Daiwan Engineering Ltd.

1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G5 (604

- 1	- The state of the	and the second s		
	LOG NO:	APR 0 8 1992	RD.	
١	686GEBEN:			
Į				
I				
,	FILE NO.			

GEOPHYSICAL AND DIAMOND DRILLING REPORT

ON THE

WIN PROPERTY

Nanaimo Mining Division

British Columbia

SUB-RECORDER

VANCOUVER, B.C.

NTS: 92L/12

Latitude: 50° 44'N

Longitude: 127° 57'W

For

Great Western Gold Corporation

420, 475 Howe Street Vancouver, B.C. V6C2B3

By

Gordon J. Allen, P. Geol

And

Peter G. Dasler, M.Sc., P. E.O. LOGICAL BRANCH ASSESSMENT REPORT February 29, 1992

TABLE OF CONTENTS

			Page
SUM	MARY		1
1.0	INTRODUCTION		
2.0	PROPERTY LOCATION AND ACCESS		
3.0	PROPERTY TITLE		
4.0	PREVIOUS WORK		
5.0	REGIONAL GEOLOGY		
6.0	1992 EXPLORATION PROGRAM		10
	6.1	EASTERN AREA	10
	6.1.1	GEOLOGY AND DISCUSSION OF TARGETS	10
	6.1.2	INDUCED POLARIZATION SURVEY	10
	6.1.3	MAGNETIC SURVEY	11
	6.1.4	DIAMOND DRILLING	11
	6.2	WESTERN SKARN ZONE	14
	6.2.1	GEOLOGY	14
	6.2.2	DIAMOND DRILLING IN THE WESTERN SKARN ZONE	15
7.0	CON	CLUSIONS	17
8.0	RECOMMENDATIONS		17
CER	rifica'	ΓES	18

LIST OF FIGURES

		Location
Figure 1	Location Map	Following Page 1
Figure 2	Claim Map (1:50,000)	Following Page 3
Figure 3	Regional Geology Map (1:1,000,000)	Following Page 5
Figure 4	Structural Setting Map	Following Page 5
Figure 5	Regional Mineralization Of Northern Vancouver Isla	ndFollowing Page 5
Figure 6	Geology, Geophysics, Geochemistry Composite, And Drill Hole Location Plan; Eastern Target Area (1:5000)	Following Page 10
Figure 7a	Cross Section DDH W92-1	Following Page 12
Figure 7b	Cross Section DDH W92-1	Following Page 13
Figure 7c	Cross Section DDH W92-3	Following Page 14
Figure 8	Geology Of The Western Skarn Zone (1:2000)	Following Page 14
Figure 9	Cross Section DDH's W92-4 and W92-5	Following Page 15

APPENDICES

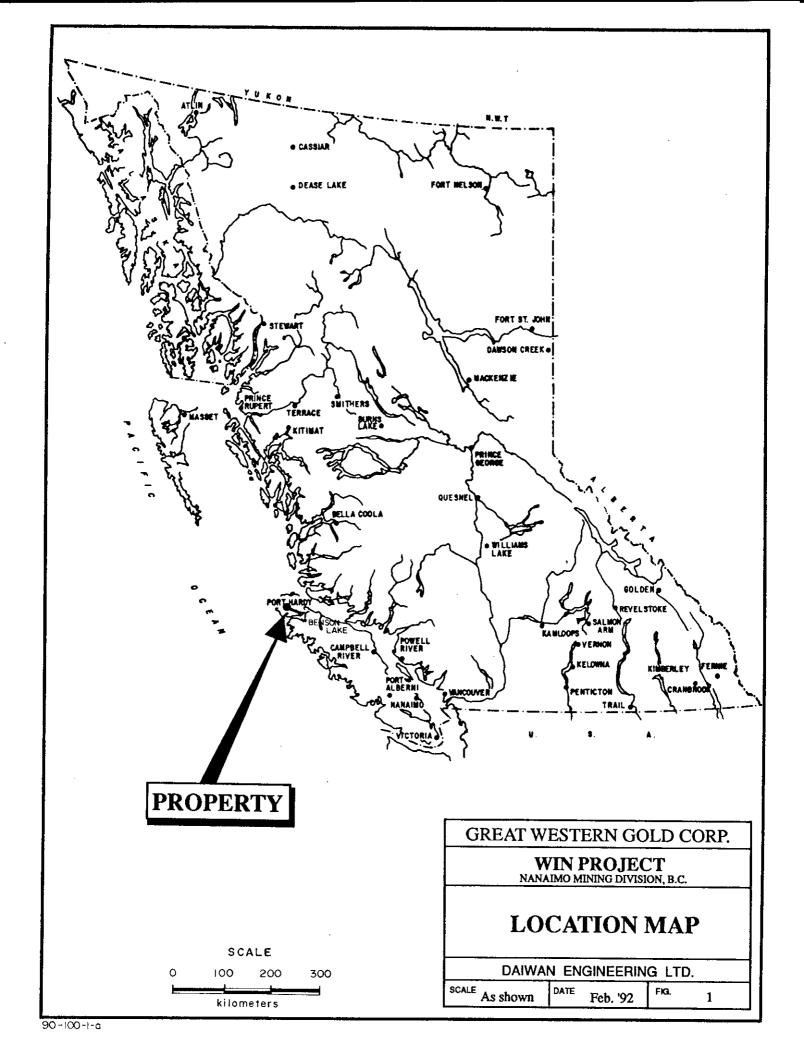
Appendix I List Of Personnel And Statement Of Expenditures

Appendix II Drill Logs

Appendix III Certificates Of Analysis

Appendix IV Geophysical Report

SUMMARY


The Win property is located on the north end of Vancouver Island, immediately west of Nahwitti Lake on NTS map sheet 92L/12. It is underlain by a generally northwest trending, moderately southwest dipping sequence of Karmutsen Formation basalt and limestone, Quatsino Formation limestone, Parson Bay Formation siliceous siltstone and argillite (collectively the Vancouver Group), and Bonanza Group andesite. These rocks have been intruded by several phases of Island Intrusions ranging in composition from diorite to granite. Calcareous units of the Quatsino and Karmutsen Formations where cut by intrusions typically contain sporadic pods of zinc and manganese-rich skarn.

In previous programs much of the property had been covered by soil geochemistry, IP, magnetic and VLF-EM surveys. The property was geologically mapped at a scale of 1:5000. Several skarn showings were trenched and subsequently drilled. The most significant mineralization discovered to date was in the 'Western Skarn Zone' in the west part of the Win 1 claim where drill hole W91-1 intersected a zone with 8.7% zinc across 4.88m.

Between January 9 and February 11, 1992, Daiwan Engineering Limited conducted an exploration program on the Win property on behalf of Great Western Gold Corporation. The program focused on two areas on the property. The first area is located in the central part of the Helper claim where previous programs identified extensive zones of gold and zinc-in-soil anomalies within zones of moderate chargeability. Several small skarn showings occur in the area and it was hoped that broader gold-bearing skarn zones might exist in areas with poor exposure. The second target was the mineralized horizon in the 'Western Skarn Zone.'

The program consisted of 5km of line cutting, 2.5km of grid rehabilitation, 7.5km of IP and magnetic surveys (eastern target area), and 502.36m of diamond drilling (both target areas).

In the eastern target area IP and magnetic surveys better defined areas warranting drilling. Four holes totalling 393.2m were drilled. The first target was an area with coincident broad gold-insoil and moderate chargeability anomalies. Hole W92-1A was drilled to a depth of 53m in overburden. A second hole (W92-1B) was drilled at a steeper angle to a depth of 153m. This hole intersected primarily pyritic felsic intrusion and minor basalt, with no significant base or precious metal content. The depth of overburden suggests that the metal-in-soil anomalies in this area are not related to bedrock geochemistry.

Hole W92-2 tested a granite-limestone contact. This contact was found to be along a large fault zone and is not, therefor, a favourable setting for skarn mineralization. The limestone contained only traces of sphalerite.

Hole W92-3 tested a coincident multi-element soil and high chargeability anomaly. The hole intersected basalt for its entire length. A 3m wide apparently shear-related sulphide zone may have been the source of the IP anomaly. This zone contained no significant amounts of base or precious metals. It appears that soil anomalies in this area were transported.

In the 'Western Skarn Zone' two holes totalling 109.12m were drilled 56m southwest of hole W91-1. Hole W92-4 intersected intermixed limestone and siliceous siltstone with a 10m wide skarn zone developed adjacent to a granite intrusion. This skarn zone contained sporadic magnetite and sphalerite and generally less than 1% zinc. Hole W92-5 was less well mineralized.

From drill hole data and limited mapping conducted in the Western Skarn Zone appears that it is underlain by a folded (flat-lying in the drill holes area) sequence of rocks transitional between limestone of the Quatsino Formation and siliceous siltstone and argillite of the Parson Bay Formation. This sequence has been intruded by a granite sill and sporadic pods of zinc-rich skarn have developed along its contact.

No significant mineralization was found in the eastern target area. In the 'Western Skarn Zone', the sporadic nature of the mineralization and its lack of associated precious metals suggests that it too is not an important exploration target. No further work on the property is recommended at this time.

1.0 INTRODUCTION

The Win property is located on the north end of Vancouver Island approximately 8km northeast

of Holberg. From previous programs it was known that the property contained several small

zinc,+/- lead, and +/- copper-rich skarn occurrences in limestone and limy sediments. At the

request of Great Western Gold Corporation, Daiwan Engineering Limited conducted an

exploration program on the Win property.

Fieldwork consisted of 5km of line cutting, 2.5km of grid rehabilitation, 7.5km of IP and

magnetic surveys, and 502.36m of diamond drilling. Fieldwork was conducted between January

9 and February 12, 1992.

The program had two target areas. In the eastern part of the property on the Helper claim, the

target was a gold-bearing skarn in a zone with coincident broad gold-in-soil and moderate

chargeability anomalies. In the 'Western Skarn Zone' on the Win 1 claim the program was

designed to further outline a zinc-rich skarn occurrence.

2.0 PROPERTY LOCATION AND ACCESS

The Win property is located on northern Vancouver Island, on NTS map sheet 92L/12, at latitude

50°44'N and longitude 127°57'W. It is roughly 31km west of Port Hardy.

Port Hardy is the main commercial centre of Northern Vancouver Island. It provides all of the

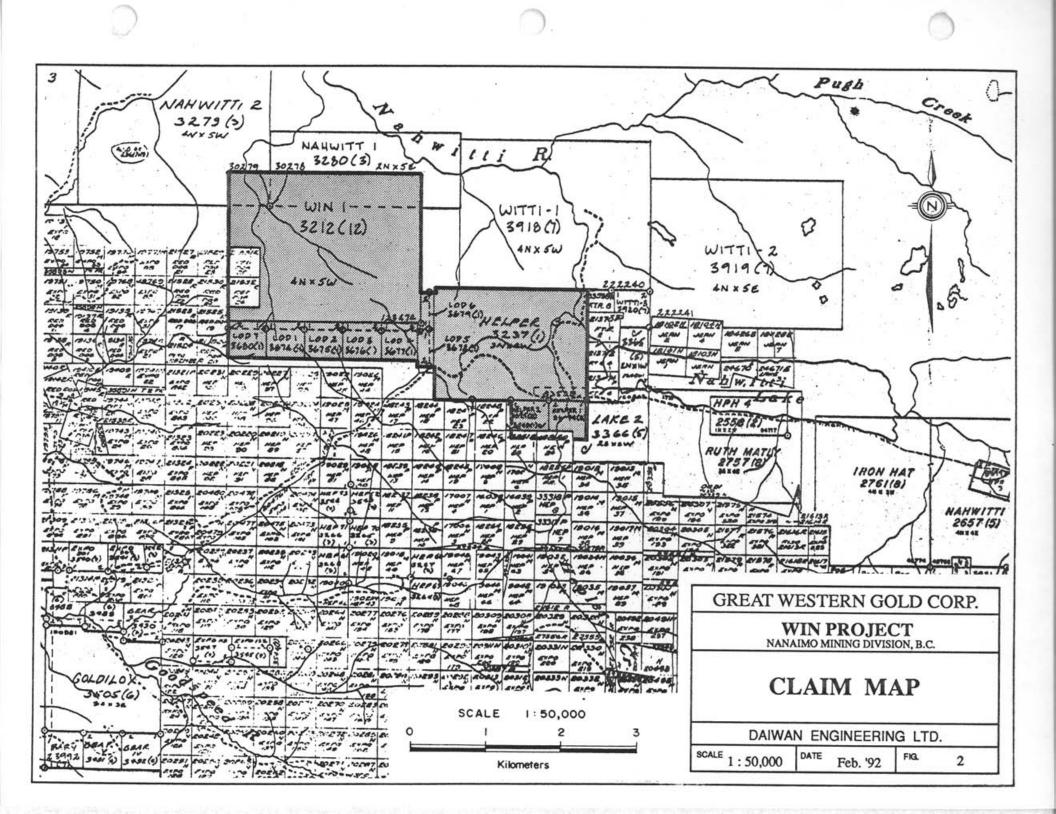
facilities for the local logging industry, and for the 55,000 tpd Island Copper Mine. It is serviced

with daily flights from Vancouver. Travel time to port Hardy is approximately 8 hours by car,

and 1 hour by aeroplane.

The property is crossed by the public Holberg road. Most of the property is readily accessible

by a system of active and inactive but passable logging roads.


3.0 PROPERTY TITLE

The property consists of 41 contiguous mineral claims located in the Nanaimo mining division.

The claim group is under option to Great Western Gold Corporation. Claim locations are shown

in Figure 2.

Daiwan Engineering Ltd.

CLAIM DATA

<u>Name</u>	Record No.	<u>Units</u>	Expiry Date	Registered Owner
Win 1	3212	20	Dec. 9, 1996	Daiwan Eng Ltd *
Helper	3237	12	Jan. 31, 1994	11
Helper 1	3694	1	Feb. 3, 1995	11 11
Helper 2	3695	_1	Feb. 3, 1995	tt ft
Lod 1-7	3674-80	7	Jan 16, 1995	11 11
	Total	41		

^{*} Held in trust for Western Magnatite Ltd., a private corporation.

4.0 PREVIOUS WORK

The first recorded work on what is now the Win Group was done by Giant Explorations Limited in 1966 when the company investigated the previously known Aban skarn showing. Samples of sphalerite and galena-bearing altered limestone contained up to 2.78% zinc and 0.36% lead across 3.05m.

The Western Skarn Zone was discovered in 1973 by trenching a strong zinc soil geochemistry anomaly. Samples of this skarn material contained up to 3.72% zinc across 4.9m.

Several programs of geological mapping, soil geochemistry, magnetic and IP surveys were conducted on the property between 1968 and 1991. Many zones of chargeability and multi-element soil geochemistry anomalies were outlined across the property, predominantly within and adjacent to the Quatsino Formation limestone.

A program of diamond drilling on the Western Skarn Zone conducted by Daiwan Engineering Limited in 1991 intersected 8.7% zinc across 4.88m.

A more detailed description of historical work conducted on the property is presented in a report by Pawliuk and Dasler (1991).

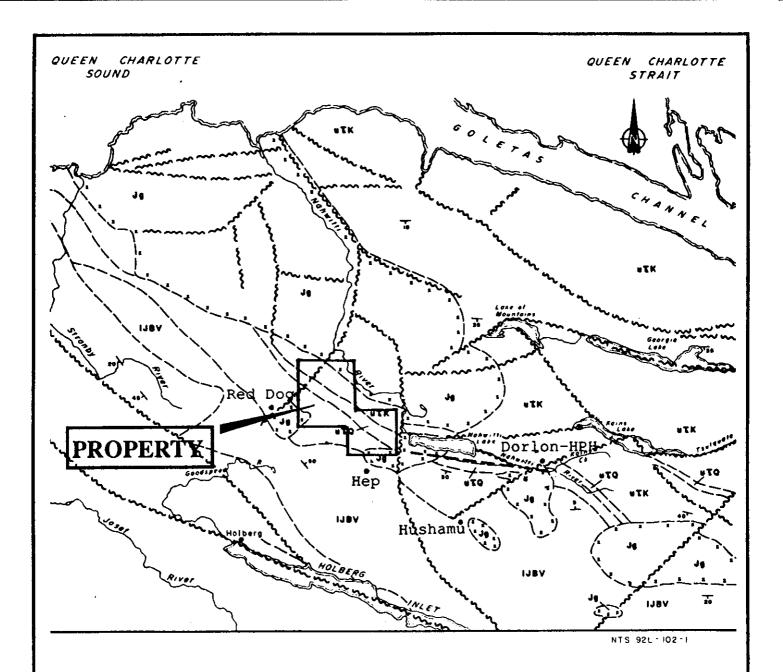
5.0 REGIONAL GEOLOGY

Vancouver Island north of Holberg and Rupert inlets is underlain by rocks of the Vancouver Group. These rocks range in age from Upper Triassic to Lower Jurassic. They are intruded by rocks of Jurassic and Tertiary age and disconformably overlain by Cretaceous sedimentary rocks. Figure 3 shows the regional geological mapping of the northern part of the Island.

Faulting is prevalent in the area. Large-scale faults with hundreds to thousands of metres of displacement are offset by younger, strike-slip faults with displacements up to 750 metres (2,500 ft.).

The Vancouver Group is described as follows:

(a) Karmutsen Formation: Upper Triassic Age


Karmutsen Formation consists of 3,000 - 6,000 metres (10-20,000 ft.) of volcanic flows, pyroclastics and minor sediments. It includes three distinct units: a lower pillow lava unit, a middle pillow breccia unit, and an upper lava flow unit. The latter consists of predominantly porphyritic and amygdaloidal basalt flows, individual flows of which range from 1-30 metres (to 100 ft.) thick.

Two thin bands of limestone occur near the top of the Karmutsen Formation. The distribution of limestone outcrops is erratic and suggests a series of lenses at the same general stratigraphy horizon rather than one continuous bed.

The lower contact of the formation has not been observed on the northern part of Vancouver Island. The upper contact with limestone of the Quatsino Formation is generally discrete and easily recognized, although limestones and basalt locally are interbedded over a narrow stratigraphic interval at this contact.

Low-grade metamorphism of the Karmutsen Formation rocks has resulted in pervasive chloritization and amygdules filled with epidote, carbonate, zeolite, prehnite, chlorite, and quartz.

Basaltic rocks along contacts with intrusive stocks are in many places altered to dark-coloured hornblende hornfels. Skarn zones occur sporadically along these contacts, both in the inter-lava limestones and in the basalts.

LEGEND

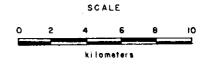
JURASSIC

Jg I ISLAND INTRUSIONS: quertz diorite, grane—

Jg I diorite, quartz monzonite, quartz feldapar
porphyry.

LOWER JURASSIC (BONANZA GROUP)

BV Andesitic to rhyodacitic lava, tuff, breccie.


TRIASSIC - UPPER TRIASSIC (VANCOUVER GROUP)

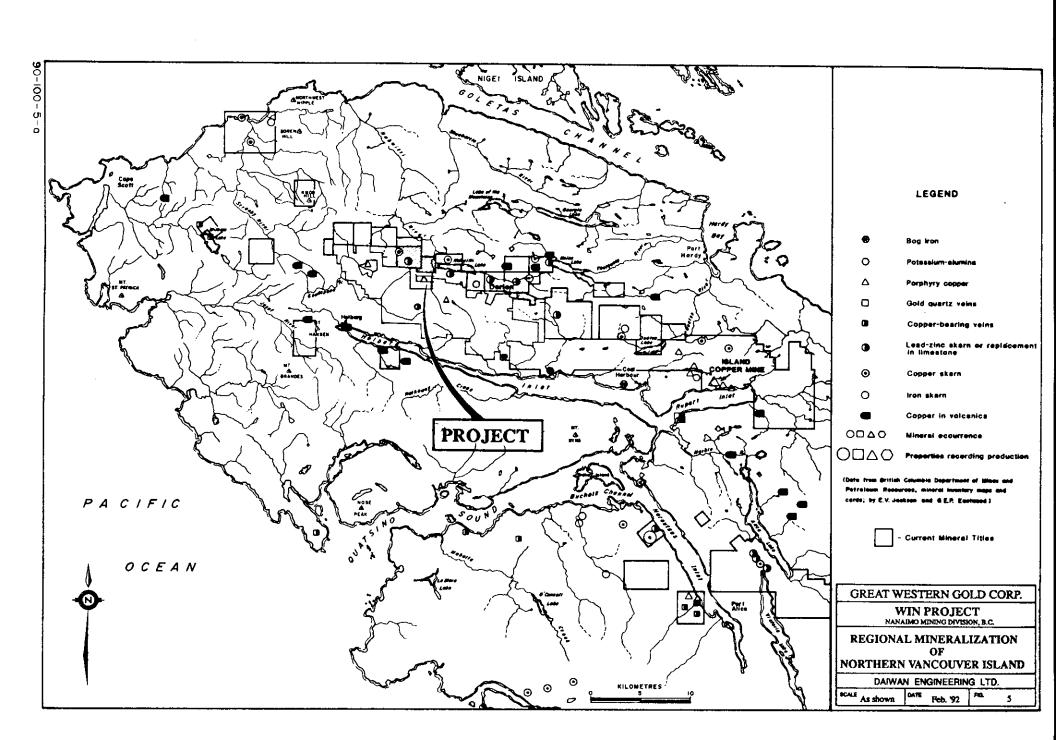
TO QUATSING FORMATION : timestone.

WERMUTSEN FORMATION : baseltic lava, pillow lava,broccia,aquagene tuff,green — stone; miner limestone.

SYMBOLS Geological Boundary.

♣ Bedding.

GREAT WESTERN GOLD CORP.


WIN PROJECT NANAIMO MINING DIVISION, B.C.

REGIONAL GEOLOGY

DAIWAN ENGINEERING LTD.

SCALE As shown DATE Feb. '92 Fig. 3

(5)

(b) Quatsino Formation: Upper Triassic Age

The Quatsino Formation ranges from 60-1,000 metres (2,000-3,500 ft.) in thickness and consists almost entirely of limestone with a few thin andesite or basalt flows. It has conformable contacts with both the overlying Parson Bay sediments and the underlying Karmutsen Formation volcanics. The upper contact with the Parson Bay Formation is gradational with limestone grading upward into carbonaceous argillites.

Within the contact metamorphic/metasomatic aureoles adjacent to intrusive stocks, skarn development and silicification of limestone, accompanied by chalcopyrite-magnetite or galena, sphalerite and silver mineralization has been noted.

(c) Parson Bay Formation: Upper Triassic Age

The Parson Bay Formation consists of between 60-360 metres (200-1,200 ft.) of argillite, minor limestone, agglomeratic and tuffaceous limestone, tuff, quartzite and minor conglomerate. At both its base and top, the unit exhibits gradational contacts with the Quatsino and Harbledown Formations.

On a regional scale, the rocks are unmetamorphosed. Locally, adjacent to intrusive contacts, there are pyrite-magnetite replacement bands up to one centimetre thick in banded tuffs.

(d) <u>Harbledown Formation: Lower Jurassic Age</u>

The Harbledown Formation consists of 485 metres (1,600 ft.), a non-volcanic argillite-greywacke sequence separating the Parson Bay from the Bonanza Group.

(e) Bonanza Group: Lower Jurassic Age

The Bonanza Group is approximately 1,500 metres (8,500 ft.) thick. The lower portion consists of bedded and massive tuffs, formational breccias and are amygdaloidal and porphyritic flows, in the compositional range andesite to basalt. Porphyritic dykes and sills intrude the lower part of the unit. In the upper a part of the Bonanza, rhyodacite flows and breccias become more numerous and are interbedded with andesite and basalt flows, tuffs and tuff breccias.

Regional metamorphism within the Bonanza Group is very low grade, possibly zeolite facies.

Plagioclase commonly is albitized and saussuritized. Chlorite, epidote and laumontite occur within the matrix of volcanic breccias, in veinlets, and in amygdules. Coarse intraformational breccias locally are hematized.

Biotite and amphibolite hornfelsed occur adjacent to stocks which intrude the Bonanza Formation.

"Pyrobitumen", a black hydrocarbon erratically distributed within the Bonanza rocks, generally occurs as fracture filling or in the centre of zeolite-carbonate veins. Its distribution is not related to the position of the intrusive stocks.

Cretaceous Sediments

The Vancouver Group is unconformably overlain by non-marine Cretaceous sediments of the Longarm Formation which are estimated to be about 300 metres (1,000 ft.) thick in the Port Hardy area. The Longarm Formation consists of conglomerate, sandstone, greywacke, siltstone and some carbonaceous and impure coal seams; these sediments occupy local basins. Early coal mining in the district was from several of these basins.

Intrusive Rocks

The Vancouver Group rocks are intruded by a number of Jurassic-aged stocks and batholiths. In the Holberg Inlet area a belt of northwest-trending stocks extends from the east end of Rupert Inlet to the mouth of Stranby River on the north coast of Vancouver Island.

Quartz-feldspar porphyry dykes and irregular bodies occur along the south edge of the belt of stocks. Dykes are characterized by coarse, subhedral quartz and plagioclase phenocrysts set in a pink, very fine grained, quartz and feldspar matrix. They are commonly extensively altered and pyritized. At Island Copper Mine, these porphyries are enveloped by altered, brecciated and mineralized Bonanza Group wallrocks. The porphyries, too, are cut by siliceous veins, pyritized, extensively altered, and are mineralized with copper where they have been brecciated. The quartz-feldspar porphyries are thought to be differentiates of middle Jurassic felsic intrusive rocks.

Structure

The rocks north of Holberg and Rupert inlets are folded into shallow synclines with northwesterly fold axes. The steeper southwesterly limbs of the folds have apparently been truncated by faults roughly parallel to the fold axis. Failure of limestone during folding may have influenced the location of some of the faults as indicated by the proximity of the Dawson and Stranby River faults to the Quatsino Formation limestone. Transverse faulting is pronounced and manifested by numerous north and northeasterly trending faults and topographic lineaments.

The northern part of Vancouver Island lies in a block faulted structural setting with post Lower Cretaceous northwesterly trending faults apparently being the major system (Figure 3). This system causes both repetition and loss of parts of the stratigraphic section, with aggregate movement in a vertical sense in the order of tens to hundreds of metres. The most significant of these fault systems trends west to northwest along Rupert and Holberg inlets. Near the west end of Holberg Inlet this fault splits, with the main branch following Holberg Inlet and the other branch passing through the west side of the Stranby River valley. Another northwesterly system passes through William Lake and still another smaller system passes through Nahwitti Lake.

Northeasterly trending faults comprise a subordinate fault system. In some cases, apparent lateral displacement in the order of several hundred metres can be measured on certain horizons. Movement, however, could be entirely vertical with the apparent offset resulting from the regional dip of the beds.

Recent computer modelling and interpretation of the government airborne magnetometer data has provided a clear understanding of the relationship of secondary conjugate sets of northeast and northwesterly faults related to the major west-northwest trending breaks. These conjugate faults sets appear to relate directly to the significant metal occurrences at the Island Copper, Hushamu, Hep and Red Dog copper/gold deposits.

Generally, regional dip of the bedding is gentle to moderate southwesterly. In the area west of Holberg dips are locally much steeper in close proximity to major faults. There is little folding or flexuring of bedding visible, except along loci of major faults where it is particularly conspicuous in thinly bedded sediments of Lower Bonanza Formation Bedding is generally inconspicuous in massive beds of Karmutsen, Quatsino and Bonanza formation rocks, particularly inland where outcrops are widely scattered.

REGIONAL MINERALIZATION

A number of types of mineral occurrences are known on northern Vancouver Island. These include:

- 1. Skarn deposits: copper-iron and lead-zinc skarns,
- 2. Copper in basic volcanic rocks (Karmutsen): in amygdules, fractures, small shears and quartz-carbonate veins, with no apparent relationship to intrusive activity,
- 3. Veins: with gold and/or base metal sulphides, reacted to intrusive rocks,
- 4. Porphyry copper deposits: largely in the country rock surrounding or enveloping granitic rocks and their porphyritic phases.

Four significant discoveries on ground near the Win Property illustrate the copper mineralization in the area:

The Hep occurrence one kilometre south of the Win Property contains an estimated 43,350 tonnes grading 0.80% copper at the intersection of two shear zones. The Hep claims are underlain by andesites and tuffs of the Bonanza Group which are intruded by quartz monzonite. Prophyllitic alteration is most common, but argillic and siliceous alteration occurs along fractures and adjacent to the volcanic-intrusive contacts. Pyrite with chalcopyrite and lesser bornite occurs along fractures and as fine disseminations within the andesite.

The Hushamu deposit located four kilometres southwest of the property, is a zone of copper-molybdenum mineralization in the Bonanza volcanics estimated to contain over 107 million tons grading 0.30% Cu, 0.010% Mo and 010opt Au.

The Red Dog deposit is located two and a half kilometres west of the property. Tuffs and tuff breccia of the Bonanza group are intruded by diorite, quartz diorite and quartz-feldspar porphyry of the Island Intrusions. The tuffs have been altered to hornblende biotite hornfels in contact zones with silicification and hydrothermal alteration in shear zones. Chalcopyrite occurs as fine grained disseminations in the hornfels and in association with magnetite in siliceous breccia.

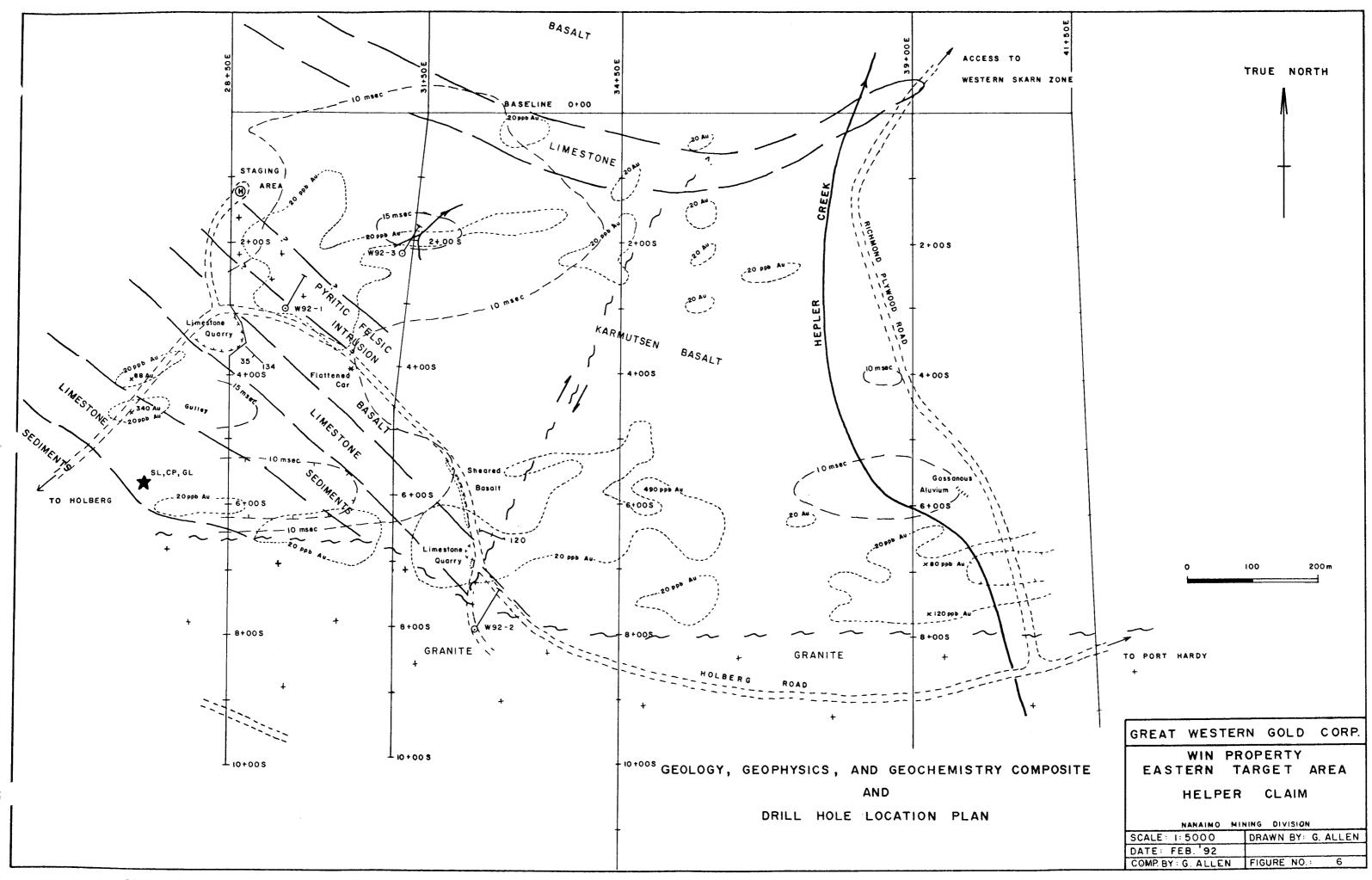
A fourth porphyry copper target presenting being evaluated by Moraga Resources Ltd. lies three kilometres south of the property at Wanokana Creek. This property shows strong geochemical and geophysical resemblance to the Island Copper deposit.

6.0 1992 EXPLORATION PROGRAM

6.1 EASTERN AREA

6.1.1 Geology And Discussion Of Targets

The eastern target area is located in the central part of the Helper claim in the eastern part of the property. It is underlain by a northwest trending moderately southwest dipping sequence of (from northeast to southwest; oldest to youngest) Karmutsen Formation basalt flows and minor limestone, interbedded limestone and siliceous siltstone of the Quatsino Formation, and siliceous siltstone of the Parson Bay Formation (collectively the Vancouver Group). This sequence has been intruded by various phases of the Island Intrusions which range in composition from granodiorite to granite in this area. On the south side of the Helper claim the intercalated volcanic and sedimentary rocks are in contact with granite to granodiorite along a strong eastwest trending fault (Figure 6).


Several small skarn occurrences have been found in the limestone and limy sediments of the Quatsino Formation, southwest of the Karmutsen Formation basalt. These showings appear to be in the same stratigraphic location as the Western Skarn Zone.

A zone of sporadic strong zinc-in-soil anomalies extends across the entire property from the eastern target area to the Western Skarn Zone. These anomalies basically outline the calcareous intervals in the stratigraphy.

In the central part of the Helper claim a broad zone of sporadic high gold-in-soil anomalies covers the entire sequence of rocks. IP surveys conducted over this area outline broad zones of moderate chargeability coincident with some of the higher gold values (Figure 6). This anomalous area was felt to have potential to host a gold-bearing skarn deposit and was the primary target of the 1992 exploration program.

6.1.2 Induced Polarization Survey

From January 15 to 18, 1992, Pacific Geophysical Limited conducted an IP survey on 7.5km of line in the eastern target area on the Win property. The purpose of the survey was to better

define chargeable zones within an area with widespread gold soil geochemistry anomalies.

Several broad zones with moderate chargeability were outlined. Zones of chargeability identified in previous IP surveys were confirmed. A detailed report by Cartwright and Cormier with pseudosections, filtered data plans and a discussion of the data has been prepared and is included in Appendix IV.

6.1.3 Magnetic Survey

Pacific Geophysical Limited conducted a magnetic survey on 7.5km of line concurrently with the IP survey.

The magnetic survey basically divided the eastern target area into two parts. The southern part is characterized by low, 'flat' magnetic susceptibilities, and is probably outlining the granitic intrusion. An apparent north offset of the granite contact west of 32+50E may be related to a probable north-northeast trending fault with right lateral offset which truncates several magnetic features.

North of the granite there is considerable magnetic relief with sporadic high and low susceptibilities. This area is underlain by intercalated limestone, siltstone and basalt, with associated sporadic high gold-in-soil and chargeability anomalies. A pronounced east-southeast trending magnetic low feature corresponds to an area of low chargeability and may be outlining a shear-related alteration zone.

A geophysical report with the magnetic survey data is included in Appendix II.

6.1.4 Diamond Drilling

Diamond drilling in the eastern target area totalled 393.2m in four holes. Three of the holes were targeting coincident soil geochemistry and chargeability anomalies. One hole tested a limestone-granite contact. Drill hole locations are shown in Figure 6 and cross-sections in Figures 7a through 7c. Drill logs are included in Appendix III.

The first target was an area with coincident broad gold-in-soil and moderate chargeability anomalies. Hole W92-1A was drilled to a depth of 53m in overburden. A second hole (W92-1B) was drilled at a steeper angle to a depth of 153m. This hole intersected primarily pyritic felsic intrusion and minor basalt, with no significant base or precious metal content. The depth

of overburden suggests that the metal-in-soil anomalies in this area are not related to bedrock geochemistry.

Hole W92-2 tested a granite-limestone contact. This contact was found to be along a large fault zone and is not, therefor, a favourable setting for skarn mineralization. The limestone contained only traces of sphalerite.

Hole W92-3 tested a coincident multi-element soil and high chargeability anomaly. The hole intersected basalt for its entire length. A 3m wide apparently shear-related sulphide zone may have been the source of the IP anomaly. This zone contained no significant amounts of base or precious metals. It appears that soil anomalies in this area were transported.

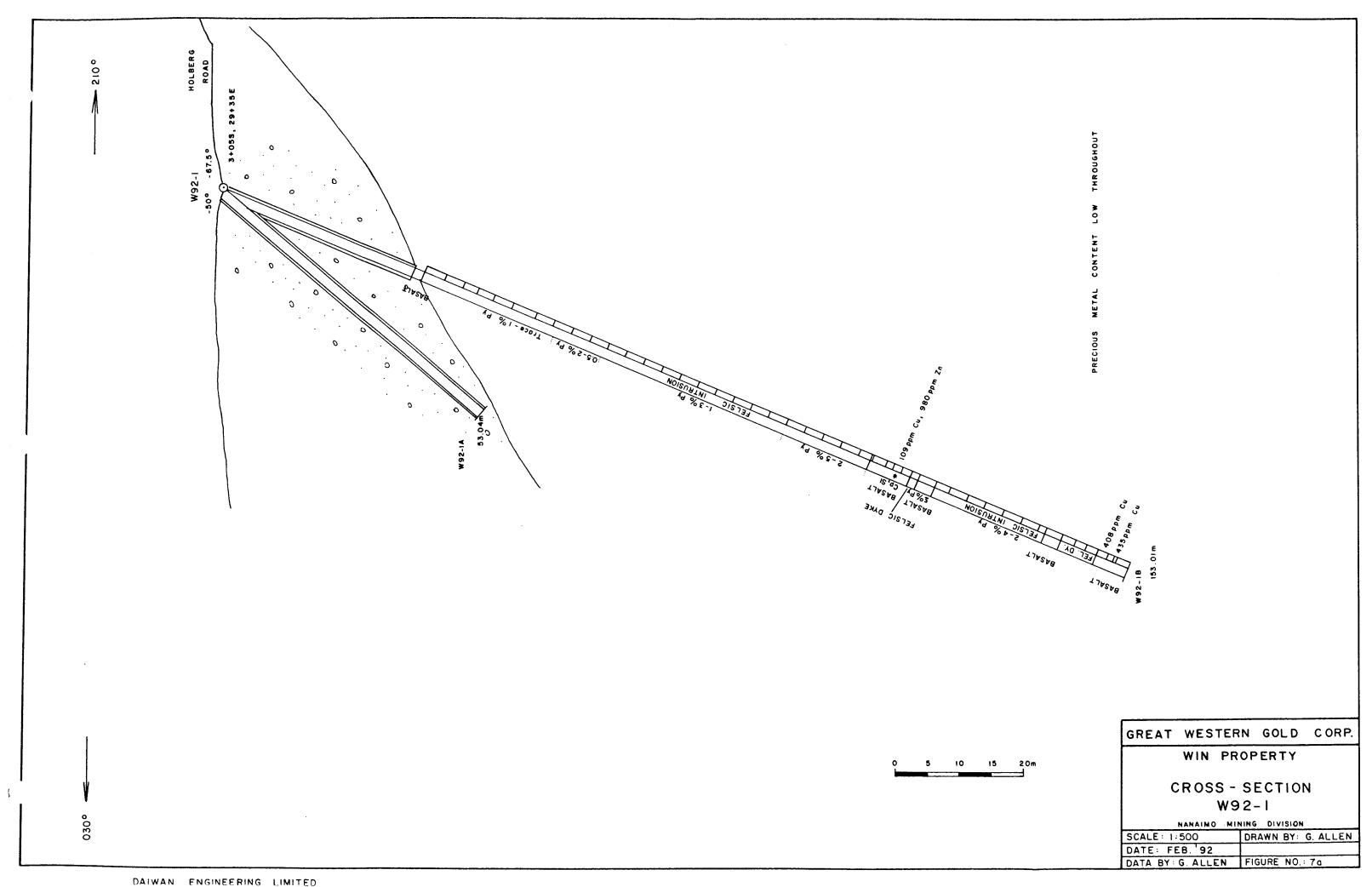
Win Property, Eastern Target Area: Drill Hole Summaries

Hole W92-1 (Proposed hole W-G)

Coordinates: 3+05S, 29+35E

Azimuth: 030°

Dip Hole A: -50°


Length: 53.04m (174')

Dip Hole B: -67.5°

Length: 153.01m (502')

This hole was designed to test the centre of a roughly 150m wide >20ppb gold-in-soil anomaly within a broad zone of moderate chargeability.

The hole was initially collared at -50° and went to 53.04m in overburden (hole W92-1A). A second hole (W92-1B) was then drilled from the same setup at -67.5°. Bedrock in the second hole was intersected at 32m. Most of this hole was in a siliceous feldspar phyric felsic intrusion with up to 5% disseminated pyrite. This material contained less than detection limit levels of gold and silver and background levels of base metals. Below 109m the hole penetrated intermixed felsic intrusive rock and basalt. The basalt was weakly altered and contained pyritic intervals with traces of chalcopyrite and sphalerite.

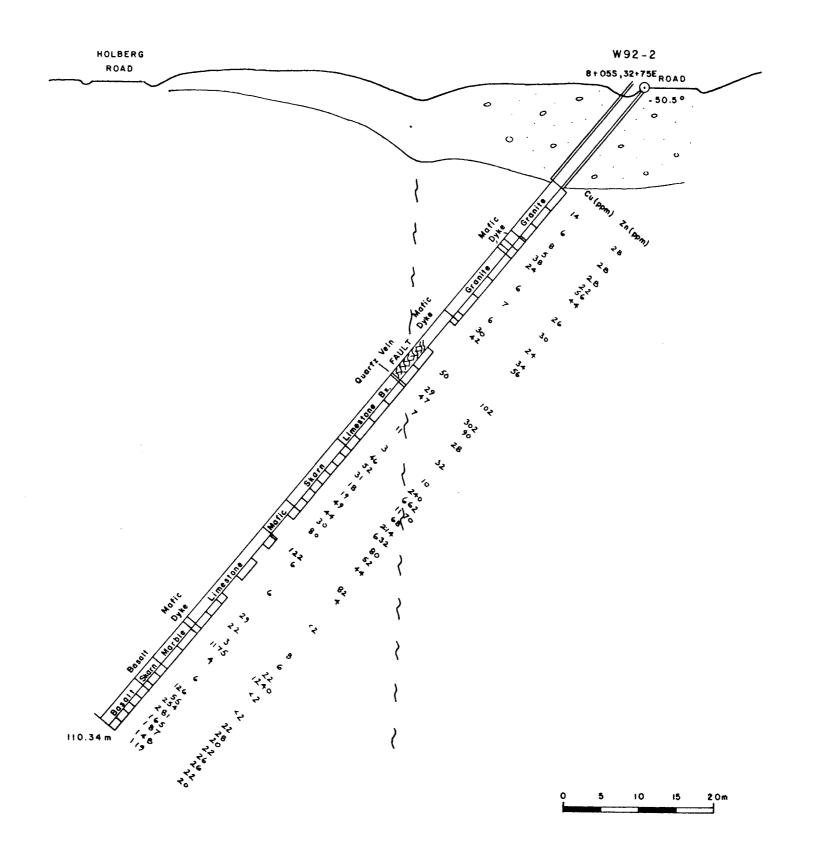
The pyritic intrusion is most probably the source of the IP anomaly outlined in this area. Soil geochemical anomalies in the vicinity appear to be transported, and are likely not related to local bedrock geochemistry.

Hole W92-2 (Proposed Hole W-H)

Coordinates: 8+05S, 32+75E

Azimuth: 030° Dip: -50.5°

Length: 110.34m (362')


Hole W92-2 was drilled to test a sediment-limestone contact near a granitic intrusion and a topographic lineament (gulley) striking at 284°. Sporadic gold-in-soil anomalies occur within 300m of the intrusion contact in this area and may be related to skarn type mineralization in the limestone or limy sediments. This hole is stratigraphically above rocks tested in hole W92-1.

The hole intersected a barren salmon-coloured granite/mafic dyke complex in apparent fault contact with limestone at 50.8m. This limestone has been sporadically brecciated, marbleized, skarn-altered, and intruded by mafic dykes as seen in the granite. A skarn interval between 61.8 and 72.45m consists of an epidote and clay-rich material with 0.5-1% disseminated pyrite, traces of very fine-grained galena and up to 1% fine-grained disseminated black sphalerite. Samples from this interval contained up to 1170 ppm zinc, 250 ppm lead and 1630 ppm manganese, but only background levels of gold and silver. It is similar to skarn material observed to the east in the Contact Creek area.

A narrow mafic dyke(?) in limestone between 92.67 and 93.60m contained 1175 ppm copper and 1240 ppm zinc.

An amygdaloidal basalt flow was intersected at the end of the hole. The top of this unit between 99.67 and 103.38m is strongly skarn-altered and composed predominantly of epidote, pinkish to brownish garnet, and 2-5% pyrite in masses to 1cm. Samples of this material contained only weakly elevated copper values.

The presence of a major fault between granite and limestone in this area suggests that their contact is not a favourable exploration target for skarn-type mineralization.

GREAT WESTERN GOLD CORP.

WIN PROPERTY

CROSS - SECTION W92-2

NANAIMO MINING DIVISION

SCALE: 1:500 DRAWN BY: G. ALLEN
DATE: FEB. 92
DATA BY: G. ALLEN FIGURE NO.: 7b

Hole W92-3 (Proposed hole W-B)

Coordinates: 2+20S, 31+35E

Azimuth: 030°

Dip: -50°

Length: 76.81m (252')

This hole tested a zone with a discrete 15 to 18 ms chargeability high and coincident high gold,

copper, lead, and zinc-in-soil anomalies.

As indicated in mapping from previous exploration programs, the area is underlain by andesite

or basalt typical of the Karmutsen Formation. The rock is composed of aphyric to

glomerophyric massive basalt with discrete amygdaloidal zones (probably intercalated flows).

Pyrite and chalcopyrite occur in trace amounts throughout. Samples of this material contained

background levels of gold and silver and only weakly elevated levels of copper (to 724 ppm).

An apparently shear-related sulphide zone between 38.1 and 41.7m may be the source of the IP

anomaly. This interval contains up to 15% pyrite and 5% pyrrhotite. It was not significantly

anomalous in any precious or base metal.

The drill site is located in a valley bottom and it is probable that the soil geochemistry anomalies

are transported.

6.2 WESTERN SKARN ZONE

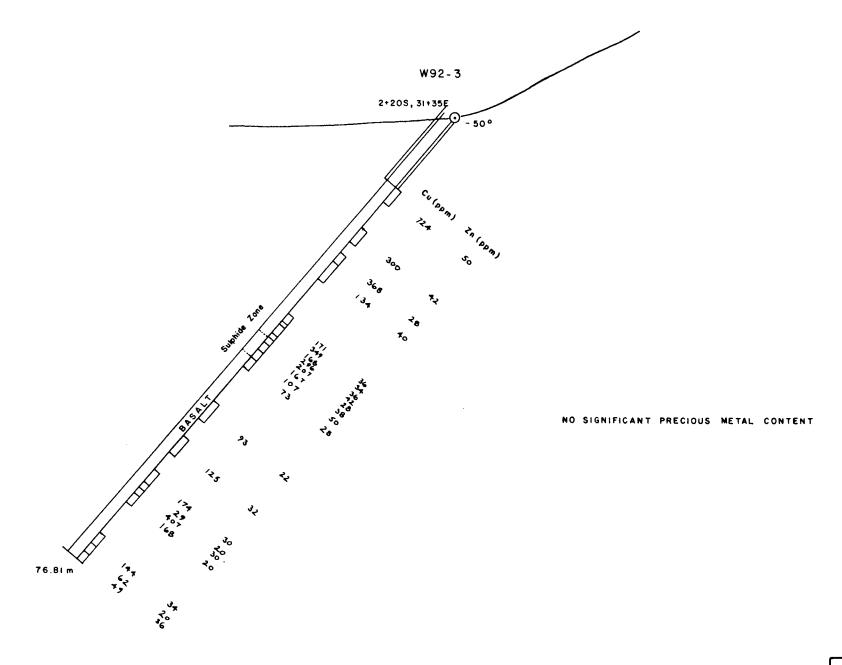
6.2.1 Geology

Only limited geological mapping has been conducted in the Western Skarn Zone area and the

geology is not well understood. From property scale mapping the area appears to be underlain

by northwest trending Quatsino Formation Limestone and Parson Bay Formation siltstone. These

rock types do occur in the area, but it appears that the regional bedding orientation has been


complicated by local folding.

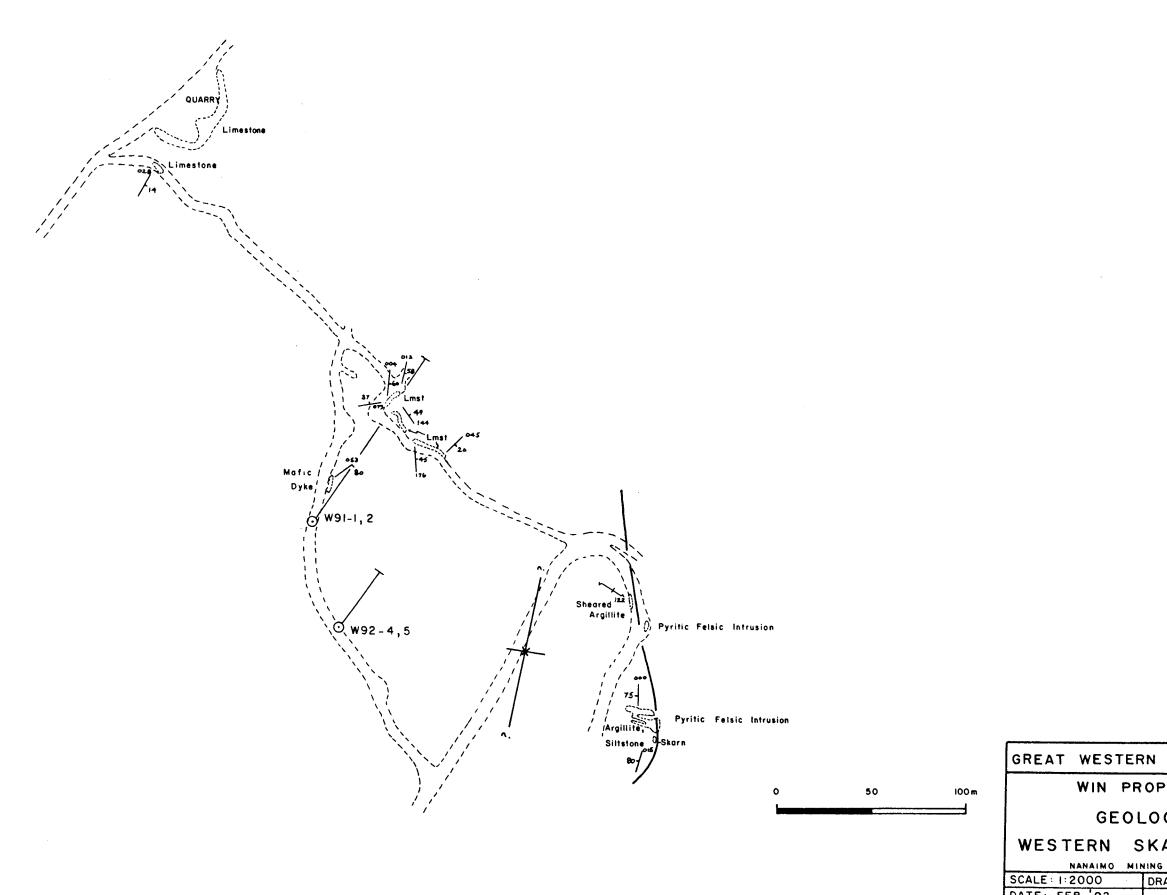
Bedding attitudes in the local area are generally north to east-northeast and dipping from

southeast to northwest. A north-northeast striking synform fold axis appears to trend through the

area (Figure 8). On the west side of the fold axis bedrock exposures are predominantly of east-

Daiwan Engineering Ltd.

0 5 10 15 20


GREAT WESTERN GOLD CORP.

WIN PROPERTY

CROSS - SECTION W92-3

NANAIMO MINING DIVISION

SCALE: 1:500 DRAWN BY: G. ALLEN
DATE: FEB. 92
DATA BY: G. ALLEN FIGURE NO.: 7c

GREAT WESTERN GOLD CORP. WIN PROPERTY GEOLOGY WESTERN SKARN ZONE NANAIMO MINING DIVISION

TRUE NORTH

DRAWN BY: G. ALLEN DATE: FEB. 92
DATA BY: G. ALLEN FIGURE NO.:

dipping limestone and minor mafic dyke material. To the east, west-dipping sheared argillite and

siltstone are in contact with a pyritic felsic intrusion.

A zinc-rich skarn occurrence appears to be near the fold axis where flat-lying or gently southeast

dipping interbedded limestone and siliceous siltstone are intruded by a granite sill. Sphalerite

occurs in skarn altered limestone at or within 10m of the granite contact. It appears that the host

of the skarn is transitional between limestone of the Quatsino Formation and siltstone and

argillite of the Parson Bay Formation.

6.2.2 Diamond Drilling In The Western Skarn Zone

In the Western Skarn Zone two holes totalling 109.12m were drilled 56m southwest of hole W91-

1. The target of these holes was a granite-limestone contact along which high-grade zinc-bearing

skarn occurs. Hole 91-1 intersected an interval with 8.7% zinc across 4.88m.

Hole W92-4 intersected intermixed limestone and siliceous siltstone with a 10m wide skarn zone

developed adjacent to a granite intrusion. This skarn zone contained sporadic magnetite and

sphalerite and generally less than 1% zinc. Hole W92-5 was less well mineralized. Hole

locations are shown in Figure 8. Hole summaries follow.

Drill Hole Summaries: Western Skarn Zone

Hole W92-4 (Proposed Hole W-I)

Azimuth: 035°

Dip: -53.5°

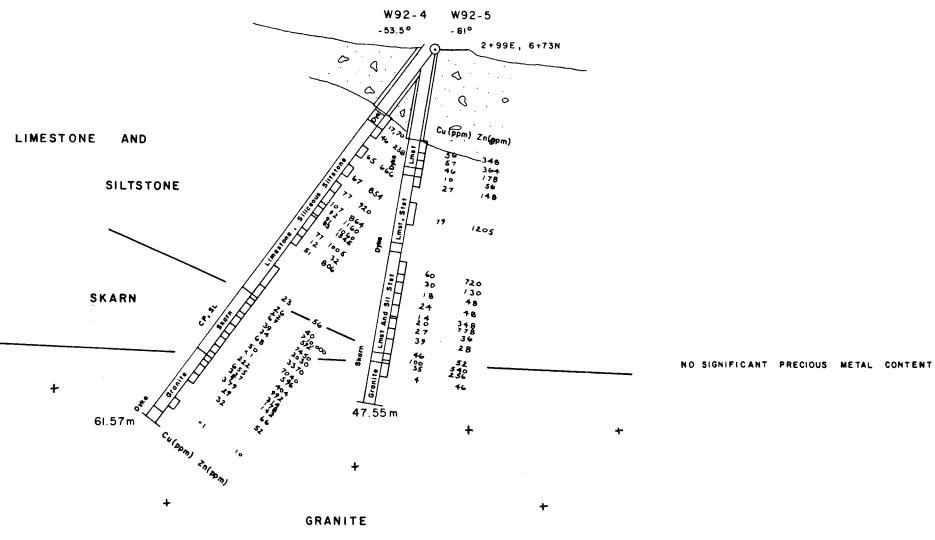
Length: 61.57m (202')

This hole was drilled 56m southeast from the collars of W91-1 and W91-2 in the Western Skarn

Zone. It was drilled to better define the limits of a zone with 8.7% zinc across 4.88m intersected

in hole W91-1.

Between 10.67m and 40.37m hole W92-4 intersected interbedded limestone and siliceous


siltstone. These units contain narrow (< 2cm) bands of epidote and calcite stringers, both with

up to 10% pyrite and traces of sphalerite. Samples from this interval were moderately anomalous

in zinc with values up to 1545 ppm. Precious metal and other base metal contents were not

anomalous.

Daiwan Engineering Ltd.

GREAT WESTERN GOLD CORP.

WIN PROPERTY

CROSS - SECTION W92-4, W92-5

NANAIMO MINING DIVISION

SCALE: 1:500 DRAWN BY: G. ALLEN DATE: FEB. 92 DATA BY: G. ALLEN FIGURE NO.: 9

ARTURE ENGINEERING LIMITES

The interval between 40.37 to 50.45m is a skarn zone with two distinct interbanded lithologies.

Approximately 60% of the interval is composed of a light greenish-grey skarn assemblage of minerals, and 40% of a fine-grained aggregate of black minerals in intervals up to 1m wide.

The light greenish-grey skarn intervals are composed of banded to massive fine-grained epidote

and diopside with up to 5% pale brown sphalerite. Samples of this material average over 3000

ppm zinc, 3000-5000 ppm manganese and 5-7% iron. A sample of material between 40.37 and 40.73m contained >10,000 ppm zinc and 926 ppm lead. Precious metal levels are low.

Black intervals are composed predominantly of a fine-grained massive black mineral, 5% epidote

concentrated along bedding-parallel bands, 5% pyrite in cubes to 5mm and 5% (+?) magnetite.

Zinc values are generally lower than in the surrounding skarn, averaging roughly 600ppm. These

intervals contain >15% iron and 8000-9000 ppm manganese. It is not known which manganese-

bearing mineral is present, but high manganese content is typical of skarn altered Quatsino

Formation limestone in this region.

Between 50.45 and 61.57m (EOH) the hole penetrated granite and minor intermediate dyke. The

skarn discussed above appears to be related to the granite-limestone contact.

Surface exposures of more pure limestone below the drill collar and argillite above suggest that

the rocks intersected in the hole are transitional between the Quatsino and Parson Bay

Formations. Bedding to core axis angles are roughly 65 degrees suggesting that the units are

relatively flat-lying in this area.

Hole W92-5

Azimuth: 035°

Dip: -81°

Length: 47.55m (156')

Hole W92-5 has the same collar location as W92-4 and was drilled to further test the skarn zone

developed along the limy sediment-granite contact. Limy sediments above the granite contain

only sporadically anomalous zinc values up to 1205 ppm. The only interval of obvious skarn-

altered sediment was intersected between 40.55 and 41.98m at the granite contact. It consists

of interbanded white marble and a greenish-brown assemblage of epidote and diopside with traces

of chalcopyrite and sphalerite throughout. Samples of this interval contained up to 540 ppm zinc

but no significant amounts of precious metals.

7.0 CONCLUSIONS

Eastern Target Area:

- 1) Chargeability anomalies in the area appear to have a variety of sources. Hole W92-1B intersected a pyritic felsic intrusion. Hole W92-3 intersected a 3m wide shear-related sulphide zone. Neither mineralized zone carried above background precious metal or significant base metal content.
- 2) Gold-in-soil anomalies in the area are underlain by up to 50m of overburden and are probably not related to bedrock geochemistry.
- 3) Potential for a gold-bearing skarn deposit occurring in the area appears to be low.

Western Skarn Zone:

- 1) The skarn is located along a roughly flat-lying granite-limestone and siliceous contact.
- 2) Judging from the poorly mineralized skarn intersected in holes W92-4 and 5 it appears that the mineralization is sporadic and poddy. Given this characteristic and its low gold content, the zone should be given low priority as an exploration target.

8.0 RECOMMENDATIONS

1) No further work is recommended at this time.

CERTIFICATE OF QUALIFICATIONS

- I, Gordon J. Allen, do hereby certify;
- 1) I am a graduate in geology of the University of British Columbia (B.Sc., Honours, 1975)
- 2) I have practised as a geologist in mineral exploration for sixteen years.
- 3) I am a member in good standing of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 4) Opinions, conclusions and recommendations contained herein are based on fieldwork and research performed by me between January 12 and February 11, 1992.
- 5) I own no direct, indirect, or contingent interests in the subject property.

Duncan, B.C.

February 29, 1992

Gordon J. Allen

GORDON J. ALLEN, P. GEOL.

CERTIFICATE OF QUALIFICATIONS

I, Peter G. Dasler, do hereby certify that:

1. I am a geologist and principal for Daiwan Engineering Ltd. with offices at 1030-609

Granville Street, Vancouver, British Columbia.

2. I am a graduate of the University of Canterbury, Christchurch, New Zealand with a degree

of M.Sc., Geology.

3. I am a Fellow of the Geological Association Of Canada, a Member, in good standing, of the

Australasian Institute of Mining and Metallurgy, and a Member of the Geological Society

of New Zealand.

4. I have practised my profession continuously since 1975, and have held senior geological

positions and managerial positions, including Mine Manager, with mining companies in

Canada and New Zealand.

5. This report is based on a personal fieldwork and supervision of the work programmes on the

property since 1986, and from reports of Professional Engineers and others working in the

area.

6. I have no interest in the shares of Great Western Gold Corp., nor do I expect to receive any.

Mr. R. Philp, a part owner of the Win Property, and myself hold equal interests in Daiwan

Engineering Ltd.

Peter G. Dasler, M.Sc., FGAC, P. Geo.

February 29, 1992

APPENDIX I

LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

CERTIFICATE OF EXPENDITURES

The following costs relate to geophysical surveys and diamond drilling at the Win Property between January 1 1992 and February 28 1992.

Personnel

D : . G I	G A11 20 1 0 #20041	# 11 100 00		
Project Geologist	G. Allen 30 days @ \$380/day	\$ 11,400.00		
Senior Geologist	P. Dasler 9.2 days @ \$380/day	3,496.00		
Geologist	D Pawliuk .75 days @ \$340	255.00		
Office Assistant	T. Sheridan .75 days @ \$220/day	165.00		
Field Technician	R. Bilquist 6.75 days @ \$260/day	1,755.00		
Field Technician	L. Allen 14 days @ \$260/day	3,640.00		
Field Technician	S. Oakley 1 days @ \$260/day	260.00		
Field Technician	D Cosgrove 5 days @ \$260/day	1,300.00		
Field Technician	M. Kilby 5 days @ \$260/day	1,300.00		
Field Technician	C. Bilquist 4 days @ \$260	1,040.00		
			24,611.00	
<u>Disbursements</u>			,	
Geophysical Surveys Mag and IP 8,363.28				
Drilling 1,474 feet @ \$	24.46/foot	36,058.34		
Food and Accommodation	3,311.52			
Field Supplies				
Equipment Rental	685.00			
Vehicle/Supplies - 1 4x4 -	1,811.82			
Airfares (part)	179.06			
Helicopter	7,757.12			
Drafting/Maps/Office/Repo	530.49			
Assays -cores,157 by 9 ele	2,177.91			
Heavy Equipment Rental		1,305.50		
Disbursement Fee	7,336.56			
Miscellaneous, Shipping 452.76				
, 11 5			70,391.34	
SUBTOTAL				
GST				
			6,543.76 101,546.10	
TOTAL 10				

Peter G. Dasler, P. Geo.

February 28, 1992

APPENDIX II

DIAMOND DRILL LOGS

DAIWAN ENGINEERING LTD.

Property_	W_1	N Location HOLBERG District NA	VAIMO		Hole No	<u>w9</u>	12-1			Length_	153.0	1 m (3	<u>502</u>
Commen	ced	AN. 26, 92 Completed TAN. 30 Core Size	13 Q		True Beari	ing	030	·-··		Corr. Dir	د		
Collar Co	ordinates	29+35 E 3+05 S Elev.			Hor. Com	p. <u>5</u> 6	3.55m	·		Vert. Co	mp. <u>/</u>	41.36	→ ~
Percent F	Recovery_	Collar Dip - 67 1/2 * Objective To T	TEST ZON	JE OF	MODER	ATE C	CHARGE	ABILITY	AND	COLD.	N-50	1 ANON	MALY
Depti	to	Description	Rec	overy %	Sample	Interval to	Sample % Recovery	Sample No.	Length	Au	Ag	\Box	
0	32	OVERBURDEN					, , occircity						
		Sand rounded public clay. Looks like during with some till.								<u> </u>		· ·	
		alumin with some till.											
	ļ												
32		BASALT	_							<u> </u>			
	<u> </u>	Dark granish to bluish - gray fine-grains	7							ļ	ļ		
	ļ	whenie rock with 20% 1-2 mm study			11	···			ļ	 			
		dark omish grey feldepar phenoments. Could		ļ	-		-		ļ	 	-		
		be Kamutan Formation. Unit blocky a								-		 -	
		broken. Fronting 40° and subparall CA.							-	 		 	
		32.6-33.0- 2m with 15-20% 1-2 mm		ļ	1		-		ļ <u>.</u>	 	-	 -	
		uhit soft (zestit?) strugus 5-10° CA. Unit appears to be behook, but could be									+		
	1	a boulder.		<u> </u>					 	<u> </u>	1		
										†	+		
33.75	109.34	FELDSPAR PHYRIC FELSIC INTRUSION											
		Min to light any very siliceons (chut											
		fine - grained (spheritic) groundwars with	J'										
		WESTERN COLD Note(s):		by (G.ALLE	.H			Hole No.	wg	2-1		
		DLYMPIC :								e of			
J -	. /_												

DAIWAN ENGINEERING LTD.

pyright

cation

HOLBERG

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Z~
from	to		run	%	from	to	Recovery		Length	76 P	DPm	Dam	2000
		15% < 1 mm - 2 mm stubby vogue darker			33.75	37.18		37076	3.43	1 ''	≺0.5	```4	20
		grunish - grun altred felders phenomyste and					,						
		< 5 % <1-2 mm migula chloritis massis after			37.18	40.23	<u> </u>	37077	3.05	< 5	< 0.5	2	16
		make phonerysto. The rade appears to have											
		undergone strong silverfication.			40.23	42.6		37078	2.37	< 5	<0.5	3	14
		33.75 - Highly fractured blocky con.							ļ				
		Fracture of 60', 40', 20' and subparalled			42-6	45.3		37079	2.70	< 5	< 0.5	2_	16
		cA.	ļ						ļ				<u> </u>
		45.3-48.5 - Pink ziglite atingus to 2 mm			45.3	48.5	ļ	37080	3.20	< 5	< 0.5		18
	·	J 20° CA.			<u> </u>		ļ						
		33.75-37.5 - Breciated Fault Zon ? Comy 6002024			48.5	52.42	<u> </u>	37081	3.92	< 5	< 0.5		18
		MINERALIZATION:			ļ				<u> </u>				
					52.42	55.47		37082	3.05	< 5	<0.5		18
		33.75-37.5- Trace to 17. gyrite concentrated			ļ								
		along fracture			55.47	58.52		37083	3.05	< 5	<0.5	<1	14
		37.5-44.5- Trace dissuminated papits in moses to			ļ		-						
		1 mm.						····	ļ.,				
		44.5.48.5- Trace to 1? printe associated with			ļ								<u> </u>
		zerlite stringus.			ļ		ļ		ļ		<u> </u>		
		48.5-52.3 - Barren to trace prints.					ļ						
		52.3 - Trace to 190 points in masses to 5 mm (ov-1-	<u> </u>				ļ		ļ				
i		Discurrent and along fractions with coliti.		<u> </u>	1		<u> </u>		<u> </u>				<u> </u>
oject	WIN		Note(s):		•				Hole No.	w 92	-1		

Page

JAN. 29 192

Date

yright

DAIWAN ENGINEERING LTD.

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Αu	Ag	Cu	Z~
rom	to		run	%	from	to	Recovery		Length	499	spm	Com	sem
		56-64 0.5-27. dissiminated and fraction	_		58.52	61.57		37084	3.05	< 5	<0.5	, ,	14
		ulited papets. Could be some of IP											
		anonaly. Dissiminated pyrite most abundant			61.57	64.62		32085	3.05	< 5	<0.5	<1	16
		in mosses 1-3 mm.	•										
					64.62	67.66		37086	3.04	< 5	<0.5	ı	18
		64-95 1-37. pyrite as above. Sulphides mining											·
		with digth. Sulphide predominantly discuminates			67.66	70.71		37087	3.05	< 5	<0.5	<1	24
	<u> </u>	in 1-2 mm massa.							ļ				
					70.71	73.76		37088	305	< 5	< 0.5	1	22
4		95-109.34 - 2-5% pyrite as above. Museus to 5mm.			ļ				ļ				
		Prints commenty in square greated after			73.76	76.81		37089	3.05	< 5	< 0.5		24
		fildepar phinocrypta.			ļ	ļ			 	<u> </u>	_		
		105.19-107 - Freture autoparelled to come oxis			76.81	79.86	ļ	37090	3.05	< 5	< 0.5	1	16
		with prite stringer to 2 mm.							ļ		ļ		
					79.86	82.90	ļ	37091	3.04	< 5	<0.5	ı	24
					 		ļ						
					82.90	85.25	-	37092	3.05	<5	< 0.5	2	22
	<u>.</u>					<u> </u>			-				
			L		85.95	89.0		37093	3.05	10	<0.5	2	18
				-	-				 				
					89.0	92.05	ļ	37094	3. 05	< 5	<0.5	5	20
			l	l		<u> </u>	<u> </u>	<u> </u>	1		1	L	

ject	Win	Logged by	G. ALLEH	_Note(s):	Hole No	492-1	
cation	HOLBERG	Date	JAN. 30 , '92		Page 3	of	9

DAIWAN ENGINEERING LTD.

pyright

cation

HOLBERG

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	ス _へ
from	to		run	%	from	to	Recovery		Length	PbP	D0-m	ppm	ppm
					22.05	95.10		37095	3.05	< 5	<0.5	, ' ' ,	14
					1								
					95.10	98.14		37096	3.04	< 5	<0.5	2	14
										_			
					98.14	101.19		37097	3.05	5	<0.5	2	16
					-								
					101.19	104.24		37098	3.05	< 5	<0.5	3	16
		·			104.24	107.29		37099	3.05	< 5	<0.5	2	22
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
					107.29	109.34		37/00	2.05	< 5	<0.5	4	28
					ļ		<u> </u>		ļ		<u> </u>		ļ
09.34	116.09	BASALT			109.34	109.7		37/0/	0.36	< 5	<0.5	10	30
		Upper contact shoup at 35 cA.			-		-		ļ		-	 	
		chlorite, feldepar and magnetite. Sporodically										 	
		altered to a lighter granish to brownish - gray			 								
		with magnetite altered to posite.											
		109.34-109.7 - 5-77. fine-grained disseminated						ļ			ļ		<u> </u>
		pyrite. Hurling quarty stringers to 1 mm subparallel			-		ļ				<u> </u>	 	
		la.	<u> </u>				<u> </u>	<u> </u>	<u> </u>	l	1	L	<u> </u>
oject	Win	Logged by G. ALLEM	Note(s):						Hole No.	W92-	1		

JAW. 30

Date

yright

DAIWAN ENGINEERING LTD.

Depth	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Zn	
rom	to		run	%	from	to	Recovery		Length	60 P	PP-	ppm	Dem
		109.7- 111.02 - Darle grun breatt. Magnetis.			109.7	111.95		37102	2.25	< 5			28
		Dark grunish - grey study andeded feldypan											
		physicita to 2 mm.	· · · · · · ·		111.95	113.03		37/03	1.08	< 5	<0.5	9	30
		111.02 - 111.25 - Brownish - gry bosalt, 5-77 fin -										<u> </u>	
		grained prints; Discurrented and along bailing stringer	٤		113.03	114.50		37104	1.47	< 5	<0.5	109	980
		111.25-111.95 - Darle grum, magnitis breakt. 57.											,
		1-2 mm white soft stringers (zeslite?) 10° and			114.50	116.09		37/05	1.59	< 5	< 0.5	13	46
		60°CA.											<u> </u>
		11.95 - 112.5 - Midium grunish - gray . 5% fine - grand			116.09	117.35	5	37/06	1.26	<5	(0.5	5	16
	<u> </u>	disuminated and practing - related prints.			<u> </u>		ļ		<u> </u>				
		112.5-113.03- Dark grum magnitic basalt. Trace Py.									ļ		
		113.03-115.46- Main grund-gry attend breatt.		ļ					<u> </u>				
		113.03-113.7 - Questy - colerte - spidete stringer		ļ				· ·	ļ		ļ	ļ	
		subproally to 15°CA. Stringer ~1 cm							ļ		ļ	ļ	
		wide to 2 mm wide, a (com alteration adjount		ļ	ļ		<u> </u>		<u> </u>		- 		
		* string with 25% pupits, Trace chalespyrite,		ļ	<u> </u>		<u> </u>		<u> </u>		ļ		ļ
		and 2-5% block sphalmits.			ļ				<u> </u>				<u> </u>
		113.7-115.46- 20% quarty-contomete-upidate		ļ	 	ļ	ļ				<u> </u>		<u> </u>
		stringers to 5 cm wide, 0-20° CA. 5%		ļ	ļ	ļ			<u> </u>		<u> </u>	ļ	ļ
		quite in interval concentrated in mosses to		ļ			ļ		ļ				ļ
		I'cm in stringers.					<u> </u>					<u> </u>	
		0		1							}	1	

ject	WIN	Logged by	G. ALLEN		Note(s):	Hole No.	<u> </u>	91-1	
ation	HOLBERG	Date	JAN . 30 , 1	92		Page	<u>5</u>	_ of	9

DAIWAN ENGINEERING LTD.

richt

Depth	Description	Reco	very	Sample	interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Z .
om to		run	%	from	to	Recovery		Length	000	DO m		com
	115.45-116.09 - Attend breatt? Midium gruniel-								7		74-77	4-4
	gry silicon chuty meterial. Shattind . 2-3%	<u> </u>						1				
												i
	prote.											
										 		
6.09 117.35	FELSIC DYKE		ļ	 						 		
	main pinhist to brownist - gry chuty silicions dylu with vagu gruinst feldepan		L	ļ		ļ		<u> </u>			<u> </u>	<u> </u>
	silicions dyla with wagen gruind felderen			<u> </u>		ļ						
	openments to 2 mm and < 5% - 1 mm chloritie			<u> </u>					İ			
	chota after majir phenocysts. As above		<u> </u>									
	bosalt. 3-47. dissumates pyrite.											
	Sharp upper contact 30°CA.											
	hower contact 90° cf.											
7.35 120.17	BASALT			117.35	120.17		37/07	2.82	< 5	<0.5	28	32
	117.35-118.0- Quint to brownish - gruy normagnet											
				120.17	122.53		37/08	2.36	< 5	<0.5	5	26
	pyrite Altertion argument amount dupler.											
	107. 1-2 mm white stringes 45° to subparallel											
	CA.								į			•
	118.0-119.3 - Dark open fin - grained magnetic											
	breakt. 5-107. white continues stringue as above.		1									
	Logged by Cr. A. 1. S. 4	Note/e):			-		<u> </u>	Hole No.				·

ject	WIN	Logged by	G-ALLEN	_ Note(s):	Hole No.	W	92-1	
ation	HOLBERG	Date	JAN. 30 192		Page _ (o	of	9

DAIWAN ENGINEERING LTD.

right

on to 119.3-120.17 - Making granish to brownish yang attend broadt. Nonmagnetic 3-57 fine— animal discounted profit. Pan annually at filled with profit. 119.8-119.2-5 can white contents win at 40'ca. 5-770 profit. Pela gray to granish - gray whitens, chuty 122.53 125.56 37/09 3.05 < 5 <0.5 4 filled por physic interests and whealed with 128.62 131.67 37/11 3.05 < 5 <0.5 5	Z.	Cu	Ag	Au	Sample	Sample No.	Sample %	Interval	Sample	very	Reco	Description	Depth
119.3-120.17 - Mohim granish to branch gray altered breedt. Nonneagasti. 3-57 fin- grand dissumental grant. Para amyodular filled with praite. 119.8-119.9-5 cm white carbonts win at 40.CA. 5-72 praite. 20.17 138.94 FELSIC INTRUSION Pala gray to granish gray already, chuty 122.53 125.58 37/09 3.05 <5 <0.5 4 fillegen physic intrusion as intered 33.75. 109.3 t 2-47 dissimilated and miner fracture py. 125.58 128.62 37/10 3.04 <5 <0.5 3 120.40-121.4 - Breeinted and subsolid with alliuma grandwass. 128.62 131.67 37/11 3.05 <5 <0.5 5	pem	cem		OPb	Length		Recovery	to	from	%	run		om to
attend from the property of the among the state of the st		3.4	7									119.3-120.17 - Midium grunish to brownish your	
filled with print. 119.8-119.2-5 can white carbonate view at 40°CA, 5-770 prints. 20.17 138.94 FELSIC INTRUSION Pale gray to grunish-gray advisors, chuty 122.53 125.56 37/09 3.05 < 5 < 0.5 4 fullspan physic intrusion as intend 53.75- 109.34. 2-47. discuminated and miner fracturely. 125.58 128.62 37/10 3.04 < 5 < 0.5 3 120.46-121.4 - Bureinted and miner fracturely. 128.62 131.67 37/11 3.05 < 5 < 0.5 5												alter breakt. Nonmanutii. 3-52 fine -	
filled with print. 119.8-119.2-5 can white carbonate view at 40°CA, 5-770 prints. 20.17 138.94 FELSIC INTRUSION Pale gray to grunish-gray advisors, chuty 122.53 125.56 37/09 3.05 < 5 < 0.5 4 fullspan physic intrusion as intend 53.75- 109.34. 2-47. discuminated and miner fracturely. 125.58 128.62 37/10 3.04 < 5 < 0.5 3 120.46-121.4 - Bureinted and miner fracturely. 128.62 131.67 37/11 3.05 < 5 < 0.5 5											-	grained dissumented synte. Row amygduly 5	
1/9.8-112.9-5 cm white contents win at 40°CA. 5-770 pyrits. 20.17 138.94 FELSIC INTRUSION Pale your to grunish-guy intrust chuty 1/22.53/25.58 37/09 3.05 < 5 < 0.5 4 fullogen physic intrusion as intrust 53.75- 109.34 2-47 discriminated and miner fracture Py. 1/25.58 128.62 37/10 3.04 < 5 < 0.5 3 1/20.46-12/14 - Bucintal and reliabled with Alliuma groundness 128.62 131.67 37/11 3.05 < 5 < 0.5 5												filly with mit.	
20.17 138.94 FELSIC INTRUSION Pale gray to graniel - gray silving, cherry [122.53 125.58 37/09 3.05 < 5 < 0.5 4 [Idepon playing intrusion as intered 53.75- [109.34 2-47 dissiminated and mine fracturely. [125.58 128.62 37/10 3.04 < 5 < 0.5 3 [120.46-121.4 - Busineted and reliabled with [128.62 131.67 37/11 3.05 < 5 < 0.5 5												119.8-119.9- 5 cm white carbonate win at	
Pele gray to granish - gray silving, churty 122.53 125.56 37/09 3.05 < 5 < 0.5 4 fullspon physic interior as intered 53.75- 109.34 2-47 dissiminated and mine fracture Py. 125.58 128.62 371/0 3.04 < 5 < 0.5 3 120.46-121.4 - Bucietal and rehalid with 128.62 131.67 37111 3.05 < 5 < 0.5 5												40°CA. 5-7% pyrita.	
Pele gray to granish - gray silving, churty 122.53 125.56 37/09 3.05 < 5 < 0.5 4 fullspon physic interior as intered 53.75- 109.34 2-47 dissiminated and mine fracture Py. 125.58 128.62 371/0 3.04 < 5 < 0.5 3 120.46-121.4 - Bucietal and rehalid with 128.62 131.67 37111 3.05 < 5 < 0.5 5													
fullspon physic interior as intered \$3.75- 109.34. 2-47. dissiminated and miner fraction Py. 120.46-121.4 - Busineted and subsolid with 128.62 131.67 37/11 3.05 < 5 < 0.5 5												FELSIC INTRUSION	0.17 138.94
fullspon physic interior as intered \$3.75- 109.34. 2-47. dissiminated and miner fraction Py. 120.46-121.4 - Busineted and subsolid with 128.62 131.67 37/11 3.05 < 5 < 0.5 5	14	4	<0.5	< 5	3.05	37/09		125.58	122.53			Pale gray to grunish - gray silving chuty	
109.34 . 2-47 dissiminated and miner frontingly. 125.58 128.62 371/0 3.04 < 5 < 0.5 3 120.46-121.4 - Busineted and rehabild with alliums groundness. 128.62 131.67 37111 3.05 < 5 < 0.5 5				ļ								feldspar physic intrusion as interval 33.75-	
128.62 131.67 37/11 3.05 < 5 < 0.5 5	8	3	<0.5	< 5	3.04	371/0		128.62	125.58			109.34. 2-4% dissimuted and miner fracture Py.	
		<u> </u>		ļ	ļ								
	16	5	< 0.5	< 5	3.05	37111	<u> </u>	131.67	128.62	<u> </u>	ļ	silviens groundmass.	
Blocky con. 131.67 134.72 37112 3.05 < 5 < 0.5 3		 _		<u> </u>			<u> </u>					<u> </u>	
	30	3	<0.5	< 5	3.05	37112		134.72	131.67			Blocky con.	
				<u> </u>	ļ								
hower contact shorp at 25° CA. 134.72 137.77 37113 3.05 < 5 < 0.5 4	48	4	<0.5	< 5	3.05	37113	-	132.77	134.72			hower contact shoup at 25 cf.	
				<u> </u>	ļ								
137.77 138.94 37114 1.17 < 5 < 0.5 9	22	9	<0.5	< 5	1.17	37114		138.94	137.77				
					<u> </u>						-		
			<u> </u>				ļ		<u> </u>			•	
			L	<u> </u>		<u> </u>			<u></u>		<u> </u>		

ject	WIN	Logged by	G. ALLEM	Note(s):	Hole No	W	92-1	
ation	HOLBERG	Date	IM. 30 192		Page 7		of	9

DAIWAN ENGINEERING LTD.

yright

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Zn
from	to		run	%	from	to	Recovery		Length	PPP	Dom	pom	00 m
38.94	141.54	BASALT			138.94	141.54		37115	2.60	\s\5	,. <0.5	59	32
		Darle blue-gray fine-grains magnitic											
		solanie socie with 15 7. < 0.5 mm feldepan			141.54	143.86		37116	2.32	< 5	<0.5	50	22
		phenompta. Chloritic amygdulu to 2 mm.											
		howe contact ingular, ~ 30°CA.			143.86	145.70		37117	1.84	< 5	<0.5	19	24
				ļ <u> </u>	ļ								
41.54	147.62	FELSIC INTRUSION			145.70	147.62		37118	1-92	< 5	<0.5	49	32
		Medium brownish - grey churty groundmess											
		with 15% = 1 mm spidoti altered stubby			147.62	149.35		37119	1.73	<u> </u>	<0.5	408	30
		subhidied feldspon phinocripte and = 5% imm		<u> </u>									
		chloritie masse after makin phinocypta.			149.35	150.33		37120	0.98	< 5	10.5	41	28
		Unit out by 15% 21 mm - 1 cm calcute			ļ						ļ	— —	
		and on zeolite strugue generally 0-20°CA.			150.33	150.70		37121	0.37	< 5	< 0.5	435	46
		Parity content of intered generally 2/2,			<u> </u>								
		associated with pink stringers.			150.70	153-01		37122	2.31	<u><5</u>	<0.5	19	
		145.2-147.62- Unit blooded to a light to			 								
-		min graniel - gry. Relatively soft.			ļ				ļ		<u> </u>		
		Industrict lower contact.					<u> </u>				ļ		
													
			L	L	L		L	<u> </u>	L			L	

ject	WIN	Logged by	G-AL	LEM	Note(s):	Hole No.	W'	92-1	
ation	HOLBERG	Date	JAN.	30, '92		Page	8	of	9

DAIWAN ENGINEERING LTD.

pyright

Depti		Description	Reco	very	Sample	interval	Sample %	Sample No.	Sample	Au	Ag		
from	to		run	%	from	to	Recovery		Length				
47.62	153.01	BASALT											
			1										
		Dark grun fin - graind massin magnitic breakt. 207. dark grun fildegen physicapte up to 2 mm.											
		147.62- 149.35 - Sporadie upilote altretion											
		associated with calcute stringers pudaming they											
		10-15° cA. 4-52 fine - grained dissumented											·
		pyrite. Parite striges to 5 mm at											
		/o * ch		<u> </u>									
		150.33-150.70- Epidote alteration 2000											
		around 1-2 cm papite - spidate sturges at 20°CA. Tomer chalcopyrite.											
		it 20°CA. True chalcogniti.											
		0						,					
		153.01 E.O.H.											
					<u> </u>								
					<u> </u>								
		, , , , , , , , , , , , , , , , , , ,											
			<u> </u>		<u> </u>								
oject		Logged by G. A.L. E.	Note/e\:						Uala Na	14163			
	<u> </u>	Date JAN. 30, 192	.40(E(9).			**				W92			
cation	Ho	Date JAN. 30, '92							Page	9 of		9	

operty

WIN

Location

HOLBERG

District

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

NANAIMO

W92-2

Hole No.

Length_

110.34 m (362')

		N. 30 Completed JAN 31 / 92 Core Size 32+75									np. <u> </u>		
rcent F	ecovery_	32+75E 8+05S Elev. Objective	To TES	T 1N	TRUSION	- Lim	ESTONE	CONTAC-	r AND	AREA	WITH	GOLDHA	J-5012 F
Depti		Description	Rec	overy	Sample	interval	Sample %	Sample No.	Length	Au	Ag	Cu	Z
from	to	·	run	*	from	to	Recovery		ļ	роь	ppm	ppm	
0	17.37	CASING		1	-						ļ	<u> </u>	
7.37	25.98	CRANITE			17.37	20.50		37123	3.13	< 5	<0.5	14	28
		Midium grained sink granite. Salmon 4	lound										
		felderen, 157. sounded questy to 7 mm, 10-	15%		20.50	<u> 23.47</u>		37124	2.97	< 5	×0.5	6	28
		chloritic altered majice (probably hamblend).			23 47	25.53		37125	2.06	< 5	<0.5	8	20
		associated with make clote. Wale shraing a			3. 77	20.00		J/,					
		fracture at 30°CA.		<u> </u>	25.53	25.98		37126	0.45	< 5	< 0.5	5	22
		25.53-25.90 - Pale grunish-gruy attend gram	t. ?		25.98	27.40		37127	1.42	< 5	< 0.5	3 &	56
		to 3 mm suggest grants protetith. Probably	gra								<u> </u>		
		adjust mofie dyke.	arma										
											-		
5.98	27,40	MAFIC DYKE			ļ —		 -		 		-	1	
		Lower contact sharp 52° CA.											
ient	CREAT	V	Checked	i by(-ALLE	м			Hole No.	W 2.	2 - 2		
		DLYMPIC			2, '92				Page On	e of	۶	<mark>ኒ</mark>	

HOLBERG

cation

Date

FEB. 2

DAIWAN ENGINEERING LTD.

yright

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Zm
from	to		run	%	from	to	Recovery		Length	ppb	000	0000	PPm
		Darle granish . gray fine - grained massive			27.40	28.72		37128	1.32	< 5	<o.5< td=""><td>24</td><td>44</td></o.5<>	24	44
		moderately magnitic dylar. 57. munded											
		masses of quarty and for calcute up to 2 min			28.72	32-61		37129	3.89	< 5	<0.5	ط	26
		probably amygdulu.							<u> </u>				
		8 00			32.61	35.66		37130	3.05	< 5	< 0.5	7	. 30
27.40	28.12						ļ		ļ				
		Foldopan altred to white to gramish-gray.			35.66	38.50		37131	2.84	< 5	< 0.5	6	24
		Foldopon altred to white to grunish - gray.			1								
		Week shraing at 35° cA.			38.50	39.54		37132	1-04	30	<0.5	30	34
					-		 	-					
28.12	28.72	MAFIC DYKE			1		 		 				
		As 25.98 - 27.40. Sharp upper contact 42°.											
		Lower contact BO°CA.					<u> </u>						
	39.54	GRANITE											
		Aa 17.37 - 25.98 .											
		28.72-31.3 - Spondie white alteration of feldepare.			<u> </u>	ļ			ļ		ļ		
		Week white to grunish - gray spidetic alteration			ļ	 			ļ	ļ	ļ		
		along walnut at 35°CA. Blocky com.				ļ			ļ	<u> </u>			
		36.9-38- Fratured subprobled CA.									ļ		
		38.5 - 39.54 - Mylomite zone - Milium grunish gruy									ļ		
		should granity. Fabric ~ 35 CA.		<u> </u>		1	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
		Lancard by C. A	Note/e\-						Uala Na	1101	_		

හ

right

DAIWAN ENGINEERING LTD.

Depth		Description	Recov	гегу	Sample	interval	Sample %	Sample No.	Sample	Au	Ag	Cul	Z~
om	to		run	%	from	to	Recovery		Length	795	ppm	20-	eem
		Felderan and quarty ground to rounded grains			39.54	40.21		37133	0.67	< 5	<0.5	42	56
		≤1 mm. Fine - grained metric of quarty, similar,			ļ								
		+ ?											
	*	FAULT ZONE 38.50 - 40.21.			ļ								
9.54	50.50	MAFIC DYKE ? MAFIC VOLCANIC ?											
		Foult contact with mit above. 10 cm day			ļ	ļ							
		going at contact ~35° cA.				ļ							
		39.54-40.21 Should 30-50 cg. Barm.			ļ				ļ				
		40.21 - 44.8 - Darls grunish - grung aphanitis					ļ						
		dyla or soleonie. Similar to mafrie dyla	,		1		ļ						
		above. 57. 1-2 mm munded white means of			-								
		felder (?) , = questy. Could be phenocypte or			 			·	-				
		amygdulu.			ļ	 	ļ		 				
	*	14.8-50.50 FAULT ZONE - Congy mylomitie			44.80	1 7. 85	ļ	37134	3.05	< 5	<0.5	50	102
		mafic rock. Should 20° cA. Gouge intervals			 		<u> </u>		ļ				
	··	to 40 cm.			47.85	50.50	-	37135	2.65	< 5	< 0.5	29	302
						ļ				ļ			
50.50	<i>5</i> 0.8	QUARTZ VEIN			50.50	50.80	ļ	37/36	0.30	20	<0.5	47	90
		Busineted assemblage of white quanty, poli gruen			-		-						
		spidets and pole brown gammit (?). Vim developed	<u> </u>			<u> </u>	-		 				
		along should contact. Thous pyrite.	<u> </u>		<u> </u>	<u> </u>	ļ						ــــــــــــا
oject _	W	N Logged by C. ALLEN	Note(s):_					· ······	Hole No.	W92-	2		
cation_	14	DATE FEB. 2							Page	3 of _		3	

DAIWAN ENGINEERING LTD.

yright

Depti	1	Description L	Heco	very	Samble	THEFAST	Sample 76	Sample No.	Sample	<u>~~</u>	~9		<u> </u>
from	to		run	%	from	to	Recovery		Length	PPb	gp	gem!	PPm
ю. в	61.80	LIMESTONE BRECCIA	, <u></u>		50.80	53,95		37137	3.15	10	<0.5	7	28
		Businted fine- grained blue-gray limeton.		1						İ		<u> </u>	
		Rode appears to be shattened into pragments to			53.95	57.00		37138	3.05	10	(0.5	1.0	32
		2 cm and health with 10 % dark grong calcanina		1									
		material. Hailing frotune at all angle to CA.			57.00	60.04		37146*	3.04	< 5	<0.5	3	10
		Minor shraing 20" - 0° CA. Trace pyrite		ļ	ļ	ļ					ļ	<u> </u>	<u> </u>
		along fronting.			60.04	61.80	ļ	37/47 *	1.76	< 5	0.5	46	240
		53.4-53.7- 5% fine - grained dissuminated parte		ļ	ļ	ļ							
	-	in a gonge zone. 20°CA.											
		59-61.8- Shrand 15-20° CA.											
												-	(()
61.8	72.45	SKARN			61.80	63.09		37139	1-29	5	0.5	52	662
	<u> </u>	Gradational contact with above. Altered briccia.		<u> </u>	(2.00	1	1	2 7. 42	1-56	< 5	1	31	1170
	 	Probably limiton bucin protelith Inhomogeness		-	63.09	64.65		37/40	1-50	1	< 0.5	31	1170
		in a motion of fine - ground squadet, min chlorite			64.65	66.14		37141	1-49	< 5	<0.5	18	68
		and similar to brown garnet.			1.52	1						1	
		0.5-12 disumented pyrite. 62.0- 62.2 - T-see			66.14	67.67		37/42	1-53	< 5	< 0.5	19	214
	*	fine-grained gray motable (galina?)											
		Rock is strongly altered In many places is			67.67	69.19		37/43	1.52	< 5	< 0.5	49	632
		appeared to be composed of granish clay and pink go	it.				<u> </u>			<u> </u>	<u> </u>	<u> </u>	
oject	WII	N Logged by G.ALLEN	Note(s):				· · · · · · · · · · · · · · · · · · ·	 	Hole No.	W92	- 2		
cation	ال ا	Date FEB 7							Page	4 of		В	

DAIWAN ENGINEERING LTD.

pyright

Depth		Description	Reco	very	Sample	interval	Sample %	Sample No.	Sample	Аи	Ag	Cul	Z ~~
from	to		run	%	from	to	Recovery		Length	DPP	PPm	ppm	ppm
	*	Tracy to 12 fine grained black sphalints			69.19	70.80		37/44	1.61	· 5			80
		in more to Imm, dissiminated and ossociated											
		with calcite sturing and inigular masses.			70.80	72.45		37145	1.65	< 5	(0.5	30	52
		Sharing / bonding in interval 30-45 cf.			Note:	7146 + 37	147 VSE	up HoLE					
		Could be goingy fault zon suprimpred on sharm	· · · · ·		72.45	73.76		37148	1-31	< 5	10.5	80	44
		unit.	-		ļ				ļ				
					ļ	ļ	ļ						
72.45	77.10	MAFIC DYKE				ļ			1				
		Dark guy - brown for black aphanitic hyper			<u> </u>				ļ				
		with 57. & 1 mm black unhadred foundlands			-	<u> </u>							
		O. Moduatly magnetic.			 	ļ							
		V. Modrathy magnitic.			1								
		7245 - 72.7 3-47. disseminted pyrite along			-				-				
		contact.		<u> </u>	-	 			 				
		Unit cut by 5% 1-2 mm calute strungers 30°											
		and 80°cA.							-				
		Lower contact 20°CA			 								
77.0	9217	1 / ^^^			<u> </u>				 				
77.10	12.61	LIMESTONE / MARBLE							1				
		nottled matine blue-gray to white fine-			 	 							
		grains crystalling limeton. Districtly banded			 					1			
		the dal 50-65 °CA. Traces very fine-grand prints	l	.	1	<u> </u>		L	. 1		L		
oject	WIN	thoughut. Logged by G. ALLEM	Note(s):_			 			Hole No.	W92-	2	· · · · · ·	
ocation_		BEAG PEB. 3 192		· · · · · · · · · · · · · · · · · · ·	-		····		Page	<u>5</u> of		8	

oject

cation

HOLBERG

DAIWAN ENGINEERING LTD.

right 1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

Logged by

Date

G. ALLEN

Depth Description Recovery Recovery Length PPb < 5 77.10 77.44 37149 0.34 40.5 77.44 78.97 37150 42 3.05 40.5 81.38 84.43 37151 2.67 93.60 MAFIC VOLCANIC 37152 <0.5 87.33 88.48 1.15 <0.5 88.48 90.52 37153 2.15 < 5 90.52 92.67 37154 <0.5 22 92.67 37155 0.93 40.5 93-60 1175 1240 37156 <2 73.60 99.67 93.60 96.40 2.80 <0.5 MARBLE < 2 3.27 <0.5 96.40 99.67 37157

Note(s):

Hole No. W92-2

Page 6 of

Date_

DAIWAN ENGINEERING LTD.

pyright

cation

HOLBERG

Depth		Description	Reco	vегу	Sample	interval	Sample %	Sample No.	Sample	Au	Ag	Cul	ス
from	to		run	%	from	to	Recovery		Length	PPP	φρ	90m	00-
		Trace fine-grained disammented printer throughout			99.67	101.10		37158	1.43	45		· ' I	22
		, ,											
99.67	103.38	SKARN (ALTERED BASALT FLOW TOP?)			101.10	102.50		37159	1.40	<u> </u>	<0.5	55	28
		Midium grunish - gray to brown fine - grand			-				<u> </u>				······································
		attend rock. Rounded marie of red brown			102.50	103.38		37160	0.88	< 5	≺o.5	254	20
	<u></u>	gomet, spilete and colate to 5 mm. Could						27///	1 4 4	15			2.1
		be amygdule in an altered volcanic. 2-5% prite in masses to I cm. Conditional contact		 	103.38	104.84		37161	1.46	< 5	< 0.5	281	22
		with built below.			104.84	106.20		37/62	1.36	< 5	40.5	165	26
		Trace chalesparite at 100.											
					106.20	107.29		37/63	1.09	< 5	< 0.5	187	26
03.38	110.34	BASALT											
	E.O. H.			ļ	107-29	108.92		37/64	1.63	<i><</i> 5	< 0.5	148	22
		103.38- 104.84 - Dante granish - gray fine grand		ļ	-				ļ				
		spondially magnitic volume note. 1-37.			108.92	110.34		37/65	1.42	< 5	<0.5	119	20
		fir - grained dissuments projects . Cut ley			<u> </u>				1				
		5-77. 1-5 mm calcite strugue 30+70° CA.	1		1								
		104.84 - 106.20 - Spordie starm attration. 50%.											
		fine - grained pidote. Some parks distinctly											
		amygdalaidal with prite a spidate amygdula to											
		5mm. Pyrite 5% acres intered.				<u> </u>							
										_			

*	S. G. S. 198	200
	- #4: NV 25 世紀 - 10 10 10	
		Strain of the Control
and the state of t	The second second	
		Section 1
	and the responsibility of the contract of the	
นนับได้เกียร์เกียร์แล้วได้เกียร์แก้จากกระทำ	· Commence	•
	100	
Section of the second section of the second section of the second section sect		State Section 1

DAIWAN ENGINEERING LTD.

yright

Depth	Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag		T
om to	·	tun	%	from	to	Recovery		Length		1		
	106:20 - 110:34 - Darla grunish - my line -											
	arand moderately magnitic boult cut by											
	grand modestly magnitic boalt cut by 15 % 1-5 mm white calcute strugger 10-20° and 70-90° CA. 17. dissimulted and strugger- related papits.											
	and 70-90° CA. 17. disimmeted and stringer-											
	related smite.											
	- 110.34m E.O.H.											
				}								
	·											
act the	Logged by C-Allen	Note/e)·	· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · · · · · · · · ·		•		Hole No.	1,102	. 2	<u> </u>	
	Logged by G. ALLEN LBERG Date FEB. 3, '92											
ation1+o	LISERCY DATE FEB. 3, 72							Page	<u> </u>			

DAIWAN ENGINEERING LTD.

operty_		<u>N</u>		1to LBERG		NAIMO		_							81 m (25
				HEB Z	Core Size Elev										58.84 m
					Objective										
	(مر)		Desc	cription			overy		Interval	Sample %	Sample No.	Length	Au	Ag	
from	12.19	CASING		***************************************		run	%	from	to	Recovery					
2.19	76.81	BASALT	(t FELDSOAR	PHURIC + Am	YGDALOIDAL)										<u> </u>
	E.O. H.	Milia	- to dark	grunish to	bluish - grey										
		fine - gra	ind mode	itly to str	ingly magnite	<u>:</u>		<u> </u>					ļ		
	·			assive and a	muchet would	<u>-4</u>									
	,				nth radiating										
		dustro	of felderan	shinoeyste.	op to 5 min		-		-						
		1 11/3		tem Formation	,									-	
		ocen in	discrete	zone suga	esting that the	~~~/ ^									
		hole pur	itrated a	signina of	flows.	<u> </u>	ļ		ļ						
-	*			copyrite occur both diese				-	<u> </u>					 	
		i .	/1		contain concentral	in d							 	†	
		ngto 20	r. pyrite. M	ineralized inter	1										
		Latitud de	ulur.	-			1							1	
		•		te(s):		Checked	f by	G.ALL	-EN			Hole No.	ω	92-3	
illing Co	ompany	OFAWE	PIC			Date	FEB	. 2	~ ~.			Page On	e of	4	

DAIWAN ENGINEERING LTD.

right

Depth	Description	Reco	very	Sample	interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Z~
	to	run	%	from	to	Recovery		Length	БОР	PP	ppm	ppm
	12.19-18.85 - Feldopen physic to glamophysic			12.19	14.54		37166	2.35	`< 5	<0.5	724	
	Fulder physiquete to 3 mm in chestra to											
	7 mm. Broken westlined coal.											·
	16-19- 1-27 fine- grained pyritiperdom.											
	on froting surfaces.											
	·			19.20	21.62		37167	2.42	< <u>5</u>	<0.5	300	42
	18.85- 20.80 - A mydoloidal. Exidet pryrite, calcite	ļ	ļ					ļ				-
	amyadula to 3 mm.	ļ		ļ				ļ				
										ļ		
	23.47-24.99 - Annyadoloidal, 207, 2 mm to 1 cm	ļ				<u> </u>				ļ		
	ingula amyddulu (composition as abour). Poseit	4	<u> </u>	23.47	24-99	ļ	37168	1.52	< 5	<0.5	368	28
	a flow top. 3-47 pyrite committated in	Ĭ	ļ		<u> </u>			ļ				
	annyadula.		ļ	24.99	28.04		37169	3.05	< 5	< 0.5	134	40
		-		ļ	ļ							
	24.99-35.40- Massin to glamyphysia.	-	-	 				-				
		-		34.14	35.40	 	37170	1-26	< 5	<0.5	171	36
	35. 4 - 48 - Very district boundary lettrem amygda	du	 	ļ	ļ							
	and nonamysdelided zone at 35.4. 35.4-36.2-	-		35.40	35.94		37171	0.54	< 5	<0.5	349	34
	20% ignor , colorte , signite amyddinle to 1 cm (ar. 2		-			-				-		
	-4 mm). 5-87 pyrti	-	-	35.94	37.46		37172	1.52	< 5	<0.5	168	36
	36.2-48-5-109. amygduly.	-	 	1		-		1.22 TRUE		 		
		1	1	37.46	38.38	1	37173		<5	1 <0.5	296	42

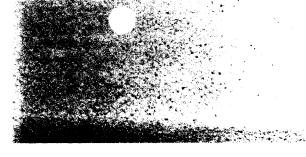
ject	WiN	Logged by_	G. ALLEN	Note(s):	Hole No.	<u></u> \	192-3		
cation	HOLBERG	Date	FEB. 4		Page	2 (of	4	

DAIWAN ENGINEERING LTD.

/right

Depth		Description	Reco	wery	Sample	Interval	Sample %	Sample No.	Sample	Au		Cu	スル
om	to		run	%	from	to	Recovery		Length	ppb	ppm	ppm	epm
		37.46 - 37.8 - Wealty breceited silicited interval			38.38	39.10		37174	0-72	< 5		207	28
		15% igidate, 15% purite 1-2% chalespirite.											
	*	SULPHIDE ZONE 38.1 - 41.7			39.10	40.25		37175	1.15	۷5	<0.5	167	38
		38.1 - 39.10 - Altered grunish - gray amydolvidal											
		boott. 7-8% fine - grained disseminated purite.			40.25	41.70		37176	1.45	< 5	<0.5	107	50
					1								·
		39.10-40.25- Epitote altered genty-combante flooded			11.70	43.28		37177	1.58	< 5	<0.5	73	28
		busin zon. Sturgue at 30 CA. 10-15% pyrite,		ļ			ļ		<u> </u>				
		57 syntatite in masses to 5 mm.			ļ							ļ	
				ļ					 				
		40.25- 41.7 - 7-82 dissumented pyrite.	<u> </u>		49.38	52.42		37178	3-04	< 5	<0.5	93	22
		OH2			-	ļ			ļ		<u> </u>	ļ	ļ
		41.7- 48- 5% 1-5mm white cality stringue 30°CA.		ļ			ļ		 	<u> </u>			ļ
		48-55. A- Fine- grained massive baselt. =1-2%	-	ļ		 	<u> </u>		 				ļ
		projects predominantly along fractions.	<u> </u>		1	ļ	ļ		ļ	ļ	ļ		
	···	, ,		ļ	 	ļ	ļ		ļ				
	<u> </u>	55.4-59.64 - 207 57. amygdula to 1cm			55.4	58.22	<u> </u>	37179	2-82	< 5	<0.5	125	32
		drewing down bol. 8 wholely a flow top.	ļ		 	<u> </u>	<u> </u>		 	ļ	<u> </u>		ļ
		55.4-56.1 - 57. pyrite prodominantly in amydule	-			 			ļ		-	<u> </u>	ļ <u>.</u>
			<u> </u>	ļ	-	 			_	 		 	
		59.64 - 63.48 - Massive breakt.		ļ	-		-		 				
İ				<u> </u>	<u> </u>	<u> </u>	1		1	<u> </u>	<u> </u>		
oject	WW	Logged by G.ALLEN	Note(s):	<u> </u>					Hole No.	ws	2-3		
		BERG Date FEB. 4 '92							Page	3 of	4		

DAIWAN ENGINEERING LTD.


yright

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu T	Z
rom	to		run	%	from	to	Recovery	· · · · · · · · · · · · · · · · · · ·	Length	PPP	pem	0Pm	ppm
- 3		63.48 - 68.1 - Spondically amyadaloidal			61.26	63.48		37180	2.22		<0.5	174	30
4		* 64.48-65.53- Shrand broken come. Foult			<u> </u>								
-		zone. Minor gray chaladonic quantz			63.48	64.48		37181	1.00	< 5	<0.5	29	20
		in stringer to 1 cm at 20°CA. 5%											
		Byrite, dissuminated, associated with spidots.			64.48	65.53		37182	1.15	< 5	<0.5	407	30
		65.53-67.1- 3-47 pyrits. Disaminated and											
		in arrygdula.			65.53	67.10		37183	1.47	< 5	<0.5	168	20
		68.1-76.81 (E.O.H.) relatively about change											
		to main - grained augstelline rocks Egungumla											
		saystallin aggregate with crystale 1-2 mm.			72.24	74.07		3718 4	1.83	< 5	<0.5	144	34
		72.24-74.07- Wester show your Stringer											
•		at 200- 45° CA. Continute flooded with			74.07	75.50		37185	1.43	< 5	<0.5	62	20
		spidate alteration adjacent stringers. 2-3%											
		disaminated parite.			75.50	76.81		37186	1-31	< 5	<0.5	49	36
		76.81- E.O.H.											
ģ													
A													
		•											
						·							
-					•	*	•			<u> </u>			

ject	WIN	Logged by	V G.ALLEN	Note(s):	Hole No	W92-3	
ation_	HOLBERC	Date	Ful. 4 '92		Page 4	of4	

DAIWAN ENGINEERING LTD.

ercent F	Recovery_		Collar Dip	-53½°	Objective	TEST	STR	IKE !	EX TENS	١٥٣	OF MINE	PALIZATI	<u> </u>	TERSECT	LD IN	₩91-
Depti from	to		Desc	iption		Reco	wery %	Sample	Interval to	Sample % Recovery	Sample No.	Length	Au	Ag	C٠	Z
0	10.67	CASING											PPL	ppm	pp~	ppm
b-67	11.0	LIMESTONE						10.67	12.60		37187	1.93	< 5	<0.5	17	70
		Medium	to dark be	hu-guy the	ily hedded											
		to think	Saminated	(1cm-1mm)	fine - gramed			12.60	14.12		37/88	1.52	< 5	<0.5	46	238
		limestan	cut ly	20 % white	calcite stringue											İ
		10- 30° CA.														
1.0	12.56			ATE DYKE				15.85	17.46		37189	1.61	< 5	<0.5	65	666
		medium 1	Luis to	brownist - gruy	fine gamed			ļ								
		moderately 1	and intrum	me. Vague =	1 mm spidotic			<u> </u>		ļ				-		İ
		stubly s	mbrhild of	uldepon phusen	yste my to 15%			 		ļ				 		
	ļ 	Ingular ch	loutre ma	sus to 2 mm,	5-107 could			18.90	20.50	 	37190	1.60	< 5	<0.5	67	854
		he allung of	L with, 7-8% PM	uds. 5 cm o contact ~ 20	spedite along			 						 		
		moon come	to howen	- L	94.					<u> </u>		-	سر بـ			
		19, dis</td <td>summary of</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td></td> <td></td> <td></td> <td>21.67</td> <td>23.10</td> <td></td> <td>37191</td> <td>1.43</td> <td>< 5</td> <td>40.5</td> <td>77</td> <td>920</td>	summary of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				21.67	23.10		37191	1.43	< 5	40.5	77	920
								23.10	25.05		37192	1.95	<5	<0.5	107	864
lient(JRUAT 1	WESTERN C	Note	o(s):		Checked	by G	ALLEN	***			Hole No	W 92	- 4		
rilling C	ompany_	OLYMPIC				Date	FEB.	9 192	2			Page One				

II Hole Record

DAIWAN ENGINEERING LTD.

epth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cu	Z.
n	to		run	%	from	to	Recovery	-	Length	Peh	ppm	PPm	ppm
56	40.37	INTERBEDDED LIMESTONE AND SILICEOUS			25.05	25.62		37193	0.57	<5	<0.5	92	1160
		SILTSTONE			25.62	26.82		37194	1.20	< <u>5</u>	<0.5	91	1060
		attributed white to doub blue-gray fine-			26.82	27.32		37195	0.50	<5	<0.5	83	1545
		grained cuptalline limestone (60%) and light											
		on to block silience siteture. Think			27.32	Z9.36		37196	2.04	۲5	<0.5	77	1005
		lammated to thirty hedded (<1 mm to 10 cm)											
		at 60-65 CA. County bonn. Trace dissuments			29.36	30.38		37197	1.02	< 5	<0.5	12	32
		priti.											
		V			30.38	31.95		37198	1.57	۷5	< 0.5	51	806
		16.57- 16.70 - 1-2 mm banks of pigite associated with											
		gidate. Trace block appalint ?											
		21.94 - 2 cm light gruy band with 10% pyrite.			35.66	38.71		37199	3.05	<5	<0.5	23	56
	-	ŭ .											
		22.57 - 2 cm calcite and chlorite band (viin?) with			38.71	40.37		37200	1.66	< 5	(0.5	26	40
		10% prite.					<u></u>			-			
		• 0	ļ						ļ				
		25.10- 2 cm colite band (vim?) with 10% spidste				<u> </u>							
		(gole) 7% pyrite and 5% black metallic normagnet											
		minud (sphaluite ?)											
		25.5 - 5 cm white about view with associated upide			<u> </u>								
		and chlority. 5% each of pyrite and 5% black metalle	1		1	<u> </u>			<u> </u>				
>ct	WiN	minual. Sphalinite? Logged by G.ALLEH	Note(s):_						Hole No.	1.1	97-4		

	WIN minual Spholuiti			prode milally	 l	L			 	1 1	
ect	WIN HOLBERG	Logged by	G.ALLEM FEB. 9	Note(s):				Hole No. Page	 ₩ 92-4 of	6	
		-						<u> </u>		·-	_:

I Hole Record

HOLBERG

Date

DAIWAN ENGINEERING LTD.

epth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ao	Cul	Zn
\Box	to		run	%	from	to	Recovery	<u></u>	Length	PPb	000	P0-m	0Pm
\perp		26.9- 27.3- Bricen Zone. Minor Calsite								1			
\perp		* flooding. Those black exhabits.											
\perp		-											
_		29.36- 30.38- Crumich- gruy sitingua feldepan											
		29.36-30.38- Crunich- gruy silvinos feldepar physic felsic sill. Contacte possellel banding.											
\dashv		Trava dissuminated provide. 30.38-31.8- Calcute stringer zone porable con assis.											
_		30.38-31.8- Calente stringer zone porable con assis.			<u> </u>		-						
\perp													
37	50.45	SKARN											
\dashv													
_		Banded altered limestone and siltertone as almose. Very sharp contact. Unit consists of two distinct wells types:											
		alrow. Viny sharp contact. Unit consists of											
\dashv		two distinct well types:			ļ	ļ	ļ						
		- 60% light to minum grunch - gry bandy							ļ				
_		to major fine - grained dispards and spreads with											
\dashv		to maine fine - grained disperde and spidete with											
_		* sphalite (among trace to 17.). Outurals to											
_		2 m.											
_													
\dashv													
							1						
et	Win	Logged by C.ALLEN	Note(s):_						Hole No.	W 92	- 4		

ii Hole Record

	Description	Recov	rery	Sample	Interval	Sample %	Sample No.	Sample	Αu	Ag	Cu	Z_
to		run	%	from	to	Recovery		Length	996	DPm	opm	
*	- 40% interple 1 cm to 1 m of fine-			40.37	40.73		37201	0.36	\ \ 5	2.0	22	710,000
	grained massive blade heavy automatablic											
	mineral (sphalinte ??) with 5 % spidote		i 1,	40.73	41.68		37202	0.95	/0	<0.5	69	592
	concentrated along bidding-parallel bonds											
	5% purite in culing to 5 mm and 5%		· · · · · · · · · · · · · · · · · · ·	41.68	43.12		37203	1.44	<5	< 0.5	39	7450
	(+?) magnitute. Internale are only spondially											
	magnitic. Magnitute in masses to can			43.12	43.82		37204	0.70	< 5	<0.5	34	3030
	indistinguishable from host black material.										<u> </u>	
	Trace choleopyrite. Some radiating criptal			43.82	45.14		37205	1.32	15	3.5	68	3370
	dutin to 2 mm in diameter. Possibly some											<u> </u>
	diopaile (block?) in aggregate Ormall the			45.14	46.46		37206	1.32	< 5	< 0.5	50	704
	motived sums too heavy to be primarily			-				ļ				
	a situati,		A 2014	46.46	47.23		37207	0.77	15	< 0.5	< 1	596
	Black intrude: 40.73 - 41.60				 		:				<u> </u>	<u> </u>
	41.91- 42.16		/	47.23	48.60		37208	1.37	< 5	<0.5	222	404
	43,12 - 43.41						2					
	43.55- 43,82			48.60	42.66		37209	1.06	< 5	<0.5	6 <i>55</i>	992
	46.46-47.23			19.61	6. 45			0.79	< 5	<0.5	227	2.4
	Below 45 : brown silvest in crystale to		`	47.66	50.45		37210	6-17	£ 3	70.3	327	3/4
- v	5mm associated with black interests. Could be garnet									<u> </u>	 	
~	Sporalic earthy and hunstite. Trace galina.			 				-			 	
				1	J	l		1	L	<u> </u>	<u>i </u>	1
	Logged by G.ALLEN	Note(s):_						Hole No.	W92	- 4		

ct	Win	Logged by G.AL	LEN	Note(s):	· · · · · · · · · · · · · · · · · · ·	Hole No.	<u>. W9</u> ,	2-4	
ion_	HOLBERG	Date F-68. 10	, '92			Page	4_0	1	6

II Hole Record

DAIWAN ENGINEERING LTD.

Depth		Description	Recov	егу	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag	Cul	Zn
m	to		run	%	from	to	Recovery	-	Length	DPb	ppm	ppm	ppm
		40.46 - 47.23 - 507. magnitute, 107. pupite.			50.45	51.20		37211	0.75	1	<0.5	9	176
		47.23 - 50.45 - Fine - grained aggregate of spidote,			51.20	51.80		37212	0.60	< 5	<0.5	379	142
		Minor approduce earthy and humatite, min			51.80	53.25		37213	1.45	< 5	<0.5	29	66
		prite, trace chalcoprite. Sporalize trace to				_					<i>(</i>) <i>(</i>		
	*	1 mm. Gold be applicate.			53.25	54.66		37214	1.41	< 5	<0.5	32	52
												_	
. 45	60.07	GRANITE			57,46	58.88		37 215	1.42	< 5	<0.5	۷	10
		Medium - grained compranda intrusive											
+		with: - 50% white stubby wholed 2-4 mm											
		- 30% plulaist - brown K-feldopan											
		- 10-15% rounded grung quarty to 4 mm - 5% chloritie mofices.											
		Mossin. Minor sporadie pinhiet alteration around											
		fractions.											
1		50.45-51.20- Quarty floods. 51.20-51.80- Sham altered columns siltetine inclusion.											
$_{\scriptscriptstyle }$ \Box		with 50% spidete, 20% pyrite and withy red humatite											

·ct	Wip	Logged by	G. ALLEN	Note(s):	Hole	No	ι	W92-4	
tion_	HOLBERG	Date FEB	. 10 , '92		Page	5	5	of	6

DAIWAN ENGINEERING LTD.

yright

Depth		Description	Reco	very	Sample	Interval	Sample %	Sample No.	Sample	Au	Ag		
from	to		run	%	from	to	Recovery		Length				
-0.07	61.57	INTERMEDIATE DYKE											
		Upper contact sharp at 30°CA. Dyla man											
		Fine - grained crystallin equipmenter aggregate of feldepar and hamlehole (30%). Possibly a quest, dionit. Monor inclusions of grants.										L	
	,	of feldepar and hamlebude (30%). Possibly a											
		questy dionit.											
		Minor inclusions of grante.											
		, ,											
		61.57 E.O.H.											
								W. M					
					L								
oiect	WIN	Logged by G.ALLEN	Note(s):						Hole No.	W92	-4		
		LBERG Date FEB. 10 92				•				6 of			
·valion_		Date FROM 10 12							. aye	<u> </u>			

DAIWAN ENGINEERING LTD.

1030 - 609 Granville Street, Vancouver, B.C., V7Y 1G5 (604) 688-1508

perty		WIN Location HOLBERG District	NANAIN	10	Hole No.		W 92 -	- 5		Length_	47.55	m (1	56′)
mmei	ncedF4	Completed FEB 7 Core Size	NQ		_ True Bea	ring	035			Corr. Dip			
ilar C	oordinates	Completed FEB 7 Core Size (2+97E, 6+73H) 556 m AT 162° FROM W91-1, 2 Elev. 10 m AS	(~470 m)) 1-1,2	_ Hor. Con	np	7.44	- 37 ~		Vert. Co	mp	46.96	<u> </u>
		Collar Dip - 8 / Objective To	TEST	SKARA	DEVE	LOPES	ALO	NG GRA	- 2π. γ	LIMY	SEDIM	15NT (CONTAC.
Dep	th (~~)	Description	Rec	overy	Sample	Interval	Sample %	Sample No.	Length		Ag	Cu	る
rom	to		run	%	from	to	Recovery		-	PP P	ppm	ppm	ppm
0	12.19	CASING					<u> </u>			-	 	 	
- 19	15.79	INTERBEDDED SILICEOUS SILTSTONE AND			12.19	13.87		37216	1.68	< 5	<0.5	56	348
		LIMESTONE							ļ				
		Darla blue - gruy to light gruy intubedde	<u> </u>	<u> </u>	13.87	14.74		37217	0.87	< 5	<0.5	57	364
		Jimm - 10 cm) siliceurs siltatom and Jimeston. 5-82 white coliste atunque up to 10			14.74	15.79		37218	1.05	20	<0.5	46	178
	<u> </u>	Conjugate sets at 20-30°CA. Bidding B.O°CA.											
		<107. popila comentated in lands up to 1 am			15.79	16.97		37219	1.18	< 5	<0.5	10	56
	*	and 57. sphalints.			16.97	18.34		37220	1.37	· <5	<0.5	27	/48
						10.51							1
79	16.97	FELSIC DYKE		ļ					<u> </u>	<u> </u>		ļ	
	-	Midium grund - gruy from - grained selections		 			1	ļ	-	 	-	<u> </u>	
	1	stringue 60 and 30° CA. 15-207 < 1 mm light								+	-	-	-
		opris - probably felderan showingto Contacts			<u> </u>		<u> </u>						
		spece - probably feldspan phrompts contacts											
ent	GREAT	WESTERN GOLD Note(s):	Checked	d by	G. ALLE	. w			Hole No.	. <u>W92</u>	5		
lling (Company_	OLYMPIC			FEB.				Page On	e of	4		
						- ,		_					

HOLBERG

ation

Date

DAIWAN ENGINEERING LTD.

Depth	1	Description	Recov	ery	Sample	Interval	Sample %	Sample No.	Sample Au		Ag	Cul	Z~
m	to		run	%	from	to	Recovery	-	Length	006	PPm	opm.	Ppm
.97	26.0	INTERBEDOED SILICEOUS SILTSTONE AND			20.42	23.47		37221	3.05	' '	40.5	79	1205
		LIMESTONE											
		Intubeded (1mm - 20 cm) dark gray silving											
		siltatone and midium blue- gruy limistone											
		(~ 50/50). Bulled at 80 °cA. Barren.											
0	27.15	FELDSPAR PHYRIC FELSIC DYKE											
		hight to medium gruy churty intrusive											
		with 15-20% I mm anhald felder ghenocysts				<u>.</u> .							
\Box		As. 15.79-16.97.											
		Conteste parallel to bulding.											
1.15	40.55	INTERBEDDED SILICEOUS SILTSTONE AND			28.32	30.0		37222	1.68	< 5	<0.5	60	720
		A2 16.97- 26.0 .			30.0	31-06		37223	1.06	< 5	<0.5	30	136
		30.37 - 2 cm vin ct 45° CA. Caleta, spinlate.			20.0	0100			1.00	``	10.5		
	*	102 pyrhette, 17. galua. 30.1-31- Several 1 cm high (viine?) parallel to			31.06	32-61		37224	1.55	30	<0.5	18	48
		30.1-31- Several 1 cm hade (vine?) parallel to							ļ				
		bidding 107. fin-grained papits.			32.61	34.20		37225	1.59	<5	<0.5	24	48
		33.56- 33.67- Conge poselled to bedding. FAULT.	:										
	WIN	Logged by C. ALLEN	Note(s):_						Hole No.	W 92	-5		

right

DAIWAN ENGINEERING LTD.

Depth		Description		Recovery Sample I		interval	Sample %	ample % Sample No.		Au	Aq	Cul	Z
2m	to		run	%	from	to	Recovery		Length	ppb	ppm	ppm	PPm
	·	33.67 - 35.54 - 207. light brownish - grey			34.20	35.54		37226	1.34		<0.5		348
_		my soft contents luke up to 5 cm thick.											
	·	Motivid has slow motive to HCl. Hariline			35.54	35.17		37227	0.23	20	<0.5	20	778
		froten how black distitio manganese staining										· •	
		adjacent. Possibly mangames carbonate.			35.77	37. 30		37228	1.53	< 5	<0.5	27	36
													·
	<u> </u>	35.54- 35.71- 907- magnitute, 107. pyrite along bailing frotune cutting magnitute 10-20°CA.			37-30	38.7/		37229	1.41	< 5	(0.5	39	28
		7			38.71	40.55		37230	1.84	< 5	<0.5	46	52
0.55	41.98	SKARN			40.55	41.50		37231	0.95	< 5	< 0.5	/00	540
		40.55 - 41.5 - white colute with ingular many			41.50	41.98		372 32	0.48	< 5	< 0.5	35	256
		and bands to 2 cm winds of medium-ground							1				
		grunial - brown upidate and on disposide.			41.98	43.70		37233	1.72	< 5	<0.5	4	46
	*	Trous gellow- brown disaminated sphalmite											
-		throughout. Took chalupyrite.											
-		41.5-41.98 - Mottled grun, brown and gruy											
		show altered sediment and intuine? . 41.76-41.98											
		507 rd- brown garnet.											
		U	i				<u> </u>		<u> </u>				

	<u> </u>		<u> </u>	L		<u></u>			
ct _	WIN	Logged by G.ALLEN	_Note(s):		Hole No.	W 92-	5		
tion	Horberg	Date FEB. 10 192			Page	3 of		4	
		,							

II Hole Record

DAIWAN ENGINEERING LTD.

)epth		Description		very	Sample Interval		Sample %	Sample No.	Sample	Αu	Ag		
n	to		run	%	from	to	Recovery		Length				
28	47.55	CRANITE / MAFIC DYKE COMPLEX											
	E.O.H.	Minim - grained equigranular granite with 407. C stubby white to granied - gray fildeger and prince - brown fildeger, 157. quanty and 57. chlorite altered mofre. Cranite intended by medium to dark gray fire - grained intermediate to mafric dyfare. Contacts ~ 45°CA.											
		40% @ stubby white to graniel - gray felderen											
		and sinhish - brown belospon, 15% greaty and											
		5% chlorite altered mofre.											
		Country introdud by medium to dark											•
		ary fine - grained intermediate to making dylan.											
		Contacte ~ 45°CA.											
		41.98- 42-44 - nottly light any to pink											
		41.98 - 42-44 - Mottled light gruy to pinke silicified contact zone. Cromte + mofice dyke?											
		MAFIC DYKES: 42.91 - 43.70	<u> </u>										
		44.80- 45.30											
		46.90 - 47.20											
		,											
		47.55 E.O. H.											
		·											
		·											

t	WIN	Logged by	G. ALLEN	Note(s):	Hole No. いタス-5
on	HOLBERC	Date F	EB. 10, '92		Page 4 of 4

TO: DAVE PAULIUK & STEVE OAKLEY

FROM: DAIWAN, PORT HARDY DIVISION HOLE W-92-1

BOX NO.	FROM	ТО		÷	
1	32.00	37.18			
2	37.18	45.67			
3	45.67	51.42			
4	51.42	57.10			
5	57.10	62.59			
6	62.59	68.51			
7	68.51	7424			
8	74.24	80.36			
9	8036	86.09			las ogu
10	86.09	92.05		1 has	0
11	92.05	98.14		.*	
12	98.14	104.76			
13	104.76	109.44			120
14	109.44	115.13			
15	115.13	120.83		•	
16	120.83	126.57			
17	126.57	132.22			
18	132.22	138.07			
19	138.07	143.95			
20	143.95	149.96			
21	149.96	153.01	E.O. H.		
22					
23					
24			- (
25					

HOLE W-92-3

BOX NO.	FROM	ТО
1 12.19	17.01	
2 17.01	22.37	
3 2 2 . 3 7	26.59	
4 26.59	32.07	
532.07	37.30	
637.30	42.57	
742,57	48.20	
8 48.20	53,91	
953.91	69.37	
10 59.37	64.70	
1164.70	70.54	
12 70.54	75.92	
1375,92	76.81	
14		
15		
16		
17		
18		
19		
20		
21		
22		
23	Will desire	
24		
25		

E.O.H.

HOLE W-92-2

BOX NO.	FROM	то
1	17.37	22.98
2	22.98	28.72
3	28.72	35.45
4	35.45	40.21
5	40,21	46.25
6	46.25	52.85
7	52.85	59.69
8	59.69	64.51
9	64,51	70.14
10	70.14	76.41
11	76.41	82.00
12	82.00	87.88
13	87.88	93,84
14	1	99.67
15	99.67	105.36
16	105.36	110.34 E.O.H.
17		· ·
18		
19		
20		
21		
22		
23		
24		
25		

CORE RECOVERY

HOLE NO. 11-92-2

RUN

то	LENGTH	LENGTH OF CORE	RECOVERY (%)
12,90	1.53	1.55	101
21.94	3.04	3.26	107
23.47	1.53	1.33	27
26.52	E,05		103
29.53	3.04		99
200	3.05		97
35,66	3.05		101
35,71	3.00		98
41.7			99
मुमा हट	2.54		. 87
44.Q.			62
167	2725		7/
5 - 20	÷		
57.50			
Errell	34.31	2,33	49
63,09	3.00	3.66	100
			104
		•	10.2.
			24
			1.62
			.93
			152.
	18,90 21,94 23,47 26,52 29,53 35,66 35,66 35,71 44,50 44,50 44,50 50,00 50,00 50,00 50,00	12,90 1.53 21,94 3.04 23,47 1.53 26.52 2.05 29,56 3.05 35,66 3.05 35,71 2.05 44.80 2.04 44.80 2.04 44.80 2.04 44.80 2.05 52.24 2.05 52.24 2.05 52.24 2.05 52.24 2.05 52.24 2.05 52.24 2.05 52.24 2.05 52.24 3.05 72.24 3.05 72.24 3.05	18.90 1.53 1.55 21.94 3.04 5.26 23.47 1.53 1.33 26.52 5.65 3.13 29.55 3.04 3.02 29.55 3.04 3.02 29.55 3.04 3.02 35.66 3.05 3.07 35.71 3.05 3.07 35.71 3.05 3.07 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 44.80 2.04 2.04 45.20 2.30 2.30 50.00 2.30 2.30 50.00 2.30 2.20 2.70 2.30 2.20 2.70 3.05 3.16 2.70 3.05 3.11 2.70 <t< td=""></t<>

CORE RECOVERY

HOLE NO. W-92-2

RUN

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
78.=2	81,38	3.05	2.7	75
£ 1.3×	8475	5.05	2,8	25
54.43	X = , 4 ×	3.65	3.08	101
57,45	90.52	3.04	3,52	99
20.52	95.57		2:74	₽ %
2357	16.62	3.05	3.17	1-4
26.62	77.27	3.25	2.80	
99.67	100,00	3.55	5.0	
10000	105.76	F.; 4	2,99	75
255,76	シマニュ	1.53		108
2-21-9	125.27	5.05	2 - 7	101
*				

CORE RECOVERY

or 2

HOLE NO. W-92-3

RUN

FROM	l mo	l royamı	1	•
FROM	TO	LENGTH	LENGTH OF CORE	RECOVERY (%)
:2.19	14.02	1.83	2.0	
4,02	16.15	2,7	2, 2	
0.0	19.20			
19.20	20,47	1.00		
20,47	23.47	2	3	
- <u>- 13 , 42 - </u>	24,99	1.52	1.83	
2/1/22	28.04	7	3,32	
	31.09	3.00	ટ્રાયવ .	
. <u>51.33</u>	34.14		2,42	
37 4	37,18		÷. •	
-11.75	23.73		3 21 1	
	43.7		3.36	
	1 23	3.00	3.25	
-	40.76	3,03	2.92	
	57.00	3,75	3.15	
	5	275	2.93	
5612	1.7	3.05	3.25	
<u>-58, 22</u>	2758		3.12	
01.26	33,70	2,44	2-44	
: 3,7:	65,53	1.63	1.9	•
25,53	14.16	2,13	2.25	
7.14	70.10	2.44	2.51	
		1	,	
-				

CORE RECOVERY

		1 1	(4) "	
HOLE	NO		,	-
	_			

RUN

FROM	TO	LENGTH	LENGTH OF CORE	RECOVERY (%)
			2.25	
	75,28	3.00	3.20	
•	7.00		1.60	
,				
	ļ. <u>.</u>			
-				
4				

CORE RECOVERY IN SAMPLES

HOLE NO. 10 - 95 3

SAMPLE NO.	FROM	ТО	LENGTH	LENGTH OF CORE	RECOVERY (%)
32.00	12,19	14,52	2,27	3.32	
807.2	15-4				
25 · . 8	22.	1.11		1.75	
		. ,	Age Sec.		
			-	1,23	
		2			· · · · · · · · · · · · · · · · · · ·
	75	<u>.</u>	•	1.51	
	•			1.27 7	
	27		,		
			•	1 14	
2.33	623		1	1.47	
	41,70			. 85	
		F		2 04	
	,		3.92	3.04	
		,		2.13	
			100	1.05	
			1.15	1.0	
3703		1.	1 A 7	1.56	
3 280	•		[-82	6,01	·
	74 0	7 100	1.43	1.43	•
393A B	- 1		1.31	1.38	

CORE RECOVERY

HOLE NO. W-07-1

RUN

FROM	TO	LENGTH	LENGTH OF CORE	RECOVERY (%)
720	95:10	2.05	287	70
95.10	48.121	3.04	2,82	93
98.49°	101,19	3.05	3,45	03
101,19	104.24	Ξ,		, -
194,94				•
127-9	1537	2.05	3,70	102
15,34	113,38	3.04		100
113,58	116.43	3.05	3,27	106
16.43	119.48	3.05	3,18	101
1/9.48	122.53	3.05	3.16	204
	125,53	3.05	3,18	104
1-5	2.62	3,64	3.12	103
	131,67	3.65	3,17	184
131.67	134,72	3,65	3.15	103
20.72	1377	3,05	3.15	103
159,24	140.82	3.05	3.04	100
14622	143.86	3.04	3,03	99
143,86	176.91	3,05	2.87	94
146.91	149,96	3.05	3.03	99
149.96	153.cl	3,05	3,16	154

CORE RECOVERY

HOLE NO		· · · · · · · · · · · · · · · · · · ·
---------	--	---------------------------------------

RUN

FROM	то	LENGTH	LENGTH OF CORE	RECOVERY (%)
32.0-	32, 9	1. 3 0	1,35	.75
	<u> </u>	4.7	2.24	.66
			1.75	.51
21000	113,50		2,38	. 77
· -43/32	- 3		2.40	7-7
1.77	2	_ ^:	2.90	.05
20 -4	52.42		• 3.21	105
5.45	55.47	3,05	3.00	. 95
55.42	58.5	3.05	3.24	106
50.5	61.54	J. St.	3,13	103
3:50	£4.63	٠, ٤,٠٠	3,25	106
1	67.66	2,64	2.92	24
	30.71	3.05	3.08	20/
	+3.76	3.05	3.05	100
73.76	76,81	31.56	2,7	and a
76.81	79.86	5,05	3,12	152
7984	8225	3.00	65	(a o
8. 99	25.95	8.25	294	96
85.95	22.39	2.44	2.50	102
88.39	39	.61	.57	92
89	9083	1.83	1.93	105
90,83	9205	1,22	1.02	84

CORE RECOVERY IN SAMPLES

HOLE NO.

SAMPLE NO.	FROM	ТО	LENGTH	LENGTH OF CORE	RECOVERY (%)
= = = = = = = = = = = = = = = = = = = =	32.00	33.80	150	135	75
24.524	37.18	40,23	=,	155	51
1	40.23	42.60	2,37	186	78
	42.60	45.30	270	204	76
	45.50	48.50	3.20	2.08	93
	45250	514	3.7	4.40	112
22.5	52.48	51.2	3.05	3 < 6	198
		ġ\$,.(;	3.00	4	
			2,05	2 / 1	
	1.450	64,5	3,45	18 Balan	10%
	34,32	17/	3 54	4	7
	67.66	137/			1
	70,71	73;	3.75		100
	-3.76	7 / P/			
37090	-) (5.1	-12:06	ja ja ja		
39091	- 3		F1.75		
2:1.2	29.66	15.95		the second second	->_
200 600	857E	89	3105	3.10	102
1294	100	92.05	3.05	292	96
223 45	2: 53	35.10	3-05	282	74
32006	95.10		3.04	2.82	93
37097	99,14		_]	3.15	103

CORE RECOVERY IN SAMPLES

HOLE NO. <u>UJ-92-1</u>

SAMPLE NO.	FROM	TO	LENGTH	LENGTH OF CORE	RECOVERY (%)
37096	101,19	17474	3.05	3.2%	
37199	104.24	107.20	5,05	31	102.
34 100	107.20	1. 15			
	64,34	1 3 7 -1 2	•	36	120 /
32 100	100	111.95	2.25		3.3
<u> Jana</u>	, 1 a d	1,3.03	1.03	1.11	110
57/0/	1507	1-1.50	1 45%		, - j
37 105	114.50	100	<u>/</u> //	1.33	
27 1	116.09	11230	1,26	1,2%	100
£,200	117.35	120,17	2.82	2.82	100
34 103	120,17	122.53	2,36	242	102
37 159	122.53	125.58	3,05	3,1.8	104
32 1/2	125.53	128.62	3,05	3,12	103
<u> </u>	128.62	131.67	3.55	3,17	104
2012	131 6=	134,77		2.96	3 - 1 1 1
3713	17 772	13:08	2.//	2.15	160
3211	13:57	138,94	202	2.24	108
37115	138.94	141,52	2.60	2.60	100
32 1/2	14154	143.86	2.32.	2.24	97
3717	143.86	145.20	1,34	1,62	123
37118	145,20	147.62	2.42	1.92	79
371/9	147.62	149.35	1.73	1.67	96

r	~	DE	REC	7175	DV	TM	CAI	MD	LES
·	v	T.E.	RECI	JVB	RI.	IR	OM	ПĽ	LED

MATE	NIO	,	*	
HOLE	NU	_ /		
		-		

15c.7c . 2.31 9.10c 10c	SAMPLE NO.	FROM	TO	LENGTH	LENGTH OF CORE	RECOVERY (%)
15c.75 2.21 2.06 106		14095	15:	9.7	97	99
150.70 2.31 2.00 10%		1.7	1, 1	, 5, 7, 1	37	100
		150.75		2.31	2,00	1
	· .					
				,		
					-	
				· .		
	<u> </u>					
				:		
		: .				· · · · · · · · · · · · · · · · · · ·
	<u> </u>					

	HOLE NO		PLE RECOVERY	LENGTH OF CORE	PECOUNT
SAN PLE	FROM	20,50	=.16	3.16	99
37123	17.32	23.47	2.97	2.96	100
37124	20.50	25,53	2.06	2,12	103
37 125	23.47		.45	.45	100
37126	25,53	25.98	1,42	1.43	100
37127	25.98	27.40	1,32	1.44	109
37128	27.40	28.72		3.64	.93
37/29	28.72	32.61	3,01	3107	101
5.7/56	32.61	35.46	3.03	2.79	97
57/3/	35.66	38.50	2.89		99
37/57	38.50	34,54	1.04	1.02	100
37/39	39,54	40.21	.67	.67	
S7184	44.80	47,85	3.65	3,77	152
37 35	47.85	5000	2.65	1.87	71
54/36	5050	50 80 7	30	27	79
1921	50 F5	53,05	J. 3.75	3.00	98
37/38	53.95	5/100	3.05	3002	99
377.7	61.80	1 60 69	1,29	1,27	98
	63.0		1,56	1,56	100
37.	64.65	66.14	1.49	1.60	107
37.00	66.14	67.67	1,53	1.63	107
57/43	67.67	69.19	1,52	1.56	103
37144 .	69.19	70.80	1.61	1.61	100
37145	70.80	72.45	1.65	1,13	68
37140	57.00	3.04	3.04	3,00	98
37 47	63.00	31.20	1.76	1.82	103
37,48	72.45	73.76	1.31	1.42	108
37/49	77.10	77,44	,34	.36 ~	105
37/50	77.44	78.97	1,53	1,52	99
. 37.51	21, 30	84,43	3.13	2.19	87

	HOLE	W-92-2	SAMPLE RECOL	VERY	
SAMPLE No.	From	To	LENGTH	LENGT	RECOVER
37152	87,33	88.48	1.15	1.20	1.04
37153	88.48	90.52	2:04	1.91	.94
37 154	90.52	92.67	2,15	2,09	.9-
37 155	92.22	93.57	,90	.98	108
37156	98 30	96.43	2.80	3,63	1,08
39/57	70.40	79,67	3,27	3,12	.95
5=158	97.57	101010	1.43	1.45	101
37159	101,16	102.50	1,40	1,40	100
37160	102,50	1:3.38	.88	. १८	100
37161	103.35	104.84	1.46	1,43	98
5F 62	104 84	106.20	1.36	1,40	103
37/65	106,20	157.29	1.09	1109	100
Galley	107,29	152.12	1.63	1,63	100
37165	158.92	110.34	1.42	1,49	105
	∮ 				
	1				
			† . • • • • • • • • • • • • • • • • • • •		
•					
		·			

APPENDIX III

CERTIFICATES OF ANALYSIS

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

A9210995

Comments: ATTN: PETER DASLER CC:GORDON ALLEN

CERTIFICATE

A9210995

DAIWAN ENGINEERING LTD.

Project: P.O. # :

WIN

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-FEB-92.

	SAMPLE PREPARATION										
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION									
205 294 238	90 90 90	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) NITRIC-AQUA REGIA DIGESTION									

ANALYTICAL PROCEDURES												
CHEMEX	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT						
100 1005 1929 1931 1932 1937 1938 1940 1004 1950	90 90 90 90 90 90 90	Ag ppm: Co ppm: Cu ppm: Fe %: 9 Mn ppm: Mo ppm: Ni ppm: Pb ppm:	Fuse 10 g sample 9 element, soil & rock 9 element, soil & rock 9 element, soil & rock element, soil & rock 9 element, soil & rock 9 element, soil & rock 9 element, soil & rock 9 element, soil & rock 9 element, soil & rock 9 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.5 1 1 0.01 5 1 1 5 2	10000 200 10000 10000 15.00 10000 10000 10000						

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project:

Comments: ATTN: PETER DASLER CC: GORDON ALLEN

Page Number :1 Total Pages :1 Certificate Date:13-FEB-92 Invoice No. P.O. Number :19211024

Account :BZH

CERTIFICATE OF ANALYSIS Δ9211024

								AIL OI A	NALYSIS	AJZ	11024	
SAMPLE	PRE COD		Au ppb FA+AA	Ag ppm	Ppm Co	Cu ppm	Fe %	Mn ppm	Mo Ppm	Ni ppm	Pb ppm	Zn ppm
37166		294	< 5	< 0.5	58	724	6.07	350	1	64	10	58
37167		294	< 5	< 0.5	15	300	5.35	275	< 1	37	5	42
37168	205 2		< 5	< 0.5	17	368	5.79	250	1	41	10	28
37169 37170	205 2 205 2	294	< 5 < 5	< 0.5 < 0.5	16 19	134 171	5.62 5.50	275 275	1 1	40 39	10 10	40 36
37171		294	< 5	< 0.5	97	349	7.88	245	1	65	5	34
37172		294	< 5	< 0.5	11	168	5.77	200	1	36	10	36
37173		294	< 5	< 0.5	39	296	5.63	220	< 1	42	10	42
3717 4 37175		294	< 5 < 5	< 0.5 < 0.5	44 54	207 167	5.60 5.74	225 180	1 1	57 40	5 5	28 38
37176	205 2	294	< 5	< 0.5	67	107	5.39	285	1	60		
37177		294	< 5	< 0.5	18	73	4.29	230	< 1	. 34	10 5	50 28
37178	205 2	294	< 5	< 0.5	18	93	3.25	140	< 1	40	10	22
37179	205 2	294	< 5	< 0.5	16	125	5.52	255	Ĩ	31	. 5	32
37180	205 2	294	< 5	< 0.5	31	174	4.34	270	< 1	51	5	30
37181 37182		294	< 5 < 5	< 0.5	8	29	4.39	115	1	37	10	20
37183		294	< 5	< 0.5 < 0.5	82 41	407	5.63	255	2	83	10	30
37184		294	\ \ \ 5	< 0.5 < 0.5	36	168 144	3.60 3.70	170 370	1	72	_ 5	20
37185	205 2	294	₹ 5	< 0.5	21	62	4.08	195	1	65 77	15 5	34 20
37186	205 2	294	< 5	< 0.5	26	49	3.98	450	< 1	104	5	36
										·		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project:

Comments: ATTN: PETER DASLER CC:GORDON ALLEN

Page Number :1 Total Pages :3 Certificate Date: 13-FEB-92 Invoice No. :19210995

P.O. Number Account :BZH

CERTIFICATE OF ANALYSIS A9210995

	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					,			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	bbw Co	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	ppm Pb	Zn ppm
37076 37077 37078 37079 37080	205 294 205 294 205 294 205 294 205 294	<pre></pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 1 1 1	4 2 3 2 1	0.66 0.61 0.60 0.62 0.69	145 145 150 150	1 < 1 < 1 < 1 < 1	1 < 1 < 1 < 1 < 1	4 2 4 2 4	20 16 14 16 18
37081 37082 37083 37084 37085	205 294 205 294 205 294 205 294 205 294	V 5 5 5 5 5 7 5 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 1 < 1 2 3	1 1 < 1 1 < 1	0.56 0.52 0.43 0.50 0.53	130 100 85 90 120	< 1 < 1 < 1 < 1 < 1	1 < 1 < 1 < 1 < 1	2 6 4 2 4	18 18 14 14
37086 37087 37088 37089 37090	205 294 205 294 205 294 205 294 205 294		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 1 1	< 1 1 1 1	0.48 0.61 0.67 0.49 0.78	110 120 95 110 95	< 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1	2 4 < 2 4 4	18 24 22 24 16
37091 37092 37093 37094 37095	205 294 205 294 205 294 205 294 205 294	< 5 < 5 10 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 2 1 1	1 2 2 5 1	0.64 0.92 0.88 1.04 0.82	145 180 130 165 145	< 1 1 < 1 < 1 < 1	< 1 1 < 1 < 1 < 1	4 4 4 2 < 2	24 22 18 20 14
37096 37097 37098 37099 37100	205 294 205 294 205 294 205 294 205 294	< 5 5 5 5 5 5 5 5 5 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 1 3 12	2 2 3 2 4	0.81 0.81 0.90 1.22 1.60	110 100 100 145 225	< 1 1 < 1 1 < 1	1 1 < 1 < 1 3	< 5 < 5 < 5 5	14 16 16 22 28
37101 37102 37103 37104 37105	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 13 11 23 11	10 20 9 109 13	3.51 4.57 3.81 3.91 2.27	510 660 595 815 485	1 1 1 1	6 6 6 15 10	15 5 10 10 5	30 28 30 980 46
37106 37107 37108 37109 37110	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 19 3 1 < 1	5 28 5 4 3	0.93 3.85 0.88 0.80 0.72	115 660 155 80 70	< 1 1 2 < 1 1	1 7 1 < 1 < 1	< 5 10 5 5 < 5	16 32 26 14 8
37111 37112 37113 37114 37115	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 < 1 2 9	5 3 4 9 59	0.57 0.70 0.54 0.92 4.55	105 165 200 130 635	1 1 2 3 1	< 1 1 < 1 1	< 5 < 5 10 5 10	16 30 48 22 32

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :2 Total Pages :3 Certificate Date: 13-FEB-92 Invoice No. :19210995 P.O. Number :

:BZH Account

Project:

Comments: ATTN: PETER DASLER CC:GORDON ALLEN

CERTIFICATE	OF ANALYSIS	A9210995
	~ :	,

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Co Co	Cu Cu	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
37116 37117 37118 37119 37120	205 294 205 294 205 294 205 294 205 294	<pre></pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 23 8	50 19 49 408 41	0.82 0.72 0.98 3.94 4.11	200 205 220 455 290	4 2 34 5 1	< 1 < 1 4 67 36	5 5 5 5 10	22 24 32 30 28
37121 37122 37123 37124 37125	205 294 205 294 205 294 205 294 205 294	V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	38 8 3 3 3	435 19 14 6 8	4.83 4.50 1.44 1.27 1.19	470 210 430 415 390	2 < 1 4 3 3	66 40 2 1	5 15 10 5 5	46 22 28 28 28
37126 37127 37128 37129 37130	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 18 13 3 4	5 38 24 6 7	0.99 4.22 3.18 1.31 1.28	340 680 560 455 475	1 < 1 2 2 1	1 29 19 < 1 2	10 5 10 5 5	22 56 44 26 30
37131 37132 37133 37134 37135	205 294 205 294 205 294 205 294 205 294	< 5 30 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 5 15 18 8	6 30 42 50 29	1.36 1.84 3.85 4.16 2.02	430 575 710 1010 855	4 1 3 < 1 < 1	1 16 26 15	10 10 10 20 40	24 34 56 102 302
37136 37137 37138 37139 37140	205 294 205 294 205 294 205 294 205 294	20 10 10 5 < 5	< 0.5 < 0.5 < 0.5 0.5 < 0.5	15 1 2 10 13	47 7 11 52 31	3.87 0.69 0.49 1.46 3.01	985 405 420 965 1630	1 4 2 2 1	24 1 3 38 14	20 5 10 260 250	90 28 32 662 1170
37141 37142 37143 37144 37145	205 294 205 294 205 294 205 294 205 294	15 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 10 9 15 5	18 19 49 44 38	2.58 2.86 2.06 2.11 1.30	1495 1675 1235 1150 605	6 1 < 1 1	14 12 18 13 6	20 30 170 10 5	68 214 632 80 52
37146 37147 37148 37149 37150	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 1 4 26 21 < 1	3 46 80 122 6	0.20 0.75 4.33 3.23 0.19	355 840 1970 565 230	2 9 1 1 < 1	1 29 94 39 3	< 5 90 10 15 < 5	10 240 44 82 4
37151 37152 37153 37154 37155	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 1 2 < 1 26	6 29 22 3 1175	0.24 1.01 0.65 0.08 4.05	235 445 230 315 1145	< 1 1 < 1 < 1 1	< 1 < 1 5 < 1 96	< 5 < 5 5 5 50	< 2 8 6 22 1240
		<u> </u>	L		L			l		0 1	<u></u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project:

Comments: ATTN: PETER DASLER CC:GORDON ALLEN

Page Number :3 Total Pages :3 Certificate Date: 13-FEB-92 Invoice No. :19210995 P.O. Number

Account BZH

CERTIFICATE OF ANALYSIS A9210995

,		1		,			AIE OF A	ITAL I OIO		10995	
SAMPLE	PREP CODE	Au ppb FA+AA	ppm Ag	PPm Co	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pp Pb	Zn ppm
37156 37157 37158 37159 37160	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 20 25 37	4 6 126 55 254	0.15 0.38 4.55 3.65 2.38	340 335 715 495 220	< 1 < 1 < 1 < 1	< 1 < 1 86 90 97	5 5 7 10 5 5	< 2 < 2 22 28 20
37161 37162 37163 37164 37165	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	28 34 20 40 27	281 165 187 148 119	2.11 3.70 2.84 3.85 3.54	265 290 360 285 250	< 1 < 1 < 1 < 1 < 1	95 100 79 92 117	10 10 5 10	22 26 26 22 20
			<u> </u>				L				

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :1 Total Pages :2 Certificate Date: 24-FEB-92 Invoice No. :19211306 P.O. Number :-

Account :BZH

Project: WIN

Comments: ATTN: PETER DASLER CC: GORDON ALLEN

			,·			CERTIFIC	ATE OF A	NALYSIS	A92	211306	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	bbw bp	Zn ppm
37187 37188 37189 37190 37191	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5	<pre></pre>	4 3 4 4 5	17 46 65 67 77	1.71 0.59 0.92 0.68 1.10	910 240 170 140 245	1 5 22 31 42	9 34 56 67 84	8 14 18 26 16	70 238 666 854 920
37192 37193 37194 37195 37196	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 6 5 4 4	107 92 91 83 77	0.94 1.17 1.15 0.98 0.84	230 310 260 570 285	41 70 72 51 49	73 93 99 91 84	50 18 18 16 18	864 1160 1060 1545 1005
37197 37198 37199 37200 37201	205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 3 4 9	12 51 23 26 22	2.65 0.97 0.41 0.57 1.57	570 485 125 190 1865	1 52 28 45 19	3 84 52 64 15	2 14 12 30 926	32 806 56 40 >10000
37202 37203 37204 37205 37206	205 294 205 294 205 294 205 294 205 294	10 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 3.5 < 0.5	2 8 13 22 10	69 39 34 68 50	>15.00 7.22 >15.00 6.84 6.03	9800 5550 8300 4790 4140	16 37 45 57 81	22 12 27 30 28	156 6 44 56	592 7450 3030 3370 7040
37207 37208 37209 37210 37211	205 294 205 294 205 294 205 294 205 294	15 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 6 7 9 2	< 1 222 655 327 9	>15.00 11.00 6.90 5.86 0.78	7950 3490 2010 2350 870	53 23 6 1 6	10 9 8 6	20 6 12 4 20	596 404 992 314 178
37212 37213 37214 37215 37216	205 294 205 294 205 294 205 294 205 294		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 2 2 1 5	379 29 32 < 1 56	8.79 1.04 1.24 0.45 1.31	2550 685 350 95 575	82 8 3 < 1 17	3 < 1 1 1 56	26 14 6 2 14	142 66 52 10 348
37217 37218 37219 37220 37221	205 294 205 294 205 294 205 294 205 294	< 5 20 < 5 < 5 < 5	V 0.5 V 0.5 V 0.5 V 0.5 V 0.5	6 5 7 4 5	57 46 10 27 79	1.40 1.01 3.00 0.75 1.25	620 670 1570 620 570	13 16 4 7 63	39 31 5 24 81	12 8 6 10 46	364 178 56 148 1205
37222 37223 37224 37225 37226	205 294 205 294 205 294 205 294 205 294	< 5 < 5 30 < 5 < 5	V 0.5 V 0.5 V 0.5 V 0.5 V 0.5	5 7 5 4 4	60 30 18 24 14	0.75 1.05 0.53 0.44 0.48	205 215 255 500 640	54 51 22 11 4	106 89 53 70 25	16 12 16 12 86	720 130 48 48 348
		<u> </u>				L					1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD.

ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: WIN

Comments: ATTN: PETER DASLER CC: GORDON ALLEN

Page Number :2 Total Pages :2

Certificate Date: 24-FEB-92 Involce No. I 9211306 P.O. Number

Account

:BZH

							CERTIFIC	ATE OF A	NALYSIS	A92	211306	
SAMPLE		REP ODE	Au ppb FA+AA	Ag ppm	Co ppm	bbw Ca	Fe %	bbw wu	Mo Mo	Ni ppm	Pb ppm	Zn ppm
37227 37228 37229 37230 37231	205 205 205	294 294 294 294 294	20 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 6 7 8 7	20 27 39 46 100	>15.00 0.81 0.60 1.07 2.49	8260 270 260 540 890	< 1 19 45 64 < 1	20 41 82 70 11	78 14 16 16	778 36 28 52 540
37232 37233	205 205	294 294	< 5 < 5	< 0.5 < 0.5	11 7	35 4	4.24	1895 605	< 1 < 1	7 2	18 10	252 46

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: WIN

Comments: ATTN: PETER DASLER CC: GORDON ALLEN

Page Number :1 Total Pages :2 Certificate Date:24-FEB-92 invoice No. :19211306

P.O. Number Account :BZH

CERTIFICATE OF ANALYSIS	A9211306
-------------------------	----------

Sample	PREP CODE	Au ppb FA+AA	ppm Ag	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	bbw 5p	Zn PPm
37187	205 294		< 0.5	4	17	1.71	910	1	9	8	70
37188	205 294		< 0.5	3	46	0.59	240	5	34	14	238
37189	205 294		< 0.5	4	65	0.92	170	22	56	1.8	666
37190	205 294		< 0.5	4	67	0.68	140	31	67	26	854
37191	205 294	< 5	< 0.5	5	77	1.10	245	42	84	16	920
37192	205 294		< 0.5	5	107	0.94	230	41	73	50	864
37193 37194	205 294		< 0.5	5	92	1.17	310	70	93	18	1160
37194 37195	205 294 205 294		< 0.5 < 0.5	5	91 83	1.15	260 570	72	99	18	1060
37196	205 294		< 0.5	4 4	77	0.98	285	51 49	91	16	1545
			<u> </u>	*	,,	0.84	265	49	84	1.8	1005
37197	205 294		< 0.5	2	12	2.65	570	1	3	2	32
37198	205 294		< 0.5	4	51	0.97	485	52	84	14	806
37199 37200	205 294 205 294		< 0.5	3 4	23 26	0.41	125 190	28 45	52	12	56
37201	205 29		2.0	9	22	1.57	1865	19	64 15	30 926	40 >10000
3/201	203 23	` ` ` `	<u></u>			1.57	1665		15	926	>10000
37202	205 294		< 0.5	2	69	>15.00	9800	16	22	6	592
37203	205 294	< 5	< 0.5	8	39	7.22	5550	37	12	156	7450
37204	205 294		< 0.5	13	34	>15.00	8300	45	27	6	3030
37205	205 294		3.5	22	68	6.84	4790	57	30	44	3370
37206	205 294	< 5	< 0.5	10	50	6.03	4140	81	28	56	7040
37207	205 294		< 0.5	14	< 1	>15.00	7950	53	10	20	596
37208	205 294		< 0.5	6	222	11.00	3490	23	9	6	404
37209	205 294		< 0.5	7	655	6.90	2010	6	8	12	992
37210	205 294		< 0.5	9	327	5.86	2350	1	6	4	314
37211	205 294	< 5	< 0.5	2	9	0.78	870	6	1	20	178
37212	205 294		< 0.5	7	379	8.79	2550	82	3	26	142
37213	205 294		< 0.5	2	29	1.04	685	8	< 1	14	66
37214 37215	205 294		< 0.5 < 0.5	2	32	1.24	350 95	3	1	6	52
37215	205 294		< 0.5 < 0.5	1 5	56	0.45 1.31	575	< 1 17	1 56	2	10
							<u> </u>	1,	36	14	348
37217	205 294		< 0.5	6	57	1.40	620	13	39	12	364
37218	205 294		< 0.5	5	46	1.01	670	16	31	8	178
37219	205 294		< 0.5	7	10	3.00	1570	4	5	6	56
37220 37221	205 294		< 0.5	4	27	0.75	620	7	24	10	148
3/221	205 294	< 5	< 0.5	5	79	1.25	570	63	81	46	1205
37222	205 294		< 0.5	5	60	0.75	205	54	106	16	720
97223	205 294		< 0.5	7	30	1.05	215	51	89	12	130
37224	205 294		< 0.5	5	18	0.53	255	22	53	16	48
37225	205 294		< 0.5	4	24	0.44	500	11	70	12	48
37226	205 294	< 5	< 0.5	4	14	0.48	640	4	25	86	348
				<u> </u>		<u> </u>	<u> </u>	_		L <u>.</u>	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC

V7Y 1G5

Project:

Comments: ATTN: PETER DASLER CC: GORDON ALLEN

Page Number :2 Total Pages :2 Certificate Date: 24-FEB-92 Invoice No. :19211306 P.O. Number :

Account :BZH

CERTIFICATE OF ANALYSIS A9211306

			<u> </u>		· · · · · · · · · · · · · · · · · · ·		CENTIFIC	AILUIA	MALION	M94	211300	
SAMPLE		REP ODE	Au ppb FA+AA	Ag ppm	bb <u>rr</u> Co	Cu ppm	Fe %	Mn Mn	Mo ppm	Ni ppm	Pb Pb	Zn ppm
37227 37228 37229 37230 37231	205 205	294 294 294 294 294	20 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 6 7 8 7	20 27 39 46 100	>15.00 0.81 0.60 1.07 2.49	8260 270 260 540 890	< 1 19 45 64 < 1	20 41 82 70 11	78 14 16 16 16	778 36 28 52 54
37232 37233	205 205	294 294	< 5 < 5	< 0.5 < 0.5	11 7	35 4	4.24 2.29	1895 605	< 1 < 1	7 2	18	252 46

APPENDIX IV

PACIFIC GEOPHYSICAL LTD.

REPORT

PACIFIC GEOPHYSICAL LTD.

REPORT ON THE

INDUCED POLARIZATION, RESISTIVITY AND MAGNETIC SURVEYS

ON THE

WIN PROJECT

NANAIMO MINING DIVISION, BRITISH COLUMBIA

FOR

DAIWAN ENGINEERING LTD.

LATITUDE: 50 44' N LONGITUDE: 127 57' W

N.T.S. 92L/12

BY

Michael J. Cormier, B.Sc. Geophysicist

and

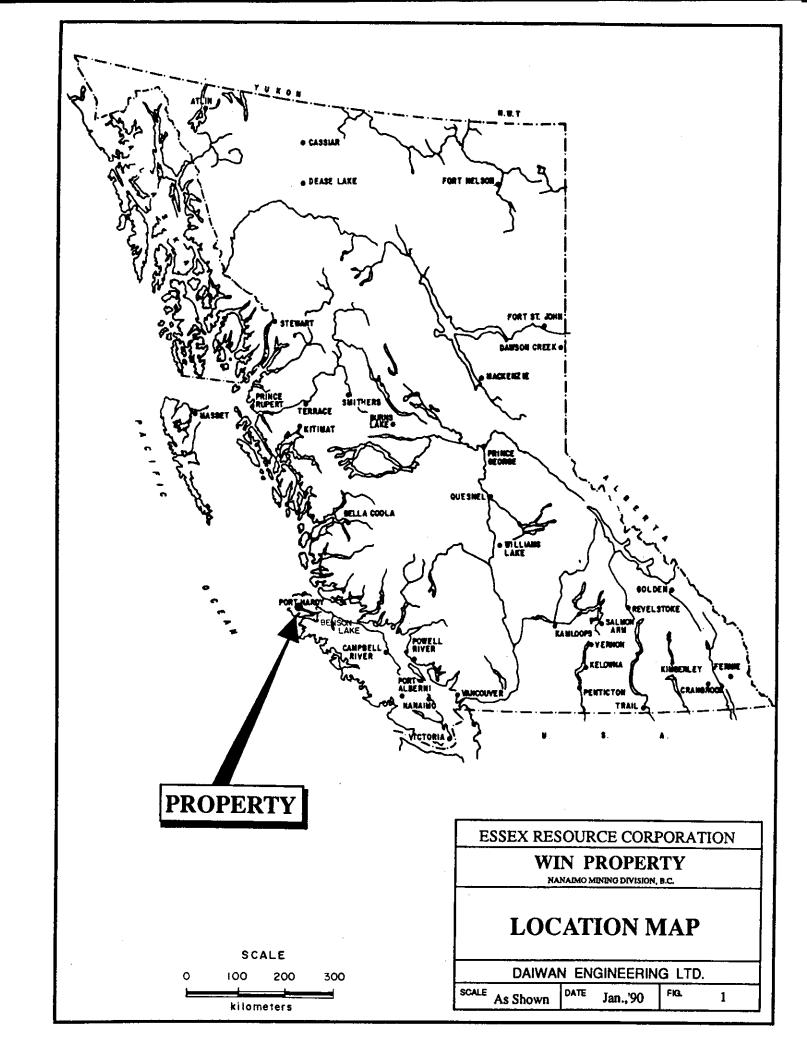
Paul A. Cartwright, P.Geoph. Geophysicist

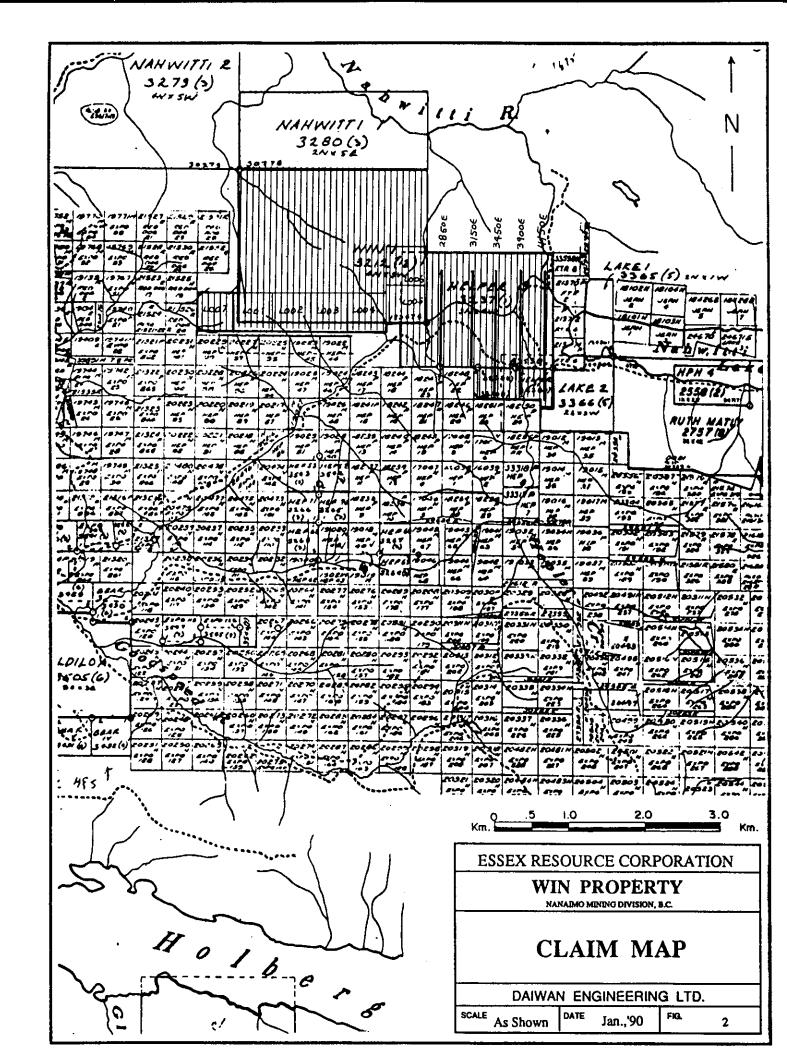
DATED: FEBRUARY 14, 1992.

SUMMARY

Induced Polarization, resistivity and magnetic surveys have been carried out on the Win Project by Pacific Geophysical Ltd. on behalf of Daiwan Engineering Ltd. during the period January 15, 1992 to January 17, 1992.

Two anomalous IP zones are outlined in the data. The largest, and strongest, of the two is felt to be due to the presence of a fairly large scale sulphide system. Three drillholes located within the zone have intersected sulphides -- predominantly pyrite. The second zone outlined, located on the southern margin of the grid, is smaller and weaker than the first; and has not been drill tested.


It has been recommended that a full review of all available data be undertaken prior to the commencement of further work on the project.


TABLE OF CONTENTS

PART A REPORT	PAGE
1. Introduction	1
2. Description of Claims	1
3. Description of Geology	2
4. Instrument Specifications	2
5. Survey Specifications	3
6. Data Presentation	4
7. Discussion of Results	5
8. Conclusions and Recommendations	6
9. Personnel	8
10. Statement of Cost	9
11. Certificate: Paul A. Cartwright, P.Geoph.	10
12. Certificate: Michael J. Cormier, B.Sc.	11

PART B ILLUSTRATIONS

Location Map	Fig. 1
Claim Map	Fig. 2
IP Pseudosections	5 Sections
Contoured IP with Interpretation	PLAN MWNIP
Contoured Resistivity	PLAN MWNRES
Contoured Magnetics	PLAN MWNMAG

1. INTRODUCTION

Induced Polarization (IP), resistivity and total field magnetic surveys have been carried out on the Win Project at the request of Daiwan Engineering Ltd. by Pacific Geophysical Limited. The property, located approximately 35 km west of Port Hardy, on northern Vancouver Island, was accessed by road.

Field work was carried out during the period January 15, 1992 to January 17, 1992 under the direction of Michael J. Cormier, geophysicist. A total of 7.55 line-kilometers of IP / resistivity and total field magnetic data was acquired.

2. DESCRIPTION OF CLAIMS

The Win Project is comprised of the following contiguous claims, all of which are located in the Nanaimo Mining Division. All claims are recorded in the name of Daiwan Engineering Ltd. and are held in trust for Agilis Exploration who has optioned the property to Essex Resource Corporation.

<u>Name</u>	Record No.	<u>Units</u>	Expiry Date
LOD 1-7	3674-80	7	Jan. 16, 1995
WIN 1	3212	20	Dec. 9, 1996
Helper	3237	12	Jan. 31, 1994
Helper 1	3694	1	Feb. 3, 1995
Helper 2	3695	1	Feb. 3, 1995

3. DESCRIPTION OF GEOLOGY

The following description of geology has been taken from the "GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL ASSESSMENT REPORT ON THE WIN CLAIM GROUP, NORTHERN VANCOUVER ISLAND, BRITISH COLUMBIA, CANADA" by Rod W. Husband and Peter G. Dasler of Daiwan Engineering Ltd., dated February 15, 1990.

"The Win claim group is underlain by volcanics and sediments of the Karmutsen, Quatsino, Parson Bay and Bonanza formations. The rocks are intruded by at least four distinct phases of intrusives. The attitudes of the rocks are generally northwest striking, southwest dipping except where the bedding has been disrupted by the intrusives and the northwest and northeast trending late stage faults.

Four different styles of base and precious metal mineralization were observed on the property. They include auriferous zinc metasomatic replacement, semi-massive copper-zinc sulphide veins, auriferous quartz veins and copper bearing intrusive. Each of these styles of mineralization have been found on other properties in the surrounding district."

4. INSTRUMENT SPECIFICATIONS

The IP / resistivity measurements were made using an EDA Model IP-6 six channel time domain receiver set to "mode 3" whereby a delay time (TD = 80 milliseconds) is followed by 10 measurement windows (td = 80,80,80,80,160,160,160,360,360 and 360 milliseconds) yielding a total integration time of 1880 milliseconds. The signal used to make the measurements was provided by a Phoenix Model IPT-1 transmitter producing a 2 second on / 2 second off square wave of

alternating polarities. The transmitter was powered by a 2 kilowatt motor generator set. IP effects were recorded as chargeability in milliseconds while apparent resistivity values were normalized in units of ohm - meters.

A GEM Systems Model GSM-19 Overhauser magnetometer and an EDA Model PPM-375 magnetometer were employed to collect the total field magnetic data along the grid lines while an EDA Model PPM-375 magnetometer monitored the magnetic field at the base station. At the end of each day, the recorded base station data were combined with the field readings to correct for diurnal variations in the earth's magnetic field.

5. SURVEY SPECIFICATIONS

The IP / resistivity was carried out using the pole - dipole array with an interelectrode spacing of 50 meters. The moving current electrode was to the north of the potential electrode pair. Measurements were made at stations along grid lines spaced 250 - 450 meters apart, recording four dipole separations in each case.

Total field magnetic readings were made at 25 meter intervals along the same grid lines referred to above.

6. DATA PRESENTATION

The induced polarization and resistivity results are shown on the following data plots in pseudosection format:

$\frac{\mathtt{Line}}{}$	Electrode Interval	Reading Interval	Total Coverage
2850E	50 meters	950s - 250N	1200 meters
3150E	50 meters	900s - 250N	1150 meters
3 4 50E	50 meters	1500s - 250N	1750 meters
3900E	50 meters	1500s - 250N	1750 meters
4150E	50 meters	1500s - 200N	1700 meters

Also included with this report is a contoured, posted, 1:5000 scale plan map (PLAN: MWNIP) of the 10-point Fraser-filtered chargeability values which includes the IP interpretation. The Fraser filter value is arrived at by calculating an average value for each dipole separation using one n=1 value, two n=2 values, three n=3 values and four n=4 values. These results are then further averaged to yield one number which can be contoured in plan view. The strong, moderate and weak IP anomalies are indicated by bars in the manner shown on the plan map legend as well as on the pseudosections. These bars represent the surface projection of the anomalous zones interpreted from the transmitting and receiving electrode locations when the anomalous values were measured. The contoured, posted Fraser filtered resistivity data are illustrated on the 1:5000 scale plan map labelled PLAN: MWNRES.

Magnetic survey results are posted and contoured on the 1:5000

scale plan map labelled PLAN: MWNMAG.

7. DISCUSSION OF RESULTS

For this discussion, the reader is referred to the map labelled PLAN: MWNIP. Here, the zones of increased chargeability which are interpreted to be present, along with their constituent anomalies, are illustrated. As well, the locations of three drillholes (W92-1, W92-2, W92-3), emplaced after the conclusion of the present geophysical program, are marked.

On this particular property, it is the authors' opinion that the IP effects are the most useful of the three parameters measured and so provide the primary basis for the interpretation.

The present geophysical survey results are dominated by a large zone of increased chargeabilities which blankets the northern two-thirds of the grid. This response is consistent with the presence of a sulphide system located in the geophysical survey area. The highest magnitude IP effects within the zone are found on the western part of the grid (Stations 300S - 550S, Line 2850E; and Stations 150S - 250S, Line 3150E) where the polarizable material responsible for the anomalies is thought to come well within 50 meters of surface. This area of the zone has been tested by drillholes W92-1 and W92-3 and it is understood that both holes intersected disseminated pyrite. Drillhole W92-2, located near the

southern margin of the zone, is reported to have intersected skarn mineralization which included sulphide material, overlying limestone. Elsewhere within the zone, the depth to the top of the causative source is felt to be quite variable. This depth variability, together with changes in percent sulphide content, is interpreted to be responsible for the range of anomalous IP effects observed within the zone. The boundaries of this feature remain undefined to the north, west and east.

A second zone of anomalous chargeabilities, situated at the southern end of Lines 3450E, 3900E and 4150E is also illustrated on the interpretive plan map. This weakly anomalous feature is gaining in strength from east to west and remains open to the east, west and south. Depth of cover is felt to be within one dipole length (50 meters) of surface.

8. CONCLUSIONS AND RECOMMENDATIONS

A study of the geophysical survey data collected on grid lines emplaced on the Win claim group has resulted in the selection of chargeability anomalies comprising two zones of enhanced IP effects, which are illustrated on PLAN: MWNIP.

The larger of the two features is felt to be the manifestation of a fairly large scale sulphide system buried under a variable depth of cover. From the drill results to date, it would appear 7

that at least some of the higher magnitude chargeabilities may be

attributed to the presence of pyrite. It is recommended that a

comprehensive review be made of all other information which may

exist concerning this part of the survey grid and that further work

be considered only if results are encouraging.

The smaller of the two features, located at the southern end of

the geophysical grid, is weakly anomalous but appears to be growing

somewhat in magnitude from east to west. All other available

information in this area should be reviewed in order to assess its

potential. If this review proves positive, more IP / resistivity

survey work could be considered in order to outline the western,

southern and eastern boundaries of this zone.

PACIFIC GEOPHYSICAL LTD.

Muhael J. Cormier, B.Sc.

Paul A. Cartwright, P.Geoph.

Dated: February 14, 1992.

9. PERSONNEL

The personnel utilized during the geophysical program are listed below:

<u>Name</u>	Occupation	<u>Address</u>	<u>Date</u>
M. Cormier	Geophysicist	212-744 W.Hastings St. Vancouver, B.C.	Jan.15-17/92 Feb.10-13/92
J. Jordan	Geophysicist	11	Jan.15-17/92
A. Pratt	Helper	11	Jan.15-17/92
A. Sperling	Helper	**	Jan.15-17/92
S. Fleming	Helper	**	Jan.15-17/92
M. Steiner	Helper	**	Jan.15-17/92
P. Cartwright	Geophysicist	и	Feb.11-12/92

PACIFIC GEOPHYSICAL LIMITED

Paul A. Cartwright,P.Geoph.

Dated: February 14, 1992.

10. STATEMENT OF COST

Reference: Win Project

Data Acquisition	9	3	5,400.00
Mobilization - Demobilization	Ş	Š	750.00
Data Processing, Plotting, Reproduction	n Ş	3	930.00
Interpretation and Report Preparation	Ç	,	1,050.00
Sul	btotal \$	Š	8,130.00
G.:	S.T. 9	š	569.10
Sul	btotal \$	è	8,699.10
Motel Expense (includes \$15.12 G	.S.T.) §	3	248.40
To	tal S	3	8,947.50

PACIFIC GEOPHYSICAL LTD.

Paul A. Cartwright, P.Geoph.

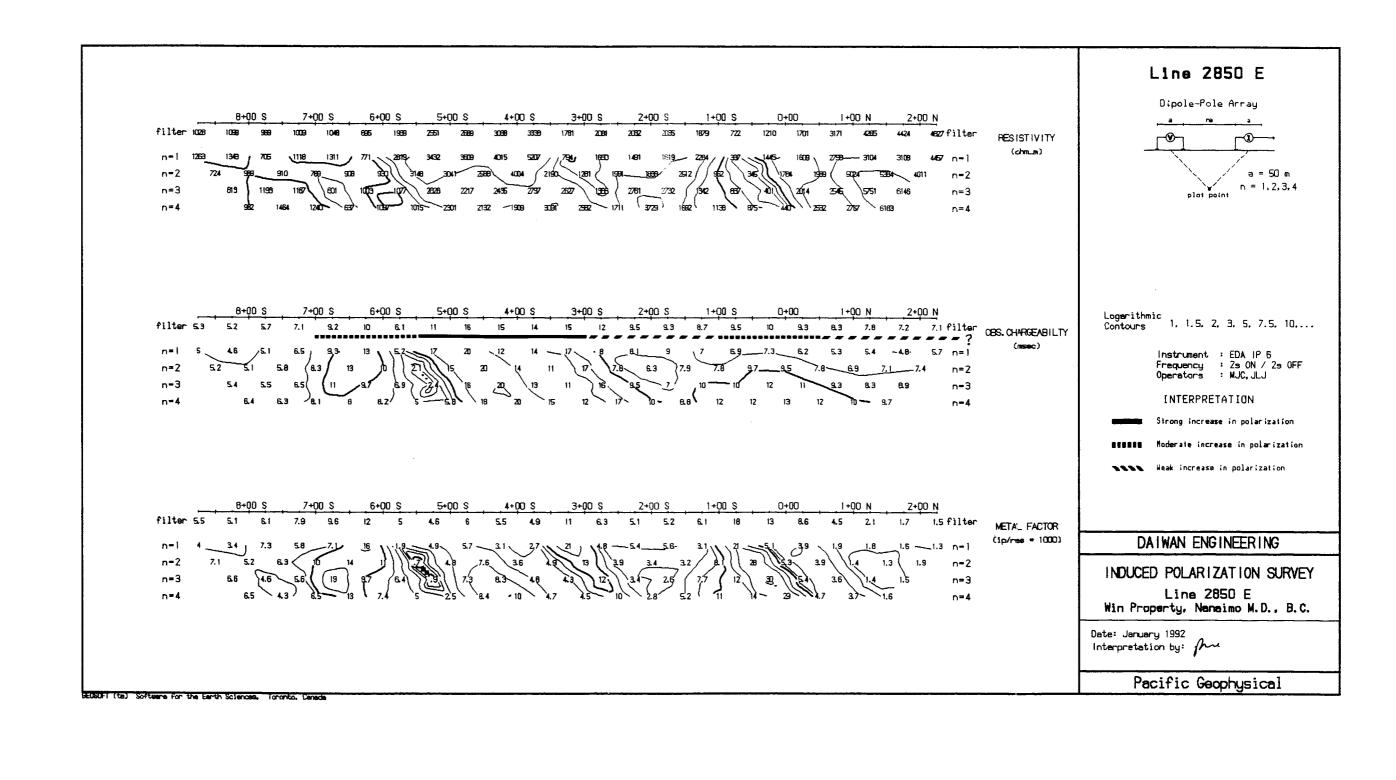
Dated: February 14, 1992.

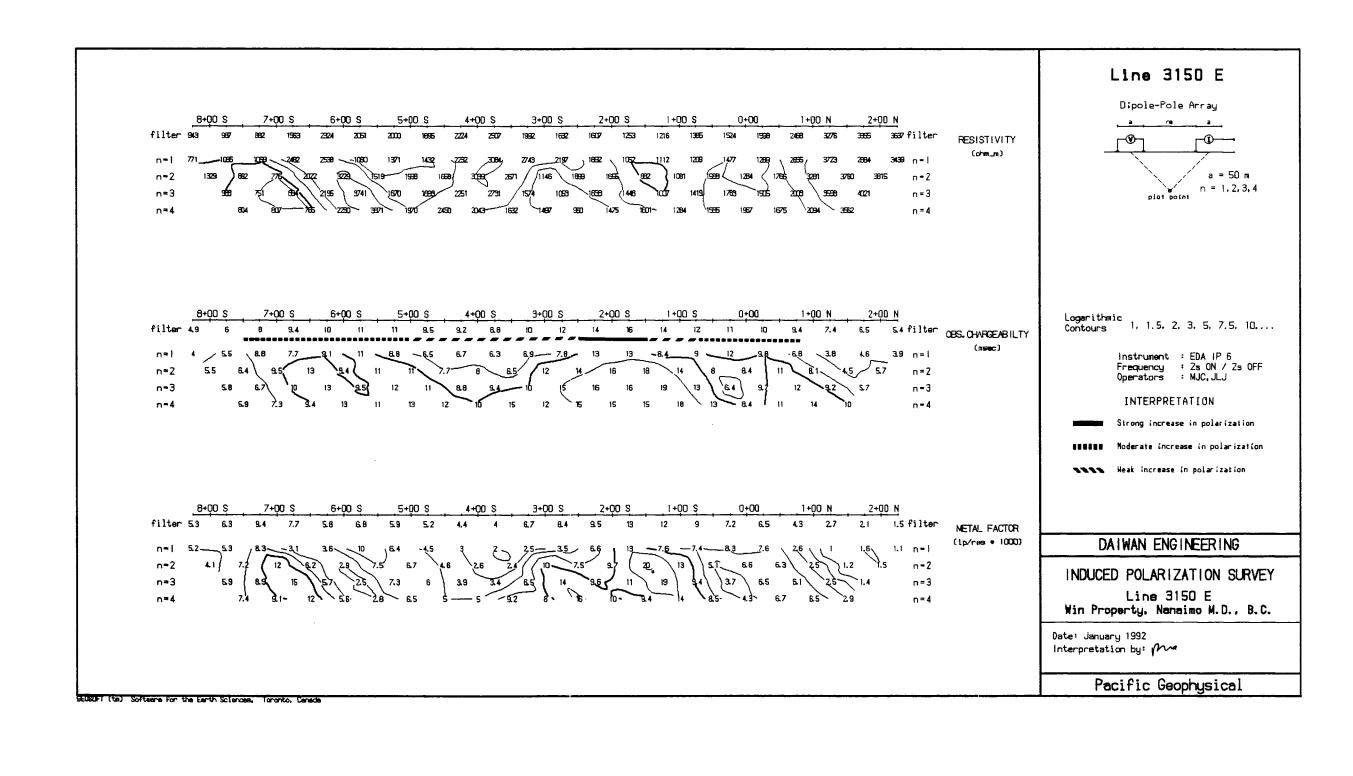
11. CERTIFICATE

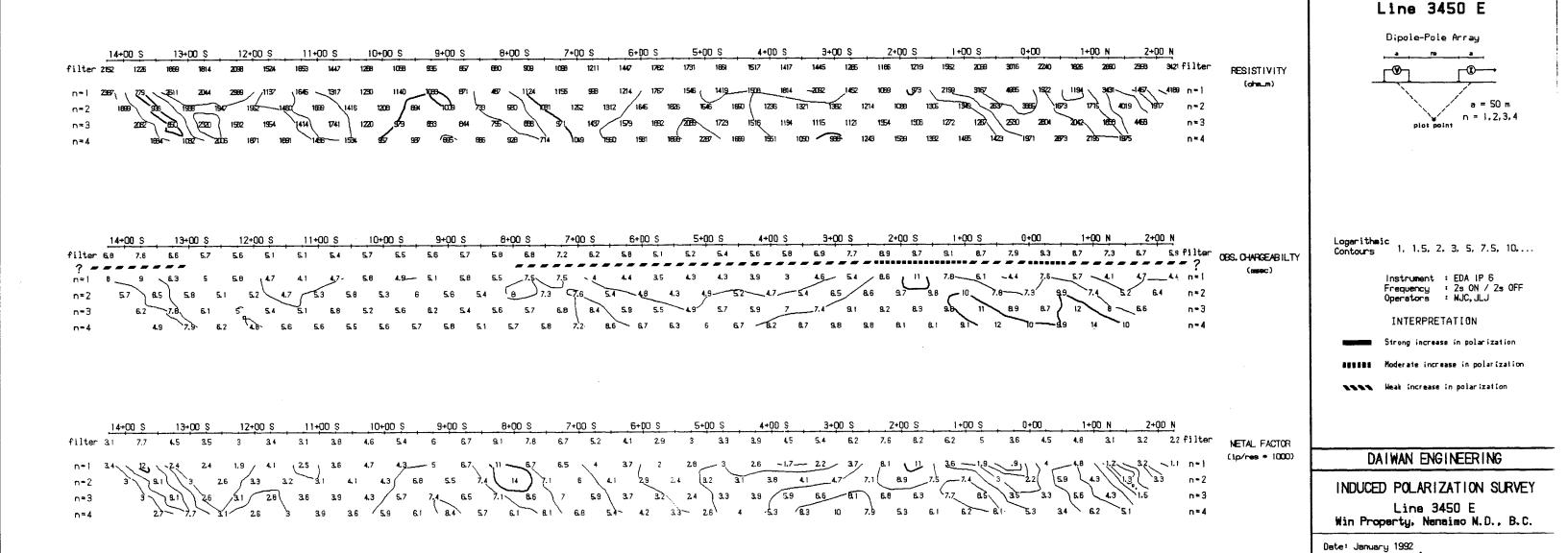
- I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:
- I am a geophysicist residing at 4238 West 11th Avenue,
 Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree (1970).
- 3. I am a member of the Society of Exploration Geophysicists, the European Association of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.
- 4. I have been practising my profession for 21 years.
- 5. I am a Professional Geophysicist licensed in the Province of Alberta.
- 6. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Daiwan Engineering Ltd. or any affiliates.
- 7. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

Dated at Vancouver, British Columbia this 14th day of February, 1992.

PAUL A. CARTWRIGHT, P.GEOPH.

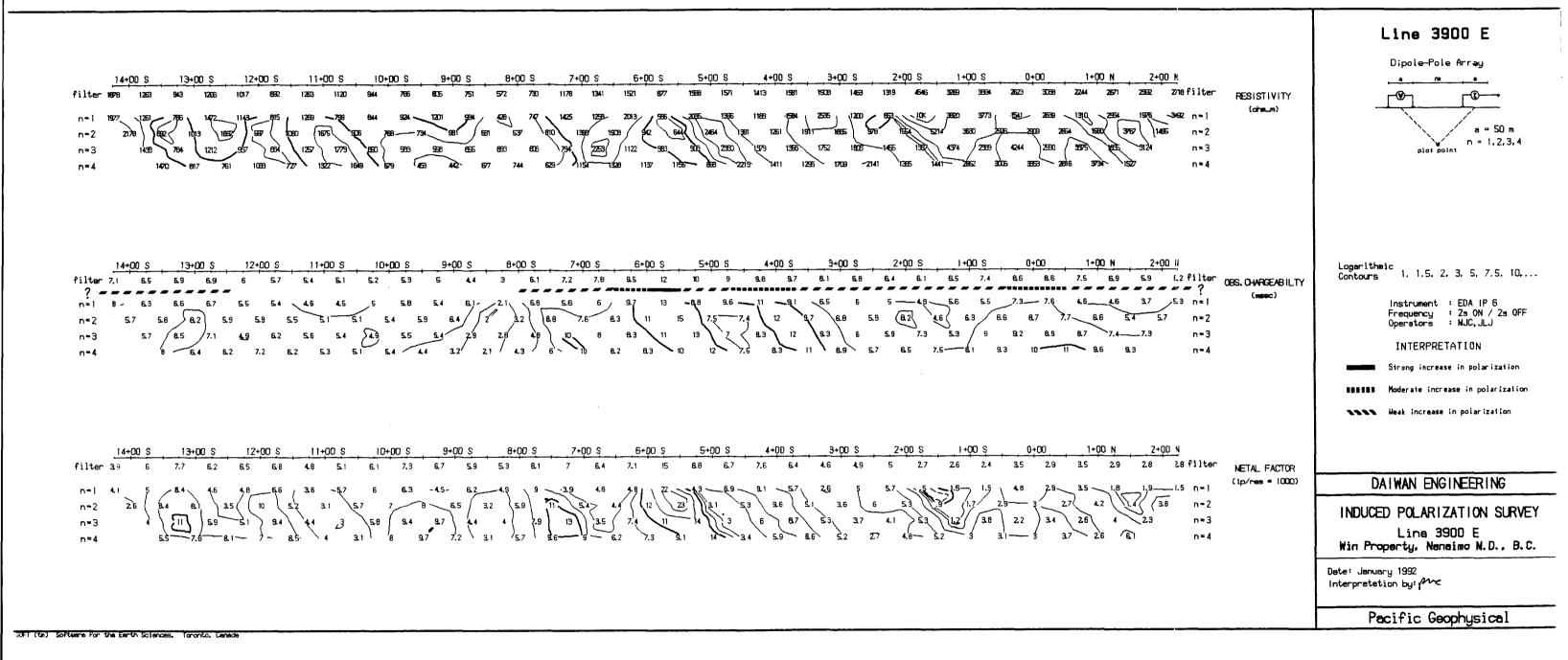

Paul A. Cartuny h

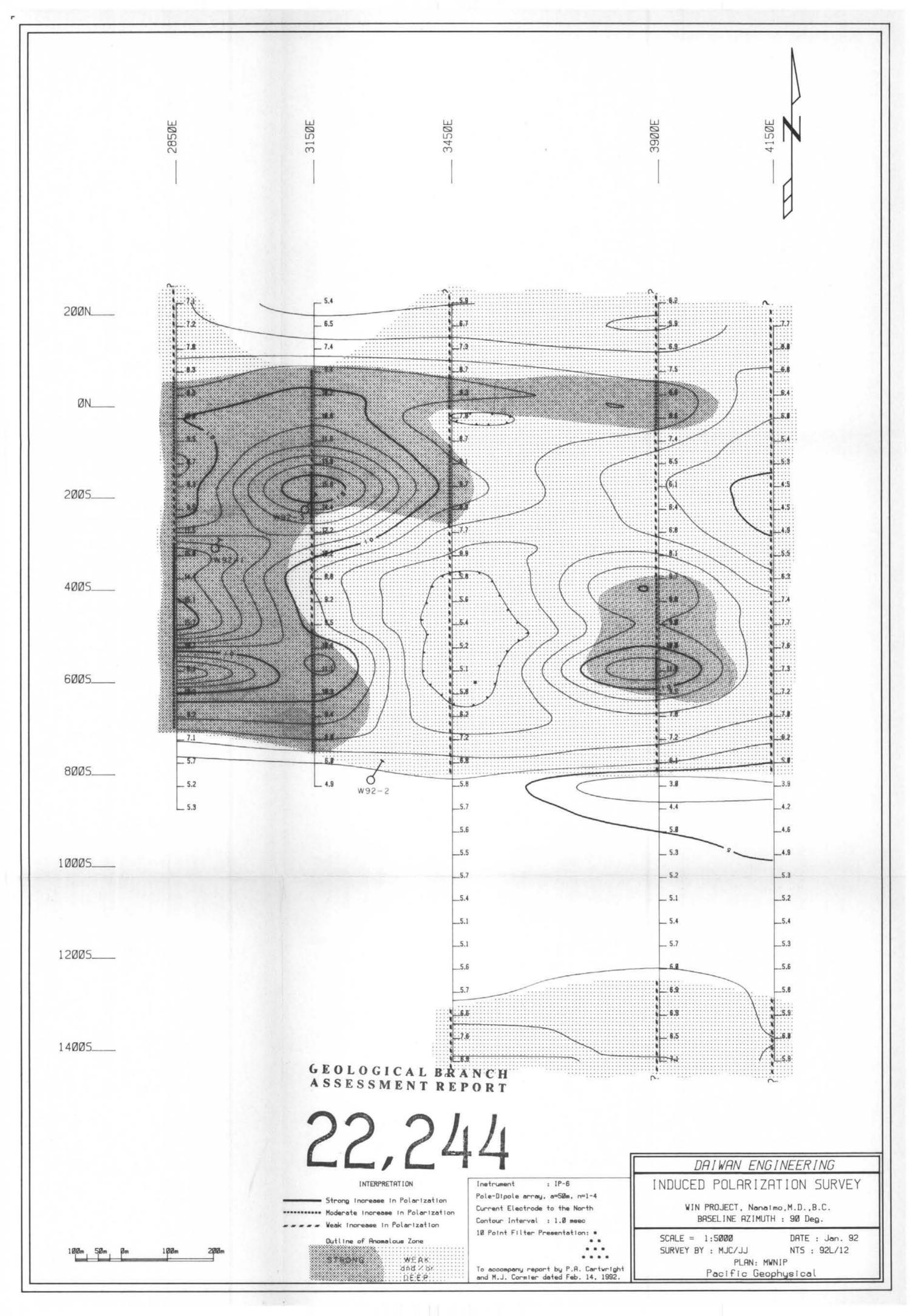

12. CERTIFICATE

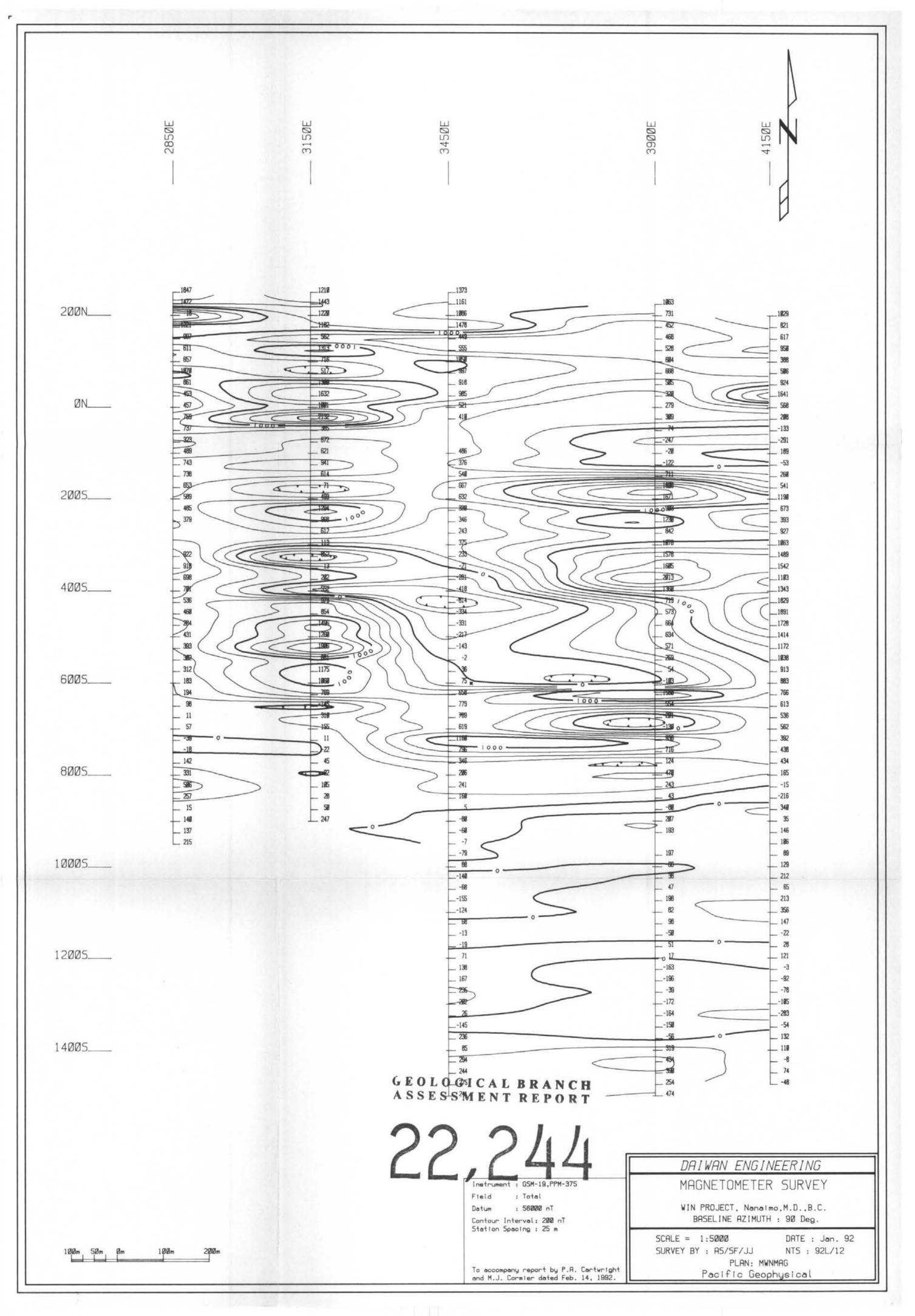

- I, Michael J. Cormier, of the City of Vancouver, Province of British Columbia, do hereby certify:
- I am a geophysicist residing at 5512 Kings Road, Vancouver, British Columbia.
- 2. I am a graduate of McGill University, Montreal, Quebec with a B.Sc. degree (1981).
- 3. I have been practising my profession for 10 years.
- 4. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Daiwan Engineering Ltd. or any affiliates.
- 5. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

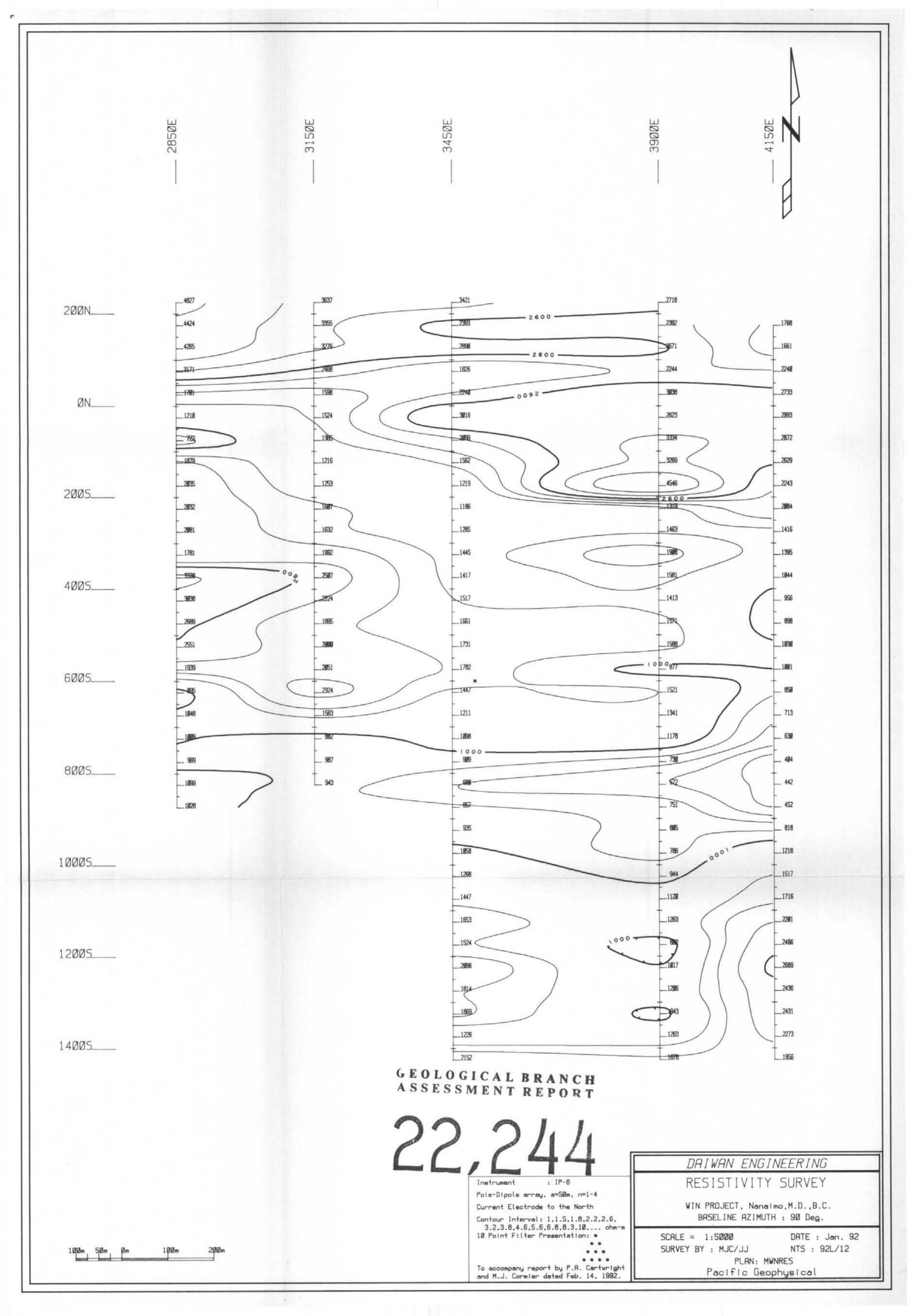
Dated at Vancouver, British Columbia this 14th day of February, 1992.

Mohiel J. Comien.
MICHAEL J. CORMIER, B.Sc.




OFT (tm) Softwere For the Earth Sciences, Taronto, Cenede


Interpretation by:


Pacific Geophysical

