LOG NO: ACTION:	APR 0 6 1992	F(Ð.
FILE NO:		

DISCOVERY CREEK PROPERTY

1991 EXPLORATION PROGRAM

SUMMARY REPORT

Blondie 1-8 BX 1-23 Ducky 1-3

Willy 1-5

BRITISH COLUMBIA

OMINECA MINING DIVISION

NTS 93N/14E&W

FOR

MANSON CREEK RESOURCES LTD.

BY

IAN FRASER

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,225

DECEMBER, 1991

TABLE OF CONTENTS

ABST	'RACT	i
1.	INTRODUCTION	6
2.	PROPERTY DESCRIPTION, ACCESS & PHYSIOGRAPHY	6
	2.1 Property Assessment Status	9
3.	EXPLORATION HISTORY	10
4.	REGIONAL GEOLOGY AND MINERAL DEPOSITS	12
5.	PROPERTY GEOLOGY	16
6.	1991 EXPLORATION PROGRAM	16
	6.1 Base of Slope Soil Sampling Program 6.2 Diamond Drilling	16 16
7.	1991 DIAMOND DRILLING RESULTS	18
8.	CONCLUSIONS AND RECOMMENDATIONS	20
9.	SUMMARY OF EXPENDITURES	21
10.	REFERENCES	22
11.	STATEMENT OF QUALIFICATIONS	23
12.	CERTIFICATE	24

<u>Page #</u>

LIST OF TABLES AND FIGURES

,

<u>Page #</u>

FIGURE 1	Location Map	7
FIGURE 2	Claim Map	8
TABLE 1	Property Assessment Status	9
FIGURE 3	Quesnellia Map	13
FIGURE 4	Area Claim Map with Geology-Structure	14
TABLE 2	Drill Hole Summary: Location and Length of Drill Hole (DC-91-1 through DC-91-3)	18
TABLE 3	Assay Summary; gold, copper (DC-91-1 through DC-91-3)	19

APPENDICES

- APPENDIX A Base of Slope Soil Sampling Summary with Assay Certificates by M.P. Komeravich, July 17, 1991
- APPENDIX B Vancouver Petrographics Ltd. Petrographic Report by K.E. Northcote, December 6, 1991
- APPENDIX C Diamond Drill Logs (DC-91-1 through DC-91-3)
- APPENDIX D Complete, 1991 Assay Reports
- APPENDIX E Certificates of Analysis
- APPENDIX F Figure 5: Discovery Creek Compilation Map Scale 1:10,000 (in map pocket)
 - Figure 6: Drill Hole Cross-Section L5+00W with Drill Holes DC-91-1 through DC-91-3 Scale 1:1,000 (in map pocket)

ABSTRACT

The Discovery Creek property is situated in north-central British Columbia, 30 km west of Germansen Landing and 265 km northwest of Prince George. The property consists of sixty-one (61) Two Post, and modified grid claims totalling 676 units (16,900 ha).

The Discovery Creek property is underlain by units of Quesnellia Terrane, covering a contact between the Hogem Batholith (Upper Triassic to Middle Jurassic) and Takla Group volcanic and volcanoclastic rocks (of similar age). Several smaller satellitic intrusions occur within the Takla units. Within the batholith, a syenite - monzodiorite contact associated with the Lorraine and Boundary copper-gold deposits (located 10 km and 20 km northwest of the property, respectively) extends onto the Discovery Creek property. Good exploration results from trenching and diamond drilling, performed during 1991 was rumoured to have come from Kennco's property that adjoins the Discovery Creek property, along its western border.

Exploration activities in 1991 consisted of some additional staking, a base of slope soil sampling program, and diamond drilling. Diamond drilling on the Discovery Creek property resulted in the completion of three (3) NQ size drill holes for a total of 424.3 m (1,932') drilled. The drill program was designed to test a strong Cu in soil geochem anomaly, with a strong, coincident IP anomaly as outlined by exploration activities performed in 1974 (Canadian Superior Exploration Ltd.). The drill program was stopped after three (3) drill holes due to unencouraging results.

The potential remains on the Discovery Creek property to explore for and find alkaline porphyry gold-copper deposits; however, more ground work is required prior to any additional drilling. Future exploration should consist of detailed geological mapping, prospecting, ground geophysics, geochem programs, and possibly trenching.

1. INTRODUCTION

The Discovery Creek property, and in particular the area of the property, has been the subject of several exploration programs since the early 1900's. Exploration peaked in the early 1970's during the porphyry boom, and the recent success of the Mt. Milligan, and the South Kemess deposits has rejuvenated exploration in the area for porphyry type deposits. Manson Creek Resources staked the Discovery Creek property in 1990, and continued it's exploration efforts during the 1991 field season. This summary report will review all data accumulated during the 1991 exploration program(s).

Exploration activities on the Discovery Creek property were initiated on July 1, 1991 with a short base of slope soil sampling program designed to follow up on gold and copper anomalies in the vicinity of Cathedral Gold Corporation's Ling claims (as reported in assessment files). This program was followed by a diamond drill program designed to test a strong Cu in soil anomaly with a coincident IP signature; well removed from the Ling claims, and referred to as the DC Zone. DC Zone data was retreived from assessment files pertaining to exploration activities performed by Canadian Superior Exploration in 1974. The drill program commenced on October 21, 1991 and consisted of three (3) drill holes for a total of 424.3 m (1,392') drilled.

2. **PROPERTY DESCRIPTION, ACCESS & PHYSIOGRAPHY**

The Discovery Creek property consists of sixty-one (61) Two Post and modified grid claims totalling 676 units (16,900 ha). The property is situated in north-central British Columbia, 30 km west of Germansen Landing, and 265 km northwest of Prince George, within NTS map area 93N/14E&W (see Figures 1&2).

The property is 100% owned by Manson Creek Resources Ltd; however, Golden Rule Resources Ltd. currently holds the Discovery Creek property in trust for Manson Creek.

Access to the property is via the Omineca Mining Road. The Omineca Mining Road extends north from Fort St. James, and passes through the small community of Germansen Landing; 30 km from the nearest corner of the claim group, and actually passes through the southeastern corner of the property on its way north to Cheni Mines, Lawyers deposit. Once on the property access to the 1991 area of drilling is by 4WD truck along a cat trail. Lodgings, limited groceries, fuel, and an airstrip are available in Germansen Landing. Helicopters can be chartered out of either Fort St. James or Mackenzie, 170 km and 140 km respectively southeast of the property.

MANSON CREEK RESOURCES LTD.

DISCOVERY CREEK PROPERTY BRITISH COLUMBIA

LOCATION MAP

Date: DECEMBER 1991	N.T.S.:
Revised:	FIGURE 1
Scale:	· _ · · · · · · · · · · · · · · · · · ·

The physiography of the claims area is characterized by broad float valleys along Omineca River and Discovery Creek, with moderately rugged mountain ridges to the northwest. The valleys are heavily timbered, with tree line occurring at about 1,650 m ASL. Elevations in the property area range from about 850 m ASL along Omineca River, to almost 2,000 m ASL at the summit of Wasi Ridge. The peaks are all readily accessible by foot traverse, with some cliffy portions that are easily circumvented.

2.1 Property Assessment Status

The name of the claims that make up the Discovery Creek property, their record numbers, the number of units, and the next due date for assessment, is listed in Table 1 below:

TABLE 1

<u>Claim Name</u>	Record #	<u># of Units</u>	<u>Record Date</u>	<u>Next Due</u>
				Date
Blondie 1	12141	20	July 1/90	July 1/93
Blondie 2	12142	20	July 1/90	July 1/93
Blondie 3	12143	16	June 20/90	June 20/93
Blondie 4	12144	20	July 1/90	July 1/93
Blondie 5	12145	8	July 2/90	July 2/93
Blondie 6	12146	20	July 1/90	July 1/93
Blondie 7	12147	20	July 1/90	July 1/93
Blondie 8	12148	20	July 1/90	July 1/93
BX 1	12151	20	June 30/90	June 30/93
BX 2	12152	20	June 30/90	June 30/93
BX 3	12153	20	July 1/90	July 1/93
BX 4	12154	16	July 1/90	July 1/93
BX 5	12476	18	Aug 10/90	Aug 10/93
BX 6	12477	16	Aug 20/90	Aug 10/93
BX 7	12478	9	Aug 24/90	Aug 24/93
BX 8	13272	20	Apr 29/91	Apr 29/92
BX 9	13273	20	Apr 29/91	Apr 29/92
BX 10	13274	20	Apr 30/91	Apr 30/92
BX 11	13275	20	Apr 30/91	Apr 30/92
BX 12	13276	20	Apr 27/91	Apr 27/92
BX 13	13277	15	Apr 27/91	Apr 27/92
BX 14	13278	18	Apr 29/91	Apr 29/92
BX 15	13279	15	Apr 27/91	Apr 27/92
BX 16A	13259	1	May 19/91	May 19/92
BX 16B	13260	1	May 19/91	May 19/92
BX 16C	13261	1	May 19/91	May 19/92
BX 16D	13262	1	May 19/91	May 19/92
BX 16E	13263	1	May 19/91	May 19/92
BX 16F	13264	1	May 19/91	May 19/92
BX 16G	13265	1	May 19/91	May 19/92
BX 16H	13266	1	May 19/91	May 19/92

9

<u>Claim_Name</u>	<u>Record #</u>	<u># of Units</u>	<u>Record Date</u>	<u>Next</u>	Due
				<u> </u>	e.
BX 16I	13267	1	May 19/91	May	19/92
BX 16J	13260	1	May 19/91	May	19/92
BX 17A	13280	1	May 1/91	May	1/92
BX 17B	13281	1	May 1/91	May	1/92
BX 17C	13282	1	May 1/91	May	1/92
BX 17D	13283	1	May 1/91	May	1/92
BX 18	13245	15	May 18/91	May	18/92
BX 19	13246	15	May 18/91	May	18/92
BX 20	13247	18	May 19/91	May	19/92
BX 21	13248	18	May 19/91	May	19/92
BX 22	13249	9	May 18/91	May	18/92
BX 23	13250	18	May 18/91	May	18/92
TP-1	301988	1	June 30/91	June	30/92
TP-2	301989	1	June 30/91	June	30/92
TP-3	301990	1	June 30/91	June	30/92
TP-4	301991	1	June 30/91	June	30/92
TP-5	301992	1	June 30/91	June	30/92
TP-6	301993	1	June 30/91	June	30/92
TP-7	301994	1	June 30/91	June	30/92
TP-8	301995	1	June 30/91	June	30/92
TP-9	301996	1	June 30/91	June	30/92
TP-10	301997	1	June 30/91	June	30/92
Ducky 1	12149	20	June 30/90	June	30/93
Ducky 2	12150	16	June 29/90	June	29/93
Ducky 3	12535	20	Aug 26/90	Aug	26/93
Willy 1	12136	20	June 29/90	June	29/93
Willy 2	12137	16	June 29/90	June	29/93
Willy 3	12138	20	June 29/90	June	20/93
Willy 4	12139	20	June 29/90	June	29/93
Willy 5	12140	<u>16</u>	June 29/90	June	29/93

676 ===

3. **EXPLORATION HISTORY**

Mineral exploration in the Discovery Creek area dates back to 1868, when placer gold was discovered on Silver Creek, 15 km southwest of the current property boundary. Placer gold mining in the area has taken place intermittently since 1868 to the present. Several exploration companies have been active in the property area, and the following is a very brief breakdown of past exploration activities in the immediate vicinity of the Discovery Creek property:

10

- 1940's Cominco Ltd. held the Lorraine porphyry copper deposit. The deposit was recognized as early as 1918; however, it's low grade nature discouraged further exploration efforts. Reserves at the Lorraine deposit are listed as 10 million tons grading, 0.67% Cu, and 0.006 oz/ton Au.
- 1947 Kennco acquired the Lorraine deposit, and performed exploration programs in the area through to the end of 1949. Exploration concentrated on copper, and resulted in the discovery of the Dorothy and Elizabeth showings, which are approximately 2.0 km west of the Discovery Creek property boundary.
- 1961-1963 Kennco performed additional exploration consisting of geological mapping, soil geochemistry, magnetic and IP surveys, on the area immediately west of the Discovery Creek block, and in the area along the Omineca road, in the southeastern part of the current property block.
- 1971 Falconbridge prospected in the area of the present Willy 5 and Blondie 3 claims.
- 1971-1974 Pyramid Mining Co. was very active in the area performing soil geochemistry and magnetic surveys, and some trenching.
- 1972 Noranda conducted IP surveys over the area presently covered by the Blondie 4, 5, 7 and BX 6 and 7 claims. This work outlined a broad area of high background IP responses, some of which coincides with resistivity lows, suggesting disseminated sulphide mineralization. However, there isn't any record of drilling to test these IP responses.
- 1974 Canadian Superior Exploration conducted geological mapping, prospecting, soil geochemical, IP and magnetic surveys in the present BX 1 to 4 claims.
- 1987 Cathedral Gold collected a grab sample of chalcopyrite in diorite that assayed 29.1 ppm gold, on the Ato property immediately north of the Discovery Creek property. Southwest of the property, on the Ling claims, Cathedral reports porphyry style mineralization with anomalous gold values.
- 1990 Manson Creek staked the Discovery Creek property, and conducted reconnaissance geological mapping and prospecting, supplemented by a stream silt geochemical survey. An airborne geophysical (mag, VLF) survey covered the entire property.

4. REGIONAL GEOLOGY AND MINERAL DEPOSITS

This portion of the report has been taken from R.D. Cruickshank's report of last year (Cruickshank, 1990).

The geology of this region has been described by Armstrong (1945) and Garnett (1978). The most recent tectonic interpretation appears on Wheeler et al (1988).

Rocks underlying the Discovery Creek property belong to a stratigraphic-tectonic terrane known as "Quesnellia". This terrane extends in a north to northwesterly direction for hundreds of kilometres across most of British Columbia, but is in general only a few tens of kilometres wide (Figure 3).

At this latitude, Quesnellia trends north-northwesterly, consisting of a belt of Takla Group volcanic rocks to the east, and the Hogem Batholith to the west (Figure 4). The Takla Group, of Upper Triassic to Middle Jurassic age, comprises basaltic to andesitic flows, breccias, agglomerates, and tuffs. Sedimentary rocks, which occur in the Takla Group in other parts of British Columbia, are of rare occurrence in this region. According to Garnett (1978), the Hogem Batholith consists of three or four suites of rock: i) monzonite and monzodiorite of Upper Triassic to Lower Jurassic age (Hogem Basic Suite); ii) granodiorite of a similar age to (i) and which may or may not constitute a separate iii) a Lower to Middle Jurassic syenite suite; and iv) a phase; Lower Cretaceous leucocratic granite to quartz syenite suite. The Takla volcanics are probably comagmatic with the Hogem Basic Suite ((i) above). The Harper Ranch subterrane of Quesnellia represents basement to the Takla Group, appearing at surface in a parallel belt immediately to the east. Harper Ranch subterrane consists of Upper Devonian to Triassic arc clastics, volcanics, and carbonate (Wheeler et al, 1988).

Quesnellia is an allochthonous terrane which was obducted onto the North American continent in Jurassic time. In this area, it is separated from North American rocks by Slide Mountain Terrane oceanic volcanic and sedimentary rocks of Devonian to Late Triassic age. The boundary between Harper Ranch subterrane and Slide Mountain units is marked by the Manson Fault zone, a major structural feature situated about 7 to 10 km northeast of the Discovery Creek property. North American rocks, represented by Wolverine complex schists and gneisses, occur 20 km northeast.

At the latitude of Omineca River, Harper Ranch units are 6 to 10 km wide, the Takla Group belt also 6 to 10 km, and the Hogem Batholith, 8 to 15 km broad. The Hogem Batholith is separated from Cache Creek Terrane to the west by another major structure, the Pinchi Fault. Cache Creek Terrane consists of oceanic volcanic and sedimentary rocks of Mississippian to Triassic age.

The Ouesnellia terrane in British Columbia is host to several important classes of mineral deposits. There is a great deal of current interest in alkaline intrusive related porphyry goldcopper deposits, such as Mt. Milligan, Mt. Polley, Afton, and Copper Mountain (Figure 3). Quesnellia is also host to the Highland Valley calc-alkaline porphyry copper deposits, the QR intrusive related gold deposit, and the Boss Mountain porphyry The Sustut stratabound epigenetic copper molybdenum deposit. deposit occurs in Takla Group conglomerates in Stikinia Terrane, but very close to Quesnellia. In the Dease Lake area, the Kutcho Creek volcanogenic massive sulphide deposit occurs in Triassic volcanics, again just outside the boundary of Quesnellia (Figure The recent discovery of the Mt. Milligan alkaline porphyry 3). gold-copper deposit, located 110 km southeast of Discovery Creek, has instigated a great deal of exploration activity in this area during the last three years.

Several copper +/- gold occurrences are known from the vicinity of the Discovery Creek property. The Lorraine and Boundary deposits occur 10 km and 20 km, respectively northwest of the property, and both are associated with the Duckling Creek syenite complex, one of the Lower to Middle Jurassic syenites of Lorraine is reported to host 10 million tons the Hogem Batholith. of ore grading to 0.67% copper and 0.006 oz/ton gold; with Boundary quoted at 7.7 million tons of 0.55% copper. The geology of both areas is described by Garnett (1978). Both occur within the syenite, near its northeastern contact with the Hogem Basic Suite; this contact strikes onto Manson Creek's properties to the southeast. The mineralization occurs as disseminated chalcopyrite, and bornite (rare at Boundary), in a foliated border phase of the syenite. Potash feldspar alteration is important in both areas.

A joint venture of Lysander Gold Corp. and BP Minerals is actively exploring another gold-copper prospect at Cat Mountain, 25 km north-northwest of the Discovery Creek property. Cat Mountain occurs close to the eastern boundary of the Hogem Batholith, and is underlain by Takla volcanics and a central intrusion porphyritic syenite (Assessment Report 7999). Mineralization occurs in gold-copper-magnetite veins, and one zone is enriched in arsenopyrite. Alteration consists of epidote, chlorite, and K-feldspar. Copper grades varying from 0.2% to 2.0% accompanied by gold in the 0.02 oz/ton to 0.30 oz/ton range, over widths up to 15 m or more, have been reported from drill holes and trenches (Assessment Report 7999; Lysander Gold Corp., 1990).

Other copper showings in the Hogem Batholith in this area include the Dorothy, Elizabeth, and Duckling localities, within 1 or 2 km of the western boundary of the Manson Creek property. The Rondah showing, near the headwaters of Wasi Creek, lies just outside the northern property boundary. The Mt. Milligan deposit, 110 km southeast of Discovery Creek, provides a useful model for exploration in regions underlain by Takla Group volcanic rocks. The deposit occurs adjacent to several smallish, subvolcanic, alkaline stocks (mainly monzonites). The ore deposit occurs near the eastern edge of a large coincident magnetic, IP, and soil geochemical anomaly. Magnetic anomalies in the area are related to the intrusive stocks. From an exploration viewpoint, it is important to note that these anomalies cover a much larger area than the deposit itself. Alteration at Mt. Milligan consists of a central potassic core (hydrothermal Kfeldspar and biotite), and an outer prophylitic halo (Rebagliati and Copeland, 1989).

5. **PROPERTY GEOLOGY**

The geology of the Discovery Creek property is relatively unclear. Outcrop exposure is poor, 1% to 2% of the property area, and mapping performed to date has been restricted to ridgetops. However, it is known that the property is underlain by two (2) discrete suites of rocks; the Takla Group volcanics, and intrusive phases of the Hogem Batholith. The Takla Group of rocks consist dominantly of volcanoclastic and pyroclastic rocks, with some exposures of massive andesite or basaltic flows on the property. When observed, these rocks trend between 40 deg. and 160 deg., with westerly dips ranging from 65 deg. to vertical. Rocks associated with the Hogem Batholith occur in two (2) separate settings in the project area; those belonging to the main batholith (dominantly quartz monzodiorite and syenite), and smaller intrusions within the Takla Group rocks to the south and east of the batholith (dominantly monzodiorite, quartz monzodiorite, feldspar porphyry, diorite and minor sygnite). All occurrences of Hogem type rocks are associated with aeromagnetic highs.

The 1991, fall diamond drill program explored only a very small area of the Discovery Creek property, and thus an overall good understanding of the property geology is lacking. The observations from the fall drill program will be discussed later in the report.

6. 1991 EXPLORATION PROGRAM

6.1 Base of Slope Soil Sampling Program

During the period of July 1, 1991 through July 4, 1991, a short base of slope soil sampling program was conducted on the Discovery Creek property. The program was designed to test the property for gold and copper anomalies outlined in previous assessment reports with initial work concentrated in the vicinity of Cathedral Gold Corporation;s Ling claims. Samples were collected every 200 m along base of slope drainage channels (either side), on three (3) separate drainages. Refer to Figure 5.

Samples were taken from a medium rusty brown soil horizon occurring below a dark grey to black top soil and vegetation layer. Sample depth varied from 15 cm to 75 cm depending on the top soil thickness and were predominantly taken at a depth of 25 cm to 35 cm. Approximately 200 to 400 grams of material was collected and deposited in a wet strength kraft paper envelope at each sample location. In all, 84 samples were collected over 7,800 m of drainage(s), and all samples were dried in the field, and then shipped to Acme Analytical Labs in Vancouver for 30 element ICP analysis.

An anomalous zone occurs across Creeks 2 and 3 immediately northeast of the Ling claims. The zone trends north-south and is approximately 800 m wide. Values of 100 ppm Cu or greater are considered anomalous. Other anomalous values occur on the north side of Creek 1, approximately 1 km east of Duckling Creek (Figure 5).

All results of the base of slope sampling program are listed in Appendix A (see assay summary and assay certificates), and copper values are plotted on Figure 5 (Komarevich, 1991). Refer to Appendix A for original report.

6.2 <u>Diamond Drilling</u>

Exploration activities in the early 1970's by Noranda and Canadian Superior (as compiled from assessment files), and more recently by Manson Creek, suggested that an excellent Cu-Au porphyry style drill target exists in the area of the DC Zone (figure 5) on the Discovery Creek property. To test this target, a 1,000 m to 1,300 m (3,000' to 4,000'), drill program was designed and exploration activities commenced October 16, 1991.

To establish ground control in the area of the DC zone, a couple of days were spent finding and walking old grid lines. The north-south grid lines of the Canadian Superior, 1974 grid, were marked only by ribbons. One such ribbon, located on the south bank of the east-west trending creek (east flowing), clearly showed the grid coordinates L68E/86N. It was decided to use this coordinate as a starting point for a new control grid. See figure 5.

The drilling contract was awarded to Britton Bros. Diamond Drilling Ltd, of Smithers, B.C., and diamond drilling commenced on October 21, 1991 and was completed on October 27, 1991. In all, three (3) NQ size drill holes were drilled for a total of 424.3 m (1,392') drilled. All drill holes were vertical (ie. dip of -90 degrees), and were spaced 400 metres apart in a north-south profile across a coincident IP and geochem anomaly. The drill program was abandoned after three (3) drill holes due to poor results.

All drill core was split and sampled at one meter intervals and then shipped from the field to Acme Analytical Labs in Vancouver to be assayed. Each sample was subjected to .5 gm aqua regia-ICP 30 elements type of assay, as well as a 10 gm aqua-regia digestion with atomic absorption procedure to assay for gold. The drill core is stacked and stored at Guilliland's Lodge in Germansen Landing, B.C.

The location orientation and total depths of all the drill holes drilled during the program are indicated in the table below, as well as on the enclosed drill hole map (figure 5).

DRILL HOLE SUMMARY TABLE 2

DRILL HOLE NUMBER	DATE COMPLETED	TOTAL DEPTH M (FEET)	GRID COORDINATES	DIP (DEGREES)	
DC-91-1	23/10/91	164 3 (539/)	15+00W/0+25N	-90 DEG.	
DC-91-2	25/10/91	151.5 (497')	L5+00W/4+25N	-90 DEG.	
DC-91-3	27/10/91	108.5 (356')	L5+00W/8+25N	-90 DEG.	
TOTAL	DRILLED:	424.3 (1,392')			

7. 1991 DIAMOND DRILLING RESULTS

The focus of the 1991 fall drill program was on the DC Zone (Figure 5). The DC Zone, - site of 1974 exploration activities on the BX 1 and BX 2 claims by Canadian Superior, is mapped as favourable Cu-Au porphyry geology at the contact of the Hogem Batholith with Takla volcanics. A good size and grade Cu in Soil anomaly is flanked by a strong IP chargeability anomaly at the contact area. Geological mapping indicates the area has undergone Potassic Alteration and traces of chalcopyrite have been mapped in outcrop. The configuration of the anomalies spatially resemble an intrusive/porphyry complex.

The three (3) drill holes drilled to test the DC Zone, all interesected massive volcanics, with the exception of drill hole DC-91-1. Minor amounts of syenite, in the form of dykes and dykelets, was encountered in drill hole DC-91-1. The volcanics

(Takla group) are typically fine grained, green, weakly porphyritic to locally strongly porphyritic, very massive, unaltered and Local sections of bleaching does occur where epidote undeformed. and minor K-spar alteration has been introduced; however, overall alteration is weak. Mineralization in the three (3) drill holes Disseminated pyrite was observed in the is also very weak. bleached zones occasionally up to 5% and chalcopyrite was also observed disseminated, and as stringers up to 1% in some bleached sections. Overall disseminated mineralization within the volcanic unit is less than 1%. Four (4) representative drill core samples from the drilling program, were submitted to Vancouver Petrographics Ltd. for petrographic analysis. The analyses are consistent with field observations, and results of the analysis are included in Appendix B.

Geophysical surveys have suggested that a large intrusive body lies south of location DC-91-1, and the occurrence of syenite dykes and dykelets in drill hole DC-91-1, suggests that the collar location of DC-91-1 may be near the, or a, Takla/Intrusive contact. The syenite was logged as a fine to medium grained, tan coloured, very homogeneous unit, with very little alteration or observed mineralization. Locally disseminated chalcopyrite was observed in the syenite; however, in amounts less than 1%.

Due to the lack of mineralization and alteration observed in drill holes DC-91-1 through DC-91-3, the drill program was cut short. Based on the results of the drilling, its difficult to speculate on the Cu soil geochemical anomaly, and the coincident IP chargeability anomaly that constitutes the DC Zone. The assays results suggest that copper is present within the Takla volcanics, but in weakly anomalous concentrations. Refer to Table 3 for an assay summary of the fall drill program, and to Figure 6 (in map pocket at back) for an illustration of drilling results. The drill logs are contained in Appendix C.

DRILL HOLE	Au Cu	FROM	TO	INTERCEPT	AU OPT
NUMBER	ZONE	(M) 	(M)	M (FEET)	Cu %
DC-91-1	Copper	3.7	164.3	160.6 (527/)	87.10 pom
	Lead	3.7	164.3	160.6 (527)	3.32 ppm
	Zinc	3.7	164.3	160.6 (527')	32.10 ppm
	Arsenic	3.7	164.3	160.6 (527')	2.81 ppm
	Gold	3.7	164.3	160.6 (527')	4.43 ppb
DC-91-2	Copper	3.1	151.5	148.4 (487')	159.31 ppm
	Lead	3.1	151.5	148.4 (487')	3.21 ppm
	Zinc	3.1	151.5	148.4 (487')	43.53 ppm
	Arsenic	3.1	151.5	148.4 (487')	3.50 ppm
	Gold	3.1	151.5	148.4 (487')	8.82 ppb

ASSAY SUMMARY TABLE 3

DRILL HOLE	Au Cu	FROM	TO	INTERCEPT	AU OPT
NUMBER	ZONE	(M)	(M)	M (FEET)	Cu %
DC-91-3	Copper	3.1	108.7	105.6 (347')	145.51 ppm
	Lead	3.1	108.7	105.6 (347')	3.69 ppm
	Zinc	3.1	108.7	105.6 (347')	59.80 ppm
	Arsenic	3.1	108.7	105.6 (347')	2.60 ppm

8. CONCLUSIONS AND RECOMMENDATIONS

The results of the 1991 fall drill program suggest that the coincident soil (Cu) geochem anomaly, and the IP chargeability that constitute the DC Zone, are not the result of a subsurface mineralized zone, rich in copper. All three (3) drill holes failed to intersect any significant copper/gold mineralization, or any significant alteration which would be suggestive of a porphyry copper/gold type of deposit.

Any future exploration on the Discovery Creek property would have to be more "grass roots" in nature. Upon the establishing of good grid control, the area of interest (DC Zone or other areas), should be well mapped, and the thin overburden on the property suggests that soil geochemistry surveys can be utilized. Surface mapping, soil geochem, and detailed ground geophysics followed by possible trenching programs, are suggested prior to any future diamond drilling programs.

Respectfully Submitted,

Ian Fraser

21

.

9. <u>SUMMARY OF EXPENDITURES</u>

.

Geological Personnel	\$17,471.70
Support Personnel	3,328.13
Camp Costs	696.95
Field Costs	6,551.84
Charter Air Support	7,530.01
Travel Expenses	1,518.09
Expediting	140.25
Contractor-Drilling	42,394.66
	6,948.53
Contractor-Core Analysis	5,987.98
	\$86,580.16 =========

10. **REFERENCES**

Armstrong, J.E. (1945): Fort St. James map - area, Cassiar and Coast Districts, British Columbia; G.S.c. Memoir 252.

British Columbia MEMPR: Assessment Report 7999.

Cruickshank, R.D. (1990): Geological and Geochemical Report on the Discovery Creek Property, unpublished company report.

Garnet, J.A. (1978): Geology and mineral occurrences of the southern Hogem Batholith; British Columbia MEMPR, Bulletin 70.

Komeravich, M.P. (1991): Base of Slope Soil Sampling Summary on the Discovery Creek Property, unpublished company report.

Lysander Gold Corp. (1990): News Release dated January 3, 1990.

Rebagliatti, M; and Copeland, D. (1989): Mt. Milligan alkaline intrusive Au-Cu deposit; the Gangue, October, 1989, p. 5-7.

Wheeler, J.O.; Brookfield, A.J.; Gabrielse, H.; Monger, J.W.H.; Tipper, H.w.; and Woodsworth, G.J. (1988): Terrane map of the Canadian Cordillera; G.S.C. Open file 1894.

11. STATEMENT OF QUALIFICATIONS

I, Ian Robert Fraser, do hereby certify that:

- 1. I am a contract geologist for Golden Rule Resources Ltd. with offices at #1450, 125-9th Avenue S.E., Calgary, Alberta, T2G 0P6
- 2. I am a graduate of the University of Laurentian, B.Sc. Geology.
- 3. I am a member in good standing of the Canadian Institute of Mining and Metallurgy.
- 4. I was employed by Golden Rule Resources Ltd. to prepare this report based on previous work done on the property and on published information, and to prepare future recommendations.
- 5. I have no conflicting interest, direct or indirect, in Golden Rule Resources Ltd., nor in any of their properties, nor do I expect to received any such interest.
- 6. This report may be used by Golden Rule Resources Ltd., in whole or in part, as they so require.

Ian R. Fraser, B.Sc., Geologist

APPENDIX A

BASE OF SLOPE

.

4

SOIL SAMPLING SUMMARY

ON THE

DISCOVERY CREEK PROPERTY

BLONDIE 1-8 BX 1-23 DUCKY 1-3 WILLY 1-5

OMINECA MINING DIVISION

BRITISH COLUMBIA

NTS 93N/14E&W

FOR

GOLDEN RULE RESOURCES LTD

BY

MICHAEL P. KOMAREVICH

JULY 17, 1991

During the period of July 1, 1991 through July 4, 1991, a short base of slope soil sampling program was conducted on the Discovery Creek property in north-central British Columbia. The property is located 265 km north-west of Prince George and 30 km west of Germansen Landing. The claim block consists of 39 modified grid claims totalling 666 units with a surficial area of about 16,650 ha. The author resided in Germansen Landing and was transported to the property daily by helicopter.

.:

The program was set up to test the property for gold and copper anomalies outlined in previous assessment reports with initial work concentrated in the vicinity of Cathedral Gold Corporation's Ling claims. It consisted of base of slope soil sampling along drainage channels. Sampling was performed at 200 m intervals along both sides of the drainage channel way. A medium rusty brown soil horizon was sampled occurring below the dark grey to black top soil and vegetation layer. Sample depth varied from 15 cm to 75 cm depending on the top soil thickness and were predominantly taken at a depth of 25 cm to 35 cm.

Approximately 200 to 400 grams of material were collected in a wet strength kraft paper envelope at each location along the drainages. Sampling was undertaken on the three (3) drainages listed below: Creek 1 originated on the Ducky 3 claim and flowed into Duckling Creek on the BX 8 claim. The creek was sampled over 2,800 m and a total of 30 samples (CR-1-01 through CR-1-30) were taken.

Creek 2 started on the Ducky 1 claim and flowed across the Willy George Fault onto the BX 2 claim. A total of 28 samples (CR-2-01 through CR-2-28) were taken over 2,600 m.

Creek 3 originated near Creek 2 on the Ducky 1 claim and flows onto the BX 1 claim. A total of 26 samples (CR-3-01 through CR-3-26) were taken over 2,400 m.

In total 84 samples (see assay summary and Figure 6) were taken over 7,800 m of drainages. The samples were air dried and shipped to Acme Analytical Labs in Vancouver for 30 element ICP analysis.

Results are listed in the assay certificate with copper values provided in the assay summary and on maps 2 and 3. Values of 100 ppm Cu or greater are considered anomalous at this point until a more accurate value is determined from further sampling results.

An anomalous zone occurs across Creeks 2 and 3 immediately northeast of the Ling claims. It trends approximately north-south and is approximately 800 m wide. Other anomalous values occur on the north side of Creek 1 approximately 1 km east of Duckling Creek. Further sampling along drainages to the north is recommended to test the continuity of these anomalies.

The sampling program is expected to resume in late July and continue into August. Currently, Acme Analytical Labs have been instructed to analyze all samples for aqua regia leachable gold with results pending.

Thicker P. K

Michael P. Komarevich July 17, 1991 cc: BC-42 Tech

	······································	· ·	A	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	
			Assay	<u>Dummar</u>	Y		
· • • • • • • • • • • • • • • • • • • •				4-1		مري جاند آها د در. مري	
		· · ·	Cree				
- , ,,	• • · · · ·	f	Culoom		· · · · · · · · · · · · · · · · · · ·		1
ample #		· · · · · · · · · · · · · · · · · · ·	CU(ppm)	· · · · · · · · · · · · · · · · · · ·		iiiiii	
			70		tim a st		
CR-1-01			17				***
CR-1-02	· •		i LO ind				•
CR - 1 -03							
CR-1-04			67	• •			
CR-1-03		÷	07	· ·			
CR - 1 - 06	• •		70.5		· ·		·
CR-1-07	· · · · · · · · ·	·	34				<u>.</u>
CR-1-08		· · · · · · · · · ·	. 79		···· · · · · · · · · · · · · · · · · ·	· ·	• • • •
CR-1-09	• • • • •		31		e in ein		• • •
CR-1-10	· · · · · · · ·		148				
CR-1-11			. 2.37	•			
CR-1-12			54				
CR-1-13			7.				
CR-1-14			162 _			•	· · ·
CR-1-15	· · · · · · ·		163	8	· · · · · · · · · · · · · · · · · · ·		
CR-1-16	·			lan di katalan di katal Katalan di katalan di ka	••••		· · · · - ·
CR - 1 - 17			33				
CR-1-18			126			· . ·	
CR-1-19			285		• • •		
CR-1-20						• ·-	•• •
2R-1-21	:	[.720	• • •	·····	•	
CR-1-22			21				
CR-1-23			79				
CR-1-24			28				
CR-1-25		· · · · ·	57				
CR-1-26			26				
CR-1-27			60				
CR-1-28			65		1	•	
CR-1-29			91				
CR-1-30			39				
							•
		1					
						•	
1						-	

Assay Summary

Creck 2

•.... <u>Assay</u> Summary <u>Creek 3</u>

1	•	•	•	•	•	••	 	'	 , ••

ample #			Cu(ppm)				
CR- 3-01			62				
CR-3-02			. 48				
CR-3-03			38				
CR-3-04			115				
CR -3-05			29	:			
CR-3-06			70				
CR-3-07			62	··· · <u>·</u> ···			
:R-3-08			109				
CR- 3-09			164			•	
=R-3-10			115	· · · · · · · · · · · · · · · · · · ·		1	
ER -3-11			180			•	
CR-3-12			203	······································			• • • •
CR-3-13	· =·		172	• • · ·			
CR-3-14	• • • • •	· [87				·· · ·
:R-3-15		: 1	42	· · · · · · ·	 · · · ·		1 ···
(R-3-16	······································		57		· ••• •	• •	
:R-3-17		······································	60	····		•	••••••••••••••••••••••••••••••••••••••
CR-3-18			74			· . ·	
· p . 3 - 19		• • •	17				-
R-3-20	• • • • • • • •		116 .		• •		
CR - 3-21		• . • •	07	· · · ·	· · · ·	•••••	
-R-3-27	·		107	· ·	·····	· -	
R.3.23	· · ·		μ ₂				
· A . 3 - 24			72 UI				
(P. 2-25	1		07				
·R-3-26			23				
			29				
						ĺ	· .
		• •					
						ч. — — — — — — — — — — — — — — — — — — —	
						-	

ACME ANAL	YTICAL	LABOR	ATORIES		TELEFAX
		852 East H Vancouver, CANADA	astings Street B. C. V6A 1R6	Telephone: Telefax: Computer data:	604 253 - 3158 604 253 - 1716 604 251 - 1011
Attention:	Mici	k		Date: Dec 10, 1	.991
Company:	Golden	Ru le			
From:	Lisa			Number of pages inc	el. this one: 3
Short message:	91-233	9		<u>.</u>	•
		/			
					• • •
			•		

R L	INE ARALI	TIC	L	ABOT	ATO	RIES	LAD Gold	len 10 - 1	8 Ru 25 -	52 E G Le 9th	EOCI Resc st is	STIN	IGS CA CA es	ST. AN Ltd	VAN EAL 120	COUT ZETI	ZE B S CE Sile	.C. RTI	91- by: (A 1 AT 23	26 29	Da	Roa ige Evic	E(60	6) 253	-31-	58 PA	660	4)25	
д.— 23.—	SAMPLE#		Cu ppr	Pb ppn	Zn ppm	Ag	Ni ppn	Co ppm	Min. ppm	Fe X	A. PPM	U ppm	Au ppn	Th ppm	Sr ppm	Cd pps	Sb ppe	Si ppn	Ppm V	Ce X		La	Cr ppn	Ng X	Ba I ppm	i X pi	BAL X III	Na X	K Z	
_	CR-1-1 CR-1-2 CR-1-3 CR-1-4 CR-1-5	15 2 3 3	75 28 178 64 61	34	101 62 110 80 83	54313	29 8 59 36 45	14 6 26 12 21	924 559 815 466 745	6.90 1.93 4.80 3.19 3.19	21 2 6 6 4	5 5 5 5 5		1 1 1 1	33 42 43 34 54	2222	2 2 2 2 2 2	4 2 2 2 2 2 2 2	167 81 128 113 88	.31 .25 .51 .26 .40	.100 .059 .083 .029 .043	24422	126 32 191 134 160	1.52 .52 1.93 1.31 1.45	114 49 118 41 125 01	92894	3 2.28 3 1.32 3 1.98 2 1.40 3 1.41	.04 .02 .03 .03 .03	.23 .05 .62 .10 .15	
3-266-2606	CR-1-6 CR-1-7 CR-1-8 CR-1-9 CR-1-10		103 34 74 31 144	5 3 3 2 2	94 81 49 70 93	.3 .2 .3 .3	34 49 35 59 119	16 18 14 17 33	861 865 413 351 696	3.65 2.52 3.34 2.74 4.52	42625	5 5 5 5		1 1 1 1	82 68 66 56 46	2222	2223	22222	110 68 91 70 114	.71 .61 .57 .47 .56	.094 .051 .092 .030 .092	6 2 6 2 4	108 166 123 205 287	1.26 1.55 1.12 1.76 3.52	90 11 132 11 98 11 88 22 288 12	1	2 1.32 2 1.45 2 1.45 2 1.17 2 1.61 2 2.79	.03 .03 .03 .03 .04	.22 .22 .30 .29 1.52	
TO 1-40	CR-1-11 CR-1-12 CR-1-13 CR-1-14 CR-1-15	1!	237 54 71 167		144 90 362 210 101	1.2 .3 .4 .3 .4	74 59 29 31 53	22 17 21 20 23	1280 599 3654 1406 950	3.56 3.54 3.62 4.65 3.27	4498	5 5 5 5 5 5 5 5 5	ND ND ND ND	1 1 1 1 1	79 76 96 122 111	1.3 .2 2.1 .6 1.6	32222	2 2 2 2 2 2 2	130 112 102 144 116	1.51 .62 .68 .65 1.11	.068 .058 .105 .095 .098	6 3 4 6 4	197 170 104 98 144	2.03 1.63 .85 1.41 1.68	175 143 227 95 100	3 11 19, 13	2 1.97 2 1.66 2 1.18 2 1.86 5 1.75	.02 .03 .02 .03 .03	.34 .18 .26 .22 .25	
	CR-1-16 CR-1-17 CR-1-18 CR-1-19 CR-1-20		1 3 12 28 1		2 20 57 57 57 57 57 57 57 57 57 57 57 57 57	.1 .2 .2 .4	20 29 44 81 4	5 10 19 26 2	152 302 582 443 72	2.82 2.49 3.69 3.73 .49	2 7 10 2	5 5 5 5 5	nd hd nd nd nd	1 1 1 1	64 90 158 134 38	.2 .2 .2 .4 .2	22232	2 2 2 2 2 2 2 2 2	109 89 132 129 23	.21 .67 1.01 .90 .25	.014 .033 .102 .050 .024	32724	182 113 134 228 30	.09 .93 1.45 2.47 .16	35 96 98 165 29	10 16 12 14	2 .38 2 1.07 2 1.87 2 2.25 2 .44	.02 .03 .02 .03 .02	.04 .09 .36 .66 .06	1; 1 1 1 1 1 1 1
NALYTICAL	CR-1-21 CR-1-22 CR-1-23 CR-1-24 CR-1-25		2 72 5 2 1 7 1 2 2 5		185 2 17 2 62 5 65 5 57	.5 .1 .2 .3	57 4 97 18 23	19 2 27 13 10	1226 76 395 386 317	2.96 .54 4.10 5.44 3.89	5 2 8 6 7	5 5 5 5 5 5	2022 2022 2022 2022 2022	1 1 1 1	128 22 49 54 79	22222	32422	2 2 3 2 2	85 26 106 138 123	1.91 .35 .36 .36 .41	.083 .007 .041 .244 .072	17 4 2 4 4	186 37 319 60 89	1.61 .11 2.61 1.07 .74	137 74 160 87 55	11 19 25 21 12	4 1.80 2 .51 2 2.44 2 1.94 2 1.10	.02 .02 .03 .03	.32 .04 .60 .12 .05	
DM ACME P	CR-1-26 CR-1-27 CR-1-28 CR-1-29 CR-1-30		5 2 6 1 6 5 9 1 3	5 1 5 1 9 1	43 7 50 2 49 6 44	· .1 · .1 · .2 · .4	14 13 23 59 17	7 7 10 21 10	275 300 317 544 317	3.29 2.30 3.52 5.09 3.08	4 2 2 6 2	5 5 5 5 5 5	5 5 5 5 5 5 5 5 5	1 1 1 3	75 119 76 48 80	.2 .2 .2 .2	2 2 2 3 2	2 2 2 2 2 2	102 70 87 127 77	.33 .62 .43 .40 .44	.056 .063 .075 .106 .073	4 7 6 3 7	49 39 65 204 39	.48 .48 .79 1.80 .59	64 43 84 53 89	13 10 13 21 14	2 1.24 2 1.13 2 1.73 2 2.12 2 1.73	.02 .03 .03 .03 .03	.05 .06 .07 .11 .06	
7:22 FR(CR-2-1 CR-2-2 CR-2-3 CR-2-4 CR-2-5		1 6 2 7 1 2 1 11 2 11	0 3 2 9 3	8 91 2 90 7 91 4 131 2 7	3 4 5 4 6 4 7	45 23 44 51 63	15 13 16 22 21	657 584 585 773 510	4.46 3.60 3.86 4.96 4.14	3 5 16	5 5 5 5	ND ND ND ND	1 1 1 1	34 45 45 47 57	2222	2 2 5 3	2 2 2 3	97 89 88 125 121	.40 .34 .51 .71 .65	.095 .104 .060 .076 .049	2 4 2 5 3	221 85 205 290 203	1.60 1.15 1.47 1.79 2.09	64 41 76 40 42	11 08 13 10 16	2 2.18 2 2.32 2 1.73 2 2.47 2 2.20	.04 .03 .05 .04 .03	.19 .08 .17 .20 .13	11
1112	CR-2-6 STANDARD	: 1	12 85	4 7 4	4 9 1 13	B 2 2 7.0	74	25 32	724 1041	4.17	7 236 7 236	5 16	ND 6	1 39	51 52	.2 18.4	5 15	2 18	95 55	.99 .48	053 090	2 39	208 58	2.54	65 178	18 09	2 2,23 34 1.88	.04 .06	.13 .15	13
C-10-19			10 TH -	P IS LE Sampl	500 G ACH I E TYP	RAN SA S PARI E: SOI	INPLE 11AL F 1L	IS DI Or HN	GESTE FE 1	ED WIN R CA	rh 3nl P la (3-1-2 CR MG	Z NCL BA T	-HNC3- 1 B W	OSH-	AT 95 LIMIT	DEG. Ted foi	C FOI		HOUR	and Au di	L S DL ETECT	LUTED 10N L	TO 10 IMIT 1	D ML WIT By ICP I	n wa S 3 i	TER. PPN.			
Ë	DATE RE	CEIV	ED:	JUL	8 19	91 1	ATE	REP	ort	MAI	LEDI	4/1	ly	-#[<i>41</i> .	81	GNED	BY	;			.0.T	DYE,	C.LEO	ig, J.W	NG; (CERTIFIED	9.8.C	. Assa	YERS

•

s

.

FILE # 91-2339 Golden Rule Resources Ltd.

Col 1000 11100																					-								CINE ANNAL YT DONL
SAMPLE#	Но рри	Cu ppn	Pb ppm	Zn ppm	Ag ppm	II S ppn	Co ppe	Hn ppm	Fe گ	t) As: ppm	U ppm	Au ppre	Th ppm	Sr ppa	l:Cd	Sb ppm	Si ppit	Y ppa	Ca X	ŶX	La ppa	Cr ppm	Hg X	Ba Ti ppm X	9 ppa	AL X	Ka X	K X	1 1 1 1 1 1
CR-2-7 CR-2-8 CR-2-9 CR-2-10 CR-2-11	1 1 1 1	90 118 99 88 475	2 4 2 2 2	95 94 76 76 142	.1 .2 .1 .1	70 66 53 43 62	26 27 19 18 33	757 723 517 471 1178	4.18 4.63 5.14 5.75 4.13	10 12 12 31 8	5 5 5 5 5		1 1 1 1	66 56 51 56 74	22222	22534	322222	125 117 111 131 101	.95 .76 .51 .46 1.21	.044 .032 .100 .038 .043	2 2 2 2 3	210 212 178 150 156	2.37 2.24 1.53 1.36 1.72	61 .15 73 18 40 .15 32 .22 72 ,15	2 2 2 2 2 2 2 2 3 2	.49 .74 .28 .48 .60	.04 .04 .03 .04 .04	.08 .09 .07 .11 .09	
CR-2-12 CR-2-13 CR-2-14 CR-2-15 CR-2-16	1 1 1	123 105 26 86 49	3 6 10 3 4	89 116 64 112 84	.2 .2 .3 .3 .1	33 43 21 48 57	17 22 10 21 23	906 586 299 818 611	3.45 5.28 4.05 4.06 4.08	10: 12 11: 10: 8:	5 5 8 5	999999 999999	1 1 1 1	68 129 57 73 65	.2	2 2 2 4 5	2 2 2 7 2	96 138 116 104 104	.76 1.82 .50 .92 .69	.073 .058 .022 .043 .035	522222	102 105 103 135 130	1.12 .99 .62 1.51 1.80	65 .09 59 .20 35 .19 51 .17 45 .18	2 1 3 2 3 1 4 2 3 2	.77 .94 .31 .35 .08	.03 .05 .04 .04	.11 .09 .05 .11 .13	1
CR-2-17 CR-2-18 CR-2-19 CR-2-20 CR-2-21	1 2 1 1	75 123 32 102 34	6 7 6 23 12	104 115 80 114 49	.† .5 .3 .1	23 33 23 49 19	16 19 13 19 9	591 2122 384 1126 389	5.83 4.84 5.66 4.13 2.32	6 6 8 11 7	5 5 9 5		1 1 1 1	42 72 38 208 82	· · · · · · · · · · · · · · · · · · ·	2 2 3 2 3	5 2 2 2 2 2	160 120 142 117 78	.39 .68 .29 1.66 .61	.101 .066 .094 .098 .058	4 5 3 7 5	59 106 68 90 49	1.24 1.02 .70 1.48 .64	67 .20 77 .11 39 .16 80 .09 54 .13	2 2 3 2 3 2 4 2 2 1	.67 .47 .31 .33 .29	.03 .03 .02 .03 .03	.13 .10 .05 .25 .06	
CR-2-22 CR-2-23 CR-2-24 CR-2-25 CR-2-26	1 1 2 3 1	39 64 94 134 83	3 6 4 5 6	46 46 94 60 54	.1 .1 .2 .1	18 15 26 24 17	9 10 14 15 16	274 384 602 608 644	3.19 2.99 4.31 4.30 4.49	9 7 7 8	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	69 103 86 75 87	.2.3.2.2	2 2 2 2 3	2222	103 75 110 106 114	.46 .69 1.02 .66 .70	,028 ,083 ,081 ,040 ,121	3 6 6 5	54 37 78 61 46	.64 .55 .90 .70	40 .16 46 .09 63 .10 47 .13 52 .12	3 t 3 1 3 2 2 1 4 1	.45 .21 .12 .97 .60	.03 .03 .04 .04	.05 .05 .08 .06	2 1 1 1
CR-2-27 CR-2-28 CR-3-1 CR-3-2 CR-3-3	1 1 1 1	37 43 62 48 38	8 3 3 2	70 73 111 118 105	.1 .1 .2 .2 .1	16 22 62 64 67	12 13 30 25 27	390 364 720 796 872	4.83 5.20 5.60 5.26 5.36	8 6 12 11 10	5 5 7 5 5		† † † †	50 44 44 59 49	.2 .3 .2 .5 .3	2 2 3 5 2	6 2 3 2 2	130 139 127 108 127	.39 .38 .43 .68 .69	.101 .069 .078 .087 .056	2 3 2 2 2 2	64 78 274 249 278	.63 .66 2.73 2.02 2.18	47 .13 50 .17 64 .17 95 .13 74 .21	4 1 4 1 2 3 3 2 4 2	.73 .74 .20 .46 .25	.03 .03 .03 .04 .03	.05 .07 .29 .18 .15	7.7.7 7.7 7.7
CR-3-4 CR-3-5 CR-3-6 CR-3-7 CR-3-8	1 1 3 2	115 29 70 62 109	4 3 2 4	85 100 129 85 103	.4 .1 .2 .1	72 51 41 59 71	28 19 22 31	765 600 709 600 900	4.37 5.28 6.62 4.67 5.94	13 8 11 11 13	6 5 5 5 5	KB NG NG NG	2 1 1 1	60 55 51 60 53	.7 .2 .3 .2 .2	3 3 2 3	2 5 2 2 2	136 121 150 142 166	.78 .58 .51 .92 .65	.050 .066 .059 .035 .040	. 2 2 2 2 3	240 198 157 218 249	2.35 1.71 1.48 2.06 2.59	49 .16 84 .19 88 .19 31 .20 54 .17	3 2 3 2 3 2 3 2 3 2	.42 .08 .28 .34 .77	.03	.13 .14 .11 .13 .15	2
CR-3-9 CR-3-10 CR-3-11 CR-3-12 CR-3-13	2 1 3 2 4	164 115 180 203 172	4 2 3 2	71 86 168 123 80	.3 .1 .2 .2 .1	52 70 54 43 47	25 31 20 19 18	649 628 655 789 515	4.01 6.47 4.25 4.19 4.04	11: 14: 9: .9, 8:	5 5 5 5 5	ND ND ND ND	1 1 1 1	64 37 75 74 122	.3 .6 .7 .5 .3	2 3 2 2 2	22222	121 175 105 98 93	.92 .76 1.01 .80 .99	.052 .049 .050 .056 .060	4 2 3 4	163 158 163 129 155	1.36 2.10 1.61 1.18 1.35	47 .13 31 .24 57 .13 56 .11 40 .12	3 2 3 2 3 2 3 1 4 2	.36 .58 .23 .85 .05	.03 .05 .04 .03 .04	.11 .12 .12 .12 .12	331
CR-3-14 Standard C	1 17	87 56	2 36	67 133	.1 6.9	42 71	18 33	569 1053	3.48 3.91	6 38	5 23	ND 6	1 41	68 52		2 14	2 19	88 55	.60 .48	.034	3 39	124 58	1.26	41 .17 174 .09	4 1 34 1	.69	.04 .06	.09 .14	11 12

DEC-10-199

Page 2

Δ

44

Golden Rule Resources Ltd. FILE # 91-2339

CR-3-15 CR-3-16	ария 1	ppa	ppm	ppa	ppm	008	<u></u>				_		- F 14	фГ	31. LO:	- 20		w w	Ca	3614875	L	Cr	1.9						52 T
CR-3-15 CR-3-16	1					Poles.	ppm	ppm	X	ppm	ppm	ppm	ppe	ppa	ppe.	ppa	ppm	ppe	7		ppm	ppa	X		ppm	X	X	X	獚
CR-3-16				100	107	28	15	762					•	17	1973			84	17	1.00	-	470	0/			2 24	<u></u>		4
CR-3-16	_	**		100		20	15	332	9,90	18 S		NU	1	Or	36-6	· <u> </u>	4	00		101	2	100	. 70	22		2.20	.UZ	.07	Ħ
	3	57	- 5	- δ τ	. († . 3 .	T6	9	30Z	3.30	:s≩⊅.	5	케다	T	- 64	2. S. Z.	2	2	93	,30	2030	- 3	43	.65	49 3315	2	1.49	.02	.05 :	橸
CR-3-17	1	60	- 3	- 114	4	- 21	- 15	398	5.92	- 19 (9)	5) D	1	62	1. Z	2	2	125	.41	109 0;	3	92	.79	- 51 3:13	- 4	1.99	.02	.05	H
CR-3-18	1	- 74	5	60	8.3	17	11	633	3.47	83	5	ND	1	- 80	我出当	2	2	77	.62	:036	- 4	56	.52	38 2.09	2	1.33	.úz	.04	₽
CR-3-19	1	17	6	74		20	0	279	3.45	-19 L	5	NÐ	1	67	10.5	2	2	85	.39	078	2	96	.71	St 15	2	1.37	.02	.06	ŧ
	•		-				•			26.3	-		•		Saft.	-	-			807.	-		•••		-				ł
CR-3-20	4	114	L	85		38	26	151	1 36		5	ND	1	106	-142 2	. 7	2	87	71	1151	1	100	21	30 017	,	3 117	67	67	ij.
	-					30	40	411	7.50	- X 4		200		7/	1	5	5	7/			- 7	100		44		3 40	.05		ij.
ux-3-21	•	01	- 3	01	<u></u>	24	10	344	3.33		2				2 - - -			- 14	.+7	-Ur I-		20	-10	00 .12	· · ·	2.19	.02	-02	52
CR-3-22	1	123	- 6	- 74	2	- 47	20	763	4. 25	- H S	5	нo	1	65	. .	2	2	- 81	. 60	.041	- 4	120	1.10	45 .10	Z	1.45	.0Z	.07	
CR-3-23	1	42	- 5	- 55	.2	13	12	307	4.13	5.	5	ND	2	- 80	· (a) . 2	2	- 2	87	.53	104	- 5	- 38	.39	62 .09	2	1.53	.02	.04	3
CR-3-24	1	- 41	- 4	- 48	33	16	12	488	3.73	- 7	5	ND	1	- 91	15.Z.	2	2	80	.90	.061	- 3	- 39	.55	44 .08	Ż	.97	.03	.06	3
					-49 J															÷. ;				· · · · ·					ŝ,
CR-3-25	1	83	5	45		16	12	387	3.80		5	ND	1	96	.2	4	2	85	.64	.095	5	40	.59	62 .11	3	1.34	.03	.06	Ħ
CP-3-26	i	24	ŝ	38	2	10	<u>.</u>	202	2.79	11 .	7	KD	- i	66	- 5	ż	5			.015	÷.	77	35	33 2013	2	1 12	. 02	05	***
CTANDARD C 1	10	27		173	7 4	71	τĭ	1077	1 04	- 10	44	4	- 10	ET.	18 .	46	21	Č.		no1	10	50		178 00		1 00	07	45	1

2

Page 3

APPENDIX B

•

.
DC 91-1-1 Hornblende (biotite) plagioclase amphibolite

General description

Foliated amphibolite. Composed of recrystallized lensoidal clusters of amphibole with intermixing of foliated clusters of biotite. In a finer grained groundmass of recrystallized plagioclase.

The biotite shows diffuse intergrowths with hornblende suggesting retrograde metamorphism (alteration) of hornblende. There are abundant, fairly uniformly distributed, altered remnants of coarse plagioclase showing sericitic and red brown clouding of alteration. These remnants probably represent incomplete metamorphism of coarse plagioclase grains.

Cut by veinlets of carbonate and microveinlets of unidentified low birefringent low relief material. {Not epoxy because it is anisotropic}

Microscopic description Altered constituents

- Plagioclase; 15%, anhedral, (0.2 to >1.0 mm). Diffuse outlines of strongly altered plagioclase remnants. Moderate felted microcrystalline sericite and brown dusted altered clouds of clay(?). Superimposed, disseminated, fine crystalline biotite of varied intensity. Some of these plagioclase remnants form diffuse cores of unaltered plagioclase. Fairly uniform distribution throughout. Incomplete metamorphism/recrystallization of the protolith?
- K-feldspar; stained slab indicates diffuse weak K-feldspar stain. Not confirmed in thin section.

Unaltered constituents

- Amphibole (hornblende); 30%, anhedral/subhedral (<.05 to 0.5 mm). Tends to occur in irregular lensoids of similar grain-size. Some intermixing with biotite.
- Biotite; 15%, anhedral (0.01 to 0.5 mm). Clusters of foliated interlocking grains, intermixing with hornblende. Locally there are diffuse intergrowths suggesting retrograde alteration of hornblende to biotite.
- Plagioclase; 30%, anhedral (<.05 to 0.2 mm). Irregular interlocking grains form the groundmass among amphibolebiotite and altered plagioclase remnants. Scattered conspicuous twinned grains; indicated composition in oligoclase range.

Shows gradational diffuse contacts with altered plagioclase remnants.

DC 91-1-1 Continued

Veinlets

Carbonate; very weak effervescence with cold HCl.

Secondary amphibole, very fine felted.

Undetermined; colourless, low refringence (<epoxy), very low birefringence (near isotropic) Biaxial (-)? 2 V about 60°. (Gypsum is biaxial +).

DC 91-1-3 Aletered porphyrytic andesite?

General description

The protolith is composed of altered plagioclase and mafic phenocrysts in a finer interlocking weakly altered plagioclase groundmass. Very minor accessory sphene, traces zircon, apatite.

Complex alteration and recrystallization patterns/fabrics are overprinted on the protolith.

(a) The plagioclase phenocrysts and groundmass are moderately to strongly altered by felted microcrystalline sericite and a redbrown alteration dusting.

(b) Biotite phenocrysts have ragged outlines and have weak to moderate, locally complete chlorite alteration.(c) There are fracture controlled(?) diffuse networks of beaded diopside, and of relatively unaltered twinned plagioclase.

Veining/impregnation The centre of the section and one end is traversed by a conspicuous vein(?) composed of (a) K-feldspar (strong dark red brown alteration dusting) (b) deep green amphibole, (c) plagioclase (d) carbonate (e) minor epidote and (f) green mica(?) showing <u>colour zonation</u>.

Opaques; magnetite

Microscopic description Protolith Phenocrysts

Plagioclase; <5%, subhedral/anhedral (0.1 to 0.5 mm) Outlines obscured by sericite and red-brown dusting alteration.

Biotite; 5%, subhedral/anhedral (0.1 to 1.0 mm) Generally irregular laths, clusters of laths. Ragged outline. Weak/moderate chlorite alteration. Some associated dark green amphibole.

Groundmass

Plagioclase; 30%, anhedral (<.05 to 0.1 mm) Interlocking irregular grains. Sericitic alteration, pervasive red-brown dusting.

Accessories

Sphene; <1% Zircon; traces Apatite; traces

Alteration

Sericite; alteration of plagioclase phenocrysts and groundmass.

DC 91-1-3 Continued

Red brown dusting; alteration of plagioclase phenocrysts and groundmass.

Chlorite; weak to locally strong alteration of biotite.

Overprints/diffuse networks

- Diopside; 10%, anhedral (<.05 to 0.3 mm) Subrounded grains, beaded clusters forming diffuse discontinuous networks throughout groundmass. Locally forms diffuse clots associated with carbonate. Very pale green, angular extinction, 2nd order birefringence.
- Plagioclase; 10%, anhedral (<.05 to 0.3 mm, generally <0.2 mm). diffuse broad networks/impregnations of relatively unaltered, twinned interlocking grains.
- Amphibole; 2%, anhedral/subhedral (<.05 to 0.5 mm) Acicular/prismatic. Deep bright green/yellowish green pleochroism. High second order birefringence. Inclined extinction although a small angle. Very similar in optical properties to epidote, but deep green and angular extinction. Associated with biotite and diopside.
- Carbonate; 3%, anhedral (<.05 to 0.2 mm). Clusters of grains associated with diopside.

Veins; Composite composed of intermixed:

- K-feldspar; 10%, anhedral, (.05 to >1.0 mm) Interlocking grains, deep red brown alteration dusting.
- Amphibole; 10%, anhedral/subhedral (<.05 to >1.0 mm) Acicular/prismatic. Deep bright green/yellowish green pleochroism. As described above. Felted to radiating structures. Similar habit to epidote. Weak alteration to secondary amphibole.
- Plagioclase; 7%, anhedral (<.05 to >1.0 mm) Interlocking grains form interstitial twinned and untwinned masses. Twinned An 30. Biaxial (+)(-).

Carbonate; 3%, anhedral, (<.05 to >1.0 mm). Interstitial masses.

Green mica(?); <1%, anhedral (<.05 to 0.1 mm) Colour (pleochroism) zonation, [bright green-brownish cream].

Opaques; 5%

Magnetite; 5%, magnetic, disseminated throughout groundmass, associated with mafics of wall rock. late dusting-filled fractures in veins associated with amphibole.

DC 91-1-5

Altered coarse K-feldspar porphyritic syenite

General description

Coarse K-feldspar altered mafic (hornblende?) phenocrysts and finer altered plagioclase and lesser K-feldspar groundmass remnants. Phenocrysts partially replaced; groundmass largely replaced by fine recrystallized (virtually unaltered) plagioclase and coarse biotite books. Scattered accessories include sphene and apatite.

K-feldspar phenocrysts and groundmass remnants show moderate to strong red-brown alteration dusting. Plagioclase groundmass remnants are sericitic. Poikilitic, prismatic mafic remnants (amphibole) are altered to fine felted mica (biotite), now largely chloritic, with associated carbonate. Coarser books of biotite (to 0.5 cm) may have formed during recrystallization as they are associated with recrystallized plagioclase (only weakly chloritic) and many are associated with late K-feldspar veinlets. Minor carbonate in scattered clusters and in late fractures.

Late veinlets of unaltered, clear, K-feldspar pass through groundmass and in optical continuity through clouded K-feldspar phenocrysts.

Opaques; 7%, magnetite (strong magnetic)

Microscopic description Phenocrysts;

- K-feldspar; 20%, subhedral (0.5 mm to >8.0 mm) Mottled by strong red-brown alteration.
- Altered mafic (hornblende) 10%, anhedral (<.05 to 5.0 mm). Ragged prismatic, poikilitic remnants, replaced by felted/foliated green brown biotite and chlorite.

Phenocrysts/groundmass remnants

Plagioclase; >20%, anhedral (<.05 to >1.0 mm). Felted sericitic alteration.

Accessories

Apatite; <<<1%, subhedral (to 1.0 mm) Sphene; <<<1%, subhedral (to 1.0 mm)

Recrystallization

- Plagioclase; 35%, anhedral (<.05 to 0.4 mm, most grains <0.3 mm). Irregular shaped interlocking grains form a near continuous groundmass. Virtually unaltered.
- Biotite; 5%, subhedral/anhedral (to 0.5 cm). Generally irregular grains. Weak chloritic alteration.

DC 91-1-5 Continued

Alteration products Red brown dusting, clay?

Biotite/chlorite; felted alteration of amphibole

Sericite; alteration of plagioclase remnants

Carbonate; very minor, associated with altered mafics. Scattered clots.

Veins K-feldspar

Opaques; 7%, magnetite; anhedral (<.01 to >1.0 mm)

Other opaques?

DC 91-2-1 Lithic breccia, rebrecciated with skarn assemblage infilling.

General description

Lithic fragments polymictic, porphyritic/fragmental and nonporphyritic varieties represented. Lithic fragments grade downwards in size from several cm to crystal fragments a fraction of a mm. These comprise part of the breccia groundmass.

Phenocrysts/crystal fragments include: Plagioclase(?), felted sericite pseudomorphs after plagioclase. Pyroxene (diopsidic?); although it has optical properties of pyroxene, it is obscured by microgranular secondary amphibole alteration and is clouded by a diffuse dusting.

Breccia matrix infilling includes: Garnet; pale/moderate pinkish brown Pyroxene(diopside) microgranular aggregates of similar optical appearance to coarser fragments.

Alteration Sericite; alteration of plagioclase Secondary amphibole; very minor, alteration of diopsidic pyroxene. Carbonate; very minor

Veinlets Garnet Muscovite and bright green mica/chlorite(?) Epidote Carbonate Opaques

Microscopic description

Lithic fragments; 40%, irregular shapes, (<1.0 mm to several cm). Porphyritic/fragmental and nonporphyritic varieties represented. Grades downwards to crystal fragments in breccia groundmass.

Phenocrysts/crystal fragments; Sericitic plagioclase Pyroxene Amphibole

Alteration

Sericite; anhedral (microcrystalline to .05 mm). Near complete alteration of plagioclase phenocrysts/fragments.

Semiopaque/opaque dusting; obscures matrix of lithic fragments

Breccia matrix; 60%, crystal fragments and minute lithic fragments

DC 91-2-1 Continued

- Pyroxene; <20%, anhedral/subhedral (<.05 to >2.0 mm). As for lithic fragments. Partially obscured by semiopaque dusting. Biaxial (+) 2V about 50°.
- Plagioclase; 10%, anhedral, (<.05 to 0.5 mm). Very irregular sericitic remnants. Largely replaced by garnet and diopside, below.

Networks/clusters

- Garnet; 15%, anhedral, (<.05 to 0.5 mm). Forms irregular discontinuous network throughout breccia matrix. Pale reddish brown colour.
- Diopside(?); 15%, anhedral, (microgranular). Diffuse clusters throughout breccia matrix. Obscured by semiopaque dusting.

Opaques; <2%, nonmagnetic.

DC 91-2-2 Breccia

General description

Similar to DC 91-2-1

Lithic fragments contain coarse pyroxene (augite?) phenocrysts and finer plagioclase in clusters in a microcrystalline/ fragmental, plagioclase-rich groundmass. Alteration of lithic fragments is generally weak, with a slight alteration dusting of plagioclase. Pyroxene phenocrysts have <u>low birefringence</u> as compared to similar crystals in DC 91-2-1; a result of partial alteration to secondary amphiboles??

Spotted by irregular grains, clots of garnet with associated minor chlorite, and carbonate.

Breccia matrix Composed of smaller lithic fragments grading downwards in size to crystal fragment-size.

Fragments include: Pyroxene; low birefringence because of alteration intensity?? Gives poor biaxial (+) interference figures, <u>inclined extinction</u>, therefore not a clinopyroxene.

Plagioclase crystal fragments, few recognizable, altered to mixtures of oligoclase(?), clinozoisite, lesser epidote.

Note: The etching pattern does not support the amount of oligoclase observed in section.

Groundmass

Garnet, clinozoisite, epidote, oligoclase(?) enstatite suspected but not confirmed.

Microscopic description

Lithic fragments Phenocryst/fragments

- Pyroxene (augite?); 15%, euhedral/subhedral (<.05 to 2.5 mm)
 Characteristic augite outlines. Birefringence is low as
 compared to similar crystals in DC 91-2-1; result of partial
 alteration to secondary amphiboles? Relief moderate (+).
 Inclined_extinction. Biaxial (+) with moderate 2V.</pre>
- Plagioclase; 35%, subhedral, (0.2 to 1.0 mm, most grains about 0.5 mm). Conspicuous twinning. Weak sericitic alteration and dusting. Less intensely altered than fragments in breccia matrix. Indicated composition in oligoclase - low andesine range.

DC 91-2-2 Continued

Groundmass

Plagioclase; 40%, anhedral, (<.05 to 0.2 mm). Irregular granules/fragments grading downwards from coarse fraction. Obscured by microgranular dusting of epidote-diopside?

Groundmass "alteration" includes: Garnet, 8%, anhedral, (<.05 to 0.3 mm). Irregular clusters of grains (to >1.0 mm)

- Epidote/clinozoisite; <1%, anhedral (to 0.2 mm). Irregular grains in garnet.
- Undetermined (epidote/diopside)?;<5%, anhedral, (microgranular), diffuse dusting. High relief and birefringence.

Carbonate; 1%, anhedral, (<.05 to 0.2 mm). As widely disseminated clusters of fine grains and as fracture/open space fillings in garnet, mafics etc.

- Chlorite; <1%, anhedral (to 0.2 mm). Filling fractures and open spaces in garnet.
- Undetermined "X"; <<1%, anhedral (to >1.0 mm). Anomalous yellow birefringence (not antigorite). Associated with carbonate and chlorite infillings in garnet.

Breccia matrix Fragments

- Augite; 15%, subhedral/anhedral (<.05 to >2.0 mm). Irregular prismatic and cross section grains. Birefringence lower than normal. Moderate(+) relief. Biaxial (+). Inclined <u>extinction.</u> Weak alteration to secondary amphibole, clinozoisite/epidote/oligoclase(?).
- Plagioclase; 15%, subhedral/anhedral (<.05 to 5.0 mm). Some grains relatively unaltered, most strongly altered to clinozoisite and oligoclase(?), lesser small clusters of epidote. Crystal fragment outlines most clearly visible in plane light.

Alteration assemblage

Clinozoisite; 20%, anhedral (<.05 to 0.2 mm). Small bladed and irregular masses. Alteration of plagioclase. Relief moderate (+) < epidote garnet, mottled pale brownish colour??, low anomalous birefringence.

Epidote; <5%, anhedral (<.05 to 0.2 mm)

DC 91-2-2 Continued

Oligoclase; 25%, anhedral, (<.05 to >1.0 mm). Very irregular interstitial continuous masses. Alteration of plagioclase and permeating groundmass. Very irregular mottled mosaic in X-nicols. Low (+) relief, featureless, mottled extinction. Low birefringence (to 1st order yellow) Biaxial (+) with large 2V.

Note: The apparent high percentage of oligoclase(?) observed in thin section is not supported by etching of stained slab!!

- Chlorite; <5%, anhedral, (to 0.1 mm). Fracture infilling of garnet.
- Garnet; 15%, anhedral (<.05 to >0.5 mm). Clusters of grains forming a discontinuous network throughout breccia groundmass. Also as clusters in lithic fragments.
- Secondary amphibole; <<1%, anhedral (<.05 to 0.1 mm). Clusters of fibres. Green pleochroism. Alteration of pyroxene.
- Undetermined "X"; <<1%, breccia filling in garnet, with carbonate, similar in appearance to carbonate but has anomalous canary yellow birefringence (not antigorite). Fracture infilling of garnet.

APPENDIX C

ANALYSES

GOLDEN RULE RESOURCES LTD.

HOLE NO. : DC-91-01	CORE SIZE : NQ	CONTRACTOR : Britton	PROJECT :	BC-42
LATITUDE : 500 W	BEARING :	DATE STARTED : Oct.21/91	AREA :	Discovery
DEPARTURE: 25 N	INCLINATION & COLLAR -90 deg.	DATE COMPLETED: Oct.23/91	LOGGED BY:	IRF
ELEVATION:	INCLINATION @ 104.5m ² by deg.	TOTAL LENGTH : 164.3 m	PAGE :	Page 1 of 6

INTERVAL	DESCRIPTION	FROM	TO	LENGTH	SAMPLE	Au	Cu	Zn
(m)		(m)	(m)	(m)	NO.	PPB	PPM	PPM
· · · · · · · · · · · · · · · · · · ·								
0.00 to 3.70	OVERBURDEN	0	3.7	3.700				
	12' (3.7 m) of NW casing through overburden and	3.7	6	2.300	105311	2	69	9
	into bedrock.	6	7	1.000	105312	1	134	19
3.70 to 159.15	VOLCANIC	7	8	1.000	105313	4	108	25
	Fine to medium grain, locally clastic autoclastic)	8	9	1.000	105314	2	24	20
	green to dark green, very massive homogeneous	9	10	1.000	105315	1	10	15
	unit except for where locally auto brecciated,	10	11	1.000	105316	1	15	22
	groundmass appears equigranular to weakly	11	12	1.000	105317	1	158	24
	porphyritic, consists of plag 40-50%, <10%	12	13	1.000	105318	1	31	26
	quartz, pyroxene 30%, hornblende 10-15%, chlorite	13	14	1.000	105319	4	539	14
	10%, alteration not well developed, locally weak	14	15	1.000	105320	4	226	27
	k-spar staining <10%, minor epidotization <5%,	15	16	1.000	10532 1	1	35	26
	locally <2% hematite as blebs - oxidized pyrite?,	16	17	1.000	105322	1	4	25
	magnetite? foliation poorly developed, appears	17	18	1.000	105323	4	45	32
	flat ie. 10 deg. to 30 deg. TCA, fracturing weak	18	19	1.000	105324	1	37	30
	with dominantly carbonate 1-3%, and quartz 1-2%	19	20	1.000	105325	6	55	32
	infilling fractures, mineralization very weak, 1%	20	21	1.000	105326	4	11	20
	pyrite maximum disseminated and locally as veinlet	21	22	1.000	105327	11	30	29
	and stringers, unit non magnetic.	22	23	1.000	105328	2	33	44
6.0 to 6.50	VEIN-BRECCIA	23	24	1.000	105329	17	117	33
	Carbonate - quartz vein - veinlet breccia with 10%	24	25	1.000	105330	25	162	24
	associated epidote, 5-7% hematite and 3-5%	25	26	1.000	105331	6	23	23
	magnetite @ 10 deg. TCA.	26	27	1.000	105332	5	275	24
14.95 to 15.10	SYENITE DYKE	27	28	1.000	105333	9	104	31
	Fine grain, tan, extremely hard, homogeneous	28	29	1.000	105334	3	97	24
	feldspar >90%, < 10% chlorite, 1% pyrite, 1%	29	30	1.000	105335	3	50	17
	hematite disseminated throughout, upper	30	31	1.000	105336	20	241	17
	contact sharp @ 32 deg. TCA, lower lost in broken	31	32	1.000	105337	2	73	14
	core.	32	33	1.000	105338	4	66	25
	Note: 16.10 m, thin section sample TSDC-91-1.	33	34	1.000	105339	2	108	26

DC-91-01 Page 2 of 6

	DESCRIPTION		T O (m)	LENGIH (m)	SAMPLE NO.		ANALYS	TES
INTERVAL (m)		FROM (m)				Au PPB	Cu PPM	Zn PPM
16.90 to 17.0	SYENITE DYKE	34	35	1.000	105340	7	138	24
	As to interval 14.95 m, upper contact 45 deg. TCA,	35	36	1.000	105341	1	32	25
	lower lost.	36	37	1.000	105342	1	50	27
20.10 to 20.40	SYENITE DYKE	37	38	1.000	105343	4	106	31
	As to interval @ 14.95 m, hornblende blebs @ 5%	38	39	1.000	105344	2	72	30
	upper contact sharp @ 45 deg., lower lost in	39	40	1.000	105345	1	80	30
	broken core, k-spar alteration <3%.	40	41	1.000	105346	3	86	27
	Note: thin section sample TSDC-91-1-2, collected	41	42	1.000	105347	4	62	26
	@ 20.2 m.	42	43	1.000	105348	3	114	26
25.90 to 26.15	VOLCANIC	43	44	1.000	105349	4	98	28
	As to original entry @ 3.7 m, however bleached	44	45	1.000	105350	3	103	28
	pale green epidotized @ 10%, hematite 5-7%,	45	46	1.000	105351	7	138	29
	magnetite 5-7%, pyrite 3-5% as stringers, and	46	47	1.000	105352	1	120	22
	disseminated.	47	48	1.000	105353	1	146	26
27.73 to 28.10	VOLCANIC - gouge	48	49	1.000	105354	7	134	26
	As to entry @ 3.7 m, however gouged material	49	50	1.000	105355	5	73	23
	present brecciation @ 50 deg. TCA.	50	51	1.000	105356	1	109	26
34.0 to 38.0	VOLCANIC	51	52	1.000	105357	5	147	22
	As to original entry @ 3.7 m, however fracturing	52	53	1.000	105358	1	73	22
	more prominent, ie. carbonate fractures in all	53	54	1.000	105359	6	83	26
	orientations, locally k-spar staining associated	54	55	1.000	105360	11	143	25
	with fractures.	55	56	1.000	105361	14	98	26
51.50 to 52.10	VOLCANIC	56	57	1.000	105362	5	127	25
	As to entry @ 3.7 m, however a syenitic dyke	57	58	1.000	105363	3	111	31
	"fingers" with volcanic unit, 1% magnetite	58	59	1.000	105364	4	161	30
	associated with the syenite unit.	59	60	1.000	105365	6	131	25
52.35 to 52.70	QUARTZ VEIN	60	61	1.000	105366	2	106	26
	Grey-white, guartz - carbonate vein with	61	62	1.000	105367	5	138	47
	associated epidote and k-spar staining, no	62	63	1.000	105368	8	126	59
	apparent mineralization, upper and lower contacts	63	64	1.000	105369	4	28	27
	@ 45 deg. TCA.	64	65	1.000	105370	6	85	43
57.0 to 57.6	VOLCANIC	65	66	1.000	105371	1	69	56
	As to entry @ 3.7 m, quartz - carbonate stock	66	67	1.000	105372	2	54	101
	work throughout associated epidote 1-3%, 1% pyrite	67	68	1.000	105373	1	91	55
	marcasite?, <1% chalcopyrite.	68	69	1.000	105374	1	88	41

DC-91-01 Page 3 of 6

							ANALYS	ES
INTERVAL (m)	DESCRIPTION	FROM (m)	ТО (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PFM
61.0 to 61.20	BRECCIATED - VOLCANIC	69	70	1.000	105375	1	64	45
	As to entry @ 3.7 m, however brecciated - "auto?"	70	71	1.000	105376	1	191	45
	k-spar alteration 5-7% as veinlets locally blebs,	71	72	1.000	105377	1	23	41
	epidote - epidotization 3% carbonate veinlets x-	72	73	1.000	105378	7	115	29
	cut fabric, 3-5%, <1% associated disseminated	73	74	1.000	105379	3	65	33
	pyrite.	74	75	1.000	105380	1	8	17
63.10 to 65.85	SYENITE DYKE	75	76	1.000	105381	1	17	21
	As to interval @ 14.95 m, entry has a crackled	76	77	1.000	105382	3	21	21
	texture, locally pervasive epidote 5-7%, in	77	78	1.000	105383	7	72	39
	fractures also, crackled texture the result of	78	79	1.000	105384	4	25	61
	intense fracturing - hairline and dominantly,	79	80	1.000	105385	4	68	53
	infilled with carbonate, hematite 1-2%,	80	81	1.000	105386	5	102	50
	disseminated magnetite, 1% pyrite, <1% locally	81	82	1.000	105387	9	80	56
	chalcopyrite, <1%, upper contact sharp @ 80 deg.	82	83	1.000	105388	2	64	57
	TCA, lower irregular - possibly brecciated as	83	84	1.000	105389	3	22	34
	syenite fragments present in core from 65.85 m to	84	85	1.000	105390	4	74	42
	71.0 m, hematite more prominent in breccia @ 3-5%.	85	86	1.000	105391	3	110	47
	68.05 to 68.07 Symmite dykelet @ 80 deg.	86	87	1.000	105392	4	86	43
	68.15 to 68.17 Syenite dykelet @ 75 deg.	87	88	1.000	105393	5	159	40
70.80 to 77.58	SYENITE DYKE	88	89	1.000	105394	3	141	38
	As to interval @ 14.95 m, however from 70.80 m	89	90	1.000	105395	2	71	32
	to 71.20 m, contact very irregular - brecciated?	90	91	1.000	105396	4	111	47
	very chloritic and hematite prominent, from 71.20	91	92	1.000	105397	1	87	42
	m to 77.58 m, dyke is homogeneous and as to entry	92	93	1.000	105398	1	134	48
	<pre>@ 63.10 m, plagioclase porphyroblasts locally</pre>	93	94	1.000	105399	2	69	56
	mineralized, ie. pale green @ 5-7%, upper contact	94	95	1.000	105400	2	67	47
	very irregular, lower sharp @ 40 deg. TCA, within	95	96	1.000	105401	13	157	38
	dyke volcanic xenolith @ 71.62 m to 71.86 m and	96	97	1.000	105402	5	57	30
	from 72.05 to 72.18 m, and from 72.8 m to 73.7 m.	97	98	1.000	105403	6	59	36
	Note: 71.10 m thin section sample TSDC-91-1-3	98	99	1.000	105404	3	49	40
	collected.	99	100	1.000	105405	3	72	40
	82.74 to 82.85 Syenite dykelet @ 80 deg. TCA.	100	101	1.000	105406	8	102	16
83.07 to 83.60	SYENITE DYKE	101	102	1.000	105407	8	96	24
	As to entry @ 14.95 m, upper contact sharp @ 40	102	103	1.000	105408	5	93	54
	deg. TCA, lower irregular, minor angular xenolith	103	104	1.000	105409	5	117	25
	present.	104	105	1.000	105410	6	117	25

.

DC-91-01 Page 4 of 6

.

							ANALYS	ES
INTERVAL (m)	DESCRIPTION	FROM (m)	ТО (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
83.60 to 88.50	VOLCANIC	105	106	1.000	105411	2	59	26
00100 10 00100	Interval consists of badly broken core, core	106	107	1.000	105412	3	60	20
	consists of $>90\%$ volcanic unit with approximately	107	108	1.000	105413	3	45	26
	10% svenite dykelets of irregular widths and	108	109	1.000	105414	1	38	32
	orientations.	109	110	1.000	105415	4	57	47
	88.58 to 88.63 Symmite dykelet & 68 deg. TCA.	110	111	1.000	105416	2	48	47
	88.94 to 89.0 Sygnite dykelet @ 59 deg. TCA.	111	112	1.000	105417	3	51	31
	89.12 to 89.19 Symmite dykelet @ 35 deg. TCA.	112	113	1.000	105418	5	88	32
89.50 to 89.80	SYENITE DYKE	113	114	1.000	105419	4	14	64
	As to entry @ 14.95 m, upper and lower contacts	114	115	1.000	105420	4	50	99
	sharp @ 70 deg. TCA.	115	116	1.000	105421	5	15	38
91.0 to 91.85	VOLCANIC	116	117	1.000	105422	5	51	40
	Interval is "stock worked", with symnite dykelets	117	118	1.000	105423	8	71	28
	hornblende prominent, and host volcanic slightly	118	119	1.000	105424	1	33	34
	bleached.	119	120	1.000	105425	2	32	25
96.20 to 96.47	SYENITE DYKE	120	121	1.000	105426	4	161	18
	As to interval @ 14.95 m, upper and lower contacts	121	122	1.000	105427	2	49	19
	irregular.	122	123	1.000	105428	5	28	34
96.47 to 98.0	VOLCANIC	123	124	1.000	105429	4	13	36
	As to original entry @ 3.7 m, however, quartz -	124	125	1.000	105430	2	77	28
	carbonate vein - stock work parallel to core axis,	125	126	1.000	105431	3	50	26
	within interval associated with veinlet, epidote,	126	127	1.000	105432	8	56	34
	k-spar staining <10% each 3-5% magnetite, 1%	127	128	1.000	105433	4	121	26
	disseminated pyrite.	128	129	1.000	105434	4	186	19
	102.20 to 102.35 Syenite dyke @ 30 deg. TCA.	129	130	1.000	105435	6	115	23
108.30 to 108.75	VOLCANIC	130	131	1.000	105436	3	122	18
	As to original entry @ 3.7 m, however interval	131	132	1.000	105437	5	85	30
	pervasively altered, epidote 10%, k-spar as	132	133	1.000	105438	1	129	25
	veinlets 5–7%, alteration parallel runs parallel	133	134	1.000	105439	4	131	32
	to core axis.	134	135	1.000	105440	2	111	29
	109.9 to 110.0 Syenite dyke @ 30 deg. TCA.	135	136	1.000	105441	9	108	28
112.90 to 116.18	SYENITE DYKE	136	137	1.000	105442	2	84	30
	Fine to medium grain, white to tan color,	137	138	1.000	105443	4	81	36
	porphyritic fairly massive - homogeneous, weakly	138	139	1.000	105444	12	129	21
	"crackled", groundmass >80% feldspar, with up to	139	140	1.000	105445	7	111	22
	10% black hornblende, dyke is magnetic 1-2%	140	141	1.000	105446	2	112	23

GOLDEN RULE RESOURCES LTD.

DC-91-01 Page 5 of 6

							ANALYS	SES
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGIH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
	magnetite and 1% disceminated purite duke	141	142	1 000	105447	6	142	20
	different than dyke @ 14.95 m in color.	142	143	1.000	105448	10	94	19
	composition more svenite?, strongly chloritized	143	144	1.000	105449	5	62	25
	venoliths within dyke, upper and lower contacts	144	145	1.000	105450	5	82	32
	A 60 deg. TCA.	145	146	1.000	105451	7	119	33
	Note: thin sections sample TSDC-91-1-4, collected	146	147	1.000	105452	12	129	27
	@ 114.20 m.	147	148	1.000	105453	3	74	22
	117.80 to 118.20 Symmite @ approximately 80 deg.	148	149	1.000	105454	2	116	23
	TCA.	149	150	1.000	105455	2	90	29
122.65 to 123.30	SYENITE DYKE	150	151	1.000	105456	11	57	27
	As to entry @ 112.90 m, however groundmass more	151	152	1.000	105457	13	68	23
	grey in color, chlorite present @ 10%, hornblende	152	153	1.000	105458	19	71	29
	@ 10%, upper contact @ 40 deg. TCA, lower not	153	154	1.000	105459	2	42	40
	recovered.	154	155	1.000	105460	4	192	38
124.57 to 125.0	SYENITE DYKE	155	156	1.000	105461	1	56	51
	As to entry @ 14.95 m, upper and lower contacts @	156	157	1.000	105462	2	108	49
	65 deg. TCA.	157	158	1.000	105463	2	11	23
127.70 to 139.80	VOLANIC	158	159	1.000	105464	10	89	46
	As to original entry @ 3.7 m, however slightly	159	160	1.000	105465	5	90	50
	porphyritic, plag phenocrysts weakly developed,	160	161	1.000	105466	3	8	45
	epidote more prominent 3%, pyrite locally	161	162	1.000	105467	4	5	19
	disseminated @ 1-2%.	162	1.63	1.000	105468	1	7	20
	133.46 to 133.49 Syenite dyke @ 34 deg. TCA.	163	164	1.000	105469	1	2	37
143 0 to 143 55	142.45 to 142.52 Syenite dyke @ 41 deg. TCA. SYENITE DYKE	164	164.3	0.030	105470	4	105	61
145.0 (0 145.55	As to interval @ 14.95 m, upper and lower contacts sharp @ 48 deg. TCA.	:						
149.50 to 159.15	VOLCANIC - Tuff - Lapilli Tuff							
	As to original entry @ 3.7 m compositionally,							
	however entry becomes more clastic in appearance							
	ie. pyroclastic, and is locally very fine grained							
	- ash tuff? alteration - mineralization as to							
	original entry @ 3.7 m, foliation where developed							
	15 ; 10 to 153 12 Sumito duke 0 50 dow TVT							
	154.69 to 154.80 Symile dyke @ 58 deg. TCA.							

DC-91-01 Page 6 of 6

· · · ·

		 					ANALYSES	
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM

157.0 to 158.30	SYENITE DYKE
	As to interval @ 14.95 m, upper contact sharp @ 70
	deg. TCA, lower sharp @ 30 deg. TCA.
159.15 to 164.30	SYENITE DYKE
	As to entry @ 14.95 m, upper contact irregular,
	marked by quartz - carbonate veinlet @ 80 deg. TCA
	entry more pervasively altered, plagioclase
	altered to sericite - sausserite (pale green-
	greasy), 20% pervasive chlorite 10%, within dyke
	zones of brecciation with green groundmass altered
	volcanic or altered dyke (intrusive, symmite plug)
	zones of brecciation from: 160.15 m to 161.3 m,
	163.40 m to 164.30 m, associated disseminated
	pyrite in breccia zones <1%, chalcopyrite, <1%
	magnetite 1-3%, hematite 1-2%, lower contact not
	recovered.
164.30 to 164.30	End of Hole.
	Note: thin section sample TSDC-91-1-5, collected
	@ 163.50 m.
	Core recovery 100%. Casing left in the hole.
	Hole collared @ L5+00W-0+25N.

GOLDEN RULE RESOURCES	LTD.			<u>DIAMOND DR</u>	IL	L LOG			
HOLE NO. : DC-91-02	CORE SIZE	:	NQ	CONTRACTOR	:	Britton	PROJECT	:	BC-42
LATITUDE : 500 W	BEARING	:		DATE STARTED	:	Oct.23/91	AREA	:	Discovery

DEPARTURE: 425 N	INCLINATION @ COLLAR -90 deg.	DATE COMPLETED:	Oct.25/91	LOGGED BY:	IRF
ELEVATION:	INCLINATION @	TOTAL LENGTH :	151.5 m	PAGE :	Page 1 of 5

ANALYSES

INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
	······							
0.00 to 3.10	OVERBURDEN	0	3.1	3.100				
	10' of NH casing into bedrock	3.1	5	1.900	199001	7	89	31
3.10 to 151.50	VOLCANIC (ANDESITE)	5	6	1.000	199002	7	99	26
	Fine grain, green massive-homogeneous, composition	6	7	1.000	199003	1	102	24
	consists of equigranular plagioclase 40-50%,	7	8	1.000	199004	5	103	23
	pyroxene 20-30%, chlorite 10%, alteration <5%,	8	9	1.000	199005	22	125	19
	epidote as hairline veinlets <3% overall,	9	10	1.000	199006	2	96	28
	fracturing very weakly developed, dominantly	10	11	1.000	199007	3	74	37
	carbonate infilled <3%, occassionally k-spar lines	11	12	1.000	199008	1	108	28
	carbonate and quartz veinlets, <1% disseminated	12	13	1.000	199009	2	117	28
	pyrite, and <1% magnetite.	13	14	1.000	199010	19	95	17
14.0 to 16.50	VOLCANIC	14	15	1.000	199011	11	65	31
	As to entry @ 3.1 m, however slightly bleached,	15	16	1.000	199012	1	43	29
	pale green, more porphyritic, and weakly	16	17	1.000	199013	6	84	32
	brecciated - auto brecciated, pervasive k-spar	17	18	1.000	199014	i	71	22
	alteration 5-7%, epidote 3%, no apparent	18	19	1.000	199015	2	86	24
	associated mineralization.	19	20	1.000	199016	3	83	26
		20	21	1.000	199017	1	88	25
22.0 to 23.20	VOLCANIC	21	22	1.000	199018	5	70	38
	As to entry @ 3.1 m, however weak quartz -	22	23	1.000	199019	7	82	35
	carbonate stock work developed throughout, no	23	24	1.000	199020	10	128	26
	apparent associated mineralization, weak	24	25	1.000	199021	9	62	30
	associated epidote, and k-spar <5% each.	25	26	1.000	199022	3	66	50
25.40 to 26.0	VOLCANIC	26	27	1.000	199023	12	93	25
	As to entry @ 3.1 m, however bleached, pervasively	27	28	1.000	199024	22	98	22
	epidotized 10% with 5-7% associated k-spar	28	29	1.000	199025	8	51	42
	alteration, <3% hematite, core badly broken - no	29	30	1.000	199026	3	45	25
	apparent structure.	30	31	1.000	199027	18	84	25
	28.70 to 28.72 Carbonate veinlet @ 10 deg. TCA	31	32	1.000	199028	7	58	28
	k-spar alteration flanks veinlet.	32	33	1.000	199029	15	118	38
	32.40 to 32.60 Carbonate infilled fracture -	33	34	1.000	199030	32	230	49
	parallel set @ 60 deg. TCA.	34	35	1.000	199031	12	100	59

GOLDEN RULE RESOURCES LTD.

DC-91-2

Page 2 of 5

						ANALYSES		ES
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGIH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
33.0 to 40.0	VOLCANIC	35	36	1.000	199032	21	143	52
	As to entry @ 3.1 m, however interval auto	36	37	1.000	199033	6	686	32
	brecciated - flow top breccia?, darker more mafic	37	38	1.000	199034	66	720	37
	fragments - "chunks", hosted in a paler green	38	39	1.000	199035	65	864	47
	groundmass, locally k-spar fractures with pyrite	39	40	1.000	199036	15	153	30
	stringers pyrite 1% overail.	40	41	1.000	199037	10	71	26
		41	42	1.000	199038	12	86	32
		42	43	1.000	199039	11	104	32
		43	44	1.000	199040	9	134	30
		44	45	1.000	199041		138	23
		40	40	1.000	100042	4	81	28
		40	47	1.000	199043	3	110	20
		40	40	1.000	199044	8	110	21
		40	49	1.000	199045	/ F	93	27
F1 (2 4+ F4 0	NOT CONTRA	47	50	1.000	100047	5	03	30
51.63 to 54.0	VULCANIC	50	52	1.000	100040	9	93	21
	As to entry e 5.1 m, interval bleached appears	50	52	1.000	100040	0	94 120	40
	weakly preculated (in-situ) pale green pervasive	52	55	1.000	100050	1/	1272	40 50
	epidotization $(105, pervasive x-spar alteration)$	55	24 55	1.000	199030	60 10	13/3	32
	g 5-7%, weakly fractured with 1-5% carbonate as	24 55	55	1.000	199051	10	1000	38 69
	winerslighting more apparent everall 1-29 purits	55	50	1.000	100052	30	470	07
	(possibly meroscite) deminantly as stringers and	50	50	1.000	100054	11	110	62
	(possibly marcasite) dominancily as stringers and 1-29 hemotite diggeminated and as stringers after	59	50	1.000	199055	19	202	66
	momentite chalco pyrite observed but overall! <1%	59	60	1,000	199056	8	173	62
	Note: texture of volcanic slightly more	60	61	1,000	199057	ž	111	64
	note: texture of vorcante signer, note normhwritig thin section sample: TSIX-91-2-1	61	62	1.000	199058	14	131	56
	collected & 51.8 m	62	63	1.000	199059	6	85	44
	52 33 to 52 34 Purite veinlet & 35 dec. TCB.	63	64	1.000	199060	17	127	 64
54 0 to 79 80	VOLCANIC	64	65	1.000	199061	13	203	62
5410 00 15100	As to entry 0.3 1 m interval medium to dark green	65	66	1.000	199062	10	175	51
	porphyritic, and appears brecciated, local	66	67	1.000	199063	7	162	48
	pervasive epidote alteration overall <3% epidote	67	68	1.000	199064	, 9	133	75
	closely associated with fracture as is hematite	68	69	1.000	199065	15	136	90
	fracturing weak, and infilled with 1-2% carbonate.	69	70	1.000	199066	3	152	84
	pyrite locally & 1-2%, overall <1%. Disseminated	70	71	1.000	199067	7	123	73
	chalco observed @ 55.0 to 56.0 m. Chalcopyrite	71	72	1.000	199068	1	118	54

DC-91-2

Page 3 of 5

.

							ANALYS	ES
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
	stringers in fracture lined by k-snar? 056 50	72	73	1 000	199069	3	85	43
	Note: thin section sample collected 0 55 5 m	73	74	1 000	199070	51	1616	81
	TETY-01-2-2	74	75	1.000	199071	21	265	68
73 0 to 75 80	VOLCENIC	75	76	1 000	199072	6	57	56
15.0 00 /5.00	As to entry 0.54.0 m however fracturing more	76	77	1.000	199073	5	83	54
	prominent carbonate 3-5% epidote more prominent	77	78	1.000	199074	6	118	70
	prominent carbonate 5 55, epidote note prominent,	79	79	1,000	100075	3	120	45
	and discominated black and stringers in fractures	79	80	1,000	199076	10	229	-10 67
	a 1-3% chalconvrite disseminated a 1% chalco	80	81	1 000	199077	11	161	66
	bracent 0 39 accorded with irregular carbonate	81	82	1.000	199078	6	125	50
	veinlet 6 74 0 m massive purite - "hlebby" 7~10%	82	83	1,000	199079	4	103	34
	a 74 65 to 74 80 m	83	84	1,000	199080	2	101	37
75 30 to 79 80	VOLCANIC	84	85	1.000	199081	5	101	61
13.30 00 13.00	Be to entry 0.54 0 m je interval porphyritic	85	86	1.000	199082	5	346	59
	locally very well developed and locally preciated	86	87	1.000	199083	5	52	43
	throwhout interval core broken and broken nieces	87	88	1.000	199084	8	59	41
	show "slick & slide" fractures infilled with	88	89	1.000	199085	5	152	37
	hematite hematite overall 1-3%. <1% nurite	89	90	1.000	199086	7	123	45
	overall carbonate fractures in all orientations	90	91	1.000	199087	5	117	35
	carbonate 3-5%	91	92	1.000	199088	5	92	46
79 80 to 117 0	VOLCANIC	92	93	1.000	199089	8	83	88
19.00 10 111.0	Fine to medium grain very massive - bomoveneous	03	94	1 000	199090	ğ	154	53
	as per entry 0.3 1 m entry weakly norphryitic	94	95	1 000	199091	8	94	36
	pornbyritic texture not well developed.	95	96	1.000	199092	7	96	26
	mineralized confined to pyrite in fractures, minor	96	97	1.000	199093	3	68	50
	disseminated <1% overall	97	98	1.000	199094	10	83	51
84.0 to 88.0	VOLCANIC	98	99	1.000	199095	8	95	35
••••	As above entry @ 79.80 m, however bleached pale	99	100	1.000	199096	1	149	26
	green - epidotization 3%, fracturing better	100	101	1.000	199097	2	140	26
	developed through interval, carbonate 3-5%	101	102	1.000	199098	2	132	24
	infilling fracture associated with carbonate 1-3%	102	103	1.000	199099	5	144	27
	bematite overall interval appears oxidized, pyrite	103	104	1.000	199100	6	112	29
	through zone 1-2% disseminated and as stringers.	104	105	1.000	199101	3	86	32
	95.0 to 95.2 Carbonate - quartz stock work.	105	106	1.000	199102	3	119	22
	112.14 to 112.18 Carboante - quartz vein - stock	106	107	1.000	199103	10	178	31
	work is associated epidote alteration.	107	108	1.000	199104	6	173	31
		108	109	1.000	199105	4	149	22
		109	110	1.000	199106	9	111	21

GOLDEN RULE RESOURCES LTD.

DC-91-2

Page 4 of 5

							ANALYS	ES	
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM	
		110	111	1 000	199107	1	63	31	
		111	112	1 000	199108	14	102	28	
		112	113	1.000	199109	5	132	46	
		113	114	1.000	199110	1	82	39	
		114	115	1.000	199111	1	97	40	
		115	116	1.000	199112	1	128	39	
117.0 to 121.0	VOLCANIC	116	117	1,000	199113	2	129	39	
	As to entry @ 79.80 m, however core badly broken,	117	118	1.000	199114	4	112	36	
	poor recovery 50%, possible fault @ 120.0 m to	118	119	1.000					
	121.0 m, associated hematite in interval 3%,	119	120	1.000					
	pyrite disseminated throughout <1%.	120	121	1.000	199115	1	151	42	
121.0 to 147.0	VOLCANIC	121	122	1.000	199116	3	209	64	
	As to original entry @ 3.1 m, unit massive weakly	122	123	1.000	199117	3	106	49	
	porphyritic, light green to dark green, alteration	123	124	1.000	199118	1	221	57	
	patchy, ie. locally entry is weakly epidotized	124	125	1.000	199119	3	331	59	
	with minor k-spar alteration - prophylitic	125	126	1.000	199120	2	220	74	
	associated with alteration zones weak mineraliza-	126	127	1.000	199121	2	152	66	
	tion, ie. 1-2% disseminated pyrite, and often	127	128	1.000	199122	10	271	68	
	pyrite as stringers, hematite fairly pervasive	128	129	1.000	199123	15	287	85	
	throughout, however as fractures .	129	130	1.000	199124	3	78	74	
	125.60 to 125.61 Pyrite veinlet @ 35 deg. TCA.	130	131	1.000	199125	6	80	46	
		131	132	1.000	199126	2	62	82	
		132	133	1.000	199127	5	94	70	
		133	134	1.000	199128	5	127	56	
		134	135	1.000	199129	6	74	42	
		135	136	1.000	199130	1	80	40	
	137.93 to 137.94 Carbonate veilet 10% TCA,	136	137	1.000	199131	12	89	41	
	associated with veinlet 3-5% hematite and 1-3%	137	138	1.000	199132	2	177	54	
	pyrite.	138	139	1.000	199133	4	82	61	
		139	140	1.000	199134	1	177	70	
		140	141	1.000	199135	7	87	53	
		141	142	1.000	199136	6	103	33	
		142	143	1.000	199137	1	76	26	
		143	144	1.000	199138	9	164	35	
		144	145	1.000	199139	6	94	35	
		145	146	1.000	199140	6	133	37	

GOLDEN RULE RESOURCES LTD.

.

DC-91-2

.

Page D or D	Page	5	of	5	
-------------	------	---	----	---	--

							ANALYSES		
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGIH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM	
147.0 to 151.50	VOLCANIC	146	147	1.000	199141	4	110	31	
	As to entry @ 3.1 m, core badly broken -	147	148	1.000	199142	3	116	36	
	fractured hematite and carbonate in fractures,	148	149	1.000	199143	1	193	56	
	3% respectively, entry weakly porphyritic,	149	150	1.000	199144	5	47	57	
	pervasively chloritic @ 10%, disseminated pyrite	150	151	1.000	199145	5	71	46	
	<1% overall. Prominent fracture set through interval @ 55 deg. TCA.	151	151.5	0.500	199146	2	82	45	
151.50 to 151.50	End of Hole								
	Core recovery 100% except @ 118-121 50%. Casing								
	left in hole. Hole collared at L5+00W-4+25N.								

GOLDEN RULI	RESOURCES LTD.								
HOLE NO. :	DC-91-3 CORE SIZE : NQ	CONTI	RACTOR	: Bri	tton		PROJEC	CT : BC-42	
LATITUDE :	500 W BEARING :	DATE	STARTED	: Oct	.25/91		AREA	: Discove	ry
DEPARTURE:	825 N INCLINATION & COLLAR -90 deg.	DATE	COMPLETE	D: Oct	.27/91		LOGGEI	BY: IRF	
ELEVATION:	INCLINATION & 108.7m2-90 deg.	TOTAI	LENGTH	: 108	.7 m		PAGE	: Page l	of 4
							ANALYS	ES	
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM	
0.00 to 3.10	OVERBURDEN	0	3.1	3.100					
	3.10 (10') of NW casing through overburden into	3.1	4	0.900	199147	2	104	19	
	bedrock	4	5	1.000	199148	1	43	7	
3.10 to 35.0	VOLCANIC (ANDESITE)	5	6	1.000	199149	16	300	11	
	Fine to medium grain, green-dark green porphyriti	.c 6	7	1.000	199150	1	61	12	
	groundmass equigranular plagioclase 40-50%, 30%	7	8	1.000	199151	4	77	13	
	pyroxene phenocrysts - porphyroblasts amphiboles	8	9	1.000	199152	1	89	13	
	10%, minor plag 10% <5% quartz, texture very	9	10	1.000	199153	1	77	11	
	massive homogeneous, core very hard and competent	. 10	11	1.000	19 9154	2	126	9	
	fracturing very minor 1-2% carbonate overall	11	12	1.000	199155	5	172	9	
	infilling fractures, 1% epidote overall alteration	n 12	13	1.000	199156	1	106	11	
	very weak-pervasive chlorite 10%, locally patchy	13	14	1.000	199157	4	103	12	
	ie. bleached sections where entry is epidotized,	14	15	1.000	199158	1	108	14	
	and slightly k-spar stained, mineralization very	15	16	1.000	199159	8	122	12	
	weak <1% disseminated pyrite throughout and	16	17	1.000	199160	2	161	14	
	locally as stringers disseminated magnetite 1%	17	18	1.000	199161	3	218	10	
	overall, pyrrhotite <1% disseminated throughout,	18	19	1.000	199162	4	79	20	
	trace chalcopyrite, dominantly associated with	19	20	1,000	199163	4	121	22	
	patchy alteration.	20	21	1.000	199164	4	97	28	
	5.30 to 5.34 sulphide veinlet @ 43 deg. TCA;	21	22	1,000	199165	2	67	25	
	pyrite - possibly marcasite, with associated	22	23	1.000	199166	2	48	30	
	epidote.	23	24	1.000	199167	1	114	30	
	8.70 to 8.71 k-spar veinlet.	24	25	1.000	199168	2	122	21	
	14.60 to 14.61 epidote veinlet.	25	26	1.000	TAA16A	87	884	22	
16.0 to 16.50	VOLCANIC	26	27	1.000	199170	35	29L	28 21	
	Zone weakly bleached - pale green, epidote and	27	28	1.000	1991/1	20	1/5	31	
	K-spar stringers throughout, with associated	28	29	1.000	199172	5	130	20	
	hematite 3%, pyrite <1%,	29	30	1.000	199173	3	43	24	
	20.08 to 20.09 carbonate veinlet.	30	31	1.000	199174	2	50	22	

GOLDEN RULE RESOURCES LTD.

Page 2 of 4

.

							ANALYS	ES
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGTH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PPM
24.0 to 26.0	VOLCANIC	31	32	1.000	199175	13	199	23
	As to entry @ 3.10 m: however, disseminated pyrite	32	33	1.000	199176	2	46	39
	1%, dissemianted pyrrhotite 1%.	33	34	1.000	199177	2	88	34
	28.10 to 28.11 epidote veinlet with associated	34	35	1.000	199178	28	620	29
	pyrite.	35	36	1.000	199179	72	1050	48
	31.90 to 32.20 several carbonate veinlets @ 55 TCA	36	37	1.000	199180	7	354	50
34.0 to 35.0	VOLCANIC	37	38	1.000	199181	3	90	41
	As to entry @ 3.1 m; however bleached pale green -	38	39	1.000	199182	2	116	49
	pervasive epidote 10%, hematite blebs and	39	40	1.000	199183	6	120	41
	fractures 5%, carbonate in fractures 1-3% of entry	40	41	1.000	199184	3	170	61
	associated pyrite - blebby and in stringers 1-3%.	41	42	1.000	199185	3	214	54
35.0 to 108.7	VOLCANIC	42	43	1.000	199186	1	57	66
	As to entry @ 3.1 m, porphyritic texture better	43	44	1.000	199187	4	123	53
	developed, pyrite stringers, more prominent, 1%,	44	45	1.000	199188	6	125	56
	and hematite fractures, more prominent 1-2%	45	46	1.000	199189	4	74	46
	epidote more prominent, pervasive and as	46	47	1.000	199190	21	308	48
	porphyroblasts 1-3%.	47	48	1.000	199191	4	96	40
40.0 to 42.0	VOLCANIC	48	49	1.000	199192	19	199	70
	As to entry @ 35.0 m, however, bleached pale green	49	50	1.000	199193	4	118	112
	pervasive epidote 10%, hematite fracture 3-5% and	50	51	1.000	199194	1	93	60
	disseminated pyrite up to 2%, ie. 1-2% overall.	51	52	1.000	199195	12	130	55
	Note: Sample TSDC-91-3-1 collected @ 41.5 m.	52	53	1.000	199196	3	52	39
	48.35 to 48.36 sulphide veinlet pyrite minors	53	54	1.000	199197	1	65	44
	chalcopyrite @ 35 deg. TCA.	54	55	1.000	199198	2	134	67
49.0 to 51.0	VOLCANIC	55	56	1.000	199199	1	72	33
	As to entry @ 35.0 m, weakly bleached - epidotized	56	57	1.000	199200	4	32	39
	10-15%, 1-2% associated disseminated pyrite, and	57	58	1.000	199201	19	212	66
	associated pyrite stringers, 1-2% hematite in	58	59	1.000	199202	8	48	51
	fractures.	59	60	1.000	199203	6	52	49
	56.85 to 56.9 carbonate stock work @ 50 deg. TCA,	60	61	1.000	199204	3	102	69
	with associated hematite.	61	62	1.000	199205	7	46	74
	57.0 to 57.14 carbonate stock work @ 60 deg. TCA,	62	63	1.000	199206	5	101	86
	zone intensely bleach - epidotized with 3-5%	63	64	1.000	199207	5	142	51
	associated pyrite stringers - veinlets.	64	65	1.000	199208	4	42	52
ы.U to 63.4		65	66	1.000	199209	13	232	51
	As to entry @ 35.0 m, completely bleached -	66	67	1.000	199210	1	179	50
	pervasive epidote 20-25%, porphyritic texture	67	68	1.000	133511	3	1137	51
	well-developed, disseminated pyrite 1% overall,	68	69	1.000	199212	2	203	76
	DIEDDY @ 1-3% @ 61.0 to 61.30 m.	63	70	1.000	199213	1	71	/1

DC-91-3

DC-91-3

Page 3 of 4

							ANALYS	ES
INTERVAL (m) 64.20 to 69.90 V I z d d c i i 6 8 1.30 to 82.30 V A P 1 8 8 1.30 to 82.30 V A P 1 8 8 1.30 to 82.30 V A P 1 8 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 4 9 4 9 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9 9 4 9	DESCRIPTION	FROM (m)	TO (m)	LENGIH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PFM
	VOI CANLO	70	71	1 000	199714	1	50	63
64.20 to 69.90	VOLCANIC Internal - drammed hav of core from 67.0 to 68.0m	70	72	1.000	199215	⊥ 3	32	59
	some mineralized bleached purite 5-79 as	72	72	1.000	199216	2	53	52
	discominated blobs - stringers 1-28 associated	72	74	1.000	199217	4	83	55
	chalconvrite locally malachite? and 3-5% hematite	73	75	1 000	199218	3	67	36
	in fractures accorded with carbonate	75	76	1.000	199219	9	67	35
	60 90 to 70 0 carbonate infilled fracutres @ 55	76	77	1 000	199220	2	155	45
	des TT	77	78	1 000	199221	8	100	51
	20 30 to 82 30 sulphide veinlet (nurite) & 25 deg	78	79	1 000	199222	4	101	92
	to a supplie verifier (price) e 25 deg.	79	80	1.000	199223	1	36	53
91 30 to 92 30	VOLCANIC	80	81	1.000	199224	4	90	55
01.30 10 02.30	Be to entry 0.35.0 m houser bleached nale green	81	87	1.000	199225	ì	130	62
	nerragive enidote 20-25% 5% associated k-snar	82	83	1.000	199226	1	112	76
	1-28 associated purits	02 93	84	1 000	199227	3	46	55
	84 54 to 84 56 alumite? veinlet 8 65 deg 7073	84	85	1 000	199228	ĩ	46	51
	with approxisted malachite?	85	86	1 000	199229	1	67	49
	$\begin{array}{c} \text{With associated matchines} \\ 00 \ 27 \ \text{to} \ 90 \ 29 \ \text{carbonate} = \text{pyrite veinlet} \ 0 \ 25 \\ \end{array}$	86	87	1 000	199230	1	84	58
	day TVB	87	88	1 000	199231	1	82	57
	02 20 to 92 21 culmbide (nurite) veinlet A 40	88	89	1 000	199232	2	107	106
	dog TVB	89	90	1.000	199233	13	215	242
	04 50 to 94 51 carbonate - pyrite vienlet 6 45	90 90	91	1 000	199234	4	155	53
	des TVB	<u>~</u>	92	3.000	199235	Я	78	60
	100 46 to 100 48 culnhide (nyrite) veinlet 8 40	92	93	1 000	199236	ĩ	166	60
	deg TVA	03	94	1.000	199237	11	123	60
	ucy. Ica.	94	95	1.000	199238	8	83	57
		95	96	1.000	199239	11	126	62
		96	97	1,000	199240	11	89	51
		97	98	1.000	199241	8	117	72
		98	99	1.000	199242	12	142	53
		99	100	1.000	199243	8	65	47
		100	101	1.000	199244	8	94	33
102 60 to 104 60	VOLCANIC	101	102	1.000	199245	4	84	35
101.00 00 104.00	As to entry 0 35 0 m. however, bleached bale green	102	103	1.000	199246	7	61	94
	epidotized enidote 20-25%. <5% k-spar alteration	103	104	1.000	199247	3	102	278
	opinotizion, opinoto zo zoo, too a spat alcoratian	104	105	1.000	199248	3	70	119
		105	106	1.000	199249	5	95	50
		106	107	1.000	199250	5	75	64

GOLDEN RULE RESOURCES LTD.

Page 4 of 4

.

	······································			<u></u>			ANALYS	ES
INTERVAL (m)	DESCRIPTION	FROM (m)	TO (m)	LENGIH (m)	SAMPLE NO.	Au PPB	Cu PPM	Zn PFM
	108.60 to 108.61 sulphide pyrite - chalcopyrite with associated malachite θ 25 dec. TCA	107	108	1.000	199251	2	291 251	1019 147
108.70 to 108.70	End of Hole. Casing lef in hole. Core recovery 100% except for @ 51-52 m, core recovery 60%. Hole collared at L5+00W-8+25N.	100	100.7	0.700	LJJLJL	•	231	11

DC-91-3

.

•

APPENDIX D

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
105311	3.7	6.0	2.3	69	2	9	5	2
105312	6.0	7.0	1.0	134	2	19	3	1
105313	7.0	8.0	1.0	108	2	25	4	4
105314	8.0	9.0	1.0	24	2	20	2	2
105315	9.0	10.0	1.0	10	2	15	2	1
105316	10.0	11.0	1.0	15	2	22	2	1
105317	11.0	12.0	1.0	158	2	24	2	1
105318	12.0	13.0	1.0	31	4	26	2	1
105319	13.0	14.0	1.0	539	3	14	4	4
105320	14.0	15.0	1.0	226	5	27	2	4
105321	15.0	16.0	1.0	35	2	26	2	1
105322	16.0	17.0	1.0	4	3	25	2	1
105323	17.0	18.0	1.0	45	2	32	2	4
105324	18.0	19.0	1.0	37	2	30	3	1
105325	19.0	20.0	1.0	55	2	32	2	6
105326	20.0	21.0	1.0	11	2	20	2	4
105327	21.0	22.0	1.0	30	2	29	3	11
105328	22.0	23.0	1.0	33	5	44	4	2
105329	23.0	24.0	1.0	117	5	33	3	17
105330	24.0	25.0	1.0	162	2	24	3	25
105331	25.0	26.0	1.0	23	2	23	4	6
105332	26.0	27.0	1.0	275	2	24	3	5
105333	27.0	28.0	1.0	104	4	31	3	9
105334	28.0	29.0	1.0	97	3	24	3	3
105335	29.0	30.0	1.0	50	5	17	2	3
105336	30.0	31.0	1.0	241	2	17	2	20
105337	31.0	32.0	1.0	73	2	14	3	2
105338	32.0	33.0	1.0	66	2	25	5	4
105339	33.0	34.0	1.0	108	4	26	4	2
105340	34.0	35.0	1.0	138	4	24	4	7
105341	35.0	36.0	1.0	32	3	25	3	1
105342	36.0	37.0	1.0	50	7	27	5	1
105343	37.0	38.0	1.0	106	5	31	4	4
105344	38.0	39.0	1.0	72	4	30	4	2
105345	39.0	40.0	1.0	80	4	30	2	1
105346	40.0	41.0	1.0	86	2	27	3	3
105347	41.0	42.0	1.0	62	2	26	2	4
105348	42.0	43.0	1.0	114	3	26	ĩ	3
105349	43 0	44.0	1 0	98	4	28	ž	4
105350	44.0	45.0	1.0	103	3	28	2	
105351	45.0	46.0	1_0	138	5	29	2	7
105352	46.0	47.0	1.0	120	2	22	4	í
105352	47.0	48.0	1.0	146	4	26	3	1
T00000	-27 + V	x U + U	T • A		-	20		

.

•

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
105354	48.0	49.0	1.0	134	4	26	2	7
105355	49.0	50.0	1.0	73	2	23	2	5
105356	50.0	51.0	1.0	109	6	26	2	1
105357	51.0	52.0	1.0	147	4	22	4	5
105358	52.0	53.0	1.0	73	4	22	3	1
105359	53.0	54.0	1.0	83	4	26	3	6
105360	54.0	55.0	1.0	143	5	25	3	11
105361	55.0	56.0	1.0	98	4	26	່ 3	14
105362	56.0	57.0	1.0	127	3	25	3	5
105363	57.0	58.0	1.0	111	4	31	6	3
105364	58.0	59.0	1.0	161	3	30	2	4
105365	59.0	60.0	1.0	131	2	25	2	6
105366	60.0	61.0	1.0	106	3	26	3	2
105367	61.0	62.0	1.0	138	3	47	4	5
105368	62.0	63.0	1.0	126	3	5 9	2	8
105369	63.0	64.0	1.0	28	4	27	4	4
105370	64.0	65.0	1.0	85	5	43	11	6
105371	65.0	66.0	1.0	69	4	56	2	1
105372	66.0	67.0	1.0	54	2	101	3	2
105373	67.0	68.0	1.0	91	2	55	2	1
105374	68.0	69.0	1.0	88	2	41	3	1
105375	69.0	70.0	1.0	64	5	45	2	1
105376	70.0	71.0	1.0	191	2	45	2	1
105377	71.0	72.0	1.0	23	4	41	3	1
105378	72.0	73.0	1.0	115	3	29	4	7
105379	73.0	74.0	1.0	65	3	33	2	3
105380	74.0	75.0	1.0	8	4	17	4	1
105381	75.0	76.0	1.0	17	5	21	3	1
105382	76.0	77.0	1.0	21	4	21	2	3
105383	77.0	78.0	1.0	72	4	39	3	7
105384	78.0	79.0	1.0	25	3	61	2	4
105385	79.0	80.0	1.0	68	2	53	2	4
105386	80.0	81.0	1.0	102	3	50	2	5
105387	81.0	82.0	1.0	80	3	56	3	9
105388	82.0	83.0	1.0	64	4	57	2	2
105389	83.0	84.0	1.0	22	3	34	2	3
105390	84.0	85.0	1.0	74	2	42	2	4
105391	85.0	86.0	1.0	110	2	47	2	3
105392	86.0	87.0	1.0	86	2	43	3	4
105393	87.0	88.0	1.0	159	2	40	3	5
105394	88.0	89.0	1.0	141	2	38	5	3
105395	89.0	90.0	1.0	71	2	32	2	2
105396	90.0	91.0	1.0	111	2	47	4	4

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	то	LENGTH	ppm	ppm	ppm	ppm	ppb
105397	91.0	92.0	1.0	87	2	42	4	1
105398	92.0	93.0	1.0	134	2	48	2	1
105399	93.0	94.0	1.0	69	2	56	4	2
105400	94.0	95.0	1.0	67	2	47	3	2
105401	95.0	96.0	1.0	157	2	38	2	13
105402	96.0	97.0	1.0	57	2	30	2	5
105403	97.0	98.0	1.0	59	5	36	4	6
105404	98.0	99.0	1.0	49	2	40	4	3
105405	99.0	100.0	1.0	72	5	. 40	2	3
105406	100.0	101.0	1.0	102	4	16	2	8
105407	101.0	102.0	1.0	96	2	24	3	8
105408	102.0	103.0	1.0	93	5	54	4	5
105409	103.0	104.0	1.0	117	2	25	2	5
105410	104.0	105.0	1.0	117	4	25	3	6
105411	105.0	106.0	1.0	59	2	26	5	2
105412	106.0	107.0	1.0	60	4	22	3	3
105413	107.0	108.0	1.0	45	2	26	3	3
105414	108.0	109.0	1.0	38	2	32	4	1
105415	109.0	110.0	1.0	57	4	47	3	4
105416	110.0	111.0	1.0	48	2	47	4	2
105417	111.0	112.0	1.0	51	2	31	4	3
105418	112.0	113.0	1.0	88	3	32	6	5
105419	113.0	114.0	1.0	14	7	64	2	4
105420	114.0	115.0	1.0	50	6	99	2	4
105421	115.0	116.0	1.0	15	7	38	2	5
105422	116.0	117.0	1.0	51	5	40	2	5
105423	117.0	118.0	1.0	71	3	28	2	8
105424	118.0	119.0	1.0	33	2	34	2	1
105425	119.0	120.0	1.0	32	4	25	2	2
105426	120.0	121.0	1.0	161	3	18	2	4
105427	121.0	122.0	1.0	49	2	19	2	2
105428	122.0	123.0	1.0	28	3	34	2	5
105429	123.0	124.0	1.0	13	2	36	2	4
105430	124.0	125.0	1.0	77	6	28	2	2
105431	125.0	126.0	1.0	50	5	26	2	3
105432	126.0	127.0	1.0	56	3	34	2	8
105433	127.0	128.0	1.0	121	5	26	3	4
105434	128.0	129.0	1.0	186	7	19	6	4
105435	129.0	130.0	1.0	115	2	23	4	6
105436	130.0	131.0	1.0	122	3	18	4	3
105437	131.0	132.0	1.0	85	3	30	2	5
105438	132.0	133.0	1.0	129	2	25	3	1
105439	133.0	134.0	1.0	131	8	32	Ś	4

ELEMENT			SAMPLE	Çu	Pb	Zn	As	Au*
SAMPLES	FROM	то	LENGTH	ppm	ppm	ppm	ppm	ppb
105440	134.0	135.0	1.0	111	2	29	2	2
105441	135.0	136.0	1.0	108	5	28	2	9
105442	136.0	137.0	1.0	84	2	30	2	2
105443	137.0	138.0	1.0	81	5	36	2	4
105444	138.0	139.0	1.0	129	5	21	2	12
105445	139.0	140.0	1.0	111	2	22	3	7
105446	140.0	141.0	1.0	112	3	23	2	2
105447	141.0	142.0	1.0	142	2	20	2	6
105448	142.0	143.0	1.0	94	2	. 19	2	10
105449	143.0	144.0	1.0	62	4	25	2	5
105450	144.0	145.0	1.0	82	6	32	2	5
105451	145.0	146.0	1.0	119	2	33	. 2	7
105452	146.0	147.0	1.0	129	2	27	2	12
105453	147.0	148.0	1.0	74	5	22	2	3
105454	148.0	149.0	1.0	116	2	23	2	2
105455	149.0	150.0	1.0	90	2	29	2	2
105456	150.0	151.0	1.0	57	4	27	2	11
105457	151.0	152.0	1.0	68	7	23	2	13
105458	152.0	153.0	1.0	71	4	29	2	19
105459	153.0	154.0	1.0	42	5	40	3	2
105460	154.0	155.0	1.0	192	2	38	2	4
105461	155.0	156.0	1.0	56	5	51	2	1
105462	156.0	157.0	1.0	108	5	49	2	2
105463	157.0	158.0	1.0	11	6	23	2	2
105464	158.0	159.0	1.0	89	5	46	2	10
105465	159.0	160.0	1.0	.90	4	50	2	5
105466	160.0	161.0	1.0	8	2	45	2	3
105467	161.0	162.0	1.0	5	2	19	2	4
105468	162.0	163.0	1.0	15	7	20	3	1
105469	163.0	164.0	1.0	11	2	37	2	1
105470	164.0	164.3	0.3	105	3	61	4	4

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	то	LENGTH	ppm	ppm	ppm	ppm	ppb
199001	3.1	5.0	1.9	89	2	31	2	7
199002	5.0	6.0	1.0	99	6	26	3	7
199003	6.0	7.0	1.0	102	3	24	2	1
199004	7.0	8.0	1.0	103	2	23	2	5
199005	8.0	9.0	1.0	125	5	19	2	22
199006	9.0	10.0	1.0	96	6	28	2	2
199007	10.0	11.0	1.0	74	2	37	2	3
199008	11.0	12.0	1.0	108	3	28	2	1
199009	12.0	13.0	1.0	117	2	28	2	2
199010	13.0	14.0	1.0	95	7	17	2	19
199011	14.0	15.0	1.0	65	6	31	2	11
199012	15.0	16.0	1.0	43	6	29	7	1
199013	16.0	17.0	1.0	84	4	32	2	6
199014	17.0	18.0	1.0	71	2	22	2	1
199015	18.0	19.0	1.0	86	2	24	2	2
199016	19.0	20.0	1.0	83	2	26	4	3
199017	20.0	21.0	1.0	88	6	25	2	1
199018	21.0	22.0	1.0	70	2	38	2	5
199019	22.0	23.0	1.0	82	3	35	3	7
199020	23.0	24.0	1.0	128	6	26	2	10
199021	24.0	25.0	1.0	62	7	30	2	9
199022	25.0	26.0	1.0	66	2	50	2	3
199023	26.0	27.0	1.0	93	2	25	2	12
199024	27.0	28.0	1.0	98	2	22	2	22
199025	28.0	29.0	1.0	51	9	42	2	8
199026	29.0	30.0	1.0	45	2	25	2	3
199027	30.0	31.0	1.0	84	3	25	4	18
199028	31.0	32.0	1.0	58	2	28	2	7
199029	32.0	33.0	1.0	118	2	38	7	15
199030	33.0	34.0	1.0	230	2	49	10	32
199031	34.0	35.0	1.0	100	2	59	2	12
199032	35.0	36.0	1.0	143	2	52	3	21
199033	36.0	37.0	1.0	686	2	32	6	6
199034	37.0	38.0	1.0	720	2	37	4	66
199035	38.0	39.0	1.0	864	2	47	7	65
199036	39.0	40.0	1.0	153	2	30	9	15
199037	40.0	41.0	1.0	71	2	26	7	10
199038	41.0	42.0	1.0	86	2	32	6	12
199039	42.0	43.0	1.0	61	3	32	3	11
199040	43.0	44.0	1.0	134	2	30	4	9
199041	44.0	45.0	1.0	138	35	23	2	7
199042	45.0	46.0	1.0	81	2	28	2	4
199043	46.0	47.0	1.0	67	2	25	2	3

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
199044	47.0	48.0	1.0	110	2	21	2	8
199045	48.0	49.0	1.0	93	2	27	2	7
199046	49.0	50.0	1.0	83	2	30	2	5
199047	50.0	51.0	1.0	93	2	21	3	9
199048	51.0	52.0	1.0	94	2	36	4	8
199049	52.0	53.0	1.0	139	2	48	13	17
199050	53.0	54.0	1.0	1373	2	52	7	85
199051	54.0	55.0	1.0	114	2	38	10	10
199052	55.0	56.0	1.0	1098	2	69	10	38
199053	56.0	57.0	1.0	478	2	81	8	32
199054	57.0	58.0	1.0	110	2	62	6	11
199055	58.0	59.0	1.0	202	2	66	4	18
199056	59.0	60.0	1.0	173	2	62	4	8
199057	60.0	61.0	1.0	111	2	64	2	3
199058	61.0	62.0	1.0	131	2	56	3	14
199059	62.0	63.0	1.0	85	3	44	2	6
199060	63.0	64.0	1.0	127	2	64	3	17
199061	64.0	65.0	1.0	203	2	62	3	13
199062	65.0	66.0	1.0	175	2	51	2	10
199063	66.0	67.0	1.0	162	2	48	2	7
199064	67.0	68.0	1.0	133	2	75	. 2	9
199065	68.0	69.0	1.0	136	2	90	4	15
199066	69.0	70.0	1.0	152	2	84	4	3
199067	70.0	71.0	1.0	123	2	73	4	7
199068	71.0	72.0	1.0	118	2	54	4	1
199069	72.0	73.0	1.0	-85	4	43	2	3
199070	73.0	74.0	1.0	1616	3	81	14	51
199071	74.0	75.0	1.0	265	2	68	8	21
199072	75.0	76.0	1.0	57	2	56	3	6
199073	76.0	77.0	1.0	83	2	54	2	5
199074	77.0	78.0	1.0	118	2	70	2	6
199075	78.0	79.0	1.0	120	2	46	2	3
199076	79.0	80.0	1.0	229	2	67	4	10
199077	80.0	81.0	1.0	161	4	66	2	11
199078	81.0	82.0	1.0	125	19	50	2	6
199079	82.0	83.0	1.0	103	2	34	3	4
199080	83.0	84.0	1.0	101	2	37	2	8
199081	84.0	85.0	1.0	109	3	61	4	5
199082	85.0	86.0	1.0	346	2	59	5	5
199083	86.0	87.0	1.0	52	2	43	9	5
199084	87.0	88.0	1.0	59	2	41	9	8
199085	88.0	89.0	1.0	152	2	37	3	5
199086	89.0	90.0	1.0	123	2	45	2	7

·

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
199087	90.0	91.0	1.0	117	2	35	3	5
199088	91.0	92.0	1.0	92	2	46	2	5
199089	92.0	93.0	1.0	83	3	88	5	8
199090	93.0	94.0	1.0	154	6	53	4	9
199091	94.0	95.0	1.0	94	2	36	6	8
199092	95.0	96.0	1.0	96	5	26	2	7
199093	96.0	97.0	1.0	68	4	50	6	3
199094	97.0	98.0	1.0	83	2	51	4	10
199095	98.0	99.0	1.0	95	3	35	4	8
199096	99.0	100.0	1.0	149	2	26	3	1
199097	100.0	101.0	1.0	140	4	26	3	2
199098	101.0	102.0	1.0	132	2	24	2	2
199099	102.0	103.0	1.0	144	3	27	2	5
199100	103.0	104.0	1.0	112	3	29	2	6
199101	104.0	105.0	1.0	86	3	32	2	3
199102	105.0	106.0	1.0	119	2	22	2	3
199103	106.0	107.0	1.0	178	2	31	3	10
199104	107.0	108.0	1.0	173	5	31	2	6
199105	108.0	109.0	1.0	149	4	22	2	4
199106	109.0	110.0	1.0	111	3	21	2	9
199107	110.0	111.0	1.0	63	4	31	2	1
199108	111.0	112.0	1.0	102	2	28	2	14
199109	112.0	113.0	1.0	132	2	46	4	5
199110	113.0	114.0	1.0	82	2	39	3	1
199111	114.0	115.0	1.0	97	2	40	2	1
199112	115.0	116.0	1.0	128	3	39	3	1
199113	116.0	117.0	1.0	129	4	39	3	2
199114	117.0	118.0	1.0	112	5	36	2	4
199115	118.0	121.0	3.0	151	4	42	5	1
199116	121.0	122.0	1.0	209	5	64	2	3
199117	122.0	123.0	1.0	106	2	49	2	3
199118	123.0	124.0	1.0	221	2	57	2	1
199119	124.0	125.0	1.0	331	2	59	2	3
199120	125.0	126.0	1.0	220	4	74	2	2
199121	126.0	127.0	1.0	152	2	66	2	2
199122	127.0	128.0	1.0	271	3	68	2	10
199123	128.0	129.0	1.0	287	5	85	2	15
199124	129.0	130.0	1.0	78	2	74	2	3
199125	130.0	131.0	1.0	80	2	46	2	6
199126	131.0	132.0	1.0	62	2	82	3	2
199127	132.0	133.0	1.0	94	2	70	2	5
199128	133.0	134.0	1.0	127	3	56	3	5
199129	134.0	135.0	1.0	74	3	42	2	6

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
199130	135.0	136.0	1.0	80	5	40	5	1
199131	136.0	137.0	1.0	89	4	41	3	12
199132	137.0	138.0	1.0	177	5	54	2	2
199133	138.0	139.0	1.0	82	4	61	2	4
199134	139.0	140.0	1.0	177	3	70	6	1
199135	140.0	141.0	1.0	87	4	53	4	7
199136	141.0	142.0	1.0	103	3	33	- 3	6
199137	142.0	143.0	1.0	76	4	26	3	1
199138	143.0	144.0	1.0	164	5	35	2	9
199139	144.0	145.0	1.0	94	4	35	4	6
199140	145.0	146.0	1.0	133	2	37	3	6
199141	146.0	147.0	1.0	110	2	31	3	4
199142	147.0	148.0	1.0	116	2	36	4	3
199143	148.0	149.0	1.0	193	2	56	6	1
199144	149.0	150.0	1.0	47	5	57	6	5
199145	150.0	151.0	1.0	71	2	46	4	5
199146	151.0	151.5	0.5	82	2	45	2	2
DISCOVERY CREEK ASSAY SUMMARY GR-BC-42 HOLE #DC-91-3

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	то	LENGTH	ppm	ppm	ppm	ppm	ppb
199147	3.1	4.0	0.9	104	2	19	2	2
199148	4.0	5.0	1.0	43	2	7	2	1
199149	5.0	6.0	1.0	300	5	11	2	16
199150	6.0	7.0	1.0	61	2	12	3	1
199151	7.0	8.0	1.0	77	2	13	2	4
199152	8.0	9.0	1.0	89	2	13	3	1
199153	9.0	10.0	1.0	77	2	11	2	1
199154	10.0	11.0	1.0	126	2	9	3	2
199155	11.0	12.0	1.0	172	2	9	2	5
199156	12.0	13.0	1.0	106	3	11	5	1
199157	13.0	14.0	1.0	103	2	12	4	4
199158	14.0	15.0	1.0	108	2	14	3	1
199159	15.0	16.0	1.0	122	2	12	2	8
199160	16.0	17.0	1.0	161	2	14	5	2
199161	17.0	18.0	1.0	218	2	10	3	3
199162	18.0	19.0	1.0	79	2	20	4	4
199163	19.0	20.0	1.0	121	2	22	3	4
199164	20.0	21.0	1.0	97	2	28	5	4
199165	21.0	22.0	1.0	67	6	25	2	2
199166	22.0	23.0	1.0	48	8	30	2	2
199167	23.0	24.0	1.0	114	6	30	3	1
199168	24.0	25.0	1.0	122	6	21	2	2
199169	25.0	26.0	1.0	884	2	22	2	87
199170	26.0	27.0	1.0	291	2	28	2	35
199171	27.0	28.0	1.0	175	7	31	2	20
199172	28.0	29.0	1.0	180	4	26	2	5
199173	29.0	30.0	1.0	43	4	24	4	3
199174	30.0	31.0	1.0	50	5	22	2	2
199175	31.0	32.0	1.0	199	2	23	3	13
199176	32.0	33.0	1.0	46	3	39	2	2
199177	33.0	34.0	1.0	88	2	34	2	2
199178	34.0	35.0	1.0	620	3	29	7	28
199179	35.0	36.0	1.0	1050	2	48	5	72
199180	36.0	37.0	1.0	354	7	50	4	7
199181	37.0	38.0	1.0	90	3	41	4	3
199182	38.0	39.0	1.0	116	17	49	4	2
199183	39.0	40.0	1.0	120	4	41	2	6
199184	40.0	41.0	1.0	170	4	61	2	3
199185	41.0	42.0	1.0	214	2	54	3	3
199186	42.0	43.0	1.0	57	4	66	2	1
199187	43.0	44.0	1.0	123	8	53	2	4
199188	44.0	45.0	1.0	125	7	56	3	6
199189	45.0	46.0	1.0	74	2	46	4	4

.

DISCOVERY CREEK ASSAY SUMMARY GR-BC-42 HOLE #DC-91-3

ELEMENT			SAMPLE	Cu	Pb	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
199190	46.0	47.0	1.0	308	4	48	4	21
199191	47.0	48.0	1.0	96	4	40	2	4
199192	48.0	49.0	1.0	199	2	70	4	19
199193	49.0	50.0	1.0	118	2	112	2	4
199194	50.0	51.0	1.0	93	3	60	2	1
199195	51.0	52.0	1.0	130	3	55	2	12
199196	52.0	53.0	1.0	52	2	39	2	3
199197	53.0	54.0	1.0	65	2	44	3	1
199198	54.0	55.0	1.0	134	2	67	5	2
199199	55.0	56.0	1.0	72	2	33	2	1
199200	56.0	57.0	1.0	32	2	39	2	4
199201	57.0	58.0	1.0	212	3	66	2	19
199202	58.0	59.0	1.0	48	2	51	2	8
199203	59.0	60.0	1.0	52	2	49	2	6
199204	60.0	61.0	1.0	102	4	69	2	3
199205	61.0	62.0	1.0	46	2	74	2	7
199206	62.0	63.0	1.0	101	2	86	2	5
199207	63.0	64.0	1.0	142	2	51	2	5
199208	64.0	65.0	1.0	42	2	52	2	4
199209	65.0	66.0	1.0	232	5	51	3	13
199210	66.0	67.0	1.0	179	7	50	2	1
199211	67.0	68.0	1.0	1137	3	51	5	3
199212	68.0	69.0	1.0	203	4	76	2	2
199213	69.0	70.0	1.0	71	3	71	3	1
199214	70.0	71.0	1.0	52	3	63	2	1
199215	71.0	72.0	1.0	42	2	59	2	3
199216	72.0	73.0	1.0	53	4	52	2	2
199217	73.0	74.0	1.0	83	2	55	2	4
199218	74.0	75.0	1.0	67	2	36	2	3
199219	75.0	76.0	1.0	67	3	35	3	9
199220	76.0	77.0	1.0	155	2	45	2	2
199221	77.0	78.0	1.0	100	2	51	2	8
199222	78.0	79.0	1.0	101	4	92	3	4
199223	79.0	80.0	1.0	36	2	53	2	1
199224	80.0	81.0	1.0	90	2	55	2	4
199225	81.0	82.0	1.0	130	3	62	2	1
199226	82.0	83.0	1.0	112	3	76	3	1
199227	83.0	84.0	1.0	46	2	55	2	3
199228	84.0	85.0	1.0	46	2	51	2	1
199229	85.0	86.0	1.0	67	2	49	3	1
199230	86.0	87.0	1.0	84	2	58	4	1
199231	87.0	88.0	1.0	82	2	57	2	1
199232	88.0	89.0	1.0	107	3	106	2	2

.

DISCOVERY CREEK ASSAY SUMMARY GR-BC-42 HOLE #DC-91-3

ELEMENT			SAMPLE	Cu	\mathbf{Pb}	Zn	As	Au*
SAMPLES	FROM	TO	LENGTH	ppm	ppm	ppm	ppm	ppb
199233	89.0	90.0	1.0	215	3	242	2	13
199234	90.0	91.0	1.0	155	2	53	3	4
199235	91.0	92.0	1.0	78	2	60	2	8
199236	92.0	93.0	1.0	166	2	60	2	1
199237	93.0	94.0	1.0	123	3	60	2	11
199238	94.0	95.0	1.0	83	2	57	2	8
1992 39	95.0	96.0	1.0	126	4	62	2	11
199240	96.0	97.0	1.0	89	2	51	2	11
199241	97.0	98.0	1.0	117	4	. 72	2	8
199242	98.0	99.0	1.0	142	4	53	2	12
199243	99.0	100.0	1.0	65	4	42	2	8
199244	100.0	101.0	1.0	94	2	33	2	8
199245	101.0	102.0	1.0	84	3	35	2	4
199246	102.0	103.0	1.0	61	3	94	2	7
199247	103.0	104.0	1.0	102	4	278	3	3
199248	104.0	105.0	1.0	70	3	119	2	3
199249	105.0	106.0	1.0	95	4	50	2	5
199250	106.0	107.0	1.0	75	57	64	2	5
199251	107.0	108.0	1.0	291	4	1019	3	2
199252	108.0	108.7	0.7	251	2	147	3	4

APPENDIX E

.

ACME ANALYTICAL	LABORATORIES		TELEFAX
44	852 East Hastings Street Vancouver, B. C. CANADA V6A 1R6	Telephone: Telefax: Computer data:	604 253 - 3158 604 253 - 1716 604 251 - 1011
Attention: Larry	Lahusen	Date: NOV	. 7
Company: Golden	n Rule Rest	urces	
From: SELINF	۹	Number of pages inc	I. this one: 13
Short message:			•
		۰ ۲	

are Share	TIC.		BC		TÌ.			8	Mini	, LL	ni Diti	GS		YAI	1111		an d			86		.	(60		1-3	1 1 1 2 2 2 2 2 2			1)2!	auni	11
			ga	1 4	en 1	tuis	R	50	GE LE CE	00 5 1450		CAI Pr	O U D SI	TÀL) CT	BI GR C	B CI	51 7	F I I	ile 6		91-1	535	7	Pac	je]						
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	A¢ 100	Ni ppm	Co ppm	Nn ppm	Fe X		U ppm	Au pp#	Th ppm	Sr ppm	tđ spa	Sb ppm	8i ppw	¥ مورم	Co X		La ppm	Cr ppm	Ng X	Ba Ppm		8 ppm	Al X	Na X	K X ,		Aut* ppb
A 105311 A 105312 A 105313 A 105313 A 105314 A 105315	1 1 1 1 1	69 134 108 24 10	2 2 2 2 2 2	9 19 25 20 15		18 26 25 18 20	12 21 21 10 8	522 792 801 503 303	2.09 2.82 4.17 2.51 1.70	5 7 8 N N	5 5 5 5	ND ND ND ND ND ND	1 1 1 1	120 214 140 93 32	22222	2 2 2 2 2 2	2 2 2 2 2 2 2	75 93 117 82 54	4.76 6.69 7.12 4.63 1.74	.070 046 .057 .054 .040	4 4 3 3	128 93 135 81 69	1.27 1.85 2.21 1.83 1.35	19 21 13 22 28	10 .15 .15 .14 .14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.61 1.86 2.16 1.87 1.42	.27 .06 .08 .11 .13	.07 .12 .08 .10 .28	2	2 1 4 2 1
A 105316 A 105317 A 105318 A 105319 A 105320	1 5 1 1	15 158 31 539 226	2 2 4 3 5	22 24 26 14 27		25 27 24 33 36	11 22 12 33 26	360 383 379 303 487	2.15 2.84 2.30 4.07 3.75	NaX-2	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	29 146 111 143 247	~~~~~	2 2 2 2 2 2	2 2 2 2 2 2	67 79 76 78 93	1.25 2.32 2.10 3.04 3.10	044 053 063 077 062	2 3 3 2 3	80 47 45 48 65	1.88 1.60 1.62 .78 1.48	44 65 69 29 59	2022 22 29 18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.73 2.14 2.16 5.12 2.43	.09 .14 .16 .29 .17	.74 .60 .59 .16 .30		1 1 1 4
A 105321 A 105322 A 105323 A 105323 A 105324 A 105325	1 1 1 1	35 4 45 37 55	2 3 2 2 2 2	26 25 32 30 32		33 38 30 20 24	13 14 17 15 17	493 399 398 331 370	2.49 2.59 3.37 2.91 3.31	22232	5 5 5 5 5	ND ND ND ND ND ND	1 1 1 1	134 87 56 31 21	22222	22222	2 2 2 2 2 2	82 91 106 91 99	3.22 1.64 .83 .86 .83	065 050 069 056 062	43222	77 92 62 42 61	1.67 1.91 1.99 1.62 1.87	72 143 177 172 218	.22 .27 .32 .28 .29	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.30 1.92 1.89 1.80 1.90	.06 .08 .06 .09 .09	.56 1.06 1.35 1.21 1.43		1 1 4 1 6
A 105326 A 105327 A 105328 A 105329 A 105330	1 2 1 1	11 30 33 117 162	2 2 5 5 2	20 29 44 33 24	21123	16 20 23 20 18	11 14 20 15 13	302 323 427 367 365	2.35 3.02 4.40 3.13 2.67	NUX NU	5 5 5 5 5	ND ND ND ND	1 1 1 1	58 81 119 107 53	22.22	2 2 2 2 2 2	3 2 2 2 2 2	81 88 124 95 92	.96 1.30 1.85 1.67 1.41	.038 .046 .044 .043 .056	5 2 2 2 3	35 52 40 43 65	1.21 1.55 2.37 1.73 1.50	107 222 213 147 54	.21 27 32 27	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.31 2.71 4.29 3.33 1.52	.10 .23 .31 .31 .10	.72 1.36 2.27 1.40 .90		4 11 2 17 25
A 105331 A 105332 A 105333 RE A 105329 A 105334	1 1 1 1	23 275 104 114 97	2 2 4 3	23 24 31 31 24	22211	16 33 41 20 20	12 16 14 14 15	347 394 507 356 397	2.54 3.09 2.85 2.95 3.12		5 5 5 5	nd ND ND ND ND	t t t t	51 69 93 104 210	.2 .2 .2 .2 .2 .2 .2 .2	2 2 2 2 2 2	2222	92 94 92 91 95	1.07 2.19 3.53 1.59 2.71	.063 .059 .062 .062 .056	32423	64 87 112 41 54	1.33 1.14 1.71 1.66 1.88	77 62 70 142 59	20229	2222	1.64 1.87 1.96 3.12 2.98	.15 .16 .06 .29 .19	.67 .34 .64 1.35 .33		6 5 9 12 3
A 105335 A 105336 A 105337 A 105337 A 105338 A 105339	1 1 1 1	50 241 73 66 108	5 2 2 2 4	17 17 14 25 26		28 36 29 20 19	11 12 9 14 15	296 325 287 391 350	2.33 2.04 1.69 3.10 3.28	22354	5 5 5 5	nd Nd Nd Nd	1 1 1 1	190 190 191 273 332	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	22222	84 68 58 108 106	1.76 2.05 1.76 2.43 2.28	.062 .065 .070 .065 .063	32342	73 86 88 38 33	1.66 1.76 1.24 1.65 1.50	61 25 13 38 45	25422	23222	2.60 2.70 2.68 3.08 3.73	.27 .25 .61 .26 .73	.30 .16 .16 .24 .25	4	3 20 2 4 2
A 105340 A 105341 A 105342 A 105343 A 105343 A 105344	1 1 1 1 1	138 32 50 106 72	4 3 7 5 4	24 25 27 31 30	NL-N-	20 18 17 17 14	16 11 11 13 72	367 357 372 399 342	3.19 2.66 2.94 3.41 3.35		5 5 5 5	ND ND ND ND ND ND	1 1 1 1	367 399 257 286 262	NNNN N	2 2 2 2 2	2 2 2 2 2 2	105 100 110 122 116	2.86 2.67 2.47 3.45 1.99	.053 .062 .059 .073 .075	3 3 4 6 6	37 46 47 56 53	1.61 1.46 1.39 1.55 1.26	28 37 19 13 44	22.20.23	4 3 3 5 2	3.78 3.20 3.20 3.14 2.11	.50 .34 .63 .19 .18	.17 .19 .11 .09 .16		7 1 1 4 2
A 105345 A 105346 Standard C/Au-R	1 1 21	80 86 63	4 2 41	30 27 136	7 4	19 24 72	13 14 32	339 414 1145	3.21 3.47 3.98	2 52	5 5 23	ND ND 6	1 1 38	128 108 52	.2 .2 19.0	2 2 15	2 2 19	105 111 60	1.93 2.70 .50	074 069 098	4 4 40	63 84 60	1.37 1.64 .91	45 33 182	24 24 10	4 5 36	2.08 2.20 1.86	.15 .17 .06	.14 .16 .16	11	1 3 480
		ICP THIS Assa - Sa	- ,50 ; Leac ; rec nple	IU GR. II 18 Comei Type	NE SAN PARTI NDED N CORE	WPLE J IAL FO FOR RO E	s dig R MM CK AN Au* A	IESTEI FE SI ID COI MALYS	L VITH CA P Le San Sis By	SHL LA C PLES ACIO	5-7-2 CR NG (LF CU LEAC	HCL- BA T1 P8 Z H/AA	HIND3- B W N AS FROM /	H20 A AND L > 1%, 10 GM	t 95 Initi Ag 2 Sam	DEG, ED FOR > 30 P PLE.	C FOR NA K PN & <u>Sampl</u>		HULR AL 1000	AND AU DI PPB ing 4	etecti Ref <u>ec</u> ti	LUTED ION LI <u>re du</u>	TO TO INIT B Plicel	1 ML 1 17 1CP 1 6_30	DI ca ,	NATER. PPM.					
DATE REC	EIVE	D:	HOW 4	199	1 D	ate	REP(ORT	MAIL	BD:	N	0∢ -	1/9	H.	81	CHED	BY.		<u>h</u>	<u> </u>	1-0.TO	YE, (, LEON	G, J.	MANG;	CERT	(F1ED	A.C.	Assayi	ERS	

.

=

٦Ì

MPLE#	Ma	Cu	Pb	Zn	A.	Ņi	Co	Mn	fe		U	Au	7h	Sr	્રિત	Şb	Bi	۷	Ca		La	Cr	Hg	Ba [[]	, B	AL	¥a	K	
	ppm	ppn	ppm	ppm	ppa	ppm	ppm	PPH	*		<u>bb</u>	ppm	ppm.	ppm	PPM	ppm	ppm	ppm	X		ppa	ppm	<u>×</u>	ppn 211	<u>(</u>	*	X	X	
105347	. 1	62 114	23	26 26		18 16	12 13	321 332	2.63	23	5	ND ND	1	103	3	2	2	91 91	2.50	057	23	69 72	1.26	43 16	2	2.01	.18 .19	.19	
105349		98	- 4	28	1	16	13	282	2.66		5	ND	1	371		2	Ž	100	2.77	.069	3	53	1.09	51 . 35	5	2.74	.25	-19	
105350 105351	1	105 138	5	28 29		10 19	12	203 257	2.30	2	5	ND	i	386	Ż	2	2	90	2.66	075	3	58	1.03	55 15	8	2.87	.30	.21	
05352	1	120	2	22		18	11	237	2.04		5	HD.	5	372	ž	2	2	78	1.90	.091	4	76	.96	42 14	4	2.11	.34	.15	
05353		146 134	4	26 26		19 14	14 12	262 251	2.69		5	ND ND	1	572 738	2	2	2	97 102	2.63	057	32	- 54 - 35	1.12	67 i 10 72 i 10	12	3.11 3.55	.42 .64	.23	
05355	li	73	2	23		10	11	224	2.85	2	Š	ND ND	1	708		2	2	105	2.53	061	2	26	.93	59	6	3.60	.70	.8	
9000		109	0	20		12	12	200	3. IU .					120		-	•	••••			-	~	.75			3.JT			
05357 05358	1	147 73	4	22 22		12	11	260	2.61		5	ND.	i	222	2	2	ź	118	4.86	051	3	24	1.04	37 34	114	3.27	.35	.18	
105359	1	83 143	4	26 25		12 17	11 16	227 273	3.13 3.23		5	ND ND	1	492 650	2	2	2	117 116	2.28	057	2	26 30	.92 1.11	90 (1) 63 (1)	521 21	2.64	.46	.31	
05361	1	98	4	26		13	12	257	2.97	3	5	ND	1	978	2	2	2	109	2.88	-063	3	25	1.04	40 111	9	3.75	.56	.15	
105362	1	127	3	25		12	11	<u>241</u> 351	2.96		5	ND ND	1	901 458	2	2	2	110	2.35	062	2	24	.98	57	31	3.35	.51 56	.19	
105364	5	161	3	30		15	14	361	3.38	Ż	Ś	Ň	į	430	7	2	2	123	1.74	.063	2	33	1.51	52	10	2.66	.52	. 19	
A 105360 105365	3	150 131	2	24 25	1	17	15	204 325	3.03	2	5	ND	1	412	2	2	2	115	2.99	.162	2	20 43	1.42	66	20 3	3.47 2.26	.50	.18	
105366	1	106	3	26		14	13	341	3.11		5	ND	t	377	2	Z	2	119	2.89	164	2	33	1.48	51 .1	5	2.35	.35	.18	
105367		138 126	3	47 59		18 23	18 21	735 845	4.09	2	5	ND ND	1	768 847	2	2	2	134 135	3.41 2.95	<058 2063	5	44 48	3.09	37 .2 99 .2	6 2	3.62 3.15	.21 .30	.22	
105369	!	28	4	27		9	7	416	1.68		5	ND ND	Ş	165	2	2	2	67	2.57	025	14	23	.58	28 OV	2	.89	.15	.24	
103.570		65	,	•3		-	•	270	0.74			-	,	20		-	- -	100	7.50		10		31 e			ж. Т	. 10		
105371 105372]	69 54	2	70 101		20	23	1138	5.98		5	ND	2	61	2	2	2	169	3.28	075	11	51	2.25	34 1	2	2.35	.09	.29	
105373		91 88	2	55 41		18 19	21 20	967 770	4.76	2	5	ND ND	1	69 100	2	2	2	141 147	4.84	059	8	41 40	1.96	57 1	2	1.95	.11	.39	
105375	1	64	5	45		19	18	735	4.62		5	MD	1	67	2	2	2	147	2.53	064	5	38	2.18	113 .2	2	2.14	. 19	.80	
105376	1	191	2	45		17	21	700	5.18	2	5	ND ND	1	83 57	2	2	2	175	2.50	-060 616	5	40 27	1.84	91 .2 37	5 2	1.78	.21	.63	
105378		115	3	29		10	15	526	2.30		5	Ĩ	3	53		2	2	73	2.97	. 62	8	15	.59	23	2	.73	.09	.2	
105379 105380	1	65 8	3	- 33 17		14 3	14	600 341	5.69 1.17		5	ND ND	6	306 24	3	2	2	44	2.02	. 940 - 112	12	4	.08	101 2 6 0		.29	.15	.57 () .13 ()	
105381	1	17	5	21		3	3	295	1.40		5	MD	5	16	12	2	2	53	1.39	020	15	3	.09	6 .0	5 2	.24	.10	.15	
105382 ANDARD C/AU-R	1 20	21 62	4 45	21 139	71	1 73	2 32	266 1124	1_12	2 42	5 21	10 7	2 39	18 54	18.7	2 17	2 19	39 62	.96	0003 19091	15 39	7 61	.09 .93	8 0 187 0	52 36	.23	.12	.16 .17	
HEARING CLUM X					7-1170							<u> </u>			<u> (7788</u>)														

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 3

ff

<u>र</u> ू =						141.17					193																					
2	SAMPLE#	140	Cu	Pb	Zri		R i	Co	Nn	Fei		<u> </u>	Au	Th	_Sr	î. Co	Sp	Bi	¥		H B	La	Çr	Ng	Ba		B	AL	Xa	_ K₿		Auth
1 -			p pas	1	him			ppm.		A 1		PER		PPM	pp=	i i i i i i i i i i i i i i i i i i i	pp.		ppm	1 3			ppe	<u> </u>			_ ppm	X	X		.5.00	ppb
	A 105383	1	72	4	30		7	10	476	2.69		5		1	33		2	2	88	2 ns 🖗		11	17	78	41		τ	76		25		4
	A 105384	i i	25	3	61	÷.,	18	20	710	5.91	2	ŝ	ND	i	148		2	2	176	1.58	12		43	2 21	157		Ĩ	2 82	.00	1 04		
	A 105385	i i	68	2	53	16.2	18	19	568	4.95		5	ND	i	177		2	2	155	1.48	065	Š	47	1.89	165	127		2.00	.15			- 2 -
	A 105386	1	102	3	50	2	18	19	545	4.90		5	NO	1	278		2	Ž	145	1.52	154	4	42	1.80	162	24	4	2.10	.23	.78		E I
	A 105387	1	80	3	56	1.	16	20	626	5.63	17 3	5	ND	t	121	1 2	3	2	158	1.13		5	38	2.06	159	31	2	1.99	.12	.95		ó
~										1						****					28842	-										-
ű.	A 105388	1	64	- 4	57		18	18	674	4.68 🖗	47 Z	5	14D	1	- 74	12	2	2	146	1.95 💈	167	6	45	1.79	113	27	- 4	1.67	.11	.80 🕴	*11	2
Ł	A 105389	1	22	3	34		- 11	10	454	2.99	31Z	5	ND	3	32		2	2	107	1.76 🖇	D47	9	28	.90	- 64	2 1	- 4	.93	.08	.54 🚦		3
Ц	A 105390	1	- 74	Ž	- 4Z		15	15	51B	4.30		5	ND	2	65		2	2	142	1.57	100	8	31	1.41	79	26	2	1.49	-18	.54 §		4
Ĵ	A 105591		110	2	47		18	19	517	4.59		2		1	159 :		2	Z	142	1.59	Щ7	5	- 46	1.59	125	26	3	1.72	-12	.68	9	3
Ľ	A 102392	1	80	6	•>		17	15	744	● - 36 ∦		>		- 4	213		2	2	155	ז . סר פ	UDY	-6	59	1.49	73	20	Z	2.09	-45	41 ફ		4
Z L	A 105303		150	2	40		10	28	522	4 40		c	III D	1	103		2	2	125	4 72 0		E	TO				4	4 00	24	ET		F
Ę.	A 105396		141	5	38	107	10	18	515	4.40		ŝ		i	101		2	5	133	1 76 0	22	5	20	1.55	50		2	1.00	- 21	- CC		2
Ę.	A 105395		71	Ž	32	18 A 1	13	13	423	3.85		5	ND	ż	50	122	2	ž	128	1.14	058	7	10	1.16	71		3	1.20	. 14	45 :		2
2	A 105396	3	111	2	47	2.	16	19	484	5.29		5	ND	ī	46	2	Ž	Ž	159	1.76	069	÷.	35	1.49	132	29	ž	1.92	.12	62		4
С	A 105397	1	67	2	42	88 Î	17	17	462	4.75	14.	5	ND	1	37		2	2	158	2.31	067	8	53	1.33	85	227	ģ	1.94	.08	.42	23. X	i
											342																				.	•
	A 105396	1	134	2	48	2 - Z	20	22	590	5.73	8 (5	ND	1	- 45 -	1	2	2	165	1.19 💈	066	5	- 46	2.14	99	33	- 6	2.26	.10	.67 🕴	8 1	1
	A 105399	1	69	Z	56		20	21	574	5.46		5	ND	1	95	2	3	2	158	1.49	069	6	46	2.19	75	\$ 33	30	2.36	.10	.66	a a a a a a a a a a a a a a a a a a a	2
	A 105409	1	67	2	47		20	20	519	5.07	42 A.	5	10	1	81		2	2	150	1.34 §	167:	5	46	1.95	108	4 32	63	2.15	.12	.80		2
	A 102401 A 105707		72/	2	30	8 8	45	41	4.3Y	4.YO 3 7 44 1	23.6	2		1	29		2	Z	149	1.01	U,U.		50	1.62	141	8 3 1	- 41	1.99	.21	1.09		13
	N 193402	•	31	Ľ	30	77774	13	13	204	3-00 1		2		3	00		. 2	2	130	2. 73 §		ő	70	1.21	>0		- 4	1.78	•1Z	. 26 🕴	19 K	5
	A 105403	Í t	59	5	36		20	15	402	3.69	21Z)	5		1	136		2	2	135	7.20	078	5	54	1.75	45			80 F	86	Å		_
Ĭ	A 105404	1	49	Ź	40		29	20	348	4.41		ŝ	IID	Ť	79		ž	2	147	1.46		Ĩ	70	2.28	- ŘŠ		sĭ.	2.56	.16	1.08		ž
ין	A 105405	1	72	5	40 3	4.2	27	18	363	4.26		5	ND.	1	73		ž	2	137	2.04	055	3	69	2.13	77	251	85	3.39	.57	.83		ž
Ξ	RE A 105402	1	- 54	2	30 :		16	- 14	387	3.65		5	MD.	- 3	86		2	2	131	2.96	053	8	35	1.20	57	.24	5	1.76	.12	.56		9
Ĵ.	A 105406	1	102	- 4	16		23	13	213	2.26		5	11D	1	164		2	2	- 81	1.60 🖁	069	3	55	1.16	62	22	17	2.40	.60	.38		8
Ę					~												_	_			M NO									1		
Ľ	A 105407		90	Z	- 24 -		- 25	15	207	2.20	19 . - A.	2		1	402		Z	Z	- 84	Z.DO	0523	3	52	1.34	68	12	2	2.27	.27	-47		8
ក្	A 102405		417	2	25	22,042	20	18	408	4.U1 ::	1.2	2			- 07	44	2	Z	137	Z. 00		6	- 51	1.95	69	120	5	2.27	- 14	.78		5
Σį.	A 105/10		117	E E	- 23		20	17	209	2.04		2		1	201	126	5		YU	1.11	101	- <u>*</u>	- 00	1.55	70	97	- ÷	Z. 19		.43		5
니	A 105410		50	5	- 2		21	14	278	3.47		- ÷		4	- <u>C72</u> : TAR :		2	2	125	2.43		- 2	97 84	1,39	40	8 5 4	- 4 E	3.26	1.07	.24 *		6
-		•		-	~		_							•	300			•	123	L. U7 3		•		1.36	30		3	2.04	•9(- - 6 9 - 3		∠
Ĵ.	A 105412	1	60	- 4	22		22	11	228	2.54		5	11D	1	237	æ?	2	2	94	1.98	060	3	72	1.19	50		7	2.25	.26	.32		3
ĩ.	A 105413	1	45	Ż	26	920	26	13	272	2.37 🗒	33	5	ND	1	72	2	Ž	2	83	1.31 🖇	.054	2	62	1.63	99	25	- Å	1.74	.15	.67		ž
	A 105414	1	38	2	32		18	13	378	3.63		5	ND	1	130		2	2	113	2.49 🌡	.076	7	53	1.40	50	§25.	11	2.44	. 39	.33	94 C	1
	A 105415	1	57	4	47	. (. 2	33	17	453	3.78	83	5	ND	1	62		2	2	133	3.05	.057	8	98	2.30	61	羅利	18	2.58	.12	. 71 (4
킧	A 105416	1	48	2	47		37	20	494	4.11		5	ND	1	52		2	2	132	Z.13 🖁	04	- 4	115	2.73	60	14 82	6	2.70	.11	.63		2
	4 105/17		C 1			9 .9	28	46	277	T 48	14.24				7/4		•	-	444			,	45	-		\$25 1 23			-			_
4	A 103417 A 105418		21 (88)	÷	31	105	20	44	212	3.10	14 N	2	-		290		2	4	111	2.4D ji 2.47 -	22		01	2.02	44 92	28	16	3.72	.00	-35	ų U	3
4	★TANDAPh C/All-P	10	50	30	131	44	72	17	1054	107	ψ¥.	10	7	- 14	54		15	10	F 14 CC	₩ 11.€ 8 0λ		7	0U 434	1.01	30		¥ 77	3.14	.14 .04	.23	H H	200
n I	214MDMKD C/MD-K	17	- 27	38	133	. (. .	15	- 2 2	1034	3-A 1 \$	30 A.	18		30	- 24 -	10.0	13	TY		, 4 7 🧯	USU.	- 56	- 26	. BY	177	S&	- 33	1.90	.06	.15 🤅	A	490

ACHE ARMANTI

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 4

.00	SANPLE#	No ppie	Cu ppm	Pb ppm	Zn pps		Ni ppm	Co ppm	Nn ppm	Fe X		U Au pan pipan	Th ppm	Sr ppm		Sb ppa	Bi ppm	V ppm	Ca X	12	Le ppm	Cr ppn	Ng X	Be ppm		B AL	Na X	K i		
	A 105419 A 105420 A 105421 A 105422 A 105422 A 105423	1 1 1	14 50 15 51 71	7 6 7 5 3	64 99 38 40 28	T2572	5 19 4 20 22	7 19 9 16 15	604 832 421 482 345	5.07 5.38 5.58 5.73 5.32	N.N.N.N.N.	5 HD 5 HD 5 HD 5 HD 5 HD 5 HD	5 2 3 3 2	175 94 141 76 32	N.N.N.N.	2 2 2 2 2	2 2 2 2 2 2	156 2 220 3 173 1 136 2 113 1	2.07 5.35 1.54 2.40 1.73	998 970 971 973 973	17 12 15 7 4	9 43 8 46 49	.49 1.94 .68 1.61 1.47	36 111 87 84 77	17 R 21 21	2 1.04 5 2.05 2 1.08 2 2.31 3 1.65	.10 .07 .08 .45 .14	.25 1.08 .59 .71 .66		4 4 5 5 8
N RULE RES	A 105424 A 105425 A 105426 A 105427 A 105428	1 1 1 1 1	33 32 161 49 28	2 4 3 2 3	34 25 18 19 34	1-2-2	24 26 29 23 21	14 14 21 13 13	581 311 268 240 410	5.43 2.69 2.97 1.97 5.24	22222	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	6 1 1 1 2	58 57 201 425 67	a - Naw	2 2 2 2 2 2	2 2 2 2 2 2 2 2	115 3 97 1 98 2 69 2 100 2	5.94 1.78 2.05 2.42 2.19	051 078 083 076 047	94436	71 72 85 59 57	1.66 1.77 1.37 1.33 1.66	57 82 49 54 57	22252	2 1.71 2 1.84 3 2.19 3 2.17 3 1.90	.10 .18 .25 .22 .09	.76 .75 .46 .32 .57		1 2 4 2 5
TO GOLDE	A 105429 A 105430 A 105431 A 105432 A 105433	1 1 1 1	13 77 50 56 121	2 6 5 3 5	36 28 26 34 26	.1.	20 29 32 24 20	13 14 15 15 18	420 2 342 2 295 3 395 4 355 4	5.83 2.72 2.52 4.08 4.84	****	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 4 1 1	102 25 32 138 174	NNNN	2 2 2 2 2 2 2	22222	123 1 94 1 68 1 127 1 139 1	1.57 1.38 1.39 1.20 1.52	062 034 050 072	7 5 3 6 6	56 81 70 64 49	1.58 1.82 2.02 1.54 1.17	75 94 113 103 105	X 11 11 72 X	2 1.76 2 1.70 5 1.90 33 1.89 7 1.85	.16 .12 .13 .13 .14	.70 1.10 1.05 1.11 .78		4 2 3 8 4
	A 105434 A 105435 A 105436 A 105437 RE A 105433	1 10 1 1 1	186 115 122 85 123	7 2 3 5	19 23 18 30 26		32 42 37 36 21	22 20 15 17 18	294 317 344 375 355	2.95 5.10 2.41 5.77 6.82	04422	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1 1 1	71 82 79 122 175	3,7,3,2,2	2 2 2 2 2 2	2 2 2 2 2 2 2	89 2 108 2 77 2 125 2 139 1	2.34 2.77 2.46 2.42 1.53	068 086 061 056 107	4 4 5 7	65 111 110 117 49	1.42 1.37 1.50 1.80 1.18	31 33 45 82 107	28 215 215 X 25	5 2.02 2 1.89 4 1.77 2 2.04 5 1.88	.17 .17 .17 .14 .14	,23 ,26 ,22 ,61 ,79		4 6 3 5 4
ARLYTICAL	A 105438 A 105439 A 105440 A 105441 A 105442	1 1 1 1	129 131 111 108 84	2 8 2 5 2	25 32 29 28 30	1 1 1 1 1	26 33 31 29 27	17 21 18 17 16	330 / 378 / 338 1 321 1 329 1	4.04 4.08 5.58 5.51 5.66	32722	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	56 164 72 87 69	222242	2 2 2 2 2 2 2	2 2 2 2 2 2	131 1 137 2 123 1 125 1 118 2	1.94 2.44 1.96 1.88 2.01	063 076 062 070 074	46344	72 80 70 70 72	1.49 1.78 1.56 1.52 1.56	114 107 111 113 95	***	2 1.71 3 2.20 4 1.83 3 1.94 2 2.05	.13 .11 .18 .19 .18	.58 .64 .61 .62 .47		1 4 2 9 2
M ACME A	A 105443 A 105444 A 105445 A 105446 A 105447	1 1 1 1	81 129 111 112 142	5 5 2 3 2	36 21 22 23 20	1 4 1 2 1	26 22 18 25 23	16 14 13 15 14	374 254 249 248 241	5.68 5.13 2.93 5.21 2.97	22322	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	65 78 103 105 134	23333	222222	22222	131 2 110 1 106 1 119 2 181 1	2.35 1.74 1.80 2.01	072 076 079 073 088	5 3 3 3	77 59 47 53 74	1.69 1.04 1.07 1.07 .96	75 62 64 98 89	31525	3 2.23 3 1.52 3 1.57 5 1.88 2 1.47	. 16 . 18 . 16 . 18 . 22	.54 .22 .18 .30 .24		4 12 7 2 6
53 FRO	A 105448 A 105449 A 105450 A 105451 A 105452	1 1 1 1	94 62 82 119 129	2 4 6 2 2	19 25 32 33 27		25 17 25 23 29	1† 11 16 16 16	267 340 395 378 378 371	2.72 2.65 4.04 4.24 3.64	2222	5 ND 5 ND 5 ND 5 ND 5 ND	1 3 1 1 1	81 37 77 93 134	*****	2 2 2 2 2 2 2	2 2 2 2 2 2 2	97 1 98 1 132 1 133 1 119 2	1.74 1.90 1.98 1.67 2.09	092 045 090 091 086	36435	114 47 67 59 90	.90 1.03 1.66 1.63 1.70	41 65 128 171 86	.12 .16 .24 .21	2 1.38 3 1.12 2 1.83 2 1.86 2 1.77	.23 .14 .20 .21 .19	.15 .33 .44 .68 .34	ing film a state of the second state of the se	10 5 7 12
1991 12:	A 105453 A 105454 Standard C/AU-R	1 1 18	74 116 59	5 2 40	22 23 135	1 2 	21 19 73	13 15 33	334 324 1053	5.24 5.78 6.00	222	5 ND 5 ND 17 6	1 1 35	81 269 52	22 33 18.7	2 2 16	2 2 18	111 1 134 2 54	1.85 2.21 .49	053 070 093	3 3 36	48 42 58	1.64 1.33 .89	72 85 183	.21 .22 .09	3 2.01 7 2.34 34 1.90	.21 .25 .06	.30 .43 .15		3 2 190
-20-00N	<u>Sample type: CORE</u>	. <u></u> . 54	nples	begi	nning	<u>'RE'</u>	<u>əre</u>	<u>duplí</u>	<u>cete :</u>	samples.	L																			

££

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91~5357

Page 5

Ă٨

°. 006	SAMPLE#	He ppm	Cu	Pb ppm	Zn ppm	Ag Faith	N1 Ppm	Co ppa	Mn ppm	Fe X	As ppn	U ppm	Au ppe	Th ppm	Sr ppn	Čđ HDA	Sb ppm	B.j ppm	V ppm	Ca X	P	Le ppm	Cr ppm	Ng X	Ba ppa	1	\$ ppm	Al X	No X	K V X Dog	Au* ppb
ш,	A 705455 A 105456 A 105457 A 105457 A 105458 A 105459	1 1 1 1 1	90 57 68 71 42	24745	29 27 23 29 40		22 11 15 16 16	17 13 12 14 13	353 385 323 346 475	4.30 4.17 3.65 4.04 3.61	22223	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 4	209 405 702 289 171	NN NN	22222	2 2 2 2 2 2 2 2 2	150 130 136 147 152	2.52 2.19 3.53 2.34 2.81	-066 1992 1070 1065 1073	3 6 3 2 6	55 29 29 33	1,35 .61 .76 .92 1.30	106 49 68 133 54	25 21 14 21	6 2 3 2 6 4 3 2 6 2	.77 .35 .41 .97 .46	.23 .27 .55 .40 .22	,50 1 .31 1 .18 1 .32 31 .30 1	2 11 13 19 2
A RULE RES	A 105460 A 105461 A 105462 A 105463 A 105463 A 105464	1 1 1 1	192 56 108 11 89	2 5 6 5	38 51 49 23 46		20 28 31 4 21	18 22 26 4 17	475 661 671 307 877	4.13 5.00 5.54 1.72 5.05	NNNNN	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 6 1	75 81 60 44 52	~~~~~	2 2 2 2 2 2 2	2 2 2 2 2 2 2	152 170 183 80 146	2.24 1.94 1.82 2.70 4.19	.062 .051 .047 .009 .048	5 5 4 8 9	32 47 54 8 56	1.69 2.67 2.84 .25 1.59	108 144 174 16 55	24 28 33 57 23	5 2 3 2 2 2 3 2 1	.14 .74 .67 .37 .66	.19 .21 1 .14 1 .07 .13	.71 1 1.34 1 1.60 1 .19 1 .63 1	4 1 2 2 10
TO GOLDEN	A 105465 A 105466 A 105467 A 105468 A 105468 A 105469	1 1 1 1	90 8 5 15 11	4 2 7 2	50 45 19 20 37	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	17 4 2 3 3	17 7 3 6	746 498 239 340 430	3.64 2.84 1.33 1.16 2.47	22242	5 5 5 5 5	ND ND ND ND	4 6 13 13 11	46 65 29 50 64	22222	2 2 2 3 2	2 2 2 2 2 2 2	116 184 55 50 93	2.90 1.51 .60 1.85 1.30	.035 .039 .007 .016 .026	10 15 12 10 14	38 5 3 19 5	1.10 .22 .10 .18 .20	28 16 7 10 18	9 2 8 2 9 2 8 2	51 32 54	.24 .58 .32 .74 .45	.06 .85 .07 .11 .05	.56 1 .16 .14 .11 .11	53411
	A 105470 E 199001 E 199002 E 199003 E 199004	1 1 1 3	185 89 99 102 103	3 2 6 3 2	61 31 26 24 23	N	7 14 13 13 13	11 10 9 8 9	627 275 279 273 260	4.13 2.51 2.33 2.70 2.43	42322	5 5 5 5 5	ND 40 40 10 10	3 1 1 1	91 283 217 180 180	122.22	2 2 2 2 2 2	2 2 2 2 2 2 2	144 85 82 96 85	2.64 2.00 2.26 2.23 2.11	.049 .021 .107 .107 .104	16 4 4 4	5 43 40 49 42	.28 .96 .87 .74 .82	32 103 70 49 49	N N N N S	3 2 2 4 2 2 2 2 2	.60 .44 .48 .25 .02	.05 .26 .29 .27 .24	.18 .48 .35 .22 .26	47715
ALYTICAL	E 199005 E 199006 E 199007 E 199008 E 199008 E 199009	1 1 3 1 1	125 96 74 108 117	5 6 2 3 2	19 28 37 28 28	12.22 12	11 14 17 14 15	7 9 11 9 10	218 294 412 278 296	2.11 2.69 2.87 2.54 2.48	22222	5 5 5 5 5	nd Nd Nd Nd Nd	1 5 1 1	199 306 175 157 142	.2 .2 .2 .2 .2 .2 .2 .2 .2	222222222222222222222222222222222222222	2 2 2 2 2 2 2	83 96 95 92 86	2.15 2.78 3.71 2.21 2.21	.120 .096 .102 .103 .094	4 4 5 4 4	40 45 54 49 46	.71 .95 1.44 1.08 .95	40 60 27 45 98	.19 .23 .21 .24	2 1 4 2 4 1 5 2 2 2	.72 .34 .97 .26 .67	.21 .26 .14 .24 .32	.15 .23 .12 .23 .12 .25 .54	22 2 3 1 2
1 ACME AN	E 199010 E 199011 E 199012 E 199013 E 199014	1 2 2 1	95 65 43 84 71	7 6 6 4 2	17 31 29 32 22	.2.2.1.1.2	10 16 11 16 14	6 9 9 10 8	237 385 969 313 275	1.75 1.91 3.02 2.26 1.93	22722	5 5 5 5 5	nd Nd NC NC	1 1 1 1	129 123 76 85 79	22222	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	78 78 95 86 75	2.27 2.70 5.61 1.73 1.58	.131 .106 .123 .080 .081	5 4 3 4 4	38 46 40 48 51	.62 .94 .89 1.02 .83	32 46 13 40 35	22422	2 2 4 2 9 2 2 1 2 1	.03 .15 .10 .66 .68	.28 .26 .09 .19 .21	.14 .19 .07 .36 .35	
55 FROM	E 199015 RE E 199011 E 199016 E 199017 E 199018	1 2 1 1	86 61 83 88 70	2 3 2 6 2	24 29 26 25 38		16 15 17 22 27	9 9 9 11 14	294 376 290 280 360	2.11 1.83 2.14 1.83 2.75	22422	5 5 5 5 5	nd Nd Nd	1 1 1 1	80 119 102 115 114	2222	2 2 2 2 2 2	2 2 2 2 2 2	78 76 75 69 95	1.60 2.61 1.66 1.81 1.97	.079 .104 .076 .080 .085	4 4 4 4	58 46 49 47 65	.86 .91 .94 .85 1.42	46 40 52 56 83	35333	2 1 5 2 2 1 3 2 3 2	.55 .06 .68 .01 .39	.18 .24 .23 .27 .25	.38 .18 .52 .37 .89	26315
91 12:	E 199019 E 199020 Standard C/AU-R	1 1 20	82 128 59	3 6 42	35 26 131	1 2 6 9	21 20 69	12 12 34	791 388 1051	2.54 2.29 3.93	3 2 42	5 5 17	ND ND 7	1 1 35	137 171 53	.2 18.8	2 2 15	2 2 19	88 89 56	7.23 3.23 .48	.070 .081 .091	4 4 38	58 53 58	1.29 .96 .88	31 39 175	21 22 29 29	2 1 4 2 34 1	.89 .30 .87	.18 .27 .06	.32 .20 .15	7 10 1, 460
NDU-07-19	Şample type: COR	<u>E. S</u>	emple	s beg	<u>inntn</u>	<u>a (RE</u>	<u>are</u>	<u>dupi</u>	icste	sand l	<u>e; .</u>						•														

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 6

.001	SAMPLE#	No ppin	Cu ppm	Pb ppm	Žn ppm	70 111	Ni ppm	Co ppn	Nn ppn	Fe A	i L i ppe	i Au i ppan	Th ppm	Sr ppm	Dd ppm	Sb ppm	8i ppm	V ppm	Ca X	9 3	La ppiii	Cr ppm	Ng X	P4 pp8	ti X	BAL ppna X	Ne X	K X		r Ab
U.	E 199021 E 199022 E 199023 E 199024 E 199025	1 4 1 5	62 66 93 98 51	7 2 2 9	30 50 25 22 42		18 28 14 15 19	9 16 9 8 12	319 470 401 388 773	2.06 3.33 1.99 1.86 3.43	2 5 5 5 5 5 5 5 5	ND ND ND ND	1 2 1 1	143 107 155 187 84	NNSAN	2 2 2 2 2 2	2 2 2 3	80 113 72 75 112	2.58 3.06 3.25 4.13 4.76	069 070 079 084	4 5 4 3	50 64 46 40 38	1.09 1.92 .99 .72 1.38	65 33 38 27 33	771972	3 3.16 3 2.96 3 2.75 3 2.32 2 2.59	.35 .20 .30 .30 .21	.32 .36 .14 .09 .50		9 3 12 22 8
RULE RES	E 199026 E 199027 E 199028 E 199029 E 199030	1 1 1 1	45 84 58 118 230	2 3 2 2 2 2	25 25 38 49	.1 .1 .2 .2	20 16 14 16 21	11 11 8 10 15	302 384 402 468 584	1.87 2.11 2.22 2.43 3.11 1	55555	ND ND ND ND ND	1 1 1 2 1	84 149 149 172 124	NNNN	2 2 2 2 2 2	2 2 2 2 2 2	60 69 81 96 116	2.07 3.10 2.69 3.93 3.59	054 099 089 083 085	3 4 4 3 3	37 40 42 43 58	1.05 .97 .87 .89 1.15	24 27 35 20 56	-19 -17 -18 -19 -72	2 2.37 3 2.98 2 2.38 3 2.85 2 3.35	.31 .37 .37 .37 .35 .36	.36 .14 .17 .08 .28	1	3 13 7 15 兄
ro Golden	E 199031 E 199032 E 199033 E 199034 E 199035	1 1 1	100 143 686 720 864	2 2 2 2 2 2	59 52 57 57 57 47	11367	19 19 15 17 20	14 16 15 14 13	419 411 324 345 374	2.31 2.29 1.68 2.08 2.39	55555	ND ND ND ND	1 1 1 1	148 167 175 138 122	NNNN NNN	2 2 2 2 2 2	2 2 2 2 2 2	95 98 66 84 94	3.16 3.28 3.55 2.93 2.66	.088 .102 .073 .087 .093	3 3 3 3 3	59 52 38 40 42	1.40 1.20 .60 .66 .77	118 99 35 49 62	20 21 17 18 20	2 4.66 2 4.32 3 3.85 3 2.82 3 2.51	.40 .48 .42 .27 .33	.47 .46 .08 .15 .21		12 21 66 65
,	E 199036 E 199037 E 199038 E 199039 E 199040	1 1 1 1	153 71 86 61 134	2 2 3 2	30 26 32 32 30		14 11 14 17 15	8 6 8 8 11	389 549 467 407 350	2.19 2.21 2.22 2.23 2.63	555555555555555555555555555555555555555	ND ND ND ND	1 2 1 1	165 119 145 131 79	*****	3 2 2 2 2 2	2 2 2 2 2 2	98 97 104 100 97	2.95 3.67 3.31 2.99 2.02	.097 .093 .096 .092 .087	3 3 3 4 4	38 33 39 45 33	.63 .80 .80 .77 .88	44 35 47 50 37	,20 19 ,21 ,21 ,23	3 2.78 5 2.47 4 2.65 3 2.46 2 1.72	.38 .27 .35 .34 .24	.12 .07 .13 .18 .19		15 10 12 11 9
ALYTICAL	E 199041 E 199042 E 199043 E 199044 E 199045	1 1 1 1	138 81 67 110 93	35 2 2 2 2	23 28 25 21 27		12 12 13 13	10 9 9 8 9	286 316 292 291 305	2,44 2.53 2.29 2.20 2.59	55555	ND ND ND ND ND	1 2 2 1 1	181 170 196 130 133	2222v	2 2 2 2 2 2	2 2 2 2 2 2	93 94 82 92 100	2.06 2.24 2.13 2.18 1.93	.079 .083 .073 .092 .087	44455	26 27 24 29 32	.73 .88 .82 .74 .87	65 59 50 50 64	22822	2 2.19 2 2.56 2 2.16 3 1.86 3 2.15	.32 .34 .23 .24 .33	.21 .36 .16 .29 .36		7 4 3 8 7
ACME ANK	E 199046 E 199047 E 199048 E 199049 E 199050	1 1 1 1	83 93 94 139 1373	2 2 2 2 2 2	30 21 36 48 52	4 1 1 1 9	16 16 24 25 20	10 9 14 15 18	356 289 637 1477 1531	2.33 2.20 2.67 4.19 5.01		ND ND ND ND	2 1 2 1 1	248 257 113 79 90	NNNN	2 2 2 2 2	2 2 2 2 2 2 2	90 _91 _98 112 127	2.60 2.40 3.69 8.00 5.75	.072 .058 .085 .093	4 4 3 3	37 37 30 37 27	1.11 .79 .90 .99 .77	55 38 25 17 12	.26 .21 .20 .14	2 2.41 3 2.56 6 2.17 10 2.42 3 2.20	.26 .34 .16 .08 .09	.40 .23 .12 .07 .08		5 9 8 17 85
10 FROM	E 199051 E 199052 E 199053 RE E 199049 E 199054	1 1 1 1 1	114 1098 478 143 110	2 2 2 2 2 2	38 69 81 51 62	1.0 1.0 16 1	14 19 17 24 16	12 17 14 15 13	1023 1257 1056 1528 871	2.92 3.88 3.53 4.40 2.88	0 5 0 5 6 5	i nd i nd i nd i nd	1 1 1 1	103 84 195 80 101		2 2 2 2 2	2 2 2 2 2 2	98 111 111 116 118	5.09 4.24 3.78 8.09 3.65	.086 .092 .096 .097 .093	3 3 2 3 2	24 25 24 36 23	.84 .93 .97 1.01 .83	12 17 19 13 27	.17 .17 .20 .15 .20	8 1.91 6 2.40 6 2.50 9 2.52 4 2.30	.06 1.11 1.17 2.09 1.18	.06 .10 .17 .07 .14		10 38 32 15 11
91 14:4	E 199055 E 199056 Standard C/AU-R	1 1 18	202 173 59	2 2 40	66 62 132	71	14 15 73	15 13 33	735 734 1054	3.13 3.12 3.96	4 5 2 10	i ND i ND 5 6	1 2 35	63 60 52	18.6	2 2 15	2 2 19	117 122 55	2.89	.098 .093 .090	3 3 37	19 21 58	1.01 1.06 .88	35 27 176	.23 .22 .89	2 1.96 3 1.85 31 1.92	.19 .20 .07	.40 .23 .16	4	18 8 70
NOU-07-19	<u>Sample type: COR</u>	<u>E. \$</u> ;	amp1 eg	<u>; begi</u>	inning	<u>'RE</u>	<u>919</u>	<u>dupli</u>	<u>cate</u>	samples,																				

/00/

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

2	ACRE ABALTISCAL																							<u> </u>					*		LYVIAL
.00	SAMPLE#	No ppa	Cu ppm	Pb ppm	Zn A ppn pp	j Ni pp#	Co ppm	Mn. ppm	Fe X	As.	U ppa	Au ppa	Th	Sr ppie	Cd 224	Sb ppm	8i ppm	Y ppm	Ca X	9 3	La ppa	Сг ррш	Ng X	Ba ppm		8 (Apm	Al X	No X	K		Aut* ppb
D .	E 199057 E 199058 E 199059 E 199060 E 199061	1 1 1 1	111 131 85 127 203	2 2 3 2 2	55453	15 20 18 16	15 18 15 14 14	677 548 541 585 634	3.86 4.02 3.78 3.90 3.94	HUNK	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	75 53 94 59 69	NNNNN	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	146 153 144 140 129	3.02 2.13 3.32 2.34 2.85	.104 .0813 .080 .094 .105	4 3 3 4 4	23 30 31 24 23	1.23 1.43 1.24 1.24 1.26	42 67 65 45 39	なみなな	6 2 3 2 6 1 2 2	.21 .06 .05 .96 .18	.16 .19 .14 .21 .23	.60 .62 .58 .56 .47		3 14 6 17 13
A RULE RES	E 199062 E 199063 RE E 199067 E 199064 E 199065	1 1 1	175 162 120 133 136	22222	51 8 48 70 75 90	18 14 18 15 17	14 13 16 15 16	879 781 698 1020 776	3.54 3.25 3.41 4.46 3.98	NUN N N	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	56 74 115 79 78	22227	2 2 2 2 2 2	2 2 2 2 2 2 2 2	136 114 112 137 134	4.07 3.91 3.73 3.94 3.55	105 099 101 109 108	3 3 5 4 3	28 24 25 21 24	1.07 .95 1.50 1.14 1.16	26 20 21 40 37	73 22 22 22	3 (6) 7) 5)	.98 2.10 1.97 2.73 2.53	.16 .12 .15 .21 .25	.18 .13 .17 .23 .43		10 7 9 9 15
TO GOLDEN	E 199066 E 199067 E 199068 E 199069 E 199070	1 1 1 6	152 123 118 85 1616	2 2 4 3	84 73 54 43 81	17 20 14 15 20	16 17 13 14 24	690 732 477 469 885	4.15 3.57 3.35 3.17 5.34		5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	81 118 82 55 48	NNUNN	2 2 2 2 2 2	2 2 2 2 3	142 117 135 120 150	3.21 3.89 2.42 2.28 5.89	.099 .106 .104 .101 .076	4 5 5 9	23 27 25 23 39	1.23 1.56 1.30 1.59 2.27	36 21 17 24 7	NNNN.	5 4 4 6 4 2 4	2,41 2,04 1.64 1.53 2.06	.30 .15 .15 .14 .10	.47 .18 .14 .16 .06		3 7 1 3 51
	E 199071 E 199072 E 199073 E 199074 E 199075	10 2 1 1	265 57 83 118 120	2 2 2 2 2 2	68 56 54 78 46	21 22 17 22	47 21 16 20 21	729 576 660 845 583	6.94 4.29 3.90 4.50 4.10	Nexca	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	50 86 49 51 64	2222	22222	2 2 2 2 2 2	144 130 125 138 137	3.84 2.23 3.26 3.86 2.58	.066 .064 .079 .070 .081	9 5 5 5 4	34 25 25 36 29	1.75 1.80 1.80 2.23 1.89	7 11 15 16 36	2022 2027	3 3 4 4 3	1.70 1.80 1.69 1.91 1.75	.09 .19 .20 .16 .15	.07 .11 .13 .12 .19		21 6 5 6 3
ALYTICAL	E 199076 E 199077 E 199078 E 199079 E 199080	1 1 1 1	229 161 125 103 101	2 4 19 2 2	67 66 50 34 37	2 20 1 19 1 22 2 21 1 19	18 16 18 17 16	836 767 546 488 516	4.39 3.98 4.05 3.07 3.44	47437	5 5 5 5 5 5		1 1 1 1	63 73 55 32 37	2 2 2 2 2 2 2 2	22222	2 2 2 2 2 2	131 122 144 107 117	3.64 3.10 2.31 2.13 2.21	081 -084 -073 -062 -065	3 3 4 4 4	32 29 34 31 29	1.99 1.49 1.77 1.63 1.83	38 39 47 23 52	24 22 26 23 24	6 i 6 i 2 · 5 · 3 ·	2,24 2.42 1.99 1.43 1.67	.24 .29 .27 .21 .24	.24 .25 .25 .13 .20	1	10 11 6 4 8
I ACME ANI	E 199081 E 199082 E 199083 E 199084 E 199085	1 1 1 7	109 346 52 59 152	3 2 2 2 2 2	61 59 43 41 37	1 16 1 16 1 10 1 10 1 11	15 23 11 9 16	929 1753 964 641 544	4.63 6.92 3.86 2.66 3.29	4 5 9 9 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	98 91 132 113 65	22222	2 2 2 2 2	22222	133 111 88 84 126	3.62 6.76 4.33 4.00 2.20	.083 .103 .074 .071 .071	3 2 2 2 4	26 25 27 24 26	1.76 1.44 .97 .76 1.30	24 12 13 23 89	.22 12 18 20 26	4 6 4 5	2.16 2.48 2.15 2.38 1.62	.22 .10 .13 .19 .15	.19 .11 .05 .11 .48	1 12 2 1	5 5 8 5
44 FROM	E 199086 E 199087 E 199088 E 199089 E 199090	35 1 2 1 1	123 117 92 83 154	2 2 3 6	45 35 46 88 53	1 19 1 15 1 14 1 4 1 15	16 18 15 13 18	575 593 513 855 656	3.36 3.33 3.54 5.31 3.96	23254	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	55 80 66 78 123	22222	2 2 2 2 2	2 2 2 2 2	121 124 123 139 124	2.74 3.18 2.07 2.35 3.72	.071 .065 .101 .234 .079	4 3 4 6 4	32 30 24 12 29	1.50 1.48 1.35 1.41 1.63	62 24 64 40 41	27 25 25 22 24	6 2 6 2 4	1.74 1.72 1.61 1.92 2.27	. 16 . 18 . 14 . 12 . 16	.28 .16 .31 .32 .36		7 5 5 8 9
991 14:4	E 199091 E 199092 Standard C/Au-R	1 1 19	94 96 63	2 5 35	36 26 133 7.	1 19 2 16 2 73	15 12 34	449 412 1061	2.96 2.29 3.98	8 2 	5 5 17	ND ND 7	1 1 35	110 128 53	.2 .2 18,8	2 2 16	2 2 18	105 94 56	1.82 3.08 .49	.064 .070 .090	3 4 36	39 33 59	1.44 1.22 .89	55 19 178	.28 .25 ,09	2 4 34	1.76 2.15 1.90	.14 .16 .06	.54 .17 .15) 15	8 7 460
NOU-07-1:	<u>Sample type: COR</u>	<u>E. </u> \$1	sople:	<u>s beg</u> i	inning <u>"R</u>	<u>E' ar</u> q	<u>e dupt</u>	<u>icate</u>	sampi	les,																					

Page 7

/00/

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 8

44

, BB3,	SANPLE#	No	Cu	Pb ppm	Zn ppm		Ni	Co	Min pole	Fe S		U DOM	Au	Th DDM	Sr DDD	103	Sb DD	8i DCB	V	Ce	2	La	Cr	Ng T	8.	12	9 A	L Ne X 1			Aut
a.	E 199093 E 199094 E 199095 E 199095 E 199096 E 199097	1 7 2 1 1	68 83 95 149 140	4 2 3 2 4	50 51 35 26 26		14 16 17 21 16	10 12 11 14 13	491 509 413 380 331	2.75 3.19 2.65 2.52 2.53	644.73	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	132 243 182 184 203	22222	2 2 2 2 2 2	2 2 2 2 2 2 2	106 114 98 95 96	4.50 3.59 3.34 3.20 2.83	118 167 167 2145 164	4 6 5 6 6	53 58 57 42 35	1.12 1.52 1.24 1.05 .89	24 31 33 38 42	222222	3 2.1 6 2.4 2 1.9 3 2.0 3 1.9	4 .19 9 .20 9 .21 4 .24 5 .21) .10 5 .11 5 .12 5 .22		3 10 8 1 2
RULE RES	E 199098 E 199099 E 199100 E 199101 E 199102	1 1 1 1	132 144 112 86 119	2 3 3 2	24 27 29 32 22		12 15 15 14 13	9 12 11 10 9	306 318 338 389 273	2.38 2.63 2.62 2.89 2.21	NNNN	5 5 5 5 5	ND ND ND ND	1 1 1 1	286 348 294 165 151	S.N.S.N.S.	2 2 2 2 2 2	2 2 2 2 2 2	94 99 180 99 58	2.64 2.71 2.74 2.95 2.42	-140 132 181 112 143	6 5 6 5 5	33 39 36 39 34	.83 .93 1.06 1.21 .81	44 44 39 26 37	222222	2 2.0 2 2.1 5 1.8 3 2.1 3 1.9	2 .24 2 .22 7 .18 7 .17 3 .23	.20 2.21 .21 .21 .22		2 5 3 3
TO GOLDEN	E 199103 E 199104 E 199105 E 199106 E 199107	1 1 2 1	178 173 149 111 63	254 34	31 31 22 21 31		16 23 22 18 18	13 15 14 10 11	406 446 348 286 334	3.17 3.10 2.37 2.05 2.51	32222	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	230 145 138 96 113	WAXAN	2 2 2 2 2	22222	108 100 87 79 83	2.85 3.03 2.21 1.74 1.93	. 135 . 107 . 086 . 066 . 065	6 5 4 3 4	44 49 49 50 53	1.26 1.46 1.23 1.20 1.41	39 32 31 30 55	23 24 25 24 24	3 2.0 2 2.2 3 1.6 3 1.6 2 2.1	8 .19 7 .22 5 .16 3 .19 9 .19	.23 .23 .35 .35 .35 .35		10 6 4 9 1
	E 199108 E 199109 E 199110 E 199111 E 199112	1 1 3 1 1	102 132 82 97 128	2 2 2 3	28 46 39 40 39		16 22 31 30 33	11 14 15 15	332 455 394 397 415	2.68 3.68 3.22 3.32 3.33	245 243	5 5 5 5 5	nd ND ND ND	1 1 1 1 1	123 64 46 43 50	NNNNN.	2 2 2 2 2 2	2 2 2 2 2 2 2	95 124 98 97 97	1.79 2.23 1.67 1.64 1.62	.073 .085 .070 .071 .073	3 5 4 4 4	41 50 63 56 54	1.41 1.91 1.94 1.91 2.11	41 61 83 244 383	24 27 28 30 28	2 1.5 3 2.0 3 1.8 4 1.9 2 2.1	9 .17 3 .11 5 .12 0 .15 4 .18	7 .30 .59 ! .55 .71 .80		14 5 1 1
ALYTICAL	E 199113 E 199114 E 199115 E 199115 RE E 199112	1 1 1 1	129 112 151 209 121	4 5 4 5 2	39 36 42 64 38		41 47 55 38 32	18 17 20 20 14	416 380 548 609 402	3.47 3.20 3.16 3.78 3.22	32522	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	44 66 71 30 48	NN NN	2 2 2 2 2	2 2 2 2 2 2	105 106 84 98 94	1.74 2.08 2.89 2.02 1.56	.079 .083 .070 .065 .073	4 4 3 3 4	60 59 73 47 52	2.28 2.03 2.35 2.05 2.04	278 222 71 370 373	27 26 24 26 27	3 2.0 4 1.9 2 1.9 3 1.9 6 2.0	3 .16 9 .15 8 .14 4 .27 4 .17	5 .68 5 .51 5 .19 7 .56 7 .70		2 4 1 3 1
A ACME AN	E 199117 E 199118 E 199119 E 199120 E 199121	1 1 1 1	106 221 331 220 152	2 2 2 4 2	49 57 59 74 66		33 28 32 34 36	17 15 17 15 16	582 1099 1172 916 735	3.29 3.46 3.78 3.43 3.53	22228	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	31 109 65 110 68	22222	2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99 86 100 96 107	2.17 4.17 4.27 3.70 3.01	.069 .086 .082 .085 .090	4 2 3 3	43 43 47 36 43	1.89 1.04 1.05 1.20 1.48	233 54 38 647 109	24 13 15 20 22	2 1.7 6 2.6 6 2.4 6 2.6 4 2.1	4 .24 4 .21 3 .14 0 .31 7 .21	.60 .14 .11 2.22		3 1 2 2
46 FROM	E 199122 E 199123 E 199124 E 199125 E 199126	1 1 1 1	271 287 78 80 62	3 5 2 2 2 2	68 85 74 46 82	231	34 42 54 49 44	16 18 22 18 16	909 692 609 495 576	3.91 3.75 3.97 3.35 3.24	~~~~~	5555	ND ND ND ND	1 1 1 1	97 62 4 42 45	2 .2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	121 110 117 102 91	4.34 2.72 2.22 2.10 2.68	100 088 072 071 077	3 4 4 3	47 52 59 58 49	1.84 1.95 2.24 1.94 1.66	69 109 194 210 117	23 24 27 25 21	6 2.6 4 2.1 5 2.1 4 1.8 3 2.0	1 .21 4 .20 6 .21 5 .21 4 .31	1 .19 3 .37 9 .60 7 .61 3 .31		10 15 3 6 2
-1991 14:	E 199127 E 199128 STANDARD C/AU-R	1 19	94 127 61	2 3 43	70 56 135	.2 7.0	41 52 72	15 18 33	532 (589 (1056 (2.87 3.62 3.99	233	5 5 18	ND ND 8	1 1 36	50 41 53	2 2 10.5	2 2 15	2 2 17	80 99 56	2.61 3.14 .49	.066 .064 .099	3 3 37	44 58 58	1.46 1.76 _89	80 67 177	16 22 09	5 1.7 3 1.7 34 1.9	8.3! 8.34 1.00	5 .2(5 .2 5 .1) 	5 5 470
70-07	<u>aunute (ype: con</u>	<u> </u>	<u>ang (28</u>	<u>, 1929 </u>		<u>RE _</u>	<u>81 £</u>	<u></u>	<u>vare</u> !		<u> 15 e</u>																				

CHE ANNEYTICA

007

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 9

.004	SANPLE	No ppm	Cu ppm	Pb pps	Zn pps	A	Ni ppm	Co pp#	Nin pipin	Fe X		U ppm	Au ppm	Th ppm	Sr ppn	4	Sb ppm	Bi ppm	V ppm	C.	R	La ppm	Cr pps	Ng X	Ba ppm	ini.	B ppm	Al X	Na X	K I		Aut*
L	E 199129 E 199130 E 199131 E 199132 E 199133	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74 80 89 177 82	3 5 4 5 4	42 40 41 54 61	77777	38 45 38 44 40	14 17 15 17 14	452 2 503 2 485 2 668 2 600 2	2.52 2.82 2.71 5.21 2.92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 5 5 5 5		1 1 1 1	52 92 52 65 97	22222	2 2 2 2 2 2	2 2 2 2 2 2	79 80 81 82 83	2.65 2.86 3.32 5.19 4.30	.068 .069 .066 .068 .068	3 3 3 3 2	44 47 45 51 48	1.33 1.53 1.45 1.69 1.43	80 143 87 79 100		6 2 5 3 8	.68 .80 .73 .63 .93	.31 .36 .32 .29 .25	.15 .16 .17 .19 .16		6 1 12 2 4
I RULE RES	E 199134 E 199135 E 199136 E 199137 E 199138	1 1 1 1	177 87 103 76 164	3 4 3 4 5	70 53 33 26 35	1 77722	44 48 50 37 37	16 18 17 13 17	658 3 561 2 398 2 326 2 377 2	5.32 2.98 2.87 2.33 2.64	6 1 M M N	5 5 5 5 5		1 1 1 1	82 49 40 71 55		2 2 2 2 2 2	2 2 2 2 2 2 2	91 90 89 81	4.41 2.82 2.28 2,08 2,48	080 .090 .072 .066 .078	3 3 2 3	65 60 75 62 55	1.57 1.50 1.52 1.25 1.34	59 136 176 148 105	18 22 22 28 29	4 1 4 1 5 1 5 1	2, 16 ,80. ,50 ,36 ,63	.22 .22 .17 .19 .16	.17 .30 .50 .31 .26		1 7 6 1 9
TO GOLDEN	E 199139 E 199140 E 199141 E 199142 E 199143	1 2 1 2 2	94 133 110 116 193	4 2 2 2 2 2	35 37 31 36 56		46 47 57 53 44	18 19 16 18 18	375 (370) 317 (451) 679)	2.93 3.37 2.33 5.21 5.88	* 7 7 * 6	5 5 5 5	ND ND ND ND	1 1 1 1	37 38 32 70 82	NNNN	2 2 2 2 2 2 2	22222	89 95 71 86 91	1.78 1.45 1.45 2.23 2.71	.062 .073 .067 .057 .081	3 4 3 3 3	69 66 72 76 69	1.68 1.86 1.66 2.18 2.13	166 289 102 64 26	22 22 23 20	3 2 5 2 6 7	1.65 1.87 1.52 1.94 2.15	.17 .16 .14 .16 .16	.50 .66 .26 .21 .13		6 4 3 1
•	E 199144 E 199145 RE E 199150 E 199146 E 199147	1 5 3 1 1	47 71 69 82 104	5 2 2 2 2	57 46 12 45 19		40 33 21 32 20	15 14 8 18 10	703 3 603 7 195 5 580 3 248 7	5.13 2.98 1.86 5.68 2.28	6 4 N N N	5 5 5 5 5	ND ND ND ND	1 1 1 1	91 69 135 50 114	NNNN	2 2 2 2 2 2	22222	85 85 69 105 80	3.16 3.28 2.10 2.15 1.93	.079 .068 .080 .065 .077	3 3 2 3 3	62 50 46 56 44	2.03 1.68 .83 2.07 .90	45 63 49 60 55	17 -22 17 -24 19	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 14 . 00 . 48 . 88 . 11	.19 .17 .28 .13 .26	.18 .21 .34 .16 .21		5 5 2 2
ALYTICAL	E 199148 E 199149 E 199150 E 199151 E 199152	2 56 3 2 14	43 300 61 77 89	2 5 2 2 2	7 11 12 13 13	22111	12 17 20 15 16	11 26 8 8 10	150 207 195 189 228	1.52 2.13 1.89 2.09 1.99	N N M N M	5 5 5 5 5	ND ND ND ND	1 1 1 1	143 107 136 168 191	22722	2 2 2 2 2 2	2 2 2 2 2 2 2	58 62 70 74 69	2.14 2.32 2.09 1.97 2.48	-064 .074 .080 .071 .071	3 2 3 3 3	48 45 46 47 42	.57 .72 .83 .80 .73	27 33 51 37 33	.15 .14 .17 .19 .18	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.32 .06 .47 .64	.28 .24 .29 .29 .29	.15 .28 .35 .39 .25		1 16 1 4 1
ACME AN	E 199153 E 199154 E 199155 E 199156 E 199157	1 2 4 2 1	77 126 172 106 103	2 2 3 2	11 9 9 11 12	1 1 1 1 1 1 1	14 14 13 10 10	9 9 10 7 7	174 146 164 200 203	2.04 1.48 1.64 2.49 2.62	N 7 2 7 4	5 5 5 5 5	ND ND ND ND	1 1 1 1	131 125 112 138 153	2222	2 2 2 2 2	22222	72 55 61 88	1.82 1.78 1.73 1.90 1.62	.079 .069 .078 .089 .086	3 3 4 5 5	37 25 29 25 26	.63 .44 .47 .56 .63	37 26 29 50 44	.19 .15 .19 .19 .20	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.07 1.81 1.48 2.02 1.91	.26 .25 .21 .28 .25	.22 .11 .12 .16 .26		1 2 5 1 4
48 FROM	E 199158 E 199159 E 199160 E 199161 E 199162	3 1 2 1 1	108 122 161 218 79	2 2 2 2 2 2 2	14 12 14 10 20		12 11 11 10 22	9 8 9 10	212 192 221 170 282	2.85 2.73 2.89 2.60 2.85	32334	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	148 203 122 136 70	22222	2 2 2 2 2 2	3 3 2 2 2 2	95 95 95 90 87	1.70 1.74 1.73 1.67 1.45	.095 .100 .102 .094 .065	5 5 5 5 4	33 30 32 36 49	.69 .62 .71 .52 1.18	54 56 54 61 74	.22 .22 .22 .18 .24	2 2 2 12 4	2.06 1.90 1.69 1.70 1.88	.27 .24 .23 .24 .20	.30 .29 .28 .24 .80		t 8 3 4
91 14:	E 199163 E 199164 Standard C/Au-r	1 1 19	121 97 59	2 2 38	22 28 132		29 39 70	17 17 33	302 2 346 2 1044 2	2.87 5.01 5.96	352	5 5 18	ND ND 7	1 1 37	52 170 52	.2 .2 18.6	2 2 15	2 2 19	93 93 55	1.20 1.49 .48	.081 .073 .090	4 4 37	61 73 58	1.31 1.63 .88	96 147 177	25,24,29	9 2 33	1.73 2.30 1.87	.17 .20 .05	.99 1.22 .15	12 51	4 4 460
NOV-07-15	<u>Sample type: COR</u>	<u>. s</u> a	mples	<u>; begi</u>	<u>oning</u>	'RE'	<u>arę -</u>	<u>dupi</u> t	cate :	<u>sample</u>	<u>8.</u>																					

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 10

44

. 005	SAMPLE#	Ио ррв	Cu ppe	Pb ppm	Zn ppm		Ni ppm	Co ppar	Mn ppm	Fe X y		J Au Ppa	Th pps	Sr ppm	Cd PDB	Sb ppm	Bi ppm	V ppm	Ca X	P	La ppic	Cr ppm	Hg X	Ba ppm	i ri	B A ppm 2	L H X	a X	X Paper	Aut ppb
u.	E 199165 E 199166 E 199167 E 199168 E 199169	1 1 1 8	67 48 114 122 884	6 8 6 2	25 30 30 21 22	.1 .1 .1 .1 .1	36 40 45 52 52	21 19 34 42 31	361 420 388 319 375	2.97 3.11 3.26 3.32 3.21		5 ND 5 NO 5 ND 5 ND 5 ND	1 1 1 1	54 56 42 49 57	2222 2222	2 2 2 2 2 2	2 2 2 2 2 2	78 89 93 87 74	1.16 1.58 1.23 1.09 2.38	.060 .070 .076 .096	4 3 3 2	71 69 67 75 66	1.81 2.05 2.01 1.52 1.27	154 154 176 120 61	20025	2 2.1 3 2.4 42 2.2 3 1.8 4 2.2	5 .2 5 .2 8 .1 3 .2	7 1.1 2 1.1 9 1.3 1 1.0 3 .7	1 1 5 1 4 1 4 1 7	2 2 1 2 87
I RULE RES	E 199170 E 199171 E 199172 E 199173 E 199174	16 2 3 1	291 175 180 43 50	2 7 4 5	28 31 26 24 22	2211	52 59 38 38 41	20 33 24 13 14	400 411 401 364 353	3.43 3.53 3.36 2.71 2.37		5 ND 5 ND 5 ND 5 ND 5 ND	3 7 7 7 7	52 50 45 43 39	222242	2 2 2 2 2	2 2 2 2 2 2	96 85 85 73 67	1.42 1.74 1.64 1.31 1.43	.075 .077 .060 .059 .061	2 2 3 3	90 93 58 64 84	1.98 1.86 1.74 1.72 1.55	116 96 120 153 121	80008	5 2.4 3 2.3 3 2.2 11 1.9 3 1.7	2 .2 7 .2 3 .2 4 .2 5 .2	2 1.3 10 .9 13 1.1 10 1.0 14 .7	6 1 0 1 4 9 6 1 7 9	35 20 5 3 2
TO GOLDEN	E 199175 E 199176 E 199177 E 199178 E 199178 E 199179	4 7 6 138 3	199 46 88 620 1050	2 3 2 3 2	23 39 34 29 48	 	42 58 65 50 62	12 13 18 29 36	355 480 453 544 727	2.54 3.19 3.02 4.61 7.39		5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	46 18 28 52 27	22222	2 2 2 2 2	2 2 2 2 2 2	68 85 77 60 77	1.34 .92 1.17 3.70 2.95	.061 .057 .056 .079 .081	2 2 2 2 2 2	87 110 101 77 96	1.64 2.21 1.98 .98 1.48	103 86 84 21 18	20221	2 1.8 2 2.0 2 2.0 6 2.0 4 2.2	1 .2 2 .1 2 .1 1 .1	1 .8 1 1.2 6 1.1 9 .2 6 .3	1 1 1 1 2 2 8 2	13 2 28 72
•	E 199180 E 199181 E 199182 E 199183 E 199184	3 8 1 1	354 90 116 120 170	7 3 17 4	50 41 49 41 61		55 50 55 46 53	28 16 27 17 18	589 521 540 466 560	5.07 3.54 3.76 3.12 2.82	***	5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	26 37 49 72 56	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2	2 2 2 2 2 2	105 99 111 92 85	1.81 2.07 2.57 2.17 2.29	.074 .078 .084 .087 .087	2 2 2 2 2 2	90 78 83 69 69	1.96 1.66 1.71 1.45 1.34	123 87 95 84 37	22 23 23 23 23 23 23 23 23 23 23 23 23 2	2 2.4 2 2.2 2 2.4 3 2.1 2 1.8	0 .1 3 .2 5 .3 6 .3 2 .2	4 1.2 2 .7 3 .6 6 .4 2 .2	511 52 51 01 1	73263
ALYTICAL	E 199185 E 199186 E 199187 E 199188 E 199188 E 199189	1 1 1 1	214 57 123 125 74	2 4 8 7 2	54 66 53 56 46		57 44 51 60 64	23 15 17 20 22	535 638 579 584 524	2.66 2.73 3.16 3.54 3.41	32234	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	50 43 36 34 33	NNNNN	2 2 2 3 2	2 2 2 2 2 2	75 88 92 101 95	2.31 2.64 2.26 2.30 2.34	.073 .077 .075 .075 .075	2 2 2 2 2	69 70 77 85 84	1.25 1.42 1.64 1.84 1.80	23 41 79 114 106	14 15 19 22 2	3 1.6 3 2.0 2 2.0 2 2.3 2 2.3	6 .1 9 .7 5 .7 4 .7 5 .7	5 .1 2 .2 8 .3 7 .6 8 .6	2 2 8 7 5	31464
ACME AND	E 199190 E 199191 E 199192 E 199193 E 199194	1 1 1 1	308 96 199 118 93	4 4 2 3	48 40 70 112 60		64 57 57 65 62	24 20 21 22 19	540 574 571 632 595	3.47 3.44 3.34 3.54 3.25	* ** **	5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1 1	37 32 30 51 34	* akis	2 2 2 2 2	222222	91 86 89 87 85	2.81 2.26 2.16 2.16 2.38	.070 .069 .078 .078 .075 .074	2 2 2 2 2 2	80 80 69 76 76	1.78 1.79 1.62 1.83 1.74	50 60 96 102 70	19 20 20 22 20	4 2.3 2 2.1 2 2.1 2 2.1 4 2.3	5 .2 5 .2 0 .2 0 .1	5 .2 5 .4 3 .5 17 .7 19 .3	8 1 5 1 9 1 1 8	21 4 19 4
SØ FROM	E 199195 E 199196 RE E 199192 E 199197 E 199198	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	130 52 194 65 134	3 2 2 2 2 2	55 39 67 44 67		67 71 57 68 72	19 21 20 21 24	586 455 549 476 542	3.28 3.34 3.15 3.75 4.15		5 ND 5 ND 5 ND 5 ND 5 ND	1 1 1	31 47 29 37 44	22222	2 2 2 2 2 2	2 2 2 2 2	79 91 86 105 116	2.16 1.38 2.68 1.22 1.63	.078 .070 .077 .063 .068	2 3 2 3 2	75 82 68 88 91	1.57 2.06 1.56 2.26 1.97	60 206 91 193 187	.15 .25 .20 .27 .28	2 2.0 2 2.2 2 2.0 2 2.2 2 2.3	5 .2 0 .1 2 .2 8 .1 4 .2	23 .3 19 1.2 21 .5 17 1.2 26 1.0	5 2 4 7 0	12 34 1 2
91 14:5	E 199199 E 199200 Standard C/AU-R	1 1 19	72 32 58	2 2 39	33 39 131	-1 -1 7.2	67 47 69	21 17 33	433 550 1040	3.14 3.59 3.90	2 2 1	5 ND 5 ND 9 7	1 1 35	42 38 52	18.7	2 2 15	2 2 18	91 111 55	1.55 2.12 .48	.068 .065 .090	2 3 37	84 72 56	1.92 2.13 .87	144 134 175	.25 .26 .09	2 1.9 2 2.3 33 1.8	4 .: 8 .: 7 .(2.7 17.8 15.1	2 2 5 12	1 4 2 490
NOV-07-19	<u>Sample type; COR</u>	<u>E. </u> \$	empte:	s begi	inning	<u>'RE'</u>	are	<u>dupli</u>	<u>cate</u>	<u>samples</u>	<u>-</u>																			

44 <u>7</u>807

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 11

44

, BBG,	SANPLE#	No ppm	Cu pp=	Pb ppm	Zn ppm	Ag Pope	Nî ppm	Со ррп	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppu	V ppm	Ca X	Ş	Le ppm	Cr ppm	Ng X	Ba ppu		8 ppm	AL X	Ne X	K X	Auf ppb
ш	E 199201 E 199202 E 199203 E 199204 E 199205	1 2 1 1	212 48 52 102 46	3 2 2 4 2	66 51 49 69 74		37 33 35 36 30	23 19 17 30 15	837 632 611 781 795	4.04 3.61 3.59 3.31 3.05	NNNN	5 5 5 5 5	nd Ng Ng Ng	1 1 1 1	80 45 42 67 76	NNNN	2 2 2 2 2 2 2 2	2 2 2 2 2 2	124 125 128 107 105	4.09 2.13 2.09 2.54 2.91	.067 .061 .062 .081 .081	2 3 4 2 2	54 50 44 53 51	1.88 2.21 2.21 1.58 1.46	49 147 170 32 45	22222	4 3. 2 2. 3 2. 3 2. 4 2.	.33 .60 .62 .26 .40	.26 .27 .29 .17 .20	.26 .60 .77 .15 .22	19 8 6 3 7
RULE RES	E 199206 E 199207 E 199208 E 199209 E 199210	1 1 1	101 142 42 232 179	2 2 5 7	86 51 52 51 50	111221	36 28 36 44 50	21 18 14 19 21	775 626 676 684 623	3.42 2.85 3.69 4.02 4.02	22232	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1 1	66 89 44 30 47	22222	2 2 2 2 2 2	2 2 2 2 2 2	112 101 122 110 115	2.42 2.54 2.46 2.54 2.16	.071 .076 .070 .070 .076	2 2 3 2 3	58 45 61 75 78	1.74 1.39 2.10 2.00 2.12	60 76 134 58 122	22222	4 2. 4 2. 3 2. 3 2. 3 2.	.35 .12 .69 .36 .58	.22 .22 .28 .28 .28	.29 .37 .66 .27 .60	5 5 4 13 1
TO GOLDEN	E 199211 E 199212 E 199213 E 199214 E 199215	13 1 1 1	1137 203 71 52 42	3 4 3 3 2	51 76 71 63 59	7.1.1.1	83 67 68 65 63	140 30 21 22 24	516 667 698 702 610	6.73 3.84 3.80 3.75 3.15	12322	5 5 5 5	nd Nd Nd Nd	1 1 1 1	25 43 48 45 64	NNNN	2 2 2 2 2	2 2 2 2 2 2	112 111 119 126 97	1.39 3.20 2.33 1.97 2.10	.068 .072 .075 .067 .097	2 2 3 3	90 79 90 92 69	2.06 1.92 2.32 2.54 2.11	51 58 172 214 120	8 21 21 24 20	2 2. 2 2. 2 2. 2 2. 2 2. 2 2.	.09 .61 .87 .81 .34	.18 .22 .25 .19 .18	.49 .31 .68 .79 .45	3 2 1 1 3
F	E 199216 E 199217 E 199218 E 199219 E 199220	1 1 1 1	53 63 67 67 155	4 2 3 2	52 55 36 35 45	****	69 65 52 47 70	20 20 18 17 27	551 553 443 519 492	3.04 3.11 2.78 2.82 3.17	22232	5 5 5 5	nd ND ND ND ND	1 1 1 1 1	76 64 45 52 59	22222	2 2 2 2 2 2	2 2 2 2 2 2	94 96 78 89 97	2.01 1.96 1.59 1.80 1.69	4081 1073 1070 1057	3 3 4 3 2	76 82 68 59 79	2.12 2.23 1.87 1.47 1.87	156 206 215 175 227	21 22 22 24	2 2. 2 2. 6 2. 9 1. 21 2.	.61 .60 .07 .93 .24	.21 .24 .21 .26 .26	.59 .73 .67 .48 .65	2 4 3 9 2
ALYTICAL	E 199221 E 199222 E 199223 E 199224 E 199225	1 1 1 1	100 101 36 90 130	2 4 2 3	51 92 53 55 62	****	60 44 32 33 35	22 25 17 24 20	505 602 552 617 714	3.22 3.56 3.52 3.98 3.19	23222	5 5 5 5		1 1 1 2 1	53 71 64 40 69	22222	2 2 2 2 2 2	2 2 2 2 2 2	103 110 115 125 105	1.67 2.26 1.88 2.14 2.82	.063 .067 .070 .063 .087	3 2 4 4 2	86 59 44 45 44	2.16 1.81 1.99 1.96 1.49	221 113 226 130 38	2222222	2 2. 3 2. 2 2. 2 2. 4 2.	.45 .52 .52 .29 .45	.25 .24 .27 .24 .18	.82 .43 .79 .48 .17	8 4 1 4 1
ACME ANK	E 199226 E 199227 E 199228 RE E 199225 E 199229	1 1 1 1	112 46 46 121 67	3 2 2 2 2 2	76 55 51 59 49	1 1 1 1	32 34 40 36 41	27 22 18 18 19	879 609 587 678 585	3.86 3.36 3.55 3.02 3.43	32233	5 5 5 5 5		2 2 2 1 2	53 60 58 66 39	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2 2	118 104 112 109 110	2.53 2.16 2.51 2.67 2.38	.089 .076 .067 .079 .079	2 4 3 2 3	49 48 71 43 65	1.72 1.92 2.10 1.41 1.98	77 145 125 36 84	22 23 24 19 22	3 2 2 2 3 2 3 2 2 2	.56 .50 .63 .28 .34	.29 .27 .28 .16 .24	.40 .49 .47 .16 .34	1 3 1 1
1 FROM	E 199230 E 199231 E 199232 E 199233 E 199234	1 1 1 1	84 82 107 215 155	2 2 3 3 2	58 57 106 242 53		47 44 30 43 48	23 23 21 27 24	532 530 459 513 509	3.43 3.99 3.77 4.13 3.26	4 7 N N N	5 5 5 5 5		1 2 2 2 1	32 61 91 101 69	2222	2 2 2 2 2	2 2 2 2 2 2	106 117 112 126 105	2.15 1.51 1.43 1.82 2.75	.068 .066 .075 .073 .077	3 4 4 3 2	62 67 43 52 57	1.94 2.42 1.89 1.93 1.43	89 248 254 255 61	.24 .30 .28 .28 .20	4 2 2 2 3 2 2 2 5 2	.29 .78 .59 .85 .47	.22 .16 .26 .30 .26	.46 .05 .07 .14 .29	1 2 13 4
91 14:5	E 199235 E 199236 Standard C/Au-r	1 1 19	78 166 59	2 2 38	60 60 132	7,3	44 36 70	20 24 34	580 531 1063	3.77 3.59 3.97	S No.	5 5 18	ND ND 6	2 2 37	50 62 51	2 2 10.7	2 2 15	2 2 19	121 112 56	2.22	.078 .089 .090	2 3 38	60 52 58	2,03 1.44 .88	167 60 177	-24 -24 -09	32 21 321	.65 .99 .90	.24 .23 .08	.65 .38 .16	8 1 450
NOU-07-19	<u>Sample type: COR</u>	<u>E. S</u> i	<u>ampl ei</u>	<u>begi</u>	<u>nning</u>	'RE'	are	<u>dupt i</u>	cate	<u>sampi</u>	<u>ę.</u>																				

Golden Rule Resources Ltd. PROJECT GR-BC-51 FILE # 91-5357

Page 12

N :	ACRE ANALTTICAL																					_						_			NUME ANNU	WINDOW,
80	SANPLE#	Mo	Cu	РЪ	Zn	As	Ni	Ça	Nn	fe	AK	ປ	Au	Th	\$r	C)	Sb	Bi	٧	Ca	2	La	Cr	Ng	Ba	iit)	D	AL	Na	K		Au*
~.		ppm	ppa	pp	ppe		ppe	ppm	ppn	*	Seitt	ppe	ppe	Pp	- ppm		ppm	ppm	(CEDIN	X		ppm	<u>pps</u>	X	ppa		pp		<u> </u>	1		ppb
ш	F 400077	1.		-									•				_	_				-					-					
	E 199257	!!	123	2	00		42	- 22	202	5.41	1 S	2	NO	1	01	9 C)	2	2	105	2.54	:085	2	60	1.66	150	15 71	5 3	2.60	.30	.54 3		11 ·
	E 199258	1]	85	2	57 8		- 42	16	532	3.Z1	73 (Z	5	ND	1	- 52	8.3	Z	Z	103	2.42	3069	3	59	1.73	142	5- 20	10 2	2.54	.29	.58 š		8
	E 199259]	126		62		42	20	545	3.ZZ	94 E	5	NC	1	- 55	86 Z	Z	2	102	2.41	2078	Z	59	1.76	114	20	97	z.39	.24	.36		11
	E 199240	1	- 89	2	51	251	- 36	16	542	3.00	構成	5	ND	1	- 43		2	2	- 99	2.49	(97 7)	2	- 53	1,59	112	12,19	- 55 a	2.15	.24	.36 🕴	総約日	11
	E 199241	1	117	- 4	72		- 43	- 18	499	3.18	§ 2	5	ND	1	- 89	48. Z	2	2	- 96	2.45	-071	2	60	1.76	154	20	. 11 :	2.65	.29	.43 🛊	396	8
		1																								121.72				3	111	
ល	E 199242	1	142	- 4	53		48	21	519	3.21	2	5	ND	1	68	11.3	2	5	89	2.11	070	3	56	1.76	173	320	93	2.47	.27	.65	ALC: N	12
Ř	E 199243	1	65	- 4	42 🕴	12 X 1	40	15	435	2.82	.2	5	ND	1	62	89. 2 :	2	2	- 81	1.92	.056	3	60	1.75	171	1220	6	2.30	.26	.67 3	- 83	8
111	E 199244	1	- 94	2	33		- 36	19	378	2.95	漢書	5	ND	1	53	235	2	2	93	1.63	2074	3	47	1.52	164	25	7	2.10	.25	.88		ā
5	E 199245	1	-84	3	35 🖣		35	17	438	2.95	\$	5	ND	1	58	1.2	2	2	89	1.93	.076	4	55	1.64	192	22	11	2.27	.20	.48		ž
5	RE E 199242	1	148	Ž	51	191	47	22	460	3.17		5	ND	- i	68	1.2	- Ž	ž	88	2.07	.070	2	55	1.74	175	83 20	9	2.47	.27	.67		13
_		l .				HBK.						_					-	-			311	} -				1010				Ţ		
Ξ.	F 199246	1 1	61	3	04		40	21	504	3.78		5	ND	1	55		2	2	100	2.41	.073	2	60	1.01	158	27	7	2. MA	- 24	. 63		7
Ã,	E 199247	l i	102	ž	278		32	1.0	145	2 81	發行	í í	NID	-	127		5	5	Rt	2 47	NO	5	41	1 61	12	3562	157	2 57	ñū	06		ź
d.	F 100248		70	ĩ	110		20	17	141	2 71		Ē	ND.		124		5	5		2 27	ingi	2	- TA	1 30	07	897 (S	4 300	2 20	11	18		2
Ö	E 1007/0	;	- 05	Ĩ	50	\$	35	45	286	2 80	3	í í	100	4	27	222.00	5	5	ä	1 45	145	1	52	1 47	420		41	1 78	21	77		ž
	E 1000E0		75	67	 		70		200	2.00	業は	Ĩ	100	1		10230.72	2		70	1.03			- 24	1.01	207			2.00	.61			2
0	C 179270	· ·	13	37	- 04		39	17	418	3.00	(***) *****			1	¥1		2	6	92	1.04	3007	•	01	1.79	C 200			C,YK	.21	.09		2
F	6 100054				4040		10	10.10	1 4 79		210			•	4.	7822	~	•		4	-22223	-				10014		~ / ~				_
	E 199201		21	<u>•</u>	VIV		00	22	405	4,13	翻译	2		Ĩ	46	19-16	- 2	Z	114	1.21	* 11/2	5		2.02	227	046	Ó	2.47	.17	. <u>.</u> .		2
	E 199252		21	2	- 147	34 1 2	53	28	492	3.82	1. A	5	ND	_1	- 91	88 .	Z	Z	- 94	2.0 0	307Z	3	- 69	1.71	157	.,23	7	2.61	.23	<u>.n</u>)		
	STANDARD C/AU-R	17	58	- 39	131	2.3	70	- 31	1027	3.96	行利用	18	7	- 36	- 49	18.4	16	19	- 56	.47	:071	37	- 58	.87	176	309	33	1.93	.06	. 17 🕴	581 E	480

APPENDIX F

· • • •

•/*

