 1 3165	134.	.5 54	2	32	58	3 1 1 3
78806 78807 78808	1.3	10200 11230	29	1	194 171	.1	7	6650 5740	.1	13 12	781 1297	28350 23190	4620 4420	5	10050 9450 10650	376 249	22	540 560	1	020	10 13	1	14 15	1 1858 1 1237	65.	6 42	3	1	4 6 6 10	12 5
78808 78809 78810	.7	12000 8890 12990	8 19 4	1	354 242 225	.1 .1 .1	5 5 6	5540 11660 8270	.1 .1 .1	13 10 12	2095 696 561	23190 26550 31340 26900	4180 3740 3180	- 5	10650 9600 11410	197 167 211	6 3 12	440 510 390	1		11 11 8	1	18 19 16	1 1348 1 879 1 1361	70. 63. 69.	.3 33 .4 31 .3 28	44	1	4 7 5 10 4 6	
78811 78812	.7	10340 15930	4	1	155 81	.1	6	5890 12570	.1		458	24680	3500 4120	4	10050 15330	220	7	380 960	1 1	120 040	9 13	1	12 27	1 1415	68. 126.	4 26	43	1 2	3 5	2
78813 78814	.1 .2	4440 3820	8 10	1	19 124	.1	1	12870 23970	.1	5	94 22	31370 24240 45200	2050 2270	2 1	4410 3180	222 278	1	390 340	1 '	020 980	13 10	1		1 108 1 59	33. 32.	1 23	Ź	1	Z 4	6 6
78815 78816 78817		19140 15570 20650	149		<u>204</u> 91	<u>1</u> _1	6	22690 8200	1 1	<u>14</u> <u>19</u>	<u>544</u> 910	45200 30160	1280	4	20040	437	45	1500 760	1	840 760	9	1	18	1 1432	131. 105.	1 78	2	2	4 1	9
78817 78818 78819	7.9	19700 16090	22 21	1 1	118 268 51	.1 .1 .1		11260 11500 5900	.1	17 12	1275 1140	30160 39500 43120 26340	7650 5190 7380	5	16690 14690 13190	534 515 403	80	1270 1290 920	11	1030	10 116 13	2 6 🔅		1 1300 1 942 1 1291	130.		3 3 4	1 2		3 9 135 1 4
Assar	e D		······							. <u></u>	<u> </u>				<u>-</u>															
																			<u>.</u>						_					
											<u> </u>	<u></u>																		
																	. <u> </u>													
	<u> </u>															<u>-</u>														

LUMP: KENNEDDTT CANADA

PROJ: 02-399

MIN-EN LABS - ICP REPORT

FILE NO: `793-RJ1+2 D. . 91/09/23

ATTN: J.MARR/S.BI. /H.SHIT

705 WEST 15TH ST., NORTH V/ IVER, B.C. V7M 112 (604)980-5614 OR (004)988-4524

* ROCK * (ACT-E31)

Servets Are	ALTER STRUCK STOL	· //	. SPIT 1								(0	04) 700	-2014	UK ((+)988-4	224											* RO	CK *	(ACT:F31)
18826 3.8 2020 427 570 1 42 577 1 42 577 1 42 577 157 570 150 3 200 570 157 570 150 3 200 570 157 570 150 3 200 570 150 3 200 150	NUMBER																							V PPN	20 PPN	GA PPM	SN PPH P	W C	
19830 C: 4 A: 4 A: 6 D: 0 2 D: 0 3 D: 0 3 D: 0 D: 0 <thd: 0<="" th=""> <thd: 0<="" th=""> <thd: 0<="" th=""> <thd: 0<="" t<="" td=""><td>78827</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 1251</td><td>6120 5760</td><td>970 1480</td><td>1 2</td><td></td><td></td><td></td><td>5 31</td><td>0 8</td><td></td><td></td><td>1</td><td>16</td><td>4.5</td><td>65</td><td>1</td><td>1</td><td>2 4</td><td>3 21</td></thd:></thd:></thd:></thd:>	78827										2 1251	6120 5760	970 1480	1 2				5 31	0 8			1	16	4.5	65	1	1	2 4	3 21
17830 5.2 2.2 4.200 1.1 2 117 6.730 186.0 3 970 550 51 10 4 350 51 10 4 350 51 10 4 350 51 10 4 350 51 10 4 350 51 10 4 350 51 10 17 11 14 15 16 17 16		8.7	4810	667	6	91	.2	6 39	20 S	.0	3 2455	7078	1510	- 3	830 521	10	40 7	7 32	0 21	8 86	26	į	22	6.3	100		1	4 90	5 40 1
12812 3.6 5000 303 2 111 2 7 5910 6.6 2 2127 120<	78830	5.2	6240	215	5	100	.2	3 27	60	-1	2 1117	6730	1840	3	990 405	5 1		<u>6 35</u>	0 5	1 18	<u>1</u>	1				ź	1		21 12
12833 1.4 450 267 4 85 1.5 250 120 2 450 563 6 40 6 319 66 29 11 1 15 5.4 130 2 140 150 15 15 15 15 15 157 15 157 15 157 15 157 <td>75832</td> <td>3.6</td> <td>5000</td> <td>303</td> <td></td> <td>218 111</td> <td></td> <td>2 31 7 39</td> <td></td> <td></td> <td>3 797 2 3127</td> <td></td> <td></td> <td></td> <td>820 721</td> <td></td> <td></td> <td>5 28 7 36</td> <td>013) 04'</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>42</td> <td>1</td> <td>1</td> <td>4 83</td> <td></td>	75832	3.6	5000	303		218 111		2 31 7 39			3 797 2 3127				820 721			5 28 7 36	013) 04'			1			42	1	1	4 83	
18836 8.4 1780 975 6 112 2 7 600 1 33272 6610 200 2 150 7 370 100 970 100 970 100 970 100 970 100 970 100 970 100 970 100 970 100 970 100 970 100 970 100 110 100 <td>78834</td> <td></td> <td></td> <td>607</td> <td></td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td>2 2252 2 2520</td> <td>5620 5850</td> <td>1830 2090</td> <td></td> <td>450 563</td> <td>4</td> <td></td> <td>5 31</td> <td>0 64</td> <td>3 29</td> <td>11</td> <td>1</td> <td>15</td> <td>4.4</td> <td>139</td> <td>ź</td> <td>į</td> <td>4 85</td> <td>43</td>	78834			607		98					2 2252 2 2520	5620 5850	1830 2090		450 563	4		5 31	0 64	3 29	11	1	15	4.4	139	ź	į	4 85	43
72837 21.5 4370 2522 4 103 2 15 8650 97.5 5 662 1240 550 2 2710 563 20 7 730 15 85.6 97.6 75 75 7730 1 3202 7464 550 4 289 53 6 7 747 733 23 7733 1 6 7.3 46 3 1 4 773 37 733 1 1 1 6 7.3 46 3 1 4 773 33 1 4 4 774 3 77 730 1 2 2464 1 1 1 1 4 20 1 1 4 20 1 1 4 20 1 1 4 20 1 1 4 20 1 1 4 20 1 1 4 20 10 1 1 4 20 10 1 1 1 1 1 4 1			_							<u>.1</u>	2 3152	6460	2160		2360 551	88	50 5	5 33	0 64	5 55	13	<u>i</u>	20	6.4	96	3	<u>i</u>	4 78	17
72841 1.6 5420 97 3 55 .1 2 2440 .1 3 504 7000 852 17 50 4 220 100 864 700 15 231 13 257 72 1 1 22 300 78842 - .5 5000 47 22 144 .1 8339 .1 4 127 1200 155 60 2700 11 3 10 4.92 23 105 66 47 15 105 10 4.92 21 1 426 17 77 4380 418 3 61 .2 4900 170 510 44 14 14 14 14 14 120 140 120 140 4900 100 19 95 13 61 14 198 198 198 120 1200 1200 1200 1200 12 13 135 135 135 135 135 135 135 125 136 13 <td>78837</td> <td>21.5</td> <td>4370</td> <td>2652</td> <td>4</td> <td>103</td> <td>2.</td> <td>15 86</td> <td>50 19</td> <td></td> <td>4 9862</td> <td>12480</td> <td>1590</td> <td>Ż</td> <td>2710 806</td> <td>20</td> <td>SO 5</td> <td>5 27</td> <td>0 938</td> <td>3 263</td> <td>16</td> <td>1</td> <td>15</td> <td>13.6</td> <td>483</td> <td></td> <td>1</td> <td>5 81</td> <td>118</td>	78837	21.5	4370	2652	4	103	2.	15 86	50 19		4 9862	12480	1590	Ż	2710 806	20	SO 5	5 27	0 938	3 263	16	1	15	13.6	483		1	5 81	118
1 -1 1060 62 8 104 -2 2 500 4 170 1520 321 15 5 23 1 31 25.7 78 2 1 1 22 30 76845 - 5.7 640 -2 3 923 12 170 1460 498 116 1 10 4.9 86 17 76845 7.1 3500 447 3 647 -2 4 940 1.7 8 177 920 1.2 170 100 100 20 20 100 4.9 1.7 1.4 400 500 3.420 451 15 40 5 80 120 19 9.9 13 4.8 4.6 1.1 8.700 1.0 100<	78839	6.6	6108	353	3	408	2	5 73	90	.1	2 2641	5950	1820	47	2650 643	5 1	50 5	5 341	0 33	18	20	2					1	4 73	31 37
78843 5.2 24760 399 4 66 .2 3 923.0 1 2 1670 500 15 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 23 20 23 20 23 20 23 20 23 20 23 20 23 20 23 20 23 23 48 30 33 48 30 33 48 30 33 48 30 33 33 33 33 34 30 33 </td <td>78841</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>-</u> 4</td> <td>the second se</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>1</td> <td>1</td> <td>4 94</td> <td></td>	78841				8									<u>-</u> 4	the second se									_		1	1	4 94	
78947 11 70040 25 13 61 1 4 19870 13 1220 4400 3 400 <	78843	.5		47 399	22	144	.1	1 83	30		4 127	12010	2220	ļ	1460 498	1106 !	50 2	2 72	0 11		15	1	20	Z1.2	57		į	4 84	17
78947 1 10840 25 13 64 1 4 19870 1 1530 470 1 1530 768 1 1000 19 25 14 760 2 15 1 1000 19 25 1 13 <th13< th=""> <th13< th=""> <th13< th=""></th13<></th13<></th13<>	78844	7.7	4380	418		61	.2	4 98	40 1.		8 1972	9210	2120	Ž	3620 620	8 !	50 5	5 280) 77	83	20	j	19	9.9	136	3	1	3 00 4 86	31 [
72820 1:3 1:3 1:4 4:5 1:1 1:5 1:5 1:2 2:4 3:9 7 72850 2:0 4:50 3:1 1:5 2:2 3:11 3:7 1:5 2:2 1:3 6:5 1:4 1:1 1:5 2:4 3:9 7 72850 2:0 4:50 2:50 2:1 1:5 2:2 3:10 1:2 2:307.6 4:502 1:50 1:2 3:0 3:1 1:2:50 4:50 1:1 1:2:50 4:50 1:1 1:2:50 1:2:55 1:2:50 1:2:50	78847	.1	10640	25	13	61	.1	4 198	70 .	.1	9 35	46240	5320	3	5530 748		70 1	2000	3 19		34								
72853 1.0 4930 61 4 52 .2 1 1 3 340 7680 1820 2 870 296 25 170 5 1020 15 6 19 1 36 35.4 49 2 1 3 57 5 72853 2.0 4860 175 3 68 .2 4 6959 .1 4 1253 10040 1800 1 2760 252 49 360 7 1010 15 5 17 1 13 3 40 40 78855 1.1 4860 75 12430 4 47 .1 9 420 .1 22 2641 60400 3070 3 8270 15 25 530 1 750 10 1 8 1193 84.8 3 1 3 30 2 22 530 1 750 10 18 1 13 30 2 160 2 130 13 30 <t< td=""><td>78849</td><td>5.9</td><td>4330</td><td>311</td><td></td><td>74</td><td>.1</td><td>7 699</td><td>70.</td><td></td><td></td><td>6450</td><td>Z150</td><td>16 1</td><td></td><td></td><td>70 2 50 5</td><td>1730 390</td><td>) 18) 29</td><td>1 1</td><td>31</td><td></td><td>3544</td><td>163.8</td><td>101</td><td>2</td><td>Ż</td><td>4 39</td><td>7</td></t<>	78849	5.9	4330	311		74	.1	7 699	70.			6450	Z150	16 1			70 2 50 5	1730 390) 18) 29	1 1	31		3544	163.8	101	2	Ż	4 39	7
72853 1.0 4930 61 4 52 .2 1 11810 .1 3 340 7680 1820 2 870 296 25 170 5 1020 15 6 19 1 36 35.4 49 Z 1 3 57 5 72855 2.0 4860 175 3 685 .2 4 6959 .1 4 1253 10040 1800 1 2760 252 49 360 7 1010 15 5 17 1 1207 43.4 41 3 1 3 40 40 78855 1.1 409 52 2.6 4.4 47 .1 9 420 .1 22 2641 60400 3070 3 8270 152 25 530 1 750 10 1 8 1193 84.8 36 3 1 3 30 2 160 2 150 1 130 30 30 2 150				205 70	3 1	115 46	.2 .1							Z 1	710 286	- 4 6	50 4	330	32	14	11	1	26	5.1	43		1	3 59	. 5
1.1 4890 52 5 5 6.8 .1 2 20400 .1 6 405 16700 1380 4 510 1 19 10.2 1	78853 78854				4			1 118	0.		3 340	7680	1820	2	870 296	25 17	70 5	1020	15	6	19	1	36	35.4	49	Z	1	3 57	5
LEN CH 143 13 11930 15 6 31 1 3 1 1210 1 1 8 25 31200 1 50 1 14 1 3 1 50 34.2 65 2 1 3 60 2 LEN CH 143 .3 11930 15 .1 1 11210 .1 8 25 31200 1 740 20 1 1370 14 1 13 1 50 34.2 65 2 1 3 60 2 LEN CH 144 .6 8760 12 3 15 .1 1 11360 .1 5 12 24750 420 14 3190 459 1 530 1 1360 10 1 2 1 48 29.47 67.2 1 350 1 1360 10 1 2 1 48 29.57 1 3 60 2 1 3 60 2 1 3 60 2 1 3 <	78855	1.1	4890	52		48	.1	2 2040	n.	.1	6 405	16700	1380	4	510 464	85 3	50 1	900) 6	Z S	19	•	19	30.2	81	1	1	1 13	40
LEM CH 144 LEM CH 145 .2 14950 8 4 58 .1 4 10940 .1 5 12 24750 420 14 3190 459 1 530 1 1360 10 1 12 1 48 29.1 47 2 1 3 55 1 LEM CH 145 .2 14950 8 4 58 .1 4 10940 .3 10 30 33560 1690 27 4740 629 1 440 2 1180 15 1 14 1 35 32.1 77 1 1 3 49 5	LEN CH 143	.3	11980	15		31	<u>.i</u>	3 112	10 .	.1	8 25	31290	740	20								1		84.8 34.2	36 65			330 360	2
			8760 14950	12 8	3	15 58	-1 .1	1 1136 4 1096	50 . 10 .		5 12 10 30	24750 33560	420 1690									1	48	29.1	47	2	1	3 55	1
																				-	• •	•		2001	• •	•	•	3 4/	
	h																							<u> </u>					
		<u>-</u>						·····									·						<u> </u>						
	1																												
																													1
						·	•							·															
																													1
																													[
																													i i
											<u> </u>	<u></u>						·											
																							_						
																													ļ
									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					÷							·				<u> </u>				

COMP: KENNECOTT CANADA PRCJ: 02-399

### MIN-EN LABS --- ICP REPORT

FILE NO: 15-0795-5J1

705 WEST 15TH ST., NORTH-VANCOUVER, B.C. V74 112

ATTN: J.MARR/H.SMIT

(604)980-5814 OR (604)988-4524

DATE: 91/09/25

1. 1.

٦Ì

• SOIL * (ACT:F31)

SAMPLE NUMBER	AG AL PPN PPN	AS PPM P	B BA P <b>n P</b> Pm F	BE BI CA PPR PPM PPM	CD CO PPM PPM			LI MG PPM <b>PPM</b>	PPN PI			PEIS PPM PP		TH TI PH PPH	V PPA P		GA SI PH PPI	L V PPM F	CR ALI-WET PM PPB
LINE 1 STAKS 4H LINE 7 STAKS 3A LINE 1 STAKS 2A LINE 1 STAKS 1A LINE 1 STAKS 0A	.7 10160 .7 12440 .8 12870 .4 14830 1.8 15790	38 27 21	16 94 14 117 12 132 9 94 9 117	.4 2 2670 .3 3 4920 .3 3 4690 .2 2 3200 .2 4 3560	.1 7 .1 10 .1 6 .1 8 .1 12	12 21330 24 24940 8 15850 12 27960 37 44590	340 480 440 610 610	12 2750 13 5120 14 4050 14 2910 19 4420	384 1 175 2 285	2 120 13 150 26 160 2 110 11 530	4 290 6 540 2 150 5 1700 1 1480	15 10 14	1 10 1 16 1 15 1 13 1 13	1 297 1 390 1 430 1 380 1 680	58.5 50.2	62 50 34 99 24	1 2 3 1 2	22	13 10 14 5 11 10 15 5 14 5
LINE 1 STN KS 1S LINE 1 STN KS 2S LINE 1 STN KS 3S LINE 1 STN KS 4S LINE 2 STN KS 4N	.3 15040 -4 15010 -3 14470 -2 16370 -3 15390	22 12	8 113 7 99 6 110 5 110 5 121	.4 3 2746 .2 3 2300 .3 2 3180 .2 2 2400 .1 3 2990	.1 10 .1 8 .1 10 .1 7 .1 8	49 32270 20 33140 18 29770 16 25580 14 27030	500 540 560 480 440	11 4210 16 2590 14 3600 11 2780 11 2720	326 376 328	1 120 7 110 1 110 1 110 1 130	7 800 1 1460 6 900 5 960 4 830	14 12 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 433 1 484 1 499 1 419 1 598	76.5 64.3 62.6	61 94 88 80 76	2 1 1 1	2   1   2	17         5           14         10           16         5           12         5           13         10
LINE 2 STN KS 3N LINE 2 STN KS 2N LINE 2 STN KS 1N LINE 2 STN KS 0N LINE 2 STN KS 1S	.8 21630 .3 22440 .6 21800 .5 22350 .5 25060	23 31	6 218 6 143 6 157 5 158 6 149	.3 3 618D .3 4 3330 .2 4 3170 .1 3 3080 .2 4 3110	.1 13	26 32290 38 38030 21 35070 28 37430 30 44730	1140 860 920 680 720	19 4820 18 3720 16 4260 17 4570 24 5590	387 342 280	7 170 1 140 1 160 2 160 1 130	6 740 3 2480 7 1380 6 1010 1 2390	16 18 15 18 22	1 23 2 18 2 17 2 16 1 15	1 593 1 761 1 831 1 681 1 655	76.8 1 77.1 1 74.9 1 79.1 1 107.4 1	63 47 14	2 1 2 3	22	19     5       17     15       18     5       18     20       17     5
LIHE 2 STN KS 2S LIHE 2 STN KS 3S LIHE 3 STN KS 4H LINE 3 STN KS 3H LINE 3 STN KS 2N	.1 18730 .5 14800 .2 20850 .2 24720 .6 16270	22 18 20 21 13	4 14B 4 115 4 121 5 176 4 147	.3 3 2610 .2 2 4160 .2 3 2550 .4 4 3260 .1 3 3450	.1 14	20 37490 26 30360 20 35850 29 35250 36 34830	540 503 550 660 740	14 5450 18 4400 16 4130 15 4090 17 2630	318 520 310	1 118 1 130 1 120 1 120 1 120 1 130	6 750 5 800 6 1620 15 1080 1 1330	18 17	1 10 1 16 2 13 3 15 1 14	1 418 1 481 1 439 1 430 1 541	79.4 1 66.2 71.0 1 68.1 1 89.3 1	60 06 08	2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	14     5       16     25       17     5       18     5       16     10
LINE 3 STW KS 1N LINE 3 STN KS ON LINE 3 STN KS 1S LINE 3 STN KS 2S	.5 16690 .6 11200 .4 17170 .6 12460	17	3 156 2 118 4 125 3 128	.3 3 2990 .1 2 3430 .3 3 2630 .1 2 3748	.1 7 .1 5 .1 8 .1 7	25 24110 16 18350 19 27540 18 23990	500 480 650 500	11 3770 8 3570 13 3520 9 3550	157 205	1 120 1 130 1 130 1 130 1 130	6 500 5 400 6 880 5 600	13 8 14 11	1 13 1 14 1 13 1 15	1 444 1 353 1 502 1 455	55.2 44.2 60.0 56.1	58 36 83 53	2 3 2 2	1	14     5       12     5       15     5       14     5
		<u></u>	, <u>,                                   </u>																
															-			·	
		· <u></u>																<u> </u>	
										<u>, , , , , , , , , , , , , , , , , , , </u>									
	<u>-</u>				·····	<b></b>							<u> </u>				• • • • • •		

COMP: KENNECOTT CANADA

### MIN-EN LABS - ICP REPORT

#### 705 WEST 15TH ST., NORTH VANCOUNER, B.C. V7N 1T2 (604)980-5814 OR (604)988-4524

### FILE NO: 15-0794-531 DATE: 91/09/25 * SOIL * (ACT:F31)

IP: KENNECC J: 02-399	DI CANA	DA												DRTH V					2									FILE		E: 9	
N: J.MARR	H.SHLT													14 OR					-									* soi			
AMPLE	AG	AL PPN	AS PPH	B	BA	BE PPM	BI PPN	DA PPH	DD PPM	CO PPN	CUS PPN	FE PPM	PPM	PPH	MG PPH		MO PPM	NA PPN	NI PPM P	P PM	PB PPN P	PM PF	P	TH TI PM PPM	PPM	PPM	GA PPM	SM PPA P	W PN P		u
32 A 32 B	.8	17810	181	19 11	194	.7	5 3	8520 7570	_ <b>1</b> _1	20 18	84 87	42920 44710 31970 33660 37980	950 900	15	6990 7280	1023 1153	1	370 340	12 10 19 10 19 22 16 10 21 18	50 40	24 27	4 2 2 1	9 9 5	2 564 1 456 1 422 1 518 1 462	83.6	87 89	2	1	3	23 28	~
52 C	.5	18250 20310 11690	59 25 75 26	5	201 137 116 154	4312	34	2900 16760 8040	.1	12 14 17	22 207	31970	650 790 930	15	3280 5500 6820	504	1	180 270 310	19 22	30 10	1822	1 1	5	1 422	63.9	142	22233	1	3222	18 17 19	
3 A 3 B	.5	15080	26		154		4	8040	.1	17	90	37980	930	11	6820	1339	2	310	21 10	20_		1	1	1 462	74.7	85	<u></u>	_ <u>i</u>	_		
3 C 7 A	1 .7	14660 11700	22 22 25 26 16	1 2	114 116	22.1.5.1	2	2880 18080 21150	.1 .1 .1	10 14	52	28310 32730 34120 41980 24750	460 830	12 10	3620 6180	336 1120	1	140 230 270 230 470	8 10 14 10 13 9 30 9 6 6	50 D <b>B</b>	16 24 22 24 16	1 1	12672	1 299 1 370 1 435 1 354	56.8	80 77	23	1	2222	16 16	
7 A 7 B 7 C	.9	12840 17020 11790	25 26	1 2	146 226 109	.3	•	UCYY	1	14 15 8	70 90	34120 41980	880 870	11	7250 6520 3350	1072	1	270 230	13 9 30 9	90 70	22	1 1	27	1 435	66.1 74.6	75 93 58	433	1		17 21	
70				1			2	3250	.1		19 71	24750	510	9	3350	348	$\frac{1}{1}$	470	15 10	40 30		1 7	2	1 320	>>.0	20	3	- 1	1	14 20	-
8 A 2 A 5 A	1.8	15240 15140 12260	17	221	179 161 188	.2	43	19460	.1	15 14 13	52	36980 35650 34530	1320	12 12 10	9140 6740	960	1	560 610 550 170	15 10 14 10 12 9	20	24 21	1 2	5	1 536 1 478	72.8	94 77 76	4	1	2	21 18	
5 S 6 A	.2	18660 15960	21 1? 22 33 19	1	174 136	.1	ž	17070 19460 17000 4010 3390	1	13 12 10	- 28	34530 33320 31920	401	13	4650 4170	408 272	1	170 130	10 20	08	27 24 21 19 17	1 1	85	1 401 1 305	68.6	107	32	1	2	20 17	
7 A		11820 15560			167	.1	3	18200	.1	13 10	36	33780	840	- 2	8080	929	1	260 150				1 4	0		52.2 69.4		4	1	2	19	
7 B 9 A	.8	16970	17	1	186 164 197	.1	6	18200 4870 16020 14630 4530	.1 .1	20	633	33780 32158 42300 49920	2480	29	8080 4120 10190	974	14	310	13 10 9 12 7 9	50 80	23 18 20 25	1 2 2 3	0	1 878	87 3	70	34	1	2	17 19	
O A O B	.5	17490 17210	21 25 14	2	213	<b>.1</b> .1	ŝ	4530	.1	20 22 11	37	31520	860	11	9670 5040	402	14 1	400 150	7 10	90	18	1 2	7	1 946 1 525	62.1	83 83	3 3	1	2	19 19	
	ł																														
									_																						_
	+																														-
																															-
																												·			
	+																														-
	ſ																														
	+																														
	ł																														



VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

1S-0549-RA1

### SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

## Assay Certificate

### Company: KENNECOTT CANADA

Project: 02-399 P.D.626-01 Attn: S.BISHOP/J.MARR/H.SMIT Date: SEP-04-91 Copy 1. KENNECOTT CANADA, VANCOUVER, B.C. 2. KENNECOTT CANADA, TELKWA, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted AUG-24-91 by HANS SMIT.

1

Sample	AU	AU	
Number	. g/tonne	oz/ton	
78818	1.84	.054	

Certified by

MIN-EN LABORATORIES

# APPENDIX 4

# EXPLORATION METHODS

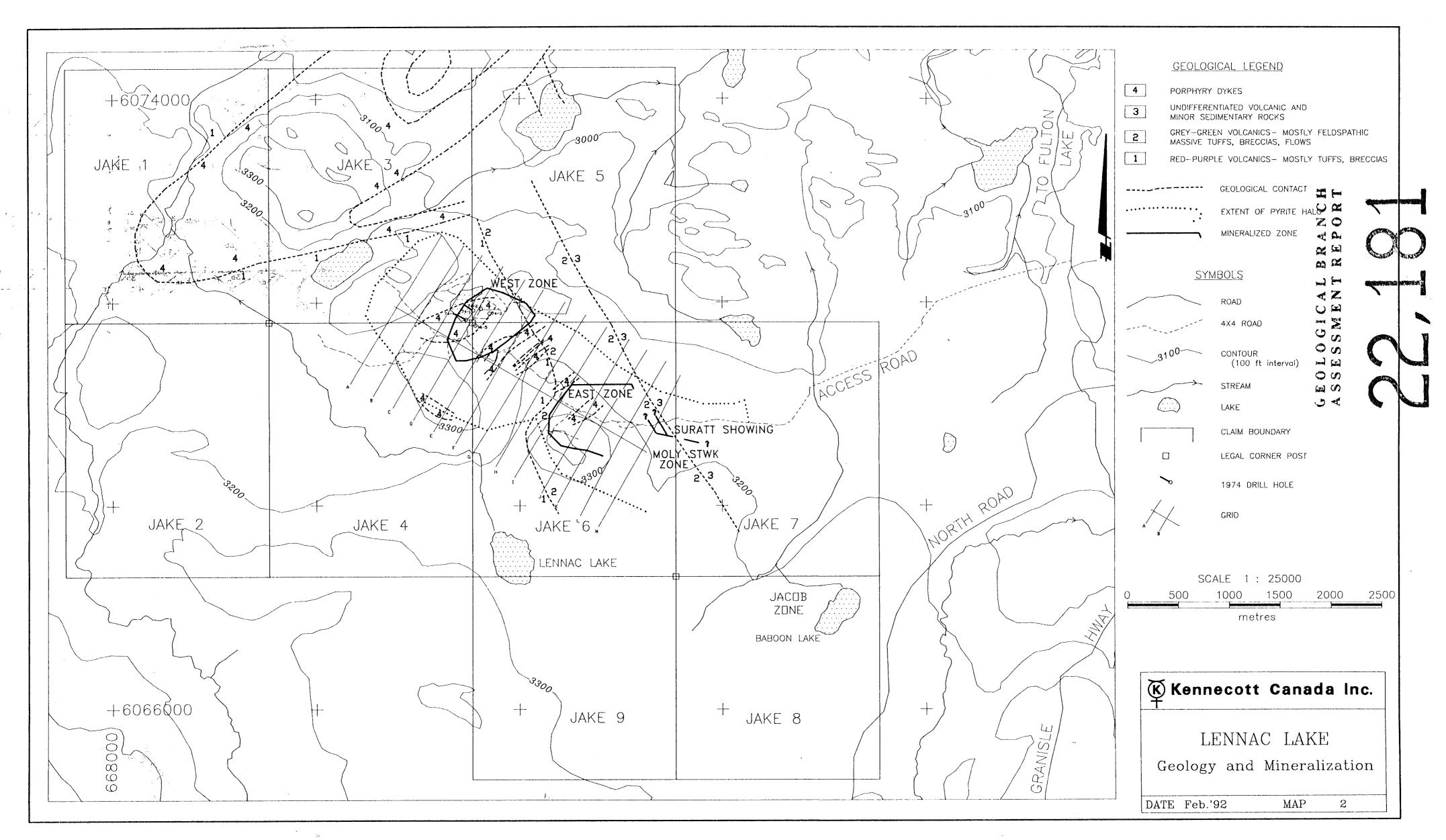
### **EXPLORATION METHODS:**

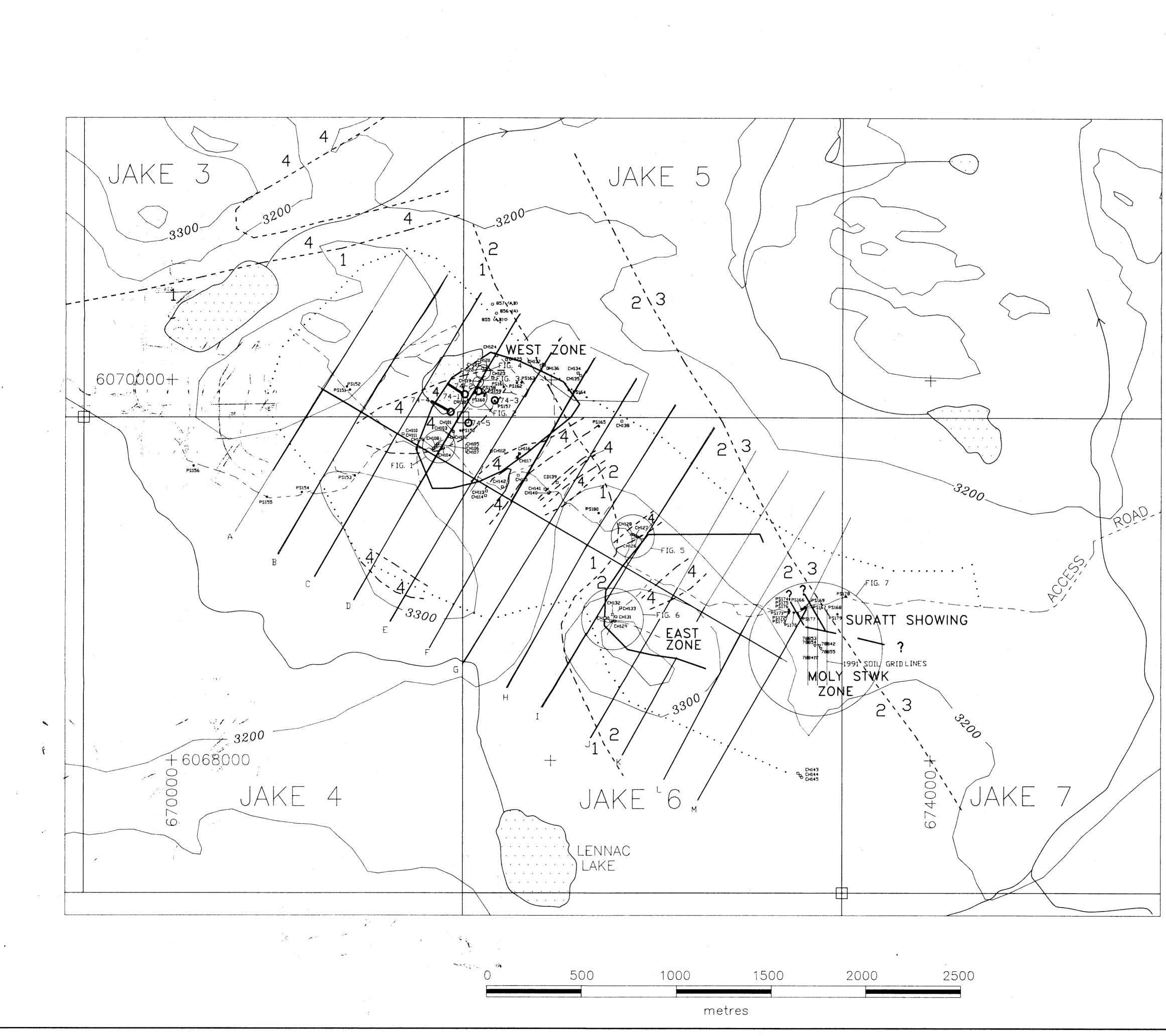
## Excavator Sampling:

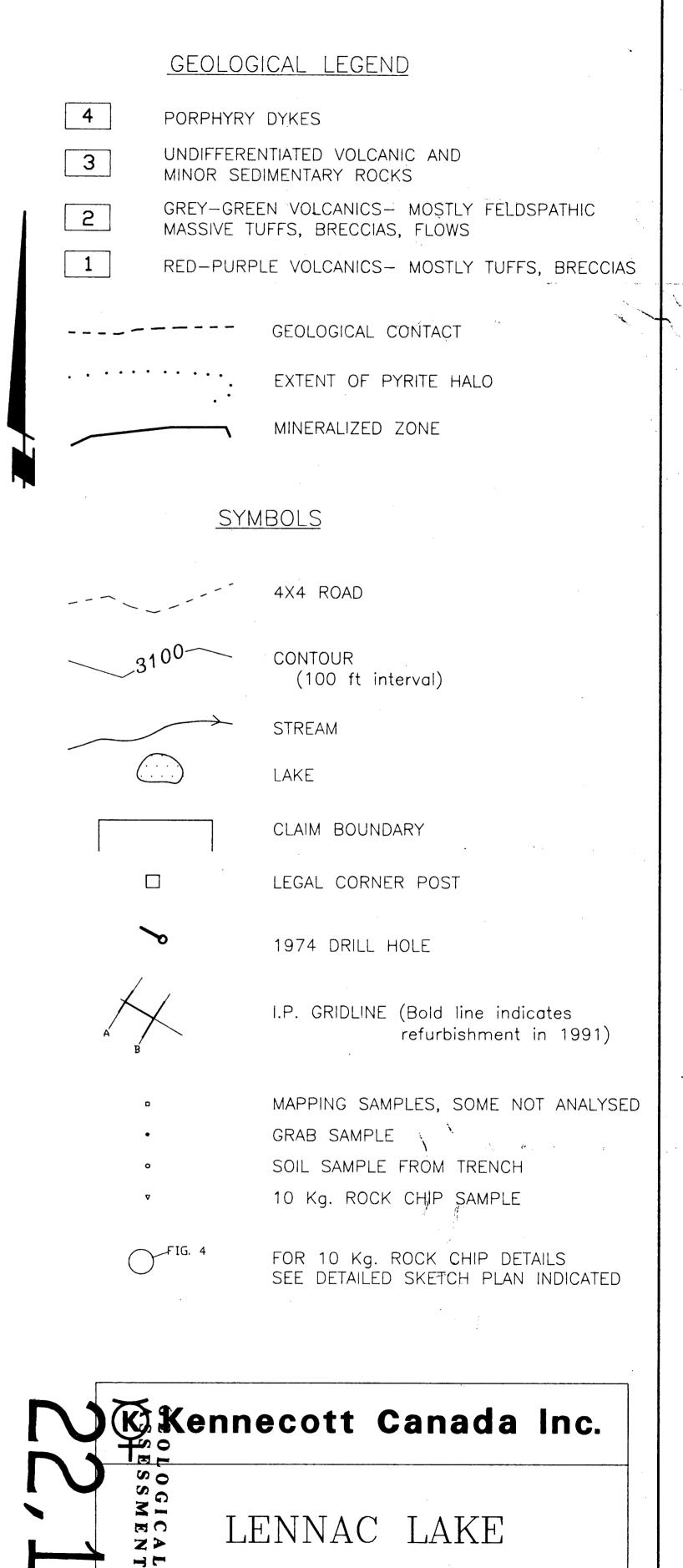
A John Deere skidder with a rear-mounted excavator operated and owned by a skilled prospector was directed by the geologistprospector team. The excavator bucket was 0.6m in width. The equipment was employed to get bedrock samples wherever possible in the target areas. Total depth of penetration on a first-pass basis was 5 to 6 metres. Where, during excavation no bedrock was encountered, a sample or series of samples of the soil and overburden profiles were taken.

Bedrock samples were broken free and raised to the surface in the bucket. The samples were collected, examined and a representative sample for analysis was placed in large 6mm thickness plastic bags. Samples shipped to the laboratory ranged from 8 to 15 kg.

The trenches were re-filled, tamped and grass seeded in all but one case. This trench, along the road edge in the Suratt Showing area, was left open for extension and further examination.


The excavator operator was attended by a geologist or sampling assistant.


### Rock-Chip Samples:


These samples, intended generally for geochemical, multi-element analysis, were taken from the outcrops or float boulders. Representative samples of between 0.3 and 2.5 kg were selected and comprised chips of between 50 and 200 g in weight. They were placed in previously labelled kraft paper bags and shipped for analysis.

### Larger Rock Samples:

These samples, which averaged 10 kg, were taken from trenches or from outrcop, and were generally semi-continuous samples. Marked sample channels were approximately 10-15 cm wide and no longer than 3 m. The chips were place in labelled heavy-duty plastic bags, labelled and shipped for analysis.







Sample Locations

Feb.'92

BRE

J > ΟZ

DATE

MAP

. . . . ..