LOG NO:	APR 0 8 1992	RD.
ACTION:		
		¢

REPORT ON THE GAMBIER PROPERTY

VANCOUVER MINING DIVISION, BRITISH COLUMBIA

FOR

DOUGLAS BY RESOURCES INC.

NTS 92G/11

49 30' NORTH LATITUDE SUB-RECORDER RECEIVED MAR 2 6 1992 M.R. # _____\$____ VANCOUVER, B.C. BY

J.P. MCGORAN, B.SC.

MARCH 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

305 - 455 Granville Street, Vancouver, B.C. V6C 1T1 (604) 687-6875 - Fax (604) 687-6533.

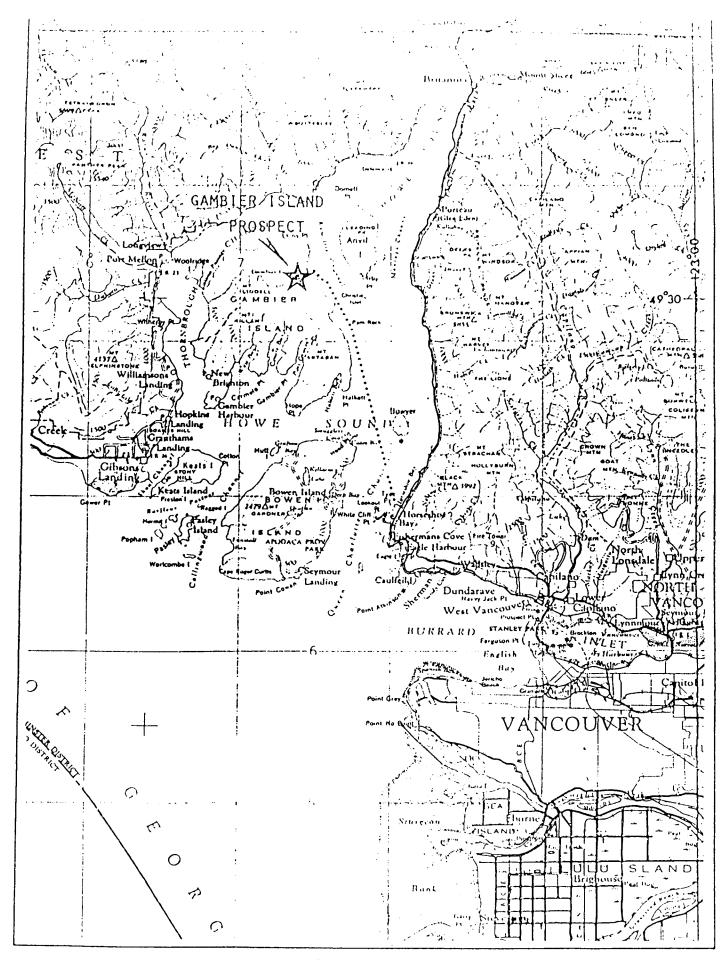
INTRODUCTION

1. Location

The Gambier Property, comprised of the MB mineral claim group in the Vancouver Mining Division, is located on the northeast side of Gambier Island, 30 kilometres northwest of the city of Vancouver (Figure 1). More precisely, it is located at 49 degrees and 30 minutes north latitude and 123 degrees and 21 minutes west longitude. (National Topographic System Map 92G/11)

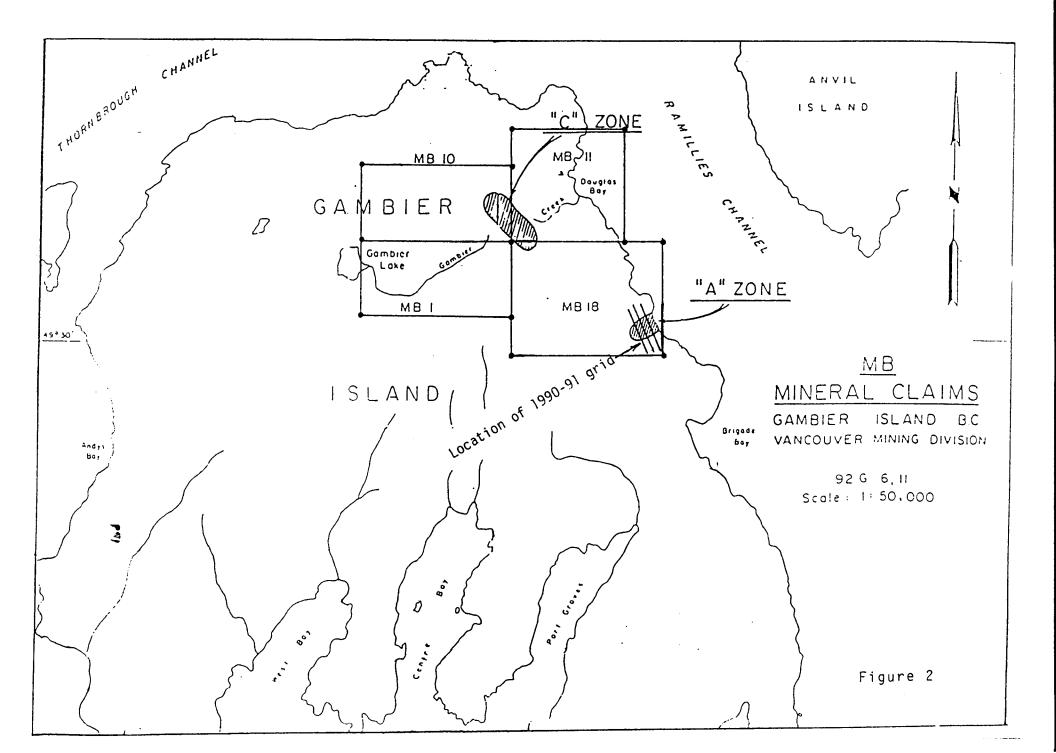
2. Access and Physiography

Access to the property is best achieved from Horseshoe Bay by water taxi to Douglas Bay on the east side of Gambier Island. The area is centred 16 kilometres north of Horseshoe Bay. Old skid trails, originating from the beach in Douglas Bay provide walking access to the area. Recent logging on lot 2979 has left a fair amount of slash, resulting in reduced mobility. There are many areas of timber 'blowdown' throughout other parts of the MB claims, making access by foot difficult.


The terrain of the property is characterized by slopes that range from sea level on the coast to 450 metres (1500 feet) in the claim area. The work discussed in this report was undertaken at the centre of the claim group of the property in an area that ranged from 100 metres to 200 metres above sea level.

The vegetation in the grid area is characterized as second growth coastal forest of cedar, spruce and fir, with overmature cottonwoods and alders in the poorly drained valley bottoms. Undergrowth consists of variable salal, devil's club, alder and abundant moss.

3. Ownership


The Gambier property, as the MB mineral claim group, consists of four modified grid mineral claims, totalling 37 units and covering 925 hectares. The status of these claims is summarized below and the relative claim locations are plotted in Figure 2.

CLAIM NAME	NUMBER OF UNITS	TENURE NUMBER	RECORD DATE
MB 1	8	258252	JANUARY 3
MB 10	8	258264	MARCH 29
MB 11	9	258265	MARCH 29
MB 18	12	258266	MARCH 29

(

Figure 1. Location plan for the Gambier Island Prospect 1:250,000 NTS 92G

2.

Messrs J.P.McGoran and R.M. Durfeld are the registered owners of the MB mineral claims.

4. History and Previous Work

The first claim staking on Gambier Island in 1905 would have coincided with the exploration and development of the Britannia Mine. The location of this staking is not known.

A 1929 report by H.J. Airey refers to copper mineralization in the vicinity of Gambier Creek.

A report by W. Reed in 1966 refers to mineralization in the vicinity of Copper Cove.

The next documented work was in the early 1970s, by Gaylord Mines, who staked the northeast section of Gambier Island to cover old known copper showings. Gaylord Mines conducted soil sampling, EM 16 and magnetometer surveys over the northeast section of Gambier Island. This work defined anomalies "A", which is centred in the area of Copper Cove and "C", which is just south of Gambier Creek at a point approximately 1 killometre inland from Douglas Bay. Anomaly "A" was tested by a single diamond drill hole that was cored at -45.5 for 815 feet (248 metres) and was reported to have assayed 0.117% copper over its entire length. Anomaly "C" was not tested by diamond drilling at that time. Gaylord Mines allowed the property to lapse.

The property was again staked in February 1978 by 20th Century Energy Corporation. During the period 1978 to 1981, 20th Century conducted extensive exploration in the area of anomaly "C" that was comprised of a geochemical soil sampling and induced polarization surveys, followed by 5,558 metres of diamond drilling. This work defined a 'Porphyry Copper-Molybdenum Deposit' with estimated reserves of:

- 198 million tonnes of 0.24% Cu and 0.015% MoS , with a 0.20% copper equivalent cutoff.
- or 56 million tonnes of 0.36% Cu and 0.021% MoS , with a 0.40% copper equivalent cutoff.

In December 1984 and March 1985, the MB 1, MB 10, MB 11 and MB 18 mineral claims were forfeited and relocated by Messrs. J.P. McGoran and R.M. Durfeld.

Work conducted since 1985, on behalf of Durfeld amd McGoran, has consisted of geochemical (soil, silt and rock sampling) and geological mapping surveys peripheral to anomaly "C" and covering much of the present claim group.

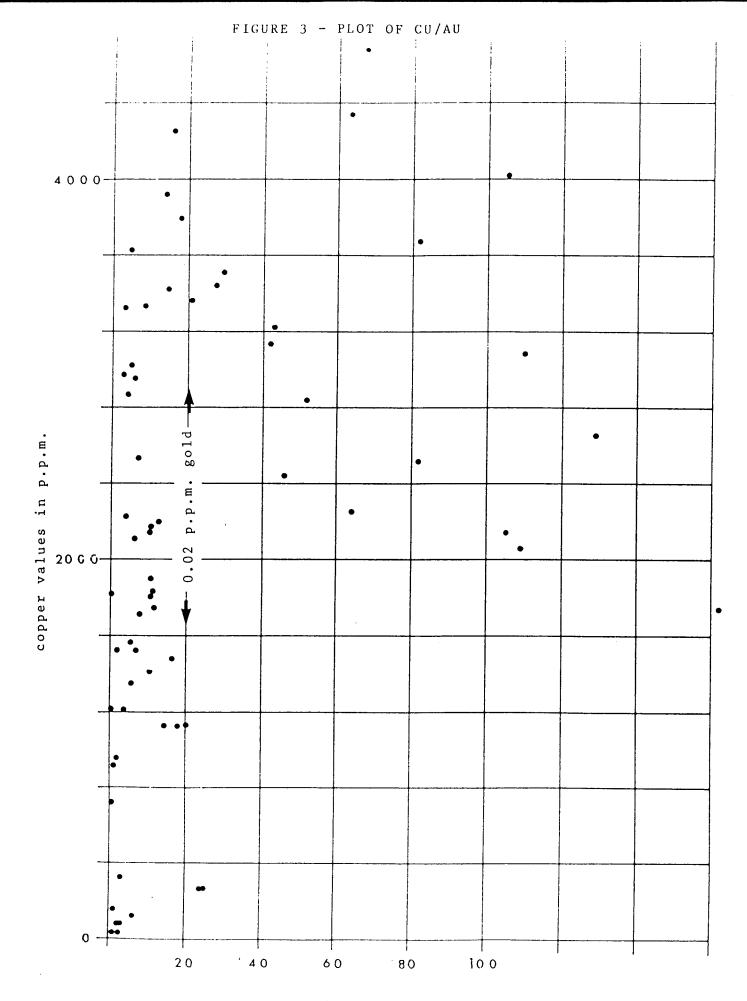
5. Work Program

The objectives of this program were to determine if economic gold values were associated with the Gambier deposit and also to determine the control on the gold mineralization.

Drill core from previous drilling is stored on the claims. A fire, started by vandals, and core, spilled by vandals, as well as the damp weather, has greatly reduced the amount of core that can be identified as to location.

An attempt, however, was made to take representative samples from mineralized core and from mineralized surface outcrops, in order to determine the magnitude and location of higher gold values.

During January 1 and January 2, 1992, J.P. McGoran assisted by C.McGoran sampled the MB 1 claim, using previous grids and 'hip chain' for control. The description of these samples is noted in Table 1 and the location plotted on Map 1.


Fifteen mineralized surface samples of 0.5 to 1.5 Kg were collected in plastic sample bags and marked as to sample number. Flagging with the same sample number was attached at the sample location. These samples were analysed at Acme Analytical Laboratories for 30 element ICP plus gold. The procedure is outlined in Appendix III. The description of these samples is noted in Table 2 and the location plotted on Map. 1.

During March 12 to March 15, 1992, J.P. McGoran, assisted by C. McGoran, collected samples from the remaining core, which came from the drill program on the MB claims in 1978,1979 and 1980. Where possible, samples of several metres were collected near the collar, one halfway down the hole and another sample at the base of the hole. These samples of 0.5 to 1.5 Kg wers collected in plastic bags and marked as to hole number and footage. These samples were analysed at Acme analytical Laboratories for 30 element ICP plus gold. The procedure is outlined in Appendix III.

The range of gold, copper and silver results from this and the earlier surface sampling on the MB 1 claim were combined and outlined in Tables 3, 4 and 5. The gold values were plotted against copper values and shown in Figure 3.

The gold results in ppb are plotted on Maps 1 and 2, showing gold values and location. For the drill holes, the median of the sample interval is noted. The gold results are plotted on a 1980 base map prepared by P. Fox.

An isopleth of 20 ppb gold is outlined on the maps. The analytical results are presented in Appendix III.

gold values in p.p.b.

GEOLOGY

1. Regional Geology

The regional geology of Gambier Island is mapped by J.A. Roddick of the Geological Survey of Canada and is published as Memoir 335 and Open File 611. This mapping shows the southern and western portions of Gambier Island to be underlain by intrusive rocks of granodiorite composition. Younger volcanic and clastic rocks of the Jurassic to Cretaceous Age Gambier Group underlie the northern portion of Gambier Island. The Gambier Group rocks have a north to northwest strike and steep easterly to northeasterly dips. Ramilles Channel through McNab Creek to the north shows a strong northerly trending regional structure on the east side of Gambier Island.

2. Lithology

Rocks of Jurassic to Cretaceous Gambier Group were the oldest and most dominant lithology in the Copper Cove area. This mapping divided the Gambier Group into:

- i. volcanic sediment and pyroclastic rocks, comprised of:
 - a) feldspar porphyry
 - b) feldspar-hornblende pophyry
 - c) volcanic breccia
 - d) chert
- ii. massive medium grained andesite.

During Upper Cretaceous to Tertiary time the Gambier Group rocks were intruded by massive medium grained diorite and quartz porphyry to quartz feldspar porphyry as dykes and small stocks.

Only one highly altered and silicified outcrop of diorite was identified on the north side of the central creek, although diorite float was found on the northern grid boundary.

3. Structure

Regionally the prominent structural directions on Gambier Island are west-northwest and north-south. Mapping in the Copper Cove area shows strong jointing and minor faulting with two most dominant trends being 035\75NW and 092\vertical.

4. Mineralization

Due to the heavy rainfall sulphide mineralization is absent from most outcrop exposures and only noted on freshly broken surfaces. Pyrite, occuring as disseminations and blebs in the matrix and on fractures and veins, was noted in all lithologies and commonly accompanied by lesser chalcopyrite and malachite.

DISCUSSION

The higher gold values, within the 20 ppb isopleth, correlate spatially with the south fork fault and the south edge of the quartz porphyry intrusion.

It is the opinion of the author that although there is a correlation between some of the copper values and gold, gold does not make up a major proportion of the value in this deposit.

SURFACE ROCK SAMPLES

Sample Number Rock Type Andesite А minor iron stain Andesite в72 minor pyrite Medium Grained Andesite G1 minor cp, py Quartz Feldspar Porphyry G2 minor pyrite Quartz Feldspar Porphyry G3 2% pyrite G4 Andesite Porphyry minor pyrite Andesite Porphyry G5 minor pyrite Andesite G6 considerable iron stain Andesite 670 2% pyrite 713 Andesite minor pyrite Andesite B1 minor pyrite Andesite в2 3% pyrite Andesite B3 minor pyrite Andesite В4 iron stain Andesite B5 2% pyrite

LEGEND

- C = Chalcopyrite
- P = Pyrite

,

- B = Hornfelsed and hydrothermally altered rock of the "C" zone
- I = Quartz feldspar porphyry, intramineral quartz porphyry dykes, intrusive breccia, subporphyritic granitic rocks
- V = Massive andesitic rocks of the Gambier Group.

¢

DRILL CORE SAMPLES

Hole Number	Sample Number	Distance from colar in metres	Rock type	Mineralization
78-2	A2	2 - 5 117 - 120 146.5 - 148.5	B B B	C P C P C P
78-3	. 1	15 - 17 50 - 52	I I	C P C
79-1	A1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I B I	C P C P C
79-2	A3	47 - 50 119 - 125	B B	C P C
79-3		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B B	C P C
79-4	A4	277 - 290 68 - 75 70 - 73	B I I	C C C
79-5		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I I I	P C P C
79-6	А5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I B R	C C C
79-7 79-8	AJ A10	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B B B	C C P
80-10		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B I I	C C C P
80-11	A22 A11	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I B B	P C C
80-12	A11 A27	190.5 - 193.5 17 - 19.5 115 - 122	B V V	C P P
80-13	.127	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	V I I	P C C
	A28	204 - 210 210.5 - 212.5	I I	C C
80-14	A29	50 - 57 77 - 79	I I	C C
80-15	A23	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I B B	C C C
80-16	A26	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I I I	C C C P

TABLE 2 (cont.)

,

Hole Number	Sample Number	Distance from colar in metres	Rock type	Mineralization
80-17		75 - 77.5	В	р
	224	131 - 134	B	С
80-18	A24	241 - 248	B	C
00-10		33 - 36 139 - 142	I I	C P
	A25	139 - 142 146 - 155	I	C C
	A8	185 ~ 192	I	c
80-19		4 - 7	B	c
	A12	99 - 107	B	Č P
		196 - 199	B	c
80-20		60 - 62.5	D	Р
80-21		23 - 26	В	С Р
		111 - 114	В	СР
	Α7	161 - 168	В	C P
	- 0.1	202.5 - 205	В	C P
80-22	A21	32 - 39	B	Р
		74 - 77	B	Р
80-23		203 - 206	B	C P
00-23	A31	59 - 66 86 - 93	B	C P
	AST	00 - 93	В	С
80-24		25.5 - 28	В	Р
		60 - 62	В	Р
80-25		3 - 7	В	C P
	A6	85 - 88	В	С Р
0.0.0.0	- 0 0	181 - 188	В	C P
80-26	A20	43 - 50	В	С
		57 - 60	В	СР
		124 - 127 271 - 274	B	СР
80-27		271 - 274 13 - 14.5	B I	C P
00-27	A13	13 - 14.5 18 - 25	I	С
	AT J	122 - 123	I	C C
		227 - 228.5	T	c
80-28		9 - 12	B	СР
	A14	105 - 108	B	C
		186 - 189	Ī	Ĉ
80-29	A9	104 - 112	В	P
80-30		33 - 36	В	С
	A30	89 - 90	В	C P

TABLE 3 GOLD ANALYSES

Value in ppm	Number in interval	
009	-	
1 - 5	26	* * * * * * * * * * * * * * * * * * * *
6 - 10	14	* * * * * * * * * * * * *
11 - 15	15	* * * * * * * * * * * * * * *
16 - 20	10	* * * * * * * * *
21 - 25	5	* * * * *
28 - 30	5	* * * * *
31 - 35	-	
36 - 40	3	* * *
41 - 45	4	* * * *
46 - 50	2	* *
51 - 55	-	
56 - 60	-	
61 - 65	1	*
66 - 70	2	* *
71 - 75	1.	*
76 - 80	-	
81 - 85	3	* * *
86 - 90	1	*
91 - 95	-	
90 - 100	2	* *
101 - 120	2	* *
120 - 150	2	* *
151 - 200	2	* *
210	1	*

.

. ...

,

COPPER ANALYSES

Value in ppm	Number in interval	
0 - 500	19	* * * * * * * * * * * * * * * * * * * *
501 - 1000	8	* * * * * * *
1001 - 1500	11	* * * * * * * * * * *
1501 - 2000	13	* * * * * * * * * * * *
2001 - 2500	14	* * * * * * * * * * * * *
2501 - 3000	10	* * * * * * * * *
3001 - 3500	11	* * * * * * * * * *
3501 - 4000	6	* * * * *
4001 - 4500	3	* * *
4501 - 5000	3	* * *
5001 - 6000	2	* *

,

SILVER ANALYSES

Value in ppm	Number in interval	
0.0 - 0.09	-	
0.1 - 0.3	14	* * * * * * * * * * * * * * *
0.4 - 0.6	15	* * * * * * * * * * * * * * * *
0.7 - 0.9	13	* * * * * * * * * * * * *
1.0 - 1.2	16	* * * * * * * * * * * * * * * * * *
1.3 - 1.5	13	* * * * * * * * * * * * *
1.6 - 1.8	7	* * * * * *
1.9 - 2.1	7	* * * * * *
2.2 - 2.4	1	*
2.4 - 2.7	4	* * * *
2.8 - 3.0	0	
3.1 - 4.0	3	* * *
4.1 - 5.0	2	* *

APPENDIX I

ITEMIZED COST STATEMENT

MB 1 CLAIM

Technical Staff Senior Geologist - J.P. McGoran, B.Sc. 2 days (Jan 1 & 2, 1992) @ \$350/day \$700.00 Geological Assistant - C. McGoran 1 day (Jan 2, 1992) @ \$200/day \$200.00 Room and Board - 3 man days (Jan 1 & 2, 1992) \$106.15 Geochemical Analyses (see Appendix Ia) \$605.35 Transportation - water taxi (Jan 1 & 2, 1992) \$320.00 \$1,931.50 Total \$1,600.00 Recorded of claims \$331.50 to PAC Account

APPENDIX Ia

ACME ANALYTICAL LABORATORIES LTD.

852 E. Hastings St., Vancouver, B.C., CANADA V6A 1R6 Phone: (604) 253-3158 Fax: (604) 253-1716 Our GST tax number: R100035377

FLECK RESOURCES 305 - 455 Granville St. Vancouver, BC V6C 1T1 File: **92-0024** Date: Jan 14 1992

QTY	ASSAY	PRICE	AMOUNT
31	MULTI-ACID DIGESTION ICP ANALYSIS @ GEOCHEM AU PT & PD BY FIRE ASSAY/ICP (10gm) @ ROCK SAMPLE PREPARATION @	6.50 8.50 3.25	201.50 263.50 100.75
	GST Taxable 7.00 % GST		565.75 39.60
	TOTAL		605.35

COPIES 1 FAX 1

APPENDIX II

ITEMIZED COST STATEMENT

MB 10, MB 11, MB 18

Technical Staff Senior Geologist - J.P. McGoran, B.Sc. 4 days (March 12 to 15, 1992) @ 350/day \$1,400.00 Geological Assistant - C. McGoran 4 days (March 12 to 15, 1992) @ \$200/day \$ 800.00 Room and Board - 8 man days @ \$40/day \$ 320.00 (March 12 to 15, 1992 x 2) Geochemical Analyses (see Appendix IIa) \$ 954.98 Transportation - water taxi (March 12 & 15, 1992) \$ 160.00 \$ 600.00 Report Preparation Total \$4,234.98 from PAC Account \$1,565.02

ACME ANALYTICAL LABORATORIES LTD.

852 E. Hastings St., Vancouver, B.C., CANADA V6A 1R6 Phone: (604) 253-3158 Fax: (604) 253-1716 Our GST tax number: R100035377

MCGORAN & ASSOCIATES 305-455 Granville St. Van, BC V6C 1T1

File: **92-0546** Date: Mar 19 1992

QTY	ASSAY	PRICE	AMOUNT
70 60	30 ELEMENT ICP ANALYSIS @ GEOCHEM AU ANALYSIS BY ACID LEACH (10 gm) @ CORE SAMPLE PREPARATION @ ROCK SAMPLE PREPARATION @	4.50 5.00 3.25 3.25	315.00 350.00 195.00 32.50
	GST Taxable 7.00 % GST		892.50 62.48
	TOTAL		954.98

COPIES 1

APPENDIX III

r

.

,

ACME ANALYI	CICAL LA	BOR	ATO	RIE	S 1	LTD	•		852	E.	H	Astin	GS	ST.	VANC	OUVE	IR E	3.C.	V	6A	1R6		P	HOI	NE (6	504) 253	3-3	158	ľ	PAX	(60	4)2	53-	1
			n Silita							GE	oC	hemi	CAI	, A	NALY	818	CE	ERT:	LFI	CAT	re									er se te te Statistic					1
	이 바람 문제								•		a Þ	Des			s F	4 1 A	u.	00	-00	~.														4	
									4						∋ r • St.,																			L	r I
AMPLE	Mo Cu	РЪ	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th Sr	Cd	Sb	81 V	C.	P	La	Cr	Mg	Ba	Ti	A1	N	N 1	< \	l Zr	Sn	Y	Nb	Be	Sc	Au**	Pt++	 P
	ppm ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	pm	ppm ppm	ppm	ppm	ppm ppm	*	X	ppm	ppm	*	ppm	*	*	, ,	ډ ع	6 ррп	n p pm	ppm	ppm	opm I	ppm	ppm	ppb	рръ	
L	67 2152	16	87	.8	9	14	247	4.54	12	5	ND	2 187	.8	3	2 102	1.28	.056	8	17 1	.21	289	. 25	7.80	1.70	0 1.6	58	7	1	18	3	.2	14.9	38	1	
2	59 2255	17	138	1.4	10	18	302	6.57	12	5	ND	1 526	1.2	2	2 137	4.30	.075	7	34 2	. 09	154	. 32	10.14	2.4	L 1.47	2 2	2 7	1	15	1	.2	19.9	192	11	
3	67 2609	15	320	1.9	16	19	841	4.23	15	5	ND	2 334	1.0	6	2 139	3.55	.093	11	29 1	.94	216	. 32	9.86	2.5	1 1.17	72	16	1	22	7	.2	22.8	27	8	,
4	103 3071	21	143	1.3							ND	4 172			2 31												25	1	9	3	.2	8.4	65	1	
5	233 1768	18	156	1.0	26	9	324	3.34	12	5	ND	1 386	. 9	2	2 210	2.28	.119	19	79 1	.70	441	. 40	14.28	2.7	2 3.64	4 3	10	1	23	3	.3	34.3	8	1	
6	20 1284	18	133	.9	13	18	442	5.51	9	5	ND	2 458	1.4	2	2 114	3.34	.039	13	30 1	. 51	144	. 31	8.79	2.5	5 . 47	7 2	29	1	11	3	.2	15.7	6	1	
7	32 1287								-						2 113												2 7				-	16.8	19	11	
B	29 2167														3 62																		1	11	
9	30 41			. 4				. 62			ND	2 17			2 40														9				3	6	
10	29 2946														2 119																		-	4	
11	576 2726	22	82	1.2	22	10	403	3.00	3	5	ND	2 301	.9	2	2 114	2.41	.068	9	67 1	. 89	375	.21	9.41	1.8	1 1.80	. ,	10	1	14	2	.2	17.9	39	٩	
.2	89 4571														7 142																			5	
3	27 505							.88			ND	2 54			2 33														4						,
14	40 1063	22			-					-		2 80			4 88															-		12.5	-	5	
20	24 619										ND				2 206												18			1		25.9		7	
21	24 496	10	85	. 5	11	28	455	7.78	8	5	ND	2 515	. 9	2	2 160	3.74	. 080	7	20.2	. 12	265	. 36	9.58	2.0	L . 49	3 2	6	1	13	١		19.7	30	1	
22	24 828							2.68			ND	3 248			3 54												34					11.5		3	1
23	65 3671									5					5 121		-																	10	,
24	60 1832							1.23	-		ND	1 27			5 84								7.58						7					1	
25	95 4574	5	21	1.7	20	9	141	1.99	2	5	ND	1 27	.5	2	6 126								8.50						7	1	.2	15.4	156	3	J
26	235 2187	3	14	. 5	13	9	84	2.01	3	5	ND	1 18	.6	3	4 165	. 12	.052	4	21	. 91	485	. 16	9.48	. 1	2 4.3	33	8	1	2	1	.2	15.0	44	1	ł
27	8 682	-				-		-	-						2 191												37				. –	21.2	6	1	L
28	64 2075											1 58			2 85								7.12									11.5		2	:
29	19 836									5		2 241			6 31												26					10.0		1	
10	58 5282		-						_		ND				4 188												2 10						148	2	:
1	80 1279	24	160	.9	11	16	690	5.42	6	5	ND	2 451	.9	2	2 96	3.38	.073	10	42 1	. 25	261	. 26	8.70	2.1	7.50	0 3	16	1	13	6	.2	11.0	44	3	
l	2 57	19	116	.2	8	9	1548	7.15	37	5	ND	1 114	1.3	2	2 246	.51	.114	9	30 2	. 36	1007	. 55	11.05	.7	5 1.7	7 2	2 16	1	12	1	.7	30.6	4	1	
2	16 452	4	134	1.0	12	36	879	9.64	6	5	ND	2 77	1.6	2	2 483	.76	.084	10	20 2	.01	555	. 32	9.72	. 1	5 2.8	32	2 39	2	14	1	. 9	19.8	13	1	
3	13 220	2	104	. 3	22	19	262	3.75	11	5	ND	1 42	.2	2	2 307	.29	. 109	2	20 2	. 56	382	. 30	14.27	.1	9 4.7	5 2	2 14	5	7	1	.2	21.3	9	12	2
ı	6 29	4	49	.1	13	5	210	1.54	3	5	ND	2 34	.2	2	5 25	.15	.005	16	44	.91	569	. 09	7.61	.2	0 3.3	32	2 33	1	11	1	. 2	4.3	4	5	į
E A31	83 1195	20	151	.7	11	15	685	5.33	2	5	ND	1 438	.7	2	2 92	3.30	.065	i 9	47 1	. 22	280	. 26	8.65	2.1	1.5	1 3	3 16	1	13	5	. 2	10.6	59	4	
5	12 206											1 260			2 343																			7	
TANDARD HEC/FA-1												36 59	20.7	17	20 79	. 58	. 120	40	112 1	. 10	232	. 08	2.12	.0	6.10	6 11	L 4	17	8	3	.2	6.0	481	460	,

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL, AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. <u>Samples beginning/RE' are duplicate samples.</u>

DATE RECEIVED: JAN 3 1992 DATE REPORT MAILED: JAN 14/92

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

McGoran & Associates File # 92-0546 Page 1 305-455 Granville St., Van BC V6C 1T1

					<u></u>		1				·						or i og en	89865.25	ter an			1999 (B.			141-04000					
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	B ppm	Al X	Na %	К %	y Ppm	Au* ppb
78-2 2-5 78-2 146-148.5 78-3 15-17 78-3 50-52 79-1 9-12	151 83 95	1923 2537 1726 3233 1747		168 83 240 116 104	1.0 .6 1.1 1.4 .4	7 10 14 13 13	14 19	392 5 367 4 631 5 334 4 374 3	4.87 5.20 4.14	3 5 3 4 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	43 34 61 16 16	1.1 .7 1.4 1.2 .8	2 2 2 2 2	15 9 14 12 13	58 53 71 48 32	.80 .54 .92 .68 .26	.038 .056 .108	2 2 2 3 6	15 1. 11 1. 20 2. 10 1. 10 .	.40 .24	42 .18 74 .08 42 .18 63 .09 111 .03	4 2 4	2.58 3.12 3.40 2.59 2.52	.16 .18 .27 .14 .12	.12 .35 .09 .25 .45	1 1 1 1	11 82 8 44 210
79-1 61-63 79-1 143-146 79-2 47-50 79-3 21-24 79-3 124-127	55 66 81	2254 3437 1743 3663 4033	6	149 179 132	.8 1.9 1.4 1.6 2.0	13 10 4 9 8	17	668 6 474 2 445 7 354 6 288 3	2.51 7.03 6.94	3 3 8 9 5	5 5 5 5 5	ND ND ND ND	1 2 3 1	39 8 56 83 40	1.1 1.3 1.3 1.8 1.5	2 2 2 2 2 2	13 6 14 16 12	83 33 64 63 52	.56 .26 1.27 .82 .52	.044 .049 .064	2 2 3 2 2	17 1. 11 1. 6 1. 14 1. 11	.09 .20	80 .18 54 .05 78 .12 36 .13 47 .11	4 5 4	3.63 1.82 3.01 2.64 2.02	.18 .07 .21 .26 .18	.44 .30 .30 .12 .30	2 1 1 1	69 27 12 81 100
79-3 277-290 79-4 70-73 79-4 182-184 79-5 26-29 79-5 78-81	56 37 41	2831 4316 1862 5613 4258	13	113 137 104 297 165	1.5 1.7 .6 4.4 2.5	11 5 10 8 10	5 17	302 257 428 1122 553	2.58	4 3 3 23 11	5 5 5 5	nd Nd Nd Nd	1 2 1 4 1	50 14 27 35	1.0 1.9 .8 2.6 1.8	2 2 2 2 2	7 9 3 11 14	69 11 17 11 27	1.24 .31 .13 .26 .31	.026 .042 .038	2 2 2 2 2	11 1 29 8 1 7 29 1	.67 .17 .73	16 .20 56 .03 54 .01 90 .03 95 .08	4 4 3	2.52 1.70 1.98 2.45 2.27	.24 .12 .03 .07 .09	.17 .30 .32 .35 .34	1 1 1 2 4	47 64 12 18 16
79-5 145-148 79-6 31-33 79-7 141-148 79-8 32-40 79-8 105-111	77 69 90	1688 2179 3091 2519 1562	3 10 8 6 3	78 80 98 73 83	1.0 1.0 1.3 1.4 .6	10 14 8 12 12	9 12 15	344 229 306 372 403	3.52 3.78 4.35	6 2 7 4 2	5 5 5 5	ND ND ND ND	3 3 1 3 1	8 79 38 53 68	.5 .7 .9 .6 .4	2 2 2 2 2 2 2	5 7 5 11 6	14 57 51 49 41	.18 .92 .74 .73 1.04	.050 .052 .093	2 2 3 3	7 20 1 18 1 5 2 8 1	.39 .34	85 .02 46 .13 50 .11 46 .03 49 .05	3 3 3	1.89 2.86 2.50 3.63 2.84	.03 .32 .17 .18 .44	.45 .18 .19 .31 .22	3 1 1 1	22 11 110 8 4
80-10 37-40 80-10 130-133 80-11 3-5 80-11 190.5-193.5 80-12 17.5-19.5	15 36 46	1510 1536 3137 1487 137	9 7 9 14 8	75 82 89 92 120	1.0 1.9 1.2 .9 .8	7 3 23 10 8	10	317 274 394 279 663	2.48 3.84 2.39	3 7 8 3 6	5 5 5 5	ND ND ND ND	2 5 1 2 3	8 17 49 23 141	.7 1.0 .8 .6 .9	2 3 2 2 2	4 4 10 6 8	8 12 50 53 64	.16 .41 .59 .86 1.47	.025 .085 .044	2 2 3 4 2		.29	61 .02 56 .02 63 .02 34 .07 45 .06	4 3 3	1.32 1.57 3.76 1.93 5.58	.05 .10 .18 .18 .25	.33 .30 .25 .21 .18	2 3 1 1	7 6 43 17 6
80-12 157-159 80-13 11-15 80-13 136-139 80-13 210.5-212.5 80-14 77-79	191 198 62	1227 2172 2923 3312 2187	19 5 6 13 26	174 31 193 165 111	.9 .3 1.2 2.4 2.5	12 11 21 5 2	7	706 118 879 849 495	1.52 3.49 2.59	2 2 2 8 2	5 5 7 5	nd Nd Nd Nd	3 3 2 5 5	11 5 24 23 29	.5 .4 .9 1.3 .9	2 2 2 4 2	6 4 10 8 4	22 15 54 26 10	.27 .18 .47 .54 .36	.061 .060 .046	5 3 3 4 2	19 27 2 8	.97 .84 .24 .95 .52	94 .04 55 .01 41 .11 93 .06 50 .04	2 4 6	2.25 1.79 2.99 2.02 1.50	.04 .05 .14 .11 .18	.41 .35 .25 .37 .24		5 11 6 5 13
80-14 177-179 80-15 93.2-96.0 RE 80-13 136-139 80-16 19-22 80-16 241-244	73 190 57	3902 2881 3007 3792 4848	16 8 9 2 7	196 96 202 19 61	2.6 2.0 1.2 .9 .8	6 9 14 31 11	6 12 13 10 17	641 566 932 71 281	3.73 3.69 2.21	5 12 3 8 2	5 5 5 5 5	ND ND ND ND	6 4 1 4 1	23 40 26 5 15	1.7 .8 1.2 .4 .4	3 4 2 2 2	8 10 7 6 8	12 34 56 14 29	.32 .66 .50 .15 .41	.082 .063 .053	2 5 3 6 8	51 272	.34 .87	53 .05 38 .10 43 .12 61 .01 53 .01	4 6 6	1.46 2.74 3.13 1.88 3.14	.20 .25 .16 .03 .06	.15 .26 .26 .34 .32	2 4 4 2 1	15 5 6 19 18
80-17 75-77.5 80-17 131-134 STANDARD C/AU-R	29 162 20	2101	2 19 45	6 50 138		108 52 71	1 6 32	34 241 1088 4		3 3 36	5 5 16	ND ND 8	7 4 40	5 53	.2 .5 18.9	2 2 16	2 6 22	13 18 57	.20 .15 .49	.045	20 12 41	34	.50 .91 .90	36 .01 69 .01 176 .09	4	1.05 1.57 1.90	.02 .03 .09	.28 .37 .17	1 2 11	1 7 530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples Deginning 'RE' are duplicate samples.</u>

D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS 42 SIGNED BY. DATE RECEIVED: MAR 16 1992 DATE REPORT MAILED:

McGoran & Associates FILE # 92-0546

ACHE ANALYTICA	NL																	·														ACHE ANAL	1710
Ş	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B		Na	к	W /	lu*	
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	%	<u> </u>	ppm	ppm	*	ppm	%	ppm	%	*	*	ppm p	pb	
ç	30-18 33-36	55	1410	14	108	8	10	18	289	5.44	2	5	ND	2	03	.5	2	2	75	1 21	.062	3	6	1.59	31	20	5	3.11	38	10	1	12	
	30-18 139-142		366			.3	8	3		.92	2	5	ND	2		.3			11		.013			.25				1.15			3	3	
-	30-19 4-7		2216			1.0	8	10	445	3.26		5	ND	2		.7		3			.054	2	23	1.69				2.53			1	-	
-	RE 80-21 202.5-205		1141			.9	-				1. Carl 1. Star		ND	1		1.7					.040			1.85				3.17			3	-	
	30-19 196-199		3309							3.07	2			1		1.6		4			.048			1.64				2.38			3	-	
																						•									18 S.		
8	30-20 60-62.5	2	126	- 4	64	.1	8	18	575	4.65	5	5	ND	1	74	.2	2	2	115	1.50	.042	4	18	1.57	28	. 16	8	2.69	.40	.04	1	2	
8	30-21 23-26	48	1800	12	132	1.1	9	19	487	7.57	14	5	ND	1	106	1.0	6	3	74	1.58	.078	2	12	1.39	37	.16	7	3.91	.41	.12	3	11	
8	30-21 111-114	61	2673	40	212	1.4	15	21	510	6.41	2	5	ND	1	98	1.3					.073		5	2.31	21	.18	3	3.17	.38	.21	_ 1 *	129	
8	30-21 202.5-205	91	1127	57	162	.8	16	15	492	5.55	3	5	ND			1.4		2	73	1.50	.053	3	20	2.05	23	.19	6	3.11	.38	.26	1	23	
8	80-22 74-77	202	2149	9	146	1.3	14	30	444	9.00	13	5	ND	1	162	1.1	2				.086		12	1.76	41	.17	7	4.48	.54	.08	2	100	
											anten der Rec ¹ en																						
8	80-22 203-206	26	1122							4.53		5	ND		99		2				.055						10				3	14	
8	30-23 59-66	33	1235	5	183	1.2	12	34	982	10.79	30	5	ND		176		2	2	103	2.06	.075	2	12	2.00	- 31	. 10	14	5.85	.59	.01	3	1	
8	80-24 25.5-28	13	729							11.07		5	ND		356	1. N	2				.060		9	2.01	18	.10	4	8.72	.90	.03	1	1	
8	30-24 60-62	8	976	5	283	1.1	12	24	794	8.78	40	5	ND	1	278	1.3	2	2	77	2.95	.077	4	10	1.83	- 43	.07	8	6.50	.71	.05	7	1	
8	80-25 3-7	284	3638	60	333	3.8	9	27	1126	8.49	25	5	ND	2	53	1.4	2	5	75	1.30	.096	5	7	1.58	31	.09	7	3.61	. 19	.22	2	6	
s	80-25 85-88	57	2432	2/	100	1 7	1/	27	601	6.01	2	5	ND	1	102	1.4	2	2	70	1 40	.115	7	1/	2.15	75	17	5	3.50	77	12	1	46	
	30-25 57-60		2984			1.8			695	5.60					48		2				.089			1.10				2.96			4	3	
	80-26 124-127		4658				11			6.59	6		ND			2.3					.089			1.64				2.98			2	67	
	80-26 271-274		2062						372	5.04	3					2.5	2				.075			2.43				3.96			2		
-	80-27 13-14.5		935			.2		2	84	.76	5	-	ND	ź							.030			.26				.87			1		
· ·	50-27 15-14.5	15	733	-	20	• •		2	04	.70			ΠD	2	,	•	٤.	2	0	. 10	.000	. 10	0	.20			5	.07	. • •	.20			
5	80-27 122-123	19	1829	2	20	.7	7	3	106	.90	3	5	ND	1	5	.2	2	3	3	.09	.026	12	6	.25	98	01	. 4	1.18	.03	.49	1	1	
	80-27 227-228.5		3006	_		1.9	7		1001	2.75	ંડ	-		7				5	-		.036			.65				1.80			4	i	
	80-28 9-12		3420			1.4	•		532		ź	-	ND	1		.6	ź	4			.083			2.27				3.24	-		. 1	17	
	80-28 186-189		1357			7	8			2.16	2		ND	ż			2				.032			.90			*)	1.67			2	7	
	80-30 33-36						-			10.10	7		ND			2.0					.084			2.39				5.43	-		1	22	
													-						-														
	STANDARD C/AU-R	20	57	37	133	7.4	67	33	1045	3.96	42	15		41	52	18.6	16	19	56	.48	.090	39	58	.88	178	.09	32	1.87	.09	.14	11	520	

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

Page 2

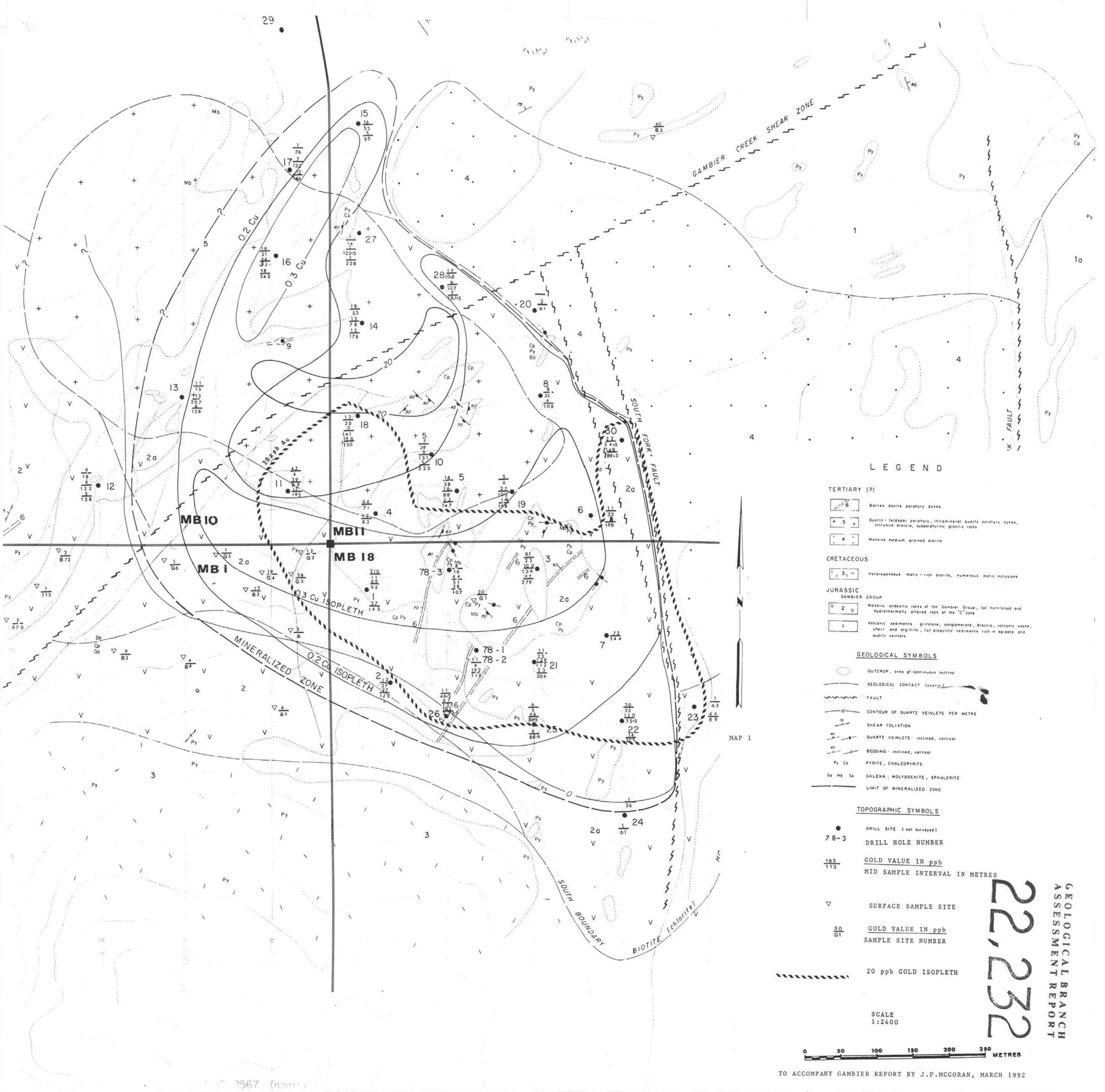
McGoran & Associates FILE # 92-0546

ACHE ANALYTICAL																														CHE ANA	LYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca		La	Cr	Mg	Ba	Ti	B	Al	Na	ĸ	, W	Au*
	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	7	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	~ 7	ppm	ppm	~ ~	ppm	~ %	ppm	7.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppb
A	4	52	9	29	.1	7	2	234	1.20	2	5	ND	1	42	.2	2	4	5	.57	.030	3	8	.31	175	.07	3 1	.48	. 19	.21	2	3
B72	4	42	8	186	.3	69	26	1065	5.78	15	5	ND	2	26	.3	2	2	36	.39	.056	5	65	1.41	92	.23	5 2	2.67	.07	.23	2	2
G1	109	3502	25	172	2.1	17	23	518	6.30	6	5	ND	2	47	1.6	2	3	57	.81	.068	3	30	1.97	47	.16	4 3	5.44	.25	.21	3	30
G2	26	223	5	32	.1	11	5	151	2.12	2	5	ND	1	6	.2	2	2	15	. 12	.038	5	8	.78	31	.01	3 '	.21	.04	.12	1	12
G3	17	304	2	97	.5	8	14	369	5.78	5	5	ND	1	87	.2	2	2	52	1.03	.070	2	- 4	1.81	51	.25	53	3.37	.06	.25	2	26
G4	15	110	5	142	.2	- 4	6	466	3.49	2	5	ND	1	35	3	2	2	6	.44	.049	5	14	.82	111	.12	3 2	2.34	.09	.23	1	19
G5	4	12	3	100	.1	12	10	318	3.07	5	5	ND	1	8	.2	2	2	45	. 18	.075	3	7	3.52	44	.01	4 3	5.26	.03	.26	3	1
G6	4	63	27	143	.7	9	32	1128	7.88	15	5	ND	1	52	.2	2	2	76	.53	.072	2	5	3.03	48	.12	44	i.31	.08	.11	3	1
RE G3	15	312	2	101	.4	9	14	382	5.79	4	5	ND	1	87	.3	2	2	52	1.02	.075	2	5	1.81	49	.25	33	5.36	.06	.23	1	25
670	7	39	4	117	.2	55	15	987	4.79	4	5	ND	1	12	.2	2	2	39	.25	.057	- 4	58	1.38	122	.12	3 2	2.78	.03	.32	1	2
713	4	195	44	94	.4	7	3	631	1.88	- 4	5	ND	1	26	.4	2	2	9	.34	.026	3	7	.41	167	.07	3 '	1.27	.20	.11	2	1
STANDARD C/AU-R	20	57	37	133	7.4	67	33	1045	3.96	42	15	7	41	52	18.6	16	19	56	.48	.090	39	58	.88	178	.09	32 '	.87	.09	.14	· 11·	510

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

Page 3

STATEMENT OF QUALIFICATIONS


I, John P. McGoran of 2111 West 34th Avenue, Vancouver, B.C. hereby certify that:

- I am a graduate of Carlton University (1972) and hold a B.Sc. Degree in Geology.
- 2. I am a member in good standing of the following associations: Canadian Institute of Mining and Metallurgy Geological Association of Canada American Institue of Mining Engineers Prospectors and Development Association of Canada
- 3. I have been employed in my profession as an exploration geologist, geochemist and consultant for the last fourty years.

DATED at Vancouver, British Columbia, this day of March, 1992

SIGNED;

John P. McGoran

