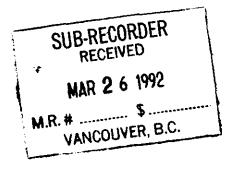
Daiwan Engineering Ltd. LOG NO: 1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G

LOG NO: APR 0 8 1992

RD.


GEOPHYSICAL AND DIAMOND DRHLLING REPORT

ON THE

MARISA PROPERTY

Nanaimo Mining Division

British Columbia

NTS: 92L/11W and 12E

Latitude: 50° 40'N

Longitude: 127° 31'W

For

Great Western Gold Corporation 420, 475 Howe Street, Vancouver, B.C. V6C 2B3

By

Gordon J. Allen, P. Geol

And

Peter G. Dasler, M. E. O^PL^GO^O GICAL BRANCH February 29, 5952 ESSMENT REPORT

TABLE OF CONTENTS

•

Page

			<u>Pa</u>	age	
SUM	MARY	1			
1.0	INTI	RODUCTION	3		
2.0	PRO	PERTY LOCATION AND ACCESS	3		
3.0	PRO	PERTY TITLE	3		
4.0	PRE	VIOUS WORK	4		
5.0	REG	IONAL GEOLOGY	4		
6.0	.0 1992 EXPLORATION PROGRAM		9		
	6.1	GEOLOGY OF THE MARISA 1 CLAIM	9		
	6.2	INDUCED POLARIZATION SURVEY	10		
	6.3	MAGNETIC SURVEY	10		
	6.4	DIAMOND DRILLING	11		
7.0	CON	CLUSIONS	15		
8.0	REC	OMMENDATIONS	16		
	CER	TIFICATES	17		

LIST OF FIGURES

		Location
Figure 1	Location Map	Following Pg. 3
Figure 2	Claim Map (1:50,000)	Following Pg. 3
Figure 3	Regional Geology Map (1:1,000,000)	Following Pg. 4
Figure 4	Structural Setting Map	Following Pg. 4
Figure 5	Regional Mineralization Of Northern Vancouver Island	Following Pg. 4
Figure 6	Geology-Geophysics Composite And Drill Hole Location Plan (1:10,000)	Following Pg. 9
Figure 7a	Cross Section, M92-1 (1:500)	Following Pg. 11
Figure 7b	Cross Section, M92-2	Following Pg. 13
Figure 7c	Cross Section, M92-3	Following Pg. 13
Figure 7d	Cross Section, M92-4	Following Pg. 14
Figure 7e	Cross Section, M92-5	Following Pg. 14

APPENDICES

- Appendix I List Of Personnel And Statement Of Expenditures
- Appendix II Drill Logs
- Appendix III Certificates Of Analysis
- Appendix IV Budget for further Exploration
- Appendix V Geophysical Report

SUMMARY

The Marisa property is located on northern Vancouver Island approximately 5km northwest of BHP-Utah's Island Copper Mine. It is underlain by andesitic volcanic rocks of the Bonanza Group and probably basalt of the Karmutsen Formation, which have been intruded by several phases of diorite and quartz diorite of the Jurassic Island Intrusions. A previous prospecting program identified disseminated chalcopyrite in the volcanic rocks, and disseminated and fracture-related pyrite, chalcopyrite and molybdenite in a quartz diorite on the Marisa 1 claim. The target of this phase of the exploration program was the mineralized quartz diorite.

Between December 10, 1991 and February 12, 1992, Daiwan Engineering Limited conducted an exploration program on the Marisa property on behalf of Great Western Gold Corporation. The program consisted of 20.6km of line cutting, 16.6km of magnetic survey, 12.3km of IP survey, and 376.43m of diamond drilling. The purpose of this program was to locate near surface material which could be used to augment mill feed at the nearby Island Copper Mine.

Very little bedrock exposure occurs on the Marisa 1 claim in the grid area. From a few outcrops located in creek beds it appears that the grid is largely underlain by quartz diorite or granodiorite in contact with andesitic volcanic rocks along the north part of the grid. The magnetic survey conducted during this program outlined a roughly 500m wide east-west trending zone of relatively low magnetic susceptibility which appears to correspond to the quartz diorite. The south part of the grid has a relatively high magnetic susceptibility. Subsequent drilling indicates that this magnetic high corresponds to Quatse diorite.

The quartz diorite exposed in a creek bed between 1+50W and 3+50W is mineralized with disseminated and fracture-controlled pyrite, chalcopyrite and molybdenite. It was hoped that an IP survey would outline the extent of this mineralization. The survey outlined a few areas of weak chargeability both in areas with relatively high and low magnetic susceptibilities (probably diorite and quartz diorite respectively), but failed to clearly define the area with known chalcopyrite mineralization. It is possible that a survey with a 50m dipole separation cannot identify zones with such a low sulphide content.

Diamond drilling on the property consisted of five holes which targeted both areas with known mineralization and zones with anomalous chargeability. Four holes were drilled along roughly 1.5km of the belt of relatively low magnetic susceptibility and intersected primarily quartz diorite in all cases. Holes M92-4 and M92-5, the easternmost and westernmost holes respectively, were generally barren with copper values averaging less than 20 ppm. The central two holes, M92-1

and M92-3, were drilled in the vicinity of the mineralized exposures along the creek. These holes intersected consistently weakly mineralized quartz diorite with disseminated and fracture-controlled pyrite (up to 1%), chalcopyrite (generally >0.1%) and molybdenite (traces). The upper part of M92-1 contained 0.17% (converted from ppm) copper across 16.17m. The highest copper values in M92-1 are within zones in which magnetite appears to have been altered to pyrite. Rock in these intervals has a paler appearance than normal and may have undergone weak argillic and/or sericitic alteration (thin section to come).

Hole M92-2 was drilled to test coincident magnetic and chargeability anomalies. The hole intersected Quatse diorite and crosscutting felsic dykes. Both units were barren.

The weak mineralization and sporadic alteration intersected in holes M92-1 and M92-3 are encouraging and suggest that the quartz diorite has the potential to host a porphyry copper deposit. IP data indicate, however, that it is unlikely a mineralized zone with a sulphide content significantly greater than that of the showings exists in the survey area. A target grade of 0.3% copper would require 1% chalcopyrite or double that occurring in the upper part of M92-1. It is conceivable that this type of material with little associated pyrite may occur in the area and that it would not produce a strong IP response.

It would be helpful to better define specific targets within the quartz diorite. It is unclear if the preliminary two line soil sample survey conducted in the previous program was able to 'see' through the overburden away from the creek, but it may be warranted to collect soil samples at 25m or perhaps 50m intervals on the present grid to better define targets.

It would also be of interest to extend the grid to the northeast to better cover the apparent quartz diorite - andesite contact area. A sample of massive pyrite and pyrrhotite skarn float was located 70m northeast of the baseline at 8+00W, suggesting that significant mineralization may occur along this contact.

The quartz diorite in the showings area requires further drill testing. An additional 300m in three or four holes northeast, southeast and southwest of M92-1 would help to define the limits of the known mineralization and/or indicate in which direction mineralization and alteration is becoming stronger.

A program of geological mapping, grid expansion, soil sampling, magnetic surveying, and 300m of drilling is recommended. The program is estimated to cost \$77,000.

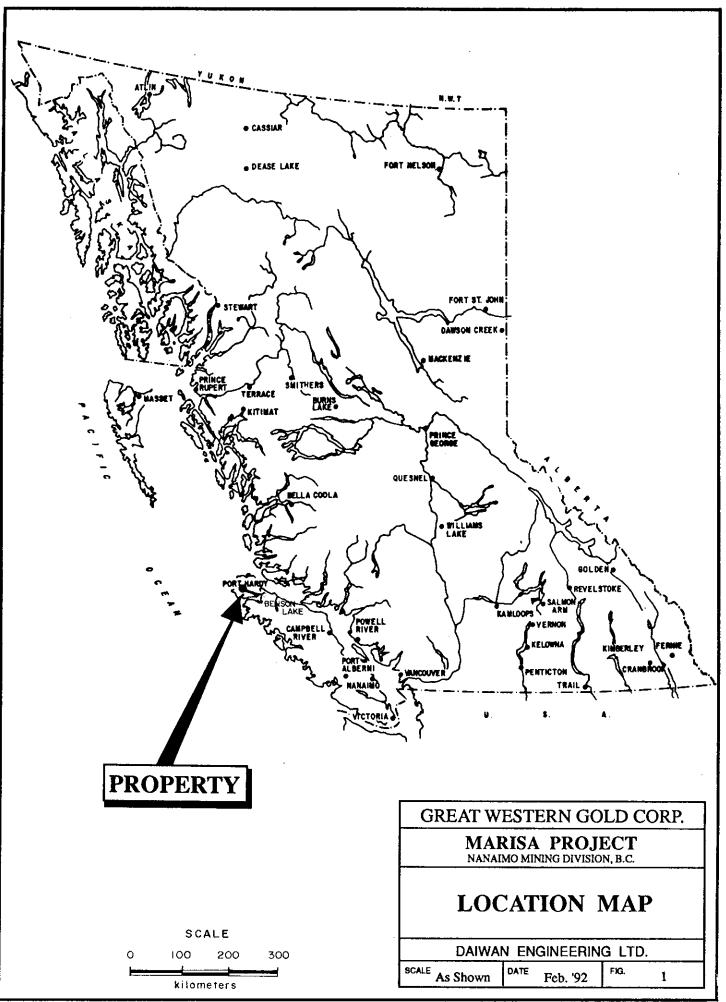
1.0 INTRODUCTION

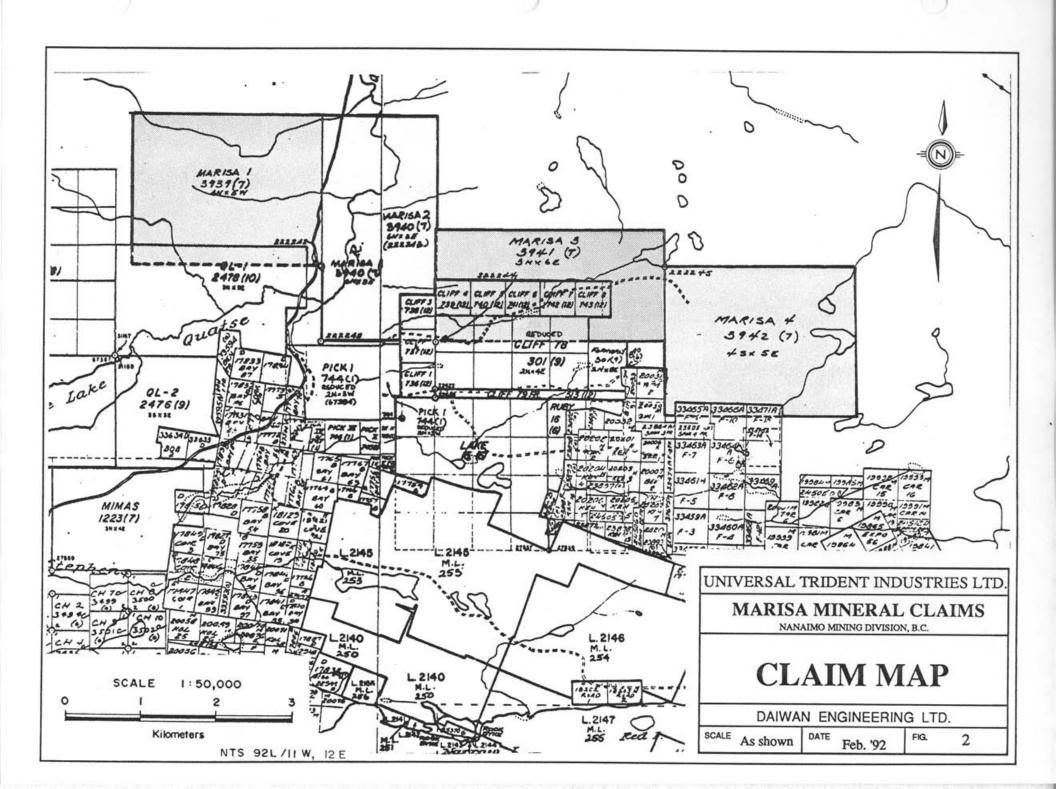
The Marisa property is located on northern Vancouver Island approximately 5km northwest of BHP-Utah's Island Copper Mine. From previous programs it was known that the Marisa property was partially underlain by a chalcopyrite and molybdenite-bearing quartz diorite to granodiorite. At the request of Great Western Gold Corporation, Daiwan Engineering conducted an exploration program on the Marisa property, focusing on the mineralized quartz diorite.

The program consisted of 20.6km of line cutting, 16.6km of magnetic survey, 12.3 km of IP survey, and 376.43m of diamond drilling. Fieldwork was conducted between December 18, 1991 and February 12,1992.

The purpose of the program was to outline a block of mineralized rock with greater than of equal to 0.3% copper which could be accessed and mined at minimal cost to augment mill feed at the nearby Island Copper Mine.

2.0 PROPERTY LOCATION AND ACCESS


The Marisa Property is located on Northern Vancouver Island, on NTS map sheets 92L/11W and 12/E, at latitude 50°40'N, longitude 127°31W. It is roughly 5km south of Port Hardy. Port Hardy is the main commercial centre for Northern Vancouver Island. the town supports the local forestry industry and the nearby 55,000 tpd Island Copper Mine.


The property is crossed by the paved Port Hardy - Coal Harbour road, and covered by a system of inactive but passable logging roads giving good access to the claims.

3.0 PROPERTY TITLE

The property consists of 76 contiguous mineral claims located in the Nanaimo Mining Division. These claims are under option to Great Western Gold Corporation.

The claim locations are shown in Figure 2.

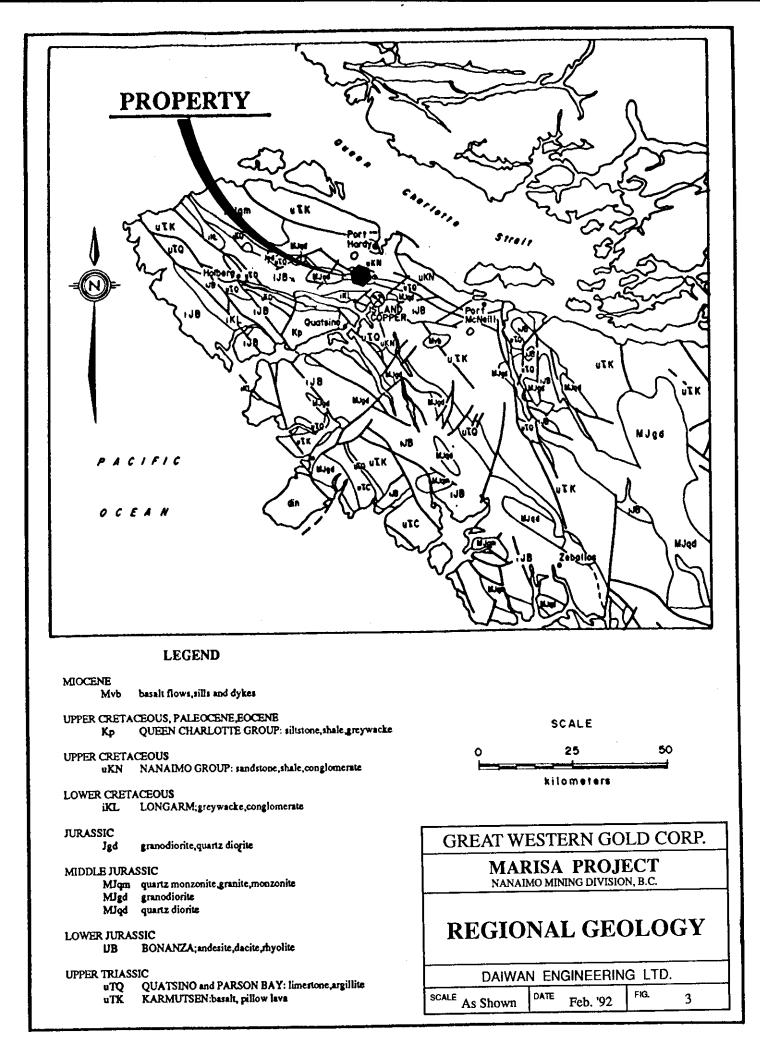
CLAIM DATA

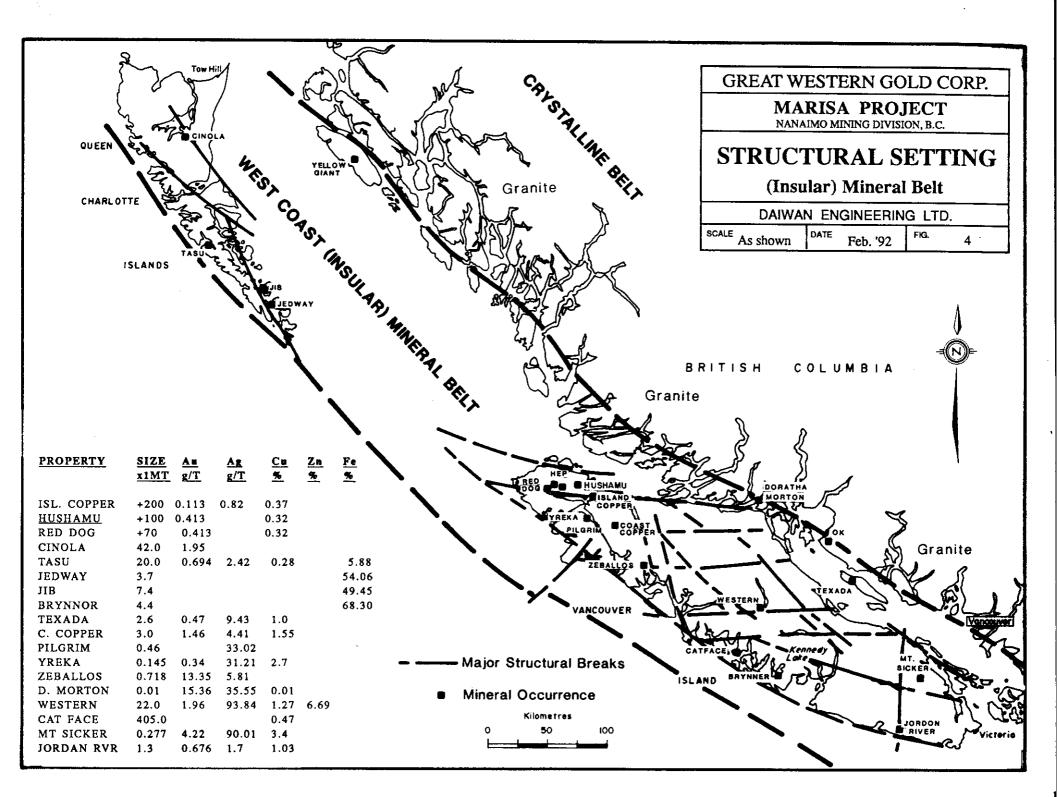
<u>Name</u>	Record No.	<u>Units</u>	Expiry Date	Registered Owner
Marisa 1	3939	20	July 25 192	Daiwan Eng. Ltd.*
Marisa 2	3940	18	• **	Daiwan Eng. Ltd.
Marisa 3	3941	18	July 20/92	Daiwan Eng. Ltd.
Marisa 4	3942	<u>20</u>	110	Daiwan Eng. Ltd.
	Total	76		

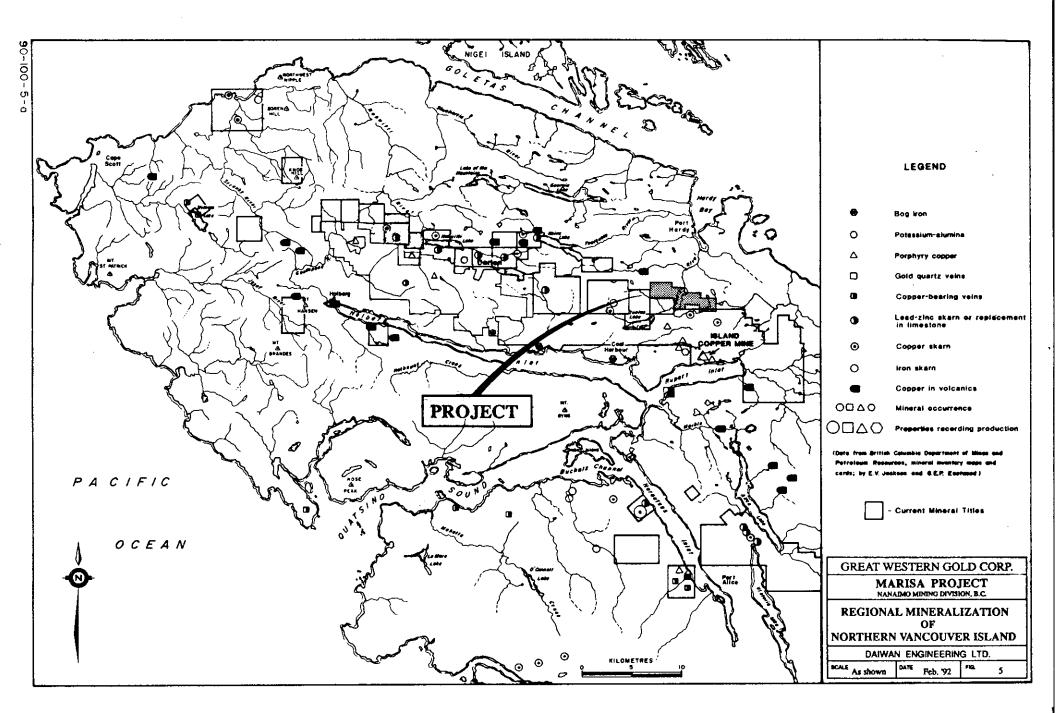
* Daiwan holds the claims in trust for Universal Trident Industries Ltd.

4.0 PREVIOUS WORK

This area was mapped by Muller in the 1960's. Utah Mines Limited explored part of the property in the 1970's concentrating on the Bonanza Group volcanic rocks.


The Little Joe skarn showing, which is within but not covered by the Marisa 3 claim, was drilled by Energex in 1980 (AR11407). Short intervals of 1-2% copper were reported at a limestone-diorite contact.


A prospecting program conducted by Daiwan Engineering Limited in 1991 identified broad zones of low grade disseminated copper mineralization in the volcanic rocks on the property, and a copper and molybdenum-bearing quartz diorite on the Marisa 1 claim. This mineralized intermediate intrusion was not recognized in any previous mapping or exploration programs.


5.0 REGIONAL GEOLOGY

Vancouver Island north of Holberg and Rupert inlets is underlain by rocks of the Vancouver Group. These rocks range in age from Upper Triassic to Lower Jurassic. They are intruded by rocks of Jurassic and Tertiary age and disconformably overlain by Cretaceous sedimentary rocks. Figure 3 shows the regional geological mapping of the northern part of the Island.

Faulting is prevalent in the area. Large-scale faults with hundreds to thousands of metres of displacement are offset by younger, strike-slip faults with displacements up to 750 metres (2,500 ft.).

5

The Vancouver Group is described as follows:

(a)Karmutsen Formation: Upper Triassic Age

Karmutsen Formation consists of 3,000 - 6,000 metres (10-20,000 ft.) of volcanic flows, pyroclastics and minor sediments. It includes three distinct units: a lower pillow lava unit, a middle pillow breccia unit, and an upper lava flow unit. The latter consists of predominantly porphyritic and amygdaloidal basalt flows, individual flows of which range from 1-30 metres (to 100 ft.) thick.

Two thin bands of limestone occur near the top of the Karmutsen Formation. The distribution of limestone outcrops is erratic and suggests a series of lenses at the same general stratigraphy horizon rather than one continuous bed.

The lower contact of the formation has not been observed on the northern part of Vancouver Island. The upper contact with limestone of the Quatsino Formation is generally discrete and easily recognized, although limestones and basalt locally are interbedded over a narrow stratigraphic interval at this contact.

Low-grade metamorphism of the Karmutsen Formation rocks has resulted in pervasive chloritization and amygdules filled with epidote, carbonate, zeolite, prehnite, chlorite, and quartz.

Basaltic rocks along contacts with intrusive stocks are in many places altered to dark-coloured hornblende hornfels. Skarn zones occur sporadically along these contacts, both in the inter-lava limestones and in the basalts.

(b)Quatsino Formation: Upper Triassic Age

The Quatsino Formation ranges from 60-1,000 metres (2,000-3,500 ft.) in thickness and consists almost entirely of limestone with a few thin andesite or basalt flows. It has conformable contacts with both the overlying Parson Bay sediments and the underlying Karmutsen Formation volcanics. The upper contact with the Parson Bay Formation is gradational with limestone grading upward into carbonaceous argillites.

Within the contact metamorphic/metasomatic aureoles adjacent to intrusive stocks, skarn development and silicification of limestone, accompanied by chalcopyrite-magnetite or galena, sphalerite and silver mineralization has been noted.

6

(c)Parson Bay Formation: Upper Triassic Age

The Parson Bay Formation consists of between 60-360 metres (200-1,200 ft.) of argillite, minor limestone, agglomeratic and tuffaceous limestone, tuff, quartzite and minor conglomerate. At both its base and top, the unit exhibits gradational contacts with the Quatsino and Harbledown Formations.

On a regional scale, the rocks are unmetamorphosed. Locally, adjacent to intrusive contacts, there are pyrite-magnetite replacement bands up to one centimetre thick in banded tuffs.

(d)Harbledown Formation: Lower Jurassic Age

The Harbledown Formation consists of 485 metres (1,600 ft.), a non-volcanic argillite-greywacke sequence separating the Parson Bay from the Bonanza Group.

(e)Bonanza Group: Lower Jurassic Age

The Bonanza Group is approximately 1,500 metres (8,500 ft.) thick. The lower portion consists of bedded and massive tuffs, formational breccias and are amygdaloidal and porphyritic flows, in the compositional range andesite to basalt. Porphyritic dykes and sills intrude the lower part of the unit. In the upper a part of the Bonanza, rhyodacite flows and breccias become more numerous and are interbedded with andesite and basalt flows, tuffs and tuff breccias.

Regional metamorphism within the Bonanza Group is very low grade, possibly zeolite facies.

Plagioclase commonly is albitized and saussuritized. Chlorite, epidote and laumontite occur within the matrix of volcanic breccias, in veinlets, and in amygdules. Coarse intraformational breccias locally are hematized.

Biotite and amphibolite hornfelsed occur adjacent to stocks which intrude the Bonanza Formation.

"Pyrobitumen", a black hydrocarbon erratically distributed within the Bonanza rocks, generally occurs as fracture filling or in the centre of zeolite-carbonate veins. Its distribution is not related to the position of the intrusive stocks.

Cretaceous Sediments

The Vancouver Group is unconformably overlain by non-marine Cretaceous sediments of the Longarm Formation which are estimated to be about 300 metres (1,000 ft.) thick in the Port Hardy area. The Longarm Formation consists of conglomerate, sandstone, greywacke, siltstone and some carbonaceous and impure coal seams; these sediments occupy local basins. Early coal mining in the district was from several of these basins.

Intrusive Rocks

The Vancouver Group rocks are intruded by a number of Jurassic-aged stocks and batholiths. In the Holberg Inlet area a belt of northwest-trending stocks extends from the east end of Rupert Inlet to the mouth of Stranby River on the north coast of Vancouver Island.

Quartz-feldspar porphyry dykes and irregular bodies occur along the south edge of the belt of stocks. Dykes are characterized by coarse, subhedral quartz and plagioclase phenocrysts set in a pink, very fine grained, quartz and feldspar matrix. They are commonly extensively altered and pyritized. At Island Copper Mine, these porphyries are enveloped by altered, brecciated and mineralized Bonanza Group wallrocks. The porphyries, too, are cut by siliceous veins, pyritized, extensively altered, and are mineralized with copper where they have been brecciated. The quartz-feldspar porphyries are thought to be differentiates of middle Jurassic felsic intrusive rocks.

Structure

The rocks north of Holberg and Rupert inlets are folded into shallow synclines with northwesterly fold axes. The steeper southwesterly limbs of the folds have apparently been truncated by faults roughly parallel to the fold axis. Failure of limestone during folding may have influenced the location of some of the faults as indicated by the proximity of the Dawson and Stranby River faults to the Quatsino Formation limestone. Transverse faulting is pronounced and manifested by numerous north and northeasterly trending faults and topographic lineaments.

The northern part of Vancouver Island lies in a block faulted structural setting with post Lower Cretaceous northwesterly trending faults apparently being the major system (Figure 3). This system causes both repetition and loss of parts of the stratigraphic section, with aggregate movement in a vertical sense in the order of tens to hundreds of metres. The most significant of these fault systems trends west to northwest along Rupert and Holberg inlets. Near the west end of Holberg Inlet this fault splits, with the main branch following Holberg Inlet and the other branch passing through the west side of the Stranby River valley. Another northwesterly system passes through William Lake and still another smaller system passes through Nahwitti Lake.

Northeasterly trending faults comprise a subordinate fault system. In some cases, apparent lateral displacement in the order of several hundred metres can be measured on certain horizons. Movement, however, could be entirely vertical with the apparent offset resulting from the regional dip of the beds.

Recent computer modelling and interpretation of the government airborne magnetometer data has provided a clear understanding of the relationship of secondary conjugate sets of northeast and northwesterly faults related to the major west-northwest trending breaks. These conjugate faults sets appear to relate directly to the significant metal occurrences at the Island Copper, Hushamu, Hep and Red Dog copper/gold deposits.

Generally, regional dip of the bedding is gentle to moderate southwesterly. In the area west of Holberg dips are locally much steeper in close proximity to major faults. There is little folding or flexuring of bedding visible, except along loci of major faults where it is particularly conspicuous in thinly bedded sediments of Lower Bonanza Formation Bedding is generally inconspicuous in massive beds of Karmutsen, Quatsino and Bonanza formation rocks, particularly inland where outcrops are widely scattered.

REGIONAL MINERALIZATION

A number of types of mineral occurrences are known on northern Vancouver Island. These include:

1.Skarn deposits: copper-iron and lead-zinc skarns,

2.Copper in basic volcanic rocks (Karmutsen): in amygdules, fractures, small shears and quartzcarbonate veins, with no apparent relationship to intrusive activity,

3. Veins: with gold and/or base metal sulphides, reacted to intrusive rocks,

4.Porphyry copper deposits: largely in the country rock surrounding or enveloping granitic rocks and their porphyritic phases.

Four significant discoveries on ground near the Win Property illustrate the copper mineralization in the area:

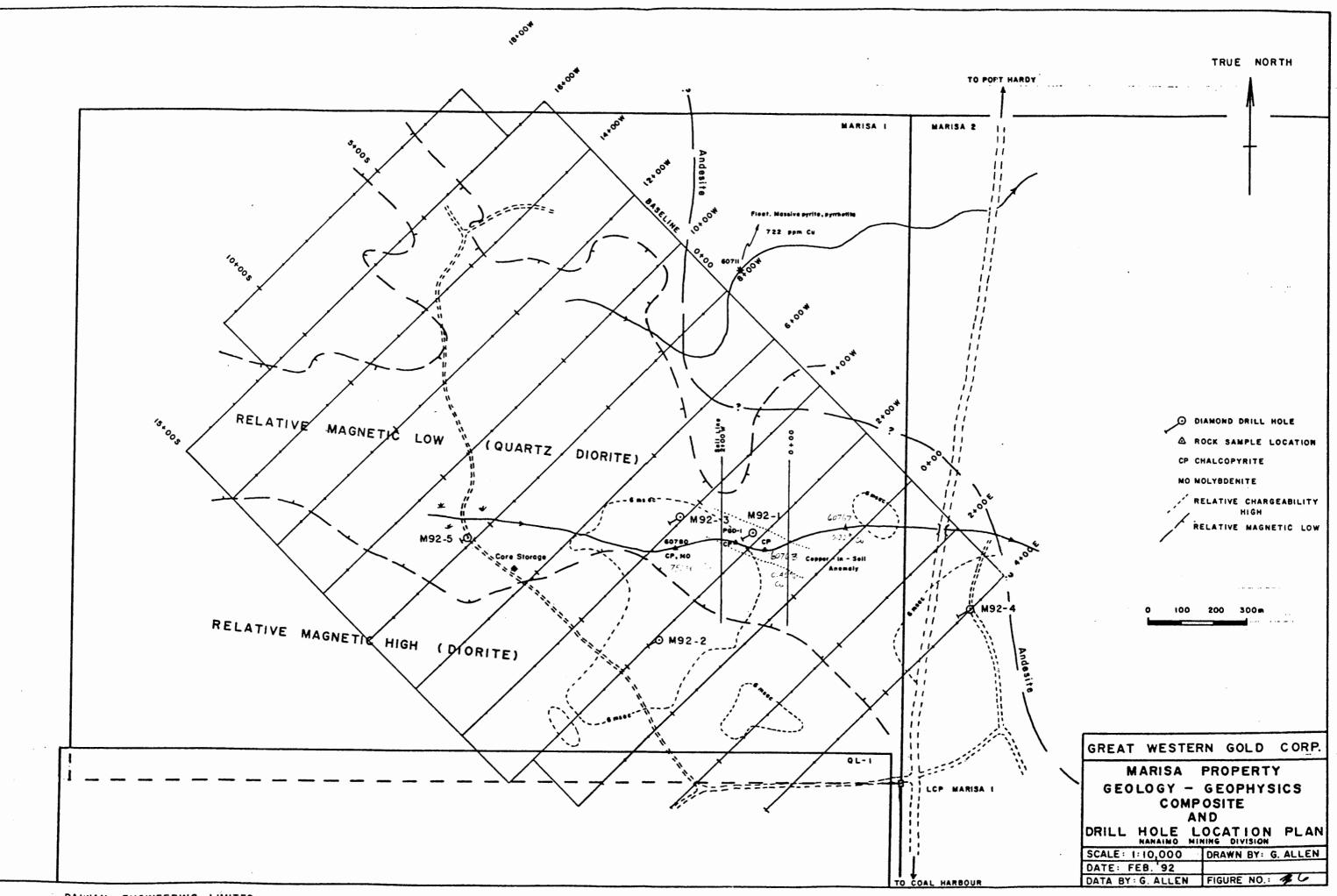
The Hep occurrence west of Nahwitti lake contains an estimated 43,350 tonnes grading 0.80%

copper at the intersection of two shear zones. The Hep claims are underlain by andesites and tuffs of the Bonanza Group which are intruded by quartz monzonite. Prophyllitic alteration is most common, but argillic and siliceous alteration occurs along fractures and adjacent to the volcanic-intrusive contacts. Pyrite with chalcopyrite and lesser bornite occurs along fractures and as fine disseminations within the andesite.

The Hushamu deposit located 21.5 kilometres southwest of the property, is a zone of coppermolybdenum mineralization in Bonanza volcanic rocks which is estimated to contain over 107 million tons grading 0.30% Cu, 0.010% Mo and 0.010opt Au.

The Red Dog deposit is located 30 kilometres west of the property. Tuffs and tuff breccia of the Bonanza group are intruded by diorite, quartz diorite and quartz-feldspar porphyry of the Island Intrusions. The tuffs have been altered to hornblende biotite hornfels in contact zones with silicification and hydrothermal alteration in shear zones. Chalcopyrite occurs as fine grained disseminations in the hornfels and in association with magnetite in siliceous breccia.

A fourth porphyry copper target presently being evaluated by Moraga Resources Ltd. lies 10 kilometres southwest of the property at Wanokana Creek. This property shows strong geochemical and geophysical resemblance to the Island Copper deposit.


6.0 1992 EXPLORATION PROGRAM

6.1 Geology Of The Marisa 1 Claim

No geological mapping was conducted on the property during this program. From the 1991 prospecting program and current geophysical and drilling data it appears that the claim is underlain by amygdaloidal 'andesite' (possibly Triassic Karmutsen Formation, or Jurassic Bonanza Group) in the northeast corner and younger intrusions (probably Jurassic Island Intrusions) in the rest of the area (Figure 6).

The intrusions can be divided into two main types. The Quatse diorite is a medium blue-grey to black medium-grained intrusion with 30% 1-5mm clots of chlorite-altered hornblende. It is generally strongly magnetic.

Quatse diorite is apparently (no contacts observed) cut by a fine to medium-grained more felsic intrusion, probably quartz diorite to granodiorite in composition. It is generally medium to light greenish to pinkish-grey with a fine-grained crystalline groundmass of feldspar and quartz (10%),

DAIWAN ENGINEERING LIMITED

25% <1-2mm white stubby subhedral to euhedral feldspar phenocrysts, and 10% dark fuzzy clots of altered mafic minerals up to 5mm in diameter (average 1-2mm). These clots are commonly composed of fine-grained chlorite, magnetite and sulphides (chalcopyrite, pyrite, and molybdenite). Sulphides also occur along several closely spaced (5-10cm) fracture sets. Grab samples of this material from surface exposures contained up to 0.45% copper (conversion from ppm; 1991 sample 60768).

Both intrusive units described above have been cut by brown to greenish-grey fine-grained quartz phyric felsic dykes.

6.2 Induced Polarization Survey

A total of 12.3km of IP survey was done on the Marisa property between January 10 and January 14,1992, by Pacific Geophysical Limited. The separate report of the survey with pseudosections and 10 point filter plans has been prepared for the property (Cartwright and Cormier, 1992), and is included as Appendix V.

The survey was conducted with a 50m dipole separation giving an approximate maximum penetration of 100m.

Several weak but relatively discrete zones of chargeability were outlined. Zones with greater than 6 millisecond chargeabilities are outlined on Figure 6, a geology-geophysics composite. These zones appear to cover both quartz diorite and diorite. One chargeability anomaly between 0+00 and 6+00W is partially coincident with the mineralized zone but does not include the apparently better mineralized part between 0+00 and 2+00W along the creek.

It is possible that a survey with 50m dipole separation is unable to outline zones with such low sulphide contents. In retrospect it may have been useful to run lines at 100m spacings with a 25m dipole separation across the mineralized zone between 0+00 and 4+00W.

6.3 Magnetic Survey

A magnetic survey was conducted over 16.6km of line (entire grid). Data, plan and a discussion of the results is included in Appendix II.

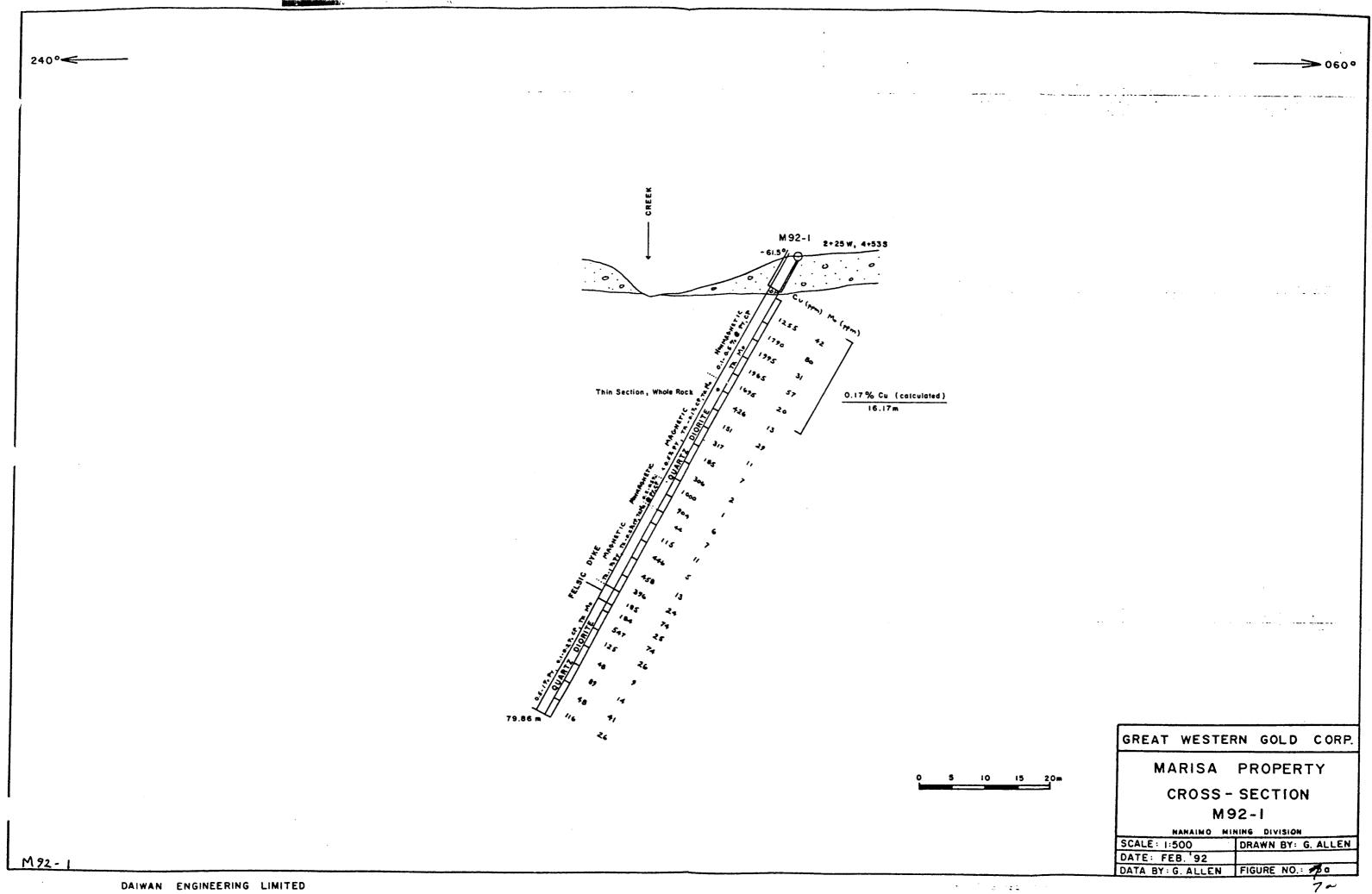
The survey clearly outlined a 200-500m wide east-west trending relative magnetic low feature extending across the entire grid. Bedrock exposures and drill hole data suggest that this feature

Relative high magnetic susceptibility features were outlined in the north and south (true) parts of the grid. Hole M92-2 was drilled into the southern magnetic high and intersected strongly magnetic Quatse diorite. The northern magnetic feature may also be related to diorite, suggesting that the quartz diorite is simply a late stage east-west trending dyke cutting across the diorite.

6.4 Diamond Drilling

Diamond drilling on the property consisted of five holes which targeted both areas with known mineralization and zones with anomalous chargeability. Drill hole locations are shown in Figure 6.

Four holes were drilled along roughly 1.5km of the belt of relatively low magnetic susceptibility and intersected primarily quartz diorite in all cases. Holes M92-4 and M92-5, the easternmost and westernmost holes respectively, were generally barren with copper values averaging less than 20 ppm. The central two holes, M92-1 and M92-3, were drilled in the vicinity of the mineralized exposures along the creek. These holes intersected consistently weakly mineralized quartz diorite with disseminated and fracture-controlled pyrite (up to 1%), chalcopyrite (generally >0.1%) and molybdenite (traces). The upper part of M92-1 contained 0.17% (converted from ppm) copper across 16.17m. The highest copper values in M92-1 are within zones in which magnetite appears to have been altered to pyrite. Rock in these intervals has a paler appearance than normal and may have undergone weak argillic and/or sericitic alteration (thin section to come).


Hole M92-2 was drilled to test coincident magnetic and chargeability anomalies. The hole intersected Quatse diorite and crosscutting felsic dykes. Both units were barren.

MARISA PROPERTY 1992 DRILL HOLE SUMMARIES

M92-1 (Proposed Hole M-A)

Coordinates: 2+25W, 4+53S Azimuth: 240° Dip: -61.5° Length: 79.86m (262')

This hole tested a zone with visible mineralization (chalcopyrite and molybdenite along fractures and replacing mafic clots) in a quartz diorite(?) exposed in several places along the creek. The collar is located approximately 60m northwest of sample 60768 (0.45% copper). Two north-

south soil sample lines which straddle this area partially outlined a 100m wide zone with elevated copper and sporadically anomalous molybdenum. The area has a relatively low chargeability. It was not a prime geophysical target but because of visible mineralization and encouraging soil geochemistry data the area warranted drill testing.

Hole M92-1 intersected predominantly quartz diorite which was divisible into well defined zones on the basis of colour (alteration), and magnetite and sulphide content.

Magnetic intervals have 1-2% magnetite associated with mafic clots. The intervals are generally cut by several sets of closely spaced (3-10/10cm interval) hairline fractures commonly flooded with calcite and pink zeolite. A pink alteration envelope up to 2cm wide is common adjacent these fractures. Some of these pink altered zones are hard and some are soft suggesting that they are a mixture of potassic feldspar and zeolite. Sulphides occur both along hairline fractures and disseminated throughout associated with mafic clots. Sulphides include traces to 1% pyrite, traces to 0.2% chalcopyrite, and traces of molybdenite.

Nonmagnetic intervals are a lighter grey than the adjacent magnetic intervals. Feldspar phenocrysts are light grey to white. Pink alteration around fractures is not common. Sulphide content is higher in the nonmagnetic than the magnetic intervals, with 0.1 to 1% pyrite, 0.1-0.5% chalcopyrite and traces of molybdenite. Sulphides occur predominantly disseminated throughout associated with mafic clots, but are also found along fracture surfaces.

It appears that the nonmagnetic intervals are a product of a sporadic alteration event which has bleached the rock (possibly weak argillic to sericitic alteration), destroyed earlier formed pink alteration envelopes around fractures, altered magnetite to pyrite, and introduced additional copper.

A nonmagnetic interval at the top of the hole between 7.30m and 23.47m contained 0.17% copper (converted from ppm) across 16.17m. Magnetic intervals average 300-400 ppm copper. Copper content generally decreases down hole.

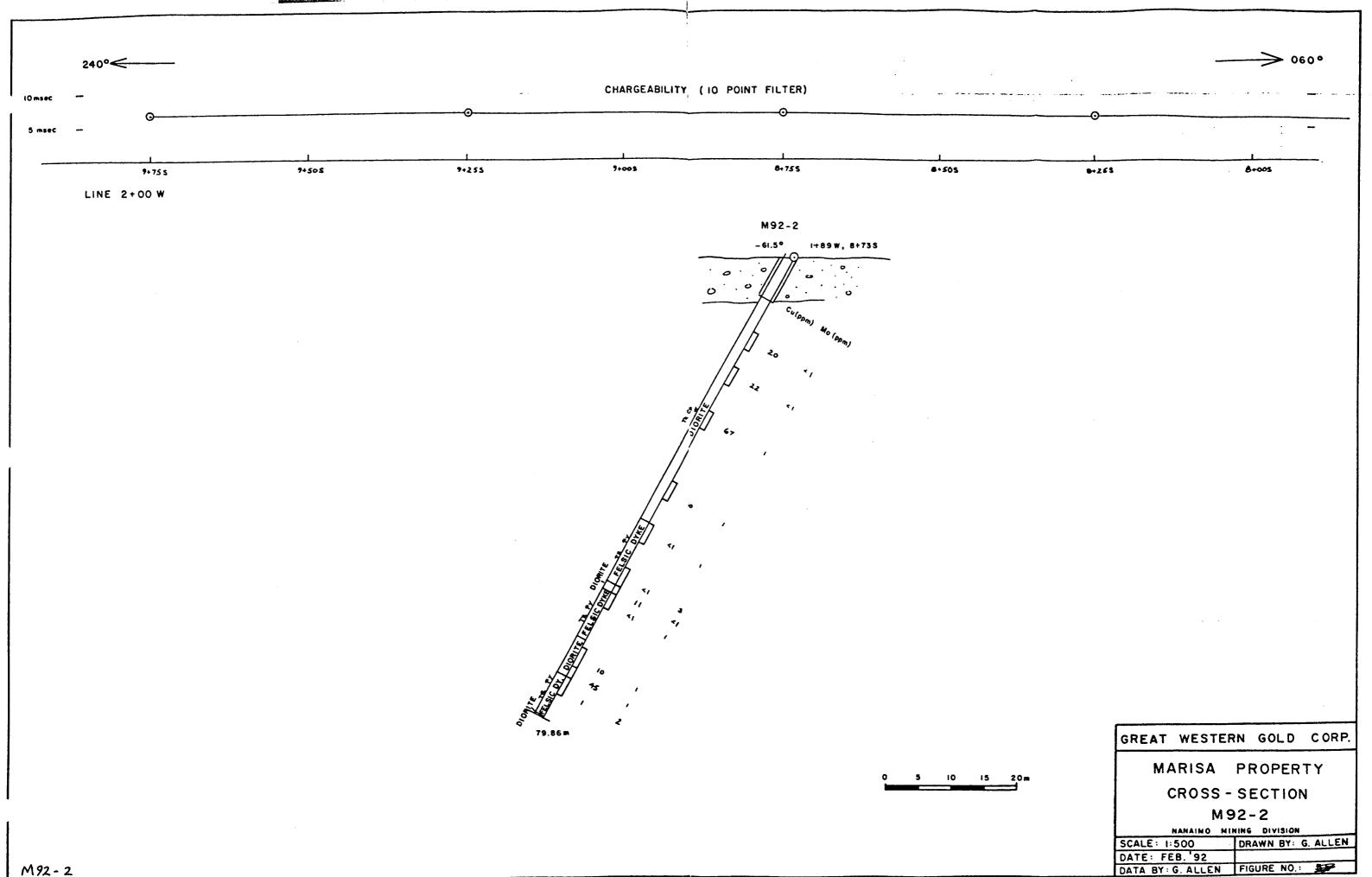
Between 57.9m and 60.23m the hole intersected a quartz-feldspar phyric felsic dyke mineralized with traces to 0.1% each of pyrite and chalcopyrite, and traces of molybdenite. The fact that dykes carry the same metallic minerals as the quartz diorite indicates that the mineralization was a late stage event.

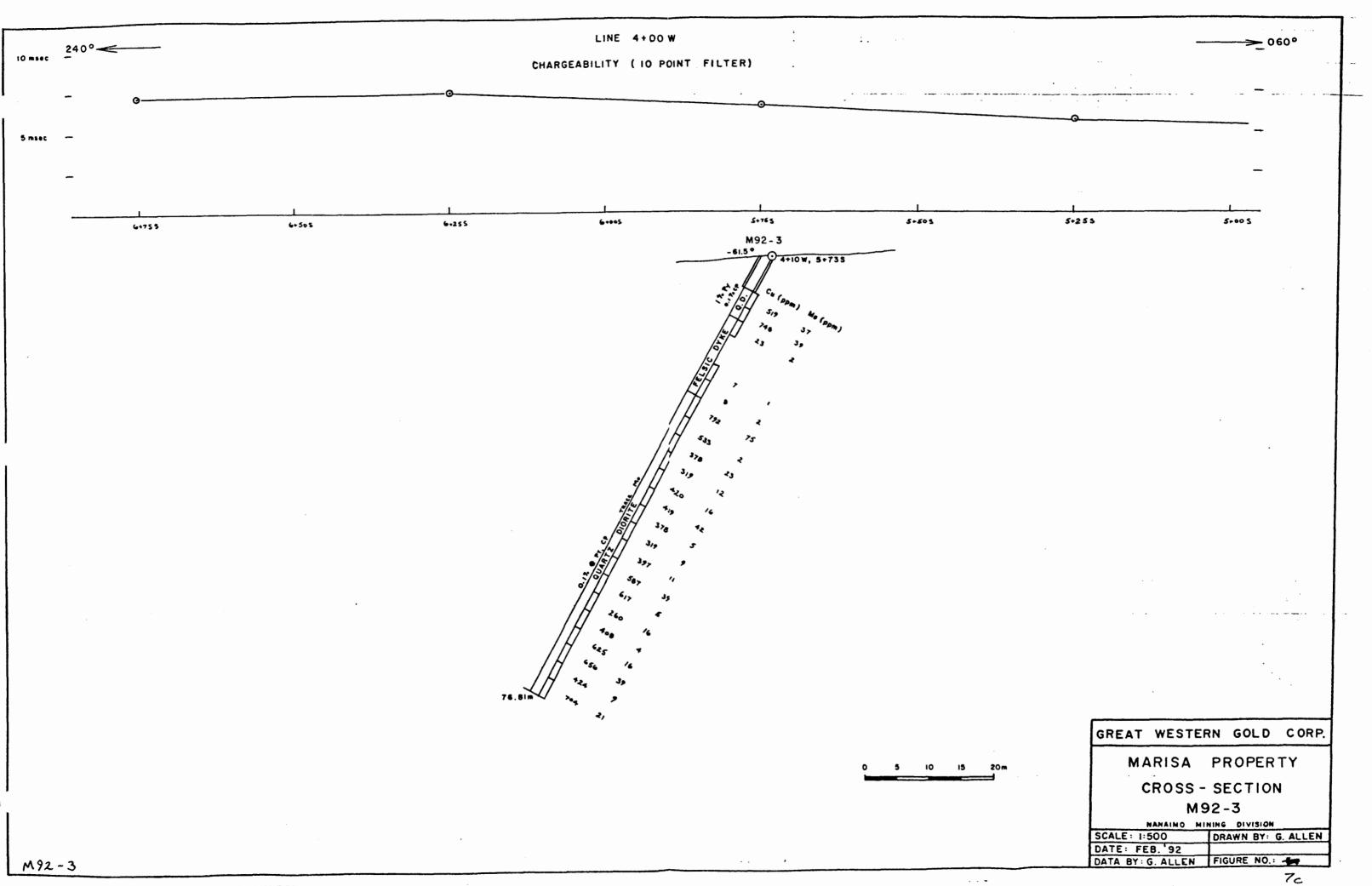
M92-2 (Proposed hole M-B)

Coordinates: 1+89W, 8+73S Azimuth: 240° Dip: -61.5° Length: 79.86m (262')

This hole was designed to test the centre of a roughly 200m wide weak chargeability high between 8+00S and 10+00S on line 2+00W. The area has a relatively high magnetic susceptibility. No outcrop was located in the area.

The hole intersected predominantly medium blue-grey to black, moderately to strongly magnetic diorite, and is probably what Muller referred to as the Quatse diorite. It is generally barren, containing only traces of pyrite and chalcopyrite.


Between 46m and the end, the hole intersected a series of 5-7m wide brown, fine-grained quartzfeldspar phyric felsic dykes with traces (+?) of very fine-grained pyrite. Although sulphide content of these dykes is low, they may be the source of the IP anomaly in the area. The dykes are probably the same as those intersected in holes M92-1 and M92-3.


M92-3 (Proposed hole M-C)

Coordinates: 4+10W, 5+73S Azimuth: 240° Dip: -61.5° Length: 76.81m (252')

Hole M92-3 was designed to test the core of a weak chargeability anomaly which occurs between 5+00S and 8+00S on line 4+00W. Chalcopyrite, pyrite, and molybdenite occur disseminated and on fractures within a quartz diorite exposed in the creek (samples 60779 and 60780) roughly 75m to the south of the drill collar. This mineralization appears to occur within the 200-300m wide zone of chargeability which trends east-west across lines 8+00W to 4+00W. The hole was also drilled on strike with a copper-in-soil anomaly partially defined by two lines of samples to the east.

The hole intersected quartz diorite with pink alteration envelopes around hairline fractures as in hole M92-1. Sulphide content in this hole was generally lower, however, with less than 1% pyrite, traces to 0.5% (average <0.1%) chalcopyrite, and traces of molybdenite. Sulphides occur disseminated throughout, most commonly associated with mafic clots. A minor amount of

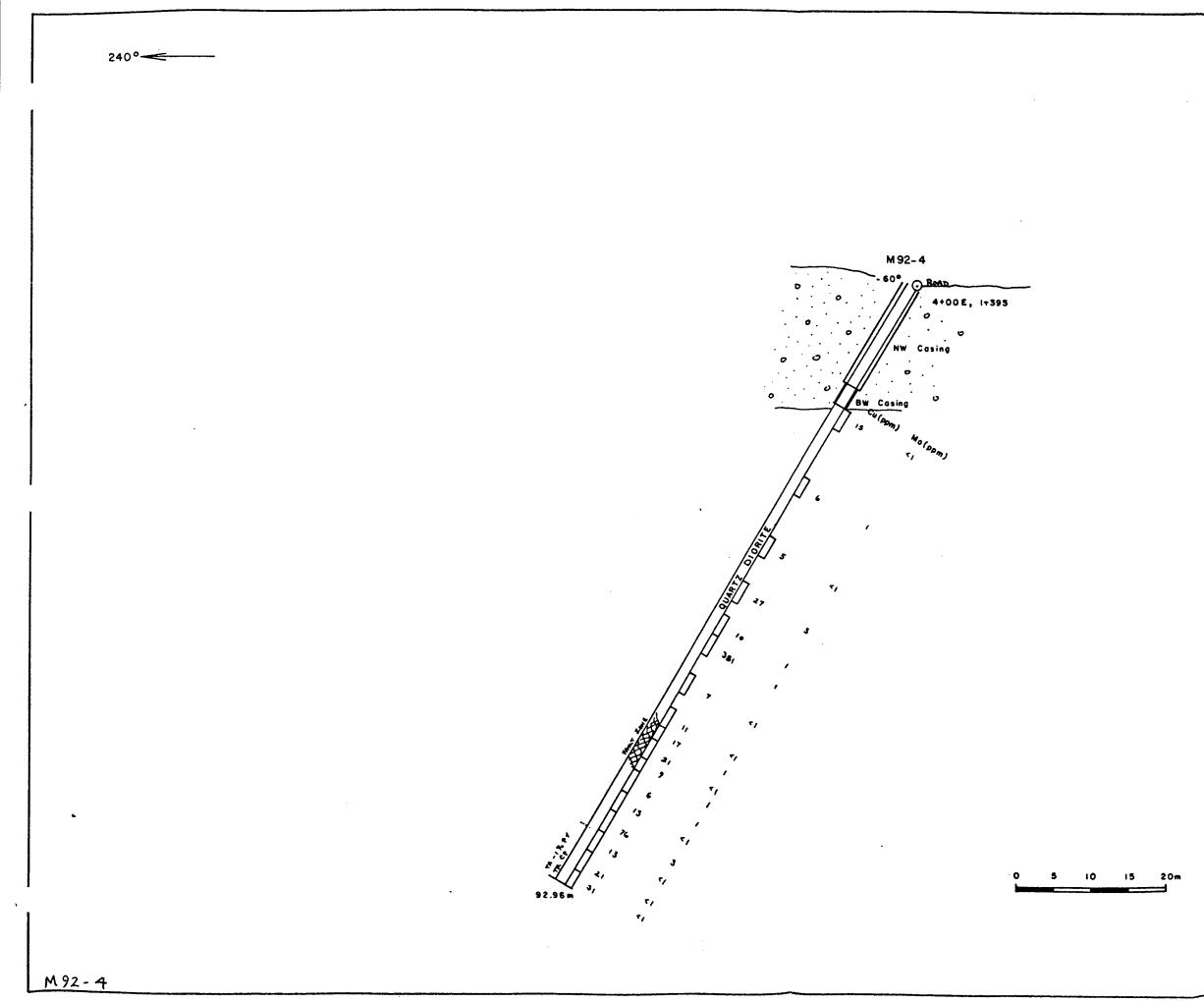
sulphides occur along hairline fractures. This rock averaged roughly 500 ppm copper.

A quartz-feldspar phyric felsic dyke with very fine-grained disseminated pyrite was intersected between 11.0 and 24.4m. The dyke appears to be in the core of the IP anomaly, as was found in hole M92-2. Copper content of the dyke is very low in contrast to the host quartz diorite, indicating that this dyke is post mineralization. The felsic dyke in M92-1 was mineralized, suggesting that there may be more than one phase of felsic dykes cutting the quartz diorite.

M92-4 (Proposed hole M-E)

Coordinates: 4+00E, 1+39S Azimuth: 240° Dip: -60° Length: 92.96m (300')

This hole was drilled to test a broad weak chargeability anomaly on line 4+00E, centred roughly at 2+25S. The area has a relatively low magnetic susceptibility, suggesting that it is underlain by granodiorite.


The hole intersected generally barren quartz diorite or granodiorite with pink alteration around hairline fractures. Traces of chalcopyrite occur between 74.9m and the end of the hole.

M92-5 (Proposed hole M-F)

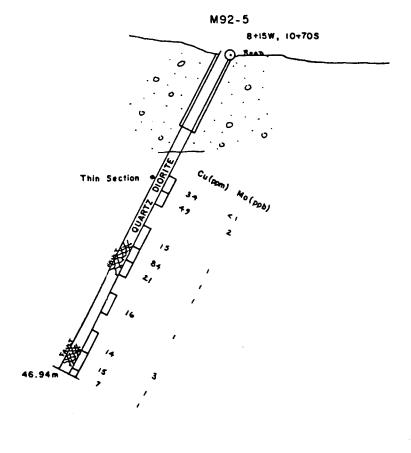
Coordinates: 8+15W, 10+70S Azimuth: 240° Dip: -62.5° Length: 46.33m (152')

Hole M92-5 was drilled on the flank of a weak chargeability anomaly in an area with relatively low magnetic susceptibility. The hole intersected a quartz diorite as in holes M92-1,3 and 4. The rock is generally barren, containing only traces of chalcopyrite.

The core is very blocky and sheared suggesting that the hole was drilled near to or within a fault zone.

	-					
GREAT WESTER	RN GOLD CORP.					
MARISA	PROPERTY					
CROSS - SECTION						
M92-4						
NANAINO MINING DIVISION						
SCALE: 1:500	DRAWN BY: G. ALLEN					
DATE: FEB. 92						
DATA BY : G. ALLEN	FIGURE NO.:					
,	7.1					

· · ·


• • ··· •

• ---

• • • • •

≫ 060°

0 5 10 15 20m

GREAT WESTER	RN GOLD CORP.						
MARISA PROPERTY							
CROSS - SECTION							
M92-5							
NANAINO MINING DIVISION							
SCALE : 1:500	DRAWN BY: G. ALLEN						
DATE: FEB. 92							
DATA BY : G. ALLEN	FIGURE NO.:						
	70						

≫ 060 °

. . .

.

-

.....

7.0 CONCLUSIONS

- 1) A 300 to 500m wide east-west trending quartz diorite dyke, which correlates with a clear magnetic low feature, appears to extend across the entire Marisa 1 claim. The dyke is probably hosted by Quatse diorite.
- 2) The quartz diorite has been sporadically altered and mineralized with disseminated and fracture-related pyrite, chalcopyrite and molybdenite. To date mineralization has been located between lines 0+00 and 4+00W.
- 3) The IP survey with a 50m dipole separation does not clearly outline the area with known mineralization.
- 4) Based on grab samples on surface with up to 0.45% copper and a 16.17m interval in drill hole M92-1 of altered quartz diorite with 0.17% copper, it appears that the intrusion has the potential to host a porphyry copper deposit. IP data indicate, however, that it is unlikely a mineralized zone with a sulphide content significantly greater than that of the showings exists in the survey area. A target grade of 0.3% copper would require 1% chalcopyrite or double that occurring in the upper part of M92-1. It is conceivable that this type of material with little associated pyrite may occur in the area and that it would not produce a strong IP response.
- 5) The quartz diorite in the showings area requires further drill testing.
- 6) It would be helpful to have specific targets outlined in the quartz diorite. Soil sampling on the present grid is warranted.
- 7) The apparent quartz diorite mafic volcanic contact northeast of the showings area is a secondary exploration target. A sample of massive pyrite and pyrrhotite skarn float with 722 ppm copper (1991 sample 60711) was located 70m northeast of the baseline at 8+00W, suggesting that significant mineralization may occur along this contact.

8.0 RECOMMENDATIONS

- 1) Geological mapping at a scale of 1:5000 or larger is needed along the creeks to more accurately correlate sample sites and mineralization to grid-related data.
- 2) Soil sampling on the present grid is warranted to help define drill targets.
- 3) A minimum of 300m of drilling in three or four holes is needed northeast, southeast and southwest of M92-1 to help define the limits of the known mineralization.
- 4) Although of lower priority, the grid and subsequently soil geochemical and magnetic surveys should be expanded to better cover the quartz diorite volcanic contact northeast of the showings area.

The following budget is an estimate of costs for the above mentioned Phase III exploration program.

CERTIFICATE OF QUALIFICATIONS

I, Gordon J. Allen, do hereby certify;

- 1) I am a graduate in geology of the University of British Columbia (B.Sc., Honours, 1975)
- I have practised as a geologist in mineral exploration for sixteen years.
- 3) I am a member in good standing of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- Opinions, conclusions and recommendations contained herein are based on fieldwork and research performed by me between January 12 and February 11, 1992.
- 5) I own no direct, indirect, or contingent interests in the subject property.

Duncan, B.C.

February 29, 1992

Gordon J. Allen

GORDON J. ALLEN, P. GEOL.

CERTIFICATE OF QUALIFICATIONS

I, Peter G. Dasler, do hereby certify that:

- 1. I am a geologist and principal for Daiwan Engineering Ltd. with offices at 1030-609 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of Canterbury, Christchurch, New Zealand with a degree of M.Sc., Geology.
- 3. I am a Fellow of the Geological Association Of Canada, a Member, in good standing, of the Australasian Institute of Mining and Metallurgy, and a Member of the Geological Society of New Zealand.
- 4. I have practised my profession continuously since 1975, and have held senior geological positions and managerial positions, including Mine Manager, with mining companies in Canada and New Zealand.
- 5. This report is based on a personal fieldwork and supervision of the work programmes on the property since 1986, and from reports of Professional Engineers and others working in the area.
- 6. I have no interest in the shares of Great Western Gold Corp., nor do I expect to receive any. Mr. R. Philp, is President of Universal Trident Industries Ltd the optioner of the Marisa property, and myself hold equal interests in Daiwan Engineering Ltd.

10.1121

Peter G. Dasler, M.Sc., FGAC, P. Geo. February 29, 1992

APPENDIX I

.

LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

CERTIFICATE OF EXPENDITURES

The following costs relate to geophysical surveys and diamond drilling at the Marisa Property between January 1 1992 and February 28 1992.

Personnel

Project Geologist	G. Allen 26 days @ \$380/day	\$ 9,880.00	
Senior Geologist	P. Dasler 9 days @ \$380/day	2,850.00	
Office Assistant	T. Sheridan .65 days @ \$220/day	143.00	
Field Technician	· · · · ·		
Field Technician	R. Bilquist 19.75 days @ \$260/day		
Field Technician	L. Allen 23.5 days @ \$260/day	6,110.00	
	S. Oakley 7 days @ \$260/day	1,820.00	
Field Technician	D Cosgrove 5.5 days @ \$260/day	1,430.00	
Field Technician	M. Kilby 5.5 days @ \$260/day	1,430.00	
Field Technician	D. Oneill 11 days @ \$260/day	2,860.00	
Field Technician	C. Bilquist 19.25 days @ \$260	<u>5,005.00</u>	
			36,663.00
Disbursements			
Geophysical Surveys Mag	11,284.92		
Drilling 1,497 feet @ \$ 18	28,361.89		
Food and Accommodation	7,713.71		
Field Supplies	682.87		
Equipment Rental	1,630.00		
Vehicle/Supplies - 4x4's	2,671.75		
Airfares (part)		179.06	
Helicopter		5,251.13	
Drafting/Maps/Office/Repo	ort	536.83	
Assays -cores, 84 by 9 ele	ement ICP +Au @ \$14.18	1,191.63	
Disbursement Fee	-	6,947.46	
Miscellaneous, Shipping		297.41	
			66,748.66
SUBTOTAL			\$ 103,411.66
GST			7,224.18
TOTAL			110,635.84
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			

Peter G. Dasler, P. Geo. February 28, 1992 **APPENDIX II**

DIAMOND DRILL LOGS

Drill Hole Record

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

Property	MA1	RISA Location PORT HARDY Distric	ct <u>MAN</u>	AIMO		Hole No	M	92 - 1			Length	<u> </u>	<u>86m</u>	(26
Commer	nced	AN. 17 '92 Completed 3AN. 19 '92 Core S	Size <u>NG</u>	<u>}</u>		True Beari	ng	240°			Corr. Dip			
											Vert. Con	np	70.182	~
		9.7 Collar Dip - 61.5 Object	tive <u>70</u> TE	<u>st M</u>	INERA	LIZED	ZONE	EXPOSE	D IN C	REEK	AND C	OPPER	<u>- in-Sor</u> i	- ANON
Dept	th (~~)	Description	E	Recov	ery	Sample	interval	Sample %	Sample No.	Length	Au	Ag	<u> </u>	Mo
from	to			ruñ	%	from	to	Recovery		(m)	276	- PP		QG
<u> </u>	6.10	CASING							<u></u>		 	 		
	7.30	OVERBURDEN / RUBBLE								 	┨────	 	`-	
6.10	1.00	Predominantly 2-5 cm chunche o	of dank			-								
		guy - brown intermediate to make	volcomie								<u> </u>	 		
	·	proche with 1-2 mm fildspon and hos	mblinde						······	ļ	ļ			
		phenonyste. Loke like till.							<u></u>	ļ	Į	ļ	 _	ļ
														ļ
7.30	57.9	QUART 2 DIDRITE TO GRANODIORITE		1.23- 11.28	93	7.30	11.28		37001	3.98	< 5	< 0.5	1255	42
		Currenally a medium to light gre	unich to								<u> </u>			
		pinkich - grenz fine to midium - gran	1.1	1.28-	97	11.28	14.33	97	37002	3.05	< 5	< 0.5	1790	BO
		intrucine rock with a fine - grained	1 cuptelling							L		ļ		Ĺ
		Jagongate of fildspon and quarty (=	(07.)	4.33- 17.37	100	14.33	17.37	100	37003	3.04	< 5	< 0.5	1995	31
		25% ~ 1.2 mm white square to slip		7. 37-							<u> </u>	<u> </u>	ļ!	ļ
		prismatic sublided to inhided for		1. 37- 20.42	100	17.37	20.42	100	37004	3.05	< 5_	1.0	1965	57
		phenoenpte and 10% darke funging of	lote of	<u> </u>		ļ				↓	<u> </u>	<u></u>		
		altered make minusle up to Somm in	_ diameter	20.42 - 23.43	90	20.42	23.47	98	37005	3.05	< 5	0.5	1695	20
		(annage 1-2 mm). They clote an co						*	M92-1 23.5-		POLISHES	THINSE	ETION AN	DWHOLE
Client_(GREAT	WESTERN GOLD Note(S):	c	Checked t	oy(<u>. ALLS</u>	ĒM.	<u>.</u>		Hole No.	M	<u>92 - 1</u>		
Drilling /	Company	OLYMPIC	r	Date	JA	N. 22	192			Page On	e of	9		

DAIWAN ENGINEERING LTD.

,*

pyright

epth	Description	Recov	ery	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	C,	Mo
to		run	%	from	to	Recovery		Length	Peb	00m	00	2600
	composed of time - grained chlorite ± mine	25.47- 26.52	98	23.47	26.52	98	37006	3.05	<5	<0.5	426	13
	pole brown bistite, I magnitite, I sulplide											
	(chalupyrite, pyrite, moly(edmite).	26-52-	/00	26.52	29.57	100	37007	3.05	<5	< 0.5	151	29
	()		_,		, u ,				¥		_,,,,	
	MAGNETITE	29.57-	100	29.57	32.60	/00	37008	3.03	< 5	< 0.5	317	
	Magnetite secure in the chloritized makie	31-39-	100			, <u> </u>						<u> </u>
	dote within relativily discrite intervale.	34.14- 35.66	96	32.60	35.66	98	37009	3.06	< 5	× 0.5	105	7
1	monitic intervale (detailed below) are											
	armially cut by painting practice flooded	35.66- 38.71	100	35.66	38.71	100	37010	3.05	<5	< 0.5	306	2
	In colinte and sink redite. A sink alterate											
1	invelope up to 2 cm wide is common	38.71-	600	38.71	41.46	100	37011	2.75	<5	<0.5	1000	1
1	adjacent these fractures.											ļ
	Nonmagnitic intraste an a lighter gry	40.54- 43.2 B	100	41.46	44.20	100	37012	2.74	< 5	<0.5	904	C C
	colon than the magnitic intervale. Fulder											
	phenocrypte an light gring to white, and	45.28 - 46.33	/00	44.20	46.33	100	37013	2.13	< 5	<0.5	44	
	pints handing stringers with associated pinks											
	attention are distinctly about.	46.33 - 49.38	39	46.33	49.38	99	37014	3.05	٠5	<0.5	115	
	Magnetic susuptibility of intervale in lested helow:											
	7.3 - 22.2 - Nonmagnetic	49.38- 52.43	99	49.3 B	52.43	3 99	37015	3.05	• 5	<0.5	446	5
	22.2- 39.6 - Magnitic (windle to modurate)			1		<u> </u>		1				
	39,6 - 44.0 - Normagnetic	\$2.43- 55.47	100	52.43	55.47	100	37016	3.04	<5	<0.5	458	13
	14.0 - 57.9 - Moderately magnetic.											
MAG	Logged by G.ALLEN	Note(s):						Hole No.	M	92-1		
MAG	T HARDY Date JAN. 22, 192							Page			7	

DAIWAN ENGINEERING LTD.

....

pyright

Depth		Description	Recov	ery	Sample	Interval	Sampie %	Sample No.	Sample	Au	Ag	CU	Mo
from	to		run	%	from	to	Recovery		Length	ppb	sem	ppm	
	1	7.3-22.2 (NONMAGNETIC INTERVAL)	55.47-	98	55.47	57.90	98	37017	2.43		10.5	396	24
		right to midium 948 fin to midium - praine											
		quarty diante on grandiante with light											
		guy to white fillspon phinocingste. Interval				 	 				 		
		is annally nonmagnetic.	ļ						ļ		<u> </u>		
		7.3- B.9 - Wich permine pink alteration			ļ	l						,	
		- of foldupen in groundmess. Particularly gol			<u> </u>	ļ					<u> </u>		
		altination.		<u> </u>	 -						<u>+</u>		
	<u></u> :	Fractions:					<u> </u>				╆━──		i
		<u>25°, 25°, 40-50° cf</u>	<u>+</u>		┼────	<u> </u>	<u>}</u>				<u> </u>		<u> </u>
	<u> </u>	10.5-18- Blocky core. Some quarty-					<u> </u>				1		
		Three distinct handling fracture arts held			1	<u>†</u>	<u> </u>	· · ·					
					1	 	<u>├</u> ──	· · · · · · · · · · · · · · · · · · ·	1	1	†		
		with 1-5 mm aft guy matined (quality ?) and minor quarty and carbonete. Fraction during 3-5	·		1	†	<u> </u>		[1		
		pur 10 cm interval	1	· · · · · · · · · · · · · · · · · · ·		†					1		
		for the second s									1		
		Minualization :				[
		7.3-8.9 0.1-0.57. each of purite and											
		chalcopyrite disseminated throughout but most							<u> </u>		<u> </u>		l
		Cummonly associated with chloritic attend			<u> </u>	ļ	L			<u> </u>	<u> </u>	 	L
		matine Sulphilie also occur within 1-2mm	4						<u> </u>		1		
oject	MARI	SA Logged by C.ALLEN	_Note(s):_				<u></u>	۱ 	Hole No.	M92	- 1		
		HARDY Date JAN 22. 92								<u>3</u> of		9	

DAIWAN ENGINEERING LTD.

.

pyright

h	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag		I
to		กมา	*	from	to	Recovery		Length				L
	handing questy strungers at 25-30° CA. Strugers]								1	
	I wanted the second sec			<u> </u>						T		T
	Commonly have come filled with soft black			 		+				╂────	<u> </u>	╋
	commonly have cours filled with soft black material (probably providence).		ļ				<u></u>			<u> </u>		<u>_</u>
1	, 0,00				l							
ļ	8 9-222 - 01 057 und of write and date-								-			T
<u> </u>	8.9-22.2 - 0.1-0.5% each of printe and dates-	· · · /			· · ·			1		1		1
	provite in quarty- conternate flooded zones,			{-	{		<u> </u>	{{		╆────	<u> </u>	+
·	stringue and disseminated (predominently		<u> </u>	╡────			<u></u>	<u> </u>		╞───	 	┾
ļ	associated with motic clote). Sulphide genelly			<u> </u>	<u> </u>					┞	 	1
	in <1 - 2 mm massis (annage = 1 mm). Sulphie										1	
· ·	also commente comentrated on surfaces of											
†	also commente concentrated on surfaces of handline fractures. Traces of malybdinum associated with chaleopsynte.									1		T
	promine procura proces of mongoantime	·	<u>†</u>	<u> </u>					<u></u>	<u>†</u>		+
<u> </u>	associated with Chalcopyrite.		<u>}</u>		<u> </u>			<u> </u>		 	<u> </u>	-}-
<u> </u>			<u> </u>		<u> </u>			<u> </u>		┣	 	╇
			l							<u> </u>	Ļ	\perp
]	22.2 - 39.6 (MAGNETIC INTERVAL)											
1	Midium grunial - grug quarty diorite cut by			1		1						Γ
╂─────	the second secon		 		†	1		1		1		T
+	handing fractions healed with pink zeolite, some			+				<u> </u>		- -	╅─────	+
<u> </u>	with essociated pink alteration inveloper up to	ļ			ļ			<u> </u>		<u> </u>	├ ───	+-
	5mm wide. Pink altered fuldepan within these										Ļ	╇
	envelopes are soft to hard suggesting a mixture							1				
<u> </u>	of zestite and K-fildspan alteration.									1		Ţ
╉╾───┶	19 ziona and r progen armonen.			+	1			<u> </u>	1	1	<u>†</u>	+
<u> </u>		I	<u> </u>		l		L	J	I		<u>i</u>	<u> </u>
MA	RISA Logged by C.ALLEN	Note(s):						Hole No.	M 92	- 1		
	12T HARDY Date JAN. 22, 192							Page				

DAIWAN ENGINEERING LTD.

×

pyright

Depth	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag		
from to		run	*	from	to	Recovery		Longth				
	Froctury:									ļ		
	Hairlin fracture at		<u> </u>	1	[1		
	the constant of the		 	1	†			1				
	45°, 50°, 25°, 5°CA.			<u> </u>	<u> </u>	· <u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	
	Hald with pink zeolite. Frantine oppen to			<u> </u>		l			· · ·	}	├ ────┘	
	be of several generations with minor offerte		<u> </u>	ļ	<u> </u>			ļ		ļ	 _'	
	up to 5mm.		ļ									<u> </u>
	0										I	
	Minuslingstrion .	[[[í
	= 0. 5 % pupite and trace to 0.1% chalippint		1									
	Trous molylamite. Mafie clote contain 10-50%.		[†			1		1		
	There monthemall. I april choice contain 10-50.		<u> </u>	<u> </u>	†			1		1		
	mognitite.		<u> </u>		<u>†</u>	+		}	· ···		<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	 	 	∲	<u> </u>		<u> </u>			<u> </u>	
	39.6- 44.0 (NONMAGNETIC INTERVAL)									 	┼───	
	Fracture orientations and density similar to		 	ļ	ļ	ļ			l	<u> </u>	 	ļ
	above. Interval distinct because practicum fillings				<u> </u>						<u> </u>	
	not pink.	1	[1	1			[1	
			1		1		· · · · · · · · · · · · · · · · · · ·	****	<u> </u>	1	<u> </u>	
	Minudigation:		<u> </u>		1			+	<u> </u>	1		<u> </u>
	0.2 -0.5% each of printe and chalcopyrite. * Distinct increase in sulphide content in	<u> </u>		+	<u> </u>	+	<u> </u>			+	<u> </u>	<u> </u>
	* Distinct marson in sulphile content m	 	<u> </u>						<u> </u>	<u> </u>	┥───	╅────
	low magnitic intervale. Sulphides generally		┟────			- 			 	ļ		<u> </u>
	line magnitic intervala. Sulphides gemally discuminated. Trace molybolmite.	<u> </u>	<u> </u>		l	1		<u> </u>			<u></u>	<u>i</u>
	•							Hole No.	M92	- 1		
	RISA Logged by G. ALLEN		<u> </u>			, .					 `	<u></u>
ocation Yo	RT HARDY Date JAN. 22 92							rage	<u>5</u> of		, 	

DAIWAN ENGINEERING LTD.

...

pyright

Depth		Description	Reco	легу	Sample	interval	Sample %	Sample No.	Sample	Ац	Ag	
from	to		run	%	from	to	Recovery		Length			
	-	44.0- 57.9 (MAGNETIC INTERVAL)				[
		Lithology as 22.2-39.6.										
		00										
		Fracture :										
		25-30°CA, 25-15°CA, 45°CA.										
		dimite from interval above. The zone free a										
		Frontine dineity 3-10/10 cm interval Aneren dimity from interval above. The zone have a distinct increase in pink alteration around stringer			L							
		amenally 5mm to 5 cm. The strugers themale on pink quality last pink alteration in heat is moderately hand and could be K-fildspor.	<u> </u>		1				l			
		an sinte quality bust pints altreation in heat							L			
		is moderately hand and could be K-fildspon.					<u> </u>	. <u> </u>				
											<u> </u>	
		minualization :				<u> </u>						
		Trace to 12 quite trace to 0.2%		<u> </u>								
		cholopsmite, and trace of molybdmite. Sulphile										
		Trace to 12 pyrite, trace to 0.2% <u>choloopyrite</u> , and trace of <u>molyfodmite</u> . Sulphile predominantly disseminated, generally associated with										
		matic clote.										
						1					İ	
							1					
Project	MAR	Logged by G.ALLEN	Note(s):						Hole No.	M 92	-1	
		$= 1 + ARDY \qquad Date = 5AN, 23 92$								6 of		

pyright

DAIWAN ENGINEERING LTD.

.

Dept	n	Description	Recov	егу	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	C.u.	M.
from	to		run	*	from	to	Recovery		Length	pp b.	pem	90 m	2Pm
57.9	60.23	QUARTZ-FELDSPAR PHYRIC FELSIC DYKE	58.52 - 61.57	100	57.90	60.23	100	37018		< 5		185	74
		hight any to ainfish - brown fine - graind]								
		crystalline aggregate of filderan (plus ?) with								_			
		fulderan alurounste and questo une (10-15t.											
		hight green to pinkich - brown fine-grained crystalline aggregate of fildepan (plues?) with fuldepan phenomyste and greaty eye (10-15? nounded) up to 1 mm. 2-57. chloritic clote											
		after motic phenocupto. Nonmagnetic.											
									ļ				
		Fractures:				\ 							
		Two dominant handing practice site at 25.	[]			ļ		· · · ·			<u> </u>		
. <u></u>		and 45° cA. Relativity hand pink alteration			<u> </u>	<u> </u>			ļ		 		
		of fildspons in Imm to I cm invitopre (probably potassic alteration)					┟────┥					. <u> </u>	
		(probably potassie alteration).			 	<u> </u>							
					 								
	<u> </u>	Minualization:				<u> </u>							
		Tracis to 0.1% each of pyrite and choleopyrite and traces of molybdinite. Sulphides both disseminated and along handing fractures.	•								<u> </u>		
		and trous of monylamil. Supported with											
		ausimmedia and along namun practices.					+						
			†		+	<u> </u>							-
			1						1				
	1					1			1				<u> </u>
<u>.</u>	1					1					1	<u> </u>	1
	ـــــــــــــــــــــــــــــــــــــ		Linta (a)-				-		Hele N-			.	
			Note(s):						Hole No.			2	
Location	P	Date JAN. 23 '92	·						Page	<u>7</u> of			

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 668-1508

d chlority magnitute and epidete.	64.62 64.7 64.62	% 98 /00	from 60.23 61.57		Recovery /00 98	37019	Length 1.34 3.05	ېوم د ج د ج	ρβ	60m 194 547	M. <u>PP~</u> 25 74
Ar above dylar. Fine-grained aggregate of fillagen and ± 10% quarty with 25-35% 1-2 mm stuffy quinish-grey (propulitie alt.) fildepen phenocyste and 15-20%. 2-5 mm clots of altired makine, composed of chlorite magnitude and epidete.	64.62- 64.62- 67.67		61.57						< o. g		25
Ar above dylar. Fine-grained aggregate of fillagen and ± 10% quarty with 25-35% 1-2 mm stuffy gruined-grey (propulitie alt.) fildepen phenocyste and 15-20%. 2-5 mm clots of altered makine, composed of chlorite magnitude and epidete.	64.62- 64.62- 67.67		61.57								
and ± 10% quarty with 25-35% 1-2 mm stully opunish - grey (propulitie alt.) fildspan phinosyste and 15-20%. 2-5 mm clots of altired makine, composed of chlorite magnitute and spidete.	64.62- 64.62- 67.67			64.62	98	37020	3.05	< 5	<0.5	547	74
quiniel - quy (propulitie alt.) filderen phinomyste and 15-207. 2-5mm clots of altered makines composed of chlorite moonitite and epidete.	64.62 - 67.67			97.62	79	5/020	1.3.05	دى	×0.3	34/	71
d chlority magnitute and epidet.	67.67	100	(4/2				1				
d chlorite magnitute and epidete.		100	1/1/2			2					
of chlorite, magnitute and epidete.			64.6L	67.67	100	37021	3.05	< 5	< 0.5	125	20
	67.67-		<u> </u>	<u> </u>			 				
	70.71	99	67.67	70.71	99	37022	3.04	< 5	< 0.5	48	
Fractures :			ļ								
Three dominant fracture sets 5-30° 30' and	70.71-	99	70.71	73.76	99	37023	3.05	<5	< 0.5	89	1.
	73-76 - 76-81	99	73.76	76.81	99	37024	3.05	< 5	< 0.5	48	4
with associated such alteration invelopments to			<u> </u>								·
	76-81-	98	76.81	79.91	98	37015	3.05	.5	<i>c</i>		2
			<u> </u>				5.03	<u>``</u>	-0.5	11.6	
Minuralin strin:			1								
			1								
			1								
	┞		<u> </u>								
			1								
	<u> </u>										<u> </u>
			<u> </u>	<u> </u>							
			1				ļ				
fracting.				L					1		
Logged by G-ALLEN	Note(s):						Hole No.	M92	- 1		
							-			0	
	Thue dominant fracture site 5-30° 30° and 40-50° CA. Fracture durity 3-6 /10 cm interval. Fracture generally filled with roft pick zeolite with associated pick alteration invelopes up to 1 cm wide. Minimalination: 0.5-17. pyrite, traces to 0.5% (average 0.1-0.2%) chalcognite, and traces of molybolinite. Sulphides generally dissiminated, most commonly associated with mofile clots. Minor sulphide concentrations along fracture. Molybolinite generally in 1-2 mm masses in pink alteration zones adjacent to fracture.	Three dominant fracture sets 5-30° 30° and 70.71- 73.76 40-50° CA. Fracture durinty 3-6 / 10 cm instrued. Fracture grinnelly filled with roft pink geolite 73.76 Fracture grinnelly filled with roft pink geolite 76.81 76.81 76.81 79.86 Minnelization: 0.5- 17. pyrite, trace to 0.5% (average 0.1-0.2%) chalcognite, and trace of molybolists. Sulphide grinnelly dissummented, most commonly associated with mafic clots. Minn sulphide concentration along fracture. Molyboliste generally in 1-2 mm messas in fink alteration zones adjacent to fracture. A Logged by G-ALLEN Note(s):	Three dominant frontie sete 5-30° 30° and 70.71- 73.76 99 40-50° CA. Fraction durity 3-6 /10 cm interval. Fractions generally filled with raft pick zights 75.81 99 with associated pick alteration invelops up to 76.81- 1 cm wide. 78.86 98 Minimalination: 0.5-17. printe, traces to 0.5% (anone 0.1-0.2%) choloophite, and traces of molybolinite. Subplished generally dissiminated, most commonly associated with mofile clote. Minor subplishe concentration along fracture. Molybolinite generally in 1-2 mm massis in pink alteration zone adjacent to facture. A Logged by G-ALLEN Note(s):	Three dominant fracture sete 5-30° 30° and 70.71 79 99 70.71 10-50° CA. Fracture durity 3-6 /10 cm interval. Fracture generally filled with roft pick rolite 76.81 99 73.76 inth associated pick alteration invelopes up to 76.81 1 cm inde. 70.96 96 76.81 Minimaling stim: 0.5-17. pyrite, traces to 0.5% (average 0.1-0.2%) chalcognite, and traces of molydomists. Sulplishes openally dissiminated, most commonly associated and mafic clots. Mino sulphide concentration along fracture. Molydomist generally in 1-2 mm massing in pink alteration zone adjacent to fracture. A Logged by G-ALLEN Note(s):	Thue dominant frother site 5-30°, 30° and 70.71 73.76 40-50° CA. Fracture density 3-6 /10 cm interval. Frostiere generally filled with roft pink gedite 76.81 99 73.76 76.81 mith associated pink alteration invelopes up to 76.81 79.86 Minimalingation: 0.5- 17. pyrite, traces to 0.5% (average 0.1-0.2%) chalespirite, and traces of molybedinite. Subplished minimalingation: 0.5- 17. pyrite, traces of molybedinite. Subplished minimalingation: 1.5- 17. pyrite, traces of molybedinite. Subplished 1.5- 17. pyrite. 1.5- 1.5- 1.5- 1.5- 1.5- 1.5- 1.5- 1.5	Three dominant fracture site 5-30, 30, and 70.71- 73.76 99 70.71 73.76 99 10-50° CA. Fracture durity 3-6 / 10 cm interval. Fracture grinnelly filled with raft pike judite 73.76. Fracture grinnelly filled with raft pike judite 73.76. Fracture grinnelly filled with raft of pike judite 73.76. 13.76. 99 73.76 76.81 99 inthe associated pike alteration invelopes up to 1 cm wide. 76.81 98 76.81 79.86 98 76.81 79.86 98 76.8	Three dominant fracture site 5-30° 30° and ^{70.71} 73.76 99 70.71 73.76 99 37023 40-50° CA. Fracture during 3-6 /10 cm instrudel. Fracture grimpelly filled with reft pink willie ^{73.76} 76.81 99 37.024 with associated pink alteration invelope up to ^{73.76} 76.81 79.86 98 37.025 Mining ation: 0.5- 17. pint, trave to 0.5% (may 0.1-0.2%) chalessingth, and trave of molybolicite Subpliedes grinnelly dissummented, most commently associated with mafie clote. Mining subpliede concentration along fractures. Molybolicite grindly in 1-2 mm messing in grink alteration zone adjacent to A Logged by G. ALLEN Note(s):	Three dominant fronting sets 5-30° 30° and ^{70.71} 73.76 99 37023 3.05 to-50° CA. Fronting durity 3-6 / 10 cm interval. Frontine grimpelly filled with noft price gridete ^{73.76} 76.81 99 37024 3.05 with associated price alteration invelops up to 1 cm wide. Minuting time: 0.5- 17. printe, torse to 0.5% (any or 0.1-0.2%) chalogonite, and traces of molydurite Subplifie grinnelly disseminated, mol commonly associated with mofic clote. Minu subplide concentration along frontine. Molydenite grinely in 1-2 minuting Mole(s): A Logged by G.ALLEN Note(s): Hole No.	Three dominant fractions sets 5-30°, 30° and 70.71° 73.76 99 37023 3.05 <5 to-50° CA. Fraction during 3-6 /10 cm interval. Fractions groundly filled with reft price reduce 76.81 99 73.76 76.81 99 37024 3.05 <5 with associated price alteration multiple up to interval. Minualization: 0.5- 17. pyrite, trans to 0.5% (anone 0.1-0.2%) chilling dissiminated, most commonly associated with medic clots. Mina sulphide concentration along fractions. A Logged by G.ALLEN A Logged by G.ALLEN Note(s): Minualization A Logged by G.ALLEN Note(s): Hole No. M92	Three dominant fronting site 5-30°, 30° and 70.71 70.71 73.76 99 37023 3.05 <5	Three dominent fracture sets 5-30° and 77.7° 77.7° 99 70.71 73.76 99 37023 3.05 <5

pyright

pyright

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 668-1508

Depth	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	· · · · ·	i
from to		run	~	from	to	Recovery		Length				
	1510 1120 Provident la Velder				-		_					
·	65.60-66.20 - Provasive pints K-fuldgran alteration. Nonmagnetic.	<u> </u>	<u> </u>	<u> </u>	<u>†</u> -	1	·			<u>+</u>		
	alteration. Nonmagnetic.		┣────	<u> </u>	┥				╞────	 	↓ '	
					1					1		
	72.75 - 73.0 - 2 cm wide fine - grained silice	u a										İ
1	72.75-73.0 - 2 cm wide fine - grained silice pinking - brown vein at 30° cA. Massus of upidote to 5mm with chalcopyrite and											
	ipidate to 5mm with chalconnite and											
	pyrite associated.											
		1	[1	1				[-			
		·{	┣	<u> </u>		- ~~ ~			<u>+</u>		<u> </u>	<u> </u>
			<u> </u>	<u> </u>			l		<u> </u>		───	<u> </u>
	E.O.H.		L	<u> </u>	<u> </u>				L	L		
·												
					1							
		<u> </u>		[1	1			[<u> </u>	
		1	<u> </u>	+					<u> </u>	<u> </u>	┨─────	<u> </u>
		- <u> </u>	┢	<u> </u>	╡────	+			<u></u>	<u> </u>	┥────	<u> </u>
		<u> </u>	ļ	<u> </u>	<u> </u>	<u>.</u>]		ļ	ļ	ļ	<u> </u>	ļ
		1	†	<u>† </u>				1	†	<u> </u>	<u> </u>	
		+	+				<u> </u>	<u> </u>	+	┼───	╄────	
		<u>.</u>	<u> </u>	· ····	<u> </u>				<u> </u>	<u>-</u>	<u> </u>	<u> </u>
		1	L	<u> </u>		<u> </u>		<u> </u>				
	· ·							1				
		1	1	1	1			1	†	1	1	<u> </u>
			L	<u> </u>			<u>i</u>	1	.l	<u> </u>	<u> </u>	<u> </u>
oject MA	RISA Logged by G.ALLEN	_Note(s):_						Hole No.	M92-	1		
	RT HARDY Date JAN. 23, 92								901		9	
								· • 9	<u> </u>		<u> </u>	

.

×.

DAIWAN ENGINEERING LTD.

æ

Property MARISA Location PORT HARDY	District NANAIMO	Hole NoM 92 - 2	Length 79.86 m (20
Commenced JAN. 20, '92 Completed JAN. 22, '92	Core Size N Q	True Bearing 240"	Сопт. Dip
Collar Coordinates 1+ 89 W , 8+73 S	Elev	Hor. Comp. 3.8.11 m	Vert. Comp. 70.18
Percent Recovery 100 Collar Dip -611/2	Objective To TEST A DI	SCRETE IP ANOMALY ON 2+00W	

	(m)	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Length	Au	Ag	Cu	Mo
from	to		run	%	from	to	Recovery		(m)	26 P	60 m	20m	00-
0	7.62	CASING			1							1.4	
			7.62 -		1				+			,	
			12.50	66									·
7.62	46.0	DIDRITE (QUATSE DIDRITE ?)											
		Medium film - guy to block medium-	12.80-	115	12.80	15.86	Lep.	37026	3.06	<5	<0.5	20	~1
		grained intrusion. Cryptalline aggregate of]							
		line - any fildspon with 30 % «1-5mm	15.86-	107		Î							
		clote of chlority - altered houndhinde strongly			<u> </u>								
	,	magnitic. The rock is generally homogeneous	10 20-	115	18.90	21.94	100	370 27	3.04	< 5	< 0.5	22	<1
		Minon 1-5 cm fine- grained black inclusions.											
		Hairling fractures and stringers of calific me	21.94 - 24.99	14									
		to 5mm 30° cA, subporalled CA and 45° cA.					Î						i
		Fracture directly 1-2 / 10 cm. Feldepare are	24.99-	104	26.47	29.54	100	37028	3.07	< 5	<0.5	67	1
		typically altered to a soft punk maturial											
		(zestite?) in alteration invelopes up to 1 cm	28.04 - 31.09	102					1				
		winder and challes quite			1		1						
		MINERALIZATION: Trace pyrite along calite- quarty	31.09-	106	38.71	41.84	100	37029	3.13	< 5	<0.5	10	1
		stringers.											<u>`</u>
		26.8-27.4 - Minon cheleopugite and magnitite along frontine at 30 ° ch.	34.14 - 35.05	110			1						
		practines at 30 ° ch.						L			L	L	
nt_G	REAT L	DESTERN COLD Note(S):	Checked	by(J. ALL	- N		<u> </u>	Hole No.	M	2-z		
ling Co	mpany	OLYMPIC	Date	TAN	24.9	2			- Page One		3		

DAIWAN ENGINEERING LTD.

*

pyright

Depth	1 I	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Mo
from	to		run	%	from	to	Recovery	-	Length	POD	000	2000	2Pm
46.0	56.74	FELSIC DYKE	35.05-	95	46.33	49.38	100	37030	3.05	< 5	<0.5	<	
		Durn brown to grunich - gruy fine-grand		}									
		dyke. Fin - ground crystelline aggregate with	36.27-38.71	97	1								
		1570 = 1 mm stubby white feldgran phenomyste											
	ļ	2-57 & mm chloritic mosses often malie	38.71 - 4.23	95									
		minuale and vague rounded guy glassy			53.7 <i>5</i>	56.74	100	37031	2.99	×5	<0.5	~ 1	3
		quanty eyes. Traces of fire- granned dreamingt	40.23-	107		_	ļ			<u> </u>			
	ļ	amite. This wit may be the source of	43.20-	ļ	56.74	58.10	100	37032	1.36	<u> </u>	< 0.5	U.	<1
		the weak changealidity anomaly the hole	46.33	101			ļ			<u> </u>			İ
		was draigned to test. Unit is nonmagnetic	46-33 -		58.10	60.83	100	37033	2.73	< 5	<0.5	<1	I
	ļ	Vopen contact 45° CA. Lowen contact at	49.30	110	ļ		ļ		<u> </u>	<u> </u>	ļ		
		70° cd. Dyla a guinet - grey class within	44.5					<u> </u>			ļ		
	<u> </u>	1 m of both contacte.	49.38- 52.42	//Z	<u> </u>					<u> </u>	ļ		ļ
			52.42- 55.47										
56.74	58.10						+			┼───			
		As 7.62 - 46.0 - Minon shraning with associat	55.47 58-52	110						<u> </u>			
	<u> </u>	show at 30° cA.					1						
			58.52 -	113									
58.10	66.40	FELSIC DYKE											
		Az 46.0-56.74. Cunde flow banding	64.57-	109				1					
		apondically appoint throughout. Alternating light											
oject _	MARI		_Note(s):_						Hole No.	<u> M92</u>	- 2		
cation	POR	T HARDY Date JAN. 25 92							Page	ع of	З		

والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

)rill Hole Record

DAIWAN ENGINEERING LTD.

÷

pyright

Depth		Description	Recov	егу	Sample	Interval	Sample %	Sampie No.	Sample	Au	Ag	C.,	Mo
from	to		run	%	from	to	Recovery		Length	000	l.ee-	00-	
		have to all manual - man in 1-2 m								,.		,, ,	- 1 - 1
		brown to medium grunish - guy in 1-2 cm intervale. Banding 25-30°CA, apparently possible to contacte											
		intervale. Banding 25-30 CH, apparently	64.52 -		<u> </u>					 1	+		
		parallel to contacto.	67.66	97			<u> </u>		ļ	1			
,					1								
1	/ -		67.66-	102									
66.40	72.63	DIORITE	<u></u>				1		1				
		Upper contact along a 5 cm chloritic				·	1			<u> </u>			
		shin 2000. Calate flooded. Those pyrite. Shin at 25° cA.			67.66	70.71	100	37034	3.05	<5	۰٥.5	10	
		Shu 725°CA											
		70.5-70.71 - Wrate buscies interest flooded by	70.71 -	10.7	70.01	77 / 2	1	37035	1.92	< 5	<0.5	45	
+	·	70.3-10.11- Wrate means interest public my	75.76		170.77	1 2.40		2233	1.72		1		
		quanty and ipidute. Fildspen altend to a soft pinte minual (zulite?).	73.76 -										
		soft and minud (zulite?).	76.81	110	72.63	75.58	100	37036	2.95	< 5	< 0.5	<u> </u>	2.
7017	70 41		76.81-	102									
14.63	17.51	FELSIC DYKE	77.00	102		1							
		An 46.0- 56.74 Very distinct flow banding within 1 m of upper and lower contaste. Upper contact 35° cA. Lower contact			+			·			•		
		banding within 1 m of upper and lower				4				ļ			
		contacte. Upper contact 35° cA. hour contact											
		60° cA. Sharp. Wrak fracture sate it 45° 200					1						
						1							
		and subproalled CA.		<u> </u>								·	
		MINERALIZATION: Trace dissiminated purits associates						Į					l
		will altered mofine minule .											
					1	1	1	+	1	1	1	İ	
79.51	77.86	DIORITE	1	l		1	1		1	1	<u> </u>	<u> </u>	<u>اب</u>
oject		SA Logged by G.ALLEN	Note(s):						Hole No.	M92	- 2		
										3 of			
⇒cation_	rover	- HARDY Date JAN. 25 1992						<u> </u>	raye	<u> </u>		· · · · · · · · · · · · · · · · · · ·	

DAIWAN ENGINEERING LTD.

Property MARISA	Location PORT HARDY	District NANAIMO	Hole No. <u>M 92 - 3</u>	Length 76, 81 (252')
Commenced JAN 22 '22	Completed JAN. 23, 192	Core Size N G	True Bearing 240°	Corr. Dip
Collar Coordinates 4+10 W	5+73 S	Elev	Hor. Comp. 36.65	Vert. Comp. 67.50 m
Percent Recovery / 00	Collar Dip _ 6 / ½	Objective To TEST CA	HARGEABILITY ANOMANY ON	LINE TTOOW .

Depth	· (~~)	Description	Reco	wery	Sample	Interval	Sample %	Sample No.	Length	Au	Ag	C	Mo
from	to		run	*	from	to	Recovery		(~~)	роь	2°m	60 -m	pp m
0	6.10	CASING							1			•••	
							Î	• •					
6.10	11.0	GRANODIORITE / QUARTZ DIORITE			6.10	8.78	78	37037	2.68	< 5	<0.5	519	37
		Fine - grained constalling aggregate of feldigen											
		and quarty (~107.?), 207. stully, 1-2 mm			8.78	11.0	100	37038	2.22	< 5	<0.5	748	39
	•	white to opunish - my fulderer physicampte, and											1
		157. fine - grained chlorite in clota (altered			11.0	13.60	100	37039	2.60	< 5	< 0.5	23	2
		mofic minude) up to 5 mm.					ļ						
		The rock is weakery to moderately					ļ		 			_	
		buccisted and spondically altered to a pinhich-							1				
		brown relatively hand material (K. spon altration	:			ļ	ļ						
		Frasting your up to 2 cm wide an commonly]
		flooded (?) with fine - grained black material			ļ	ļ	i						
		(biotite ?). Mina gauge in some cusched intervals.							-				
		_ The most is non to weakly magnetic. Magnitik											
	:	accurs as fine - grained expetate in the chloritized				<u> </u>							
		mahina											
Client_	Gue	Note(s):	Checked	by	C.A	LLEN			Hole No.	M 92	- 3		
-		OLYMPIC			J. 25					e of		,	

DAIWAN ENGINEERING LTD.

pyright

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cy	Mo
m	to		run	%	from	to	Recovery		Length	OPL	opm	ppm	eem-
		MINEAALIZATION: 17. muy fing - poind				}				• •			i .
		discominated projects 0.1-0.3 7 discominated	<u>_</u>			<u> </u>					†		
t		chalcopypte in masses to 1 mm, most commande		<u> </u>	<u> </u>	+					<u>-</u>		
	<u> </u>	associated with chloritic clote. Trace molyldmite			+			···					
				ļ		<u> </u>							┝───
		Houling prosture arte at 20, 40° and 60° cA.		(<u> </u>						<u> </u>		·
		Fracture directly is quite high (~1-2/cm).		ļ		<u> </u>			ļ		ļ		ļ
		nino pupite along fractions.		l	<u> </u>								L
													L
.0 2	4.4	FELSIC DYKE											
	<u></u>	medium brown to brownish - gruy fim-											
					18.90	21.44	/00	37040	2.54	< 5	< 0.5	7	
		mit 10 7. < 1 mm gray study fillion (+?)			1	+	<u> </u>	_ <u></u> ,					^
		mut 101, = mm my sources for free			1 44	24.4	9(-	37041	2.96	< 5	< 0.5	8	2
		phenocrysta and possibly rounded quest yra		<u> </u>		<u> 44.4</u>				<u> </u>			
		57. chloutie altered mafie minute to 2mm	<u> </u>	<u> </u>		1			24				
		Most of the unit is sponodically moderately			24.4	28.04	96	37042	3.64	13	<0.5	792	7.
		Incrited. Mine gauge		<u> </u>	<u> </u>								
		MINARALIZATION : muy fine - grained discussion	tı	ļ	┼───	┟────							ļ
		pyrite.		ļ	· · · · · ·	ļ	 						ļ
		Lower contact 20 CA. Chrond.				ļ					ļ		Í
		Same dupla material intersected in M92-2. Source of											
		IP anonaly?					_						
		U	N-A- (-)						Mala No.		2		
			Note(s):						Hoie No.				
ion	PORT	HARDY Date SAN. 2.5 / 92							Page	2 of		4	

DAIWAN ENGINEERING LTD.

,

pyright

Depth	1	Description	Recov	wry	Sample	Interval	Sample %	Semple No.	Sample	Au	Ag	C.	M.
rom	to		run	*	from	to	Recovery		Length	-Ob	0000	00	00-
24.4	76.81	GRANDDIDRITE / QUARTZ DIORITE			28.04	31.09	100	37043	3.05	< 5	<0.5	533	2
	E.O.H.	Medium primial - gruy fine - grained criptalling											
		aggregate of fullyon (+2) with 20-307.			31.09	34.14	100	37044	3.05	< 5	<0.5	378	23
		1-2mm studling white to medium grund-											
		gruy fildepan phinampte and 157 inigular 2-			3.4.14	37.13	100	37045	3.04	< 5	<0.5	319	12
		5 mm clote of chlorite and magnitute. This			_								
		mint is weekly to moderately magnetic in			37.18	40.23	100	37046	3.05	<5	< 0.5	420	16
		contrast to the grandionity on the attin side							1	[<u> </u>		
		of the film dyles.				L						<u> </u>	
		The mit is cut by alundant handing							_				<u> </u>
		practine with associated and alteration hales			_				ļ		<u>.</u>		<u> </u>
		up to 2 cm mide (amore 2-5mm). Pinte			_	 	ļ		-			<u> </u>	[
-		altered fuldepore an moderately hand - probably		. <u> </u>			ļ		-				
		K-spon alteration. Fracture density: 1-5/10 cm.		<u> </u>		ļ	ļ		ļ	ļ			ļ
	<u> </u>	Fracture arte at: 0-20°CA 30°CA, 60°CA.				ļ	ļ	ļ	ļ	ļ		L	<u> </u>
	<u> </u>			<u> </u>			ļ						
	<u> </u>	MINERALIZATION:								[ļ	Ļ
	ļ	Trace to 0.5% (over few certimetre intervale)	•••• •			 							_
	<u> </u>	leach of pupite and chalcopyrite (average ~ 0.17, each)				ļ	<u> </u>			<u> </u>	ļ	ļ	
	ļ	both disseminated and along handing proctures. and up	ŭ.		_		<u> </u>		<u> </u>	ļ		[<u> </u>
	ļ	in mossing to 3 mm (average a1 mm) most			-			l 	<u> </u>	<u> </u>		ļ	ļ
	<u> </u>	Commonly associated with Chlorite massis. Traces m	hybdini	ά.	<u> </u>	l	<u> </u>			<u> </u>		<u> </u>	<u> </u>
oject	MAA	Logged by C. ALLEN	v						Hole No.	M 92	. 3		
_		Date JAN. 25/92										4	

DAIWAN ENGINEERING LTD.

pyright

. . . .

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

epth	Description	Reco	very	Sample	Interval	Sample %	Sampie No.	Sample	Au	Ag	Cu	Mo
to		run	%	from	to	Recovery		Length	0Ph	00-	0.0m	
	32.85-33.20- Bring zone 30° cA. Dark			40.23	43.28	100	37047	3.05		<0.5	429	42
	grey fine - granned chesty material & Inecciated		<u> </u>	-								Ļ
	and flooded with calcute and fine - ground			43.23	46.33	100	37048	3.05	~ 5	<0.5	378	5
	block minud (bitite?). 2-37 fin -grand		ļ	-}		<u> </u>				 	ļ	
	pyrite.	· .		46.33	49.38	100	37049	3.05	< 5	< 0.5	319	9
	38.4-39.8-1-2 cm pink la-spon mins linger	~,	 	49.38	52.42	100	370 <i>50</i>	3.04	≺ 5	< 0.5	397	<u> </u>
	to 3 mm. Trans molyldinum.			52-42	55.47	100	37051	3.05	< 5	< 0.5	587	39
	Handing to 2 mm quarty stringers (mines component)			55.47	58.52	100	37052	3.05	< 5	<0.5	617	5
	at 30° and 70° CA. Commonly contain small pode			58.52	61-57	100	37053	3.05	< 5	< 0.5	260	10
	pyplitamen.	-	1.									
				61.57	64.62	100	37054	3.05	< 5	< 0.5	408	
	53.36 - 55.87 - Brunia 2000 cd 32.85 - 33.20			1.4.12	(7.)		37055		< 5		100	
	56.2 - 2 mm quarty stringer at 45° cA effect		<u> </u>	<u> 04.62</u>	67.66	100	37055	3.04	<u>,</u>	< 0.5	625	14
				67.66	70.71	97	37056	3.05	< 5	<0.5	656	3 2
	71.26-71.8- Pinta K-spon alteration. Province. Small			·				╄		ļ		
	colicity flooding. 1-27- PY.				73.76		37057		< 5	< 0.5	1	<u>ا</u>
			1	73.76	76.81	100	37058	3.05	< 5	<0.5	704	21
:t <u>Mr</u>	Logged by G.ALLEN	Note(s):						Hole No.	M 92	- 3		
ion Pop	T HARDY Date JAN. 25, '92							Page	<u>4</u> of		1.	

•

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

		RISA Location Port HARDY District NANA N. 24, 192 Completed JAN. 26, 192 Core Size								Length Corr. Dip			305 ()
		1+00 E, 1+39 S											
		98 Collar Dip - 60 Objective To											
	(m)	Description	Reco	very %		Interval	Sample % Recovery	Sample No.	Longth (m)	Au		C.	Mo
from O	15.85	N' CASING	run	70 ,	from	to	hecorery		(774)	PP P	- PP	<u> </u>	PP
15.85	18.90	B CASING			<u></u>	ļ]	ļ	ļ		ļ
											<u> </u>	'	[
/B.90	92.96	CRANODIORITE									┨────		
	· · · · · · · · · · · · · · · · · · ·	18.90 - 45.7 Milium Hun - grey fine to medium	-		18.90	22.10	96	37059	3.20	< 5	<0.5	15	<1
	, 	grained granodioute. Midium blue-gruy to											
		pintrial brown (ming) fire -grained appropriate			- 		<u> </u>				<u> </u>	<u> </u>	Ļ
		of filderon (plue ?) with 20 ? stubby = 1mm			29.56	32-31	100	37060	2.15	<5	<0.5	6	1
	· · · · · · · · · · · · · · · · · · ·	felderm phenoenyste and 15-20% chlorite											
		and magnetite masses up to 5mm (altered matic minude - probably hamblinde). The			20.01	4	96	37061	3.05	< 5	<0.5	.5	
		nocle in weakly to moderately magnetic.				31.76	/0	570 61	5.05	~ 3_	(0.3	<u> </u>	<1
		Fracture density is not high, roughly									1		
		1-2/10 cm. Fractures at: 35°, 65°, 5° cA.											
		Very little alteration around practices.	 									ļ	ļ
				L	1	ļ		1	<u> </u>	<u> </u>			<u> </u>
Client	G W C	Note(s):	Checked	bv G	ALLEN	J			Hole No.	M 92.	- 4		

Drilling Company_ OLYMPIC

• · · • • • ·

. . . .

Date JAN 27 3

Page One of

ر سو

موجود به الله المرجود المرجود المرجود المرجود المرجود المرجود المرجود المرجود المرجود المرجود المرجود المرجود ا

)rill Hole Record

p**yright**

DAIWAN ENGINEERING LTD.

*

epth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	C.	Mo
to	0		run	%	from	to	Recovery		Length	DB P	pp-	pp	00-
		MINERALIZATION:					ļ			•			1.4
		Trave pyrite accounted with chloritic clote.		ł	1		1		1				
		V A				1			+			1	
		This intrud is first in approxime.			1								
							ļ						
		45.7 - 68.2											
l		cranodivite as above fact with abundant			45.7	+8.4Z	95	3706 Z	3.12	< 5	<0.5	27	
		haiding practices with associated put alteration				}							
					50 00	52 QC	80	37063	3.05	< 5			
		invelopie up to 1 cm wide. Fraction directly			30.90	33.75	<u> </u>	3/063	5.05	· · /	10.5	10	
	· · · ·	increases down hole; averaging 2-4/10 cm.			+		ł						
		Rink handing stringers an probability zerolite Pink		1	53.95	57.00	100	37064	3.05	< 5	< 0.5	381	[
		alteration of fuldspore adjant stringers is modustedy			ļ		ļ						
		hand suggesting possible K- upon alteration.]	
		Strugers / fractione at: 25 cA, 25 cA, 60 cA and				1							
<u> </u>		0- 15°.			60.04	63.09	100	37065	3.05	< 5	<0.5	7	<
		Fildepone commonly altered to guenich- gray colour.		1							1	†	
											1		
_ <u>_</u>		MINERALIZATION: Trace papite. Minor mercan from interval				68.20		2 7 7 4	3.0	< 5	1		
		There again, Finder include from interest		<u> </u>	65.20	60.20		37066	3.0	<u>, ,</u>	<0.5	11	~
-		abour.		<u> </u>								ļ	<u> </u>
		54. 4 - 54.6 - fin - grained blade interval							-		 	ļ	<u> </u>
		adjount shin at 54.4 at 40°CA. Sun		1									ļ
		goings. Alteration along fault? 1-27. pyrite.										}	
		Articond still mognitic as above.							•				
	لمسعمه	-	••••	•	•								·
<u></u> M	AR	Logged by G. ALLEN	Note(s):_						Hole No.	M92-	4		
		LT HARDY Date JAN. 26 92							Page	2 of		3	

a de la construction de la construction de la construction de la construction de la construction de la constru

will Hole Record

DAIWAN ENGINEERING LTD.

e.

pyright

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 668-1508

Depth	Description	Reci	overy	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	C.	M.
n to		run	*	from	to	Recovery		Length	ppb	ppm		pen
	68.2 - 74.9 FAULT ZONE			68.20	71.15	100	37067	2.95	< 5	<0.5	17	
	Broken con. Rubble zone. Shrand 30° 4	4.										
	day gange yours to 5 cm. attend only			71.15	73.03	>7	37068	1.88	< 5	< 0.5	21	<1
	spordically magnetic. Cality stringers to											
	5 mm parallel to straning. Abundant			73.03	74.90	99	37069	1.87	<5	< 0.5	9	1
	prosture 30°, 60° + 15° cA. Frantin density					ļ						
	10-15/10cm.			74.90	78.33	99	37070	3.43	٢5	< 0.5	6	1
		_	1							<u> </u>		<u> </u>
	MINERALIZATION			78.33	81.38	97	37071	3.05	< 5	<0.5	13	< 1
	0.5-12 crystalling provide predominantly on fract	īn			<u> </u>		· · · · · ·					
	surface. Minor dissuminated pyrite. Trace	-		81.38	84.43	100	37072	3.05	< 5	10.5	76	3
	chiliopynte.									4. 4	<u> </u>	
				84.43	87.48	/00	37073	3.05	< 5	<0.5	13	< 1
	74.9-92.96-							0.05				
	and inter with pink altration adjournet fraction			87.48	90.53	78	37074	3.05	< 5	<0.5	21	< 1
	as about fault zon. Fracture 30° 45, 70°CA		· ·	00 63	0.0			2.43	< 5	<0.5	7,	
	pudaminanty filles with pink zeolite Some		+	90.53	72.76	91	37075	2.7.2		20.5	31	<
	any cality stringers with come of what books			-	1	<u> </u>						+
	like pyropitumen:		-					<u>.</u>				
	MINERALIZATION:					- <u> </u>				1	<u> </u>	+
	74.9- 05- Trous to 17. dissonnated pupits	(1, 1)							1	+		1
<u>I</u> ,	85-92.96- Pryrite 0.5-1%, troce chalcopyrite !		_Ⅰ		I		<u>ا</u> ــــــ	- L		1	1	
ct <u>M</u>	ARISA Logged by G. ALLEN	Note(s):						Hole No.	<u> </u>	4		

ر دردها به

DAIWAN ENGINEERING LTD.

Property MARISA	Location	PORT HARPY	District	NANAIMO	Hole No	M 92-5	Length 46.9	14 m (154')
Commenced FEB. B	Completed	FEB. 9	Core Size	NG	True Bearing	240°	Corr. Dip	
Collar Coordinates 8+15 w	10+70 S	···	Elev		Hor. Comp	20.94 m	Vert. Comp	42.01
Percent Recovery	Collar Dip	-6312	Objective To	TEST FLANK (DE WEAK CHA	RCEABILITY ANOMALY	AND MAG.	Low.

Depth	(m)	Description	Rec	overy	Sample	Interval	Sample %	Sample No.	Longth	Au	Aç	Cu	Mo
from	to		run	*	from	to	Recovery			ppb	ppm	Ppm	ep.m.
0	1).28	CASING									, ·		•
				1				M92-5, 19.0 Titin Section					
					18.75	19.0		Tito Section					
11.28	14.32	OVERBURDEN											
		· · · · · · · · · · · · · · · · · · ·											
4.32	46.94	QUARTZ DIORITE											
	E.O.H.	Midium grey fine to midium - grained			17.07	19.81		37234	2.74	< 5	<0.5	34	
		cuptelline aggregate of fildepan and generity (?)				· · · ·	<u> </u>						
		with 15-20% 1-3 min grunish studing sublided			19.81	21.94		37235	2.13	< 5	< ٥. 5	49	2
		feldepon phinocryste and 15-207. black massis				L				[
		up to 5 mm of chlorite and magnetite after											
		handlinde (?). Pock is weakly to nodustily			24.99	28.04	ļ	37236	3.05	<5	<0.5	15	1
		magnitic throughout.											
		Poch is cut by abundant (5-8/10cm)			28.04	30, 48		37237	2.44	< 5	<0.5	84	
		bouling protune 0, 20° and 60° CA, tryinghy											
		with pink alteration mulique up to i an.			30.48	32.31		37238	1.83	< 5	<0.5	21	<u> </u>
		Blocky throughout.											i
	*	Pour trace choliopyrite in mohie clote.											
		Currently barren.				<u> </u>							·
ent (JZEA+	U A	Checked	by	G.ALLE	พ			Hole No.	M 92	- 5		
		OLYMPIC	Date		10 '9				Page On		 2		

DAIWAN ENGINEERING LTD.

pyright

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Ац	Ag	Cu	Mo
from	to		run	%	from	to	Recovery		Length	DOP	ppm	PC	00
		20.2-20.9 - Mangaman costs fracture penallel to										••	••
		con asis.						· · · · · · · · · · · · · · · · · · ·					
					34.75	37.75		37239	3.00	< 5	<0.5	16	1
		28-32.5- FAULT ZONE - Inolan mildly con.								1			
		28.6-29.3- gonge intervale up to sem. Shraving 30° CA.											
		0			40.23	43.28		372.40	3.05	< 5	<0.5	/4	3
		43.2- 45.8 - FAULT ZONE - mbl.											
		43. 8- 44.1 - Shin, gonge. 20-30 ° cA.											
		, , , , , , , , , , , , , , , , , , , ,											
					43.28	45.8		37241	2.52	< 5	<0.5	15	1
]						
					45.6	46.94	· ·	37242	1.14	< 5	<0.5	7	1
					Î						1		
							1		1	1	1		
			1								+		
											1		
												1	
			1	<u> </u>			1	1	··				
		····		ţ	-	1				1			
		· · · · · · · · · · · · · · · · · · ·	1							1			
			1		1		1	+	+		1	<u> </u>	<u> </u>
I		۱	1	1	1	1	1	۱	1	Å	1		J
roject	MAR	Logged by GALLEN	_Note(s):_						Hole No.	M 9.	2-5		
ocation	Pho	RT HARDY Date FEB. 10 92							Page	<u>2</u> of		2	

TO: DAVE PAWLINK

C

BOX NO. FROM то 6.1 12.12 1_ 12.12 2 17.16 17.16 22.43 3_____ 22.43 4 28.05 28.05 5 32.84 32.84 6 38.27 38.27 7 43.28 43. 28 8 48.61 48.61 <u>54.86</u> 9 <u>59.5</u>3 10 54.86 59.53 64-78 11 70.56 64.78 12 70.56 76.00 13 79. 86 E.O.H. <u>14</u> 76.00 <u>15</u> 16 <u>17</u> <u>18</u> 19 <u>20</u> 21 22 <u>23</u> <u>24</u> <u>25</u>

Hi Dave,

Here are the data required for the 1ST set of box labele

EXAMPLES

M92-1 Box 1 6.1-12.12m Thanks for the help!

bond

M92-1 1 BOXES FROM TO 6.1. 12,12 t 12.12 17.16 2 17.16 22.43 Э 28.05 22, 43 28.05 4 32.84 5 32.84 36.27 6 43.20 7 43.28 38.27 6 43.28 54,86 59.53 48,61 9 54.86 10 59,53 64.78 11 12 70.56 64,78 76.00 13 70.56 79.86 E.O.H. 76.00 ŝ, n an Para

• •			- La de la calificación de la calenda de la calenda de la calenda de la calenda de la calenda de la calenda de	
Rhas	î o	LENGTH	RECOV	2
8.23	11:28	3,03	2,83	93
11.24	14.33	3.05	2,97	97
14.33	17,37	3,04	3.04	/0 0
17,37	20,42	3.05	3.05	100
20.42		3.03	200	98
23.47	-26.52	3,05	2.98	98
2652.		3,05	3,05	100 :
29,57	-31.39	1.82	1.82	100
31.39		2.75	2.95	60
3.5,66	- 38,71	3.05	3.05	• 100 .
and the second second second second second second second second second second second second second second second	-40.54	1.83	1.81	100
	1-43,26	2.76	2,75	(00
	6 - 46.33	3.05	3.05	/00
	- 4.4.38	3,05	3,02	
	5-2,43	· 3.05	13,02	99
	53.47	3.04	3.04	/80
and the second second second second second second second second second second second second second second second	7. 58.52	3.05	3,00	28
58.5	2 61,57	3.05	3,05	100
61.5	7 64.62	3,05	2,99	98
1 64.6	••••••••••••••••••••••••••••••••••••••	3.05	3.05	100
67,6	·····	3.04	300	29
70.71	ang aga ang ang ang ang ang ang ang ang	3.05	3,02	99
	76-76.81	3.05	3.03	99
	81 - 79.86	3.05	3,00	98
> 34.1	4-35,56	1.52	1.46	96
· · ·		· · · · ·	····	2471 = 98.84
<u> </u>				25
			,	99 ⁷ ,
				annog
s - 1 - 1				

SAMPLE RECOVERY

h	/			
12 12	FROM TO	LENGTI	1 A(T	ん
37001	7.3 11.28	3.98	3.52	
37002	11.28 x ,14.33	3.05	2.97	
37003	1433 × 17,37	3.04	3054	
37004	17,37 × 20,42	3.05	3:05	-
37005	23,42 x 23,47	3,05	-3.00	
37006	23.47 1 26.52	3,05	2.95	<u></u>
37007	2652 , 29,57	3.05	3.05	
37008	29,57 - 32.60	3.03	.3 03	
37009	32.60 35.66	3.06	3,06	
37040	35.66-× 38.71	3,25	3,05	
37011	3871 41.46	2,15	2.72	
37012	41.46 - 44.20	2.74	2,74	
7013	44.20 46.33	2,13	2,13	
37014	46,33 x 49.38	3.05	3.02	s
37015	49.38 x 5.2.43	3.05	3. 22	· · · · · · · · · · · · · · · · · · ·
37016	52.43 x 55.47	3,04	3.04	
37017	55.47 57.90	2.43	2,39	
37014	57.90 60.23	2,33	2.32	
37019	6,0.23 61.57	1,3.4	1,34	
37020	6.1.57 × 64,62	3,95	2,99	
37021	64,62 86767	3,05	3,05	
37022	67.67 x 70,71	3.04	3,00	
37023	70.71 x 73.76	3,05	3,02	
37024	78.76 + 76.81	3.05	3,03	
37025	76.81 × 79.86	3.,03	3,00	
~				
	an	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

CORE RECOVERY

HOLE NO. <u>M92-2</u>

RUN

÷

C

(

(I OF 2

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
7.62	12,80	5,18	3.43	. 66
12,80	15,86	3.06	3.53 (37026)	1.15
15.86	18.90	3.34	3.59	1.07
18.90	21.94	3.04	3. 5 0	1,15
21.94	24,99	3.05	3,40	Eill
24.99	28.04	3.05	3.19	1.04
28.04	31.09	3.05	3,11	1.02
31.09	34,14	3.05	3,23 .	1.06
34,14	35.05	. 91	100	1.10
35,05	36,27	1,72	1.16	. 95
36.27	38.71	2.44	2,36	,97
38.71	40,23	1,52	1.45	.95
40,23	43,20	2.97	3,19	1.07
43.20	46.33	3,13	3.17	1.01
46.33	49,38	3.05	3,34	1.40
49.38	52.42	3.04	3,43	1,12
52.42	55.47	3.05	3,39	1.11
55.47	58.50	3.05	3,34	1.)
58.52	61.57	3.05	3.45	1,13
61.57	64.52	2.95	3,23	1.09
64.152	67.66	3,14	3.06	,97
67.66	70.71	3.05	3,12	1.02

.

CORE RECOVERY

HOLE NO. <u>M92-2</u>

RUN

C

1

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
70.71	73.76	3.05	3,25	1,07
73.76	1	3.05	3,34	1.1
76,81	79.86	3.05	3.12	1.02
				· · · · · · · · · · · · · · · · · · ·
<u></u>				
		<u> </u>	·	
				•
· · · · · · · · · · · · · · · · · · ·				
				ι
				·
	1	· · · · · · · · · · · · · · · · · · ·		
				· ·
				· · · · · · · · · · · · · · · · · · ·
				·
	<u> </u>	·		L

CORE RECOVERY IN SAMPLES

HOLE NO. <u>M 92-2</u>

C

(

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
12.80	15.86	3.06	<u>3,53</u>	1, 15
18.90	21.94	3.04	3,50	1,15
26.47	29.54	3.07	3.08	100%
3871	41.84	3,18	3.04	. 96
46.33	49,38	3.05	3.34	1.00
53.75	56.74	3.01	3.02	100
56,74	58.10	1.36	1.72	1.26
58.10	60.83	2.73	3.20	1.17
67.66	70.71	3.05	3,12	1.02.
70.71	72.63	1.92	2,08	1.08
72.63	7558	2.95	3.02	1.02
		:		
L				
	12.80 18.90 26.47 3871 46.33 53.75 56.74 58.10 67.66 70.71	12.80 15.86 18.90 21.94 26.47 29.54 3871 41.84 46.33 49.38 53.75 56.74 56.74 58.10 58.10 60.83 67.66 70.71	12.80 15.86 3.06 18.90 21.94 3.04 26.47 29.54 3.07 3871 41.84 2.18 46.33 49.38 3.05 53.75 56.74 3.01 56.74 58.10 1.36 58.10 60.83 2.73 67.66 70.71 3.05 70.71 72.63 1.92	12.80 15.86 3.06 3.53 18.90 21.94 3.04 3.50 26.47 29.54 3.07 3.08 $387/$ 41.84 2.18 3.04 46.33 47.38 3.05 3.34 53.75 56.74 3.01 3.02 56.74 58.10 1.36 1.72 58.10 60.83 2.73 3.20 67.66 70.71 3.05 3.12 70.71 72.63 1.972 2.08 72.63 75.58 2.95 3.02

.

TO: DAVE PAWLIUK

FROM: GORD ALLEN

 \mathbf{C}

 $\left(\begin{array}{c} \\ \end{array}\right)$

 \bigcirc

hole <u>M 92-2</u>

BOX NO.	FROM	то	
1	6.57	13.92	
2	13.92	18.55	
3	18.55	23.79	
4	23.49	28.98	
5	28.98	34.55	
6	37.55	40.33	
7	40.33	46.03	
8	46.03	51.05	
9	51.05	56.40	
10	56.40	61.57	
11	61.57	67.06	
12	67.06	72.61	
<u>13</u>	72.61	77.28	
14	77.28	79.06	E.a.H.
15			
16			
17			
18			li
19			
20			-1
21	: ·		the
22		·	
23			
24			
25			

hi Dove & Stime,

Here's the nest instalment Thanks!

Good

TO DAVE PAWLICK

FROM: GORD ALLEN

C

(

HOLE <u>M92-3</u>

BOX NO.	FROM	ТО
<u>1</u>	6.10	12.20
2	12.20	17.40
3	17.40	22.91
4	22.91	28.04
5	28.04	33.44
6	33.44	39.14
7	39.14	44.63
8	44.63	50.35
9	50.35	55.70
10	55.70	61:41
11	61.41	66.84
12	66.84	72.65
13	72.65	76.81 E.O.H.
14		
15		
16		H
17		
18		
19		
20		
21		
22		
23		
24		
25		

Hi Davez Stine, Thomas.

bond

CORE RECOVERY

HOLE NO. M-9--3

RUN

1

. .

C

 $\left(\right)$

! ;

10F2

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
6.10	9.75	3.65	3,07	84
9.75	12.80	3.05	3.24	161
12.80	15.86	3.06	3,19	104
15.86	18.90	3.04	3,37	110
18.90	21.44	2.50	3,21	12 6
21.44	24.99	3.55	3.34	94
24.99	28.04	3.05	3.26	15-
28.04	31.09	3.05	3,18 .	104
31.09	34.14	3.05	3,15	103
34.14	37.18	3.04	3,18	104
37,18	40,23	3.15	3.21	115
40,23	43.28	3.05	3,05	150
43.28	46,33	3,15	3,35	1.12
46.33	49,38	3, 55	3.08	101
49,38	52.42	3.04	3.28	107
52. 4 L	55,47	3.05	3.11	102
55.47	58,52	3.05	3.14	103
58.52	61.57	3.05	3,11	102
61.57	64.62	3,05	3.22	105
64.62	67.66	3.04	3,18	
67.66	70.7.1	3.05	2,95	97
70.71	73.76	3.05	3,20	105

CORE RECOVERY

میں سیا کیل م

HOLE NO. <u>M-92-3</u>

RUN

99 (1997) 14

(

 $\left(\right)$

 $\left(\right)$

KUN				
FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
			5	
73.76	76.8]	3.05	3.14	103
				· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	
- <u></u>				
<u></u>			·	
			· · · · · · · · · · · · · · · · · · ·	
<u></u>				
4 ,				
	<u> </u>		L	

CORE RECOVERY IN SAMPLES

HOLE NO. <u>91-92-3</u>

 \mathbf{C}

(

SAMPLE NO.	FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
37037	6.10	9,80	2.70	2.10	78-
32038	8.20	11.00	2.20	2.21	100
37039	11.00	13.60	2.60	2,85	110
37040	18.90	21.44	2,54	3.21	126
37041	21.44	24.40	2.95	2.83	96
37042	24.40	22.4	- 36	3.94	90
37043	28.04	31,09	3,55	3.18	104
37044	31.09	34,14	3.05	3,15	103
37045	34,14	37,14	3.04	3, 18	104
37041	37.14	40.23	3.05	3.21	105
37:49	40,23	43.28	3.05	3,05	100
32048	43,28	4533	3.05	3.35	110
37.040	46,33	4938	3.05	3,08	101
3=150	49.38	52,42	3.04	3.2.8	107
32:51	52.42	55.4=	3.05	3,11	102
34030	55,47	58.52	3.05	3,14	163
27253	58.52	61,57	3,05	3,11	102
37:50	61.57	64.62	3.05	3,22	105
2 4055	64.62	67.66	3.04	3,18	104
34/5/4	67.66	70,71	3.05	2.95	97
37257	70,71	73.7%	3.05	3.20	105
37058	73,76	76.81	3,05	3,14	103

TO: SAVE PAWLIUK FROMS GORD ALLEN

C

ð,

BOX NO.	FROM	ТО
1	18.90	23.41
2	23.41	29.06
3	29.06	34.82
4	34.82	4066
5	4966	46.41
6	46.41	52.00
7	52.00	57.92
8	57.92	63.42
9	63.42	6234
10	69.34	75.18
11	75.18	81.15
12	81.15	8686
13	86.86	92.96 E.O.H.
14		
15		
16		· · · · · · · · · · · · · · · · · · ·
17		
18		
19		
20		••••••••••••••••••••••••••••••••••••••
21		
22		••••••••••••••••••••••••••••••••••••••
23		
24	- is	
25		
<u> </u>		L

Hi Dave + Stive,

Thanks.

Good

1 OF 2.

CORE RECOVERY

HOLE NO. <u>M-92-4</u>

1

RUN

ŧ

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
18.90	20.42	1,52	1,38	91
20.42	23.47	3,05	2,96	97
23.47	25.61	2,14	2,11	98
25.61	26.62	1.01	1.01	1001:
26.62	29,56	2.94	Ž,96	100
29.56	32,31	2,75	2,81	152
32.31	34,44	2,13	2.15	101
34,44	35.66	1,22	.99	81
35,66	38.71	3.05	3.00	.98
38.71	41,7	3.05	2,92	.96
41.76	44,80	3,04	3,08 +	101
44.50	47.8.6	3.06	2,99	98
47,86	56.90	3.64	3.16	104
50,90	52.95	3.05	2,67	. 82
53,95	57.00	3.05	3.2 /	105
57.00	60.04	3.04	3,28	158
60.09	63.07	3.05	3.05	100
63.09	66.14	3.05	2.95	97
66.14	69,19	3,05	3,13	103
69.19	72.29	3.10	3.05	<u>98</u>
72.29	75,38	3.09	3.16 **	102
75 38	78.3 8	2.95	2,94	100

CORE RECOVERY

HOLE NO. 1-97-4

RUN

C

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
78.33	81.38	3.05	2.9%	.97
81.38	84.43	3.05	3.08	151
	87.48	3.05	3,13	102
	95.52	3.04	2.78	98
90.52	92.96	2.4.4	2.21	.91
			· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·
		······································		
			·	

CORE RECOVERY IN SAMPLES

.

HOLE NO. 1 - 92 - 2.

C

SAMPLE NO.	FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
	19,20	22.10	3.20	<u> </u>	7.2
370 60	29.50	32,31	2,75	2.81	102
37061	38,71	41.76	3.05	2.92	.96
37062	45,70	48,82	3,12	2,97	. 95
37063	50.90	53,95	3,05	2,67	,88
37064	53,95	57.00	3.04	3,2 \$	105
37065	60.04	63,09	3.05	3,05	100
37066	65,20	68.20	З,	2,98	.99
37067	68.20	71.15	2.95	3,02	102
32068	71.15	73,03	1,88	1.82	:97
37069	73.03	74.90	1,87	1.86	.99
32070	74.90	78.33	3.43	3.40	,99
32/02/	78.33	81.38	3.05	2.9%	.97
32072	81.58	8-1-1	2,05	3,8	101
33072	84.43	87.48	3.05	318	102
37074	87.48	90.52	3.04	2.98	, 98
37075	90.52	92.96	2.4.1	2.21	.91
				٤	
			.:	······································	

APPENDIX III

CERTIFICATES OF ANALYSIS

Daiwan Engineering Ltd. 1030, 609 Granville Street, Vancouver, B.C. Ph. (604) 688-1508

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Comments: ATTN: PETER DASLER CC: GORD ALLAN

A9210781

CERTIFICATE

A9210781

DAIWAN ENGINEERING LTD.

Project: MARISA P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 7-FEB-92.

	SAMPLE PREPARATION						
CHEMEX	NUMBER SAMPLES	DESCRIPTION					
205 294 238	39 39 39 39	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) NITRIC-AQUA REGIA DIGESTION					

ANALYTICAL PROCEDURES CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 100 39 Au ppb: Fuse 10 g sample FA-AAS 5 10000 Ag ppm: 9 element, soil and rock 1005 39 ICP-AES 0.5 200 1929 39 Co ppm: 9 element, soil & rock ICP-AES 1 10000 1931 39 Cu ppm: 9 element, soil & rock ICP-AES 1 10000 1932 39 Fe %: 9 element, soil & rock ICP-ARS 0.01 15.00 1937 Mn ppm: 9 element, soil & rock 39 ICP-AES 5 10000 1938 39 Mo ppm: 9 element, soil & rock ICP-AES 1 10000 1940 39 Ni ppm: 9 element, soil & rock ICP-AES 1 10000 1004 39 Pb ppm: 9 element, soil and rock ICP-AES 5 10000 1950 39 Zn ppm: 9 element, soil & rock ICP-AES 2 10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :1 Total Pages :1 Certificate Date: 05-FEB-92 Invoice No. : 19210718 P.O. Number : BZH Account

Project : MARISA Comments: ATTN: PETER DASLER CC: GORD ALLEN

CERTIFICATE OF ANALYSIS

A9210718

SAMPLE		REP ODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe ¥	Mn ppm	Mo ppm	Ni PP ^m	bbw Bp	Zn ppm
37001	205	294	< 5	< 0.5	4	1255	1.30	225	42	1	6	2
37002	205		< 5	< 0.5	3	1790	0.93	185	80	1 1 1	4	1 1
37003	205	294	< 5	< 0.5	3	1995	0.97	150	31	1	2	1 1
37004	205		< 5	1.0	5	1965	1.14	165	57	1	24	1 1
37005	205	294	< 5	0.5	6	1695	1.75	230	20	1	2	Ī
37006	205	294	< 5	< 0.5	4	426	1.70	225	13	1 2	4	1
37007	205	294	< 5	< 0.5	5	151	2.19	260	29	2	< 2	1
37008	205		< 5	< 0.5	5	317	2.20	290	11	1	2	1
37009	205	294	< 5	< 0.5	4	185	1.66	200	7	1 1	4	1
37010	205	294	< 5	< 0.5	5	306	1.52	175	2	1	4	1
37011	205		< 5	< 0.5	3	1000	1.32	180	1	1	2	1
37012	205		< 5	< 0.5	5	904	1.29	210	6	< 1	2	1 1
37013	205	294	< 5	< 0.5	5	44	1.69	205	7	1 1	2	1
37014	205		< 5	< 0.5	5	115	1.76	200	11	< 1	2	1 1
37015	205	294	< 5	< 0.5	6	446	1.84	210	5	1 1	< 2 < 2	ī
37016	205	294	< 5	< 0.5	7	458	1.77	200	13	1	2	1
37017	205	294	< 5	< 0.5	6	396	1.90	220	24	1 1	2	l ī
37018	205	294	< 5	< 0.5	3	185	0.63	110	74	1	4	-
37019	205		< 5	< 0.5	4	184	1.55	205	25	ī	4	1 1
37020	205	294	< 5 < 5	< 0.5	7	547	2.01	225	74	1	2	2
37021	205	294	< 5	< 0.5	7	125	2.20	245	26	1	2	1
37022	205	294	<pre>< 5</pre>	< 0.5	5	48	2.06	245	9	1	2	1
37023	205	294	i < 5	< 0.5	4	89	1.81	200	14	1	2	1
37024	205		< 5	< 0.5	5	48	1.84	215	41		2	1
37025	205	294	< 5 < 5	< 0.5	5	116	2.00	245	26	1	< 2	ī
37026	205	294	< 5	< 0.5	9	20	3.09	470	< 1	1	2	3
37027	205	294	< 5	< 0.5	9	22	3.08	440	< 1	1 1	4	3
37028	205	294	< 5	< 0.5	11	67	3.63	510	1 1	2	2	3
37029	205	294	< 5	< 0.5	9	10	3.51	470	1	22	4	1 3
37030	205	294	< 5	< 0.5	1	< 1	0.49	215	1 1	< 1	6	1
37031	205	294	< 5	< 0.5	1	< 1	0.37	275	. 3	1	14	2
37032	205	294	< 5	< 0.5	11	11	3.39	885	< 1	3	10	5
37033	205	294	< 5	< 0.5	< 1	< 1	0.45	245	1	1	10	1 1
37034	205	294	< 5	< 0.5	9	10	3.20	620	1	ī	2	4
37035	205	294	< 5	< 0.5	11	45	3.42	905	Î	2	10	6
37036	205	294	< 5	< 0.5	1	1	0.67	325	2	1	14	2
<u> </u>	<u>L</u>			L			<u> </u>	L	L	tha	ÐM	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :1 Total Pages :1 Certificate Date:07-FEB-92 Invoice No. :19210781 Invoice No. P.O. Number Account BZH

Project : MARISA Comments: ATTN: PETER DASLER CC: GORD ALLAN

CERTIFICATE OF ANALYSIS

A9210781

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo PP ^m	Ni ppm	Pb PPm	Zn ppm
37037	205 29		< 0.5	5	519	1.47	400	37	1	8	30
37038 37039	205 29 205 29		< 0.5	5	748 23	1.59 0.52	445	39	1	20	32
37039	205 29		< 0.5	1	23	0.52	250 255	2 1	< 1 < 1	8	14 14
37041	205 29	4 < 5	< 0.5	ĩ	8	0.47	235	2	l <i< td=""><td>6</td><td>14</td></i<>	6	14
37042	205 29	4 < 5	< 0.5	7	792	2.06	465	75	1	10	32
37043	205 29	4 < 5	< 0.5	7	533	2.03	365	2	< 1	< 2	20
37044	205 29		< 0.5	6	378	1.80	315	23	1	< 2	18
37045 37046	205 29 205 29	4 < 5 4 < 5	< 0.5 < 0.5	6 4	319 420	1.74	275 230	12 16	1 < 1	< 2 < 2	14
37047	205 29	4 < 5	< 0.5	6	429	1.74	295	42	1	< 2	18
37048	205 29	4 < 5	< 0.5	6	378	1.74	280	5	1 1 1	< 2	16
37049	205 29	4 < 5	< 0.5	6	319	1.83	305	9	1	< 2	16
37050 37051	205 29 205 29		< 0.5 < 0.5	6 7	397 587	1.85 1.93	305 305	11 39		< 2 2	18
37052	205 29	4 < 5	< 0.5	7	617	1.87	320	5	1	< 2	18
37053	205 29	4 < 5	< 0.5	6	260	1.79	345	16	1	< 2	20
37054 37055	205 29 205 29		< 0.5	6	408	1.72	300	4	111	< 2	14
37056	205 29		< 0.5 < 0.5	6 6	625 656	1.97 1.92	285 295	16 39	1	< 2 2	16 19
37057	205 29	4 < 5	< 0.5	6	424	2.06	410	9	1	6	30
37058	205 29	4 < 5	< 0.5	6	704	1.79	335	21	1 1	6	26
37059 37060	205 29	4 < 5	< 0.5	6	15	1.88	425	< 1	1	2	26
37061	205 29		< 0.5 < 0.5	6 5	6 5	1.77 1.68	415 415	< 1	1 2 1	22	24
37062	205 29	4 < 5	< 0.5	6	27	1.66	400	3	2	2	22
37063	205 29	4 < 5	< 0.5	5	10	1.60	405	1	1	2	20
37064 37065	205 29 205 29		< 0.5	67	381	1.78	455	1	1 1	4	38
37065	205 29		< 0.5	4	7	2.13 1.43	415 390	< 1 < 1	1	2	30
37067	205 29		< 0.5	4	17	1.39	335	< 1	1	4	18
37068	205 29	< 5	< 0.5	4	21	1.37	365	< 1	Ĩ	2	18
37069 37070	205 29		< 0.5	57	9	1.70	410	1	2	4	20
37071	205 29		< 0.5	5	6 13	2.28 1.75	555 420	1 < 1	1	< 2 2	34
37072	205 29	4 < 5	< 0.5	6	76	1.69	380	3	1	2	24
37073	205 29		< 0.5	6	13	1.79	400	< 1	1	< 2	24
37074 37075	205 29		< 0.5	5	21	1.72	345	< 1 < 1	1	2	20
JIVIJ	205 29	•	< 0.5	5	31	1.77	355	< 1	1	2	22
				<u> </u>	[L,	i DM	

ς.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :1 Total Pages :1 Certificate Date: 24-FEB-92 Invoice No. :19211305 P.O. Number : Account :BZH

Project : MARISA Comments: ATTN: PETER DASLER CC: GORDON ALLEN

·····			- <u>,</u>			CERTIFICATE OF ANALYSIS A9211305					
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pp Pb	Zn ppm
37234 37235 37236 37237 37238	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 5 5	34 49 15 84 21	1.77 1.74 1.88	340 350 380 375 435	< 1 2 1 1	2 1 1 2	2 < 2 2 2 2 2 < 2	24 24 26 26 26
37239 37240 37241 37242	205 294 205 294 205 294 205 294 205 294	< 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 5 5	16 14 15 7	1.76	295 400 380 425	1 3 1 1	< 1 2 2 < 1	4 < 2 2 2	22 26 26 28
<u></u>							c	ERTIFICATIO	the	u DM	10

APPENDIX IV

BUDGET FOR FURTHER EXPLORATION

Daiwan Engineering Ltd. 1030, 609 Granville Street, Vancouver, B.C. Ph. (604) 688-1508

MARISA PROJECT PROPOSED BUDGET FOR PHASE III EXPLORATION PROGRAM

Fieldwork

-	-	-	-	~	-	 _	

PERSONNEL:	DAYS	RATE		COST	COST	
Proj. Mgr. Assistant Assistant (soi Consulting	16 14 1 17 1	380 260 260 380		6080 3640 4420 380		
				14520	14520	
DISB. 1:	DAYS/NO.	RATE		COST		
Accomodation Accomodation Food Vehicle Helicopter Hiab Truck Analyses (core Analyses (soils Shipping Fuel Core shed Rent Radios Misc. (Tel, Sup	s 700 1 2 pplies, etc.	25 20 20 45 705 50 14 15 250 40) ts Subtotal		395 622 940 1485 5640 150 1693 10500 250 200 250 80 500		
	Administrat			3406	26110	
DISB. 2:	DAYS/NO.	RATI	E	26110 COST	26110	
Drilling	1000 fe Administrat		25	25000 2500		
			-	27500	27500	
		eldwork Subto ntingency (10		-	68130 6813	
	ESTMATED TO	TAL FIELDWORN	c cos	- BTS	74943	74943
		REPORT	2			
REPORT			_			2500
	ESTIMATED T	OTAL PROJECT	cosi		·	\$77,443

-----\$77,443 -----

•

APPENDIX V

PACIFIC GEOPHYSICAL LTD.

REPORT

PACIFIC GEOPHYSICAL LTD.

REPORT ON THE

INDUCED POLARIZATION, RESISTIVITY AND MAGNETIC SURVEYS

ON THE

MARISA PROJECT

NANAIMO MINING DIVISION, BRITISH COLUMBIA

FOR

DAIWAN ENGINEERING LTD.

LATITUDE: 50 40' N LONGITUDE: 127 31' W

N.T.S. 92L/11W,12E

BY

Paul A. Cartwright, P.Geoph. Geophysicist

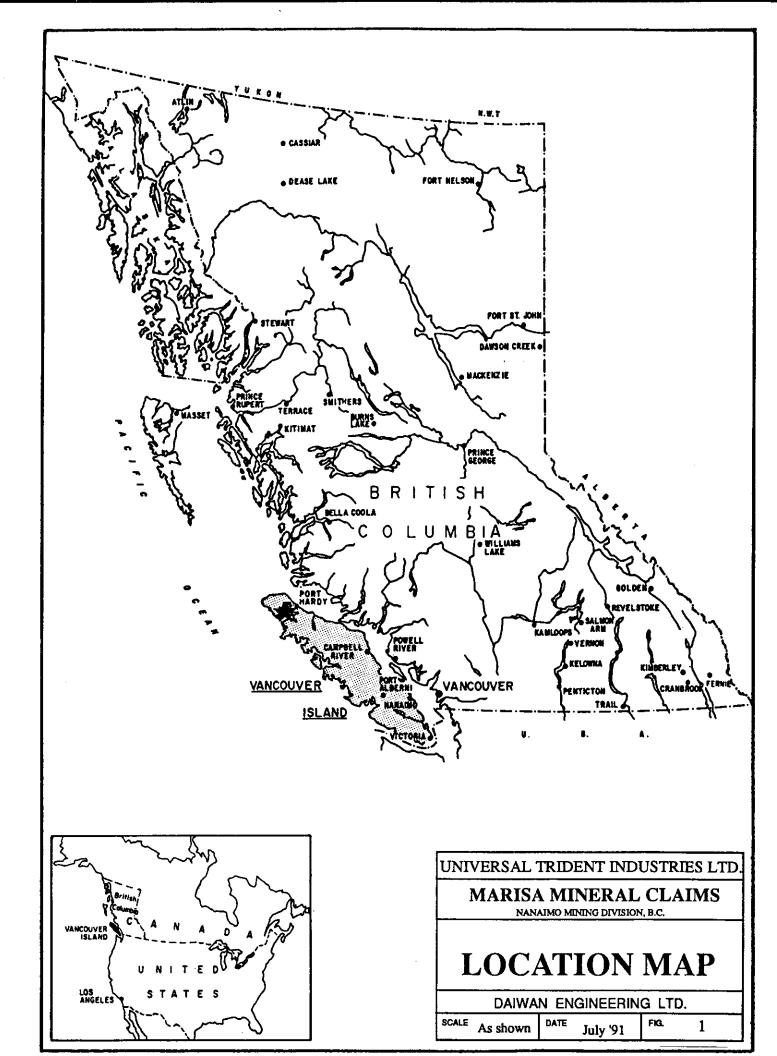
and

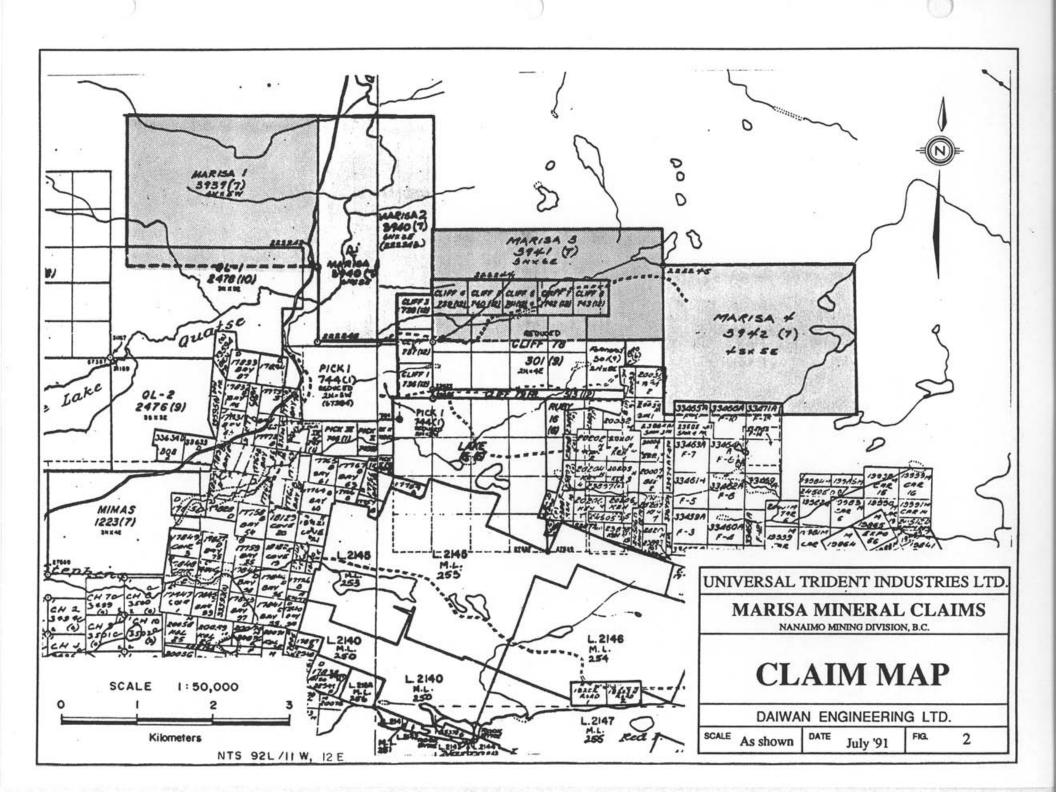
Michael J. Cormier, B.Sc. Geophysicist

DATED: FEBRUARY 14, 1992.

SUMMARY

Induced polarization, resistivity and magnetic surveys have been carried out on the Marisa Project by Pacific Geophysical Ltd. on behalf of Daiwan Engineering Ltd. during the period January 10, 1992 to January 14, 1992.


A large zone of moderately anomalous IP effects, whose borders remain open, has been identified within the data. A set of five drillholes collared within the zone have all intersected copper mineralization. It has been recommended that further IP / resistivity surveying be conducted to establish the northeast and southeast boundaries of the IP zone prior to another round of drilling.


TABLE OF CONTENTS

PART	A REPORT	PAGE
1.	Introduction	1
2.	Description of Claims	1
3.	Description of Geology	2
4.	Instrument Specifications	2
5.	Survey Specifications	3
6.	Data Presentation	3
7.	Discussion of Results	4
8.	Conclusions and Recommendations	6
9.	Personnel	7
10.	Statement of Cost	8
11.	Certificate: Paul A. Cartwright, P.Geoph.	9
12.	Certificate: Michael J. Cormier, B.Sc.	10

PART B ILLUSTRATIONS

Location Map	Fig. 1
Claim Map	Fig. 2
IP Pseudosections	9 Sections
Contoured IP with Interpretation	PLAN MRSAIP
Contoured Resistivity	PLAN MRSARES
Contoured Magnetics	PLAN MRSAMAG

1. INTRODUCTION

Induced Polarization (IP), resistivity and total field magnetic surveys have been carried out on the Marisa Project at the request of Daiwan Engineering Ltd. by Pacific Geophysical Limited. The property, located approximately 6 km south of Port Hardy, on northern Vancouver Island, was accessed by road.

Field work was carried out during the period January 10, 1992 to January 14, 1992 under the direction of Michael J. Cormier, geophysicist. A total of 12.3 line-kilometers of IP / resistivity data and 16.3 line-kilometers of total field magnetic data was acquired.

2. DESCRIPTION OF CLAIMS

The Marisa Project is comprised of the following claims, all of which are located in the Nanaimo Mining Division and owned by Daiwan Engineering Ltd.:

<u>Name</u>		Record No.	Units	Expiry Date
Marisa	1	3939	20	July 25, 1992
Marisa	2	3940	18	July 25, 1992
Marisa	3	3941	18	July 20, 1992
Marisa	4	3942	20	July 20, 1992

3. DESCRIPTION OF GEOLOGY

The geology of the area is dominated by the Quatse Diorite intrusive body, andesitic volcanics and limestone. For a more complete description of the property geology, the reader is referred to the "PROSPECTING AND SAMPLING REPORT ON THE MARISA MINERAL CLAIMS, NORTH VANCOUVER ISLAND, BRITISH COLUMBIA" by Ron Bilquist and P.G. Dasler of Daiwan Engineering Ltd., dated July 19, 1991.

4. INSTRUMENT SPECIFICATIONS

The IP / resistivity measurements were made using an EDA Model IP-6 six channel time domain receiver set to "mode 3" whereby a delay time (TD = 80 milliseconds) is followed by 10 measurement windows (td = 80,80,80,80,160,160,160,360,360 and 360 milliseconds) yielding a total integration time of 1880 milliseconds. The signal used to make the measurements was provided by a Phoenix Model IPT-1 transmitter producing a 2 second on / 2 second off square wave of alternating polarities. The transmitter was powered by a 2 kilowatt motor generator set. IP effects were recorded as chargeability in milliseconds while apparent resistivity values were normalized in units of ohm - meters.

A GEM Systems Model GSM-19 Overhauser magnetometer was employed to collect the total field magnetic data along the grid lines while

an EDA Model PPM-375 magnetometer monitored the magnetic field at the base station. At the end of each day, the recorded base station data were combined with the field readings to correct for diurnal variations in the earth's magnetic field.

5. SURVEY SPECIFICATIONS

The IP / resistivity was carried out using the pole - dipole array with an interelectrode spacing of 50 meters. The moving current electrode was to the south of the potential electrode pair. Measurements were made at stations along grid lines spaced 200 meters apart, recording four dipole separations in each case.

Total field magnetic readings were made at 25 meter intervals along the same grid lines referred to above, as well as on three additional 200 meter spaced lines located west of the IP survey lines.

6. DATA PRESENTATION

The induced polarization and resistivity results are shown on the following data plots in pseudosection format:

Line	Electrode Interval	Reading Interval	<u>Total Coverage</u>
1200W	50 meters	200s - 1500s	1300 meters
1000W	50 meters	0 - 1500s	1500 meters
800W	50 meters	0 - 1500s	1500 meters

600W	50 meters	0 - 1500S	1500 meters
400W	50 meters	0 - 1500S	1500 meters
200W	50 meters	0 - 1500S	1500 meters
0	50 meters	0 - 1400S	1400 meters
200E	50 meters	0 - 1100S	1100 meters
400E	50 meters	0 - 1000S	1000 meters

Also included with this report is a contoured, posted, 1:5000 scale plan map (PLAN: MRSAIP) of the 10-point Fraser-filtered chargeability values which includes the IP interpretation. The Fraser filter value is arrived at by calculating an average value for each dipole separation using one n=1 value, two n=2 values, three n=3 values and four n=4 values. These results are then further averaged to yield one number which can be contoured in plan view. The strong, moderate and weak IP anomalies are indicated by bars in the manner shown on the plan map legend as well as on the pseudosections. These bars represent the surface projection of the anomalous zones interpreted from the transmitting and receiving electrode locations when the anomalous values were measured. The contoured, posted Fraser filtered resistivity data are illustrated on the 1:5000 scale plan map labelled PLAN: MRSARES.

Magnetic survey results are posted and contoured on the 1:5000 scale plan map labelled PLAN: MRSAMAG.

7. DISCUSSION OF RESULTS

The present Induced Polarization (IP) and resistivity survey, and total field magnetometer survey, has evaluated an area of

intrusive rocks centered on the Marisa #1 Claim. Chalcopyrite mineralization has been discovered within fine grained diorite along a stream bed that cuts across the geophysical grid.

Somewhat higher than background IP effects are detected underlying the entire southeastern half of the survey area, with the creek that exposes the copper mineralization striking across the northern region of the anomalous IP zone. This anomalous response is currently undefined in three directions. The southern portion of the IP zone correlates well with a distinctive magnetic anomaly, which is itself roughly coincident with higher than normal resistivity values.

Five diamond drill holes have been completed in the vicinity of the geophysical anomalies. Locations of these holes are shown on the induced polarization plan MRSAIP, together with the interpreted outline of the anomalous IP zone. All of the above holes are reported to have intersected chalcopyrite mineralization, with diamond drill hole M92-1 reportedly encountering significant copper values over its entire length. Diamond drill hole M92-2 was collared well within the area of anomalous IP effects, on the northeastern flank of the coincident magnetic anomaly, and encountered magnetite diorite. rich Some chalcopyrite mineralization was reported associated with felsic dykes intersected near the bottom of this hole.

There seems to be a good correlation between the magnitude of the observed IP effects, and sulphide and/or magnetite concentration. Hole M92-5 tested the least anomalous IP effects of any of the five diamond drill holes. It would appear that this hole also returned the least amount of polarizable material.

8. CONCLUSIONS AND RECOMMENDATIONS

The IP survey centered on the Marisa #1 Claim has outlined part of a moderately anomalous zone which has been drill tested in five locations. As all of these diamond drill holes encountered some degree of copper mineralization, additional geophysical surveying is recommended to extend the boundaries of the anomalous IP zone, particularly towards the northeast and southeast. The southern extension of the zone appears to be complicated by the presence of widespread magnetite, and should be given lower priority for follow up work at this time. Further drill holes could be positioned once the IP zone was fully outlined.

Pacific Geophysical Ltd.

Paul A. Cart

Paul A. Cartwright, P.Geoph.

Michael J. Comien

Michael J. Cormier, B.Sc.

Dated: February 14, 1992

9. PERSONNEL

The personnel utilized during the geophysical program are listed below:

Name	<u>Occupation</u>	Address	Date
M. Cormier	Geophysicist	212-744 W.Hastings St. Vancouver, B.C.	Jan.10-14/92 Feb. 3-6 /92
J. Jordan	Geophysicist	**	Jan.10-14/92
A. Pratt	Helper	n	Jan.10-14/92
A. Sperling	Helper	"	Jan.10-14/92
S. Fleming	Helper	"	Jan.10-14/92
M. Steiner	Helper	"	Jan.10-14/92
P. Cartwright	Geophysicist	"	Feb. 4-5 /92

PACIFIC GEOPHYSICAL LIMITED

Paul A. Centur h

Paul A. Cartwright, P.Geoph.

Dated: February 14, 1992.

10. STATEMENT OF COST

Reference: Marisa ProjectData Acquisition\$ 8,100.00Mobilization - Demobilization\$ 750.00Data Processing, Plotting, Reproduction\$ 1,035.00Interpretation and Report Preparation\$ 1,050.00Subtotal\$ 10,935.00G.S.T.\$ 765.45Subtotal\$ 11,700.45

Motel Expense (includes \$22.68 G.S.T.) \$ 372.60 Total \$ 12,073.05

PACIFIC GEOPHYSICAL LTD.

Part A. Caturt

Paul A. Cartwright, P.Geoph.

Dated: February 14, 1992.

11. CERTIFICATE

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

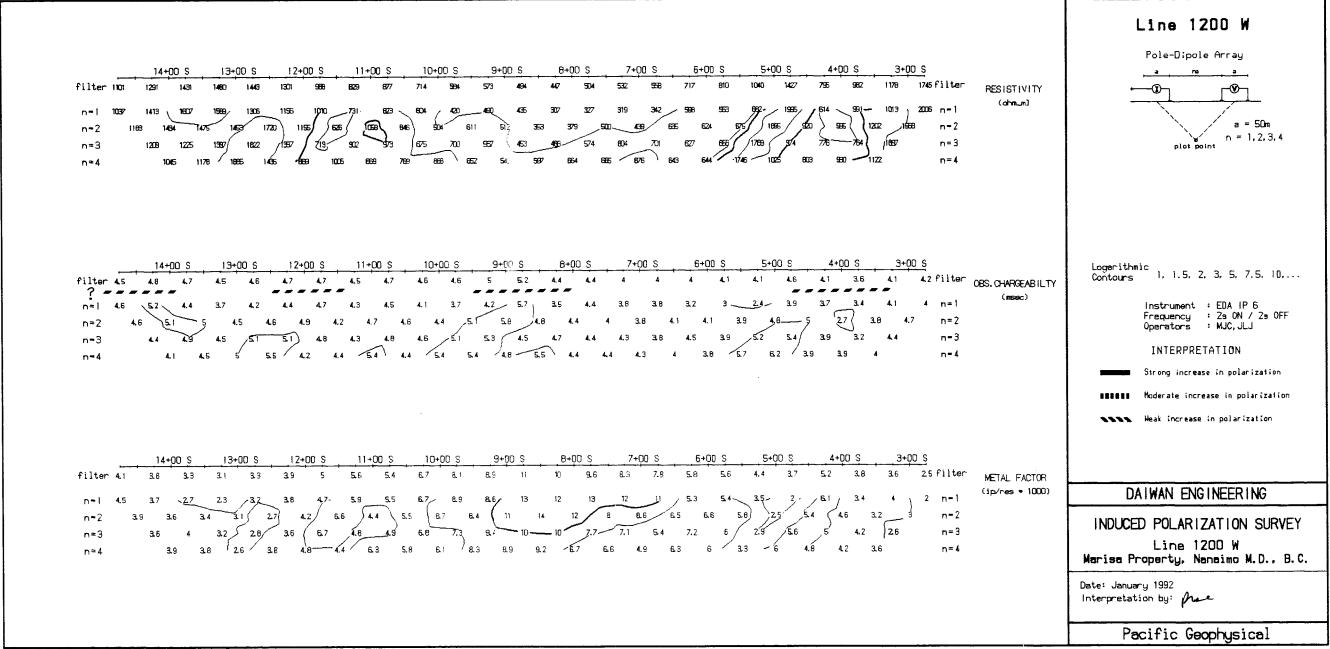
- I am a geophysicist residing at 4238 West 11th Avenue, Vancouver, British Columbia.
- I am a graduate of the University of British Columbia, with a B.Sc. degree (1970).
- 3. I am a member of the Society of Exploration Geophysicists, the European Association of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.
- 4. I have been practising my profession for 21 years.
- 5. I am a Professional Geophysicist licensed in the Province of Alberta.
- 6. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Daiwan Engineering Ltd. or any affiliates.
- Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

Dated at Vancouver, British Columbia this 14th day of February, 1992.

Part A. Centruch

PAUL A. CARTWRIGHT, P.GEOPH.

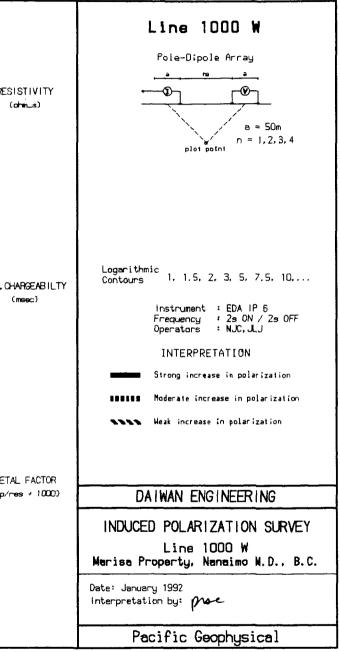
12. CERTIFICATE


I, Michael J. Cormier, of the City of Vancouver, Province of British Columbia, do hereby certify:

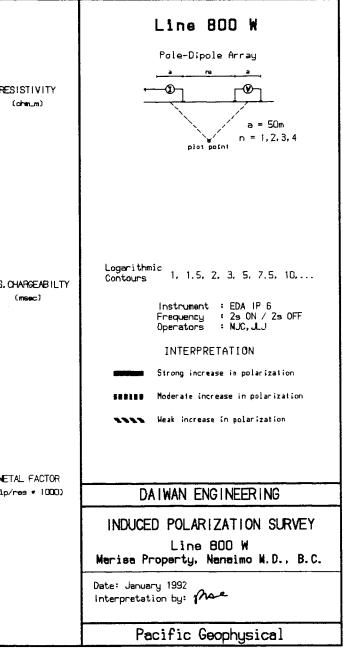
- I am a geophysicist residing at 5512 Kings Road, Vancouver, British Columbia.
- I am a graduate of McGill University, Montreal, Quebec with a B.Sc. degree (1981).
- 3. I have been practising my profession for 10 years.
- 4. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Daiwan Engineering Ltd. or any affiliates.
- Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

Dated at Vancouver, British Columbia this 14th day of February, 1992.

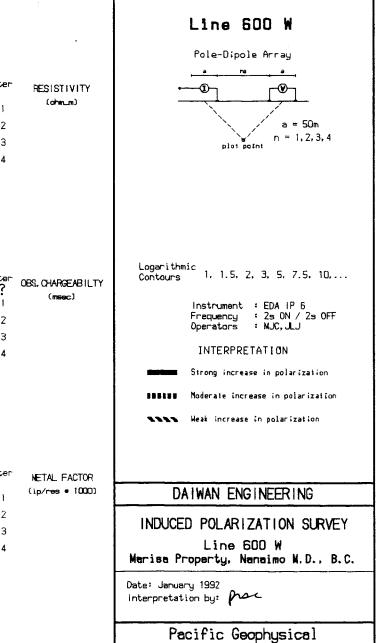
Michael J. Camien


MICHAEL J. CORMIER, B.Sc.

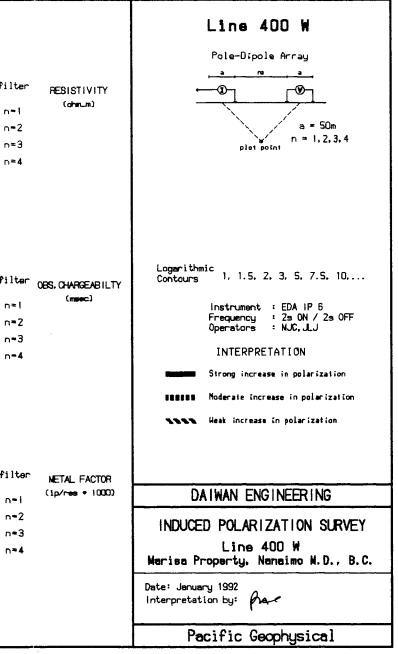
DEOSOFT (tm) Software for the Earth Sciences, Taronto, Cenede


$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	filter	999 1	14+00 S 138 1087	1104	1113	1098	1148	11+00 1099) <u>S</u> 1010	10+00 1232	1412	9+C	10 S 694	8- 826	00 S 574	611	+00 S 681	679 679	+00 S 680	-++	5+00 S 60		<u>4+00</u> æ	<u>s</u> 636	<u>3+00</u> តា7	1 S 637	2+00 637) <u></u> 577	1+00 487	997 filt
Filter al 37 39 4.1 42 4.1 4.5 4.6 4.3 4.5 4.3 4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.3 4.4 4.4 4.3 4.4 <	Filter at a7 a9 41 42 41 45 46 43 44 45 48 42 a8 a4 37 a8 a9 42 4 43 4 a8 4 4 43 45 43 a9 filter at a7 a9 a8 41 a8 a8 4 4 43 45 43 a9 filter at a7 a8 a9 42 4 43 4 a8 a3 a5 a5 a9 45 47 41 n=1 $n=2$ a3 a9 4 43 a6 a6 51 41 42 42 52 52 54 46 59 a6 a9 a7 42 41 43 46 a4 42 4 41 52 45 a7 n=2 n=3 4 46 44 a5 44 55 44 52 45 4 43 56 a7 a2 a5 a7 44 46 41 42 43 4 a9 42 a7 5 48 a7 n=3 n=4 44 r_{33} a3 a5 52 45 44 4 58 56 53 a4 a4 a9 a1 49 43 41 43 29 47 41 45 43 42 4 n=4	n=2 n≈3	1194	1114	_	-	11	64 124 (1575)	813 1019	90	1365	J218	1039 IQ	1254	B ST	536-/ > 469/	49 6 653	669 645	ZI4 813	€7 ⁽		570	646)	333	438	} छ		- 759 - 759	572 572	10 456 452	n=:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n=2 33 39 4 4.3 36 36 5.1 4.1 4.2 42 5.2 5.2 4.6 2.9 3.6 3.9 3.7 4.2 4.1 4.3 4.6 3.4 4.2 4 4.1 5.2 4.5 3.7 n=2 $n=3 4 4.5 4.4 3.5 4.4 6.2 4.5 4 4.3 6.1 4.9 3.7 3.2 3.5 3.7 4.4 4.6 4.1 4.2 4.3 4 3.9 4.2 3.7 5 4.8 3.7 n=3$ $n=4 4.4 6.3 3.3 4.5 5.2 4.5 4.4 5.8 5.6 5.3 3.4 3.4 3.9 3.1 4.9 4.3 4.1 4.3 2.9 4.7 4.1 4.5 4.3 4.2 4 n=4$	filter	+: 31 :		-+	++				+			+	<u> </u>	+	+			-+			- + +	+		+	3+QC 4) <u>S</u>		+		
		n=2 n=3		3.9 4 4.6	4 4	1.3 1 3 5	6 3. 44	6 5.1 6.2	4.5	4	2 42 43	52 6.1	2 5	3.7	4.6 3.2	29 35	3.6 3.7	3.9 4.4	3.4 3.7 4.6 4.9	4.2	4.1 4.2	4.3 4.3	4. 6 3	34 4 :	3.9 4.1	4 42 4.5	4. 1 3.7	5-5-2	4.8	5 3.7	n=

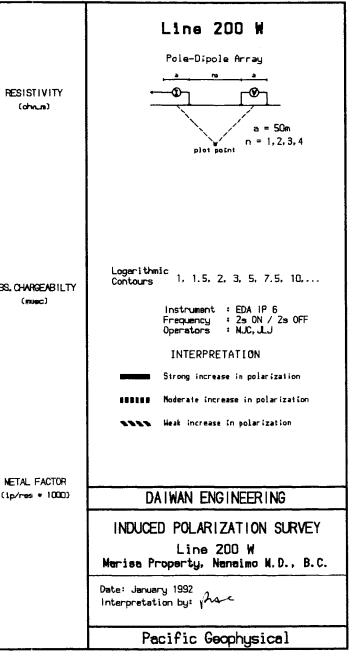
SEOSOFT (tm) Software For the Earth Sciences, Toronto, Canada


		14+00 S		+00 \$	12+0		+	<u>20 Ş</u>		<u>00 S</u>	+	+00 S	-+	8+00 S	+	7+00 S		6+00		5+0		1	+00 S		<u>3+00</u>			<u>10 s</u>		+00 S	•
filter	963	86 988	1054	1114	1996	1669	1549	1405	1329	1198	1090	87 1	91	5 663	8 66	8 62	29 B	ΰ	849	862	10 17	996	769	7.	5	641	56 6	617	631	62/	24 1
n=1	<i>TTI</i>	35 989	534	~~~~/	/111	998-	1025	1019	1098	1209	2 ¹³	-694	- 76	8579	9 60	e 52	28 4	97	600	457	738	976	666	7	94	-651	961	603	575	52/	77
n=2	943 <u> </u>	869	868	739	07 184	9 171		B (B	1 12	27 I	141	980	` <u>m</u>	1012	808	815	798	-740	60	g	/ 12	87)	743	677 \	981) 🤅	f 68	34 (658	708	
n=3		166 1123	100	1470	1524 (2538 \	1615-	-1462	1459	1198	1005	905	32	3 (113		⁶ / ⁴	979	<u>ኛ</u> `	75	109	1354)907	<u>∫</u> 657	2	6	593	522	612	726		
n=4		1368	1248	1853 18	пз 190	0- 22Z	ZI	וכו וכ	29 14	106 1	ω.	926	1146	1	1139	-988	1091	891	117	15	59	á s	899	~739	495	99	j Qo	'4	708		
		14+00 S	13	8+00 s	12+0	nn s	11+	00 S	10+	00 S	9	+00 \$		8+00 S		7+00 \$	\$	6+00	S	5+0	0 8	4	+00 S		3+00	S	2+(00 S	1	+00 S	;
filter	+ 3 ?	13 14		315	·	4.3	4.6	+		4.5		4.2		3 3.9	+					3.4	3.7	4 4	3.7		4	3.9	3.8	4	4.2	4	.1
TILLER	42	13 14	72	72	4	4.3	4.0				-	4.2	-	J		/ u		~ '			u .,	-	•••		•		2.4			-	•
n=1	2.8	26 2.6	2.3	2.3	2.7	- 3	3.7	4	4.7	4.4	3.9	3.4	а	9 2.9	32	୫ 2	. 4	2	2.3	2.2	24_	- 34	3 .3	4	.1	4	39	3.9	4	З	.9
			_		.4 3	 9.4.6		2 4	o 4		4.6	12		3.8	3.9	3.5	~ 20 -		3.2	2		l. 1	36	3 9	46	3,	A 3	S.	45	4.2	
n≈2			32	-	.4 .1.				0 4	.0	4.0	4.3	4				2.5~	42	2 سال	-2	-		40								
n= 3		3.6 3.8	3.6	3.8	4.4	5.5	4.6	4.9	4,5	4.3	49	4.4	4	3 4.7	7 4.	2 3.	.3 3	3.4	31	4	4.3	4,2	4, 1	З	6	4.1	4	3.9	4,3		
n=4		4	4.2	4.3 4	.5 5.	7 5.6	5 - - 5	5 4.	8 3	LT	4.4	5.8	4.5	4.8	4 .B	4.4	38	3.7	4,9	5	3, 3	19	48	3.6	3.1	3.0	8 4.	.4	3.9		
																								•							
																											_				_
		14+00 S	13	3+00 S	12+	<u>00 S</u>	11+	<u>00 S</u>	10+	-00 S		+00 \$		8+00 S		7+00 \$	<u>}</u>	6+00	<u>s</u>	5+(05	4	+00 S		3+00	<u>s</u>	2+(ço s	-+	+00 S	ż
filter	34	3.6 3.6	3.5	3.5	25	2.7	3.1	3.3	3.6	19	4.3	4.9	4.	.6 4.1	54.	.4 4	L1 3	3.9	4	4.1	3.7	4.2	4.9	5	56	64	6.8	6.6	6.7	6.	۰6
n - 1	3.5	4.1 4.3	4.3	4.9	/2.5	3 🔨	3.6	3.9	4.3	3.6				5 5			.6	4	3.9	4.5	3.3	3.5		5	12		6.9			7.	,5
n= 2	3.7	3. 8	3.7	3.9	з 2.	1 2	у э	.9 Э	.1 5	1.7	4.1	4.4	5.6	3.7	4.8	4.3	37	4.3	5.1	'з	2	Ì,	49	5.8	>4,9	5.	R 5.	-6	6.9	6	
n≈3		3.1 3.3		26		2.2				3.6	4 9	48	~	.6 4.	1 4	7 9	1 -	95	4.7		3.2	4.6/	/	1 54		6.8	\sim		5.9		
0~3		U-1 U-U		1 20	2.5	44	2.5 ~	~ ~~	~/~	~ ~		6.2							4.2		4.1		0.0		9		1	< · · ·			

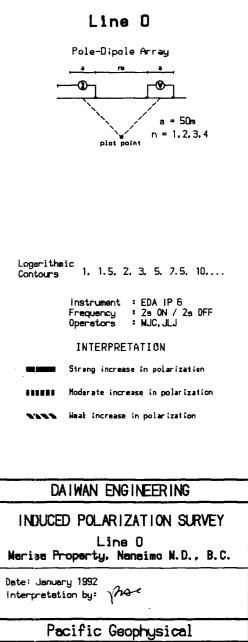
GEOSOFT (tin) Software for the Earth Sciences, Taronto, Canada


	14+(···· i · + · +	2+00 S	11+00 S	10+00 S	<u>9+00 S</u>	8+00 S	7+00 S		5+QD S	4+D0 S	3+00 S	<u>2+00 S</u>	1
filter 774	725	748 743	772 729	762	746 768	664 968	998 9 4 6	774 660	649 694	669 732	661 452	507 47 6	584 749	974 986	564
n= 719	562	6 16 549	995 - 4 9	- 582	483	564 553	50 ⁴ 50 ⁷	866 750	578 639		457 - 188	468 341	377 348	17 196	- 564
n=2	7457!!	660 71	6 645		623 74	43 - 855	898 1116		680 737		∞ জী	231 ()981 \ 4	18 461 9		e,
n=3	863	750 622	778 905	621	794 663	979-1074	1362 105	545 570	7 58 642	2 780 719	761 - 665	<u>`æ</u>] (æ	432 / 1051	/學//190	- 52
n=4	91	962 86	9 - 1082	1032~ 663	1015 10	1199	1959 1223 /	9 91 568	65 656	740 796	765 865 \	715 261 6	16 - SQI 15	£2 ∕ 558 `5π	D
	14+(0 S 13+		2+00 S	11+00 S	10 +0 0 S	9+00 S	8+00 S	7+00 \$	6+00 S	5+00 S	4+00 S	3+00 S	2+00 S	
filter 42		+ +		4.2	4.5 4.4	4.7 5.1	5.4 6	6 5.8		5.2 4.6		-+	3.6 3.7	4.1 4.8	4.3
					-										
n≖ 3.4	3.7	3.5 3.5	35 32	3.2	3.7 3.3	3.4 3.6	3.2 5.1	6.2 5.9	5.7 5.3	3 39 31	3.6 3.1	31 2.4			З.
n≃2	4.5 4.	4.3 4.	2 3.9	3.9 4.4	4.3 4.	.1 4.6	.4.8 6.1	6.4 5.5	6.3 6.6	5.6 4.4	4.2 4.5	3.6 3.6 3	.3 <u>-</u> 3 <u>-</u> 3	.6 5 4.2	2
n - 3	5	4.7 4.7	4.5 4.5	4.8	4.7 4.8	- <u>5</u> 1 5.6	6.6 7	5.7 5.4	6.6 6.3	3 5.9 5.4	4.6 4.5	3.9 4.2	3.3 4.2	57 36	б.
n=4	6.	4.8 4.	8 4.8	-5.1 4.9	4.9 5.	4 5.6	7.2 7.2	5.9 4.9	5.2 6.2	61 57	5.6 4.8	4.9 4.2 4	.2 4.4 6	.2 4.2 4	8
	14+			12+00 S	11+00 \$	10+00 5	9+00 S	8+00 S	7+00 S		5+00 S	4+00 S	3+00 S	Z+00 \$	
-	6.2	5.9 6	56 59	9 5.5	6.3 5.9	5.4 5.4	5.5 6.8	6 8.9	9.2 8.5	5 7.8 6. 2	6.9 12	6.9 8.1	7.1 5.7	4.6 6.1	7.
_ filter 54		5.7 6.4	67.1	5.4	7.7 6.9	6 6	5.1 6.3	7 7.9	9.9 8.4	4 7.3 4. ^{c.}	7.3 16	5 3 7	7.3 6.7	3.8 4.2	~ 5
	6.5		9 6.1	57 6	69 5		54 54	75 95	9.7 Q	85 63	59 78	16 161 57	9 54 3		
n=1 4.7		2 65 5		5.7 0	u s .										
n≈1 4.7 n≈2	6 6 .	8 6.5 5.	E9 41		to 76	57 57	- 10 E7							3.// 5./	1 L
		6.3 5.7	5.8 4.5	5.8	5.9 5.6	5.2 5.2 5 4.6	4.8 6.7	8.7 8.7 9.4	6.8 9.9	J 7.6 7.5	ه ۵.۵ 7.4 5.5			22	<u>۱</u>

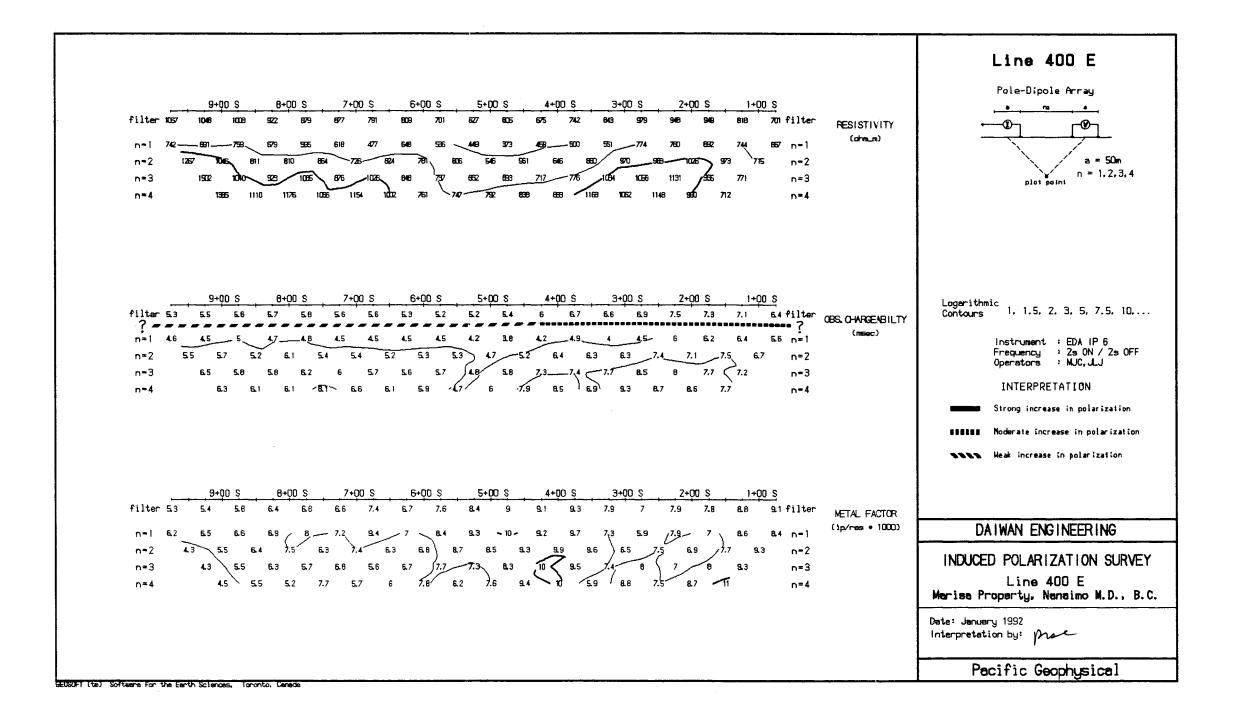
GEOSOFT (tm) Software for the Earth Sciences, Taronto, Canada

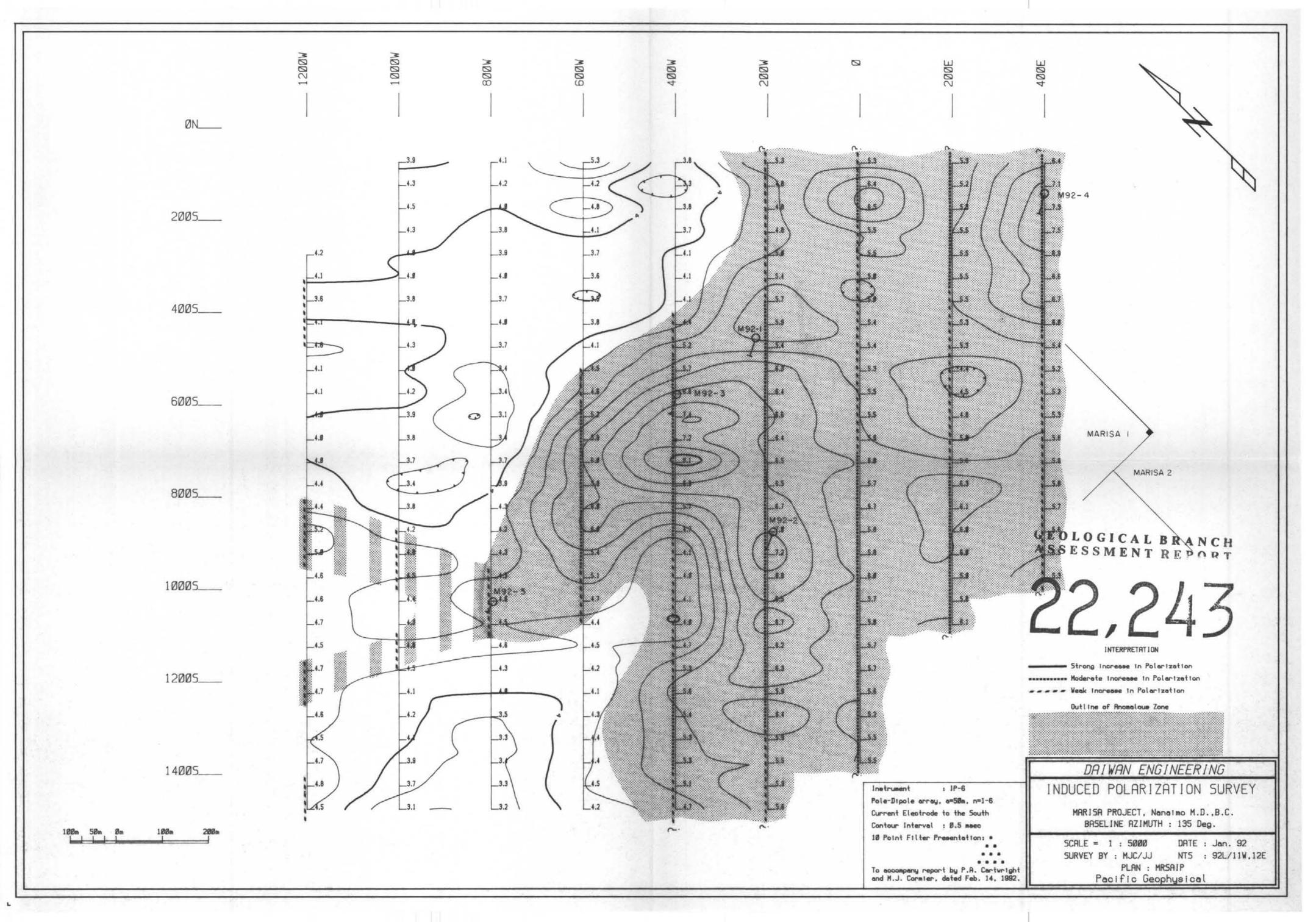

	·+		00 \$	· · · · · · · · · · · · · · · · · · ·	<u>+00 \$</u>	+	2+00 S	+	+00 \$	+	0+00 S		9+00 s	++-	8+00 S	++	7+00 S		i+00 S	+	+00 5		+00 S	++	- <u>00 S</u>		po s
filter	2715	2983	3200	2803	2126	2094	1990	1485	1478	1401	1117	966	99	6 995	5 11 6 5	9 126	3 1095	399	725	912	617	502	538	538	538	525	524
n=1	1953	-1998			1602	_	- 209	_	1384		- 62			7 517					975			بر ۳		330		ZQ	788
n=2 n=3	262		80 37 3961,	<u> </u>	914 2 2 436			251 I 1256	1		1307						1299 B 1141		/			_	42 544	529 <u></u>	470 636	₩ ₩	8 - 19 - 97
n=3 n=4			33 7		459 2		/(407)	~	114G	1405			1187		554	809 704	538		977 880	eaz ∕	798		
		-															-										
	,+	14+	<u>00 \$</u>	, 13-	<u>400 s</u>	1	2+00 S	11	+ <u>00 s</u>	1	0+00 s	9	9+00 s		8+00 s		7+08 S	{(3+00 <u>s</u>	-+	+ 0 0 s		1+ <u>00 s</u>	-+	<u>+00 s</u>	+	<u>po s</u>
filter 74			5.3		5.4			4.7	4	41	4						1 7.2							41	41	3.7	3.8
÷	3.8						51	4.2	2.9	- 33	з.													29_	2.9	2.2	2,9
n=2	4.6		.3 5	~~	ب کور	5.7	5.8 5		39	3.8	4	3.6	3.6	4.4	56	9	7.9	17.4-	<u>a</u> l	6.3	57	4.7	3.7	4	4.1	4.1 2	29- 31
n=3		5.8	6	5.2	6	6	5.7	4.5	45	4.2	4.5	4.1	الحر	8 6.3	9.6	5 8.	7.4 م	5.9	5.8	6.4	5.8	A 6	4.8	4.7	4.5	43	3.5
n=4		6.	.3 5	.9 1	5.8	5.9	5.8 4	(9 -	5.1	4.7	5	4.8	55	6.4 /	9.8	85	1.4	5.6	5	5.6	61	5.5	48	3.8 {	5.7	46 -5	5.4 A
	+		<u>00 s</u>	++	+00 \$	4	2+00 S	+	+00 \$		0+00 S		9+QO \$		8+00 S	~ +- · · · +	7+00 S	····•	6+00 S		5+00 S		4+00 S	-+	+00 S	-+	<u>00 s</u>
filter	1.8	1.8	1.8	2	2.6	2.8	3	32	2.7	3	19	4.3	4	9 5.9	3 5.7	7 6.1	5 6.8	8.2	9.3	9.5	8.4	9	7.6	7.8	8	7.3	7.7
n=1	2	21.	1.6		3 —	— з	2.2	28	2.1	રા્							4 6.6		7.9	9,1	U	9 9	7.3	8.9	9.7	8	9.9 7.4 <u>7.</u> 9
n=2	1.3	//	ر ۲.	.5] :	25	2, 9	25/ 4			2.3				<u>``</u>			6.2	,				8.9	8.2	7.5	8.6	8.8 7	.47.
n=3		1.4	_1.5	25	25	2	1 4	3.5	28	2.6	33 ا	41	4.	5 \5.	2 7.2	26	6.5	5 / 8.4	1	\$ 9.1	11	٦. I	8.8	7.3	7.1	7.2	6
n=4		1	.7 / 2	28	2.3	23 -	1.5	3.5	36	`3 —	34	3	4.8	4.6	5.8	6.5	6.2	83	9	9.1	11	9.1	3	6	7.1	6.1 6	5.4 6

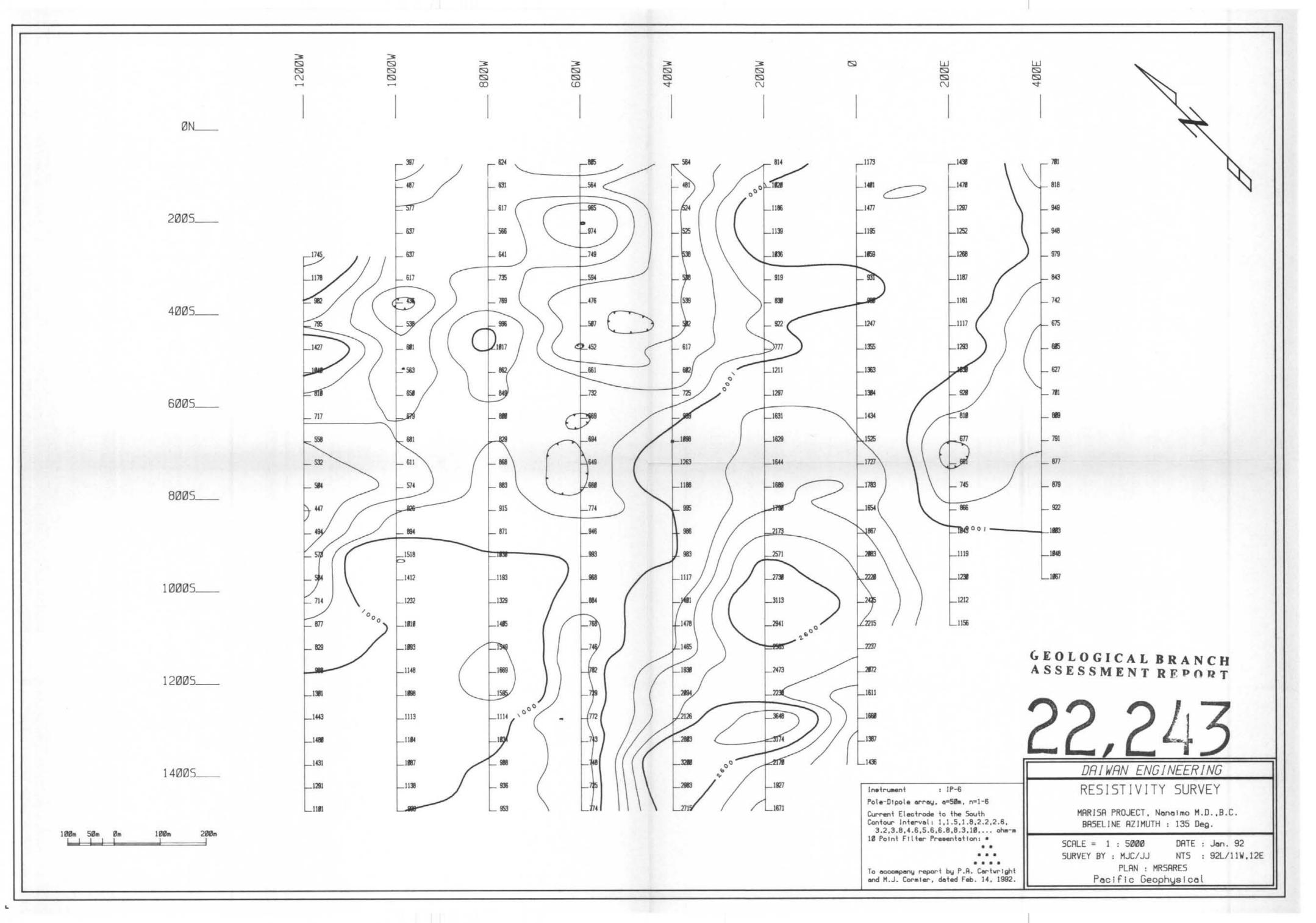
.

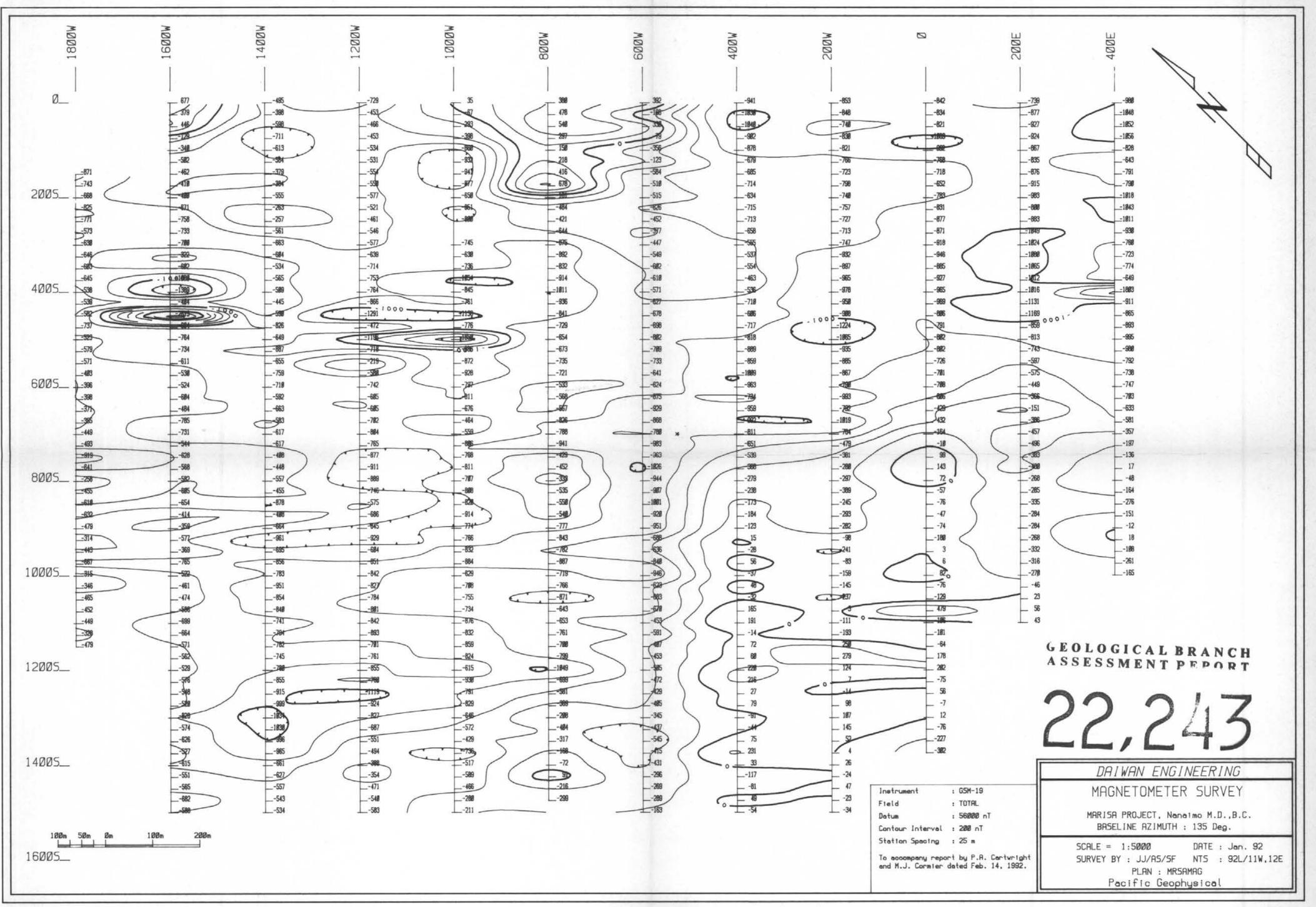


		+00 \$ 13+0 2170 3174		<u>19</u> 11+00 9 2473 255 29		9+00 S 2571 2173	8+00 S 1790 1689	7+00 S 1644 1529	6+00 S 1631 1257	5+00 S	<u>4+DD S</u> 922 830	<u>3+00 S</u> 919 1036	2+00 S	1+00
filter 1	VI 1927	21/0 51/4	3040 2230	<i>0</i> 43 436 49	N 3113 2/30	20/1 21/3					-			
	71 1666		1/	-20021926 23				1122 1122	1373 .666-	1162 508	1043 755	612 840	57-1089 -	1
n=2		2006 2310 () 250			3732 2855	\sim 1				5 7 3-94		1	14 1407 11	
n≃3	1602			258 2749 54	33 3262 32 55			1776 2020	1525 1954		744 654	665 1116		
n≈4		1998 3108 -157	5 ~ 1307 2582	2741 3523	2843 3719	3196 2558	2084 2043	1957 2353 1	667 -2112 ~ 1		6 765 90	1052 14	N7 1259 9	V2
	. 14	+00 \$ 13+0	0 S 12+00) \$11+00 \$	s 10+00 S	9+00 S	8+00 S	7+00 S	6+00 S	5+00 S	4+00 \$	3+00 S	2+00 S	1+00
filter 9	6 5.9	5.5 5.9	6.4 5.9	6.3 5.2 6.	7 6.5 6.9	7.2 7	6.7 6.5	6.5 6.4	6.6 6.4	6.3 5.4	5.9 5.7	5.4 5	4.8 4.8	4.8
? -														
n=1		5.2 5.5	6.3 5.3		9 4.3 54	5.6 5.3		5.3 5.1		6.1 (43		51 4.4	30 37	3.8
n≖2	87)		6 6			7.2 7.1				9 5 5			~	5.2
n=3	5.9	5.2 6.4	6.2 6.3	6 6.5 7.		B1 7.6-	7.3 7.3	6.6 7	6.9 7.7	5.6 5.9	6 .1 6.3	5.3 5.3		5.6
n=4		5.3 6.7 5.7	6.5 6.4	6.8 B.2	7.1 8.2	8.3 8.1	8 6 /	7.3 -7.7	7.2 6.2 6	2 6.5 6.	365.	.9 4.7 5	.6 <u>5</u> .6 6	1
		i+00 \$ 13+0	10 S 12+00	DS 11+00	s 10+00 s	9+00 S	8+00 S	7+00 S	6+00 S	5+00 S	4+D0 \$	3+00 S	2+00 S	1+00
	•	-+++++	21 27		3 21 26		+++	4 4	4.1 5.2	5.5 7.2	£5 £9	<u> </u>	4.3 4.1	4.8
filton		20 2.1	21 27	20 24 2	.5 21 26	25 23	76 79		4.1 3.2	3.3 7.2	U J U J	0 4.5	4.5 1.1	4.0
filter	3.3 3.2			29 26 2	.5 , 1.7, 2.8	3 - 31	4 4.2	4.7 4.5	4 6.1		5.3 6.9	6.2 5.2 _j	4.3 3.6	4.1/
	13 32 25 3	2.8 1.4	1.1. 28	23 20 2					38 4.7	e/ = 7 = 6	6 7.2 6	.9 5.2	L6 3.4 3	19 / 6Z
	25 3				51.8 2.4	2.5 2.9	3.6 3.9	3.9 4	3.8 4./ 4	່ວ່າເປັ	· <u>··</u> · ·			
n=1 n=2	25 3 5.3	28 2	3 26 25	2.4 2.6	1.8 24 1 21 24			3.9 4 3.7 3.5	45 39 (/				6.2
n=1	25 3 5.3 3.3		3 26 25 31 25	24 26 23 24 2		2.7 3.4		3.7 3.5		6.8 5.7	82 .4	(3.6 4	6.2 3.3


GEOSOFT (tm) Software for the Earth Sciences, Toronto, Canada




1397 1680 1611 2072 2237 2215 2425 2220 2088 1667 1654 1788 1727 1525 1434 1304 1363 1355 1247 980 981 1058 1195 1477 1401 1173 fil	ME3151
1885 1611 1810 1815 252 2880 2507 2807 2808 1821 1989 2205 2019, 1732 1281 1989 1627 1688 1117 506 1213 557 1075 1942 1400 ni	- 1 - 2 = 3 = 4
<u>13+00 \$ 12+00 \$ 11+00 \$ 10+00 \$ 9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$</u> \$5 \$2 \$6 \$7 57 \$8 \$7 6 \$8 \$8 \$8 \$7 57 6 \$6 \$5 \$5 \$3 \$4 \$4 5 5 \$5 \$5 \$5 \$5 \$6 \$64 \$5 \$fi	lter OBS. CHWRG
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 1 (and = 2 - 3 - 4
13+00 \$ 12+00 \$ 11+00 \$ 10+00 \$ 9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+0	ME ME F
45 26 38 26 28 35 25 33 29 33 44 37 42 43 36 48 4 38 36 49 57 51 35 36 45 47 n	
33 39 27 37 22 22 25 23 28 36 33 39 31 32 51 38 37 36 51 55 5 54 54 48 45 n	n= 3 n= 4
3 25 29 28 22 28 25 25 28 27 41 24 23 25 37 44 42 25 29 47 55 53 52 46 44 43 n 33 39 27 37 22 22 25 23 28 36 33 39 31 32 51 38 37 36 51 55 5 54 54 48 45 n	-2 =3



Line 200 E Pole-D:pole Array a = 50m n = 1,2,3,4
HARGEABILTY (mamec) Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : MJC, JLJ INTERPRETATION Strong increase in polarization USEN Moderate increase in polarization Weak increase in polarization
AL FACTOR THE FACTOR THE POLARIZATION SURVEY Line 200 E Marisa Property, Nenaimo M.D., B. Date: January 1992 Interpretation by: force

L |