| LOG NO: | [MAR 2 3 1992                                                                                                   | RD. |
|---------|-----------------------------------------------------------------------------------------------------------------|-----|
| ACTION: |                                                                                                                 |     |
|         |                                                                                                                 |     |
|         | andre hafte gibb materialen ber a menn sein sinder. A servana einer bestellere in einer seiner sin einer sin ei |     |

### KOKANEE EXPLORATIONS LTD FILE NO:

#### REPORT ON A DIAMOND DRILL PROGRAM

(A92-1 to A92-5)

### ARC and SURE BET CLAIMS

SLOCAN MINING DIVISION

### CRAWFORD AREA

N.T.S. 82F/10W

LAT: 49°38'

LONG: 116°51'

OWNER

KOKANEE EXPLORATIONS LTD. Suite 104, 135 - 10th Avenue South Cranbrook, B.C. V1C 2N1

Worked Performed from January 19, 1992 to February 15, 1992

Report by: David L. Pighin Submitted: March, 1992

## GEOLOGICAL BRANCH ASSESSMENT REPORT

### TABLE OF CONTENTS

PAGE

| 1.00       | Introduc                   | tion                                               |                                           |                      | •              | •              | •                       |             |          | • | • | • | •           | •   | •      | •      |    | ٠                | 1           |
|------------|----------------------------|----------------------------------------------------|-------------------------------------------|----------------------|----------------|----------------|-------------------------|-------------|----------|---|---|---|-------------|-----|--------|--------|----|------------------|-------------|
| 2.00       | Location                   | and 1                                              | Acces                                     | s.                   | •              | •              | •                       |             |          | • |   | • |             | •   | •      |        | •  | •                | 1           |
| 3.00       | Regional                   | Geolo                                              | ogy .                                     |                      | •              | •              | •                       |             |          | • | • |   | •           |     |        | •      | •  | •                | 1           |
| 4.00       | Property<br>4.10 M         | Geolo<br>Geolo                                     | ogy .<br>lizat                            | <br>ion              | •              | •              |                         | <br>        |          | • | • | • |             | •   |        | •      |    | •                | 2<br>3      |
| 5.00       | 5.20 D<br>5.30 D<br>5.40 D | Drill:<br>Diamono<br>Diamono<br>Diamono<br>Diamono | d Dri<br>d Dri<br>d Dri<br>d Dri<br>d Dri | llho<br>llho<br>llho | le<br>le<br>le | A9<br>A9<br>A9 | 2 - 2<br>2 - 2<br>2 - 2 | 2<br>3<br>4 | •        | • | • | • | •<br>•<br>• | •   | •<br>• | •<br>• |    | -<br>-<br>-<br>- | 3<br>4<br>4 |
| 6.00       | Conclusi                   | on .                                               | • • •                                     |                      | •              | •              | •                       |             |          | • | • | • | •           | •   | •      | •      | •  | •                | 5           |
| Exhibit "A | A" - Stat                  | ement                                              | of E                                      | xpen                 | dit            | ur             | es                      | •           | •        | • | • |   | •           |     |        |        |    |                  | 6           |
| Affidavit  |                            |                                                    |                                           |                      | •              |                | •                       | •           | •        | • | • |   | •           | • • |        |        |    | • •              | 7           |
| Author's 🤇 | Qualifica                  | tions                                              |                                           |                      | •              |                |                         |             | •        | • | • | • | •           |     |        |        |    | • •              | 8           |
| Endorser's | gualifi                    | cation                                             | ns.                                       | •••                  | •              |                | •                       | •           | •        | • | • | • | •           |     |        |        |    | •                | 9           |
| Location M | 1ap - Dia                  | mond 1                                             | Drill                                     | hole                 | s l            | 492            | -1                      | to          | <b>5</b> | 5 | • | • | •           | •   |        |        |    |                  | 10          |
| Drill Logs | s - Diamo                  | ond Dra                                            | illho                                     | les                  | A92            | 2-1            | t                       | o 5         | 5        | • | • | • | •           | • • |        | at     | ta | ach              | ed          |

#### REPORT ON FIVE DIAMOND DRILLHOLES

#### ARC, SURE BET and PUP CLAIMS

#### SLOCAN MINING DIVISION

#### D.L. Pighin

March, 1992

#### 1.00 <u>Introduction</u>

The Arc property consists of the Arc, Noah, Sure Bet and Pup claims totalling 125 units. The Arc, Sure Bet and Pup claims are under option from local prospectors. The Noah claims are owned 100% by Kokanee Explorations. Chapleau Resources Ltd. and Barkhor Resources have an earn-in agreement with Kokanee Explorations Ltd. on the Arc property.

The Arc - Sure Bet diamond drilling program in January of 1992 consisted of 5 holes totalling 1094.8 metres of core. The program was designed as an initial test of soil geochemical anomalies supported by geophysical (E.M. and Mag.) anomalies.

#### 2.00 Location and Access

The Arc property is located in the Slocan Mining Division. The claims are situated on the east side of Kootenay Lake, on the west side of Crawford Bay. Access is via Highway 3A from Creston, B.C. A fair network of Forestry roads provide access within the claims.

#### 3.00 <u>Regional Geology</u>

The area immediately to the north of the Arc - Sure Bet claims has been regionally mapped by Trygve Hoy, for the B.C. Department of Mines, 1980 (Bulletin 73 - Geology of the Riondel Area, Central Kootenay Arc, Southeastern B.C.).

Metamorphic rocks, which underlie the region, correlate with the Lower Paleozoic sequence exposed along the trend of the Kootenay Arc to the north and south (T. Hoy, 1986). These rocks consist mainly of quartzites and schists of the Hamil group, overlain by interlayered calcareous schists, marble and quartzites of the Mohican Formation, and Lower Cambrian marble, of the Badshot Formation, as well as micaceous schist, calc-silicate, gneiss and amphibolite, which are part of the Lardeau group. The structure of the area is dominated by a series of west dipping, tight to isoclinal folds (Phase 2) that are superposed on the inverted limb of an earlier limb of a recumbent anticlinal structure named the Riondel Nappe (T. Hoy, 1980).

The regional metamorphic grade ranges from upper green schist facies in the east to amphibolite facies in the west.

### 4.00 Property Geology

Geological work on the property to date consists of reconnaissance geological mapping and core logging. This work suggests that the structures and lithology mapped by T. Hoy in 1980 extend through the Arc - Sure Bet claims.

The property is underlain by the Index, Badshot, Mohican and Hamil Formations. The Index Formation consists principally of an upper division formed by biotite-quartz-feldspar gneiss, minor garnet gneiss and a lower division consisting of calc-silicate, biotite-quartz-feldspar gneiss, and minor phlogopitic quartzite, muscovite gneiss and abundant amphibolite sills.

The Badshot Formation consists of calcite marble and dolomitic marble. Phlogopite is generally weakly disseminated throughout the marble, with some marble units distinctly phlogopite rich. Weakly disseminated graphite generally occurs throughout the marble beds, and in some cases, forms distinct wispy thin lamina. Very weakly disseminated pyrite and rare magnetite occurs in some of the marble beds.

The Mohican Formation consists mainly of calcareous quartzites, calcareous schists, minor marble and amphibolite sills. The Hamil Formation is mainly dark quartzite, white quartzite and quartz schist.

A small quartz monzonite stock occurs near the centre of the property. Thin pegmatite sills, small aplite dykes and sills and biotite quartz monzonite dykes and sills are abundant within the claim block.

Structure on the property is dominated by the Crawford Bay antiform, the Breacher Creek antiform and the Bernard Fault.

### 4.10 <u>Mineralization</u>

Approximately 50 boulders of massive sulphides have been on the Arc - Sure Bet property. The sulphide boulders located commonly consist of pyrrhotite, sphalerite, galena, and chalcopyrite, and on occasion additionally ferbergite. The boulders range in size from 3 tons to a few hundred pounds. The grades commonly range from 10% to 32% combined Pb-Zn, from 0.2% to 4.78% Cu, and from trace to 10 oz/t Ag.

In 1992, Kokanee Exploration completed a large soil geochemical grid which outlined a strong soil Pb-Zn anomaly. The anomaly was approximately five kilometers long by 400 metres wide and correlates with the sulphide boulder float train.

### 5.00 Diamond Drilling

#### 5.10 Diamond Drillhole A92-1

Hole A92-1 was drilled on Arc 22 and Arc 7 claims. This hole was collared at  $-45^{\circ}$  and was cored to a depth of 192.4 metres on a bearing of  $225^{\circ}$  Azimuth. The hole was drilled entirely in quartz monzonite, with the exception of a small diorite dyke near the top of the hole. The hole encountered a number of silicified, sericitic and carbonatized zones associated with crackle breccia and fracture structures. Rare pyrite is associated with these alteration zones. Kaolinization of feldspar phenocrysts occur sparingly throughout the hole. Alteration zones were grab sampled and assayed by 30 element ICP and gold by AA.

#### 5.20 Diamond Drillhole A92-2

Hole A92-2 was drilled on the Arc 22 and Arc 24 claims 350 metres southeast of diamond drillhole A92-1. The hole was collared at  $-45^{\circ}$  and cored to a depth of 297.3 metres on a bearing of 225° Azimuth. The hole was drilled to test a strong Pb-Zn soil anomaly.

The dominant rock type in the hole is biotite-quartzfeldspar gneiss interlayered by calc-silicate. These rocks are typically medium to thinly banded, commonly reddish brown, white and light green, weakly disseminated pyrite and pyrrhotite is usually present. Amphibolite sills are abundant throughout the hole. They are typically fine to medium crystalline rocks and generally contain disseminated pyrrhotite, magnetite, rare chalcopyrite and in some sills subhedral pink garnet is common. Hairline fractures and fine crackle breccia commonly host calcite or epidote. The amphibolite is generally magnetic in core. The amphibolite was routinely grab sampled and assayed by 30 element ICP, plus Au by AA and on occasion assayed for Pt group elements as well.

A distinctive epidote-calc-silicate unit occurs between 188.0 and 199.3 metres, and a phlogopitic quartzite unit occurs between 203.4 and 223.3 metres. The last 8 metres of the hole was in augen quartz muscovite schist.

The stratigraphy cored in this hole is correlated with the Index Formation. Numerous small aplite dykes and narrow sills occur throughout the hole. Small pegmatite sills are rare, and small quartz monzonite dykes are relatively common in the core. A large biotite quartz-monzonite sill is found near the bottom of the hole.

#### 5.30 Diamond Drillhole A92-3

Hole A92-3 was drilled on the Arc 22 and 21 claims, off the same sight as hole A92-2. Hole A92-3 was collared at  $-45^{\circ}$  and drilled to a depth of 211.9m on a bearing of  $045^{\circ}$  Azimuth. This hole was drilled to test a Pb-Zn soil anomaly. This hole cored essentially the same rocks as described in hole A92-2.

### 5.40 Diamond Drillhole A92-4

Hole A92-4 was drilled on the Arc 22 and 21 claims, 250 metres north of hole A92-2. Hole A92-4 was collared at  $-45^{\circ}$  and drilled to a depth of 214.9 metres on a bearing  $045^{\circ}$  Azimuth. The hole was drilled to test a Pb-Zn soil anomaly. This hole also cored essentially the same rocks as described in hole A92-2.

#### 5.50 Diamond Drillhole A92-5

Hole A92-5 was drilled on the Sure Bet 5 claim, 1.6 km south of hole A92-2. The hole was collared at  $-45^{\circ}$  and cored to a depth of 178.4 metres.

The upper part of the hole (3 to 98 metres) consists mainly of calcite marble, interbedded with phlogopite-muscovite schist and minor calc-silicate. The schists are typically thin bedded and commonly calcareous. Marble beds are generally thick bedded and rarely very thick bedded. Calcareous quartzite dominates the section from 98.0 -125.0 metres. The quartzite is generally thick bedded and rarely very thick bedded. The quartzite beds are composed mainly of coarse unsorted quartz sand in a calcite matrix. The quartzite is generally phlogopitic with minor disseminated pyrrhotite, magnetite and very rare red sphalerite.

The lower part of the hole is totally in marble. The marble is generally coarsely crystalline and usually white, bluish grey and pinkish brown. The marble unit consists of both calcite and dolomite marble. Contacts between calcite and dolomite marble are generally sharp. Phlogopite is weakly disseminated throughout the marble. Pinkish brown marble is generally phlogopite rich. Finely crystalline graphite is weakly disseminated in most of the marble beds, and in some cases forms wispy black parallel lamina. Very weakly disseminated pyrite occurs throughout the dolomite beds. 'Vugs' filled by talc, fluorite and red sphalerite occur in dolomitic marble from 146.9 to 178.4 metres. The 'vugs' are very widely scattered. They commonly range from 2 to 4cm and are rarely up to 20cm in size.

The stratigraphy cored from 3 to 125 metres is correlated to the Mohican Formation. The core in the lower part of the hole (125.0 to 178.4 metres) represents the Badshot Formation.

### 6.00 <u>Conclusion</u>

Data gained from the current diamond drill program suggests that further work on the property is warranted.

Report by: ~ David L.

David L. Pighin Senior Geologist

### EXHIBIT "A"

### STATEMENT OF EXPENDITURES

### DIAMOND DRILL PROGRAM

ON ARC 22 AND SURE BET 5 CLAIMS

SLOCAN M.D.

Covering the period from Jan. 19, 1992 to Feb. 15, 1992

INDIRECT

SALARIES: D.L. Pighin - Geologist - core logging 15 days @ \$250/day \$ 3,750.00 Accomodation: re drillers 600.00

DIRECT

LeClerc Drilling Ltd. Beaverdell, B.C. - 5 holes totalling 1094.8 meters

48,779.25

\$53,129.25

TOTAL =

DAVID L. PIGHIN Senior Geologist

### IN THE MATTER OF THE

### B.C. MINERAL ACT

#### AND

IN THE MATTER OF A DIAMOND DRILL PROGRAM

CARRIED OUT ON THE ARC 22 AND SURE BET 5 CLAIMS

CRAWFORD BAY AREA

in the Slocan Mining Division of the Province of British Columbia

More Particularily N.T.S. 82F/10E

AFFIDAVIT

I, David L. Pighin, of the City of Cranbrook, in the Province of British Columbia, make Oath and say:

- 1. That I am employed as a Geologist by Kokanee Explorations Ltd. and as such, have a personal knowledge of the facts to which I hereinafter depose:
- 2. That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a geophysics program, on the Arc 22 and Sure Bet 5 Mineral Claims.
- 3. That the said expenditures were incurred between the 19th day of January, 1992 and the 15th day of February, 1992 for the purpose of mineral exploration.

DAVID L. PIGHIN Senior Géologist

- 7 -

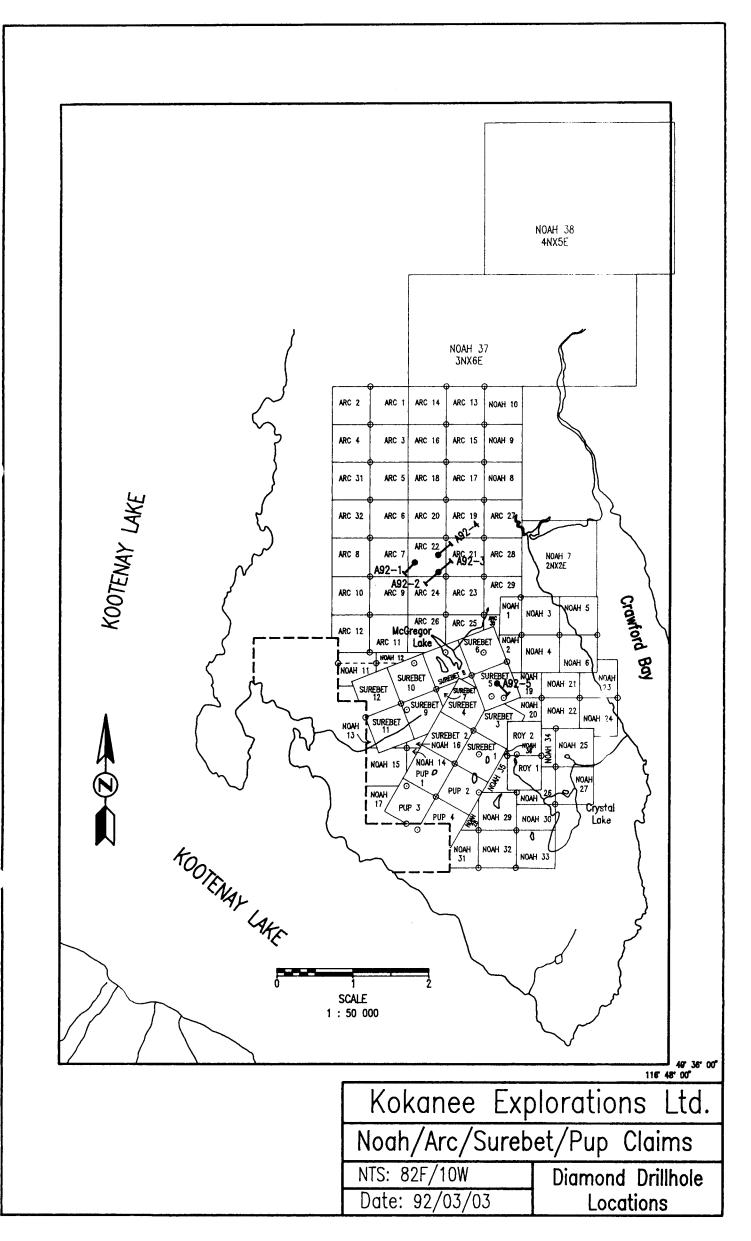
#### AUTHOR'S QUALIFICATIONS

I, David L. Pighin, of the City of Cranbrook, B.C., in the Province of British Columbia, do hereby certify that:

- I was employed by Cominco Ltd. as a exploration geologist for 15 years;
- I am employed by Kokanee Explorations Ltd. as Senior Geologist;
- 3. I have had over 26 years experience in the field of mining exploration.

Signed by: Klick David L. Pighin Senior Geologist Endorsed by: Laurence Stephenson B.Sc, M.B.A., P.Eng.

### ENDORSER'S QUALIFICATIONS


I, Laurence Stephenson, of the City of Cranbrook, in the Province of British Columbia, do hereby certify that:

1. I graduated from Carleton University in 1975 with a Bachelor of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration;

4

- 2. I am registered as a Professional Engineer for the Province of Ontario (1981) and currently a member in good standing;
- 3. I have had over 24 years experience in the field of mining exploration.
- I have known and worked with Mr. David Pighin professionally since 1988.

LAURENCE STEPHENSON B.Sc., M.B.A., P.Eng.



DRILL LOGS

Diamond Drillholes A92-1 to A92-5

Corr. Dip: 45°

Azimuth: 225°

Tests at:

Length: 192.3m

Start Date: January 21, 1992

### DRILL HOLE RECORD

Name of Property: ARC

Location: ARC 7 Claim

Hole No.: A92-1

Elevation: 845m

Core Size: NQ

Page No. 1 Remarks: UTM Co-ordinates: North - 5,500,616 East - 511,093 Finish Date: January 23, 1992 Collar Dip: -45° Logged by: DLP Date: Jan. 24/92

| METERA         | GE DESCRIPTION                                                                                                                                                                                                                                                         |     | ampl. |    | · ·       |           |         |         | <u>-</u>  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|-----------|-----------|---------|---------|-----------|
| <u>From To</u> | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                  | No. | From  | То | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>E | Cu<br>ppm |
| 0.0 - 1.8      | <u>Overburden</u> .                                                                                                                                                                                                                                                    |     |       |    |           |           |         |         |           |
| 1.8 - 5.0      | <u>Quartz Monzonite</u> : phaneritic, generally<br>equigranular, locally with a graphic<br>texture, widely scattered, tiny euhedral<br>red garnets. Widely scattered fractures<br>cut core at 25° - 30°, generally produce<br>pinkish alteration in adjacent feldspar. |     |       |    |           |           |         |         |           |
| 5.0 - 6.2      | <u>Diorite</u> : medium grained, dark green,<br>mainly hornblende in grey plagioclase<br>matrix. Generally crackle brecciated and                                                                                                                                      | 765 | 6.00  |    | 1         | 0         | .001    | .004    | 79        |
|                | healed by quartz and epidote.                                                                                                                                                                                                                                          | 766 | 24.90 |    | 5         | 0         | .001    | .005    | 7         |
|                | <b>-</b>                                                                                                                                                                                                                                                               | 767 | 43.00 |    | 2         | 0         | .001    | .006    | 7         |
| 6.2 - 84.0     | <u>Quartz Monzonite</u> : as above.                                                                                                                                                                                                                                    | 768 | 70.40 |    | 2         | 0         | .001    | .004    | 5         |
|                |                                                                                                                                                                                                                                                                        | 769 | 76.00 |    | 1         | 1         | .001    | .005    | 6         |
| 84.0 - 87.0    | <u>Crackle Brecciated Quartz Monzonite</u> :                                                                                                                                                                                                                           | 770 | 81.50 |    | 1         | 1         | .001    | .003    | 8         |
|                | healed by diopside, talc, iron ocher,                                                                                                                                                                                                                                  | 771 | 85.10 |    | 1         | 0         | .001    | .001    | 4         |

### DRILL HOLE RECORD

Property: ARC

### Hole No.: A92-1

| <u>METÉRAG</u><br>From <u>To</u> | E DESCRIPTION                                                                                                                                                                              | No.        | <u>imple</u><br>From | То    | Au     | Ag     | Pb           | Zn           | Cu     |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------|--------|--------|--------------|--------------|--------|
|                                  |                                                                                                                                                                                            |            |                      |       | ppb    | ppm    | 8            | 8            | ppm    |
|                                  | minor quartz and calcite. Pinkish<br>alteration of feldspar adjacent to<br>fractures.                                                                                                      |            |                      |       |        |        |              |              |        |
| 87.0 - 88.5                      | <u>Quartz Monzonite</u> : as above.                                                                                                                                                        |            |                      |       |        |        |              |              |        |
| 88.5 - 95.0                      | <u>Quartz Monzonite</u> : silicified, sericitic,<br>calcareous, light green with chloritic<br>fractures.                                                                                   | 772        | 88.50                | 95.00 | 4      | 0      | .001         | .001         | 8      |
| 95.0 - 154.0                     | <u>Quartz Monzonite</u> : as described above.                                                                                                                                              |            | ·                    |       |        |        |              |              |        |
| 154.0 - 155.5                    | <u>Kaolinized Quartz Monzonite</u> : numerous<br>thin, soft white clay veins cut core @ 30°.                                                                                               | 773        | 154.40               |       | 1      | 0      | .001         | .003         | 8      |
| 155.5 - 170.0                    | <u>Quartz Monzonite</u> : as described above.                                                                                                                                              |            |                      |       |        |        |              |              |        |
| 170.0 - 171.3                    | <u>Altered Monzonite</u> : strongly silicified<br>with weak sericitization, generally a light<br>buff colour. Widely scattered, reddish<br>brown limonite, pseudomorphous after<br>pyrite? | 774        | 171.00               |       | 1      | 1      | .001         | .002         | 4      |
| 171.3 - 175.0                    | ) <u>Kaolinized Monzonite</u> : tiny, soft white<br>limy clay veins cut core at 38º.                                                                                                       | 775        | 172.50               |       | 1      | 0      | .001         | .002         | 6      |
| 175.0 - 192.4                    | Quartz Monzonite: as described above.                                                                                                                                                      | 776<br>777 | 180.00<br>188.70     |       | 2<br>4 | 0<br>0 | .001<br>.001 | .001<br>.001 | 5<br>4 |

Page: 2

### DRILL HOLE RECORD

Page: 3

| P | r | 0 | p | е | r | t | У | : | ARC |  |
|---|---|---|---|---|---|---|---|---|-----|--|
|---|---|---|---|---|---|---|---|---|-----|--|

#### Hole No.: A92-1

| TERA<br>M TO |                                             | No. | ampl<br>From | То | Au  | Ag       | Pb | Zn | Cu |
|--------------|---------------------------------------------|-----|--------------|----|-----|----------|----|----|----|
|              |                                             |     |              |    | ppb | ppm      | 8  | *  | PF |
|              |                                             |     |              |    |     | <b>.</b> |    |    |    |
|              | 179.8 - 180.2: pegmatite dyke, mainly       |     |              |    |     |          |    |    |    |
|              | coarsely crystalline, pink orthoclase and   |     |              |    |     |          |    |    |    |
|              | quartz, minor muscovite, minor disseminated |     |              |    |     |          |    |    |    |
|              | magnetite, cuts core at 13°.                |     |              |    |     |          |    |    |    |
|              | 188.5 - 189.2: pegmatite dyke as above.     |     |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              | END OF HOLE                                 |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              | Core stored in racks at the Vine property.  |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             | ł   |              |    |     |          |    |    |    |
|              |                                             | }   |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             | ł   |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             | 1   |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     |          |    |    |    |
|              |                                             |     |              |    |     | ,        |    |    |    |

### DRILL HOLE RECORD

| Page | No. | 1 |
|------|-----|---|
|------|-----|---|

,

| Name of Property: ARC   | Corr. Dip: -45°              | Remarks:                                              |
|-------------------------|------------------------------|-------------------------------------------------------|
| Hole No.: A92-2         | Length: 297.3m               | UTM Co-ordinates: North - 5,500,492<br>East - 511,402 |
| Location: ARC 22 Claims | Start Date: January 23, 1992 | Finish Date: January 26, 1992                         |
| Elevation: 805m         | Azimuth: 225°                | Collar Dip: -45°                                      |
| Core Size: N.Q.         | Tests at:                    | Logged by: DLP Date: Feb 6/92                         |
| METERAGE DES            | CRIPTION Sample              |                                                       |

| TION | <u> </u> | a m | p 1 | е |   |
|------|----------|-----|-----|---|---|
|      |          | _   |     |   | - |

| From To    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. | From | <u>To</u> | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppm |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------|-----------|-----------|---------|---------|-----------|
| 0.0 - 7.3  | Overburden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |           |           |           |         |         |           |
| 7.3 - 10.2 | Quartz-Biotite-Phlogopite-Feldspar Gneiss:<br>interlayered calc-silicate gneiss. Thin to<br>very thinly banded, light greenish white,<br>dark reddish brown and white. Quartz-<br>biotite-muscovite gneiss bands generally<br>consist of quartz and reddish brown<br>biotite, phlogopite and feldspar, weakly<br>calcareous in part, generally medium<br>crystalline. Calc-silicate-quartz layers<br>consist of mainly quartz, actinolite<br>(epidote) and calcite, generally medium to<br>coarsely crystalline. Some unite are up to<br>40% calcite. Rare crystals of pyrite<br>throughout. Bedding to core 56 <sup>6</sup> . |     |      |           |           |           |         |         |           |

### DRILL HOLE RECORD

#### Page: 2

| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                                            | No.        | From           | To | Au<br>ppb | Ag<br>ppm | Pb<br>%      | Zn<br>F | Cu<br>ppn |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----|-----------|-----------|--------------|---------|-----------|
| 10.2 - 12.0    | <u>Amphibolite Sill</u> : dark green, medium<br>crystalline, consists mainly 60%<br>amphibolite and 40% quartz with scattered<br>crystals of tremolite or wollastonite?.<br>Minor disseminated pyrite and pyrrhotite.                                                                                                                                                      | 778        | 11.20          |    | 9         | 0         | .003         | .004    | 104       |
| 12.0 - 16.8    | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered calc-silicate gneiss as<br>described above. Widely scattered pyrite.                                                                                                                                                                                                                                              |            |                |    |           |           |              |         |           |
| 16.8 - 19.7    | <u>Amphibolite Sill</u> : with scattered biotite<br>phenocrysts, equigranular and coarsely<br>crystalline, widely scattered pyrite.                                                                                                                                                                                                                                        | 779<br>780 | 15.80<br>18.80 |    | 8<br>8    | 0<br>0    | .001<br>.001 | .002    | 60<br>6   |
| 19.7 - 42.5    | Quartz-Biotite-Muscovite Gneiss:<br>interlayered calc-silicate as previously<br>described.<br>21.6 - 21.9m: ribbon quartz - biotite vein<br>parallel to bedding.<br>28.5 - 29.0m: fault gouge, contact-<br>indistinct.<br>26.0m: banding (bedding to core) 52°.<br>26.2 - 27.0m: fault gouge, contacts<br>indistinct.<br>30.1m: thin gouge filled shear cuts core @<br>7°. | 781<br>782 | 21.60<br>34.40 |    | 6<br>4    | 0         | .001<br>.001 | .002    | 24<br>6   |

Property: ARC

### Hole No.: A92-2

### DRILL HOLE RECORD

#### Page: 3

| Proper | ty: | ARC |
|--------|-----|-----|
|--------|-----|-----|

į

### Hole No.: A92-2

Location: ARC 22 Claims

| METERAG     | E DESCRIPTION                                                                                                                                                                                                                   | <u> </u>   | ampl.          | e        |        |        |      |              |          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------|--------|--------|------|--------------|----------|
| From To     |                                                                                                                                                                                                                                 | No.        | From           | <u> </u> | Au     | Ag     | Pb   | Zn           | Cu       |
|             |                                                                                                                                                                                                                                 |            |                |          | ppb    | ppm    | 8    | 8            | ppm      |
|             | 34.2 - 34.7m: pegmatite sill, mainly<br>coarsely crystalline feldspar-quartz and<br>biotite, rare pyrite. Feldspar light<br>greenish blue and light orange.                                                                     |            |                |          |        |        |      |              |          |
| 42.5 - 43.1 | <u>Fault</u> : abundant fault gouge, shearing appears to be 7 <sup>0</sup> to core.                                                                                                                                             |            |                |          |        |        |      |              |          |
| 43.1 - 44.2 | <u>Rubbly Core</u> : mixed pegmatite and gneiss.<br>44.2 – 44.3m: reddish brown mud seam.                                                                                                                                       |            |                |          |        |        |      |              |          |
| 44.2 - 46.3 | <u>Amphibolite Sill</u> : dark green, medium<br>crystal, 70% amphibolite, 30% guartz and<br>feldspar, generally limy, scattered calcite<br>veinlets and widely scattered disseminated<br>pyrite. Banding to core (bedding) 45°. | 783<br>784 | 44.20<br>44.40 | 44.30    | 6<br>6 | 0<br>0 | .002 | .008<br>.004 | 95<br>91 |
| 46.3 - 61.5 | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered with calc-silicate as<br>described between 7.3m and 10.2m.                                                                                                             |            |                |          |        |        |      |              |          |
| 61.5 - 63.5 | Amphibolite Sill: dark green,<br>equigranular, medium crystalline, consists<br>of 80% amphibole, 17% quartz and feldspar,<br>3% pyrrhotite and lessor chalcopyrite, rare<br>garnets. Sill is magnetic.                          | 785        | 62.00          |          | 7      | 1      | .001 | .004         | 896      |

,

### DRILL HOLE RECORD

Page: 4

| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                                     | No. | From To | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppn |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------|-----------|---------|---------|-----------|
| 63.5 - 66.2    | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered calc-silicate gneiss as<br>described between 7.3m and 10.2m. Banding<br>to core 57 <sup>0</sup> . (bedding?)                                                                                                                                                                                               |     |         |           |           |         |         |           |
| 66.2 - 67.4    | <u>Amphibolite Sill</u> : dark green,<br>equigranular, medium crystalline with<br>scattered biotite phenocrysts. composition<br>40% amphibole, 50% biotite, 10% guartz and<br>feldspar. Locally up to 1% sulphides<br>mainly pyrite-pyrrhotite, rare<br>chalcopyrite, not magnetic, rare garnets<br>are pink in colour.                                             | 786 | 67.20   | 5         | 0         | .001    | .002    | 216       |
| 67.4 - 91.2    | Quartz-Biotite-Muscovite Gneiss:<br>interlayered calc-silicate, as described<br>between 7.3m and 10.2m. Scattered with<br>quartz veins parallel to banding (bedding)<br>veins commonly are ribboned by chlorite or<br>biotite lamina. Some veins host subhedral<br>pink garnets, widely scattered thin calcite<br>veins cut core at 46°. Banding to 50° @<br>90.0m. | 787 | 77.90   | 11        | 0         | .001    | .001    | 4         |

.

Property: ARC

#### Hole No.: A92-2

### DRILL HOLE RECORD

Page: 5

| From To       |                                                                                                                                                                                                                                                                                                  | No. | From   | To | Au  | Ag  | Pb   | Zn   | Cu  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|-----|------|------|-----|
|               |                                                                                                                                                                                                                                                                                                  |     |        |    | ppb | ppm | 8    | 8    | ppr |
| 91.2 - 92.2   | <u>Amphibolite Sill</u> : dark green,<br>equigranular, coarsely crystalline,<br>scattered biotite phenocrysts. Composition<br>50% amphibole, 50% biotite. Quartz is very<br>rare.                                                                                                                |     |        |    |     |     |      |      |     |
| 92.2 - 100.1  | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered calc-silicate as described<br>between 7.3m to 10.2m.                                                                                                                                                                                    |     |        |    |     |     |      |      |     |
| 00.1 - 101.8  | <u>Calcareous Biotite-Muscovite Gneiss</u> : dark<br>grey and black with tannish brown carbonate<br>banding, coarsely crystalline. Biotite and<br>muscovite, carbonate band host tiny<br>magnetite crystals (magnetic unit).<br>Estimated 5% disseminated pyrrhotite, very<br>rare chalcopyrite. | 788 | 101.50 |    | 6   | 0   | .001 | .005 | 78  |
| .01.8 - 110.0 | Calcareous Calc-Silicate: light green with<br>white and pink mottling, medium<br>crystalline, massive, some poor banding,<br>some scattered pink feldspar, wispy thin<br>quartz layers.<br>108.4 to 108.9m: epidote greenstone dyke<br>cuts core at 23°, 50% epidote by volume.                  |     |        |    |     |     |      |      |     |

.

Property: ARC

#### Hole No.: A92-2

### DRILL HOLE RECORD

#### Page: 6

Property: ARC

### Hole No.: A92-2

### Location: ARC 22 Claims

| <u>METERAG</u> | E DESCRIPTION                                                                                                                                                                                                                                                                                                        |     | <u>imple</u> |    |      |           |          |          | ····· |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----|------|-----------|----------|----------|-------|
| From To        |                                                                                                                                                                                                                                                                                                                      | No. | From         | То | _ Au | Ag<br>ppm | Pb<br>%  | Zn<br>St | Cu    |
|                |                                                                                                                                                                                                                                                                                                                      |     |              |    | ppb_ | ppm       | <u> </u> | <u> </u> | ppm   |
| 110.0 - 137.1  | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered calc-silicate as described<br>between 7.3m to 10.2m. Very widely<br>scattered thin (1 to 2cm thick) quartz<br>veins parallel to banding at 130.5m.<br>Banding to core (bedding?) is 42 <sup>0</sup> .                                                       | 789 | 136.00       |    | 9    | 0         | .001     | .002     | 507   |
| 137.1 - 136.5  | <u>Amphibolite Sill</u> : dark green,<br>equigranular, medium crystalline. 50%<br>amphibole, 50% guartz and feldspar, weakly<br>disseminated pyrrhotite and chalcopyrite,<br>widely scattered subhedral pink garnets.<br>Widely scattered thin calcite veins cut<br>core at 45°. Two thin shears cut core at<br>26°. |     |              |    |      |           |          |          |       |
| 136.5 - 156.0  | <u>Quartz-Biotite-Muscovite Gneiss</u> :<br>interlayered calc-silicate as described<br>between 7.3m to 10.2m.<br>154.0m: banding to core 56 <sup>0</sup> (bedding?).<br>149.0m: disseminated pyrrhotite and<br>magnetite.                                                                                            | 790 | 149.00       |    | 10   | 1         | .001     | .002     | 101   |
| 156.0 - 157.4  | <u>Amphibolite Sill</u> : dark green,<br>equigranular, medium crystalline,<br>calcareous. Consists of 60% amphiboles and<br>biotite, 40% quartz and feldspar.<br>Sulphides are very rare.                                                                                                                            |     |              |    |      |           |          |          |       |

.

### DRILL HOLE RECORD

#### Page: 7

Property: ARC

.

### Hole No.: A92-2

| From To       |                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. | From   | To | Au  | Ag  | Pb   | Zn   | Cu  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|-----|------|------|-----|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |    | ppb | ppm | *    | 8    | ppm |
| 157.4 - 160.2 | <u>Biotite Quartz-Monzonite Dyke</u> : bluish grey<br>matrix with small white feldspar<br>phenocrysts. Phenocrysts are generally<br>subhedral and commonly zoned. Dyke appears<br>fresh, no evidence of gneissose texture.<br>Dyke cuts core at $40^{\circ}$ and cuts gneissic<br>texture of host rock at $72^{\circ}$ .                                                                                                                  |     |        |    |     |     |      |      |     |
| 160.2 - 163.2 | <u>Amphibolite Sill</u> : as described above but<br>cut by small white biotite quartz monzonite<br>dyke rarely more than 50cm thick. Dykes<br>cut core at 75°. Dykes are fresh (no<br>gneissic texture). Widely scattered pink<br>garnets, some dendritic patches of<br>pyrrhotite.                                                                                                                                                       | 791 | 160.90 |    | 5   | 0   | .001 | .004 | 65  |
| 163.2 - 188.0 | Quartz-Biotite-Muscovite Gneiss:<br>interlayered calc-silicate as described<br>between 7.3m to 10.2m.<br>169.2 - 170.8m: epidote-feldspar-calc-<br>silicate. Banded white, green and apple<br>green, generally limy.<br>170.8 - 171.5m: amphibolite sill. Dark<br>green, abundant subhedral pink and whitish<br>garnets, cut by numerous veins of pure<br>epidote.<br>178.0m: strongly slickensided fractures<br>cut core at 14° and 38°. |     |        |    |     |     |      |      |     |

,

### DRILL HOLE RECORD

#### Page: 8

Property: ARC

.

#### Hole No.: A92-2

| From To       |                                                                                                                                                                                                                                                                                                                                                                                                                            | No. | From To | Au  | Ag  | Pb   | Zn   | Cu  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----|-----|------|------|-----|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         | ppb | ppm | 8    | 8    | ppm |
| 188.0 - 199.3 | <u>Calc-Silicate</u> : thinly banded (bedding)<br>white, dark green and apple green. Unit<br>consists of roughly 1/3 epidote, 1/3<br>feldspar and 1/3 actinolite, minor<br>tremolite. Some quartz present, weakly<br>calcareous throughout. Banding to core 48°.                                                                                                                                                           | 792 | 194.00  | 4   | 0   | .001 | .001 | 2   |
| 199.3 - 202.4 | <u>Biotite-Phlogopite-Quartz-Feldspar Gneiss</u> :<br>generally as described between 7.3m - 10.2m<br>with scattered units of coarsely<br>crystalline biotite-quartz gneiss. In some<br>cases this unit might be described as<br>feldspar-quartz-augen gneiss.                                                                                                                                                              |     |         |     |     |      |      |     |
| 202.4 - 203.4 | Amphibolite Sill: black, medium<br>crystalline, equigranular, mainly amphibole<br>with minor feldspar. Abundant round<br>subhedral light pink garnet porphyroblasts,<br>up to lcm in size. Garnets commonly rimmed<br>by quartz and host disseminated magnetite,<br>pyrrhotite and rare chalcopyrite.<br>Pyrrhotite and some magnetite is<br>disseminated in the amphibolite. Some<br>small irregular veinlets of epidote. | 793 | 203.00  | 15  | 1   | .001 | .003 | 925 |
| 203.4 - 214.0 | <u>Biotite-Phlogopite-Quartz-Feldspar Gneiss</u> :<br>see 199.3m to 202.4m. Banding to core @<br>210m 36 <sup>0</sup> .                                                                                                                                                                                                                                                                                                    | 794 | 214.00  | 2   | 0   | .001 | .001 | 78  |

### DRILL HOLE RECORD

Page: 9

Property: ARC

#### Hole No.: A92-2

| <u>METERAG</u> | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sa  | ample   |       |     |          |      |     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|-----|----------|------|-----|
| From To        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. | From To | Au Au | Ag  | Pb       | Zn   | Cu  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         | ppb   | ppm | <u> </u> | 8    | ppm |
| 214.0 - 214.9  | <u>Amphibolite Sill</u> : dark grey, medium to<br>finely crystalline. Mainly amphibolite and<br>feldspar 50%/50%, rare quartz up to 1%<br>disseminated pyrrhotite.                                                                                                                                                                                                                                                                                                                                                     | 795 | 214.60  | 3     | 0   | .001     | .001 | 22  |
| 214.9 - 223.3  | Phlogopitic Quartzite: with minor thin<br>interlayers of calc-silicate and biotite<br>gneiss. Generally a light reddish brown<br>with white banding, rarely light green<br>banding, thin to medium thick banding<br>phlogopite medium to coarsely crystalline,<br>relic sand grains can be observed,<br>muscovite or sericite can be abundant<br>locally. Locally, disseminated pyrrhotite<br>may be abundant. Some of the very white<br>bands may be finely crystalline feldspar.<br>219.6m: disseminated pyrrhotite. | 796 | 219.60  | 7     | 0   | .001     | .002 | 291 |
| 223.3 - 224.0  | Amphibolite Sill: dark green, medium<br>crystalline, 50% amphibole and 50%<br>feldspar, abundant pyrrhotite, minor<br>chalcopyrite near base of sill. Scattered<br>quartz boudins.<br>Phlogopitic Quartzite: as described                                                                                                                                                                                                                                                                                              | 797 | 226.90  | 4     | 0   | .001     | .002 | 116 |
| 224.0 - 220.0  | between 199.3m to 202.4m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |       |     |          |      |     |

### DRILL HOLE RECORD

#### Page: 10

### Hole No.: A92-2

| METERAG        | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                 | Sa         | ampl             | е  |        |        |              |          |            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|----|--------|--------|--------------|----------|------------|
| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                                                               | No.        | From             | To | Au     | Ag     | Pb           | Zn       | Cu         |
|                |                                                                                                                                                                                                                                                                                                                                                                                               |            |                  |    | ppb    | ppm    | 8            | <u> </u> | ppm        |
| 226.0 - 227.1  | <u>Amphibolite Sill</u> : dark green, medium to<br>finely crystalline. Approximately 50%<br>amphibole and 50% feldspar-quartz.<br>Abundant pink garnet porphyroblasts,<br>generally same small rare 5mm in size.                                                                                                                                                                              |            |                  |    |        |        |              |          |            |
| 227.1 - 234.3  | <u>Biotite-Phlogopite-Feldspar-Quartz Gneiss</u> :<br>interlayered calc-silicate as described<br>between 7.3m and 10.2m., but with more<br>interlayers of coarsely crystalline boudin<br>textured quartz-biotite gneiss.                                                                                                                                                                      |            |                  |    |        |        |              |          |            |
| 234.3 - 235.3  | <u>Amphibolite Sill</u> : dark green, medium-<br>finely crystalline, approximately 50%<br>amphibole and 50% feldspar-quartz.                                                                                                                                                                                                                                                                  |            |                  |    |        |        |              |          |            |
| 235.3 - 239.2  | <u>Gneiss</u> : as described at 227.lm - 234.3m.                                                                                                                                                                                                                                                                                                                                              |            |                  |    |        |        |              |          |            |
| 239.2 - 242.4  | <u>Amphibolite Sill</u> : dark green, medium to<br>locally coarsely crystalline.<br>Approximately 50% amphibole, 50% quartz and<br>feldspar, abundant round subhedral light<br>pink garnet porphyroblasts, rarely more<br>than 5mm in size. Prophyroblasts commonly<br>rimmed by quartz. Disseminated magnetite<br>throughout. Locally abundant, disseminated<br>pyrrhotite and chalcopyrite. | 798<br>799 | 241.30<br>241.90 |    | 9<br>7 | 0<br>0 | .001<br>.001 | .005     | 322<br>284 |

### DRILL HOLE RECORD

.

Page: 11

Property: ARC

### Hole No.: A92-2

| <u>METERAG</u><br>From <u>To</u> | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No.                      | <u>ample</u><br>From                 | To | Au<br>ppb        | Ag<br>ppm   | Pb<br>%                      | Zn<br>%                      | Cu<br>ppn           |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|----|------------------|-------------|------------------------------|------------------------------|---------------------|
| 242.4 - 255.2                    | Biotite, Phlogopite, Quartz-Feldspar<br><u>Gneiss</u> : interlayered with calc-silicate as<br>described between 7.3m and 10.2m.<br>243.4 - 243.9m: leucocratic granite dyke,<br>cuts core at 40°, very finely crystalline,<br>mainly quartz and feldspar, approximately<br>50%/50%, minor disseminated biotite, widely<br>scattered tiny euhedral light pink and<br>orange garnet, rare pyrite.<br>253.2 - 253.4m: leucocratic aplite sill,<br>mainly feldspar, lessor quartz, minor<br>sericite and chlorite, scattered subhedral<br>pink garnets. |                          |                                      |    |                  |             |                              |                              |                     |
| 255.2 - 257.0                    | <u>Amphibolite Sill</u> : dark green, coarsely<br>crystalline, 70% biotite and amphibole<br>matrix feldspar with lessor quartz, rare<br>actinolite, minor disseminated pyrrhotite.<br>Unit is cut by widely scattered pink<br>feldsite veins.                                                                                                                                                                                                                                                                                                       | 800                      | 256.60                               |    | 4                | 0           | .001                         | .003                         | 59                  |
| 257.0 - 278.0                    | <u>Sericitized-Silicified Quartz Monzonite</u><br><u>Sill</u> : generally light greenish white, some<br>remnant patches of biotitic quartz<br>monzonite. Looks like sericite is after<br>biotite, widely scattered tiny pink                                                                                                                                                                                                                                                                                                                        | 901<br>902<br>903<br>904 | 257.00<br>263.00<br>268.20<br>271.50 |    | 4<br>3<br>3<br>3 | 0<br>0<br>0 | .001<br>.001<br>.001<br>.001 | .001<br>.001<br>.003<br>.001 | 84<br>11<br>2<br>55 |

### DRILL HOLE RECORD

#### Page: 12

Property: ARC

### Hole No.: A92-2

#### Location: ARC 22 Claims

-

| <u>M E T E R A G</u> | E DESCRIPTION                                                                                                                                                                                                                                                                                                            |     | ampl_  | e  |     |     |      |      |     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|-----|------|------|-----|
| From To              |                                                                                                                                                                                                                                                                                                                          | No. | From   | To | Au  | Ag  | Pb   | Zn   | Cu  |
|                      |                                                                                                                                                                                                                                                                                                                          |     |        |    | ppb | ppm | *    | *    | ррп |
|                      | euhedral garnets throughout sill, widely<br>scattered blebs and disseminated pyrrhotite<br>and pyrite.<br>267.0 - 270.0m: thin talc lined fracture<br>cuts core at 14 <sup>0</sup> .                                                                                                                                     |     |        |    |     |     |      |      |     |
| 278.0 - 280.0        | <u>Muscovite-Biotite-Quartz and Quartz Augen</u><br><u>Schist</u> : reddish brown with white banding<br>and white mottling, coarsely crystalline<br>micas (might have been a quartz pebble<br>grit). Banding to core 46 <sup>0</sup> .                                                                                   |     |        |    |     |     |      |      |     |
| 280.0 - 283.7        | <u>Pegmatite</u> : grey quartz with light green<br>feldspar, coarsely crystalline, scattered<br>coarsely crystalline biotite, minor<br>muscovite, strongly kaolinization in<br>patches.                                                                                                                                  | 905 | 280.50 |    | 2   | 0   | .001 | .002 | 7   |
| 283.7 - 288.0        | <u>Quartz-Sericite-Biotite Gneiss</u> : grey<br>quartz with black biotite banding, fine to<br>medium crystalline, very vuggy, scattered<br>light greenish white dolomite phenocrysts.<br>Unit consists of (estimates) 80% quartz,<br>20% biotite, muscovite and dolomite. Rare<br>thin layers of dark green amphibolite. | 906 | 285.80 |    | 4   | O   | .001 | .001 | 4   |

### DRILL HOLE RECORD

#### Page: 13

Property: ARC

### Hole No.: A92-2

| <u>METERAG</u> | E DESCRIPTION                                                                                                                                                                                                                                                                      |       | amp l |           | ·         |              |          |         |           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|-----------|--------------|----------|---------|-----------|
| <u>From</u> To |                                                                                                                                                                                                                                                                                    | No.   | From  | <u>To</u> | Au<br>ppb | Ag<br>ppm    | Pb<br>%  | Zn<br>% | Cu<br>ppm |
| 288.0 - 289.3  | <u>Pegmatite Sill</u> : mainly pink feldspar,<br>minor light grey quartz, scattered patches<br>of coarsely crystalline biotite and<br>muscovite, minor chlorite.                                                                                                                   | 9<br> |       |           | PPD       | <b>P P M</b> | <u> </u> | ¥       |           |
| 289.3 - 297.3  | <u>Augen Quartz</u> : muscovite schist, silvery<br>grey with white quartz-augens. Unit is 90%<br>(estimate) coarsely crystalline muscovite,<br>scattered crysts of limy kaolimité? after<br>feldspar? rare thin bands of amphibolite<br>and quartz monzonite. Banding to core 47°. |       |       |           |           |              |          |         |           |
|                | END OF HOLE                                                                                                                                                                                                                                                                        |       |       |           |           |              |          |         |           |
|                | Core stored in racks at the Vine Property.                                                                                                                                                                                                                                         |       |       |           |           |              |          |         |           |
|                |                                                                                                                                                                                                                                                                                    |       |       |           |           |              |          |         |           |

n 13

### DRILL HOLE RECORD

M 12 m 12

| Page | No. | 1 |
|------|-----|---|
|      |     |   |

| Name of Property: ARC  | Corr. Dip: -45 <sup>0</sup>  | Remarks:                                              |
|------------------------|------------------------------|-------------------------------------------------------|
| Hole No.: A92-3        | Length: 211.9m               | UTM Co-ordinates: North - 5,500,492<br>East - 511,402 |
| Location: ARC 22 Claim | Start Date: January 23, 1992 | Finish Date: January 26, 1992                         |
| Elevation: 805m        | Azimuth: 045°                | Collar Dip: -45°                                      |
| Core Size: NQ          | Tests at: NIL                | Logged by: DLP Date: Feb/92                           |

| METERA         | GE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                               | 1   | <u>ampl</u> |           |           |           |         |         | ,         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----------|-----------|-----------|---------|---------|-----------|
| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                                                                                              | No. | From        | <u>To</u> | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>Z | Cu<br>ppm |
| 0.0 - 4.9      | <u>Overburden</u> .                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |           |           |           |         |         |           |
| 4.9 - 6.5      | Biotite-Quartz-Feldspar Gneiss:<br>interlayered calc-silicate, banded dark<br>reddish brown and whitish green, medium to<br>thinly banded, medium to coarsely<br>crystalline. Biotite-quartz-feldspar<br>gneiss is mainly (estimate) 30% biotite,<br>70% quartz and feldspar. Calc-silicate is<br>mainly (estimate) 50% actinolite, lessor<br>tremolite and 50% quartz lessor feldspar.<br>Banding to core 47 <sup>0</sup> . |     |             |           |           |           |         |         |           |
| 6.5 - 8.4      | <u>Pegmatite Dyke</u> : cuts core at 33 <sup>0</sup> , generally<br>white, mainly quartz and white feldspar,<br>widely scattered coarsely crystalline                                                                                                                                                                                                                                                                        | 907 | 7.60        |           | 5         | 0         | .001    | .001    | 4         |

### KOKANEE EXPLORATIONS LTD. DRILL HOLE RECORD

Property: ARC

•

### Page: 2

Location: ARC 22 Claim

| From To     | GE DESCRIPTION                                                                                                                                                                                                                                                      | No. | From  | То | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppn |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|-----------|-----------|---------|---------|-----------|
|             | biotite books, widely scattered tourmaline<br>crystals, some muscovite and very rare<br>pyrite.                                                                                                                                                                     |     |       |    |           |           |         |         |           |
| 8.4 - 11.3  | <u>Amphibolite Sill</u> : dark green, medium<br>crystalline, composition (estimate) 80%<br>amphibole and 20% feldspar lessor quartz.                                                                                                                                |     |       |    |           |           |         |         |           |
| 11.3 - 20.7 | <u>Biotite-Quartz-Feldspar Gneiss</u> :interlayered<br>calc-silicate as described between 4.9m to<br>6.5m.<br>15.0 - 15.7m: amphibolite sill.                                                                                                                       |     | ·     |    |           |           |         |         |           |
| 20.7 - 22.2 | <u>Biotite-Quartz-Monzonite Dyke</u> : light grey,<br>medium crystalline, minor thin quartz vein<br>cuts core at 45 <sup>0</sup> . Patchy silicification,<br>chloritization and sericitization, widely<br>scattered pyrite generally associated with<br>alteration. | 908 | 21.30 |    | 2         | 0         | .001    | .002    | 34        |
| 22.2 - 24.2 | <u>Pegmatite Dyke</u> : generally white, coarsely<br>crystalline, widely scattered books of<br>black biotite, rare black tourmaline<br>crystals, some muscovite and chlorite<br>veinlets cut core at 11°.                                                           |     |       |    |           |           |         |         |           |

Hole No.: A92-3

### DRILL HOLE RECORD

· · · · · · · · · · · ·

### Page: 3

| Property: ARC        | Hole No.: | A92-3         |
|----------------------|-----------|---------------|
| METERAGE DESCRIPTION | S         | <u>a mple</u> |
| From To              | No.       | From          |

| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>No.</u> | From To | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppm |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------|-----------|---------|---------|-----------|
| 24.2 - 25.7    | <u>Amphibolite Sill?</u> : black, medium<br>crystalline. Estimate 80% amphibole, 20%<br>quartz and feldspar, abundant disseminated<br>pyrrhotite and pyrite, rare chalcopyrite.                                                                                                                                                                                                                                                                                                  | 909        | 24.80   | 2         | 0         | .001    | .016    | 296       |
| 25.7 - 27.0    | <u>Biotite-Quartz-Monzonite Dyke</u> : cuts core<br>at 10 <sup>0</sup> , light grey, medium crystalline,<br>generally equigranular.                                                                                                                                                                                                                                                                                                                                              |            |         |           |           |         |         |           |
| 27.0 - 31.0    | <u>Pegmatite</u> : cuts core at 28°, white,<br>coarsely crystalline, mainly white feldspar<br>and quartz, widely scattered biotite and<br>chlorite.                                                                                                                                                                                                                                                                                                                              |            |         |           |           |         |         |           |
| 31.0 - 62.6    | <u>Biotite-Quartz-Feldspar Gneiss</u> :<br>interlayered calc-silicate as described<br>between 4.9m to 6.5m.<br>50.0 - 50.4m: biotite-quartz-monzonite<br>dyke cuts core at 55°. Light grey, medium<br>crystalline equigranular, abundant pink<br>garnets developed along footwall.<br>56.6 - 57.0m: ribbon quartz vein, parallel<br>to banding, banded quartz, calcite and<br>minor chlorite, rare pyrite.<br>58.2 - 58.4m: amphibolite sill.<br>61.4 - 61.8m: amphibolite sill. | 910        | 56.80   | 1         | 0         | .001    | .001    | 6         |

### DRILL HOLE RECORD

#### Page: 4

| Property: | ARC |
|-----------|-----|
|-----------|-----|

#### Hole No.: A92-3

| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                         | <u>No,</u> | From  | <u>To</u> | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppn |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------|-----------|-----------|---------|---------|-----------|
| 62.6 - 67.0    | <u>Amphibolite Sill</u> : dark green to black,<br>medium crystalline, equigranular.<br>Composition 80% amphibole, 20% quartz-<br>feldspar, slightly limy, very widely<br>scattered irregular quartz veinlets,<br>disseminated pyrrhotite and chalcopyrite.<br>Unit is magnetic in patches.                                                              | 911        | 66.80 |           | 1         | 0         | .001    | .003    | 266       |
| 67.0 - 76.5    | <u>Biotite-Quartz-Feldspar Gneiss</u> :<br>interlayered calc-silicate as described<br>between 4.9m to 6.5m.<br>50.0 - 50.4m: biotite quartz monzonite<br>dyke cuts core at 55°. Light grey medium<br>crystalline equigranular, abundant pink<br>garnets developed along footwall.<br>58.2 - 58.4m: amphibolite sill.<br>61.4 - 61.8m: amphibolite sill. |            | ·     |           |           |           |         |         |           |
| 62.6 - 67.0    | <u>Amphibolite Sill</u> : dark green to black,<br>medium crystalline, equigranular.<br>Composition 80% amphibole, 20% quartz-<br>feldspar. Slightly limy, very widely<br>scattered irregular quartz veinlets,<br>disseminated pyrrhotite and chalcopyrite.<br>Unit is magnetic in patches.                                                              |            |       |           |           |           |         |         |           |

### DRILL HOLE RECORD

### Page: 5

Property: ARC

#### Hole No.: A92-3

| <u>METERAG</u> | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                   |     | ampl |    |     |           | <del></del> |          |     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----|-----|-----------|-------------|----------|-----|
| <u>From To</u> |                                                                                                                                                                                                                                                                                                                                                 | No. | From | То | Au  | Ag<br>ppm | Pb<br>%     | Zn<br>Se | Cu  |
|                |                                                                                                                                                                                                                                                                                                                                                 |     |      |    | ppb | _ppm      | 3           |          | ppm |
| 67.0 - 76.5    | <u>Biotite-Quartz-Feldspar Gneiss</u> :<br>interlayered calc-silicate, as described<br>between 4,9m to 6.5m.                                                                                                                                                                                                                                    |     |      |    |     |           |             |          |     |
| 76.5 - 78.5    | <u>Amphibolite Sill</u> : dark green to black,<br>medium crystalline, equigranular. Estimate<br>80% amphibolite and 20% feldspar-quartz,<br>weakly disseminated pyrrhotite, lessor<br>chalcopyrite. Widely scattered thin<br>irregular epidote veinlets, 2cm thick<br>barren quartz vein cuts core at 54°.<br>Interval includes 50cm of gneiss. |     | ·    |    |     |           |             |          |     |
| 78.5 - 87.8    | <u>Biotite-Quartz-Feldspar Gneiss</u> :<br>interlayered calc-silicate as described<br>between 4.9m to 6.5m. Banding to core at<br>85m is 35 <sup>0</sup> .<br>83.8 to 84.2m; amphibolite sill.                                                                                                                                                  |     |      |    |     |           |             |          |     |
| 87.8 - 89.9    | <u>Amphibolite Sill</u> : dark green speckled<br>white, medium crystalline, equigranular,<br>50% amphibole (estimate) and 50% feldspar<br>minor guartz. Generally crackle<br>brecciated and mineralized by epidote.<br>Weakly disseminated pyrrhotite,<br>chalcopyrite and magnetite.                                                           |     |      |    |     |           |             |          |     |

### DRILL HOLE RECORD

#### Page: 6

Property: ARC

### Hole No.: A92-3

Location: ARC 22 Claim

1

| METERAG      | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | <u>imple</u>    |    | •    | -      | -            |      | ~ ~       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|----|------|--------|--------------|------|-----------|
| From To      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.        | From            | To | _ Au | Ag     | Pb<br>%      | Zn   | Cu        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |    | ppb  | ppm    |              | 8    | ppm       |
| 89.9 - 165.2 | Biotite-Quartz-Feldspar Gneiss:<br>interlayered calc-silicate as described<br>between 4.9m to 6.5m.<br>95.8 - 96.4m: pegmatite dyke cuts core at<br>22°, mainly quartz and white feldspar, minor<br>biotite, muscovite and chlorite.<br>99.5 - 99.7m: pegmatite sill, as above.<br>104.8 - 105.0m: amphibolite sill.<br>110.2 - 111.1m: biotite quartz monzonite<br>dyke cuts core at 24°. Weakly disseminated<br>chlorite, very weak disseminated pyrrhotite<br>and pyrite. Widely scattered tiny pink<br>euhedral garnets.<br>117.0 - 118.2m: biotite quartz-monzonite<br>dyke cuts core at 9°.<br>119.8 - 120.4m: quartz-epidote gneiss.<br>131.0 - 131.8m: biotite-amphibolite sill,<br>dark green, (estimate) 50% coarsely<br>crystalline biotite, 50% amphibole minor<br>feldspar.<br>135.0 - 137.0m: scattered thin (5cm)<br>quartz monzonite dyke cuts core at 53°.<br>136.8 - 137.5m: amphibolite sill, dark<br>green, medium crystalline, approximately<br>50% amphiboles and 50% quartz-feldspar,<br>irregular barren calcite veins mark the | 912<br>913 | 89.90<br>111.00 |    | 1    | 0<br>0 | .001<br>.001 | .005 | 388<br>24 |

### DRILL HOLE RECORD

### Page: 7

Property: ARC

•

-

#### Hole No.: A92-3

| From To       | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. | ampl<br>From | То | Au  | Ag  | Pb | Zn       | Cu  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----|-----|-----|----|----------|-----|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |              |    | ppb | ppm | *  | <u>8</u> | ppn |
|               | <pre>base of sill. Weakly disseminated<br/>pyrrhotite.<br/>146.0m: banding to core 36<sup>6</sup>.<br/>140.0 - 141.6m: amphibolite sill, greenish<br/>grey, medium to coarsely crystalline.<br/>Approximately 60% coarsely crystalline<br/>biotite and amphibole, 40% feldspar and<br/>quartz.<br/>146.8 - 147.0m: two thin (5cm) pegmatite<br/>dykes, cut core at 74<sup>6</sup>, mainly white<br/>feldspar and quartz with 1cm thick bands of<br/>massive pink garnets.</pre> |     | ·            |    |     |     |    |          |     |
| 165.2 - 168.2 | 2 <u>Migmatite</u> : mottled green, reddish brown<br>and white. Massive, mainly mixed calc-<br>silicate-biotite-quartz-feldspar gneiss.                                                                                                                                                                                                                                                                                                                                         |     |              |    |     |     |    |          |     |
| 168.2 - 178.0 | <u>Biotite-Quartz-Feldspar Gneiss</u> :<br>interlayered calc-silicate as described<br>between 4.9m to 6.5m.<br>176.0 - 177.0m: biotite-feldspar gneiss,<br>coarse grained.                                                                                                                                                                                                                                                                                                      |     |              |    |     |     |    |          |     |
| 178.0 - 180.0 | <u>Amphibolite Sill</u> : dark green, medium<br>crystalline, approximately 50% amphibole<br>and 50% quartz-feldspar, weakly crackle                                                                                                                                                                                                                                                                                                                                             |     |              |    |     |     |    |          |     |

## DRILL HOLE RECORD

### Page: 8

Property: ARC

.

### Hole No.: A92-3

Location: ARC 22 Claim

| METERAG       | <u>E DESCRIPTION</u>                                                                                                                                        | S   | ample  | 2  |     |     |      |         |     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|-----|------|---------|-----|
| From To       |                                                                                                                                                             | No. | From   | To | Au  | Ag  | Pb   | Zn      | Cu  |
|               |                                                                                                                                                             |     |        |    | ppb | ppm | *    | <u></u> | ppm |
|               | brecciated healed by calcite, epidote<br>lessor quartz, rare garnets, weakly<br>disseminated pyrrhotite, 10cm thick barren<br>quartz vein cuts core at 75°. |     |        |    |     |     |      |         |     |
| 180.0 - 208.6 | Biotite-Ouartz-Feldspar Gneiss:                                                                                                                             | 914 | 188.00 |    | 1   | 0   | .001 | .006    | 926 |
| 10010 10010   | interlayered calc-silicate as described                                                                                                                     | 915 |        |    | ĩ   | 0   | .001 | .004    | 135 |
|               | between 4.9m to 6.5m.                                                                                                                                       | 916 | 197.80 |    | 1   | 0   | .001 | .005    | 158 |
|               | 186.8 - 188.2m: amphibolite sill, green                                                                                                                     |     |        |    |     |     |      |         |     |
|               | to dark green, medium crystalline.                                                                                                                          |     |        |    |     |     |      |         |     |
|               | Approximately 50% amphibole, 50% quartz-                                                                                                                    |     |        |    |     |     |      |         |     |
|               | feldspar. Scattered patches and stringers                                                                                                                   | 1   |        |    |     |     |      |         |     |
|               | of aplite and quartz. Weakly disseminated pyrrhotite, pyrrhotite and chalcopyrite                                                                           | 1   |        |    |     |     |      |         |     |
|               | more abundant in amphibolite in areas                                                                                                                       |     |        |    |     |     |      |         |     |
|               | adjacent to aplite stringers.                                                                                                                               |     |        |    |     |     |      |         |     |
|               | 190.5 - 191.0m: amphibolite sill.                                                                                                                           |     |        |    |     |     |      |         |     |
|               | 191.8 - 193.0m: biotite gneiss, mainly                                                                                                                      | 1   |        |    |     |     |      |         |     |
|               | coarsely crystalline biotite, minor quartz                                                                                                                  |     |        |    |     |     |      |         |     |
|               | and feldspar.                                                                                                                                               |     |        |    |     |     |      |         |     |
|               | 194.7 - 195.5m: biotite gneiss, mainly                                                                                                                      |     |        |    |     |     |      |         |     |
|               | coarsely crystalline biotite, minor quartz                                                                                                                  |     |        |    |     |     |      |         |     |
|               | and feldspar.                                                                                                                                               |     |        |    |     |     |      |         |     |
|               | 195.8 - 196.6m: amphibolite sill, dark<br>green, generally finely crystalline.                                                                              | Į.  |        |    |     |     |      |         |     |
|               | Approximately 80% amphibolite with                                                                                                                          | 1   |        |    |     |     |      |         |     |
|               | approximately 20% quartz-feldspar-chlorite                                                                                                                  |     |        |    |     |     |      |         |     |
|               | and garnet phenocrysts. Garnets appear                                                                                                                      | -   |        |    |     |     |      |         |     |
|               |                                                                                                                                                             |     |        |    |     |     |      |         |     |

## KOKANEE EXPLORATIONS LTD. DRILL HOLE RECORD

### Page: 9

| <u>METERAG</u><br>From To | E DESCRIPTION                                                                                                                                                                                                                                                                                           | No. | <u>ample</u><br>From | То | Au  | Ag  | Pb<br>%  | Zn<br>%  | Cu         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|----|-----|-----|----------|----------|------------|
|                           | to be a replacement of the quartz-feldspar-<br>chlorite phenocrysts, phenocrysts commonly<br>host disseminated pyrrhotite, chalcopyrite<br>and magnetite. Unit is magnetic.<br>197.6 - 199.0m: amphibolite sill, as<br>above.<br>206.6 - 207.4m: amphibolite sill.                                      |     |                      |    | dad | тqq | <u> </u> | <u> </u> | <u>991</u> |
| 208.6 - 211.9             | <u>Amphibolite Sill</u> : dark green to brownish<br>dark green, medium to coarsely crystalline.<br>Approximately 80% amphibole and 20%<br>feldspar-lessor quartz. Scattered<br>irregular veinlets of calcite and<br>actinolite which commonly host disseminated<br>pyrrhotite, pyrite and chalcopyrite. | 917 | 211.50               |    | 1   | ο   | .001     | .006     | 110        |
|                           | END OF HOLE                                                                                                                                                                                                                                                                                             |     |                      |    |     |     |          |          |            |
|                           | Core stored in racks at the Vine property.                                                                                                                                                                                                                                                              | -   |                      |    |     |     |          |          |            |
|                           |                                                                                                                                                                                                                                                                                                         |     |                      |    |     |     |          |          |            |

Property: ARC

instant.

### Hole No.: A92-3

Location: ARC 22 Claim

### DRILL HOLE RECORD

Name of Property: ARC

Location: ARC 20 Claim

Hole No.: A92-4

Elevation: 780m

METERAGE

Core Size: NO

From To

|      | No. From To                  | Au Ag Pb Zn Cu                                      |
|------|------------------------------|-----------------------------------------------------|
| DESC | RIPTIONSample                |                                                     |
|      | Tests at: NIL                | Logged by: DLP Date:                                |
|      | Azimuth: 045°                | Collar Dip: -45°                                    |
|      | Start Date: January 28, 1992 | Finish Date: January 30, 1992                       |
|      | Length: 214.9m               | UTM Co-ordinates: North: 5,500,715<br>East: 511,399 |
|      | Corr. Dip: -45 <sup>0</sup>  | Remarks:                                            |
| JKD  |                              | Page No. l                                          |

ppb

mqq

ж.

\*

ppm

| 0.0 - 1.5 | <u>Overburden</u> . |
|-----------|---------------------|

1.5 - 18.0 Biotite-Quartz-Feldspar Gneiss: interlayered calc-silicate, generally medium to thin banded reddish brown, light green and white, generally medium crystalline. Biotite-Ouartz-Feldspar, generally reddish brown, consisting mainly of 30 to 40% biotite, and from 70 to 60% quartz and feldspar. Calc-silicate, generally light greenish white, consisting mainly of (estimate) 20% tremolite, 80% quartz-calcite and feldspar. Banding to core 47° at 6.3m, 47° at 16.0m. 2.0 - 2.5m: aplite dyke cuts core at  $20^{\circ}$ .

÷

## DRILL HOLE RECORD

### Page: 2

| Property: A               | RC Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e No.:            | A92-4                |                |              | Locat       | ion: A               | RC 20 C              | laim            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------|--------------|-------------|----------------------|----------------------|-----------------|
| <u>METERAG</u><br>From To | E DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                 | a <u>mpl</u><br>From | <u>е</u><br>То |              |             |                      |                      |                 |
| <u></u>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | <u> </u>             | 10             | _ Au<br>ppb_ | Ag<br>ppm   | Pb<br>t              | Zn<br>%              | Cu<br>ppm       |
| 18.0 - 21.0               | <u>Amphibolite Sill</u> : dark green, medium<br>crystalline, composed mainly of (estimate)<br>60% amphiboles and 40% quartz-feldspar.<br>Some widely scattered thin veinlets of<br>quartz.                                                                                                                                                                                                                                                                        |                   |                      |                |              |             |                      |                      |                 |
| 21.0 - 41.2               | Biotite-Quartz-Feldspar Gneiss:<br>interlayered calc-silicate, as described<br>between 1.5m and 18.0m. Banding to core at<br>24m is 36°.<br>27.9 - 28.3m: amphibolite sill, as<br>previously described.<br>29.0 - 29.4m: amphibolite sill, as<br>previously described.<br>31.0m: banding to core 40°.<br>32.4m: thin shear marked by 1cm of gouge<br>cuts core at 35°.                                                                                            |                   |                      |                |              |             |                      |                      |                 |
| 41.2 - 105.0              | <u>Calc-Silicate, Minor Biotite, Quartz-</u><br><u>Feldspar Gneiss</u> : interlayered biotitic,<br>amphibolite calc-silicate as described<br>between 1.5m to 18.0m. Biotite-quartz-<br>feldspar gneiss as described between 1.5m<br>to 18.0m. Amphibolite occurs as thin<br>layers and lenticular bands throughout this<br>interval. However, there are some 1 to 3<br>metre thick amphibolite sills as well. Thin<br>aplite dykes as sills scattered throughout. | 918<br>919<br>920 |                      |                | 1<br>6<br>3  | 0<br>0<br>1 | .001<br>.001<br>.001 | .010<br>.006<br>.008 | 71<br>20<br>730 |

## DRILL HOLE RECORD

### Page: 3

Property: ARC

### Hole No.: A92-4

### Location: ARC 20 Claim

| <u>METERA</u><br>From To | <u>GEDESCRIPTION</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. | ampl<br>From | To | Au         | Ag         | Pb<br>% | Zn<br>% | Cu        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----|------------|------------|---------|---------|-----------|
|                          | <ul> <li>41.2 - 45.5m: calcareous amphibolite sill, dark brownish green, medium crystalline with coarsely crystalline biotite, approximate composition 80% biotite and amphibole, 10% calcite, 10% feldspar, guartz is rare.</li> <li>45.5 - 46.5m: aplite dyke cuts core at 25°, white. Approximately 80% feldspar, 20% guartz with minor wisps of green chlorite, weakly pyritic near contact.</li> <li>50.0m: banding to core 54°.</li> <li>50.4 - 50.7m: aplite sill, as previously described.</li> <li>52.9 - 53.1m: aplite sill, as previously described.</li> <li>63.0 - 73.0m: calcareous amphibolite sill, dark green, medium to coarsely crystalline, approximate composition 80% amphibolite and biotite, 10% calcite, 10% feldspar - guartz is rare, rare disseminated pyrrhotite.</li> <li>70.0 - 70.5m: aplite dyke cuts core at 37°.</li> <li>78.0m: banding to core 60°.</li> <li>78.5 - 84.0m: calcareous amphibolite sill, dark green, medium crystalline, approximate composition 90% amphibolite sill, dark green, medium crystalline, approximate composition 90% amphibole and biotite, 10% calcite quartz is rare.</li> </ul> |     |              |    | <u>ppb</u> | <u>ppm</u> |         |         | <u>pp</u> |

## KOKANEE EXPLORATIONS LTD. DRILL HOLE RECORD

Page: 4

| From To      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. | From   | То | Au  | Ag  | Pb   | Zn   | Cu  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|-----|------|------|-----|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |    | ppb | ppm | 8    | 8    | ррі |
|              | <ul> <li>85.0 - 87.5m: amphibolite sill, dark green, medium crystalline, approximately</li> <li>80% amphibole and biotite, 20% feldspar and quartz.</li> <li>89.5m: banding to core is 43°.</li> <li>95.0m: quartz vein 1cm thick hosts chalcopyrite and pyrrhotite. Parallel to banding.</li> <li>102.0m: banding to core is 48°.</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |     |        |    |     |     |      |      |     |
| 05.0 - 214.9 | Biotite-Quartz-Feldspar Gneiss:<br>interlayered calc-silicate as described<br>between 1.5m to 18.0m.<br>114.3m: banding to core is 46°.<br>118.6 - 121.5m: amphibolite sill, dark<br>green, medium crystalline. Approximately<br>80% amphibole, 20% feldspar and quartz,<br>rare thin fractures lined by epidote,<br>strongly disseminated pyrrhotite.<br>125.0m: banding to core 47°.<br>129.5 - 131.0m: amphibolite sill, dark<br>green, medium crystalline. Approximately<br>80% amphibolite, 20% quartz and feldspar,<br>abundant subhedral pink garnet<br>porphyroblasts near base. Sill is cut by<br>thin epidote-pink feldspar veinlets. Thin<br>quartz monzonite dykes cut amphibolite, | 921 | 146.50 |    | 2   | 0   | .001 | .009 | 32  |

Property: ARC

### Hole No.: A92-4

### Location: ARC 20 Claim

## DRILL HOLE RECORD

### Page: 5

### Hole No.: A92-4

### Location: ARC 20 Claim

| Tropercy. mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | note No                                          | A)2 4               |         |           | Docat     | 1011. 1 | HRC 20 0 | JI A T III |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|---------|-----------|-----------|---------|----------|------------|
| METERAGE       DESCRIPTION         From       To         these dykes cut core at 18° and 9° epid<br>is developed along dyke contacts.<br>136.8 - 133.3m: amphibolite sill as a<br>145.5m: banding to core 45°.<br>142.3 - 143.4m: biotite-quartz monzon<br>sill, biotite commonly altered to chlo<br>rare pyrite.<br>146.0 - 147.2m: amphibolite sill, bla<br>medium crystalline, 70% amphibole, rar<br>biotite, 30% feldspar, rare quartz,                                                                                                                                                                                         | S<br>No.<br>lote<br>bove.<br>ite<br>rite,<br>ck, | <u>ampl</u><br>From | e<br>To | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>R  | Cu         |
| abundant disseminated pyrrhotite.<br>163.5 - 166.0m: scattered thin (10 -<br>aplite dykes cut core at 9° and 12°, mi<br>scattered euhedral to subhedral ruby r<br>garnets, very rare pyrite.<br>169.5 - 170.2m: biotite quartz monzon<br>dyke cuts core at 39°.<br>171.0m: banding to core is 43°.<br>179.3 - 179.6m: amphibolite sill.<br>180.2 - 181.3m: amphibolite sill, dar<br>green, medium to coarsely crystalline,<br>approximately 60% amphibole, 40% bioti<br>minor disseminated pyrrhotite.<br>181.3 - 185.0m: massive calc-silicate<br>mottled light green and white has a mi<br>texture, abundant biotite porphyroblas | nor<br>ed<br>ite<br>k<br>te,<br>,<br>xed         |                     |         |           |           |         |          |            |

## DRILL HOLE RECORD

Page: 6

Property: ARC

### Hole No.: A92-4

Location: ARC 20 Claim

•

.

| То                                          | No. | From | То | Au | Ag  | Pb | Zn | С |
|---------------------------------------------|-----|------|----|----|-----|----|----|---|
|                                             |     |      |    |    | ppm | Ł  | 8  | P |
|                                             |     |      |    |    |     |    |    |   |
| 188.5 - 190.0m: biotitic quartzite,         |     |      |    |    |     |    |    |   |
| massive, brownish grey, medium crystalline, |     |      |    |    |     |    |    |   |
| rare pyrite.                                |     |      |    |    |     |    |    |   |
| 194.0m: banding to core 38°.                |     |      |    |    |     |    |    |   |
| 197.0m: banding to core 41°.                |     |      |    |    |     |    |    |   |
| 202.6 - 203.4m: calc-silicate massive,      |     |      |    |    |     |    |    |   |
| mottled light green and white scattered     |     |      |    |    |     |    |    |   |
| biotite porphyroblasts.                     |     |      |    |    |     |    |    |   |
| 210.4 - 210.8m: amphibolite sill.           |     |      |    |    |     |    |    |   |
| 212.5m: banding to core 51 <sup>0</sup> .   |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
| END OF HOLE                                 |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
| Core stared in racks at the Vine property   |     |      |    |    |     |    |    |   |
| Core stored in racks at the Vine property.  |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |
|                                             |     |      |    |    |     |    |    |   |

## DRILL HOLE RECORD

Page No. 1

| Name of Property: ARC      | Corr. Dip: -45 <sup>0</sup>  | Remarks:                                            |
|----------------------------|------------------------------|-----------------------------------------------------|
| Hole No.: A92-5            | Length: 178.4m               | UTM Co-ordinates: North: 5,499,032<br>East: 512,188 |
| Location: Sure Bet 5 Claim | Start Date: January 30, 1992 | Finish Date: January 31, 1992                       |
| Elevation: 858m            | Azimuth: 135°                | Collar Dip: -45°                                    |
| Core Size: NQ              | Tests at:                    | Logged by: DLP Date: Feb/92                         |

### <u>METERAGE</u> From To DESCRIPTION Sa mp No. Au Ag То From

. . . . . . .

| <u>METERAG</u><br>From To |                                                                                                                                                                                                                                                                                      | No.              | From | <br>Au<br>Ppb | Ag<br>ppm | Pb<br>% | Zn<br>L | Cu<br>ppm |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|---------------|-----------|---------|---------|-----------|
| 0.0 - 3.0                 | Overburden.                                                                                                                                                                                                                                                                          |                  |      |               |           |         |         |           |
| 3.0 - 4.7                 | <u>Calcareous Quartzite</u> : light whitish green,<br>weakly banded, finely crystalline.                                                                                                                                                                                             |                  |      |               |           |         |         |           |
| 4.7 - 6.0                 | <u>Biotite-Feldspar Gneiss</u> : minor quartz,<br>dark grey, medium crystalline, bedding<br>(banding) to core 47 <sup>0</sup> .                                                                                                                                                      | -<br>-<br>-<br>- |      |               |           |         |         |           |
| 6.0 - 14.8                | <u>Dolomitic Marble</u> : white to creamy white,<br>medium to coarsely crystalline. Massive<br>with some thin wispy phlogopite banding,<br>thin irregular veinlets and patches of<br>tremolite and actinolite, some wispy<br>patches of finely crystalline apple green<br>limestone. |                  |      |               |           |         |         |           |

# DRILL HOLE RECORD

Page: 2

| Property:           | ARC Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No.:                     | A92-5                            |    |              | Locat       | ion: S                       | ure Bet                      | 5 Claim                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|----|--------------|-------------|------------------------------|------------------------------|------------------------|
| <u>METERA</u>       | GE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s                        | ampl                             | e  |              |             |                              |                              |                        |
| From To             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                      | From                             | То | _ Au<br>ppb_ | Ag<br>ppm   | Pb<br>%                      | Zn<br>¥                      | Cu<br>ppm              |
| 14.8 - 16.5         | Marble: interbedded calc-silicate and<br>biotite-quartz-feldspar gneiss, very thin<br>to thin bedded. Marble is generally bluish<br>grey to white, coarsely crystalline, finely<br>laminated in part by phlogopite and<br>magnetite, rare thin arenaceous marble<br>beds, very widely scattered tiny pyrite<br>crystals. Calc-silicate and biotite-<br>quartz-feldspar beds are green and reddish<br>brown, commonly finely parallel laminated<br>by biotite, tremolite, actinolite and minor<br>phlogopite.<br>16.0m: bedding to core is 55°. |                          |                                  |    |              |             |                              |                              |                        |
| <b>16</b> .5 - 17.3 | Marble: light bluish grey with mottling,<br>finely crystalline with large white rounded<br>carbonate crystals (carbonate pellets?).<br>Some widely scattered black biotite, rare<br>pyrite.                                                                                                                                                                                                                                                                                                                                                    |                          |                                  |    |              |             |                              |                              |                        |
| 17.3 - 86.2         | <u>Mainly Calcareous Marble</u> : interbedded,<br>phlogopite-muscovite schist, minor calc-<br>silicate, minor quartz-biotite gneiss. The<br>section is generally thin to very thin<br>bedded, with lessor thick marble beds,<br>bedding plains are sharp and wavy.                                                                                                                                                                                                                                                                             | 922<br>923<br>924<br>925 | 39.20<br>57.50<br>61.30<br>68.80 |    | 1<br>1<br>1  | 0<br>0<br>0 | .001<br>.001<br>.001<br>.001 | .007<br>.003<br>.002<br>.009 | 78<br>47<br>167<br>323 |
|                     | Calcareous marble is brownish grey,<br>generally coarsely crystalline, weak to                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                        |                                  |    |              |             |                              |                              |                        |

•

## DRILL HOLE RECORD

Page: 3

Property: ARC

### Hole No.: A92-5

Location: Sure Bet 5 Claim

| To |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. | From | <b>T</b> o | Au  | Ag  | Pb | Zn | Cu  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------------|-----|-----|----|----|-----|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            | ppb | ppm |    | 8  | ppm |
|    | <pre>strongly disseminated phlogopite, widely<br/>scattered to abundantly disseminated<br/>magnetite and generally rare disseminated<br/>pyrite or pyrrhotite, can be weakly banded<br/>by fine graphite or phlogopite.<br/>Phlogopite-muscovite schist is reddish<br/>brown to silvery reddish brown, commonly<br/>calcareous, can contain thin lenses of<br/>quartz or marble, weak to strongly<br/>disseminated pyrite or pyrrhotite. Calc-<br/>silicate units are rare and are usually<br/>light green. Biotite-quartz gneiss is<br/>usually reddish brown, finely parallel<br/>banded and rare disseminated pyrrhotite and<br/>pyrite.<br/>19.0 - 19.0m: calcareous marble, white<br/>with dark grey wisps, coarsely crystalline,<br/>weakly disseminated graphite, rare specks<br/>of pyrrhotite, rare crystals of phlogopite.<br/>27.2 - 27.0m: muscovite schist, silver<br/>grey, coarsely crystalline.<br/>28.0m: muscovite-minor phlogopite schist,<br/>silver grey. minor reddish brown, coarsely<br/>crystalline.<br/>31.8 - 32.7m: amphibolite sill, dark<br/>green, finely crystalline, approximately<br/>50% amphibole, 50% quartz-feldspar, rare<br/>magnetite and pyrrhotite.</pre> |     |      |            |     |     |    |    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    | -   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    |     |
|    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |            |     |     |    |    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    | -  |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    |     |
|    | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |            |     |     |    |    |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |            |     |     |    |    |     |

## DRILL HOLE RECORD

Page: 4

Property: ARC

### Hole No.: A92-5

### Location: Sure Bet 5 Claim

 $\mathcal{L}_{\mathcal{T}}^{(n)}(\cdot)$ 

| Prom       To       No.       From       To       Au       Ag       Pb       Zn       Cù         34.5 - 35.7m:       amphibolite sill, as above       but with rare pink garnets.       35.7 - 36.0m:       muscovite schist, as above.       38.0 - 38.8m:       amphibolite sill, as above.       38.0 - 38.8m:       amphibolite sill, as above.       38.8 - 39.5m:       muscovite, minor phlogopite       schist, silvery brownish grey, coarsely       crystalline with scattered small (1 to 3m)       lenses of fine graphitic quartz. Weakly       calcareous unit, relatively abundant pyrite       and pyrnhotite.       Bedding to core at 39.5m       is 82 <sup>2</sup> .       39.5 - 41.4m:       calcareous marble, bluish       grey and white with dark grey wisps.       Coarsely crystalline, weak finely       disseminated graphite throughout, rare         pyrite.       40.5 - 41.0m:       quartz-feldspar dyke cuts       core at 12 <sup>6</sup> , medium crystalline, scattered       euhedral pink garnets, abundant sericite.       43.0 - 44.2m:       biotitic amphibolite sill,       dark greyish green, finely crystalline,       approximately 50% biotite and amphibole,<br>50% feldspar, some disseminated pyrnhotite.       46.0 - 47.1m:       biotitic amphibolite sill,<br>as above. | METERAGE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A | ampl | <br> |   | <br> |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|------|---|------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | From To          34.5 - 35.7m:       amphibolite sill, as above<br>but with rare pink garnets.         35.7 - 36.0m:       muscovite schist, as above.         38.0 - 38.8m:       amphibolite sill, as above.         38.8 - 39.5m:       muscovite, minor phlogopite<br>schist, silvery brownish grey, coarsely<br>crystalline with scattered small (1 to 3m)<br>lenses of fine graphitic quartz. Weakly<br>calcareous unit, relatively abundant pyrite<br>and pyrrhotite.         Bedding to core at 39.5m         is 82 <sup>0</sup> .         39.5 - 41.4m:       calcareous marble, bluish<br>grey and white with dark grey wisps.         Coarsely crystalline, weak finely<br>disseminated graphite throughout, rare<br>pyrite.         40.5 - 41.0m:       quartz-feldspar dyke cuts<br>core at 12 <sup>0</sup> , medium crystalline, scattered<br>euhedral pink garnets, abundant sericite.         43.0 - 44.2m:       biotitic amphibolite sill,<br>dark greyish green, finely crystalline,<br>approximately 50% biotite and amphibole,<br>50% feldspar, some disseminated pyrhotite. | A |      | <br> | - | <br> |  |

------

## DRILL HOLE RECORD

### Property: ARC

المارية المراجع فالمعارية أخراط وطوحوا فالمعيقين

### Hole No.: A92-5

Page: 5

METERAGE DESCRIPTION Sample From To No. From To λu Pb Ag Zn Cu ppb ppm 8 8 ppm crystalline, weakly disseminated graphite, rare crystals of pyrite. 53.4 - 60.3m: amphibolite sill, dark green, finely crystalline, approximately 50% amphibolite, 50% guartz-feldspar, ÷. disseminated pyrite and pyrrhotite, disseminated magnetite, unit is magnetic in core. 61.3m: 10cm thick muscovite schist unit host several layers of massive pyrite, up to 5mm thick. 62.0m: bedding to core 60°. 65.3 - 66.8m: amphibolite sill, dark green, finely crystalline, approximately 50% amphibole, 50% quartz-feldspar, has a layered texture with rare thin beds of calcitic marble, scattered garnets, disseminated pyrite and pyrrhotite and minor disseminated magnetite. Unit in core is weakly magnetic, from 68.0 to 69.0m thin 2cm quartz-chlorite-pyrrhotite vein cuts core at 2°, rare chalcopyrite and pyrite. 78.0 - 80.0m: amphibolite sill, dark green, finely crystalline, approximately 50% amphiboles, 50% guartz-feldspar, has a layered texture, minor disseminated pyrite, pyrrhotite and magnetite, is magnetic in core.

and the second second

Location: Sure Bet 5 Claim

# DRILL HOLE RECORD

Page: 6

| METERAG     | <u>GEDESCRIPTION</u>                                                                                                                                                                                                                                                                                                                                                                                                               |     | <u>ampl</u> |           |           |           |        |         |           |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----------|-----------|-----------|--------|---------|-----------|
| From To     |                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. | From        | <u>To</u> | Au<br>ppb | Ag<br>ppm | РЬ<br> | Zn<br>8 | Cu<br>ppm |
|             | 82.1 – 84.5m: amphibolite sill, dark<br>green, medium crystalline, approximately<br>80% biotite and amphibole, 20% quartz-<br>feldspar, weakly magnetic in core.                                                                                                                                                                                                                                                                   |     | ,           |           | ·         |           |        |         |           |
| 86.2 - 87.5 | <u>Marble</u> : bluish grey with white mottling,<br>massive bedded, coarsely crystalline.<br>Small irregular lenses of massive<br>phlogopite.                                                                                                                                                                                                                                                                                      |     |             |           |           |           |        |         |           |
| 87.5 - 89.0 | <u>Marble</u> : as above, but thin bedded.<br>88.5m: bedding to core is 85°.                                                                                                                                                                                                                                                                                                                                                       |     |             |           |           |           |        |         |           |
| 89.0 - 91.3 | <u>Quartz-Sericite-Phlogopite Schist</u> : light<br>silvery grey, medium crystalline with<br>scattered books of coarsely crystalline<br>phlogopite.                                                                                                                                                                                                                                                                                |     |             |           |           |           |        |         |           |
| 91.3 - 98.2 | Calcite Marble: interbedded phlogopite<br>schist, medium to thin bedded, undulating<br>sharp bedding plains. Marble beds are<br>bluish grey, brownish grey and white. Some<br>beds are phlogopitic with minor<br>disseminated phlogopite and pyrite in beds<br>Phlogopite schist interbeds are generally<br>reddish brown consisting mainly of<br>phlogopite and minor calcite. 93.5 -<br>94.5m: quartz-sericite-phlogpite schist. |     |             |           |           |           |        |         |           |
|             | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                              |     |             |           |           |           |        |         |           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |             |           |           |           |        |         |           |

. ugei

## DRILL HOLE RECORD

Page: 7

Property: ARC

Hole No.: A92-5

Location: Sure Bet 5 Claim

| From To       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. | From   | To | Au<br>ppb | Ag<br>ppm | Pb<br>% | Zn<br>% | Cu<br>ppm |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----------|-----------|---------|---------|-----------|
| 98.2 - 109.0  | Calcareous Quartzite: minor arenaceous<br>marble, generally light bluish grey to<br>brownish grey, thick to very thick bedded,<br>generally consists of coarse to medium<br>coarse quartz sand in a marble matrix.<br>Some beds are strongly phlogopitic with<br>distorted wisps and bands of nearly massive<br>phlogopite, abundant small pink subhedral<br>garnets disseminated throughout unit.<br>Weakly disseminated pyrite, pyrrhotite and<br>magnetite occurs throughout this unit as<br>well.<br>107.0 - 108.5m: rare specks of reddish<br>brown sphalerite. This unit is weakly<br>magnetic in core. | 926 | 108.20 |    | 1         | 0         | .001    | .009    | 7         |
| 109.0 - 112.0 | Biotitic-Quartz Gneiss: interbedded calc-<br>silicate, reddish brown with light green<br>banding, thin bedded. Biotitic-quartz<br>gneiss, approximately 50% quartz, 50%<br>biotite, generally very calcareous. Calc-<br>silicate, mainly actinolite, quartz and<br>calcite.                                                                                                                                                                                                                                                                                                                                   |     |        |    |           |           |         |         |           |
| 112.0 - 113.0 | <u>Pegmatite Sill</u> : coarsely crystalline,<br>mainly quartz and feldspar, scattered pink<br>subhedral garnets, abundant large black<br>tourmaline crystals near base of sill.                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |    |           |           |         |         |           |

### DRILL HOLE RECORD

### Property: ARC Hole No.: A92-5 Location: Sure Bet 5 Claim METERAGE DESCRIPTION Sample From To From Pb No. To Au λq Zn Cu ppb \* 8 ppm ppm 113.0 - 115.0 Biotite-Quartz Gneiss: interbedded calc-927 113.00 1 0 .002 .001 6 silicate as described between 109.0 to 112.0m. Bedding to core $75^{\circ}$ . 115.0 - 118.0 Calcareous Ouartzite: light grey to 2 928 115.80 0 .001 .005 31 brownish grey, thick bedded, coarse grained, composed mainly of unsorted quartz sand in a calcite matrix. Scattered phlogopite throughout, weakly disseminated pyrrhotite throughout, unit is weakly magnetic. 929 125.00 118.0 - 125.5 Calcareous Quartzite: interbedded 1 0 .001 .011 176 calcareous phlogopitic quartzite, light brownish grey banded reddish brown, thin to very thin bedded, bedding distorted and sharp. Calcareous quartzite are as above. Calcareous phlogopitic quartzite beds are typically thin and strongly distorted. They consist of approximately 50% phlogopite-biotite and 50% quartz, host abundant disseminated pyrite and pyrrhotite. 930 126.20 1 0 .001 .003 12 125.0 - 178.0 Bad-Shot Formation Marble: 931 132.80 1 0 .001 .002 23 125.0 - 127.5m: calcite marble, light grey 932 144.20 1 0 .002 .006 44 with thin dark grey wispy lamina, coarsely 933 148.60 1 0 .001 .002 8 crystalline, weakly disseminated graphite, 934 164.80 1 0 .001 .002 436

Page: 8

## KOKANEE EXPLORATIONS LTD. DRILL HOLE RECORD

Page: 9

Property: ARC

### Hole No.: A92-5

Location: Sure Bet 5 Claim

| <u>METER</u><br>From To |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. | From | TO | Au  | Aq  | Pb | Zn     | Cu        |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----|-----|-----|----|--------|-----------|
| <u></u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    | ppb | ppm | 8  | 8      | <u>pp</u> |
|                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [   |      |    |     |     |    |        |           |
|                         | pyrite and pyrrhotite. Some thin wispy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |    |     |     |    |        |           |
|                         | limonite banding, very rare specks of brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |    |     |     |    |        |           |
|                         | sphalerite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |    |     |     |    |        |           |
|                         | 127.5 - 130.5m: dolomitic marble, white,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |    |     |     |    |        |           |
|                         | coarsely crystalline, very rare specks of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |    |     |     |    |        |           |
|                         | graphite, very rare phlogopite, rare small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |    |     |     |    |        |           |
|                         | irregular patches of light brown limonitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |    |     |     |    |        |           |
|                         | calcite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |    |     |     |    |        |           |
|                         | 130.5 - 134.5m: calcitic marble, light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |    |     |     |    |        |           |
|                         | pinkish brown with white banding and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |    |     |     |    |        |           |
|                         | mottling, coarsely crystalline, relatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |    |     |     |    |        |           |
|                         | abundant phlogopite, rare disseminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |    |     |     |    |        |           |
|                         | pyrrhotite, very rare chalcopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i i |      |    |     |     |    |        |           |
|                         | 132.8m: 3cm thick micaceous limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |    |     |     |    |        |           |
|                         | band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |    |     |     |    |        |           |
|                         | 134.5 - 144.3m: dolomitic marble, minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |    |     |     |    |        |           |
|                         | calcitic marble, mainly white with some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |    |     |     |    |        |           |
|                         | wispy pinkish banding, relatively abundant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |    |     |     |    |        |           |
|                         | yellowish brown banding and mottling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |    |     |     |    |        |           |
|                         | Coarsely crystalline, weakly disseminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |    |     |     |    |        |           |
|                         | phlogopite, relatively abundant patches and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |    |     |     |    |        |           |
|                         | thin bands of calcareous limonite. rare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |    |     |     |    |        |           |
|                         | disseminated pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]   |      |    |     |     |    |        |           |
|                         | 144.2m; 10cm limonitic zone hosts abundant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |    |     |     |    |        |           |
|                         | pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |      |    |     |     |    |        |           |
|                         | P122001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł   |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I   |      |    |     |     |    |        |           |
|                         | e e a construction de la |     |      |    |     |     |    | •••••• |           |
|                         | an anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |    |     |     |    |        |           |

2

## DRILL HOLE RECORD

Page: 10

Property: ARC

Hole No.: A92-5

Location: Sure Bet 5 Claim

| om To |                                                                                     | No. | From | То | Au   | Ag  | Pb | Zn | Cu  |
|-------|-------------------------------------------------------------------------------------|-----|------|----|------|-----|----|----|-----|
|       |                                                                                     |     |      |    | ppb_ | ppm | ₹  |    | ppi |
|       | 144.3 - 146.9m: calcitic marble, light                                              |     |      |    |      |     |    |    |     |
|       | bluish grey, coarsely crystalline, wisps                                            |     |      |    |      |     |    |    |     |
|       | and patches of limonitic marble, abundant                                           |     |      |    |      |     |    |    |     |
|       | irregular paper thin limonite lined                                                 |     |      |    |      |     |    |    |     |
|       | fractures, very weak disseminated pyrite,<br>rare phlogopite, widely scattered vugs |     |      |    |      |     |    |    |     |
|       | ranging in size between 1 and 3cm, are                                              |     |      |    |      |     |    |    |     |
|       | filled by talc, green and purple fluorite,                                          |     |      |    |      |     |    |    |     |
|       | sericite, phlogopite.                                                               |     |      |    |      |     |    |    |     |
|       | 146.9 - 178.4m: dolomitic marble, white,                                            |     |      |    |      |     |    |    |     |
|       | coarsely crystalline, irregular hair lined                                          |     |      |    |      |     |    |    |     |
|       | filled fractures throughout. Very weakly disseminated pyrite throughout.            | [   |      |    |      |     |    |    |     |
|       | 148.6m: large vug (20cm) filled by green                                            |     |      |    |      |     |    |    |     |
|       | and purple fluorite, talc, sericite.                                                |     |      |    |      |     |    |    |     |
|       | 163.0 - 165.5m: scattered vugs as above,                                            |     |      |    |      |     |    |    |     |
|       | ranging in size from 3 to 15cm.                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       | END OF HOLE                                                                         | İ   |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       | and should in under the black Duranty                                               |     |      |    |      |     |    |    |     |
|       | Core stored in racks at the Vine Property.                                          |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       | ч <b>у</b> .                                                                        |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     | *  | -  |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |
|       |                                                                                     |     |      |    |      |     |    |    |     |

| AA (          |           |             |           |           | Kol        | kanı        | ne )<br>10 | <u>Exp</u><br>4 - 1 | G)<br>101(<br>35 - | atic        | ons      | Ltd        | 1. 1      | PRO       | TECH       | r A.       | -92-      | -1            | FL      | le     | # 91<br>Pigsi | 2-0:<br>N | 266     |             |         |          |         |          | 43                   | A REAL     |
|---------------|-----------|-------------|-----------|-----------|------------|-------------|------------|---------------------|--------------------|-------------|----------|------------|-----------|-----------|------------|------------|-----------|---------------|---------|--------|---------------|-----------|---------|-------------|---------|----------|---------|----------|----------------------|------------|
| AMPLE#        | Mo<br>ppm | Ci-<br>ppri | P5<br>ppn | Za<br>ppn | A9<br>ppxi | Ni<br>popul | Co<br>ppm  | Ma<br>pro           |                    | As<br>Pixia | U<br>ppa | Au<br>pos  | Th<br>PPB | Sr<br>ppm | 53<br>ମସ୍ପ | St)<br>p;m | Bi<br>Ppn | y<br>Popor    | Co<br>% | ч<br>Х | Le<br>pps     | Cr<br>pin | 19<br>3 | 9a<br>pexil | 71<br>X | s<br>ppm | А1<br>Х | Ke<br>Se | # 11 #<br>K          | 1920<br>14 |
| 0765          | 1 1       | 79          | 10        | 41        | .4         | 29          | 13         | 404                 | 2.64               | 3           | 5        | <b>K</b> D | 2         | 50        | . 0        | 2          | 2         | 79            | 1.87    |        | 2             | 3.5       | 1.06    | 15          | .27     | 2        | 1.32    | .25      | .23                  | 2          |
| 766           | 2         | 7           | 5         | 52        | . 1        | 7           | 1          | 1.74                | 1.24               | 5           | 5        | NC         | 1         | 32        | . 2        | 7          | 1         | 14,           | .42     | .018   | 4             | 18        | .25     | 62          | .71     | 2        | .55     | . 11     | .19                  | 3          |
| 67            | 2         | 7           | 14        | 61        | .3         | 7           | ÷.         | 428                 | 1.32               | 1           | 5        | ND         | 3         | 30        | 1          | e.         | 5         | 15            | .25     |        | 5             | 10        | .25     | 47          | -15     | 2        | .59     | .12      | .33                  |            |
| 763           | 1 1       | 5           | 12        | 41        | .3         | 6           | 2          | 348                 | .91                | 5           | 5        | ND         | 6         | 105       | .2         | 2          | 2         | 5             | .76     | .017   | 12            | 7         | .13     | 84          | .02     | 5        | .35     | .05      | . * 6                | 2          |
| 769           | 3         | Ь           | 14        | 49        | .5         | 6           | i          | 490                 | .53                | 5, 2        | 8        | ND         | 6         | 251       | .3         | 2          | 2         | \$            | 2.26    | .008   | 10            | 27        | .07     | 164         | .01     | S        |         | .125     | , 9 Z                | 1          |
| 70            | 2         | 8           | 14        | 27        | .6         | 5           | 2          | 230                 | .77                | S           | 8        | hù         | t         | 23        | .2         | 3          | ż         | 6             | .52     | DUB    | 9             | 7         | . 15    | 43          | .03     | 2        | .45     | -79B     | $\cdot t^{\epsilon}$ | -          |
| 71            | 1 1       | 4           | 12        | 15        | .3         | 4           | 3          | 268                 | .43                | 2           | 5        | ND         | 6         | 128       | .2         | 2          | 5         | 2             | 1.12    | .012   | 34            | 6         | .05     | 30          | .01     | 2        | . 19    | .06      | .10                  | 3          |
| 00768         | 1 1       | 7           | 12        | 32        | . t.       | 6           | 2          | 326                 | .80                | 2           | 5        | ND         | 5         | 58        | .2         | 2          | 2         | 6             | .79     | .013   | 12            | 7         | .12     | 81          | .01     | 2        | .33     | .07      | .17                  | 1          |
| 772           | 3         | 8           | 4         | 19        | .4         | 5           | 1          | 311                 | .32                | S           | 5        | ND         | 8         | 167       | .2         | 2          | 2         | 3             | .70     | .009   | 15            | 24        | .02     | 271         | .01     | 2        | .22     | .07      | . 13                 | 2          |
| 773           | 5         | 8           | 16        | 26        | .3         | 3           | 1          | 283                 | .79                | 2           | 5        | ND         | 6         | 83        | .2         | 2          | 61        | 6             | .62     | .011   | 24            | n         | . 11    | 47          | .01     | 2        | .34     | .07      | . 22                 | 7          |
| 774           | 1         | 4           | 10        | 19        | .5         | 0           | 1          | 267                 | .65                | 2           | 5        | ha)        | 5         | 65        | .2         | 2          | 2         | $\sim l^{-1}$ | .59     | .005   | 0             | 7         | .07     | 24          | .01     | 2        | .21     | .06      | .1.1                 | 1          |
| 75            | 3         | ć           | 8         | 20        | .1         | 6           | 5          | 295                 | .7?                | 2           | 5        | ND         | 3         | 100       | .2         | 2          | 3         | 5             | .83     | .071   | 7             | 2?        | .12     | 38          | . 05    | 2        | .36     | .08      | .13                  | - 3        |
| 776           | 2         | 5           | 6         | 13        | .4         | 4           | 1          | 306                 | .49                | 2           | 7        | C3         | 7         | 97        | .2         | 2          | 2         | 2             | .72     | .605   | 7             | 6         | .06     | 35          | .01     | 2        | .23     | 05       | . 13                 | 7          |
| 777           | 1         | 4           | 8         | 14        | .4         | 5           | 1          | 440                 | .49                | 3           | 13       | 1271       | 7         | 148       | . 2        | 4          | 2         | ĩ             | 1.22    | .001   | 4             | 5         | . 94    | 12          | .01     | 2        | .17     | .04      | . 14                 | 7          |
| ANDARD C/AU-R | 19        | 62          | 36        | 123       | 7.3        | 68          | 32         | 953                 | 3.85               | 42          | 22       | 7          | 35        | 54        | 18.4       | 17         | 21        | 60            | .49     | 021    | 39            | 55        | .90     | 178         | .08     | 35       | 1.43    | .00      | . 16                 | 1          |

ICP - .500 GRAW SAMPLE IS DIGESTED WITH 3ML 3-1-2 HOL-BNO3-R20 AL 95 DEG. C FOR ONE HOUR AND IS DELUTED TO 70 HL MITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR HG BA 11 B W AND LIMITED FOR NA K AND AL. AU DELECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR NOCK AND EDRE SAMPLES IF CU P9 ZN AS > 1%, AC > 30 PPM & AU > 1000 FPB

- SANFLE TYPE: CORE AU\* ANALYSIS BY ACID LEACH/AA FROM 10 CH SAMFLE. Sugares beginking 'RF' are cuplicate samples.

DATE RECEIVED: MES 5 1992 DATE REPORT MAILED:

Feb 11 92 SIGNED BY . . . MYTTED. TOYE, C. LEONG, J. HANG; CERTIFIED B.C. ASSAYERS

A92-

ARC-

| AA<br>LL     | A    | (Çtı      | C         | 1            | - D                | K   | okar      | neo       | EXI  |           |           |     |           |           | Fi         |            |            |           |          | C      | Pag        | je :      | 1       |           |         |           | -       |         | 4            | All and a second |
|--------------|------|-----------|-----------|--------------|--------------------|-----|-----------|-----------|------|-----------|-----------|-----|-----------|-----------|------------|------------|------------|-----------|----------|--------|------------|-----------|---------|-----------|---------|-----------|---------|---------|--------------|------------------|
| .4P1.E#      | Ho   | Cu<br>psm | 96<br>PDD | 2rs<br>p;pin | 49<br>1999<br>1999 |     | Co<br>Ppm | bbu<br>NU |      | As<br>pam | U<br>extq |     | Th<br>PCC | 5r<br>ppm | Cd<br>P(zh | Sb<br>pt>n | Ві<br>рюча | V<br>ppix | Ca<br>X  | ۲<br>۲ | L E<br>ppm | Cr<br>ppm | Mg<br>X | Ba<br>PSG | 11<br>X | R<br>P≎n  | 41<br>X | 46<br>% | <<br>2       | 14               |
| 79           | 3    | 50        | 10        | 19           | . 1                | 12  | 6         | 81        | .56  | 4         | 5         | NG. | 1         | 63        | .2         | 2          | 2          | 7         | 1.72     | .019   | 4          | 30        | .37     | 18        | .08     | 2         | .49     | .05     | . 15         |                  |
| 1            | 2    | 24        | 5         | 10           | . 1                | 15  | 6         | 121       |      | 6         | 5         | ND  | 7         | 23        | . 2        | 2          | 2          | 7         | 1.4.1.94 |        | 2          | \$2       | .47     | 79        | Ð6      | 2         |         | .02     | .32          | 2                |
| 2            | 1    | 6         | 5         | 30           | . 7                | 5   | 1         | 132       | .89  | 2         | 5         | ЧÐ  | 10        | 12        | .2         | 2          | ć          |           |          |        | 20         | 7         | .18     |           | .03     | ĉ         |         | . 25    | -28          | 5                |
| 93           | 1 1  | 95        | 23        | 62           | .3                 | 50  | 24        | 603 3     |      | 4         | 6         | ND  | 1         | 187       | .3         | 2          | 2          |           | 5.96     |        | 5          |           | 1.65    |           | . 12    |           |         | . 03    | .94          | 2                |
| 00792        | 1 1  | 1         | 5         | 9            | -1                 | 4   | 1         | 61        | .37  | 3         | 5         | ND  | 2         | 38        | .2         | 3          | 2          | ò         | 1.04     | . 039  | 7          | 30        | .17     | 16        | - 99    | 2         | .25     | .04     | -0-          | 19               |
| 87           | 2    | 4         | 5         | 11           | .1                 | 8   | 2         | 222       | .61  | 3         | 5         | ND  | 3         | 32        | .2         | 2          | 2          | ß         | 2.59     | 510.   | 3          | 34        | 35.     | 10        | .98     | 2         | .33     | .02     | . 13         | -                |
| 90           | 1    | 101       | 5         | 24           | .5                 | 12  | 5         | 140       | 1.19 | 6         | 5         | ND  | 3         | 19        | ,6         | 2          | 2          | 11        | 1.28     | 650.   | 7          | 16        | .52     | 58        | .10     | 2         | . 7. 7  | .65     | .25          | 1                |
| 91           | 1 2  | 65        | 6         | 37           |                    | 11  | 1.        | 312       |      | 2         | 5         | ND  | ٦         | 40        | .2         | Z          | 2          |           | .89      |        | 3          | 35        | .42     |           | . ? 1   | 2         | .71     | .65     | . 30         | 1                |
| '92          | 1    | 5         | 5         | a            | . 1                | 4   | 1         |           | .34  | 3         | 5         | ND  | 5         | 36        | .2         | 2          | 2          |           | 1.12     |        | 6          | 8         | .18     |           | .87     | 2         | . 24    | 06      | - 95g        | 1                |
| 94           | 1    | 22        | 3         | 74           | .2                 | 104 | 33        | 179 3     | 2.58 | 2         | 5         | ND  | 1         | 4         | .2-        | 2          | 2          | 35        | 1.60     | .098   | 2          | 96        | 1.12    | 3         | .12     | 2         | 1. 12   | , ¢ t   | $.6^{\circ}$ | 1                |
| 95           | 5    | 22        | 5         | 7            | .1                 | 16  | 7         |           | 1.19 | 4         | 5         | 64  | 2         | 41        | .2         | Ż          | S          |           | .93      |        | 6          | 29        | 31      |           | . 62    | 2         | 1.32    | . \$6   | .01          | 1                |
| 93           | 1    | 355       | 2         | 32           | . 5                | 27  | 22        | 361 3     |      | 5         | 3         | 140 | 3         | 29        | -2         | 2          | 3          | 100       | 2.02     |        | 5          | 23        | .98     |           | - 36    | 2         | 1.42    |         | 1.112        |                  |
| 101          | 1    | P.4       | 9         | 12           | .2                 | 18  | 6         | 149       | BB   | 3         | 5         | 85  | L         | 51        | .2         | 2          | 2          | 10        | .90      |        | - 6        | 74        | .28     |           | .94     | 2         |         | .07     | . 74         | 5                |
| 202          | 2    | 12        | 26        | 15           | . 1                | 5   | 1         | 103       | .45  | 3         | 5         | 140 | 4.        | 17        | .2         | 2          | 5          | 1         |          |        | 10         | 20        | .02     | 21        | -01     | <i>e.</i> |         | 194     |              |                  |
| 63           | 2    | 5         | 14        | 55           | -1                 | 5   | 1         | 128       | .45  | 4         | 5         | ND  | 4         | 30        | -5         | 2          | 2          | 1         | .41      | .015   | 11         | 5         | .03     | 51        | .01     | ě.        | .26     | 114     | . 14.        | 3                |
| ж            | 2    | 55        | 7         | 12           | .1                 | 5   | 1         | 107       | , 87 | : 3       | 5         | សព  | $t_{t}$   | 37        | .2         | 2          | 2          | 1         |          | 016    | B          | 4         | .02     | 15        | .01     | 2         |         | .03     | .75          |                  |
| 05           | 1 2  | 7         | 14        | 10           | - 1                | 7   | 2         | 104       | .69  | 3         | 5         | HD  | 2         | 23        | .2         | 5          | 2          | 5         |          | .909   | Б          | 36        | . 15    |           | -01     | ŝ.        | 1. 25   | 192     | - 17         | 1                |
| -06          | 1 2  | 4         | 5         | 11           | - ?                | 12  | 3         | 77        | . 65 | 3         | 5         | ND  | 28        | 50        | .2         | 5          | 2          | 4         |          | .010   | 75         | 12        | .1:     |           | . 03    | 2         |         | . 15-   | , 1E         |                  |
| WDARD C/AU-R | 1 20 | 0.5       | 10.5      | 138          | 1.3                | 13  | 3.5       | 1034 4    | 4.63 | 41        | 2.2       | G   | 47        | 54        | 19.0       | 12         | 6.00       | 63        | .50      | .097   | 14.3       | 59        | 90      | 183       | . 69    |           | 144     | .410    | - 355        | 110              |

ICP - .500 GRAM SAMPLE IS DICESTED WITH 3ML 3-1-2 HCL-RND3-N20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WIGH WATER. THIS LEACH IS PARTIAL FOR MH FE SP. CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PM 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: COPE AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples</u>.

DATE RECEIVED: FOR 12 1992 DATE REPORT MAILED: Feb 20/92 

A92-2

ARC.

Rokanes Explorations Ltd. FILE # 92-0310

| SAHPLE#          | MO    | Cu  |     |               |      |      | Co   | Mn      | Fe   |            | U   | Au  | Th  | Sr   | Ed     | 5b  | Вī   | v    | CA   | P     | La    | Cr     | Ng     | Ba    | Ti   | B   | AL   | Hn   | ×    |       | 1979 a |      | Fd** |
|------------------|-------|-----|-----|---------------|------|------|------|---------|------|------------|-----|-----|-----|------|--------|-----|------|------|------|-------|-------|--------|--------|-------|------|-----|------|------|------|-------|--------|------|------|
|                  | 'ppm  | ppn | ppm | in the second | bbyu | pom  | pixn | ppm     | 10   | <b>bbu</b> | ppm | por | ppm | bixu | pixua. | ppm | ppin | Plan | 4    | Ā     | ppiti | p(xn   | 3      | b(x.) | 3    | ppm |      |      |      | Pixl) | ppia   | bby) | 600  |
| 00778            | 1 1   | 104 | 3   | 61            | .2   | 34   | 19   | 469     | 3.58 | 2          | 5   | ND. | 1   | 27   | 3      | 2   | 2    | 90   | 2.37 | .075  | 5     | 28     | .21    | 36    | .38  | 2   | 1.42 | .22  | .19  | 2     | 0      | Ģ    | 7    |
| 00780 /s or      | 1     | 5   | 2   | 45            | . 1  | 202  | 15   | 124     | 1.95 | 2          | 5   | ND. | 1   | 15   | .7     | 2   | 2    | 43   | 1.11 |       | 10.00 | 221.2  |        |       | .20  |     |      |      | .67  | 1     | 8      | 10   |      |
| 00785 -          | 1 1   | 91  | 10  | 37            | .1   | 64   | 23   | 347     | 2.95 | 2          | 5   | 45  | 1   | 71   | .2     | 2   | 2    |      | 2.65 |       |       | \$6 1  |        |       | . 19 |     | 1.36 |      | .11  | 1     | t.     | 50   |      |
| 10785 Am         | 1 11  | 895 | 3   | 37            | .7   | 49   | 41   | 609     | 5.64 | 2          | 5   | KD. | 1   | 22   | .5     | 2   | 2    | 104  | 2.20 | .138  | 4     | 28 1   | 1.27   | 19    | .41  | 2   | 1.63 | . 14 | . 15 | 1     | T      | 16   | 2    |
| 0786 P-A         | 11    | 216 | 3   | 21            | .2   | 85   | 20   | 282     | 2.08 | S          | 5   | 40  | 1   | 22   | 2      | z   | 2    | 60   | 1.49 | .059  | 2     | 79     | .95    | 7     | .31  | 2   | .97  | .12  | .14  | 2     | 5      | £.   | \$   |
| 0788             | 1.    | 73  | 2   | 51            | 5    | 664  | 72   | 570     | 4.76 | 2          | 5   | HD. | 1   | 97   | 2      | 2   | 2    | จก   | 5.59 | 022   | 21    | 59120  | \$ 2.6 | (in)  | 10   | 2   | 7.76 | 02   | 1.40 | 1     | 1      | 5    |      |
| 00789            | A     | 507 | 3   | 24            | 13   |      |      |         | 3.16 |            | 5   | ND  | 1   | 20   | 2      | 2   | 3    |      | 1.78 |       |       | 56 1   |        |       | 37   |     | 1.29 |      |      | 1     | 0      | 10   | 1    |
| 0793             | 1 1   | 925 | 9   | 28            | .6   | 62   | 43   | 5.5.5.8 | 2.56 | - 10 M     | 5   | RD  | 1   | 31   | .2     | 2   | 3    |      | 1.68 |       | 2     | 122.01 | .54    | 3     | .17  | 2   | .93  |      | .06  | 1     | 15     | 1    | 2    |
| 0796             | 1 1 1 | 291 | 2   | 22            | .2   | 51   | 40   | 165     | 4.30 | 2          | 5   | NO  | 1   | 62   | .2     | 2   | 2    |      | 1.27 |       | 2     | 20     | .70    | 8     | 17   | 4   | 20.1 | .11  | .04  | 1     | 7      | - 5  | 2    |
| 0797             | 1 1   | 110 | 2   | 18            | . 1  | 53   | 23   | 202     | 2.32 | 2          | 5   | ND  | 1   | 34   | -2     | 2   | 2    |      | 1.57 |       | 2     | 48     | .96    | 5     | . 12 | 2   | 1.64 | .15  | .04  | ٩     | 4      | ç    | 1    |
| 0797             | 1 1   | 284 | 2   | 53            | .2   | 25   | 18   | 308     | 3.47 | Z          | 5   | NC  | 1   | 16   | .2     | 2   | z    | 95   | 1 87 | . 174 | 2     | 22     | 35.    | 23    | .35  | 2   | 1.33 | . 16 | .17  | ۲     | 7      | 8    | 1    |
| E 00793          | 1 1   | 047 | 7   | 30            | . 8  | 61   | 45   | 170     | 2.13 | 2          | 5   | ND  | 1   | 32   | .2     | 2   | 2    | 55   | 1.77 | .190  | 2     | 26     | .56    |       | .18  | 2   | .98  | .05  | .00  | 7     | 12     | 3    | 2    |
| 00800            | 1 1   | 59  | 2   | 33            | .1   | 1845 | 22   | 228     | 2.45 | 2          | 5   | NO  | 1   | 13   | .2     | 2   | 2    | 52   | 1.20 | .048  | 2     | 185.12 |        | 59    | .31  | 2   | 1.68 | .08  | , 44 | î.    | i.     | 5    |      |
| TANDARD C/AU-10R | 20    | 63  | 45  | 135           | 7.3  | 13   | 33   | 1034    | 4.03 | 43         | 22  | E   | 41  | 54   | 19.0   | 15  | 23   | 51   |      | .097  |       |        |        | 183   | 120  | 32  | 1.84 | .06  | . 15 | 11    | 477    | 473  | 41.  |

Fage 2

Sample type: CORE. Samples beginning 'RE' are duplicate complex.

A92-2 ARC

| ACHE ANAL!                                                                                                                                                                       | PAL I                                    | ABON             | ATOP                         | I E S                                                                      | 2,413)                        | •                          | 8!                               | 52 E                 | . BA                   | STI               | NGS                            | Śĩ.                   | •                              | ):000                                   | ER                   | e.c.          | v                         | 6n 1)                                  | 16                   | 2                                        | ROM                        | \$(60                              | 4)25                          | 3-3                             | 2.55 1                                         | Jeo                             | 4) 35                                       | 1-17                             | 21                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|------------------------------|----------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------------|----------------------|------------------------|-------------------|--------------------------------|-----------------------|--------------------------------|-----------------------------------------|----------------------|---------------|---------------------------|----------------------------------------|----------------------|------------------------------------------|----------------------------|------------------------------------|-------------------------------|---------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------|----------------------------------|------------------------------------------|
| ALL.                                                                                                                                                                             |                                          |                  |                              |                                                                            | Koka                          | 10                         | 4 - 5                            |                      | oral                   | cion              | ns 1<br>., cr                  | enbro                 | . Pl                           | ROJI<br>Vic                             | CT                   | ARC           | n<br>itted                | CATE<br>File<br>by: 0                  | e ∦<br>1F            | IGMIN                                    |                            |                                    |                               | ł                               |                                                | ×                               |                                             |                                  |                                          |
| SAMPLE#                                                                                                                                                                          | Mo Cr<br>ppn ppr                         |                  | Zn<br>ppin                   | ٨g                                                                         | សរ                            | Co<br>ppa                  | Max                              | 50                   | AS<br>ppa              | U                 | Au                             | Th                    | Sr                             | Cd<br>p;xn                              | \$0                  | Bi<br>ppo     | ٧                         | 1.0<br>5.                              | ₽                    | 1.0                                      | Cr<br>proi                 | Mg<br>L                            | 8.a<br>Pern                   | 31<br>3                         | B AL<br>Spei A                                 | на<br>•                         | k<br>K                                      |                                  | Au <sup>4</sup><br>PD <sup>2</sup> 2     |
| 00907<br>00908<br>00909<br>00915<br>00915<br>00911                                                                                                                               | 2 30<br>2 30<br>1 290<br>4 0<br>1 260    | 5 4<br>5 13      | 7<br>24<br>162<br>3<br>27    |                                                                            | 7<br>3<br>114<br>7<br>72      | 1                          | 58<br>237<br>1611<br>1621<br>338 | 9.55                 | NUMBER                 | 55645             | kd<br>ko<br>hd<br>No<br>nd     | 65231                 | 10<br>18<br>45<br>208<br>18    | N.N.N.N.N.                              | 22222                | 2 11 2 20 23  | 3                         |                                        | .009                 | 11<br>2<br>7<br>2                        | 31                         | .05<br>.28<br>2.07<br>.21<br>1.03  | 38<br>30<br>171<br>3<br>5     | .02<br>.06<br>.60<br>.01<br>.31 | 2 .23<br>2 .59<br>2 3.51<br>2 .12<br>4 1.13    | . (11)                          | . 13<br>. 36<br>1.98<br>. 02<br>. 16        | NETEN                            | 52255                                    |
| 00912<br>00913<br>00914<br>00915<br>00916                                                                                                                                        | 1 308<br>2 20<br>1 926<br>1 135<br>1 157 | 4 3<br>5 2<br>7  | 50<br>42                     | .1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 38<br>7<br>105<br>37<br>28    | 1<br>43<br>17              | 579<br>336<br>609<br>401<br>565  | .80<br>5.11<br>3.25  | NININN                 | うちちかう             | 80<br>80<br>80<br>80<br>80     | 13111                 | 45<br>11<br>17<br>25<br>12     | -2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 2222                 | OF N N N N F4 | 83<br>5<br>92<br>77<br>90 | 2.22<br>.25<br>2.96<br>1.99<br>1.86    | .096<br>.043<br>.106 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 37<br>12<br>36<br>27<br>17 | .09<br>.27<br>1.37<br>.94<br>.85   | 8<br>15<br>95<br>3<br>22      | .46<br>.05<br>.33<br>.34<br>.34 | 3 1.36<br>3                                    | . 13<br>.28                     | .28<br>.72<br>.07                           |                                  | 3 7 7 7 7                                |
| 00917<br>00918<br>00919<br>00919<br>00919<br>00919<br>00919<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00917<br>00918<br>00918 | 1 110<br>1 71<br>1 20<br>1 730           |                  | 63<br>108<br>61<br>78<br>28  | 17.163                                                                     | 158<br>97<br>254<br>295<br>35 | 34<br>25<br>37<br>42<br>36 | 983<br>640<br>741<br>486<br>875  | 4.38<br>5.40<br>5.30 | 27223                  | 50400             | nd<br>Ng<br>Ng<br>Ng<br>Ng     | 1<br>5<br>1<br>2<br>1 | 186<br>108<br>150<br>32<br>14  | 12344                                   | 2222                 | N N PI PI PI  | 45                        |                                        | .130<br>.159<br>.225 | 23<br>4                                  | 281<br>158                 | 1.54                               | 301<br>51<br>665<br>64<br>159 | 135<br>125<br>149<br>142<br>155 | 2 2.07<br>2 1.75<br>2 3.17<br>2 1.93<br>7 2.45 | .07<br>.23<br>.11               | .30<br>1.72<br>1.45                         |                                  | 1 1 6 3 1                                |
| 00922<br>00923<br>00924<br>00925<br>00925<br>00926                                                                                                                               | 1 78<br>1 41<br>2 161<br>1 321<br>1 1    | 7 2              | 28<br>17<br>93               | .1<br>.3<br>.1<br>.2                                                       | 50<br>47<br>45<br>43<br>7     | 23                         |                                  | 2.55<br>6.65         | さんかん                   | 55557             | 36<br>110<br>110<br>110<br>110 | 13 1 4 1 3            | 18<br>173<br>43<br>48<br>15 19 | ????5                                   | 22222                | NEWNER        | 110                       | .59<br>2.39<br>1.58<br>2.95<br>31,49   | .063                 | 17<br>2<br>14<br>2<br>8                  | 37<br>18                   | 1.52<br>.80<br>.78<br>5.2P<br>.39  | 60<br>3<br>13<br>7<br>4       | ,13<br>,29<br>,01<br>,40<br>,02 | 2 2.00<br>3 2.52<br>2 1.34<br>2 2.04<br>2 .23  | .04<br>.74<br>.93<br>.99<br>.99 | 1.66<br>(54<br>(17)<br>(17)<br>(17)<br>(17) | $= f_{1} \cdot f_{2} = 0$        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 00927<br>00928<br>00929<br>00930<br>00931                                                                                                                                        | 3 1<br>1 31<br>3 177<br>1 12<br>1 23     | 1 9<br>5 3<br>6  | 112                          | .2.2.1                                                                     | 7<br>17<br>96<br>9            | 7                          | 139<br>562<br>430<br>134<br>353  | .80                  | 24222                  | 87758             | ND<br>ND<br>ND<br>ND           | 23415                 | 14<br>201<br>107<br>376<br>37  | shows.                                  | 2222                 | 244222        | 79<br>6                   | .52<br>17.09<br>7.18<br>29.10<br>15.52 | .121<br>.044         | 2<br>5<br>9<br>10<br>5                   | 6                          | .06<br>.76<br>1.80<br>.26<br>6.34  | 2<br>8<br>40<br>5<br>11       | .01<br>.13<br>.13<br>.01<br>.01 | 3 .30<br>2 .84<br>2 3.55<br>2 .26<br>2 .59     | .10<br>.05<br>.12<br>.01<br>.01 | .13<br>.28<br>.46<br>.02<br>.29             | 1.7                              | 6 [] e + 1                               |
| 00932<br>00933<br>RE 00929<br>00934                                                                                                                                              | 2 44<br>3 163<br>3 163<br>1 430<br>17 55 | 2<br>2<br>3<br>3 | 62<br>15<br>113<br>19<br>137 | .1<br>.3<br>.3<br>7.3                                                      | 65<br>11<br>97<br>58<br>75    | 19<br>1<br>23<br>40<br>33  | 753<br>18<br>429<br>75<br>1097   | 80.<br>79.0          | 7<br>3<br>5<br>2<br>43 | 5<br>9<br>5<br>16 | ND<br>ND<br>ND<br>ND<br>8      | 1<br>3<br>39          | 61<br>9<br>105<br>61<br>52     | 2.<br>2.<br>2.<br>18.9                  | 2 0 2 2<br>2 2<br>15 | 20            | 4                         | 17.59<br>1.58<br>7.13<br>4.73<br>.56   | .152<br>.118         | 4<br>2<br>9<br>9<br>3<br>9               | 73<br>70<br>50             | 7.81<br>.41<br>1.79<br>2.10<br>.91 | 8<br>5<br>40<br>49<br>187     | .01<br>.01<br>.13<br>.01<br>.10 | 2 .20<br>2 1.67<br>2 3.57<br>6 .93<br>34 1.92  | .63                             |                                             | 42<br>14<br>14<br>14<br>14<br>14 | )<br>1<br>1<br>470                       |

ICH - .500 GRAM SAMPLE IS DIGESTED WITH 3ME 3-3-2 HCL-HNOS-NZO AT 95 DEG. C FOR DNE HOUR AND IS DIJUTED TO 10 ML HITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR DA P LA OR NG BA TI B W AND LINIFED FOR NA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPH. ASCAY RECOMMENDED FOR ROCK AND FORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. <u>Samples beginfring /RE/ are duplicate samples</u>.

ADC.