Γ	SUB-RECORDER RECEIVED	
١	MAR 2.7 1992	
	M.R. #	
	VANOOC	

LOG NO:	MAPR 0 8 1992	RD.
ACTION:		- -

FILE NO:

Diamond Drilling Assessment Report on the Stoney Property

Fort Steele Mining Division

NTS 82G/4

Lat. 49° 10' N Long. 115° 55' W

<u>Owner</u>: Minnova Inc.

<u>Operator</u>: Minnova Inc.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Colin Burge Minnova Inc. Vancouver, B.C. February 12, 1992

Table	of	Contents

		page
INTRODUCTION		1
Location and Ad Physiography Property and Od History	ccess wnership	1 1 2 2
1991 WORK PROGRAM		2
GEOLOGY		3
Regional Geolog Property Geolog	ал ал	3 4
DIAMOND DRILLING		4
Results Lithogeochemist	ry	5 5
CONCLUSIONS AND RECO	OMMENDATIONS	6
	LIST OF APPENDICES	
Appendix I Appendix II Appendix III Appendix IV Appendix V	Itemized Cost Statement Statement of Qualifications ST-91-03 Drill Log Geochemical Analytical Procedures Geochem Results	
	LIST OF FIGURES	
Figure 1 Figure 2	Stoney Ck. claim configuration Geology and Drill Location	after p. 1 in pocket
	LIST OF TABLES	

INTRODUCTION

The Stone East claim group consists of five claims totalling 96 units. The claims comprise the eastern half of the 301 unit Stoney property located 15 km northeast of Yahk, B.C.

The Stoney property is underlain by Proterozoic-age Aldridge formation sediments and intrusions which host the giant Sullivan Pb-Zn massive sulphide deposit 60 km to the north.

The Sullivan deposit occurs at the contact between the Lower and Middle Aldridge formations and this contact represents the principal target in the belt. The Stoney property covers Middle Aldridge stratigraphy and the Lower-Middle contact is believed to be present at shallow depths.

Location and Access

The Stoney property is located in the Purcell Mountains of southeastern B.C. The claims can be reached by proceeding east from the north end of Yahk, B.C. on the Hawkins Creek (Yahk Meadows) forestry road. At about the 12 km point the Cold Creek access road branches north and after proceeding north for 7 km the Ryan Creek road continues and provides access to the southern portion of the Stoney property. A number of other old, 4WD logging roads exist on the property in various states of decay.

Physiography

The property is situated in the Purcell Mountains and elevations range from 900 m in the Moyie River valley to over 1900 metres at the Stoney Mountain summit. Relief is quite gentle except for the slopes down to the Moyie River.

The forest cover consists of immature stands of fir and spruce as well as stands of alder.

The climate is cool and dry without snow in the upper reaches between June and October

Property and Ownership

The Stoney Creek property consists of 18 contiguous claims totalling 301 units. All are 100% owned by Minnova Inc.

Table 1. Claim Status

<u>Claim Name</u>	<u>Record No.</u>	<u>Units</u>	<u>Hectares</u>	<u>Expiry Date</u>
Stone 1	2880	15	375	May 1, 1992
Stone 2	2881	20	500	May 1, 1992
Stone 3	2882	20	500	May 1, 1992
Stone 4	2883	18	450	May 1, 1992
Stone 5	2884	20	500	May 1, 1992
Stone 6	2885	20	500	May 1, 1992
Stone 7	2886	18	450	May 1, 1992
Stone 8	2887	20	500	May 1, 1993
Stone 9	2888	18	450	May 1, 1993
Stone 10	2889	18	450	May 1, 1992
Stone 11	2890	20	500	May 1, 1992
Stone 12	2891	12	300	May 1, 1992
Stone 13	2892	20	500	May 1, 1993
Stone 14	2893	20	500	May 1, 1993
Stone 15	2894	18	450	May 1, 1992
Stone 16	2895	12	300	May 1, 1993
Stone 17	2985	5	125	Sept 16, 1992
Stone 18	2986	5	125	Sept 16, 1992

<u>History</u>

Prior to 1987 when Minnova staked the property the only recorded exploration work on the Stoney property involved a soil survey carried out for Kennco Exploration in 1966 (A.R. 813).

The Mt. Mahon property, adjacent to and south of Stoney has undergone several episodes of exploration by Chevron Resources, Falconbridge Limited and St. Eugene Mining. They report bedded tourmalinite at or near the Lower Aldridge - Middle Aldridge contact.

Minnova mapped the Stoney property at a reconnaissance scale and completed geophysical surveys (CSAMT, gravity) in 1987 (A.R. 17633). Two holes totalling 519 metres were drilled in 1989 to test stratigraphy and geophysical anomalies.

In 1990 a contour soils program attempted to identify productive horizons in the Middle Aldridge and a narrow sulphide horizon was mapped out at the top of Stoney Mountain.

1991 WORK PROGRAM

One diamond drill hole (285.6 meters) was completed to test the above mentioned sulphide horizon and Middle Aldridge stratigraphy. Ten whole rock and two assays were collected to try and test for subtle changes in rock geochemistry due to alteration caused by hydrothermal activity.

GEOLOGY

Regional Geology

The Proterozoic-age Aldridge Formation covers a large part of southeast B.C. and the southwest corner of Alberta. The Aldridge consists of upper greenschist facies sediments and conformable gabbroic sills known as the Moyie intrusions. The package forms three main structural blocks in southern B.C. divided by the northeast trending Cranbrook and Moyie Faults. Each structural block forms broad open northeast plunging anticlines and it is the anticlinal axis of the northernmost structural block that the Sullivan deposit is situated. The Sullivan deposit is a 160 million ton >10% Pb-Zn, 68 g/t Ag massive sulphide sheet underlain by tourmalinization and overlain by an albite-chlorite alteration halo.

The Stoney claims are within the Moyie structural block, the southernmost block. The Sullivan time horizon (Lower - Middle Aldridge contact) is believed to be present to the south on Mt. Mahon and extends, with shallow dips, across the Stoney Property. The only significant producer apart from the Sullivan in the Aldridge Formation is the former St. Eugene Mine. The St. Eugene produced 1 million tons of 14% Pb, 5% Zn and 240 g/t Ag from a steep dipping massive sulphide vein. The St. Eugene is about 10 km northeast of the Stoney property.

Property Geology

The Stoney claims are underlain by Middle Aldridge formation sediments and Moyie sills and dikes. The bedded rocks form an open NNE shallow plunging anticline.

The clastic assemblage is made up of predominantly medium bedded quartz-rich greywackes intercalated with thin bedded siltstones and mudstones. The finer material occasionally displays graded bedding, ripple marks and cross bedding. The package probably represents a turbidite sequence of considerable thickness.

The intrusive rocks range from diorite to gabbro and are medium to coarse grained. These units are well exposed at topographic highs on the property.

Geology and Mineralization

A narrow sulphide horizon outcrops at the top of Stoney Mountain and dips gently east beneath a gabbro sill which is well exposed on the east side of the Ryan Ck. road at the top of Stoney mountain. The sulphides consist mainly of pyrrhotite weakly anomalous in lead and zinc hosted by laminated siltstones and wackes.

1991 DIAMOND DRILLING

ST-91-03 was collared on the Ryan Ck. access road at the crest of Stoney Mountain. The hole was drilled steeply west to test a gently east dipping sulphide horizon exposed in trenches located a few hundred meters west.

<u>Results</u>

ST-91-03 collared in a massive, equigranular gabbro containing traces of magnetite. Below the sill, ST-91-03 cored a sequence of medium bedded quartz wackes intercalated with more argillaceous wackes and mudstones. These units represent accumulations of turbidites typical of the Middle Aldridge. Two periods where turbidite deposition ceases were intersected and resulting thinly bedded and laminated siltstones and quartzite layers form distinctive planar bedded zones indicative periods of exceptional quiescence.

The upper laminated sequence between 74.2 m and 82.5 m contained only trace amounts of disseminated sphalerite (222 ppm Zn/1.0 m). This zone probably correlates with the narrow sulphide horizon exposed on surface. The bedding ranges from 75 to 80 degrees to the core axis (hole dip is -85°) and only traces of pyrrhotite as disseminations and very fine laminations were observed in the sediments. A narrow quartz shear zone carrying chalcopyrite in trace amounts was intersected in the gabbro (Cu 734 ppm/.4 m).

<u>Lithogeochemistry</u>

Ten lithogeochemical and two geochemical samples were taken from the core. All were analyzed at Min-En Labs, North Vancouver. Litho samples were analyzed for SiO_2 , TiO_2 , CaO, MgO, Na₂O, K₂O, MnO₂, Fe₂O₃, (total iron), Al₂O₃, Sr, Zn, and Ba by ICP analysis of a crushed and digested bead formed by fusion with lithium borate. Ag, Cu, Pb, Zn, B, Sb and As were analyzed by standard ICP techniques using an aqua-regia digestion. F and B-Tot were analyzed by fusion methods with their respective specific ion electrode and ICP finish. Geochem samples were analyzed for Cu, Pb, Zn, Ag, Au by standard ICP techniques.

Lithogeochemical samples were taken routinely approximately every 30 m down the hole. Lithogeochemistry does not show any marked deviation from fresh Middle Aldridge sediment. The gabbro sills are typically high in calcium, iron and magnesium and are enriched in copper. The sediments are calcium poor and are high in potassium and silica.

CONCLUSIONS AND RECOMMENDATIONS

ST-91-03 cored 285.6 meters of Middle Aldridge turbidites and intrusive rock. Two intervals of laminated planar bedded material were intersected. The target sulphide horizon correlates with the upper planar bedded zone and only trace amounts of sphalerite were observed. Sulphide mineralization is limited to trace to 2% disseminations and fine laminae typical of the Aldridge formation. A narrow (1 meter) quartz shear zone was intersected in the gabbro and contains minor chalcopyrite mineralization. No base metal concentrations of any significance occur in the hole. No tourmalinization or coarse clastic rocks were observed.

The lack of significant mineralization or alteration in ST-91-03 suggests that showings on the Mt. Mahon summit are a local phenomena and are not distal expressions of a massive sulphide deposit. No further work is recommended in this part of the claim group.

6

Appendix I <u>Itemized Cost Statement</u>

Stoney Property

Itemized Cost Statement

Drilling		
	Leclerc Drilling Ltd., Beaverdell 285.6 m @ 55.10/m	\$15,735.05
	C. Burge 3 days @ \$350/day	1,050.00
	S. McCallum 3 days @ \$120/day	360.00
	Water haulage	2,330.00
		19,475.05
Geochemistry		
	Whole rock analyses 10 @ \$33.50	335.00
	Geochems 2 @ 17.25	35.50
		370.50
Transportation	<u>n</u>	
	4 WD Truck 3 days @ \$50	150.00
	Fuel	60.00
		210.00
Room and Board	<u>1</u>	
	Hotel and Meal, Fiddlers, Yahk 3 days @ \$100	300.00
	-	300.00
Report Prepara	ation	
	C. Burge 2 days @ \$350/day	700.00
	Typing, Drafting, Computer	150.00
		850.00

Total 21,205.55

Appendix II <u>Statement of Qualifications</u>

Statement of Qualifications

- I, Colin Michael Burge hereby certify that:
- I have worked as an exploration geologist since 1. graduation from the University of Waterloo, Waterloo, Ontario with a BSc. in Earth Sciences (1981).
- I am currently employed as a Project Geologist for 2. Minnova Inc., 3rd Floor - 311 Water St., Vancouver, B.C. and have been with this company for five years.
- I personally carried out or supervised the work reported з. herein.

Date March 24, 1992

Appendix III Drill Log - ST-91-03

HOLE NUMBER: ST-9	1-03			IMPERIAL UNITS:	METRIC UNITS: X			
PROJECT NAME: ROJECT NUMBER: CLAIM NUMBER: LOCATION:	STONEY 623 STONE 9 YAHK		PLOTTING C	DORDS GRID: IDEAL NORTH: EAST: 950.00W ELEV: 1798.00	ALTERNATE COORD	S GRID: SEISMIC NORTH: 53+20N EAST: 9+50W ELEV: 1798.00	CO LENGTH OF STA FIN	LLAR DIP: -85° 0' 0" THE HOLE: 285.60m RT DEPTH: 0.00m AL DEPTH: 285.60m
DATE STARTED: DATE COMPLETED: DATE LOGGED:	October October October	6, 1991 8, 1991 8, 1991	COLLAR GI COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO	(ID AZIMUTH: 270° 0' 0"	COLLAR ASTRONOMIC PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	AZIMUTH: 260° 0' 0"	CONTRACTOR: LECLERC DRIL CASING: 3.7M CORE STORAGE: FIDDLERS,5km	LING LTD. West of Yahk

PURPOSE: Will test the sulphide horizon exposed on Stoney Mt. for a large tonnage MS deposit.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
50.90	•	-86° 0'	ACID	OK		-			•	•	
108.81	•	-83° 0'	ACID	OK		-	-	•	-	-	
175.87	-	-78° 0'	ACID	OK		•	-	-	•	-	
233.78	•	-76° 0'	ACID	OK		-	-	-	-	-	
285.60	-	-74° 0'	ACID	OK		-	-	-	-	•	
•	-	-	-	•		•	-	-	•	-	
•	-	-	-	-		-	•	-	•	-	
-	•	-	-	•		-	-	-	•	-	
-	•	-	-	•		-	-	-	•	-	
-	•	-	-	•		•	•	-	•	-	
-	-	-	•	-		-	-	-	•	•	
-	-	-	•	-		•	-	-	-	-	
		•	-	-		-	-	•	-	•	
		•					-	-	-	•	
	-		-				-	-		•	
-		-						-	-		
-	-	_	-			_	-	-		-	
-		-	-				-	_	-		
	-	-	-			-	-	-		-	
-		-	-	-		-	-	-	-		
•	-	-	-				-	-	-	-	
-	-	-	-	-		-	-	-	•	-	
-	-	-	-	-		- 1	-	-	-		
-	-	-	-			-	-	-	-	-	
-	•	-	-	-		•	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		1 -	-	-	-	-	

HOLE NUM	BER: ST-91-03			DRILL HOLE RECORD	DATE: 13-February-1992	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 3.70	CASING					
3.70 TO 44.80	Gabbro «GAB»	Light green. Medium grained. Massive, feldspar- hblde rk. Medium grain doirite. Minor quartz veinlets frequent <1cm barren. Magnet. 111.5} «Flt» 3cm gouge. Minor carbonate veinlets at lower ctc. 40.9-41} «Qtz + Shr» Gabbro finer grain for .5m zone at ctc.		Níl.	Nil. \$40.6-40.9\$ «Biot» \$41-41.6\$ «Biot» Biotite over 10cm at ctc.	Blocky broken ground near surface. Moderately magnetic. Litho: 36173: 23.5-26.5m. Geochem: 36357-36359: 40.6-41.6m.
44.80 TO 285.60	Quartz Wackes In- terbedded With Argil- laceous Wackes and Mudstone «WACKE/ARG»	Grey to black. Fine to u. fine grained. Contact indistinct. Massive fine grain siliceous biotitic quartz wacke beds interbedded with medium to thick argil- lite beds. Occasional band containing pink spots (up to 10cm wide) spots are probably retrograding garnets. Muscovite crystals common in trace amounts. 66.3m: Fault 2-3cm gouge. 69.3-74.2m: Predominately argillite with traces of pyrrhotite. 174.22 «Flt» 10cm gouge zone. 74.2-82.5m: Well preserved planar bedded zone. Alternating dark grey and light pinkish bands. 101.7-102.9m: Argillite. 104.7m: Minor quartz veinlet <<1cm carrying 1-2% pyrrhotite. 154m: Argillite. Quartz veinlets <1cm run normal to core axis. Occasionally carry traces of pyrrhotite.	86	Nil. 53-57m: Minor carbonate veinlets <1cm. Weakly developed garnet zones. Rare siliceous patches.	«Ir Po» Argillites contain 2-3% pyrrhotite. 1 77.9-78.9] «Ir Sph» Trace amounts of disseminated brown sphalerite.	36174: 54-57m. 36360: 77.6-78.6m. 74.2-82.5m: Marker stratigraphy. 482.31 «B-Marker» Period of exceptional quiescence be- tween deposition of turbidites. 98.6-98.9m: Possible marker horizon?. 36175: 84.5-87.5m. Do not get flame structures.

HOLE NUMB	ER: ST-91-03			MINNOVA INC. Drill Hole Record	DATE: 13-February-1992	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
-		uphole. Below 150m increase in proportion of argillaceous units. Below 184m alternating 10-20cm beds of fining up- ward wackes and argillaceous wackes. 183.6m: Minor quartz patches over 20cm cut edge of veins? No sulphides. 211.6m: Well preserved flames.				36176: 108.8-111.8m. 36177: 136.2-139.2m. 36178: 160.6-163.6m. 36179: 188.1-191.1m. 36180: 212.4-215.5m. 36181: 236.8-239.8m.
		220.15m: Fault 1cm gouge. 230-250m: Begin planar bedded material 10-20cm alternating beds.			d228.9⊨ «Po Lam» 228.9m: Pyrrhotite horizon 1cm, sili- ceous, 20-25% po.	230-250m: Period of extreme quiescence between turbidites.
		253.5-253.9m: Planar beds 10-20cm creamy colour. Minor pyrrhotite laminae. Below 254m resume turbid conditions.		253,5-253.9} «M Ser» Moderate sericite.	233.5 «Py Lam»	<pre>12461 «Marker» 245.7-246.1m: Marker sequence 36182: 264.3-267.3m.</pre>
		256.1m: Flame structure - well preserved. alternating thin beds of grey wacke and argilla- ceous wacke.			269-273m: Trace to 1% pyrrhotite as laminae.	
		END OF HOLE.				[

LOGGED BY: Colin Burge

PAGE: 3

HOLE NUMBER: ST-91-03								ASSAY SHEET								DATI	: 13-February-1992					
	_					GEOCHEMICAL										COMMENTS						
Sample	From (m)	To (m)	Length (m)	Cu *	Pb Y	Zn *	Ag	Au	Ag	As	Ba	Cd	Cu	Pb	Sb	Zn	Au	B	Bal	F		
			·····				abr	- apr					- Phil						- ppii	pp		· · · · · · · · · · · · · · · · · · ·
3t357	40.60	41.00	0.40					ł	0.7	630	461	0.1	734	38	1	211	22	67.6	432	1090		
3∈ 58	41.00	41.10	0.10						0.3	6	236	0.1	468	25	1	148	8	52 <i>.</i> 9	441	565		
3(59	41.10	41.60	0.50						0.5	253	312	0.1	665	29	1	193	36	60 .8	374	610		
36 60	77.90	78.90	1.00						1.4	1	93	0.1	62	101	2	222	2	103.6	470	805		

PAGE: 4

HOLE NUME	BER: ST-9	1-03						_			GEO	CHEM. S	HEET											DATE: 1	3-Febri	uary-199	2	
Sample	From (m)	To (m)	Length (m)	A1203 %	8a %	Ca0 %	Fe203 %	К20 Х	MgO %	Mn02 %	Na20 %	P205 %	sio2 %	Ti02 %	s %	tot X	Ag ppm	As ppm	Ba ppm	Cu ppm	Pb ppm	Sb ppm	Zn ppm	Au ppb	LOI X	B ppm	F ppm	_
3∈173 3∈174 3∈175 3∈175 3∈175 3∈176 3∈177	23.50 54.00 84.50 108.80 136.20	26.50 57.00 87.50 111.80 139.20	3.00 3.00 3.00 3.00 3.00	14.48 16.12 20.46 9.33 15.47	0.005 0.055 0.07 0.005 0.035	10.14 1.45 0.66 1.35 1	9.72 4.33 5.01 2.94 5.68	0.51 4.18 5.44 1.52 3.67	7.29 1.06 1.23 0.59 1.23	0.17 0.05 0.07 0.06 0.06	1.98 1 1.78 3.29 2.5	0.01 0.01 0.01 0.01 0.01	51.43 67.99 61.03 78.54 67.4	0.69 0.6 0.72 0.37 0.54	0.03 0.05 0.3 0.07 0.08	96.42 96.9 96.77 98.05 97.68	0.9 0.5 0.2 0.9 0.6	1 13 1 1 1	33 99 88 53 106	88 21 24 23 33	18 21 21 29 23	1 1 1 1 1	22 58 79 37 83	5 5 5 5 10	2.6 2.4 2.6 1.0 1.5	87.7 96 37.9 74.4	335 455 210 505	_
36178 36179 36180 36181 36182	160.60 188.10 212.40 236.80 264.30	163.60 191.10 215.40 239.80 267.30	3.00 3.00 3.00 3.00 3.00	16.51 15.43 12.05 14.71 12.71	0.05 0.045 0.015 0.05 0.025	0.68 0.86 1.15 1.02 0.48	4.59 4.2 4.13 4.63 2.62	4.01 3.82 2.55 3.64 2.71	0.98 0.96 0.94 1.37 0.58	0.05 0.06 0.06 0.06 0.04	2.63 2.33 3.14 2.39 3.12	0.01 0.01 0.01 0.01 0.01	67.66 69.18 73.79 69.02 75.41	0.58 0.58 0.44 0.55 0.52	0.12 0.06 0.06 0.66 0.05	97.84 97.53 98.31 98.11 98.28	0.8 1 0.7 0.6 0.9	1 1 1 1	113 122 112 108 65	102 24 52 34 10	22 21 21 32 14	1 1 1 1	67 59 60 69 30	5 5 5 5 10	1.4 1.5 .9 1.5 1.1	83.9 65.7 52.3 70.5 58.8	510 480 380 1100 360	

Appendix IV Geochemical Analytical Procedures

ANALYTICAL PROCEDURE FOR ASSESSMENT WORK WHOLE ROCK ANALYSIS

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened to -80 mesh for analysis. Rock samples are crushed by a jaw crusher and pulverized to 90% -120 mesh.

A 0.200 gram subsample is fused using lithium metaborate, dissolved and diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon Type II Inductively Coupled Plasma Spectrometers.

CONTRACTOR AND A DESCRIPTION OF A DESCRI

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

e

ANALYTICAL PROCEDURE FOR ASSESSMENT WORK

Boron Geochem

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures:

After drying the samples at 95 degrees celsius, soil and stream sediment samples are screened to -80 mesh for analysis. Rock samples are crushed by a jaw crusher and then pulverized to 90% -120 mesh.

A 0.500 gram sub-sample is fused using KOH, leached overnight and then dissolved using HCL. The solution is diluted to volume and mixed.

The solutions are analyzed by computer operated Jarell Ash 9000 ICAP or Jobin Yvon Type II Inductively Coupled Plasma Spectrometers. The results are compared to certified natural standards.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2

ىرى - بىر ۋەۋىي - بىر مەرەپ بىر - ئەمەرىپ - ئەيبە بەرۇللىچە - مەرۇۋەمۇمىيىمىدە، « مىلىرەت يېرى . بىر - بىر ۋەۋىي - بىر مەرەپ - ئەمەرىپ - ئەيبە ئەيبەر ئەرۇللاھە يەرۇللاھە يەرۇللاھە ،

a second a second a la seconda da seconda da

MINERAL

 ENVIRONMENTS LABORATORIES

> PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 "FAX: (604) 980-9621

а майдай на адмира и на салана Майдайскана и на слада Майан, ураала и заказана да сокружавание на салана заказ О маке в шан сала со со составля да салана на состава на состава на состава и заказана на спора у заказ в става

The second state of the state of the second state of the second state of the state of the second second second

ANALYTICAL PROCEDURE FOR ASSESSMENT WORK

Fluorine Geochem

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, employing the following procedures:

e

After drying the samples at 95 degrees celsius, soil and stream sediment samples are screened to -80 mesh for analysis. Rock samples are crushed by a jaw crusher and then pulverized to 90% -120 mesh.

A 0.200 gram sub-sample is fused using NaOH, leached overnight with water and then dissolved using H2SO4. A buffer is added and the sample is adjusted to pH 7.0 using NaOH.

The solutions are analyzed using specific ion electrodes and compared to known certified natural standards.

41.001.44-0

a 1997 - La la companya di antica di anti Antica di an الماليان الاستريم المعلم الروان معركة المراجع المالية والمتحاف المتعالية (10 من 10 من 10 من 10 من 10 من 10 من 20 من المالية واستريكية، ومادة المراجع المالية معرفة والمالية المالية المحافظ المراجع المكافئة المحافظ المالية م

ANALYTICAL PRECEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR WET GOLD GEOCHEMICAL ANALYSIS

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

5.00 grams of sample is weighed into porcelain crucibles and cindered @ 800 C for 3 hours. Samples are then transferred to beakers and digested using aqua regia, diluted to volume and mixed.

Further oxidation and treatment of 75% of the above solution is then extracted for gold by Methyl Iso-butyl Ketone.

The MIBK solutions are analyzed on an atomic absorption spectrometer using a suitable standard set.

Appendix V <u>Geochemical Results</u>

anna taranna a r										
-	COMP: MINNOVA INC Proj: 674 Attn: Colin Burge			MI. 705 WE	N-EN st 15тн (604)	LABS - st., Norti 980-5814 (IC H VANCOL DR (604)	P REI IVER, B.C 1988-4524	PORT V74 112	2
	SAMPLE NUMBER	AL203 %	BA X	CAO X	FE203 %	K20 X	MGO X	MNO2 X	NA20 X	

.....

7

FILE NO: 1V-1264-RL1 DATE: 91/10/17 • CORE • (ACT:F26)

S TOT(X) X X

-

TI02 %

P205 X \$102 %

36173	14.48	.005	10.14	9.72	.51	7.29	.17	1.98	.01	51.43	.69	.03	96.4
36174	16.12	,055	1.45	4.33	4.18	1.06	.05	1.00	.01	67.99	.60	.05	96.9
36175	20.46	.070	.66	5.01	5.44	1.23	.07	1.78	.01	61.03	.72	.30	96.7
36176	9.33	.005	1.35	2.94	1.52	.59	.06	3.29	.01	78.54	.37	.07	98.0
36177	15.47	.035	1.00	5.68	3.67	1.23	.06	2.50	.01	67.40	.54	.08	97.6
36178	16.51	.050	.68	4.59	4.01	.98	.05	2.63	.01	67.66	.58	.12	97.8
36179	15.43	.045	.86	4.20	3.82	.96	.06	2.33	.01	69.18	.58	.06	97.5
36180	12.05	.015	1.15	4.13	2.55	.94	.06	3.14	.01	73.79	.44	.06	98.3
36181	14.71	.050	1.02	4.63	3.64	1.37	.06	2.39	.01	69.02	.55	.66	98.1
36182	12.71	.025	.48	2.62	2.71	.58	.04	3.12	. 01	75-41	-52	05	08.2

1	1		· •			
			:			
		:				
:				<u></u>	· · · · · · · · · · · · · · · · · · ·	
,						
		ν.				
		· · · · · · · · · · · · · · · · · · ·				
й Т						
I						

	COMP: MINNOVA INC. PROJ: 674 ATTN: COLIN BURGE		M1 705 WE	N-EN ST 15TH S (604)9	LABS - T., NORTH 80-5814 0	- ICP VANCOUVE R (604)98	REPOI R, B.C. V 8-4524	RT 7H 1T2		FILE NO: 1V-1264- DATE: 91/10 CORE GACT:F
•	SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-WET PPB	· · · · · · · · · · · · · · · · · · ·
	:									
,	36173	.9	1	33	88	18	1	22	5	
	36174 36175	.5	13	99 88	21 24	21 21	1	58 79	5	
	36176	.9	1	53	23	29	1	37	5	
				104	रर	23	1	83	、 10	
	36177 36178	.6 .8	1	113	102	22	1	67	5 .	
	36177 36178 36179	.6 .8 1.0	1 1 1	113	102 24	22 21	1	67 59	5	
	36177 36178 36179 36180 36180	.6 .8 1.0 .7	1	113 122 112	102 24 52	22 21 21 21	1	67 59 60	5	

1	
-	

; ;	

``

. * .

,			ERAL VIRO BOR/ SPECI	NM ALISTS	ENTS RIES	RAL EP	VVIRONM Geochemis	ENTS		23272 2728 2728 8 8	ANCO 05 WES IORTH V ELEPHK AX (604 SMITHEN MITHER ELEPHK AX (604)	DUVER (T 15TH STR MCOUVER ME (004) 90 980-9821 IERS LA LOW ROAD 83, B.C. CAN ME (004) 84 1847;3005	DFFIC BC. C/ 80-5814 B.: IADA V 17-3004	E: WADA V7 OR (604) 7 (C - 95/ 54 0J 2NO - 1	M 172 908-152 1V 2 1751 71	1. 19/ 1.93
	Geod	:he	mice	e Z	Ana	14	515	Certi	fic	a t	£		LV-1	265-1	RG1	
and the second se	Company: Project: Attn:	MIN 674 COLI	NOVA I	NC.		ייייייייייייייייייייייייייייייייייייי	OCTI 2	5 1991	Copy 1.	NINNO	VA INC.	Date: , VANCOU	e OC VER, B	T-22- .C.	-91	
4.	He her submit	eby ted	c ertif OCT-10	y th 91	e fol by CC	16Wi DLIN	ng.Geo BURGE	chemical	Anal	ysis	of	4 COF	E s	ample	8	
) ; ;	Sample Number	•			- B PPM	BA-T	OTAL PPM	F PPM				••••••		··	•••	• •
	36357 36358 36359 36360			-	67.6 52.9 60.8 103.6		432 441 374 470	1090 - 565 - 610 - 805							· · · · · · · · · · · · · · · · · · ·	

	1 1		:											،		
											-					
															-	
		• •	: • ·	1												
	z						•									
		• ·														
							·									
	, .															
		•••											•			
,	<u> </u>								1	Ø.						
*							Certi	fied by		H.	m	arb				_
4 1										V	,					
°••	-															

C

(

. **:**

۰. .

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH WNCOUVER BC. CANADA V7M 1T2 TELEPHONE (004) 980-8614 OR (004) 988-4524 FAX (804) 980-9821

••:::::::

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (804) 847-3004 FAX (804) 847-3005

					•
	ASSAY	<u>Certif</u>	icate		1V-1264-RA1
Company: Project: Attn:	MINNOVA INC 674 COLIN BURGE	•		E Copy 1. HINNOVA INC., VAN	ate: OCT-17-91 COUVER, B.C.
<i>He her</i> submit	ted OCT-10-9	he follow by COLIN	ing Assay of 1 BURGE.	7 CORE samples	. • •
Sample Number		LOI %			
			· · · · · · · · · · · · · · · · · · ·	ر ہے ہو چر خد میں نیا بنا خط کا کا کا ہو جہ بنا ہے جب ہو کا ہو ہے ہو	••••••••••••••••••••••
36173		2.60			
36174		2.40			ہے ہے ہے اور نیز پن کے اور نے بال ایر اور کر کر کر کر کر ہے ۔
36175		2.60			
36176		1.00			
36177		1.50			
36178		1.40			
36179		1.50		والم منها بالله بحد الله بور الله في الله في الله الله الله بعد الله بين الله عن الله الله الله الله	ے ہور ہیں سے خار کہ اندر کے بیچ چو جو سے انار آخا خان آخا ہے کا 4
36180		.90			
36181		1.50			_
36182		1.10			

MINERAL

.....

ENVIRONMENTS LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMBIS • ADVALLED • ADALICUS • CLOUILEMISTS

Ward Certified by

MIN-EN LABORATORIES

											 	· ð
	COMP: MINNOVA INC. PROJ: 674 ATTN: COLIN BURGE		M3 705 W	CN-EN Est 15th ((604)9	LABS - ST., NORTH 260-5814 (ICP K VANCOLVI X (604)90	REPO ER, B.C. 58-4524	RT V7N 112	ç.		FILE NO: DA * CORE *	1V-1265-RJ TE: 91/10/2 (ACT:F31
1	SANPLE NUMBER	AG	AS PPM	BA PPN	CD PPN	CU PPM	P8 PPN	SB PPN	ŻN ZN PPN	AU-FIRE		
	36357 36358 36359 36360	.7 .3 .5 1.4	630 6 253 1	461 236 312 93	.1 .1 .1 .1	734 468 665 62	38 25 29 101	1 1 1 2	211 148 193 222	22 8 36 2	······	· · · · · · · · · · · · · · · · · · ·
*. *.				•								
					,			• . • .				
				<u> </u>								
		1										
									<u></u>			
							·					
		+				<u></u>						
	· ·	-				•						
:												

.

۰.

(

	MINERAL • ENVIRO LABOR SPEC	ATORII Matorii Malists in r Matists - Assave	MINERAL ENVI ERS - ANALYSTS - GEO	RONMENTS CHEMISTS	VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (004) 980-9821 SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS B.C. CANADA VOJ 2NO TELEPHONE (004) 847-3004 FAX (004) 847-3005
Company: Project: Attn:	MINNOVA INC. 674 COLIN BURGE	Anel	<u>4525</u>	Certifice Copy 1. HI	Date: OCT-25-91 NNOVA INC., VANCOUVER, B.C.
He her submit Sample Number	eby certify the trade of the tr	he foll by COL B PPM	owing Geo IN BURGE. F PFM	chemical Analys	is of CORE samples
36174 36175 36176 36177 36178		87.7 96.0 37.9 24.4 83.9	335 455 210 505 510		
36179 36180 36181 36182		65.7 52.3 70.5 58.8	480 380 1100 360	57 - 91 - 03	

Certified by

MIN-ZEN LABORATORIES

