LOG NO:	MAR 1 0 1992	RD.	
ACTION:			
FILE NO:	· ·		ļ

GEOCHEMICAL, GEOPHYSICAL & GEOLOGICAL REPORT

e

- on the -

"G" CLAIMS

KAMLOOPS, MINING DIVISION, BRITISH COLUMBIA

- FOR -

HUNTINGTON RESOURCES INC. Suite 700, Harbour Centre P.O. Box 12099 555 West Hastings Street Vancouver, B.C. V6B 4N5

COVERING:	G-9, 10, 11, 12 and G-13
WORK PERFORMED:	May 23, 1991 - November 21, 1991
LOCATION:	 (1) 10 km NW of Little Fort, B.C. (2) N.T.S. Map No. 92P/8W (3) Latitude - 51°29' North Longitude - 120°18.5' West

PREPARED BY

GEOQUEST CONSULTING LTD. RR#3, site 11, COMP OL OGICAL BRANCH Vernon, B.C. V1T 6L6 ASSESSMENT REPORT

W. GRUENWALD, B. Sc. January 27,

TABLE OF CONTENTS

																					Ē	ac	<u>le No</u>	2 •
SUMMARY	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	1	
INTRODUCTIO	N .		•	*	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	3	
LOCATION AN	D ACC	CESS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	
PHYSIOGRAPH	Y ANI) VEC	GET/	АТ	10	N		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	4	
CLAIMS	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	5	
HISTORY	• •	•••	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	6	
EXPLORATION	PROC	GRAM	1E	-	19	91	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	7	
GEOLOGY	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8	
MINERALIZAT	ION	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•		11	
GEOCHEMICAL	PROC	GRAM	1E		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		13	
GEOPHYSICAL	PROC	GRAM	1E		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		17	
CONCLUSIONS	AND	RECO	OMM	EN	DA	TI	ON	IS	•	•	•	•	•	•	•	•	•	٠	٠	٠	•		21	

FIGURES

Fig	40-1	Location Map	1:2,500,000
Fig	40-2	Index Map	1:50,000
Fig	40-3	Regional Geology	1:250,000
Fig	40-4	Geochemical Plan - Gold	1:2,500
Fig	40-5	Geochemical Plan - Copper	1:2,500
Fig	40-6	Regional Aeromagnetic Map	1:250,000
Fig	40-7	Magnetometer Survey	1:2,500
Fig	40-8	VLF-EM Survey	1:2,500
Fig	40-9	Compilation Plan	1:2,500

SUMMARY

The "G" claims are located 10 kilometres northwest of Little Fort, in south central British Columbia (Fig. 40-1). The property consists of five contiguous claims totalling 100 units (2,500 hectares). The property is transected by Highway #24 and two major gravel roads, transect the property.

The area first received attention in the 1920's with the discovery of placer gold in Eakin Creek. During the 1980's, exploration by prospectors and several companies identified skarn, vein and intrusive hosted mineralization in the property area. The most recent work by Huntington Resources Inc. consists of 18 km of geochemical soil grid, 1.4 km of road, 14 test pits/trenches and 5.7 km of geophysical surveys.

The property lies within a complex, faulted assemblage of Mesozoic rocks belonging to the Quesnel Trough. These rocks are intruded by the upper Triassic Thuya Batholith. On the property, the intrusive rocks cut sedimentary and volcanic rocks of the Triassic Nicola Group. Indications of northerly trending faults have been observed on the claims.

The target of current exploration has been bulk tonnage, intrusive hosted, precious metal mineralization. Work conducted by Corona Corp./Mineta Resources on the adjacent Golden Loons property resulted in the discovery of gold mineralization within the Thuya intrusive rocks. In 1990, drilling on a siliceous, pyritic zone yielded gold values of 2.67 g/ton (0.078 oz/t) over 10.4 metres and 1.16 g/ton (0.034 oz/t) over 14.3 metres.

On the "G" claims, gold and silver mineralization is associated with fracture controlled quartz veins in "marginal phase" dioritic rocks of the Thuya Batholith. The Discovery Zone, yielded a 3.0 metre interval grading 3.15 g/ton (0.092 oz/t) gold and 36.9 g/ton (1.08 oz/t) silver (Esso Minerals-1988). During 1991, investigation of geochemical anomalies south of the Discovery Zone resulted in the discovery of float fragments of altered and mineralized intrusive rock. Gold and silver in float range up to 121 oz/ton and 2.60 oz/ton respectively. On the basis of geochemical and geophysical evidence, the source of this float is considered to be a nearby intrusive plug.

INTRODUCTION

This report, prepared for Huntington Resources Inc., describes an exploration programme conducted on the "G" claims located northwest of Little Fort, B.C. The property is currently under option from Mr. George Wolanski of Heffley Creek, B.C. Previous exploration on this property by Esso Minerals was directed at several zones of precious metal mineralization closely associated with dioritic rocks of the Thuya Batholith. In 1990, drilling conducted by Corona Corporation on the Golden Loons property, situated south of the "G" claims, encountered significant gold mineralization in large, altered zones within the Thuya Batholith.

The objective of the 1991 programme (Huntington) was to determine the extent and nature of the most favourable target on the property. Geochemical and geophysical exploration techniques, along with detailed prospecting were employed. Follow up exploration consisted of road building and trenching using an excavator.

LOCATION AND ACCESS

The "G" claims are situated in south central British Columbia, approximately 10 kilometres northwest of Little Fort, B.C. (Fig. 40-1). Geographic coordinates for the centre of the claims are 51°29' N. latitude and 120°18.5' W. longitude on N.T.S. Map No. 92P/8W. The claims are situated within the Kamloops Mining Division.

The property is easily accessible from two areas (Fig. 40-2). The central portion of the claim block is transected by Highway #24, a paved road that heads westerly from Little Fort to 100 Mile House. The village of Little Fort is located on Highway #5 approximately a one hour drive north of Kamloops. Access to the claims was further enhanced in the fall of 1991, when Tolko Industries began construction of a major logging road right of way south of Highway #24. This road cuts through the current area of

exploration. Access to the southernmost portion of the claims is via a gravel road along the Eakin Creek Valley.

PHYSIOGRAPHY AND VEGETATION

The property is situated within broad, rolling terrain of the Thompson Plateau, west of the North Thompson River. Slopes are usually gentle, except along the deeply incised Eakin and Nehalliston Creek valleys, where locally precipitous terrain is evident. Both Eakin and Nehalliston Creeks flow easterly toward the North Thompson River. Latremouille Creek also flows easterly, but turns abruptly south shortly before the confluence with Eakin Creek in the southern portion of the property. The eastern extremity of Latremouille Lake is situated within the G-9 claim (Fig. 40-2).

The total topographic relief of the property is approximately 550 metres, ranging from 700 metres at the southeast corner of the G-12 claim in the Eakin Creek valley, to 1,250 metres along the west central portion of the claim block. Topographic relief in the area explored in 1991 is approximately 100 metres.

Glaciation has been extensive throughout the region, resulting in a widespread veneer of boulder-clay till. Ice movement indicated by the G.S.C. (Holland) was from the north. In the area of the "G" claims it is believed that ice movement was deflected by the easterly trending valleys. The thickness of overburden is quite variable, ranging from less than a metre, (i.e. ridges, steep slopes) to probably in excess of ten metres in broad depressions and creek bottoms. Rock outcroppings are usually scarce.

Virtually all of the claims are heavily forested with young to mature stands of fir, spruce, pine and balsam. Cedar is evident in low, wet areas and in the main creek bottoms. Small, scattered swampy areas are present in the central portion of the claim block.

CLAIMS

The "G" claim group consists of five modified grid claims totalling 100 units (2,500 hectares). Overstaking shown on Fig. 40-2 reduces the actual claim group size to approximately 83 units. The largest area of overstaking occurs within the G-10 claim where the Cedar Group (12 claims) is completely enclosed. This small claim group covers a copper-gold skarn showing along Highway #24. Complete details of the "G" claim group are outlined as follows:

CLAIM NAME	TAG NO.	<u>RECORD NO</u> .	<u>NO_OF</u> UNITS	<u>EXPIRY DATE</u>
G-9	113595	7600	20	April 15, 1992
G-10	113596	7608	20	April 22, 1992
G-11	113597	7609	20	April 22, 1992
G-12	113598	7610	20	April 22, 1992
G-13	91260	7779	20	June 21, 1992

The registered owner of the "G" claims is Huntington Resources Inc. of Vancouver, B.C. At present, Huntington Resources Inc. holds an option to acquire a 100% interest (subject to N.S.R.) in the claims.

HISTORY

During the early 1920's, placer gold was discovered in Eakin Creek several kilometres downstream of the present claim block. Placer operations were small and likely short lived. Reportedly, one placer operator is still active on a part time basis. To date, the source(s) of the placer gold in Eakin Creek has never been found.

Sporadic exploration for porphyry copper/molybdenum deposits took place in the region during the 1960's and 1970's. Major companies involved included Anaconda, Rio Tinto, Noranda and Teck.

More recently (1983-88), Craven Resources Inc. held claims over the present day "G" claims and the northern portion of the Golden Loons property (Mineta/Placer Dome). In 1983, a skarn showing containing copper and gold mineralization was discovered by the DeBock brothers of Clearwater along the newly constructed Highway #24. This showing is presently covered by the Cedar Group (Fig. 40-2).

In 1984, Pamicon Developments Ltd. conducted geochemical, geological and geophysical surveys to determine the extent of the skarn mineralization on the Cedar claim group. Further delineation of the mineralized zone was unsuccessful, however several narrow quartz veins in the Nehalliston valley yielded weak gold values.

In 1985, Lacana examined the skarn showing on the Cedar claim group. Two parallel iron-copper sulphide bearing lenses averaging one to two metres wide were examined. The lenses occur within strongly altered volcanics below deformed argillitic and calcareous rocks (Nicola Group), approximately 40 metres from a diorite dyke swarm. Sampling of the sulphide zones by Lacana yielded copper values of 0.78% over 4.0 metres and 2.18% over one metre. Gold values were erratic, with "highs" up to 0.25 oz/ton, however the average gold content was in the 0.01 oz/ton range. It was concluded that the mineralized zone(s) had very limited size potential. In early 1988, Mr. Wolanski discovered gold mineralization (Discovery Zone) associated with narrow quartz veins in a highway cut of Thuya diorite approximately two kilometres west of the Cedar showing (Fig. 40-2). This led to the staking of the present day "G" claims in 1988. During the next two years Esso Minerals held the claims under option and conducted geochemical soil/silt surveys and geological mapping. Esso (K. Dom) revealed that the western portion of the property was underlain by a dioritic (marginal) phase of the Thuya Batholith. A 3.0 metre interval of diorite containing narrow quartz veins returned 3.15 grams/ton gold (0.092 oz/ton) and 36.9 grams/ton (1.08 oz/t) silver. This sample was contained in a 14 metre wide portion of the road cut averaging 946 ppb gold (0.028 oz/ton).

Stream sampling by Esso Minerals also indicated anomalous gold values in creeks draining through or originating in the G-10 and G-11 claims (Fig. 40-2).

In 1989, Esso Minerals ceased operation and the property was transferred to Homestake Mining (Canada) Ltd. No additional work was carried out on the "G" claims and in June, 1990, the property was turned back to Mr. Wolanski.

EXPLORATION PROGRAMME - 1991

The most recent exploration of the "G" claims commenced in May, 1991 with the establishment of a control grid. The Esso grid was utilized and extended south to Eakin Creek. A chainsaw cut, north-south baseline was established from which east-west cross lines were run at 100 metre intervals. Follow up work in specific areas required the reduction of line spacing to 50 metres and sample stations to 12.5 metres. In all, 18.2 kilometres of grid were established. Soil sampling, rock chip sampling and prospecting were conducted over the entire grid.

In early October, an exploration access road was constructed using a Hitachi EX200 excavator. This road was designed to

- 7 -

transect the most geochemically anomalous zones outlined by the soil sampling programme. A total of 1.4 km of exploration road were constructed. This length was considerably less than originally projected due to the construction of a logging road by Tolko Industries in September. After the exploration road was completed, a number of small test pits and trenches were excavated. In all, 14 such excavations were completed. All but one test pit (TP-5) was backfilled and levelled.

In October, a geophysical programme was conducted to assist in locating the source of the mineralized float now realized to have been glacially transported. A magnetometer and VLF-EM survey were carried out from L-O to L-7S.

GEOLOGY

REGIONAL GEOLOGY:

According to the Geological Survey of Canada (Memoir 363), the "G" claims lie within a Mesozoic complex of volcanic and sedimentary rocks belonging to the Quesnel Trough. This structurally complex assemblage forms a north northwesterly trending belt situated between the Proterozoic/Paleozoic metamorphosed rocks of the Shuswap Highlands to the east and the extensive Eocene/Miocene "plateau" volcanics to the west (Fig. 40-3). These rocks are intruded by the Thuya Batholith and by several satellitic(?) alkaline intrusions. Faulting is extensive and complex with the dominant trend ranging from northwest to north northwesterly. Several of these faults splay off a major fault system that parallels the North Thompson River and essentially forms the contact between the Mesozoic assemblages and the older metamorphic terrain to the east. In the property area, two lithologic units are indicated. The oldest unit is represented by volcanic and sedimentary rocks belonging to the Triassic Nicola group. Intruding this assemblage is the northern extremity of the upper Triassic Thuya Batholith, comprised of monzonites, diorites and

minor mafic intrusive rocks. Ultramafic plugs that predate the Thuya intrusion are indicated several kilometres south southeast of the "G" claims.

LOCAL GEOLOGY:

The "G" claims and the adjacent Golden Loons property (Mineta/Placer Dome) occupy a similar geological setting near the northern edge of the Thuya Batholith. Mapping has indicted the presence of alkalic/mafic "marginal phases" of the Thuya Batholith. These phases occur as a northerly trending zone, approximately two kilometres wide, consisting of quartz monzonite, monzonite, quartz diorite, syenodiorite and locally, syenogabbro. The more typical Thuya intrusive rocks found further west include granodiorites and quartz diorites.

On the adjacent Golden Loons property, a large ultramafic intrusion (1 km+) occurs near the margin of the Thuya Batholith, along what is probably a northwesterly trending structure. Aeromagnetic data clearly defines this intrusion (Fig. 40-4) and indicates a possible north northwesterly extension onto the western portion of the "G" claims.

Situated east of the Thuya Batholith, are Nicola Group andesite, argillite, phyllite and calcareous rocks. These are best observed along Highway #24 as well as the Eakin and Nehalliston Creek valleys.

During the 1991 exploration programme, rock outcroppings were seldom seen beyond those along Latremouille Creek, the north side of Eakin Creek and the Highway #24 road cut. For the most part, Thuya intrusive rocks dominate within the area currently under investigation. These rocks are usually medium grained, hornblende rich diorite. Weak propylitic alteration manifested by epidote, chlorite, and calcite is not uncommon. Narrow quartz veinlets (\$5 cm) containing calcite, chlorite and minor iron sulphides are locally evident.

Geochemical follow up and prospecting encountered scattered, limonitic, altered, intrusive (?) float within the north-central

portion of the grid. This float is very distinct in both the intensity of alteration and levels of precious metal mineralization. The relationship to the Thuya intrusion is unclear, however the current opinion leans toward a younger, possibly structurally controlled intrusive plug. To date, no bedrock source for these float occurrences has been encountered. Rock sample descriptions are listed in Appendix B.

The structural aspects of the property are not well understood, however some indicators are present. The abrupt southerly bend in the lower portion of Latremouille Creek is suggestive of a fault zone. The discovery of a sheared, schistose zone in Thuya rocks north of this bend may be supporting evidence for such a structure (Fig. 40-9). The "Latremouille fault", when projected northerly, intersects Nehalliston Creek in the area of an abrupt bend that is mapped by the G.S.C. as a major north northwesterly trending fault (Fig. 40-3). The locus of these two structures is situated within the possible "up ice" source of the geochemical anomalies and float and may be an area worthy of exploration.

The Discovery Zone, found along Highway #24, (Fig. 40-9) reveals the dioritic rocks to be fractured, altered, locally brecciated and mineralized. It is conceivable that the rocks in this area represent a marginal or contact phase that has undergone structural deformation. Interestingly, the northerly projection of the Latremouille fault would pass near the Discovery Zone.

MINERALIZATION

Several occurrences of precious metal mineralization have been identified to date within the area of the "G" claims. Exploration by Esso Minerals during 1988, investigated a contact (skarn) occurrence, a weak stockwork(?) vein zone, in Thuya intrusive rocks and a quartz vein zone in Nehalliston Creek. Only the second occurrence is located within the confines of the 1991 exploration programme. This occurrence, referred to as the Discovery Zone, is situated along Highway #24 near the north end of the 1991 grid (Fig. 40-2). Discovered by Mr. Wolanski in 1988, the zone consists of altered and brecciated dioritic rocks containing fracture controlled guartz veins. These veins range from less than one centimetre, to five centimetres wide, and contain disseminations of pyrite and minor galena. Sulphide content in the veins seldom exceeds 5%. A gold value of 946 ppb (0.028 oz/t) was indicated over a 14 metre length of the road cut (Esso Minerals). Contained within this interval was a 3.0 metre sample assaying 3.15 grams/ton Au (0.092 oz/t) and 36.9 g/t Ag (1.08 oz/t). Prospecting by Mr. Wolanski in late 1991 encountered a new and possibly related bedrock(?) occurrence along Highway #24 approximately 200 metres northeast of the Discovery Zone. A grab sample of a weakly pyritic, felsic, intrusive rock returned an assay of .103 oz/ton Further investigation of this area is warranted. Au.

Discovered during the course of the 1991 programme, was a new and previously unrecognized type of mineralization. Investigation of several anomalous soil sample pits revealed fragments of limonitic and altered, intrusive(?) "float" ranging from a few centimetres, up to 50 cm across. The shape of individual fragments range from subangular to subrounded. These float fragments strongly contrast the known Thuya rocks in that they usually contain relatively abundant disseminated pyrite (3-5%) and in some instances, fine grained hematite. The fragments are often silicified, and display breccia and/or quartz stockwork textures. Carbonate infillings are evident in some of the distinctly brecciated fragments. Some of these characteristics appear similar to the mineralized zones on the adjacent Golden Loons property. Descriptions of these float samples are listed in Appendix B. Mineralized float has been found over a considerable area of the grid, extending from L-2S to L-7S (500 metres) and between the baseline and 3+50E. At least ten separate surface indications of mineralized float have been discovered. During the course of road building and trenching, several more instances of mineralized float were discovered. In one case, a highly silicified, limonitic boulder approximately 2.7 metres across was uncovered during road construction (Fig. 40-9, GWR-11). To date, no bedrock source for the mineralized float has been found.

The greatest significance of these float occurrences is the level of precious metals. In virtually all cases, significant gold and silver concentrations have been indicated. Gold values range from weakly anomalous to .121 oz/ton. Silver values range up to 88.3 ppm (2.6 oz/ton). Panning of limonitic till in test pit #5 by Mr. Wolanski and the writer revealed fine visible gold in the concentrate. Microscopic examination revealed several angular gold particles indicative of a very short transport distance.

Evidence to date suggests the source of the mineralized float to be other than the Discovery Zone. The float occurrences are consistently more altered, stockwork veined, brecciated and less mafic than the highway exposure. In addition, lead mineralization noted in the Discovery Zone veins, has not been encountered in any of the mineralized float samples.

Only one rock sample, CMG-001, located at L-3S;3+45S, appears similar to the Discovery Zone type of mineralization. This sample is described as a chlorite-carbonate altered, pyritic (nonlimonitic), brecciated, intrusive rock. The location, southeast of the Discovery Zone, is consistent with the glacial ice movement.

In conclusion, the nature and amount of precious metals in these float occurrences are highly encouraging. The geochemical and geophysical signatures, combined with the known glacial directions, indicate a nearby, north to westerly source for the mineralized float. The quantity, size and diversity of the float point to a potentially sizeable source. The Discovery Zone, though not the apparent source, may be an indicator (i.e. peripheral) to a more strongly mineralized zone. Further exploration is definitely warranted and should be directed toward the potential source area(s).

GEOCHEMICAL PROGRAMME

Geochemical sampling of the "G" claims centred on the grid established by Esso Minerals (1988) and extended the coverage southerly to Eakin Creek. A chainsaw cut, north-south baseline, 1.4 kilometres long was established. East - west cross lines were compassed and chained at 100 metre intervals from L-0 to L-14S. Initially, the cross lines extended from 5+00W to 5+00E, a distance of one kilometre. Station markers were placed every 25 metres Subsequent follow up work required the along all grid lines. establishment of fill-in grid lines (50m) with local sample spacings reduced to 12.5 metres. Wherever possible, soil samples were collected from the "B" horizon, usually at depths from 25-40 In total, 18.2 kilometres of grid lines were established from cm. which 535 soil, 80 rock, one silt and one panned concentrate sample were collected. Included in these totals are 17 rock and 7 soil (till) samples that were taken during a trenching and test pitting programme near the end of the field season. All samples were submitted to Min-En Laboratories for gold and/or ICP analysis excepting seven samples that were submitted to Eco-Tech Laboratory in Kamloops for gold analysis.

The preparation of soil and silt samples involves drying and sieving the sample to obtain a -80 mesh fraction. A one assay ton sample (~30 grams) of this material is mixed with flux and fused in a fire assay furnace. A lead button is produced and "cupelled" in the furnace to produce a bead containing the precious metals. Nitric acid is added to the bead to dissolve any silver. The resultant gold bead is dissolved with the addition of three parts hydrochloric acid. The gold content is then determined by atomic absorption.

Rock samples are analyzed in a similar manner, except for the preparation, which involves pulverizing and screening to -100 mesh. Panned concentrates are dried, with the entire sample being utilized for the final gold analysis. The results for soil and silt samples are stated in parts per billion (ppb). Rock and panned concentrate samples are stated in ppb. Highly anomalous samples are stated in grams/ton and/or troy oz/ton.

In addition to gold analysis, the soil and rock samples were subjected to Induction Coupled Plasma analysis (ICP). The methodology involves digesting a 0.5 gram sample in a nitric acid/ aqua regia solution and subsequent aspiration to an ICP unit which simultaneously determines the values for 31 elements. All geochemical results for the 1991 programme are found in Appendix A. The gold and copper values are plotted and contoured on base maps at a scale of 1:2,500 (Fig. 40-4, 5).

The soil samples returned gold values ranging from 5 ppb to 2,995 ppb. Statistical treatment of the data resulted in values less than 20 ppb being classed as background and values exceeding 70 ppb classed as definitely anomalous. However, for the purposes of this report, gold values exceeding 45 ppb are considered significant and indicated on the Compilation Plan (Fig. 40-9)..

The soil and rock geochemistry shown on Fig. 40-4 reveals several prominent geochemical anomalies. The most extensive, anomaly "A", is found east of the baseline between L-0 and L-8S and terminates just south of Latremouille Creek. Trending nearly due north - south, this anomaly attains a width of up to 300 metres at L-4+50S. Gold values range up to 2,995 ppb (~0.09 oz/ton). The most easterly soil anomaly (B) is centred at approximately 4+25E on lines 4S, 4+50S and 5S. Anomaly C is irregular in shape, trends north northwesterly and straddles the baseline from lines 5S to 9S. The southern extremity of this anomaly, as with anomaly A, is just south of Latremouille Creek. The northern portion of this anomaly parallels a drainage gully. Values range up to 308 ppb. Anomaly D is a narrow, north-south trending anomaly centred at 2+75W on L-4S west of a broad drainage. This anomaly appears to terminate north of L-3S and may extend south to Latremouille Creek at L-7S. Values ranging up to 102 ppb are indicated. Anomaly E is a small anomaly in flat terrain at the west end of L-1S. Values range up to 104 ppb.

During a follow up programme, the most anomalous soil sample sites were investigated to determine the possible cause. Anomaly A, having the majority of anomalous values, was the primary target of prospecting and mapping.

Examination of an anomalous soil sample site at L-6S;1+25E (1,615 ppb) revealed fragments of limonitic and pyritic siliceous rock. These fragments are thought to be of intrusive origin but strongly contrast the local Thuya diorites. Sampling of this material returned a value of 0.042 oz/ton gold and 11.9 ppm silver. Continued prospecting encountered at least ten more instances of similar altered "float" occurrences in soil pits between L-2+50S and L-7+50S and 0+50E to 3+00E. The majority of these mineralized float occurrences yielded highly anomalous gold and silver values. Values of up to 0.121 oz/ton gold and 2.6 oz/ton silver have been reported. No mineralized rock fragments were encountered in Anomalies B to E.

Late in the 1991 programme, 14 test pit/trenches were excavated in selected areas with emphasis on Anomaly A. Bedrock was encountered in only six instances and in all cases was comprised of fresh to weakly altered Thuya intrusive rocks. No anomalous gold values were returned from any bedrock samples. This was the first indication that the mineralized float and the geochemical anomalies were transported. Limonitic, altered float was encountered in six excavations and in two instances, an apparent westerly dip or plunge of the limonitic material was The presence of fine angular visible gold in observed in till. panned concentrates from TP-5 (Fig. 40-9) suggests a local source area. The ice movement indicated by the G.S.C. was from the north,

however large valleys such as Eakin Creek may have deflected the flow more easterly. Therefore, it is conceivable that the source area of the float/soil anomalies may range from the north to the west.

An argument in favour of a relatively short transport distance, is the intact nature of the geochemical anomaly and amount of mineralized float. Any long transport distances would have resulted in a more sporadic and less well defined pattern. The extent of the geochemical anomalies also point to a source with size potential.

In marked contrast to the gold distribution, copper soil anomalies occur almost exclusively south of Latremouille Creek. Copper values range up to 298 ppm with the threshold anomalous level indicated as 80 ppm (Fig. 40-5, 9). The gold anomalous areas previously discussed are noticeably base metal deficient. These marked differences in geochemical signature may indicate a structural feature, metal zonation and/or geological changes within the intrusive rocks.

During 1991, stream sediment sampling was restricted to Latremouille Creek. Silt sampling yielded 42 ppb and 24 ppb gold values. The panned concentrate however, yielded gold values of 986 ppb (.029 oz/ton). This compares closely with the Esso Minerals value of 970 ppb Au. Sampling by Esso on 1988 yielded anomalous values on other drainages in the claims. The highest value obtained (1,960 ppb) came from Nehalliston Creek (Fig. 40-2). This value may reflect mineralization upstream and possibly northerly (up ice?) of the current exploration area.

GEOPHYSICAL PROGRAMME

Subsequent to the discovery that the geochemical anomalies and the mineralized intrusive float occurrences were not "in situ", it was concluded that geophysical techniques could be of assistance. The degree of alteration and pyrite content of the mineralized float were characteristics with potential to yield identifiable geophysical response(s). Magnetic and electromagnetic surveys were carried out in the northern half of the grid, extending from L-0 to L-7S. In all, a total of 5.7 kilometres were geophysically surveyed.

MAGNETIC SURVEY:

Magnetic readings were taken using a Scintrex fluxgate magnetometer that measures the vertical component of the magnetic gradients. Base station readings were recorded at various intervals to determine the diurnal magnetic variations. These fluctuations were generally minimal. The data is presented on Fig. 40-7 and contoured at 200 gamma intervals.

ELECTROMAGNETIC SURVEY:

Electromagnetic readings were taken using a Sabre Electronics VLF-EM unit (Model 27) tuned to the Seattle, Washington transmitting station as the primary field source. Readings were taken at 25 metre intervals. At each station the transmitter orientation is determined by rotating the instrument in the horizontal plane until a "null" in the field strength is indicated. While facing the transmitter, the instrument is moved to the vertical plane so that the instrument coil is perpendicular to the primary electromagnetic field. The dip angle, measured in degrees, is then determined by rotating the instrument clockwise or counterclockwise until the This value is recorded as a lowest reading (null) is observed. positive or negative number. Returning the instrument to the horizontal plane and rotating 90° to the transmitter allows the measurement of the relative field strength. An optimum field strength of 50±10 is generally used. Excessive or insufficient field strength levels are adjusted by a gain control.

To reduce the effects of topography and enhance the electromagnetic anomalies, the raw data was "Fraser filtered". This is represented by the algebraic formula:

F=(a+b)-(c+d)

where a,b,c, and d represent the dip angles at four consecutive grid stations. The filtered value (F) is plotted between stations b and c. The raw and filtered data are presented on Fig. 40-8. Filtered values are contoured at $+5^{\circ}$ intervals and the axes of anomalies of $\geq +10^{\circ}$ are outlined.

DISCUSSION OF RESULTS:

The magnetometer readings range from a low of -480 gammas to a high of 1,700 gammas with the background level in the 500 to 800 The grid that was magnetically surveyed can be gamma range. roughly divided into three areas. The first and largest area is located east of the baseline. The overall magnetic relief is generally low, with no extremes being indicated. This magnetic expression is consistent with the observed geological setting of essentially unaltered, Thuya dioritic rocks. The few magnetic "highs" are likely attributed to more mafic (magnetite enriched) phases within the Thuya rocks. The area near the Discovery Zone did not yield any significant response. The strongest magnetic "low", centred in the southeasterly portion of the grid, is not likely related to the geochemical anomaly, but rather seems to indicate a northerly trending structural feature such as a fault (Fig. 40-9).

Immediately west of the baseline is an area characterized by relatively strong magnetic "lows". This area extends from L-0 to L-7S and averages approximately 250 metres wide. For the most part, this anomaly is situated in a topographically low area with no bedrock exposure. The north-south orientation is consistent with regional trends (i.e. contacts, faults). It is conceivable that this feature could represent an altered phase of the Thuya

- 18 -

Batholith or distinct intrusive body. A source to the altered and mineralized float would likely produce such a magnetic response. The regional aeromagnetic map (Fig. 40-6) indicates a small magnetic low centred in an area north of the highway near Nehalliston Creek. This may be the northern extension of the magnetic low detected by ground surveys.

The third, magnetically distinct area is in the southwestern portion of the grid. This area is characterized by a high magnetic gradient with values often in excess of 1,000 gammas. In the absence of outcrops, no definite explanation for this anomaly can be put forward. The regional aeromegnetic map however, does indicates a strong "mag high" just east of Latremouille Lake. This anomaly appears to be a northwesterly continuation of the strong magnetic trend extending from the Golden Loons property. On the Golden Loons property a large ultramafic body is the primary cause of the intense magnetic anomaly.

The electromagnetic survey produced several anomalies, the majority and strongest of which occur west of the baseline in the area of magnetic "lows" (Fig. 40-8). Fraser filtered values range up to +32°, however most values are less than +20°. For the purposes of this discussion only filtered values over +10° are considered.

The area east of the baseline produced only a few weak responses. The two southernmost anomalies (A, B) are coincident with magnetic lows. Anomaly "B" is consistent with the evidence of a northerly trending fault zone indicated by mapping and the magnetic survey. Anomaly "C" occurs in a drainage gully and may be attributed to conductive overburden although a structural cause can not be ruled out.

Anomaly "D" is the most extensive and strongest electromagnetic anomaly. It is also situated in a topographic low and has no geological explanation. This anomaly extends north to Highway #24where a strongly limonitic swampy area was encountered on L-2S. For the most part, the axis of the anomaly coincides with the dominant magnetic low.

Anomaly "E" also trends north-south, but occurs in a more strongly magnetic area. The limited amount of geological evidence indicates the area to be underlain by relatively unaltered Thuya diorites. Interestingly, a similarly oriented gold geochemical anomaly is situated approximately 50 metres to the east.

In summary, the geophysical surveys produced some significant results. The area of the strongest geochemical response and mineralized float occurrences did not provide data consistent with a zone of mineralization. Geophysical data does however, point to an area of potential approximately 250± metres westerly of the geochemically anomalous zone. This area could conceivably contain a structurally controlled, mineralized body (i.e. intrusive plug). Glaciation from the west to northwest over such a body could have produced the transported soil anomaly as well as the float occurrences.

CONCLUSIONS AND RECOMMENDATIONS

The 1991 exploration programme determined that the strong gold geochemical anomalies are associated with mineralized float of The source of this float has not yet probable intrusive origin. been discovered, however indications are for a local origin. The source is postulated to be a precious metal rich, possibly structurally controlled intrusive body intruding the Thuya rocks. Geophysical indicators and known ice movement directions point to a source area north to west of the geochemical anomalies. Further exploration is most definitely warranted in the potential The grid should be expanded north and west to source area(s). allow additional geochemical sampling and mapping along with The use of an overburden sampling detailed ground geophysics. system (i.e. portable drill) may be preferable over extensive

trenching programmes.

Respectfully submitted by GEOQUEST CONSULTING LTD.

W. Gruenwald, B. Sc. GEOLOGIST

Vernon, B.C. January 27, 1992

APPENDIX A

GEOCHEMICAL RESULTS

Statistical compilation of geochemical soil results from Min-Labs, file Nos:

1V-0503, 1V-0492, 1V-0485, 1V-0641, 1V-0712

			51	~		Fire	AVG
Line	Station	Си ррм	2D MQQ	Zn DDM	Au DDR	AU DDR	Au
BL	0 S						
BL	25 S	• •	<i>.</i>				
BL	50 S	30	6	102	5		5
BL	/5 S	37	/	64	5		5
BL	100 S	4	4	23	5		5
BP BP	125 S	20	4	59 70	С С		5
BT	150 S	29	1	70 713	5		5
ВL DT	1/0 g	27	4	73			
BL.	200 S 225 g	27	4	50	5		10
BL.	220 S	36	1	52	5		5
BL	275 S	18	- - 	52	5		5
BL	300 S	10	9	49	5		5
BL	325 S	5	4	31	5		5
BL	350 s	25	5	59	5		5
BL	375 s	23	5	77	5		5
BL	400 s	21	2	84	5		5
BL	425 S	11	4	76	5		5
BL	450 S	16	2	56	5		5
BL	475 S	22	3	58	5		5
BL	500 s	25	5	50	5		5
\mathbf{BL}	525 S	30	3	73	5		5
BL	550 S	21	3	63	5		5
\mathbf{BL}	575 S	15	2	77	20		20
BL	600 S	36	1	73	65	24	45
BL	625 S	19	5	66	10		10
BL	650 S	16	6	72	5		5
ВГ	675 S	25	4	83	5	6	5
BT BT	700 S	27	5	120	5	6	6
ВЬ DI	720 5	12	3 E	130	5		С С
<i>ВЦ</i> рт	750 S	30	2 9	/0 70	5	4	2 5
DL BT	800 g	258	18	97	240	120	180
BL.	825 S	250	10	37	240	120	100
BL	850 S	243	1	67	155	482	50 *
BL	875 S	63	4	86	40	16	28
BL	900 S	39	3	83	25	12	19
BL	925 s	25	6	143	175	80	128
BL	950 s	10	1	78	5	2	4
BL	975 S	47	4	64	10		10
BL	1000 s	70	1	62	35		35
BL	1025 S	54	6	78	5		5
BL	1050 s	46	1	69	5		5
BL	1075 S	30	1	70	5		5
BL	1100 s	67	2	48	20		20
BL	1125 S	76	3	57	30		30
BL	1150 S	82	1	49	45	2	24
BL	1175 s	170	1	43	70	3	37
BL	1200 S	129	1	66	75	2	39
BL	1225 S	59	1	56	5		5
RL	1250 S	58	1	53	5		5
BL	1275 S	32	2	59	30		30

- 1 -

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
	1200 0						
ВГ	1300 5	99	2	70	30		30
	1350 g	21	1	120	5		5
BL RL	1375 g	21	5	130 70	5		5
BL RL	1400 g	17	Д	80 73	10		10
BL	1400 S	20	2	215	5		5
24	1.20 0		-		2		0
L-0	25 E					40	40
L-0	50 E					2	2
L-0	75 E					18	18
L-0	100 E					48	48
L-0	125 E					30	30
L-0	150 E					3	3
L-0	175 E					2	2
L-0	200 E					4	4
L-0	225 E					31	31
L~0	250 E					52	52
L-75S	500 W					21	21
L-1S	25 W	13	7	80	5		5
L-1S	50 W	8	5	62	5		5
L-1S	75 W						
L-1S	100 W						
L-1S	125 W						
L-1S	150 W	21	62	93	5		5
L-1S	175 W	39	4	54	35		35
L-1S	200 W	1/	4	98	5		5
L-1S	225 W	41	1	34	5		5
L~1S	250 W	28	1	45	5		2
L-1S	275 W	10	1	70	5 E		5 E
L^{-15}	300 W 225 W	10	1	60	5 5		С С
L-15	323 W 350 W	27	1 5	04	ມ ຮ		5
L~15	375 W	20	1	90 79	5		5
L-1S	400 W	12	6	55	5		5
L~1S	425 W	8	3	48	5		5
L-1S	450 W	44	1	53	50	100	75
L~1S	475 W	64	1	50	25		25
L~1S	500 W	27	1	38	110	98	104
L-1S	500 W(B)					34	34
L-1S	525 W					2	2
L~1S	550 W					3	3
L-1S	25 E	11	10	56	70	43	57
L-15	50 E	11	7	54	5		5
L~1S	75 E	16	6	54	5		5
L-1S	100 E	16	2	58	_5	-	5
L-1S	125 E	23	3	46	75	40	58
L~1S	150 E	24	4	80	5		5
ม-1S 1 1 ค	1/5 E	94	1	112	TO		10
⊔~18 Т_19	200 E 225 m	27	1	112	5 E		5
n-T2	223 E	30	4	07	5		

			<u>.</u>		_	Fire	AVG
_ ·		Cu	Pb	Zn	Au	Au	Au
Line	Station	66W	PPM	66W	PPB	PPB	PDB
 L-19	250 F	19	 	51			
L-1S	275 E	15	2	85	5		5
L-1S	300 E	4	5	33	5		5
L-1S	325 E	8	5	55	5		5
L-1S	350 E	15	2	67	5		5
L-1S	375 E	9	3	85	5		5
L-1S	400 E	6	5	103	5		5
L-1S	425 E	8	5	101	5		5
L-1S	450 E	15	2	72	10		10
L-1S	475 E	15	5	51	30		30
L-1S	500 E	6	2	41	5		5
L-1S	525 E					1	1
L-1S	550 E					1	1
L-1S	575 E					1	1
L-1S	600 E					1	1
L-1S	625 E					2	2
L-1S	650 E					1	1
L-1S	675 E					1	1
L-1S	700 E					1	1
L-1S	725 E					1	1
L-1S	750 E					4	4
L-125S	500 W					3	3
L-2S	25 W	13	10	86	5		5
L-25	50 W	17	4	38	35		35
L-2S	75 W	42	1	37	10		10
L-2S	100 W	20	1	41	25		25
L-2S	125 W	13	5	62	5		5
L-25	150 W	23	1	29	5		5
L-25	1/3 W						
1-28 1-28	200 W 225 W						
L-28	223 W 250 W						
U-23 T-29	230 W						
L-25	275 W 300 W						
L = 2S	325 W						
L = 2S	350 W						
L-2S	375 W						
L-2S	400 W						
L-2S	425 W						
L-2S	450 W						
L-2S	475 W						
L-2S	500 W						
L-2S	25 E	15	2	82	5		5
L-2S	50 E	5	1	34	5		5
L-2S	75 E	18	1	77	25		25
L-2S	87.5 E					56	56
L-2S	100 E	20	1	60	155	4	80
L-2S	100 E(B)					22	22
L-2S	112.5 E	_				1	1
L-2S	125 E	7	1	31	10	2	6

.

- 3 -

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
		·					
L-2S	150 E	13	2	55	55	1	28
L-2S	175 E	17	1	88	25		25
L-2S	200 E	4	5	34	10		10
L-2S	225 E	6	1	52	5		5
L-2S	250 E	25	2	71	5		5
L-2S	275 E	7	4	54	5		5
L-2S	300 E	2	1	5	5		5
5-28 1 28	323 E		1	37	5		Э Е
L-28 L-28	330 E	, J 9 11	4	40	5 10		10
L-25 T-29	373 E	·	, 1	33	10		ج ۲0
L-23	400 E	20	1	44	5		5
L = 2S	450 E	12	1	55	20		20
L-2S	475 E	11	4	65	40		40
L-2S	500 E	9	6	108	15		15
_		· · · ·	· ·	200			10
L-250S	25 E	}				5	5
L-250S	50 E	•				60	60
L-250s	75 E	s r				34	34
L-250S	87.5 E					133	133
L-250S	100 E	•				248	248
L-250S	112.5 E					62	62
L-250S	125 E					35	35
L-250S	150 E					22	22
L-250S	175 E					24	24
L-250S	200 E					18	18
L-250S	225 E	;				6	6
1-39	25 W	16	6	60	25		25
L-39	50 W	10	3	88	2J 5		20
L-3S	50 W	(B)	5	00	5	14	14
L-3S	75 W	19	2	70	15		15
L-3S	100 W	26	1	45	45	20	33
L-38	125 W	22	3	92	35		35
L-3S	150 W	17	5	66	5		5
L-38	175 W	20	4	60	5		5
L-38	200 W	1 20	3	64	5		5
L-38	225 W	1					
L-38	250 W	1			_		
L-38	275 W	1 23	1	73	25		25
L-3S	300 W	39	2	63	5		5
L-3S	325 W	26	6	90	5	10	5
L-38	350 W	43	1	82	45	12	29
ц-за 1-36	373 W 100 W	ר איז איז איז איז איז	12	/U 65	/ 3	40 ว	70 10
ц-38 Г-38	400 W	י גע גע ג	د 1	00 86	40 2 R	3	24
ц-33 139	42J W 450 K	י גר גר גר	1 1	00 61	30		50 K
L-38	475 G	- 25 I A6	⊥ 1	50	J 5		5
L-38	500 W	ι	± 1	52	10		10
L-3S	25 5	32	1	50	45	45	45
L-3S	37.5 5		±	50	-10	21	21
L-3S	50 E	23	1	76	200	119	160

, .

- 4 -

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
L-3S L-3S	50 E(B) 62.5 E					$\begin{array}{r}\\ 124\\ 40 \end{array}$	 124 40
L-3S	75 E	21	1	65	30	4	17
L-3S	100 E	8	6	49	5	5	5
L-3S	125 E	26	2	59	75	80	78
L-3S	150 E	10	30	59	5		5
L-3S	175 E	9	5	37	5		5
L-3S	200 E	17	1	63	5		5
1-38 1-38	220 B 250 B	8	3 E	23	10		E E
1-38 1-38	230 E 275 F	5	5	09	5		C
L-39	275 E 300 F	7	2	70	5		5
1-3S	325 E	,	2	70	5		5
L-3S	350 E	5	4	39	5		5
L-3S	375 E	2	5	31	5		5
L-3S	400 E	11	4	45	10		10
L-3S	4 25 E	13	5	67	10		10
L-3S	450 E	10	5	54	5		5
L-3S	475 E	8	7	61	5		5
L-3S	500 E	15	1	73	20		20
L-350S	25 E					2	2
L-350S	50 E					69	69
L-350S	75 E					10	10
L-3505	100 E 125 F					76	76
1-3505	150 E					29	29
L = 350S	175 E					6	2) 6
L-350S	200 E					54	54
L-350S	225 E					22	22
L-350S	250 E					2	2
L-350S	275 E					62	62
L-350S	300 E					49	49
L-350S	325 E					2	2
L-350S	350 E					5	5
L~350S	375 E 400 E					2	2
L-3508	400 E 125 F					21	2 I A
L-350S	450 E					12	12
L = 350S	475 E					1	1
L-350S	500 E					20	2 Õ
L-4S	25 W	33	12	77	10		10
L-4S	50 W	31	7	73	5		5
L-4S	75 W	16	12	78	10		10
L-4S	100 W	27	5	51	30		30
1-45 1-49	125 W	22	У Б	44	5 E		5
⊔-43 L-49	175 ₩	44 65	ר א	22	ວ ຮ		۲ ۲
L-49	200 W	106	5	55	25		່ງ ເ
L-45	225 W	19	8	49	-5		5
L-4S	250 W	35	7	57	15		15

Tine	96 - 6 i - 1	Cu	Pb	Zn	Au	Fire Au	AVG Au
Line	Station	PPM	PPM	PPM	PPB	P. P	PPB
T _ 4 9	262 5 W						
L-43 I-49	202.J W	16	1 1	60	160	7	1 91
	275 W(D)	TO	11	00	100	, 2	24
L-45 I-49	275 W(B) 207 5 W					6	2
	207+J W 200 W	67	5	79	20	0	20
1-43 T_1C	200 W	22		31	50 5		50
L-45 T_/C	323 W 350 W	22	37	58	5		5
L-45 L-45	375 W	13	7	50	5		5
L-43 L-49	100 W	30	13	106	5		5
L-4S	400 M 425 W	13	12	55	5		5
T.=49	420 W	23	9	50	5		5
L-49	430 M 475 W	26	7	65	ر م آ	2	46
L-49	500 W	19	6	49	5	2	
L-4S	25 F	27	7	58	40	29	25
T49	20 D 50 F	7	7	55	10	29	0 0
L-49	75 F	11	, Я	60	25	0	25
L-49	100 F	22	9	45	40	74	57
L-49	105 E	21	5	59	60	20	45
L-4S	150 E	21	10	75	5	25	15
L-4S	175 F	17	18	70	55	10	33
L-4S	200 E	7	6	44	15	10	15
L-4S	200 E 225 E	16	9 7	53	55	42	49
L-4S	250 E	35	6	56	10		10
L-4S	275 E	23	12	49	40	89	65
L-4S	275 E(B)	20	- -	••	10	62	62
L-4S	300 E	16	9	57	15	•=	15
L-4S	325 E	_9	9	57	5		5
L-4S	350 E	8	12	57	5		5
L-4S	375 E	3	8	41	5		5
L-4S	400 E	12	10	61	5		5
L-4S	425 E		$\tilde{10}$	62	10		10
L-4S	450 E	9	10	51	90	62	76
L-4S	475 E	10	8	64	5	-	5
L-4S	500 E	6	8	47	5		5
L-4S	525 E					32	32
L-4S	550 E					2	2
L-4S	575 E					2	2
L-4S	600 E					4	4
L-4S	625 E					5	5
L-4S	650 E					30	30
L-4S	675 E					2	2
L-4S	700 E					1	1
L-4S	725 E					1	1
L-4S	750 E					1	1
L-450S	25 E					5	5
L-450S	50 E					24	24
L-450S	75 E					4	4
L-450S	100 E					31	31
L-450S	125 E					45	45
L-450S	130 E					9	9
L-45US	1/3 E					2	2

- 6 -

		Cu	Dh	7 n	A 11	Fire	AVG
Line	Station	PPM	PD PPM	PPM	PPB	PPB	PPB
L-450S	200 E					17	17
L-450S	225 E					21	21
L-450S	250 E					28	28
L-450S	275 E					20	20
L-450S	300 E					86	86
L-450S	325 E					64	64
L-450S	350 E					2	2
L-450S	375 E					1	1
L-450S	400 E					4	4
L-450S	425 E					68	68
L-450S	400 E					34	34
L-4505	473 E 500 F					13	10
L-4305	300 E					17	17
L-5S L-5S	25 W 50 W	20 23	1 3	58 103	25 50	1	25 26
L-5S	62.5 W		-			5	5
L-5S	75 W	16	2	51	120	7	64
L-5S	75 W(B)					30	30
L-5S	100 W	18	2	57	15		15
L-5S	125 W	39	4	85	35		35
L-5S	150 W	27	1	58	20		20
L-5S	175 W	13	6	43	10		10
L-5S	200 W	34	5	57	30		30
L-5S	225 W	61	1	48	40	22	31
L-5S	250 W	65	1	60 57	35		35
L-38	275 W	41 60	8	57	15	60	10
L-38 L-58	300 W 225 W	10	1	49	15	02	15
ц-38 1. -5 8	323 M 350 W	40	6	50	1 J 2 5		1 J 2 5
L-58	375 W	15	ט ז	29	25		25
L-5S	400 W	34	2	56	5		5
L-5S	425 W	22	2	44	30		30
L-5S	450 W						
L-5S	475 W	41	1	75	5		5
L-5S	500 W	43	1	74	5		5
L-5S	25 E	31	5	43	35	_	35
L-5S	50 E	26	5	76	5	3	4
L-5S	75 E	26	4	60	10	2	6
L-5S	100 E	15	5	40	5	8	25
L-35	120 E 150 D	20	4	6/ E4	10	40	20
1-55 1-55	175 E	25	1 7	54	80 5	40	5
1-35 I-59	173 E 200 F	19	1	57	25		25
L-59	200 E 225 E	10	1	53	<u>د</u> ے 5		5
L-5S	250 E	33	5	76	25		25
L-5S	275 E	24	5	79			5
L-5S	300 E	17	3	82	40	118	79
L-5S	325 E	6	3	48	5		5
L-5S	350 E	13	5	66	5		5
L-5S	375 E	2	10	30	5		5
L-5S	400 E	6	7	53	5		5

- 7 -

						Fire	AVG
		Cu	Pb	Zn	Au	Au	Au
Line	Station	PPM	PPM	PPM	PPB	PPB	PPB
L-5S	425 E	6	6	49	5		5
L-5S	450 E	16	1	65	30		30
L-5S	475 E	8	4	42	55	62	59
L-5S	500 E	11	5	57	5		5
L-525S	150 E					24	24
L-525S	275 E					16	16
L-550S	25 W					22	22
L-550S	50 W					40	40
L-550S	62.5 W					6	6
L-550S	75 W					2	2
L-550S	87.5 W					288	50
L-550S	100 W					7	7
L-550S	125 W					20	20
L-550S	150 W					3	3
L-550S	175 W					4	4
L-550S	200 W					5	5
L-550S	225 W					21	21
L-550S	250 W					17	17
L = 550S	25 E					8	8
L-550S	50 E					27	27
L-5508	75 E					4	4
1-5505	100 F					112	112
1-550g	125 E					1	
L-550g	125 E(P)					27	27
L-JJ03	127 5 5					15	15
T-2202	15/.J E					740	50*
L-3308	150 E 150 E/D)					276	504
L-5508						270	70
L-3308	102.5 E					1	1
L-550S	175 E					20	20
L-3308	200 E					20	20
L-3308	225 E					10	10
L-550S	250 E					10	10
L-550S	202.5 E					2005	
L-550S	275 E					2995	50
L-550S	275 E(B)					910	50°
L-550S	287.5 E					50	20
L-550S	300 E					4	4
L-550S	325 E					54	54
L-550S	350 E					1	1 1
L-550S	375 E					1	L L
L-550S	400 E					2	2
L-550S	425 E					1	1
L-550S	450 E					1	1
L-550S	475 E					1	1
L-550S	500 E					2	2
+ 5350	150 5					20	20
L-3/3S	120 E					3U 10	10
ц-3/5S	215 E					τu	10
T_507 5	195 5					50	50
п-201.2	125 E					50	50

- 8 -
| | | | | | | Fire | AVG |
|--------------|-------------------|---------------------|--------|-----|----------|----------|----------|
| | | Cu | Pb | Zn | Au | Au | Au |
| Line | Station | PPM | PPM | PPM | PPB | PPB | PPB |
| | | | | | | | |
| T (0 | 0E N | 22 | c | 01 | F | | F |
| L-65 | 20 W | 22 | 0 | 91 | 5 | |)
5 |
| L-65 | 30 W
75 M | 31 | 9 | 67 | | | 2 |
| L-65 | 70 W | 22 | 9 | 50 | 20 | 4 | 20 |
| L-65 | 100 W | 21 | 8 | 52 | 110 | 4 | D7
40 |
| L-6S | 100 W(B) | 4.0 | r | 47 | 20 | 42 | 42 |
| L-05 | LZO W | 48 | 10 | 4/ | 30 | 2 | 30 |
| L-05 | 100 W | 20 | 10 | 51 | 40 | 2 | 21 |
| L-05
I 60 | 175 W | 22 | 9 | 05 | 5
5 | | 5 |
| | 200 W | 0
6 | 0 | 40 | 5 | | ມ
ຮ |
| L-05 | 220 W | 20 | 9 | 50 | 20 | | ך
סנ |
| L-03 | 230 W
275 W | 24 | 10 | 59 | 20 | 25 | 20 |
| L-05
L-68 | 275 W
200 W | 24 | 7 | 60 | 40 | 30 | აი
5 |
| 1-03
1-69 | 205 M | 50 | 6 | 70 | 10 | | 10 |
| L-05 | 323 W
350 W | 21 | 14 | 70 | 10 | | 10 |
| L-03
I-69 | 330 W | 20 | - 14 | 15 | 5 | | J
5 |
| L-03
I_69 | 375 W | 20 | 6 | 40 | 5 | | 5 |
| L-03
I_69 | 400 W
125 W | 21
6 | 0 | 10 | 5 | | 5 |
| L-03 | 42J M
450 M | 10 | 5 | 47 | J
5 | | 5 |
| L-03 | 4JU W
175 W | 21 | 0
7 | 51 | 5 | | 5 |
| L-03 | 47J W
500 W | 21
10 | у
9 | 61 | 5 | | 5 |
| 1-69 | 300 W
25 F | 13 | 10 | 60 | 70 | 56 | 63 |
| 1-03
L=68 | 20 E
50 F | 20 | 12 | 51 | 70
60 | 11 | 03
36 |
| L-03
I-69 | 30 E
75 F | 11 | 12 | 59 | 50 | 11
01 | 71 |
| L-03
L-68 | 100 F | 26 | 13 | 87 | 30 | 21 | 17 |
| L-03
I-69 | 1125 E | 20 | 13 | 07 | 30 | 2 | 19 |
| 1-03 | 12.5 5 | 11 | ß | 73 | 1500 | 1720 | 504 |
| L-03
1-69 | 125 E
125 E(D) | Τ.4 | 0 | 75 | 1300 | 2450 | 50\$ |
| 1-03
1-69 | 125 E(D) | | | | | 2430 | 5 |
| 1-69 | 157.5 E
150 F | 1 / | Q | 75 | 4.0 | 20 | 30 |
| L-65 | 175 F | л т
Я | ģ | 66 | 10 | 20 | 10 |
| L-68 | 200 F | 13 | Ŕ | 67 | ±0
5 | | 10
5 |
| L=65 | 200 E
225 F | 24 | 9 | 54 | 40 | | 40 |
| L-65 | 250 E | 24 | 10 | 25 | | | |
| L-6S | 200 D
275 E | 18 | ġ | 102 | 5 | | 5 |
| L-6S | 300 E | 28 | Ś | 87 | 5 | | 5 |
| L-6S | 325 E | 19 | Ř | 57 | 15 | | 15 |
| L-65 | 350 E | 18 | ğ | 75 | 30 | | 30 |
| L-65 | 375 E | 13 | 11 | 96 | 25 | | 25 |
| L-6S | 400 E | 9 | | 70 | 20 | | 20 |
| L-65 | 425 E | 7 | 10 | 45 | 10 | | 10 |
| L-65 | 450 E | 4 | - 5 | 72 | -5 | | 5 |
| L-6S | 475 E | 9 | 9 | 70 | 5 | | 5 |
| L-65 | 500 E | 3 | 10 | 58 | 5 | | 5 |
| L-625S | 125 E | | | | | 34 | 34 |
| L-650S | 25 W | | | | | 6 | 6 |
| L-650S | 50 W | | | | | 1 | 1 |
| L-650S | 75 W | | | | | 23 | 23 |
| L-650S | 100 W | | | | | 26 | 26 |

						Fire	AVG
Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Au PPB	Au PPB
 L-6509	125 W						
L-650S	150 W					2	2
L = 650S	175 W					6	ĥ
L - 650S	200 W					2	2
L-650S	225 W					9	9
L-650S	250 W					24	24
L-650S	25 E					4	4
L-650S	50 E					2	2
L-650S	75 E					6	6
L-650S	100 E					1	1
L-650S	125 E					48	48
L-650S	137.5 E					79	79
L-650S	150 E 175 F					14	14
L-650S	1/3 E 200 F					19	19
L-0508	200 E 225 F					4 1 2	12
L-650S	220 E					<u> </u>	12
L = 650S	275 E					20	20
L-650S	300 E					2	2
L-650S	325 E					40	40
L-650S	350 E					3	3
L-650S	375 E					2	2
L-650S	400 E					1	1
L-650S	425 E					2	2
L-650S	450 E					1	1
L-650S	475 E					1	1
L-0208	500 E					4	4
L-7S	25 W	21	8	136	5	14	10
L-7S	50 W	8	3	45	75	26	51
L-75	75 W	21	8	88	10	5	8
L-7S	100 W	26	1	55	60	25	43
L-/S	125 W	29	1	50	55	14	35
L-75	100 W	110	4	19	30		30
L-75 L-75	175 W 200 W	163	1	54	20	80	20 61
L-7S	200 M 225 W	122	1	48	170	34	102
L-7S	250 W	122	Ŧ	40	170	54	102
L-7S	275 W						
L-7S	300 W						
L-7S	325 W						
L-7S	350 W						
L-7S	375 W						
L-7S	400 W						
L-7S	425 W						
L-7S	450 W						
L-7S	475 W						
L-/S	500 W	20	-	0.0	1 7 5	117	104
⊔-/S т_7с	20 E 25 E/D)	30	/	89	132	113	124
ц-/5 L-79	20 E(B) 27 5 E					12	12
L-7S	50 E	1 २	4	102	5	20	17
	50 D	10	т	104	J	20	т.)

- 10 -

.

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
L-7S	75 E	18	2	75	5	2	4
L-7S	100 E	29	3	82	5	15	10
L-7S	125 E	35	3	84	5	3	4
L-7S	150 E	17	1	59	5	16	11
L-75	175 E	31	1	70	25		25
L-7S	200 E	33	3	61	40	40	40
L-7S	225 E	13	2	82	5		5
L-7S	250 E	37	1	36	10		10
L-7S	275 E	48	6	49	10		10
L-7S	300 E	24	2	71	80	25	53
L-7S	325 E	52	1	40	140	80	110
L-7S	337.5 E					18	18
L-7S	350 E	23	1	87	5		5
L-7S	350 E(B)					24	24
L-7S	375 E	27	1	31	15		15
L-7S	400 E	8	4	105	5		5
L-7S	4 25 E	13	4	78	15		15
L-7S	450 E	12	1	53	25		25
L-7S	47 5 E	7	3	95	15		15
L-7S	500 E	48	2	87	25		25
L-7S	525 E					5	5
L-7S	550 E					12	12
L-7S	575 E					17	17
L-7S	600 E					2	2
L-7S	625 E					15	15
L-7S	650 E					5	5
L-7S	675 E					2	2
L-7S	700 E					8	8
L-7S	725 E					4	4
L-75	750 E					1	J .
L-705S	155 E					1400	50
L-750s	25 E					89	89
L-750s	50 E					80	80
L~750s	75 E					44	44
L-750S	100 E					19	19
L-750s	125 E					31	31
L-750s	150 E					25	25
L-750s	175 E					62	62
L-750s	200 E					39	39
L-750S	225 E					75	75
L-750S	250 E					58	58
L-750s	275 E					108	108
L-750S	300 E					55	55
L-750s	325 E					42	42
L-750S	350 E					76	76
L-750s	375 E					7	. 7
L-750s	400 E					1	1
L-750s	425 E					$\overline{1}$	$\overline{1}$
L-750S	475 E					40	40
L-750s	500 E					2	2

.

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
L-750S	525 E					23	23
L-8S L-8S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 165 161 85 92 136 59 63 37 28 35 24 29 46 18 22 37 32 24 18	12 15 13 10 6 8 7 1 2 4 1 2 1 1 2 5 1 1 3 1 1	$\begin{array}{c} 76\\113\\111\\112\\64\\80\\71\\47\\88\\70\\82\\63\\54\\57\\66\\69\\93\\62\\86\\66\end{array}$	90 40 55 20 25 10 5 10 20 5 10 10 10 10 5 5 5 5 5 5 5 5	100 21 40	95 31 48 20 25 10 5 10 20 5 5 10 10 10 10 5 5 5 5
L-9S L-9S L-9S L-9S L-9S L-9S L-9S L-9S	25 W 50 W 75 W 100 W 125 W 150 W 175 W 200 W 225 W	47 24 25 35 67 298 46 20 26	1 3 2 1 18 1 1 3 2	74 61 70 85 82 80 56 46 63	40 5 5 10 10 5 5 5	101	71 5 5 10 10 5 5 5

- 13 -

						Fire	AVG
		Cu	Pb	Zn	Au	Au	Au
Line	Station	PPM	PPM	PPM	PPB	PPB	PPB
l-95	250 W	37	3	50	5		5
L-9S	275 W	31	4	54	5		5
L-95	300 W	20	1	80	10		10
L-95	325 W	55	1	97	5		5
L-98	350 W	81	1	89	5		5
L-9S	375 W	86	1	67	5		5
l-98	400 W	19	8	87	15		15
L-9S	425 W	65	3	63	30		30
L-95	450 W	22	5	84	10		10
l-9s	475 W	22	5	77	10		10
L-9S	500 W	19	6	97	10		10
L-95	25 E	46	4	78	10	3	7
L-9S	50 E	49	14	69	5	8	7
L-9S	75 E	118	3	85	20	4	12
L-9S	100 E	104	7	63	50	565	50
L-95	125 E	37	5	106	5		5
L-9S	150 E	81	7	86	5		5
L-95	175 E	107	8	79	30	56	43
L-9S	200 E	210	12	101	330	310	50
L-95	225 E	106	14	49	185	242	50*
L-9S	250 E						
L-9S	275 E						
L-9S	300 E	82	1	71	50	100	75
L-9S	325 E	101	15	47	160	102	131
L-9S	350 E	44	11	54	35		35
L-95	375 E	50	14	231	10		10
l-9s	400 E	34	9	77	20		20
L-98	425 E	71	19	231	5		5
L-95	450 E	45	10	60	5		5
L-9S	475 E	52	9	78	10		10
L-95	500 E	35	8	36	5		5
					_		
L-10S	25 W	131	1	63	30		30
L-10S	50 W	94	1	61	10		10
L-10S	75 W	36	6	77	5		5
L-10S	100 W	132	5	60	10		10
L-10S	125 W	137	1	55	45	60	53
L-10S	150 W						
L-10S	175 W	103	4	81	20		20
L-10s	200 W						
L-10s	225 W	82	12	115	5		5
L-10S	250 W	78	1	56	45	10	28
L-10S	275 W	66	2	75	10		10
L-10S	300 W	27	3	74	10		10
L-10S	325 W	50	1	47	40	42	41
L-10S	350 W	36	3	81	5		5
L-10S	375 W	18	7	89	5		5
L-10S	400 W	19	3	70	5		5
L-10S	425 W	22	1	50	10		10
L-10S	450 W	22	6	91	5		5
L-10S	475 W	18	2	106	5		5
L-10S	500 W	17	1	108	5		5

,

.

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
L-105	25 F	102		52	40	22	31
L = 10S	50 E	95	1	56	10	22	10
L = 10S	75 E	66	1	94	5		5
L = 10S	100 E	20	4	89	5		5
L = 10S	125 E	11	4	102	10		10
L = 108	150 E	$\overline{21}$	3	82	5		5
$\tilde{L} = 10S$	175 E	40	2	78	10		10
L-10S	200 E	83	1	90	5		5
L-10S	225 E	28	2	88	5		5
L-10S	250 E	30	3	101	20		20
L-10S	275 E	32	4	59	5		5
L-10S	300 E	32	6	85	10		10
L-10S	315 E	115	5	78	60	15	38
L-10S	350 E						
L-10S	375 E						
L-10S	400 E						
L-10S	425 E						
L-10S	450 E						
L-10S	475 E						
L-10S	500 E						
L-11S	25 W	68	5	103	5		5
L-11S	50 W	64	1	57	30		30
L-11S	75 W	97	1	64	35		35
L-11S	100 W	132	1	55	30		30
L-11S	125 W	45	4	72	5		5
L-11S	150 W	24	2	78	5		5
L-11S	175 W	23	6	55	10	<u> </u>	10
L-11S	187.5 W			30	= 0	8	8
L-11S	200 W	37		/3	50	62	56
L-11S	200 W(B)					9	10
L = 11S	212 W 225 W	20	0	70	20	10	10
L = 118	223 W 250 W	30	0	10	20		20
1-110	200 W	23	4	90	20		20
L-110	275 W(R)	55	4	30	20	10	20
L-11S	275 W(B) 300 W	29	5	69	15	10	15
L - 11S	325 W	33	ĩ	52	5		5
L-11S	350 W	14	1	77	5		5
L-11S	375 W	16	3	67	5		5
L-11S	400 W	37	1	71	10		10
L-11S	425 W	62	1	73	10		10
L-11S	450 W	111	37	74	30		30
L-11S	475 W	40	2	97	5		5
L-11S	500 W	17	3	139	5		5
L-11S	25 E	88	1	58	35	_	35
L-11S	50 E	75	1	67	40	22	31
L-11S	75 E	75	1	47	30	5	18
L-11S	100 E	33	5	81	10		10
L-11S	125 E	21	1	94	10		10
L-115	150 E	50	2	80	20	22	20
ь-ттх	1/5 E	99	Ŧ	59	5U	Z Z	36

- 14 -

.

•

Line	Statio	Ըս n PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
L-11S	200 1	 E			~~~		
L-11S	225 1	E 4 1	1	50	25		25
L-11S	250 1	E 98	1	48	10		10
L-11S	275	E [.] 58	1	48	80	6	43
L-11S	300 1	E 61	2	70	20		20
L-11S	325 1	E 33	3	134	10		10
L-11S	350 1	E 126	6	79	120	59	90
L-11S	375 1	E 87	7	70	20		20
L-11S	400 1	E					
L-11S	425 1	E 110	3	83	40	42	41
L-11S	450 1	E 82	1	92	10		10
L-115	475 1	E 45	1	81	20		20
L-11S	500 1	E 37	6	103	20		20
L-12S	25	w 32	5	49	15		15
L-12S	50 t	w 48	2	44	5		5
L-12S	75 1	N 7 5	1	53	5		5
L-12S	100 V	w 145	3	49	25		25
L-12S	125 W	vi 33	3	79	20		20
L-12S	150 V	w 39	2	132	5		5
L-12S	175 V	v 96	1	70	5		5
L-12S	200 1	w 34	4	80	5		5
L-12S	225 W	w 57	1	85	20		20
L-12S	250 V	w 50	3	120	25		25
L-12S	262.5 W	N				32	32
L-12S	275 V	wi 60	88	426	5		5
L-12S	275 V	w(В)				5	5
L-12S	287.5 V	Ň				10	10
L-12S	300 Ø	v 219	21	155	5		5
L-12S	325 1	w 95	1	87	5		5
L-12S	350 I	w 209	1	79	10		10
L-12S	375 V	v 165	1	69	30		30
L-12S	400 V	w 87	1	90	5		5
L-12S	425 V	w 85	6	148	5		5
L-12S	450 V	W 178	4	111	5		5
L-12S	475 v	w 255	1	71	25		25
L-12S	500 T	w 145	3	170	5		5
L-12S	25 I	E 52	2	49	5		5
L-12S	50 I	E 58	5	97	30		30
L-12S	75 1	E 70	6	104	5		5
L-12S	100 1	E 82	1	78	5		5
L-12S	125 1	E 99	8	104	25		25
L-12S	150 1	E 93	5	97	10		10
L-12S	175 1	E 130	1	59	50	12	31

175 E 200 E 225 E

L-12S

L-12S

L-12S

L-12S

L-12S

L-12S

L-12S

L-12S

.

250 E

275 E

300 E

325 E

350 E

375 E

- 15 -

.

Line	Station	Cu PPM	Pb PPM	Zn PPM	Au PPB	Fire Au PPB	AVG Au PPB
		-					
L-12S	400 E						
L-12S	425 E						
L-12S	450 E	69	11	162	15		15
L-12S	475 E	181	4	99	10		10
L-12S	500 E	30	6	115	5		5
L-1212.5	s 275 W					4	4
L-13S	25 W	40	6	167	20		20
L-13S	50 W	68	20	185	5		5
L-13S	75 W	63	3	111	5		5
L-138	100 W	53	15	210	5		5
L-13S	125 W	96	12	265	10		10
L-13S	150 W	107	15	234	5		5
L-13S	1/3 W	107	22	215	5		2
L-138	200 W	131	16	249	20		20
L-13S	223 W 250 W	116	10	330	10		10
L-138	230 W 275 M	225	79	400	5		5
L-138	275 W 300 W	225	1	92	5		5
L-13S	325 W	126	1	100	5		5
L-13S	350 W	181	1	91	65	122	94
L-13S	375 W	122	11	118	110	58	84
L-135	400 W	157	1	114	5		5
L-13S	425 W	265	2	157	10		10
L-13S	450 W	165	6	148	5		5
L-13S	475 W	82	1	66	15		15
L-13S	500 W	88	5	125	5		5
L-13S	25 E	30	4	94	5		5
L-13S	50 E	42	2	67	35		35
L-13S	75 E	37	8	58	85	3	44
L-13S	100 E	25	2	46	10		10
L-13S	125 E	36	5	63	5		5
L-13S	150 E						
L-13S	175 E						
L-13S	200 E						
L-13S	225 E						
L-13S	250 E						
L-13S	275 E						
L-13S	300 E						
L-13S	325 E						
L-13S	350 E						
L-13S	375 E						
1-130 n-132	400 B 125 B						
п=тээ Г=136	420 B 150 P						
D-130 1-130	41JU E. 1175 E						
п-тор Г°-136	473 E 500 F						
n-199	JUU E						_
L-14S	25 W	63	22	85	5		5
L-14S	50 W	18	10	121	5		5
L-145	/5 W	20	3.3	141	10		()

- 16 -

						Fire	AVG
		Cu	Pb	Zn	Au	Au	Au
Line	Station	PPM	PPM	PPM	PPB	PPB	PPB
L-14S	100 W	27	9	113	30		30
L-14S	125 W	27	10	202	10		10
L-14S	150 W	76	11	171	5		5
L-14S	175 W	16	8	164	5		5
L-14S	200 W	39	13	175	5		5
L-14S	225 W						
L-14S	250 W	54	9	157	5		5
L-14S	275 W	70	13	130	5		5
L-14S	300 W	91	23	179	5		5
L-14S	325 W	79	10	98	5		5
L-14S	350 W	19	12	64	5		5
L-14S	375 W	80	14	59	5		5
L-14S	400 W				-		-
L-14S	425 W	74	16	65	10		10
L-14S	450 W	226	18	110	5		5
L-14S	475 W	112	21	109	5		5
L - 14S	500 W	159	17	93	20		20
L = 14S	25 E	36	12	108	5		5
L = 14s	50 E	34	4	115	15		15
L = 140	75 E	11		119	10		10
L-145	100 E	24	5	155	5		5
L = 145	125 E	58	q	91	5		5
L-149	150 E	40	6	92	50	13	32
L = 143	175 F	40	4	125	5	15	5
143	200 F	41	т	120	5		5
L = 143	200 E 225 F						
L = 143	250 E						
L = 140	275 F	153	11	78	15		15
L 143	275 E 300 F	224	1	64	60	60	60
L-145	325 F	249	13	85	45	76	61
L = 1.4G	350 F	440	15	0.5	45	10	01
L-149	375 F						
L-145	400 F						
L = 14g	400 D 425 F						
L-145	450 F						
L~14g	475 F						
114g	500 F						
ы 140	300 E						
			GEOCI	HEMTCAL	STATISTI	68	
			01001	10111 CVD	01011011	Fire	AVC
		Cu	ph	7.n	دىك	ι <u>τι ε</u> Διι	ם אים מוי
		DDM	г. DDM	DDM		DDR	DDP DDP
			r c ri	e #11			rrD
No. of	Samples	520	510	520	520	330	713
Highest	Value	200	575 272	159	1500	2005	2/92
Lowert	Value	ענ∡ ר	1	- 4 00 2	1000 1000	277J 1	∠ 1 0 1
Average	value Value	∠ ۸٦	L L	70	נ גר	د ک ۲	ך סע
Std Dou	value	47	7	/0	24 72	255	20

43

7

255

73

25

NOTE: * Au >250 ppb cut to 50 ppb

48

Std Deviation

.

ı

- 17 -

· EF	BORATORIES	S	VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.:		
(DIVIS	SON OF ASSAYERS CORP.) SPECIALISTS IN MIN	VERAL ENVIRONMENTS	TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.:		
As	sav Certa	ificate	TELEPHONE/FAX (604) 847-3004		
Company: GEOG	UEST CONSULTING	3	Date: JUN-12-91		
Project: Attn: W.GRE We hereby c submitted J Sample Number	UNWALD ertify the foll UN-06-91 by W.G AU-FIRE g/tonne	"G" Claims owing Assay of GREUNWALD. AU-FIRE oz/ton	2. KAMLOOPS GEOLOGICAL, KAMLOOPS, B.C. 1 PANNED CONCENTRATE samples		

Cert	111	ed	DY

MIN-EN LABORATORIES

COMP: GEOQUEST CONSULTING P"OJ: ATTN: W.GREUNWALD

[

0

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0516-LJ1 DATE: 91/06/12 * SILT * (ACT:F31)

SAMPLE NUMBER	CU PPM	PB PPM	ZN PPM	AU-FIRE PPB	
GSL91-1 (-80) GSL91-1 (-40+80)	62 45	84 59	57 46	42 24	Sitt sangle on hotemoule Creek 50m apstrom of confluence with Takin Creek.

COMP: GEOQUEST CONSULTING FROJ: "G" Claims ATTN: W.GREUNWALD

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1V-0516-RJ1 DATE: 91/06/12 ROCK (ACT:F31)

SAMPLE NUMBER	CU PB ZN AU-FIRE PPM PPM PPB	
GWR91-1 CMG001 91G001A 91G001B L-14S;2+25E	12 (899) (874) 62 Quartz chips from creak bed C 65L-91-1 (Letre mouille (rec 7 (221) (251) (525) (-35; 3-455 10 94 76 18 Folsie silie. infrusive 97 121 109 5 103 117 141 4	ek)
L-14S;4+00W L-14S;5+00W	117 101 112 25 15 39 53 375 Otz vein float	
2		
		Ŧ

Ш

ENVIRONMENTS LABORATORIES

(DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAVERS · ANALYSTS · GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

1V-0641-RA1

Company:	GEOQUEST	CO	NSULT	ING	LTD.
Project:	"6"				
Attn:	W. GRUENWALI	D /	CHUCK	MARL	WO

Date: JUL-12-91 Copy 1. GEOQUEST CONSULTING LTD., VERNON, B.C. 2. CHUCK MARLOW, KAMLOOPS, B.C.

He hereby certify the following Assay of 2 ROCK samples submitted JUL-06-91 by CHUCK MARLOW.

Sample	*AU	*AU	Rock Samples
Number	g/tonne	oz/ton	
L6-S 1+25E (R)	1.44	.042	Limonitic flost from soil pit
L3-S 0+50E (R)	1.41		Limonitic thematitic flost from soil pit

*AU = 1 ASSAY TON

Certified by

n mal

0

EN VIRONMENTS LABORATORIES (MISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAVERS + ANALYSTS + GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1V-0689-RA1

Company: Project:	GEOQUEST	CONSULTING	LTD.
Attn:	W. GRUENWAL	D	

Date: JUL-22-91 Copy 1. GEOQUEST CONSULTING, VERNON, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted JUL-18-91 by W.GRUENWALD.

Sample	*AU	*AU	
Number	g/tonne	oz/ton	
L-5+50S 1+50E (R)	3.41	.099	Limonific, proceeded I veined intrasive float (?)

*AU - 1 ASSAY TON.

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

VANCOVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: SITE TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Assay Certificate</u>

1V-0689-XA1

Company: GEOQUEST CONSULTING "6" Clairys Project: Attn: W. GRUENWALD

Date: JUL-26-91 Copy 1. GEOQUEST CONSULTING, VERNON, B.C.

He hereby certify the following Assay of 1 PULP samples submitted JUL-24-91 by W.GRUENWALD.

proj 40

Sample	A6	A6	
Number	g/tonne	oz/ton	
L-5+50S 1+50E (R)	65.9	(1.92)	

Certified by

• EN MAR ON DAS DE CA LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

<u>Assay Certificate</u>

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

1V-0712-RA1

Company:	GEOQUEST CONSULTING LTD.
Project:	°6°
Atta:	W.GRUENWALD/CHUCK MARLOW

Date: JUL-25-91 Copy 1. GEOQUEST CONSULTING, VERNON, B.C. 2. CHUCK MARLOW, KAMLDOPS, B.C.

We hereby certify the following Assay of 1 (ROCK) samples submitted JUL-22-91 by W.GRUENWALD.

Sample	*AU	#AU	
Number	g/tonne	oz/ton	
CM5009	2.73	.080	

*AU - 1 ASSAY TON.

Certified by

COMP: GEOQUEST CONSULT PROJ: "G" Claims ATTN: W.GRUENWALD/C.MAI	ING LT RLOW	D.						705	MIN WES	N-Е№ т 15т (60	N I H S' 4)9	LABS T., N 80-58	DRTH 14 OR	VANC (60	CP OUVER 4)988	REE , B.C -4524	POR'I . V7M	[* 4 1T2	2										FILE		1V-(TE: 9	0689-RJ1 91/07/22 ACT:F31)
SAMPLE	AG	AL	AS PPM	B	BA	BE PPM	BI	CA PPM	CD PPM	CO PPM P	CU PM	FE PPM	K PPM	LI	MG PPM	MN PPM	MO PPM F	NA PPM P	N I PPM	P PPM	PB PPM	SB PPN	SR PPM	TH PPM 1	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM P	W PPM P	CR AU	J-FIRE PP8
GWR-06 GWR-07 B/L 7+50S (R) L-5+50S 1+50E (R)	.8 .5 4.7 • 64.3	9950 2970 3370 2030	5 2 1 45	6 3 4 3	97 483 660 109	.1 .1 .1 .3	3 1 3 1	11900 17050 21760 13930	.1 .1 .1 .1	6 4 14 1 12	14 16 34 33	13370 13020 44840 41970	2450 1700 2100 620	4 1 1 1	5080 3100 7660 4180	306 438 906 997	7 4 1 5 2 7 1 7	450 550 720 740	4 1 12 11	590 610 2110 1810	4 5 8 8	1 1 1 1	66 54 50 50	2 8 3 1 1 8 1	841 196 829 57	16.9 23.9 147.0 9.2	17 3 26 18	2 1 1 1	1 1 1 1	5 1 3 5 2	12 61 63 46	12 7 216 2850
																			-													
																								<u> </u>								
	 														_																	
					a																			<u> </u>								
				.																												
· · ·				<u></u>																												
																								<u>. </u>					<u>_</u>			
																									_							
									,,					-																	<u> </u>	
												·																				

OJ: "G" TN: W.GRUENWALD / CH	UCK MARLOW					705 1	WEST	15TH	i st., 1)980-1	NORTH 5814 C	IVAN DR (6	1COUVE 504)988	к, в.(3-4524	CI V7M 4	112									<	ROCK *	ACT:F3
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B B PPM PP	A BE M PPM	BI C. PPM PP	A CD	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO N PPM PP	A NI M PPM	P PPM	PB PPM	SB PPM	SR PPM F	TH PPM PP	U M PF	V Z M PP	N G M PPI	A SN M PPM	W C PPM PP	R AU-FIRE M PPB
CMG002 CMG003 CMG004 CMG005 GWR03	2.6 20130 1.6 22370 .6 13150 1.1 2790 1.2 25980	4 5 6 17 1	3 8 2 4 1 14 1 3 2 4	5 .1 3 .2 4 .2 1 .2 7 .1	14 1476 12 2104 6 2289 2 327 12 2118) .1) .1) .1) .1) .1	13 21 11 4 22	46 62 15 11 12	34960 38950 29160 8850 40040	4960 1730 4430 570 1810	19 9 6 2 10	11880 15120 8210 2500 18490	547 650 698 227 768	6 52 1 43 2 38 1 27 1 57	0 3 0 1 0 1 0 6 0 1	1450 1350 1080 260 1470	3 1 4 8 1	1 1 1 1	54 79 50 4 90	1 1 1 1	1 94. 1 109. 1 35. 1 17. 1 119.	6 3 1 4 8 2 1 1 3 3	8 5 7 4 7	1 2 1 3 1 1 2 1 1 3	6 12 5 8 5 9 9 23 6 11	3 4 4 13 9 9 1 95 1 2
SWRO4 GWRO5 L6-S 1+25E (R) L2+50-S 1+75E (R) L3-S 0+50E (R)	7 8400 5 17010 11.9 2320 9 16940 6.5 2630	3 27 34 2 19	1 2 1 6 1 12 1 9 1 11	8 .1 0 .8 8 .6 0 .3 0 .5	6 1038 4 5021 2 1324 7 3620 1 591) .1) .1) .1) .1	5 14 16 17 12	8 19 24 37 27	14100 38930 46970 38630 47270	1540 3730 680 2910 560	3 13 1 11 11	3440 21160 3610 15370 1220	154 1100 1649 1441 744	2 52 1 43 1 73 1 20 1 74	0 1 0 1 0 1 0 1 0 1	620 1300 1710 1080 1330	24924	1 1 1 1	31 79 16 33 8	1 1 1 1	1 27. 1 99. 1 61. 1 68. 1 71.	8 1 8 3 3 3 4 4 2 2	3 7 9 5 5	1 1 1 1 1 1 1 1 1 1	5 11 3 5 3 6 3 5 5 10	
.7-S 3+37.5E (R) .7-S 0+25E (R)	.5 9700 1.4 28870	7 1	1 12 3 5	0.2 2.1	4 1314 14 1952	0 .1 0 .1	6 30	4 94	14040 58400	3290 2390	5 14	4790 24780	472 1043	3 38 1 39	10 4 10 1	580 2290	1	1 1	24 57	2 1	1 16. 1 134.	6 2 7 5	5	1 1 1 3	4 10 5 8	5 8 1 10
					<u></u>							-						<u>.</u>			<u> </u>			<u> </u>		
					<u>.</u>		<u> </u>															_				
				_																						
								_																		
				·																						
						-	<u></u>																			

COMP: GEOQUEST CONSULTING IT

MIN-EN LABS - TOP REPORT

FILE NO: 1V-0641-R.1

COMP: GEOQUEST CONSULTING LTD.MIN-EN LABS ICP REPORTPROJ: "G"705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2ATTN: W.GRUENWALD/CHUCK MARLOW(604)980-5814 OR (604)988-4524	FILE NO: 1V-0712-RJ1 DATE: 91/07/25 * ROCKS * (ACT:F31)
SAMPLE AG AL AS B BA BE BI CA CD CO CU FE K LI MG MN MO NA NI P PB SB SR TH TI V ZN	GA SN W CR AU-FIRE
NUMBER PPM PPM<	PPM PPM PPM PPB 1 1 3 45 14 1 1 6 125 7 1 1 3 67 2450 2 1 4 71 10 2 1 4 77 6
CMG012 1.0 4500 1 4 247 .4 1 11 52 25770 2640 2 310 1 1150 7 1 52 1 20 10 11 10 7 1 52 1 11 52 25770 2640 2 3170 965 4 310 1 1150 7 1 52 1 20 3170 965 4 310 1 152 1 21 21 21 21 21 21 21 21 20 1 10 50 23930 2570 2 3170 965 4 310 1 1150 7 1 52 1 2	1 1 2 39 17 1 1 4 74 14 1 1 2 52 10 2 1 5 84 3 2 1 3 62 2
CMG017 .9 4040 23 3 98 .3 1 2770 .1 9 63 23600 2760 1 1970 925 3 220 1 130 8 1 76 1 31 10.0 30 GWR-02 3.3 3000 16 2 143 .2 2 4640 .1 3 8 9600 340 2 2790 441 13 180 6 410 59 1 12 1 152 16.8 12	1 1 3 58 2 1 2 1 8 191 15

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSIS + GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1V-0790-RA1

Company: GEOQUEST CONSULTING LTD. Project: "G" Attn: WERNER GREUNWALD Date: AUG-14-91 Copy 1. GEOQUEST CONSULTING, VERNON, B.C. 2. KAMLOOPS GEOLOGICAL, KAMLOOPS, B.C.

We hereby certify the following Assay of 4 ROCK samples submitted AUG-06-91 by C.MARLOW.

Sample Number	*AU-FIRE g/tonne	*AU-FIRE oz/ton	
CMG018	3.08	.090	
CMG019	1.29	.038	
GWR08	1.27	.037	
5+505/1"50E (R-2)	4.03	.118	

*AU - 1 ASSAY TON.

I

ī

Certified by MIN-EN LABORATORIES

0

COMP: GEOQUEST CONSULTING LTD.

PROJ: "G" ATTN: WERNER GREUNWALD

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7W 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1V-0790-RJ1

.

DATE: 91/08/14

* ROCK * (ACT:F31)

SAMPLE	AG	ÅL DDM	AS DDM 1	B	BA	BE	BI	CA	CD DDM			FE	K	LI	MG	MN	MO		NI	p ppw	PB ppm	SB DDM	SR PDHL I	TH		V PDM	ZN	GA PPM	SN	W	CR /	U-FIRE
CMG018 S. N 2+50 / 100 CMG019 S. N 2+50 / 100 CMG020 CMG021 CMG022	61.8 12.0 1.7 1.1 7.5	3270 2730 8020 8280 2860	50 32 3 8 55	9 5 4 3 4	99 87 91 121 296	.1 .1 .1 .2 .1	1 1 3 3 2	19070 15750 13930 14220 12350	.1 .1 .1 .1	17 12 10 5 16	136 37 23 8 12	48870 35900 17950 11040 38230	1650 1140 2650 3450 570	1 1 4 3	4810 3050 5610 3860 3130	1069 1318 427 374 1775	1 2 3 2 1	580 670 540 560 1060	1 1 2 4	1820 1140 740 650 1320	43 34 22 12 14	5 20 4 1 1	43 33 41 48 41	1 1 2 2 1	82 44 391 399 61	27.0 18.6 25.1 18.0 13.1	35 30 14 10 33	1 1 3 3	1 1 1 1	23342	41 80 77 94 41	3950 1200 80 31 650
CMG023 GWR08- GWR09 5+50S/1+50E (R-2)	1.5 [,] 7.8 ,1 88.3	20650 1780 6110 2000	1 45 1 82	5 3 14 5	74 31 33 47	.1 .1 .1	11 2 1 1	2 3990 19 3 00 22870 34920	.1 .1 .1 .1	19 10 237 14	20 25 909 89	45260 28670 269430 43430	3710 480 220 690	12 1 1 1	16540 4330 2050 5910	752 768 793 1203	2 1 1 1	410 770 50 620	1 1 1	860 800 430 1470	9 11 1 20	1 1 4	71 40 9 153	1 : 1 1 1	2167 43 217 54	100.4 14.3 13.8 13.0	30 24 1 14	4 1 2	2 1 1 1	4 1 2	62 23 26 40	134 1220 237 3300
																			-													
		<u></u>																				_, .							<u>. –</u>		_	
																										<u> </u>				¹	-	
																		. <u>.</u> .					<u></u>									
																															_	
																															_	
																															_	

EN BORATORIES (DIVISION OF ASSAVERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

1V-1239-RA1

Company: GEOQUEST CONSULTING LTD. Project: "6" Attn: W. GREUNWALD/R. WELLS Date: OCT-10-91 Copy 1. GEODUEST CONSULTING, VERNON, B.C. 2. KAMLOOPS GEOLOGICAL, KAMLOOPS, B.C.

He hereby certify the following Assay of 9 ROCK samples submitted OCT-08-91 by C.MARLOW.

Sample Number	#AU g/tonne	*AU oz/ton	
GWR-10	. 70	.020	
LF91-R3	1.29	.038	
TR-2A	1.43	,042	
TF-5A	3.42	.100	
TP-5B	1.20	.035	
10-40	1 54	045	Test Pit Samples
TP-AR	3,80	.111	
TE-7A	1.47	.043	
TP-8A	2.28	.067)

a paint to the set of the description we at a description of the

*AU - 1 ASSAY TON.

2

Certified by

MIN-EN LABORATORIES

COMP: GEOQUEST CONSULTING LTD.

MIN-EN LABS - ICP REPORT

FILE NO: 1V-1239-RJ1

DATE: 91/10/10

ATTN: W.GREUNWALD/R.WELLS

PROJ: "G"

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

	SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM F	SB S PM PP	R TH M PPM	T I PPM	V PPM	ZN PPM F	GA S PM PP	N M PPI	W CR / M PPM	V-FIRE PPB
Simp/u	- GWR - 10 GWR - 11 GWR - 12 GWR - 13 GWR - 14	(6.2) 1.1 (3.7) .9	2500 8420 6610 7210 3650	3 1 1 1 1	4 4 3 3 1	164 92 115 133 337	.1 .1 .1 .1 .1	1 1 1 1 1	8770 43480 40820 32970 17410	.1 .1 .1 .1 .1	11 40 18 18 7	2228 334 34 34 34 34 34 34 34 34 34 34 34 34	20200 44570 28850 21180 21630	810 2860 4020 4290 1760	1 1 1 1	1880 8350 8580 2580 4310	703 777 587 552 716	2 1 1 4 1	1010 210 600 380 580	5 1 1 1	590 (1670 1240 1690 970	105 21 21 15 16	1 2 1 8 1 10 1 6 1 5	4 1 6 1 1 1 9 1 7 3	89 91 66 148 107	19.4 47.2 35.7 28.7 28.4	36 41 23 21 15	1 1 1 1	1	7 166 2 41 2 41 4 87 4 87	මුදු මුදු මුදු
Surface	GWR-15 LF91-R1 LF91-R2 LF91-R3 LF91-R4	1.1 1.1 2.0 1.8	14510 19020 11100 6210 25140	1110	3 10 2 42	118 68 29 68 53	.1 .1 .1 .1 .1	3 17 7 1 24	46930 33900 46870 41050 17780	.1 .1 .1 .1 .1	28 68 22 14 56	95 106 17 12 85	51120 71030 49090 25870 90670	3490 2720 1050 3370 2660	8 3 2 1 11	36160 12900 15350 2220 18380	1207 653 1214 704 983	end end end end end end end end end end	80 520 400 240 440	45 1 1 1	780 1150 2140 890 1220	9 10 29 14 8	1 11 1 8 1 11 1 10 1 8	0 1 2 1 4 1 3 1	270 3586 1235 70 4809	72.8 99.2 76.3 19.3 208.9	65 34 22 12 45	1 1 1 1	1 2 1 1	5 161 8 196 3 78 2 55 4 67	2 150 122 40
	TR-2A TR-2B TR-2C TR-2D TP+3A	10.3 1.4 1.5 2.4 1.2	2090 22030 16460 20200 23660	1 1 1 1	3 4 3 3 3 3	37 99 42 86 82	.1 .1 .1 .1 .1	2 • 15 13 13 12	34040 57180 20040 46820 50240	.1 .1 .1 .1 .1	17 25 23 20 22	27 24 345 33 55	40220 41300 35500 40880 44710	930 3760 1670 4140 5970	1 7 1 7 6	8130 18400 9400 20100 18880	1249 803 396 809 974	11035	410 170 340 190 110	1 1 1 1	1460 1430 1840 1390 890	15 8 11 29 10	1 6 1 10 1 10 1 10 1 9	3 1 4 1 7 1 4 1 7 1 7 1	32 2792 2574 2516 2140	13.8 118.1 87.4 141.3 130.3	31 27 23 34 34	1 1 1 1	1 1 1 1	2 50 3 32 3 52 3 52 2 34	1285 31 12 47 12
t Sample	TP-3B TP-4A TP-4B TP-5A TP-5B	2.1 2.3 122 (15.2) (16.2)	26960 5270 23060 4590 11860		43434	104 82 57 68 111	.1 .1 .1 .1	12 2 16 1 3	40010 5950 37460 17900 12160	.1 .1 .1 .1	28 29 21 17 18	80 12 50 114 103	58570 25490 45030 44660 39190	9430 2350 2830 2400 3700	9 1 6 1 1	27070 2890 18240 2980 5820	1294 246 911 1054 1037	7 6 1 1 2	340 180 230 320 460	3 1 1 2 7	1090 580 1220 1330 1120	14 13 11 18 19	1 6 1 1 1 8 1 4 1 2	2 1 8 1 5 1 2 1 7 1	2255 78 2901 135 633	218.0 28.5 119.1 33.8 64.8	58 13 39 34 39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	4 69 7 170 3 40 2 63 4 80	(79) 858 2900 1105
Test P.	TP-6A TP-6B TP-7A TP-8A TP-8B		5180 2680 3110 3160 24140	-0-0- 	5 2 3 2 3	105 56 200 140 81	.1 .1 .1 .1 .1	1 2 1 15	12100 16710 37430 15600 43070	.1 .1 .1 .1	24 12 14 10 22	125 26 30 72 52	62910 41500 44930 35170 49060	2780 1420 1570 1470 2860	1 1 1 7	2600 5530 4690 2460 21930	1662 1063 1116 599 1194	1 1 1 1	280 630 540 780 260	21115	1310 1020 1460 1390 1170	19 18 18 15 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 1 3 1 9 1 9 1 4 1	215 58 410 85 3002	91.3 22.5 91.2 27.0 157.6	43 21 30 15 53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	2 55 2 59 3 51 3 82 4 77	1500 2960 1250 2010 37
l	TP-10A TP-11A TP-12	1.6 1.8 1.7	15890 24050 21300	1 1 1	233	90 64 53	.1 .1 .1	15 12	11010 15500 38490	.1 .1 .1	12 26 22	22 91 66	25740 51710 43340	2590 3170 2050	1 5 4	8390 18870 17680	664 991 838	1 1 1	310 260 660	5 1 4	930 1530 1330	13 11 16	1 10 1 7 1 8	13 1 19 1 19 1	1469 2871 2316	54.8 147.8 119.5	45 44	1	1	3 52 3 51	42 40
				i						<u></u>																					
										<u> </u>																			<u> </u>		
																				<u></u>						<u></u>		<u> </u>			
																	<u></u>		<u></u>												
											<u>.</u>							<u> </u>								<u></u>	. <u></u> ,	<u></u>		<u></u>	
														·							<u></u>									.	

Company:

Project:

"G"

MINERAL • ENVIRONMENTS LABORATORIES (DIVISION OF ASSAVERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSIS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Assay Certificate</u>

Date: OCT-30-91 Copy 1. SEDDUEST CONSULTING, VERNON, B.C. 2. KAMLOOPS GEDLOGICAL, KAMLOOPS, B.C.

Attn: W.GRUENWALD/C.MARLOW

GEOQUEST CONSULTING LTD.

2. KAMLOOPS GEDLOGICAL, KAMLOOPS, B.C.

He hereby certify the following Assay of 2 ROCK samples submitted OCT-26-91 by W.GRUENWALD.

Sample	*AU	*AU	
Number	g/tonne	oz/ton	
LF-91-3A <i>(G. Wolonski)</i>	3.54	.103	Approx 200m easterly of Discovery showing (S. sile of Hwy 24)
GWR-16 <i>(3º;2+78=)</i>	4.15	.121	60 eng float boulder & disseminded pyrite

*AU = 1 ASSAY TON.

Certified by

1V-1363-RA1

COMP: GEOQUEST CO PROJ: "G" ATTN: W.GRUENWALD	NSULTING LTD. /C.MARLOW) 705	MIN-E WEST 15	IN LA 5TH ST. 504)980	ABS , NORT -5814	H VAI	ICP NCOUVE 604)98	REI R, B.C 8-4524	PORT V7M 1	12									FILE	NO: DATI	IV-136 E: 91/ (ACT	3-SJ1 10/30 :F31)
SAMPLE NUMBER LF-S91-1 LF-S91-2 LF-S91-3 LF-S91-10 LF-S91-11 LF-S91-12 LF-S91-13 LF-S91-14 LF-S91-15 LF-S91-16	AG AL AS PPM PPM PPM PPM .9 22200 14 .8 26610 1 1.3 28410 1 1.1 29620 14 .1 29620 1 1.0 35180 1 .1 26830 1 1.1 26830 1 1.3 25820 1 1.3 25820 1	B PPM 7 7 6 5 6 9 5 4 5 4 5 4 5	BA PPM P 98 128 66 110 96 112 144 100 97 74 169	BE BI .2 8 .1 12 .1 11 .1 10 .1 13 .1 16 .2 8 .2 9 .1 11 .2 10 .3 9	CA PPM 8610 11810 8320 8110 11910 16940 14310 7090 8620 6170 8390	CD PPM 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	CO CU PPM PPM 19 87 24 100 19 31 24 36 25 71 34 66 16 24 17 26 24 47 20 55 25 91	FE PPM 42320 49770 43810 40280 56790 121800 35930 32240 43990 30380 49350	K PPM 1790 2660 1110 1060 1410 6020 1400 1400 1340 2890 1250	LI PPM 20 22 20 23 27 47 24 20 24 20 24 18 27	MG PPW 13690 16290 13350 9520 14490 32690 8190 8960 15890 4590 12660	MN PPM F 589 767 414 1118 531 956 1115 418 506 439 615	MO NA PPM PPM 1 260 1 370 1 950 1 940 1 740 1 900 1 900 1 900 1 820 1 930 1 660 1 840	NI PPM 27 30 1 15 1 6 4 8 4 1 18 17 1 17 1 6 2 32 2	P F PPM PF 960 2 2550 2 550 2 550 2 190 3 180 2 760 7 40 2 520 2 270 2 390 3	B SE M PPH 5 4 6 1 5 6 7 7 5 5 6 0 7 7 5 5	SR PPM 30 44 39 58 47 48 31 33 24 34	TH PPM 3 2 1 1 1 1 1 1 1 1 1 1 1	TI PPM 1956 2493 2428 2289 2999 5150 1429 1768 2459 1921 1990	V PPM 90.9 116.8 118.2 99.7 173.1 282.6 83.1 77.2 124.3 66.8 114.3	ZN PPM 1 70 76 130 142 66 55 91 99 75 190	GA PPM P 2 1 3 3 2 1 3 3 2 2 2 2	SN PF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W CIP M PPI 4 55 4 55 4 33 4 33 4 33 4 33 4 33 4 33 4 33 4 33 4 33 5 33 5 6	R AU-F 4 5 7 8 1 8 4 2 5 5 9 9 8	IRE PPB 6 5 1 1 2 28 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
	Soil Samples	orlled	ted b	y B. h	10/2m3k				<u>.</u>																	
					; =																					

.

1.12

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

DECEMBER 2 , 1991

CERTIFICATE OF ANALYSIS ET 91-891

GEOQUEST CONSULTING LTD. R.R.# 3, SITE 11,COMP 180 VERNON, B.C. V1T 6L6

ATTENTION: W. GRUENWALD

SAMPLE IDENTIFICATION: 4 SOIL samples received NOVEMBER 22, 1991 -----PROJECT: 40

ET# Description

AU (ppb)

ET#	Descr	iption	
*******	======	=======	 =====

to 3.5 m depth
0 3.0m "
0 4.0 m "
6 4.0 m "

κ -

ECO-TECH LABORATORIES LTD. per FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

sc91/

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

DECEMBER 10, 1991

CERTIFICATE OF ANALYSIS ET 91-892

GEOQUEST CONSULTING LTD. R.R.# 3, SITE 11,COMP 180 VERNON, B.C. V1T 6L6

ATTENTION: W. GRUENWALD

SAMPLE IDENTIFICATION: 3 ROCK samples received NOVEMBER 22, 1991 -----PROJECT: 40

AU

	(ppb)	Description	ET#
Quarte combonate voived felsic intrusive rock (3.5)	455 at the second s	TP-14B	1-
	40	TP-15B	2-
Ote of Thuya hb diorite 10m south of 6+505; 2+50	45	GWR -17	3-

ECO-TECH ÉABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

sc91/

1

ģ,

APPENDIX B

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

<u>Sample</u> No.	<u>Location</u>	Description	Gold <u>ppb/oz/t</u>	<u>Other</u>
GWR-91-1	Latremouille Ck above Bakin Road	Quartz fragments collected from stream bed.	62/	Pb - 699 ppm 2n - 874 ppm
GWR-01*	4+25s;2+85w	Fine grained hornblende diorite (1% pyrite, weak carbonate. Possible subcrop.		
GWR-02	4+95s;0+75w	Angular guartz-chlorite vein float.	15/	Pb - 59 ppm
GWR-03*	5s;0+62.5W	Green, medium grained hornblende diorite.	2/	
GWR-04*	2S;1+00B	Pale green grey, medium grained, altered diorite (weakly propylitic), non magnetic.	4/	
GWR-05*	35;3+45E	Pale green-grey, coarsely brecciated intrusive float with chlorite-calcite infillings. Pyrite ~ 5%. Appears somewhat similar to Discovery zone along Hwy# 24.	372/	Ag - 3.5ppm
GWR-06	5+758;2+00B	Pale green-grey, medium grained felsic intrusive, >10% guartz, pyrite ≤1%.	12/	
GWR-07	5+75S;2+00E	Brown-grey, limonitic, altered intrusive(?) cut by quartz-hematite veinlets. Carbonate throughout matrix, minor pyrite (~1%).	7/	Ba - 483 ppm
GWR-08	6+75S;1+50B	Angular, limonitic and pyritic float (20cm).	1220/.037	Ag - 7.8 ppm
GWR-12	5+375;1+85B	Angular float boulder (40cm). Silicified.	76/	
GWR-13*	58;2+95B	Subangular float (40cm) boulder of weakly limonitic guartz veined felsic intrusive. Minor pyrite, chalcopyrite and malachite .	128/	Ag - 3.7ppm Cu - 264 ppm
GWR-14	4+37s;3+75b	Limonitic, weakly veined intrusive(?) Float.	93/	
GWR15*	2+95S;0+72B	Subangular float boulder (50cm). Strong guartz stockwork veined f. grained, pale green diorite (?) Finely disseminated pyrite ≤1%.	9/	
GWR-16	3S;2+78E	Subrounded float boulder (60cm) of limonitic felsic rock with 2-3% disseminated pyrite.	4150/.121	
CMG-001*	3s; 3+45e	Same as GWR-05 above.	525/	Pb - 221 ppm
CNG-009	7+05S;1+50B	Limonitic, felsic float boulder.	2450/.080	Ag - 13.5 ppm As - 43 ppm
CNG-018*	2+505;1+00B	Pale brown, limonitic, pyritic fine grained intrusive(?) with several 1-2mm guartz veinlets. Disseminated pyrite 3%, weak carbonate.	3950/.090	Ag - 61.3 ppm As - 50 ppm Pb - 43 ppm
CMG-019*	2+50S;0+90B	Reddish, brown (Hematitic), altered intrusive with 2%+ disseminated pyrite.	1200/.038	Ag - 12.0 ppm As - 32 ppm

ROCK SAMPLE DESCRIPTIONS

<u>Sample</u> No.	<u>Location</u>	Description	Gold ppb/oz/t	<u>Other</u>
CMG-020*	2+50S;1+00B	Grey-green, chlorite altered intrusive (diorite?). Moderately high carbonate. Pyrite clot.	80/	Ag - 1.7 ppm
CMG-023*	2+50S;?E	Pale green, chlorite altered intrusive rock cut by 0.5cm quartz-calcite veinlet with minor pyrite, chalcopyrite.	134/	Ag - 1.5 ppm
LF 91-3A*	Hwyf 24 ~200m B of Discovery zone.	White, medium grained felsic intrusive subcrop(?) with ~3% disseminated pyrite. Several fine 1-2mm quartz veinlets. Very low mafic content. Low carbonate. Pound by Mr. Wolanski.	1290/.103	Ag - 3.0 ppm
3s;0+50B*	Grid	Limonitic, fine grained siliceous intrusive(?) with streaks and clots of hematite. Disseminated pyrite 3-5%. Weakly brecciated.	1300/.041	Ag - 6.5 ppm
5+50S; 1+50B*	Gríd soil pit	Angular brown, weathered and limonitic felsic intrusive with abundant disseminated pyrite (3- 5%). Carbonate content moderate.	2850/.099	Ag - 65.9 ppm - 1.92 oz/t As - 45 ppm
5+50S; 1+50B* (R2)	Grid soil pit	As above, except taken from large angular boulder encountered when digging test pit. Very strong breccia texture	4030/.118	Ag - 88.3 ppm As - 82 ppm
6S;1+25B*	Grid	Strongly limonitic, siliceous intrusive.	1380/.042	Ag - 11.9 ppm As - 34 ppm
7S; 3+37B	Grid	Pale green hornblende diorite, weakly bleached. Quartz veinlets to 1 cm. Talus sample.	8/	
145;2+25B	Grid	Hornblende diorite.	4/	Pb - 117 ppm Cu - 103 ppm
14s;5+00w	Griđ	Hornblende diorite.	25/	Pb - 101 ppm Cu - 117 ppm
B/L7+50S*	Grid	Angular, grey-brown altered and weakly brecciated felsic(?) rock. Streaked with bands of tan siderite. Disseminated clots and stringers of hematite (5%) along with 2-3% disseminated pyrite.	216/	Ag - 4.7 ppm Ba - 660 ppm

* Indicates Representative or cut sample available.

TEST PIT/TRENCH ROCK SAMPLE DESCRIPTIONS

Test Pit <u>Sample No.</u>	<u>Location</u>	Description	Gold ppb/oz/t	<u>Other</u>
TP-2A	5+62S;1+00B	Limonitic, altered material at surface level of TP-2.	1285/.042	Ag - 10.3 ppm As - 75 ppm
TP-2B	5+62S;1+00B	Green, medium grained, weakly altered diorite. Chloritic alteration of mafics (1% pyrite. Carbonate in matrix.	31/	
TP-2C	5+62S;1+00B	Hornblende diorite boulder (Thuya) in overburden with pyrite, chalcopyrite on quartz-calcite stringer.	12/	Cu - 345 ppm Mo - 23 ppm
TP-3A	68;1+25B	Dark green, chloritic diorite (?) bedrock with minor quartz veinlets.	12/	
TP-3B	6S;1+25E	Limonitic clay rich shear (8-10 cm) in diorite (355°/30°W).	179/	Ag - 2.1 ppm
TP-4A* (cut spec~ imen)	5+50s;2+75s	Angular, limonitic quartz rich float. Vuggy, dissemination and clots of pyrite - content 5%.	858/	
TP-4B	5+508;2+758	Hornblende diorite bedrock. Hinor pyrite. Barren looking.	90/	
TP-5A*	2S;1+00B	Angular to subrounded, limonitic alkalic intru- sive float. Abundant disseminated pyrite 3-4%. Very low mafic content. guartz content (10%.	2900/.100	Ag - 15.2 ppm
TP-6A	8m NW of 2+50S;- 1+00B	Subangular, very limonitic flat in vicinity of surface float sample CMG-019.	1500/.046	
TP-6B	20m B of 6A	Subangular float felsic boulder. Disseminated pyrite.	2960/.111	Ag - 17.1 ppm As - 35 ppm
TP-7A*	2+90S;0+60B	Numerous limonitic float boulders up to 1.25m in test pit. <u>Specimen #1</u> : Strongly brecciated felsic intru- sive rock with abundant specular hematite infil- lings. Pyrite ~ 2%. Carbonate in hematitic matrix	1250/.043	Ag - 9.1 ppm
TP-7A*	2+90S;0+60B	<u>Specimen #2</u> : Limonitic felsic intrusive float with finely disseminated pyrite 3%+. Quartz stockwork veinlets. Minor hematite.		
TP-8A*	3+50s;1+25e	Subrounded, limonitic felsic intrusive float {0.3m}. Displays strong brecciation with quartz pyrite stockwork infillings. Carbonate in matrix and some veinlets.	2010/.067	Ад - 24.7 рр м Ав - 24 ррм

TEST PIT/TRENCH ROCK SAMPLE DESCRIPTIONS

Test Pit <u>Sample No.</u>	<u>Location</u>	<u>Description</u>	Gold ppb/oz/t	<u>Other</u>
TP8-8*	3+50S;1+25B	Bedrock(?) of chlorite carbonate altered Thuya diorite. Cut by guartz-calcite veinlet. Dis- seminated fine grained pyrite 2-3%.	37/	Ag - 2.1 pp∎
TP-14B*	5+50s;0+25w	Float of mafic poor granodiorite. Mafics altered to chlorite. Carbonate in matrix. Cut by 2 cm quartz vein containing coarse pyrite cubes, chlorite clots.	455/	
TP-15B	5s;0+78w	Green, medium grained Thuya diorite.	40/	

*Indicates representative or cut sample available.

APPENDIX C

PERSONNEL

Ψ.	Gruenwald, B. Sc. April 2, 11, 12 May 6, 7, 29 June 25, 26	
	August 1, 20	
	September 3, 23, 24, 25, 29, 30	
	October 1, 2, 22, 23	
	November 20-22	
	Jan 13, 14, 19-22, 24-26	17 1/2 days
₩.	Gruenwald, Drafting	
	June 26, 27, 28	
	July 20, 21, 24-26	
	August 22	
	September 7, 8 t_{2}	51 1/2 hours
	Jan 13-20	JI 1/2 Hours
c.	Marlow, Prospector	
	May 19-24, 27-31	
	June 1, 30	
	July 1-5, 16-19, 31	
	August 1 Southerhow 25 20	
	$\begin{array}{c} \text{Determer}, 23-30\\ \text{October}, 1-3 22 23 \end{array}$	
	November $20-22$	36 3/4 davs

G. Ruddell, Field Assistant May 20-24, 27-31 June 1 11 days

APPENDIX D

STATEMENT OF EXPENDITURES

LABOUR:

~

W. Gruenwa 17 1/2 day	ld, B. Sc. s @ \$300/day	\$5,617.50		
C. Marlow, 36 3/4 day	Prospector s @ \$180/day	7,078.05		
G. Ruddell 11 days @	, Field Assistant \$180/day	2,118.60		
W. Gruenwa 51 1/2 hrs	ld, Drafting @ \$25/hour	1,377.63	\$16,191.78	
EXPENSES AND DISBURSEMENTS:				
(1) Geoche Min-E	mical Charges: Cn, Eco Tech	\$ 9,143.15		
(2) Truck	Charges:	2,168.07		
(3) Room a	and Board:	2,185.66		
(4) Contra Kamlo Chive Can M	ector: ops Geol \$ 642. ers Bros. 1,016. lac Const. <u>8,508.</u>	00 50 <u>64</u> 10,167.14		
(5) Equipm	ent Rental;	278.20		
(6) Suppli	es:	314.77		
(7) Miscel Telep secre etc.	laneous: bhone, freight, tarial, printing,	1,452.35	25,709.34	
	TOTAL COST:		\$41,901.12	

APPENDIX E

REFERENCES

- (1) Campbell, R.B., Tipper, H.W. (1969)
 Bonaparte Lake Map Area (Map 1278A). Geological Survey of Canada - Memoir 363.
- (2) Preto, V.A.G. (1970)Geology, Exploration and Mining in British Columbia.
- (3) Geological Survey of Canada (1980)
 - Aeromagnetic Map 19521G.
 Bonaparte Lake NTS No. 92P.
- (4) Dom, K. - Assessment Report (#18597) on the G claims for Esso Minerals.
- (5) B.C. Mineral Inventory (1990)
 NTS Map No. 92P.
- (6) Wells, R.C. (1991)
 Summary Report on the G claims Private report.

APPENDIX F

WRITER'S CERTIFICATE

I, WERNER GRUENWALD OF THE CITY OF VERNON, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- (1) I am a geologist employed by Geoquest Consulting Ltd. With my office at 8055 Aspen Road, Vernon, B.C.
- (2) I am a graduate of the University of British Columbia with B. Sc. in Geology, 1972.
- (3) I am a fellow of the geological Association of Canada.
- (4) I have practiced my profession as a geologist since May 1972.
- (5) This report is based on a study of published and unpublished reports, government data, private communications and my knowledge of the property. The exploration programme discussed in this report was under my direct supervision.

Werner Gruenwald, B. Sc. GEOLOGIST

Vernon, B.C. January 27, 1992

