SUB-RECORDER RECEIVED

MAR 19 1992

M.R. # SANCOUVER, B.C.

LOG NO:	APR 0 8 1992	RO.
ACTION:	(Ary named in glassy year year year, person the first to be the desproyable primiting a security and the sec	
FILE NO:		

Assessment Report

Diamond Drill Report

New Nanik Claim

Latitude 53 degrees 45 minutes North Longitude 127 degrees 42 minutes West

NTS 93 E/12 E and 93 E/13 E

Omenica Mining Division British Columbia

Benjamin Ainsworth, P.Eng. BC.

February 1992

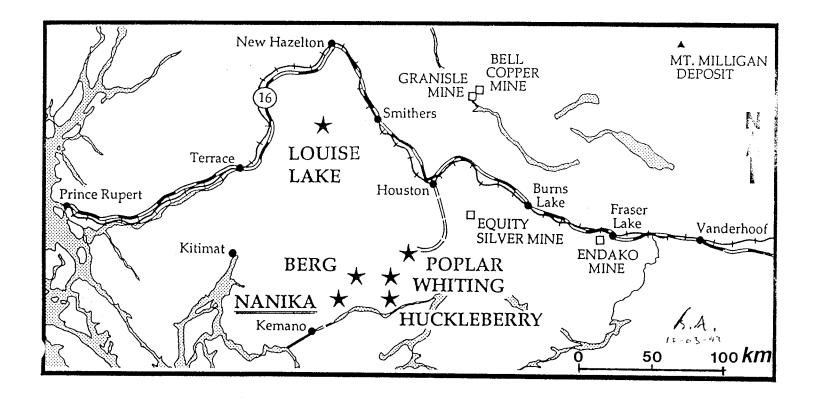
GEOLOGICAL BRANCH ASSESSMENT REPORT

ANNUAL WORK APPROVAL NUMBER 91*0200089*357

Summary

This report describes the results of a diamond drill program carried out by New Canamin Resources Ltd on the New Nanik Claim, which covers the Nanika Lake porphyry copper prospect in west-central British Columbia. Earlier work by Quintana Mineral Corporation (1968-1970) indicated a possible reserve of 20 million tons grading 0.437% copper with some molybdenum, gold and silver values.

A program of five drill-holes, each of 100 meters in depth, was carried in the period 26th September to 5th October 1991. In order to obtain prompt permitting for the late season work, the drill sites were selected on old drill roads. This resulted in reduced environmental impact but some drill sites were located further from target than had been originally intended.


The program was designed to test the central part of the body of known mineralization which would have doubled the indicated reserve. The results confirmed continuity of mineralization in those two drill holes closest to the originally designed drill sites. The remaining three drill holes were too far from target to contribute to the ore reserve assessment. Further work is recommended to complete this evaluation with additional drilling.

Work in 1989 by Placer Dome Inc had indicated the possibility of gold values up slope from the known mineralization. Evaluation of this potential by detailed mapping and prospecting is recommended.

Table of Contents

		Page
Introduction		2
Location, Access	s and Environment	3
History		4
The Property		4
Geology - Region	nal	6
- Proper		6
Drill Program	-	7
_	Recommendations	9
Statement of Co	sts	9
Certificate of (Qualifications	10
Figure I	Property Location Map	1
	Claim Map	4
	Drill hole Location Map	8
Appendix I	Drill Logs	
Appendix II	Assay Reports	

FIGURE I

LOCATION MAP

NEW NANIK CLAIM

INTRODUCTION

In August 1991, Placer Dome Inc and New Canamin Resources Ltd entered into an agreement to explore and develop the New Nanik claim which had been acquired by staking by Placer Dome in January 1988. The claim covered the Nanika porphyry copper prospect that had been explored in the sixties and seventies. New Canamin undertook a short program of diamond drilling in order to test the continuity of the mineralization in the central portion of a body of copper mineralization identified by this earlier exploration.

New Canamin filed a notice of work and reclamation program for the proposed drill program on 28th August 1991 and obtained a reclamation permit MX-2-123 on 16th September 1991 following the posting of a bond in the amount of \$5,000.00. Drill sites were selected on existing drill roads and drill pads in order to obtain rapid permitting of the late season work.

New Canamin personnel and contractors were on the property during the period 26th September to 5th October, 1991. The work undertaken included some additional clearing of drill pads for safe helicopter access, drilling and logging the drill core, and partial clean-up of debris at the old exploration camp site. Drill-core was stored at the old exploration campsite, close to the shore of Nanika Lake, as a solid stacked cube of filled core boxes. Apart from plywood covering the top of the core box stack, no useful construction materials were incorporated in the core storage.

LOCATION, ACCESS AND ENVIRONMENT

The New Nanik claim is located on the west shore of Nanika Lake approximately 96 kilometers southwest of Houston, BC. Road access has reached to within about 30 kilometers of the property to the north east near Stepp Lake owing to the extension of clear cut logging into the area. The head of flumes for the Kemano hydroelectric project on Tahtsa Lake are approximately 15 kilometers due south of the claims. Road access from the claims to tidewater is probably most feasible by connecting the property to the associated road system of the Kemano project.

Currently access is restricted to float plane or helicopter based in Smithers, Houston or Terrace. The 1991 work was serviced by turbo-Otter, Cessna 185 from Smithers and a Bell JetRanger Helicopter from Houston.

Old roads on the property extend from the beach near the north end of the claim for about 2 kilometers, southwest, along the general strike of the main axis of the mineralized body. These roads could be made serviceable for four wheel drive access with the clearing of windfalls and the use of a small bulldozer to repair sections damaged by erosion.

The New Nanik claim covers the east slope of a steep ridge running sub-parallel to the west shore of Nanika Lake. Elevations range from 935 meters a.s.l. at lake level to 1400 meters a.s.l. on the upslope side of the claim. Slopes are steep on the property generally ranging from 20 to 35 degrees. Despite the steep slopes, glacial soil cover is often sufficient to permit the cutting of roads and trails without working in bedrock.

The climate is typical of the Coast Range with annual precipitation reported to be about 250 centimeters. Winter snowfall reportedly can total 15 meters in the area. No major streams or rivers cross the claims but sufficient water for drilling is usually available from the creeks draining the claims. During the 1991 work, the lake was used for water supply for the drill since a brief drought had caused these drainages to dry up.

The vegetation is also typical of the Coast Range with good stands of hemlock, cedar and balsam. Slide areas are common along each draw with thick alder growth marking the recurring avalanche pattern.

Nanika Lake has exceptionally clear waters despite being fed by glacial streams. A vigorous trout population was noted, clearly visible in schools passing the beach at the old exploration campsite. The surrounding mountains have a population of wild-life typical of the northern Coast Range and outfitting, guiding and hunting are carried out in the area.

THE PROPERTY

The property consists of one modified grid mineral claim comprised of 18 units that was owned 100% by Placer Dome Inc of Vancouver, BC. Upon the completion of the 1991 work program and the expenditure of \$75,000 in exploration of the property, the ownership of the property shall be divided equally between Placer Dome Inc and New Canamin Resources Ltd.

Claim Name Record No. Record Date Expiry Date New Nanik 9238 19/Jan/88 19/Jan/92

The acceptance of this assessment report and the filing of work in accordance with the Mineral Tenure Act shall place the claims in good standing for the maximum period allowed until 12th January 2002.

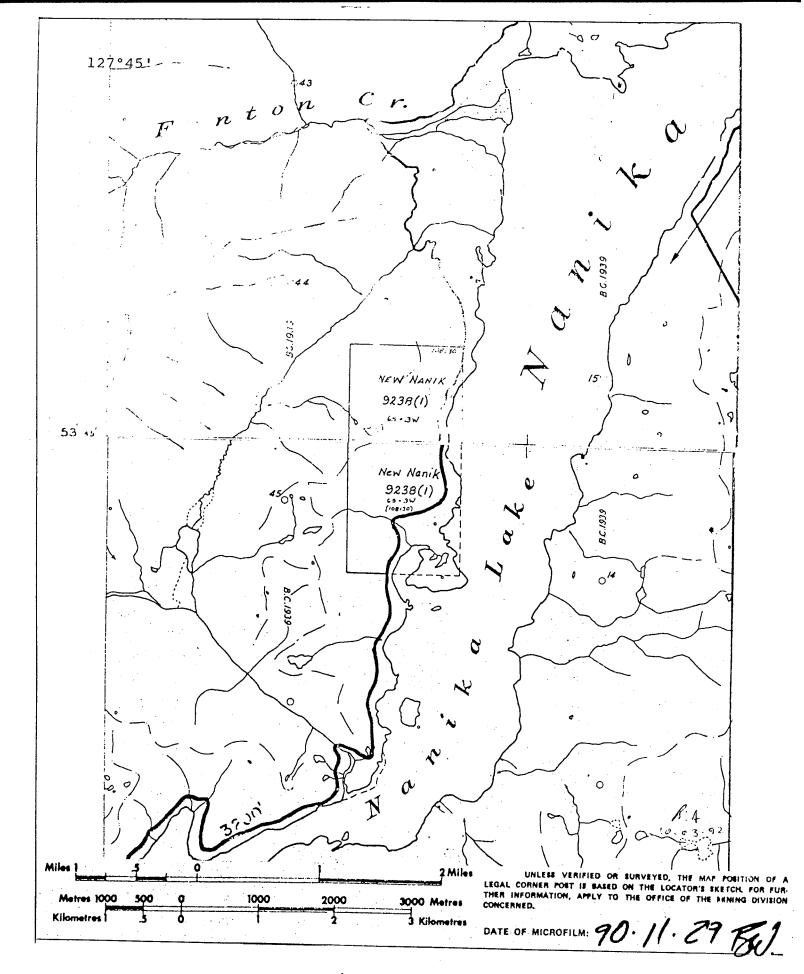


Figure II Claim Map

HISTORY

The property was reportedly known to prospectors and trappers since the 1920's. H.H. Shear describes the original showing as a 600 foot exposure of low grade copper mineralization in a gully cutting across the mineralized zone. The property was staked in 1966 by Silver Cup Mines Ltd and optioned to Quintana Minerals Corporation in 1967.

Quintana carried out geochemical and geophysical surveys on the property and completed 3150 meters of drilling, upon which the inferred reserve figure of 20,000,000 tons grading 0.437% copper was based. Minor molybdenum, silver and gold values were noted, of which, the gold may have more economic significance in today's metal markets.

Scurry Rainbow Oil Limited carried out an induced polarization survey in 1972 and then in 1973 Granges Exploration Ltd took on the property. Granges carried out further geochemical surveys and drilled a total of 1613 meters. This work has not been reviewed by this writer and is believed to have been carried out in the area of what would become a southerly extension of the mineralized zone.

GEOLOGY - REGIONAL

The Nanika Lake copper prospect is located close to the boundary of the Coast Belt rocks and the Intermontane Belt rocks. The Coast Belt is comprised of Jurassic to Tertiary granitic rocks with metamorphosed septa of the youngest Proterozoic to Mesozoic strata. The Intermontane Belt is comprised of Devonian to Recent sedimentary and igneous rocks. These include pre-Middle Jurassic island arc environments with associated oceanic crust and post-Middle Jurassic rocks on the margin of the North American Craton.

The boundary area of the two belts includes the well mineralized systems of the Berg, Whiting Creek and Huckleberry properties that lie to the east of the claims, between Nanika Lake and Tahtsa lake. This mineralization appears to be associated with reactivation of volcanism and associated hydrothermal systems during the Tertiary.

GEOLOGY - PROPERTY

H.H. Shear describes the Nanika Lake mineral zone as lying along a large shattered and faulted zone that trends north 30 degrees east with a dip of 20 to 40 degrees to the west. This zone was shown in the Shear report to be sub-parallel to the contact between a quartz monzonite intrusive and the Hazelton Group rocks. The principal host rock was described from earlier thin section work as being a dacite porphyry which would correspond

with the intensely altered crowded porphyry logged in the drill core of the 1991 program. A post ore magnetite diorite was reported intruded along the footwall of the southern portion of the mineralization. Dykes of a fine grained variant of this were encountered in two drill holes of the recent work.

The principal structural feature at a property scale is the fracture zone that hosts mineralization. Heard reported two eastwest cross faults cut the mineralization.

The mineralization occurs as veinlets and joint coatings, clots and disseminations with the highest copper grades being located in the most intensely fractured and altered rock. The sulphide minerals include pyrrhotite, pyrite, chalcopyrite and molybdenite. Pyrrhotite and pyrite are the most abundant sulphide species with either one being the most abundant sulphide in different parts of the mineralization. Pyrrhotite is certainly sufficiently abundant and of sufficient magnetic coercivity to give a magnetic signature in a suitable geophysical survey.

The chalcopyrite occurs as patches within veinlets, disseminated and as patches in clots of pyrite or pyrrhotite. Its occurrence is quite distinct from that of the molybdenite which is found in dark whispy quartz-molybdenite veinlets with only minor amounts of other sulphides.

The alteration noted included secondary biotite, silicification and typical propylitic alteration with chlorite and epidote developing along fractures and as a pervasive flooding in the sections with better grade mineralization.

Magnetite was noted in association with the molybdenite and disseminated in the crowded porphyry. A few dykes of fine grained equigranular magnetite diorite were intersected in this drilling; these carry magnetite grades greater than 5% with high coercivity.

The distribution of alteration styles is not well enough understood at present to allow proper modelling of the mineralization as a true porphyry type. The tabular form of the deposit suggests that mineralization is related to the transport of fluids along a zone of higher permeability in the fracture zone. The source of these fluids may be related to a hydrothermal system down dip to the west.

It is possible that prospecting and mapping of the valley immediately to the west of the Nanika showings would locate more mineralization if the plunge of the structure does not carry the system too deep to allow its expression at surface.

DRILL PROGRAM

A program of 457.8 meters of drilling was undertaken using a JT 600-5 drill from J.T.Thomas Diamond Drilling Ltd, Smithers, BC. Pads for the drill sites were sited on existing drill roads and cleared with chain saws by a contract crew also from Smithers. The Troitsa Lake Lodge was used as a base during the drilling program and a temporary facility for core logging and splitting constructed at the old Nanika camp site. This facility comprised a tent frame with stove and could have served as a refuge in the case that bad weather prevented a crew change.

Actual weather conditions were very good during the program and the drilling was completed without any serious delays in the period 28th September to 2nd October 1991. The drilling proceeded as:

Date	Overburden from - to	Coring from - to	Total Meterage
	meters	meters	
28/09	0-19.9		19.9
		19.9-107	87.2
29/09	0-16.8		16.8
		16.8-107	90.2
30/09	0- 6.1		6.1
		6.1- 31.5	25.4
1/10	0- 6.1		6.1
		6.1-120.5	114.4
2/10	0- 6.1		6.1
		6.1- 91.7	85.6
			457.8
	28/09 29/09 30/09 1/10	from - to meters 28/09 0-19.9 29/09 0-16.8 30/09 0- 6.1 1/10 0- 6.1	from - to from - to meters meters 28/09

The drill core was logged visually prior to splitting. The core was split in its entirety and samples were taken of each three meter interval except at the end of each hole where the intersection remaining may not have matched the three meter interval. Barren dyke material was not split or sampled except where it occurred as a small part of the three meter sample interval and would be difficult to sort in any mining operation.

The sample intervals are indicated on the drill logs in Appendix I. The assay results are reported in Appendix II.

Alternate samples were crushed, pulverized and split into pulps at the Min-En Laboratories facility in Smithers. These pulps were shipped to Vancouver to be assayed for copper, gold silver and molybdenum by Min-En Laboratories. A set of untested samples, that bracketed samples with copper values that were of potential economic interest, were pulverized by Min-En Laboratories in Smithers and assayed by the Placer Dome Research laboratories. The assay results were comparable to those from the adjacent sample intervals that had been assayed by Min-En Laboratories. The analytical procedures used by each laboratory are listed in front of the respective assay reports.

STATEMENT OF COSTS

The following costs were incurred in carrying out the program and completing this report:

Labour Core Splitter 27th Sept-6th Oct 10 days/\$200/day Project Geologist 1st Oct-10th Oct 10 days/\$400/day	\$2000.00 \$4000.00
Camp and Field Supplies	\$ 158.13
Communications	\$ 128.69

Contractors

Tim Carlson Blasting Co. Drillsite preparation

\$4467.25

J.T.Thomas Diamond Drilling
Diamond drilling \$50344.19
(Contract Rate \$32.70/foot all inclusive of mobilization demobilization and accommodation - invoice includes the amount of \$1,392.29 for consumables and field supplies used on the program.)

Transportation	
Fixed wing	\$4009.22
Helicopter	\$4500.00
Ground transportation	\$ 262.92

Sample preparation	on and Assaying				
(150 samples prep	pared and shipped;	81 samples	assayed	for	
copper, gold, sil	ver, molybdenum @	approx. \$2	5 each)	\$2653.2	25

Report Preparation	\$2750.00
--------------------	-----------

TOTAL \$75273.65

CONCLUSIONS AND RECOMMENDATIONS

The drill program was restricted by drill site location and as a result it is not possible to confirm or reject the possible continuity of mineralization. If the mineralization is indeed continuous, the grade reported in the upper part of DDH 91 - 5 would suggest that the grade also continues in the same range.

It is recommended that a compilation of all previous drill data and that from this program be completed in order to assess the requirements for further drilling of the mineralization. The gold values indicated in the soil sampling by PlacerDome in 1988 were not tested by the drilling. Further prospecting and mapping of the property and adjacent lands is warranted.

Signed: /

B.Ainsworth, PEng BC.

Bibliography

Carter, N.C. (1981): Porphyry Copper and Molybdenum Deposits, West Central British Columbia, BC Ministry of Energy, Mines and Petroleum Resources, Bulletin 64.

Duffell, S. (1959): Whitesail Lake Map-Area, Geological Survey of Canada, Memoir 299.

Shear, H.H. (1971): Nanika Lake Property, Geological Report.

Shevchenko, G. (1989): Assessment Report, A Soil Orientation and Lithogeochemical Survey on the New Nanik Mineral Claim, Omineca Mining Division, British Columbia.

Woodsworth, G.J. (1980): Geology of Whitesail Lake Map-Area, Geological Survey of Canada, Open File Map 708.

STATEMENT OF QUALIFICATIONS

CERTIFICATE

I, Benjamin Ainsworth, residing in North Vancouver British Columbia, certify that I am registered as a Professional Engineer (Geological) in the Province of British Columbia.

I earned an Honours Degree in Geology at Oxford University in 1962 and qualified as M.A. (Oxon) in 1963.

I have practiced as a geologist continuously since 1962, working in Europe, Africa, North America, Australia and South America.

During my professional practice I worked for Placer Development Ltd (now Placer Dome Inc) for 24 years, obtaining an advanced level of post graduate training in mineral exploration and development through that company.

Since 1986, I have acted as a mining consultant, with commissions that have included property evaluations, mineral market studies and exploration programs. Clients in this activity included major mining companies, federal and provincial government agencies and junior mining companies.

Signed at Vancouver this 28th day of February 1992,

Ben Ainsworth P.Eng. (BC)

APPENDIX I

												A	MOMONI	TH-JENKINS H	IOLDING	S INC.					ног	E NO	91-	- /
	MOTTA				V4V			BEARING_	1600				LATITUE	ERAL RESOURCE CO	NSULTAN		3			=	SHE	ET N	0/	OF
- 1		LARED (PLETE			SEPT			LENGTH _	350'	/	06.	71m	DBPART			CORE SIZESCALE OF LOG	300 - 1.60				OGGED BY	BA.		
DA.	E CUL	CPLEIE	su		S	77		DIP	- 60°				ELEVATI	•		REMARKS R	ab = 0	CORE	FRAG	D.	ATE	200	T 91	
	477	PLAG	K-SPAR	MAFIC	ACCESSORII	TEXTURE	HARDNESS	ASS	APPRARANCE	ALTERATION AETRES	STRUCTURE	CORB AXIS	MDTH OF	AINERALI- ZATION/ FAULTING	ENVELOPES (TYPE?)	REMARKS	FOOTAGE		RECO'	YERY /GRAMS	SAMPL	ASS	AY RES	SULTS SAY RESU
									/9.82m	111		5					19.8							
_				chl			5-6	FINE GR.	19.85	21	560			PYRITE DISS. 4 ON FRACES.		No CARSMAT DEED REDBRE UnoNITE ON FRACTURES MAGNETIC	· (50%					
			-	chl				Qz FS?	ERAINED CRAINED CANNY	24	12°	5		TEXTURES BLURRED		BISTIFA RETRO. GRAN	06 1		80%		901			The second of th
-							6	Andesia	25.7 -6 dyke 26.7	2 (2)	9°	5		3cm BLOTCH LSITY CPY/PYR/PYRRH.		MAGNETIC	24-39		100%		902			2
								PORPHY QZ]	RITIC)10 RITIC 29.9	30	9,	10	1-2	MAGNETITE BLOTONE INFINIETS GARNET & EPIDOTE PATCHES		LATHAS OF FINE BISTITE - PSEUDO METER AMPHIBURA	- 1		959.		903			
(A. 1	5		30%				5-6	PINK C	21.8	33	45	10		DISS. PYR/CHALCO	11 0 F	EQUIGAMILAR ± 3 mm WEATHERING FRACTURES UI			100%		904			
And a Milke Manager of the Contract of the Con										34 36	70	10				MINOR CHLORIS			95%		905			
										39		20	15cm	LANCE VEIN OF FINE BIGITE, DUS. PYN, CPY.	No~L	DIFFUSE CONTACT			1007.		906	İ		

HOLE NO. 91-1 SHEET NO. 2 MINERAL RESOURCE CONSULTANTS LOCATION NEW NAWIK BEARING LOGGED BY B.A. CORE SIZE DATE COLLARED LENGTH SCALE OF LOG DATE COMPLETED. REMARKS RECOVERY ANGLE TO CORE AXIS R & D WEIGHT/GRAMS SAMPLE NO. CORE SLUDGE CORE SLUDGE EQUI. GRANVIAN DISS PYR/MAG NONE PINK QZ MONZONITA 150 907 RARR CPY 5-6 41.77 42 10 908 5-6 100 46.8 Pink Q.M. 45 1135E) QZ BIOTITE KK. PYR ON JOINTS+ PATONES OF 2.5 BIOTITE + MINOR CPY IN BLOTCHES + CLOTS Crowsky Poren 150 BUNER/BROWN BIOTITE 909 OF BIOTITE INLATUR SHARES 1 48 48.9 >5% Diss PYR V. F. NE PYR ON 910 150 FRACTURES 51.2 6 N. TACT 51.8 MAFIC QZ DORITE PYR CONTENEUP + 7% WITH SOME 95 911 PYRRY + MACNESIE 152.96 PROGRESSIVE CHMGETO 95 912 CROWIN MODESTAL DY KE MILKY WHITE QE VEN 10 57.9 3~~ BIOTICE DIFFUSE CROWDED PORPHYLY 100 RETIRE GARDE. 913 ROLL APPRARS TO BE 60.9 15 MYLONITIZED IN BZOWNISH CAST THIS PART OF THE 100 914 To BIOTITE Chow DEN PORPHYA

HOLE NO. 91-1 SHEET NO. 3 OF 4 MINERAL RESOURCE CONSULTANTS NEWNMIK BEARING DATE COLLARED _CORE SIZE LENGTH _DEPARTURE_ _SCALE OF LOG__ DATE COMPLETED_ DATE ELEVATION _ REMARKS ANGLE TO CORE AXIS RQD RECOVERY ASS WEIGHT/GRAMS SAMPLE NO. ASSAY RESULTS ASSAY RESU CORE SLUDGE CORE SLUDGE CROWDED NONE PORPHURY 100 915 100 67 4 cm 100 916 69 45 NONE 9~~ NONE 70.1 5-6 100 917 72 7.5 5-6 73.2 98 918 75 7.5 NONE 5-6 Fine Gr. Ansessie 1.00 (m 76.2 919 CROWDED PURPHYRY - 78 Prograssive 7.5 79.3 CONTACT 45. 98 920 3 cm QZ MINOR CALCITE OPEN SPACE 81 LESS FSP. PORPHYRY 7.5 MOLE LIKE FRAS 82.3 OFALTERED 921 ANDESITES 100 25.3 922 100

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91 - 1
SHEET NO. 4 OF 4
LOGGED BY S.A.

BEARING_ LOCTION _LATITUDE _CORE SIZE BATECOLLARED LENGTH DEPARTURE____ _SCALE OF LOG_ TECOMPLETED DIP ELEVATION ____ REMARKS RECOVERY ASSAY RESULTS WEIGHT/GRAMS SAMPLE NO. ASSAY RESU WEIN VEIN CORE SLUDGE CORE SLUDGE 93, 191 >27. NONE 7-ANDRISTIC 57923 Zcm FRAGMENTAL 88.4 95 923 Brownish HUE 190 9146 95 6 924 月93 ZONE OF PINK BROWN COLORATION WITH MO LEDPARD SPOT DARK GAGEN AMPUB? NONE 94.5 94.5 90 2-377 925 DIMM MINOR CALCITE VEINLETS NONE 197.6 15-6 95 926 99 QZ, FSPR VEIN WITH NONE -100.6 98 927 6 25 60 MINOR CPY + PYR. 1102 HEALLD SHAM ZONE 102.7 - 103.5m 95 403.7 928 NONE Oil-Imm IRALWIAN STOCKUK CALGITZ VENUETS END OF HOLE 90 106.7 929 106.7m

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-2 SHEET NO. 1 OF4

DOLITS NEW NANIK	BEARING VERTICAL	MINERAL RESOURCE CONSULTA	NTS	SHEET NO./ OF4
ATE CHARED 29 SEPT 1991	LENGTH 350' 106.7 m	LATITUDE	CORE SIZE 13 CQ.	LOGGED BY BA
A12 CMPLETED 30 SEPT 1991		DEPARTURE 9943E	SCALE OF LOG ± 1:60	DATE 2 OCT 91
S S S S S S S S S S S S S S S S S S S	_DIP	elevation1991 ~	REWARKS	
FLAG K-SPAR AAFIC ACCESSORIE TEXTURE	ROCE MARE APPEALANCE APPEALANCE ALTERATION AETRES STRUCTURE ANGLE AND	WIDTH OF YEIN WINERALI- ZATION FAULTING (TYPET)	RECO WEIGHT SPECIFIC SPECIFIC SPECIFIC CORE	YERY ASSAY RESULTS /GRAMS SAMPLE NO. ASSAY RESULTS SLUDGE CORE SLUDGE
	OVERBURIEN 15		85	57
	FINE GRANED MAGNETA ANDESITE 18	1-2mm SHAFTER 2 ONE WITH NONE Q2-FSP-GYPSUM VENERTS MINOR PYR + CPY ± 49. SULKARS	THE BOX	930
	ZONE OF PERVASIVE FSPR FLOODING AND FINE SECONDANY BAOTITE ZI Si	1-2mm PYR + MINOR CPY+ MINOR MAG ALIGNED ALONG FOLIATION PLANES	FOUATED 18.29 100	93,
5-6	FINE GRANED ANDRESTE 24 50'	1-2ma EPIDOTE VENNLETS	21.34	932
5-6	2.7		24.39	933
6 8	28.50 3Rownish variant 30	1-2mm SOME GIPSOM + NONE CALCITE SECONDARY BIOTIFE	127.44 100	934
5-6 P.	PERNASINE FS/ FLOOD 33	None 3cm Qz FSPL + KSPL + PYR + CHALCOPYLITE + EPIDOTE	30.49 95 Photo	935
5-6	SITY SULFINES 9	Pya Pyarn nA6 CPY 59- 1-29- ? 60.252	33.54 95	936
	36			

HOLE NO. 91-2 SHEET NO. 2 OF4 MINERAL RESOURCE CONSULTANTS

ATE OL							Length			LATITUD: DBPARTU			CORE SIZE			LOGGED BY B.A.	
ATI CL	MPLETE	ÆD					DIP			ELEVATIO			SCALE OF LOG				
				-IRS			P 6						REWARKS				
	PLAG	K-SPAR	MAFIC	ACCESSOR	TEXTURE	HARDNESS	ROCK NAME APPEARANME	ALTERATION AETRES	STRUCTURE ANGIR 10 CORE ANGS	Aad Midth of Vein	ATION/ AULTING	ENVELOPES (TYPE?)	EXARES	POOTAGE	RECOVERY WEIGHT GRAMS CORE SLUDGE	S SAMPLE NO.	AY RESULTS ASSAY RESU.
						6	PERVASIVE FLOODING DIMINISMAD MORE FLAGMENTAL APPRAMENCE WITH NO DEFINED CONTACT			10 0.5 - 0.10	PYR 1-29. PYRRH 1-29. CPY, MAG?	None	JOINTS COATED WITH PYR + PYRRH	36.59	<i>।</i>	937	
						6	GNEEN FRAGMENTAL	42		10				39. 43	100	938	
	1					6		45		2.5 2 c	CYPSUM/CMUTE/QZ OPEN SPACE ZY- PTR. BIOTITE. FSP			42.07	100	939	
						6		4.8	75	3c-	Zgofya, MAG, PYARH BIOTITE MINDA CPY	None		<i>(</i> 5.73	100	940	
						6	49.95	5/	,	2				48.78	100	941	
						5-6	BROWNISH VARIANT VITHE PATCULS OF FINK GRANCH MIRWING SCIO KAOUNIZED ZONE 52.5 GRIEN GRAY FAGG- MENTAL ANDTISIE		45	2	DZ MONZONITĘ VEIN PYRIMAKI. PYNRU FINE CLOUBY BLACK MINERM IN QZ VEINLE KSPR VEIN		BLACK MINERAL EINE MOSZ? BYRAH HAS SALMON HUE	51.83	95	942	-
							GRADATIONAL INTO BROWN	57	45 55		227- PYR 2270 PYL SOME MAREGINAN FLOUDY BLACK Q2 NEMESS			54.26	100	943	
						۱۸		60	12	2	PIN EMPOTA			\$7.31	/00	944	transfer of the contract of th

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-2 SHEET NO. 3 OF4

LOCKTON _														CORE SIZE LOGGED BY 13 A.								
DATEC OLL DATEC ON P							LENGTH			DEPARTURE SCALE 0								D.)ATE			
- ALL ON											ELEVATION	n		REWARKS								
6.0	PLAG	K-SPAR	MAFTC	ACCESSORIE	TEXTURE	HARDNESS	ROCK NAME	ROCK TYPE ALTERATION METRES	STRUCTURE	ANGLE TO CORE AXIS	MIDTH OF VEIN	AUNERALI— ZATION/ FAULTING	ENVELOPES (TYPE?)	REMARKS	POOTAGE	SPECIFIC GRAVITY	RECOV WEIGHT/ CORE	GRAMS	SAMPL CORE	ASSA LE NO.	AY RESU	ULTS AY RESI
						5-6	BLOKEN ZONE LIMONITE ON FARCIULS		3	6		Pyr + Pyenn 249.					100		945			The state of the s
							GREY GREEN FLACMENTAL ANDELSITE	414	4 4	5	10~	Qz. FSPN LO.5% PYN	NINE				100		946			- Company of the Comp
		,				5-6		69	-	?	1-20	CALLIFE + GYPSUM					100		947			and the second s
						5	68.2 VI LESS	[.]		6		_					95		948			
· Carrier and Carr				- 7		4-5	0 1N 73.9 W 73.9 W MOST			12	0.1-1mm	SIME FINE CALCITE/ GYPSUM U EINLETS + QZ/FSR			!		95		949			The state of the s
in the desired in the second						5	LESS IN TRASE	.1	2	13				,	i		80		950			
						5-6	EQUI GRANULM GRANITIC DYKK	الماء		12		LISTURNITE ?? @ CONTACT.					100		951			
						5-6	GREY GREEN ANDUSTIC FRACMANA	m	74 = 1	8		QZ CARS FILLED					85		952	-		

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-2 SHEET NO. 4 OF4

TECOLLARE						BEARINGLENGTH			LATITUDEDEPARTUR			CORE SIZE				LOGGED BY	3 A		
OMPLE						DIP			DEPARTUR			SCALE OF LOG				DATE _			
PLAG	K-SPAR	KAFIC	ACCESSORIES	TEXTURE	HARDNESS	,	ROCK TYPE ALTERATION KETRES	ANGIR TO CORR AXIS		MINERALI- ZATION / FAULTING	ENVELOPES (TYPE?)	REMARKS	POOTAGE	WEIGHT COR.	COVERY SHT/GRAMS SLUDGE		ASSAT	Y RESU ASSA	ULTS AY RESI
					= (GREY GREEN FR TGMENTAL 85.3 BROWN	87	6	1-2	GREENISH CHLORITE WITH INALG, VUNIES OF QZ LANGWATE			85.37			953			and the state of t
					5		Q 0	10					88.41	95	5	954			\$ 6
					6	90-8 FINE GRANCO GARA ANDRSITE - MAGNETIC		q		91.0-91.7 STRONG GREEN CHLORITIZATION			91-46	95	5	955			
					5-6	GREY GAREN FRAGMENTAL	-	10					9451	30		956			
					5-6		99	IRARG 7	3-4 cm	QZ PYN CPY			197.56	85	5	957			
					>	Brownish FRAGMENTAL		6	20 cm	QZ FSP BIOTITE		,	100.6	98	?	958			
					5	FATOMENIAL	 - 	30 6		OCCASIONAL CLOTS OF QZ/EPIDOTE Y PYR CPY 3-5mm			103.66	98	}	959			
					5	EOH		145 8		QZ EDIDOTE PYR/CPY END OF HOLE 106.7m	NONE		106.7	100	0	960			

MINERAL RESOURCE CONSULTANTS

LACTION NEW NAM	VIK C	LAIM		BEARING VERTICA	·			KAL RESOURCE CON	SULTANTS		· · · · · · · · · · · · · · · · · · ·		SHE	EET NO.	_/_ OF2
DAR COLLARED 3 0				LENGTH (O S '		1.4 m	DRPARTU	RE 9933 E		CORE SIZE	BG atticks		LOGGED B	Y 15 14	
T.TECOMPLETED 1	OCT	1991		DIP				N _ 1994 M		SCALE OF LO REMARKS		BAD GROUND	_DATE	304719	11,
	IIIS			HB						KEMARKS	310CK 12	13 IFV GALOUND			
47.2 PLAG K-SPAR	ACCESSOR	TEXTURE	HARDNESS	ROCK HAME	ALTERATION AETRES	STRUCTURE ANGLE TO CORE AXIS	MIDTH OF VEIN	AINERALI- ZATION/ FAULTING	ENVELOPES (TYPE?)	REMARKS	POOTAGE BLOCKS	RECOVERY WEIGHT/GRAM CORE SLUDGE	S SAMP	ASSAY LE NO.	RESULTS ASSAY REUI
-				OVERBURDEN	6					-			57		
				V.Broken Chowded lowfyyny	9			BASTIFE AFTER AMPHIBERS?			7.62	2.5	826		\$ 1
				QZFSP+FINEBIOTITE	12		UNKNOWN	QZ VEIN WITH +1-10cm Russy				50			1
			5	ς 	15			LEAGHED ALTERATION ON RACH SIDE			12.20	30	827		
			5	2	18						15.24	30	828		
			5	A 76	2.1						1/8-24	30	829		
			5	5.	24						21.34	30	830		
		د	5	VER	27			RUSTY FRAGMENTS WITH MINOR PYR			25.91	30	831		

MINERAL RESOURCE CONSULTANTS

HOLE NO.<u>91-3</u> SHEET NO.<u>2</u> OF≥

CTION	RED	BEARING LENGTH							LATTTUDE			CORE SIZE SCALE OF LOG					GGED BY				
TOOMPI							DIP			ELEVATIO			REMARKS				D	ALE .			
27	PLAG	K-SPAR	MAFIC	ACCESSORIES	TEXTURE	HARDNESS	ROCK NAME	ALTERATION AETRES	STRUCTURE ANGLE TO CORE AXIS	WEIN OF	AINERALI- ZATION / FAULTING	ENVELOPES (TYPE?)	REMARKS	FOOTAGE	SPECIFIC	RECOVER CORE	VERY /GRAMS sludge	SAMPL	E NO.	Y RESU	LTS Y REST
						4-5	CROWDED PORPHYLY FSP & BIOTITE LATHES MINOR CLZ	30						27.4		30		832			The second secon
								3.			STUCK RODS END OF HOUR 31.40 M	-		31.40				833			the state of the s
	-														. She parties and the second						- 1 pm (villation management design) and the
														1							
														!							A second
														1							And the second s
																					:

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-4 SHEET NO. 1 OF S

TOCHION	IEW	NANI	K	-(11	<u> </u>	BEARING 225 "					RAL RESOURCE CON	SULTANI					SHI	EET N	01_	OF s
DESCOLLARED		CAT	19	9/		LENGTH 394'	1	20	112 m	LATITUDE	RE 9933E			30			LOGGED I	3Y <u> スチ</u>		
COMPLETE											N 1994 M	···········	SCALE OF LOG		ETUPA		DATE	300	7991	
			KS KS							ELEVATIO	N		REMARKS	rme s	ETUPA	3 91-3				
:	بہ		ORI	ធ្ល	SSS	ROCK NAME	ALTERATION	Δ.	SI S	D4	١ ,,	ES	'		RF	COVERY		ASS	Y RESUL	TS
, e	K-SPAR	31C	ACCESSOI	TEXTURE	AARDNESS	K N KAR	RAT	3	ANGIR TO	MIDTH OF VEIN	AINERALI- ZATION/ FAULTING	ENVELOPES (TYPE?)	.RK	FOOTAGE	WEIGHT WEIGHT	GHT/GRAMS	SAMP	LE NO.	ASSAY	
DY1d dig	Υ-	MAFIC	Y CC	Ţ	HAAF	ROCAPP	E LLE	173	NGL	8 E E E	A TICK	EXT)	EXC	001	AN CO	RE SLUDGE	CORE	SLUDGE		
				T			<u>֡֡֡֡</u> ֚֚֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	*L ₁ -1	<u> </u>) E.≿	- 20K	<u>N</u>	<u> </u>	<u> </u>	80 7	-			·	
-						OVERBURDEN	6										57			
					5	CROWDED PORPHYAY BIOTITE IN PSEUDOMORPHS			60*		2-3 Po PYR + LANGUITE BUTITE AFTER AMP4?	NONE	?STRONG RETROGA MATAMORPHISM OF QZ DIDNITH ?? PROSITE O.Z. XTA		2.5		961			
				- +		V. Broken	9	-11	45'	2-3c~	QZ FSPA VEINS									
					5	RUSTY CLAYEY FRYEMINIS	70				WITH WITHOUT GAIRS				25		962			
							1 12	-						1			1			
					_	CROWDED PORPHYRY WITH SOME CLUSTERS OF MOTITE					MAGNETIC AROUND SIOTITE CLUSTERS			12.20	25	5	963			
							 	+						15.24						
	-				5	7, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	18							1 1	5	5	964	1		
														18.39						
					5		21		4;°					; 	5	٥	965			
					5									24.34	5.	>	966			The state of the s
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					٤		24							24.30	3 4	0	967	1		
							27	7						,						`

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-4 SHEET NO. 2 OF 5

BEARING_ LOGGED BY 134 _CORE SIZE O. COLLARED LENGTH _DEPARTURE_ SCALE OF LOG____ COMPLETED. ELEVATION __ REMARKS RECOVERY ASSAY RESULTS WEIGHT/GRAMS
CORE SLUDGE
90 SAMPLE NO. ASSAY RESU CORE SLUDGE 57 CROWDED PORPHYRY 968 5-6 V. Broken 25 APRROXIMATE LINIT OF WRATHERING 30.49 969 60 5-6 33 BYPSUM + CALGITE 2 ~~ 33.54 NONE 970 5-6 50 CORE BOX Dropped BY DRILLER 136.59 971 60 39 39.63 972 85 42 973 2-3mm GYPSOM CALCITE QZ 90 5-6 45 EPIDSTR/CHLORICE 45.73 974 95 NONE 1 cm QZ VEIN 48.78 MASSIVE No SAMPLE WEHLLY 100 MAGNATICE 151

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-4 SHEET NO. 3 OF5

TION				BEARING						IATITUDE			CORE SIZE			LOGGE	D BY BA.	
COLLA							LENGTH			DBPARTUR			SCALE OF LOG			DATE		
:: OMPL	LETE	D					DIP			ELEVATION	. и		REMARKS					
C17.	PLAG	K-SPAR	MAFIC	ACCESSORIE	TEXTURE	HARDNESS	ROCK YALES APPRARANCZ ROCK TYPE	ALTERATION	STRUCTURE ANGLE TO CORE AXIS	WIDTH OF VEIN	dnerali- aulting	ENVELOPES (TYPE?)	TEMARKS	POOTAGE			MPLE NO.	SULTS SAY RE
						6	MICRO DIORITE	54	60.	0.5-26~	QZ FSPR EPIDOTE/CHLORITC		MATHETIC - NO	5.83	/00	57 No SAM	re	
							CROWDED PORPHYRY F FSP LATHES		30		PYR+ PYRAH IN BISTITE CLOTS 2-47-SULPHIG	ਪ	.	54.87	100	9;	15	
						5-6		60 }			EPIDOTE QZ. FSPA			57.93	100	97	26	
						5	INCREASING CHLOMITIC ALTERATION	63						60.98	/00	9.	77	
						5		66					1	64.02	100	9	78	
						6	FRESHER CROWDED : PORPHYRY.	69		0.70-	QZ.FSPN.MAG. BIOTITE QZ.MAG. BIOTITE		MANY VENUCIS	66.46	80	9	79	
						6	F1.50 F GRAPHIC MICRO GRANTE, RUSTY	72			>3% PYR (DISS) RUSTY JOINTS + BROWN BIOTITE		COMPLETELY ALTRED UNIT-COULD BE AD DYKE ROCK	70.12	70	9	80	
						5-6	CROWDED PORPHYAY FSP CATHES	75						73.17	80	9	81	

MINERAL RESOURCE CONSULTANTS

HOLE NO. <u>91-4</u> SHEET NO. <u>4</u> OF5

LOUTION _ BEARING LOGGED BY SA LATITUDE _CORE SIZE COLLARED LENGTH _DEPARTURE__ _SCALE OF LOG__ DATE TECOMPLETED_ ELEVATION __ REMARKS RECOVERY ASSAY RESULTS WEIGHT/GRAMS SAMPLE NO. CORE SLUDGE CORE SLUDGE 57 75.4 76.22 FRESURE PORPHYRY 1-2cm QZ BOTITE FSPA 4-5 STROWGLY CHLORITIZED 90 982 + CHLORITC RECK-ORIGNAL FASRIC DESTROYED 79.0 79.26 4-5 FRESHER CROWDED 90 PORPHYRY 983 81 80.8 CHLORITIC ROCK CHLONITIC 81.70 PYR 1-2 2 V. FINE 4-5 1-2 m 984 GRANED 90 84 85.37 90 985 , recour PYN/CHALCO BLEBS 2.8 1-2 Cm IN VAINULT 88.1 1881 V. FINA SWIALSOF FRESHER CROWDED 0.1-1.0 MEINLETS 90 986 PURPHYRY 190.24 191.15 90 4 987 CHEORITIZED ROCK 93 PROBRELY CULO RITIZATION V. FINE GRANGED DARKER V. Broken 94.82 80 988 96 97.56 80 989 4

MINERAL RESOURCE CONSULTANTS

HOLE NO. 91-4 SHEET NO. 5 OF S LOGGED BY \$4 LOATION _BEARING_ LATITUDE ____CORE SIZE ____ CRE. COLLARED LENGTH DATE DATE COMPLETED_ DIP ELEVATION ____ REMARKS RECOVERY ASSAY RESULTS SPECIFIC GRAVITY WEIGHT/GRAMS SAMPLE NO. ASSAY RESUL CORE SLUDGE CORE SLUDGE FINE GRANGO CHLOMIK ROCK 100.61 80 4 940 MICROFINE WHITE WHISPY BRECEIA QZ/CLAY VEINLETS CULVILINEAR STOCK 4-5 QZ FSP RIOTITE ROCK 103.66 100 991 MINOR CHUTE 105 PYR+CPY 41% 4-5 106.71 100 992 MREGUERA GIPSUM CHUFE WEINULTS 109.76 100 993 INDISTINCT 95 112.8 994 END OF WISPY BRECCE ! 114 FRAGMENTAL ANDESITE SOME FSP LATHES 95 115.55 995 117 117.05 Brownism teteration Zcms SHARPCONTACTS PYR CPY QZ of Franciste 117.99 90 996 ANDRITE Sirma diss Py 120 120.12 6 00000

HOLE NO. 91-5 SHEET NO. 1 (MINERAL RESOURCE CONSULTANTS LOCTION NEW NANIK CLAIM BEARING 270 _LATITUDE ______4_799 \\ DATECOLIARED ZOCT _CORE SIZE __ 3 Q 1891 91.46 _LENGTH DEPARTURE 9943E SCALE OF LOG_ # 1: 60 ELIECOMPLETED 30CT 4 OCT 1991 1991 - 50° ELEVATION ___ / 9 7 4 m REMARKS ROCK NAME APPEARANCE ENVELOPES (TYPE?) ANGLE TO CORE AXIS RECOVERY ASSAY RESULTS WEIGHT/GRAMS SAMPLE NO. ASSAY RESUL CORE SLUDGE CORE SLUDGE 57 OVERBURDEN QLMONZONITE (+DS BOULDER ?? 6.09 CROWDED PORPHYRY 25 997 RUSTY F.GRAINED PORPHYNY 9 9.15 4-5 FINE GRANCO 25 20557 Broken BROWNISH VARIANT 998 OF CHLORITICAK 5RE~IN HOLK 91. L 112.2 QZ FSPR 1-2 --5-6 40 999 15 1-2 cm QZ FSPR 15.24 4-5 pyr - CPY 40 800 3~~ 18 18.29 4-5 40 801 21 21.34 z-3mm PYR/CPY 4-5 30 802 + 3-5 % DISS PYR 24 Brown-Purple 24.39 Ymumi of 4-5 40 CHLORITE ROCK 803 . ,

MINERAL RESOURCE CONSULTANTS

HOLE NO.91-5 SHEET NO. 2 OF4

CHON						BEARINGLENGTH				LATITUDE		- Journal	CORE SIZE					OGGED BY	110	<u> </u>
TECOLLARE						DIP				DBPARTUR ELEVATION			SCALE OF LOG				D.	ATE		
91'2 PLAG	K-SPAR	MAFIC	ACCESSORIES	TEXTURE	HARDNESS	ROCK MAKE APPEARANCE	ALTERATION METRES	STRUCTURE	ANGLE TO	MIDTH OF VEIN	AINERALI- ZATION/ FAULTING	ENVELOPES (TYPE?)	REMARKS	FOOTAGE	SPECIFIC	RECOY WEIGHT	YERY GRAMS SLUDGE	ASS SAMPLE NO.		
					.=	MORE STRONGLY	30						RUSTY + U. BRETGEN	27.44		10		57 804		
					4-5		33			40	Phox Unit	of wa	Broken	30.49		25		805		
:					4-5		36					1	Demaris using POLYMENT - HELP CHIPS TOGRILL	'		40		806		
					45	WHISTY BRECCE OF HOLE 91.4. FINE GRANNED PURPLE BROWN "ANDRSITE" GREEN-BLECK					IRREGULAR FINE SCALE VEINCETS CHIONITE/PYR/FSP		., .,	36.59		50		807		
					4-5	Mionine noth	42				Some MAGNETIL PRICHES			39.63		40		808		
						Consinuino v. Broche Green	45				DISS PYR 1-29- FFINE VEINLETS		,,	42.68		40		809		
					1	BLACK CHLOMITE	48			1	CHLONITE MAY BE NICH SIGTISE IN PART.			45.73		40		810		_
					4		51						• • • • • • • • • • • • • • • • • • • •	48.79		40		811		

MINERAL RESOURCE CONSULTANTS

HOLE NO. <u>91-5</u> SHEET NO. <u>3</u> OF4

CTION _		BEARINGLENGTH				LATITUDE				CORE SIZE					OGGED BY	· KA						
TECOLLA										DEPARTU				SCALE OF LOG					ATE			
ATECOMPL		·					DIP			ELEVATIO	Ж ИС			REMARKS								
7.tb	PLAG	K-SPAR	MAFIC	ACCESSORIE	TEXTURE	HARDNESS	ROCK NAME	ROCK TYPE ALTERATION METRES	STRUCTURE ANGLE TO CORE AXIS	MIDTH OF VEIN	MINERALI- ZATION/ FAULTING		ENYELOPES (TYPE?)	REMARKS	POOTAGE	AVITY	RECO WEIGHT	YERY /GRAMS SLUDGE	SAMPL	ASSA E NO.	AY RESU	ULTS AY RESI
						•	DARK CHLORITIC ROCK - CONTINUING CRUSH ZONE WITH FINE VEINLETS			0.5-1mm 0.5-1mm		5-17087R	CHLONITE		51.83		40	·	57 812			
					7-16 3	4-5		5 57		1-3-	WHITE QZ/		-		54.89		40		813			
The state of the s					ER HOLK	4-5	54.4					٠,			57.31		65		814			
					7 P. L. S.	11-5	Brown NAMIANT WIF	6							16.37		70		815			
					2 +1	4-5	BLACK GRAEN CHLOMITIC NOCK	66			٠.	٠.			64.02		50		816			
					32600	5-6	BREWARD MORE MASSIVE SELTION OF CRUSH ZONE	0	2						66-46		40		817			
					k 0 51	5-6	69.5 V.BREKIN BUT STILL 132000 70.0 MORE MASSING	6 72	y,						69.82		60		818			
					3	5-6	V. Bracen	7 75	27.72						73.17		80		819			

DN OLLARED	7					BEARINGLENGTH			LATITUDE			CORE SIZE						· BA.	04_	
OLLARED						LENGTH			DEPARTURE			SCALE OF LOG				D.	ate .			
			ES E									REMARKS								
	ce.		SORI	RE	ESS	APPEARANCE APPEARANCE ROCK TYPE	TION	URB TO TIS). V	1, 0	PES	N	M	ا رو	RECOY	VERY			Y RESU	
PLAG	K-SPAR	MAFIC	ACCESSO	TEXTURE	HARDNESS	CK 1	ROCK TYPE ALTERATION AETRES	STRUCTURE ANGLE TO CORE AXIS	WIDTE OF VEIN	AINERALI- ZATION/ FAULTING	ENVELOPES (TYPE1)	CARK	POOTAGE BLOCKS	SPECIFIC	WEIGHT/	/GRAMS		E NO.		AY RE
PLAG	X	<u> </u>	Υ	H			SE E	ANG	VED	ZAAT ZAAT	ENS (T)	REA	POC	GRA	CORB Yo	SLUDGE		SLUDGE		
				W	5-6	DANKLYLONITIC NOCK GNEEN BLACK					NOWE - SOME CHIONITE ON VEINLET WALLS	FRACTULE BUT HOLDING TOCKTHAN IN COME BOX BAD GROWN IN	75.92		90		57 820			
				C		1	1	(-					79.27				1			
i				\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5-6	NO COLON CHANGE ATLOURD VEINING	81	FO	1 Cm 2 Cm	PYR/CPY/PYRAM PYR/EPYRAM/CPY		} STROWGEY = ACM RTIC			90		821			
1				7		(·		1			82.31							
				15	5-6		84								90		822			
				\(\frac{1}{2}\)		1	1	t l		(,	184.74		·	-				
				12	5-6	GREEN BLACK	87	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 0~	PYR/CPY	-		86.59		75		823			
				3	5-6		90						88.45		95		824			
						MASSIVE HABASE FINE GRANGO WITH ZEOLITE BLASTS 3-4 CMS.			E~D	OF HOLE	91.4	6 m	791.46				825			

APPENDIX II

.

.

```
(RESEARCH CENTRE)
PLACER
        DUME INC
```

GEDCHEM DATA LISTING: V236 NANIKA

1991:11:22

P1649 PDI lab data file:

NANIKA AREA:

MAPSHEET NO: **VENTURE:**

V236

GEOLOGIST:

R CANNON

LAB PROJECT NO:

1649

PLEASE DISTRIBUTE RESULTS TO: RC EK KH GER LAB

REMARKS:

"PULP SAMPLES FROM NEW CANAMIN RESOURCES"
"AU BY FIRE ASSAY. MO CU AND AG FOR GEOCHEM BY AA"

STANDARD ANALYSIS METHODS USED BY PDL GEOCHEM LAB ARE LISTED BELOW: ALL RESULTS EXPRESSED AS INDICATED IN UNITS COLUMN BELOW ANY EXCEPTIONS FOR THIS PROJECT ARE NOTED ABOVE

INTERNAL LAB STANDARDS HAVE BEEN INCLUDED FOR REFERENCE. SAMPLE NUMBERS FOLLOWED BY * ARE DUPLICATE ANALYSES. REMARKS:

	UNITS	WT.G	ATTACK USED
AG	РРМ	0.5	HCL04/HN03
ΑU	MAA	25.0	FIRE ASSAY
CU	ррм	0.5	HCL04/HN03
ΜŪ	MAA	0.5	HCC047HN03

RANGE 0.2-20 TIME 4HRS 45MIN 0.01-1000 4HRS 2-4000 4HRS 1-1000

METHOD A.A. BACKGROUND COR ATOMIC ABSORPTION ATOMIC ABSORPTION ATOMIC ABSORPTION

PDI GEO	CHEM SYSTEM	M: Data From: V2	236 NAN	IKA				р.	1
GRID	SAMPLE	PRUJECT	A g P P M	Au PPM	Au-A PPM	Cu PPM	MO PPM		
test	STD Pl	57801 1649 57803 1649 57805 1649 57807 1649 57811 1649 57813 1649 57815 1649 57817 1649 57819 1649 57823 1649 57823 1649 57823 1649 57825 1649 57897 1649	4.61.78.66.55.76.21.46.2 0	0.42 0.18 0.17 0.016 0.04 0.07 0.03 0.03 0.03 0.05 0.02 0.2		0.540 24440 246440 246670 246672 246672 24667 2460 2460 2460 2460 2460 2460 2460 2460	78 733 1300 149 1600 1700 1700 1709 6365 2365		
END OF	LISTING -	17 RECURDS PRIM	MTED	Run o	n: 91:	11:22	at 14:51:48		

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0920-RA1

Company:

NEW CANAMIN RESOURCES

Date: OCT-16-91

Project:

NANIKA

Copy 1. NEW CANAMIN RESOURCES, VANCOUVER, B.C.

Attn:

B.AINSWORTH

We hereby certify the following Assay of 24 CORE samples submitted OCT-07-91 by B.AINSWORTH.

Sample Number	*AU-FIRE g/tonne		AG g/tonne		CU %	MO %	
57802	.15	.004	3.7	.11	.739	.009	**** **** **** **** **** **** **** ****
57804				. 14	.613	.016	
57806	.17	.005	3.8		. 290		
57808	.02	.001	3.0	.09	.279	.005	
57810	"Oj	.001	2.5	.07	.382	.012	
57812	.04	.001	2.7	.08	. 274	,014	
57814	.01	.001	2.3	.07	.240	.018	
57816	.02	.001	2.1	.06	,358	.012	
57818	.01	.001	2.4	.07	.206	.021	
57820	.01				.215	.015	
57822	, O1	.001	1.8	,05	. 259	,006	
57824			2.1		.246		
57826	.02	.001	0.3	.01	.031	.002	
57828	•02	.001	1.5	.04	.032	.002	
57830	.01		1.0		.024		
57832	.02	.001	1.1	.03	.015	.002	
57902				.02			
57904			0.8		.018		
57906	" O 1	.001	0.7	.02	,008	.002	
57908	. O1	.001	2.2	.04	.013	.003	
57910	.01	,,001	2.4	" Ó7	.022	.002	
57912	.01	.001	2.3	.07	.019	.001	
57914			2.2		.032		
57916		.001				.002	

*AU - 1 ASSAY TON.

Certified by

MAN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0920-RA2

Company:

NEW CANAMIN RESOURCES

Date: OCT-16-91

Project:

NANIKA

Copy 1. NEW CANAMIN RESOURCES, VANCOUVER, B.C.

Attn:

B.AINSWORTH

He hereby certify the following Assay of 24 CORE samples submitted OCT-07-91 by B.AINSWORTH.

Sample Number	*AU-FIRE g/tanne	*AU-FIRE oz/ton			CU %	MO %	
57918	,04	.001	4.7	. 14	.049	,004	
57920	,05	.001	2.6	.08	.045	.013	
57922	.O3	.001	2.9	. 08	.064	.003	
57924	.01	.001	3.2	.09	.057	.002	
57926	. 01	.001	2.8	.08	.042	.001	
57928	, oz	.001	2.7	.08	.045	.002	
57930	,02	.001	2.4	.07	.013	.001	
57932	.02	.001	2.8	.08	.041		
57934	.02	.001	2.7	.08	.027	.001	
57936	.03	.001	2.5	.07	. ()44	.001	
57938	"04	, 001	2.4	.07	.013	.002	
57940	, ()4	.001	2.1	.06	.016	.001	
57942	.01	100.	2.7	.08	.017	.001	
57944	.01		2.4		.034		
57946	. O1	.001	2.6	.08	.035	.001	••
57948	.01	.001	2.9	. 08	.031	.002	
57950	. ()1	.001	3.0	.09	.075	.003	
57952	. O.2	.001	2.6	.08	.O44	001	
57954	, O 1	.001	2.8	.08	.068	.001	
57956	, () <u>1</u>		2.4		.029	.001	
57958	,02	.001		.07	,064	,002	12 Late 17-17 row man place 6440 beat and make 6551
57960	.01		2.6		.042	.001	
57962	"O1	.OO1	2.1	"Oó	.022	.002	
57964	.01	.001	2.3	.07	.019	.002	

*AU - 1 ASSAY TON.

Certified by

MIN EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0920-RA3

Company:

NEW CANAMIN RESOURCES

Date: OCT-16-91

Project:

NANIKA

Copy 1. NEW CANAMIN RESDURCES, VANCOUVER, B.C.

Attn:

B.AINSWORTH

He hereby certify the following Assay of 18 CORE samples submitted OCT-07-91 by B.AINSWORTH.

Sample			AG			MO	
Number	g/tonne 	oz/ton 	g/tonne 	oz/tan	7.	/_	
57966	.O1	. OO1	2.4	.07	, O33	.001	
57968	.01	.001	3.2	.09	.012	.002	
57970	"O1	.001	2.4	.07	"O14	,,001	
57972	.01	.001	2.6	.08	,030	.001	
57974	.02	.001	2.5	.07	.095	.002	
57976	.01	,001	2.7	.08	.051	,002	Per direc danger proved direct sparry regard based garden
57978	.01	.001	2.7	,08	.206	.003	
57980	.03	.001	2.8	.08	. 164	. 006	
57982	.02	.001	3.3	.10	.129	.012	
57984	. O 1	.001	2.8	.08	.152	.005	
57986	,04	,001	2.9	,08	, 197	,004	THE REAL PROPERTY AND THE TANK AND THE PARTY AND
57988	.01	.00i	3.4	.10	.274	.005	
57990	.02	.001	3.2	. 09	.188	.004	
57992	.02	.001	3.1	.09	. 229	.004	
57994	, Q1	.001	3.2	.09	, 147	. 005	• .
57996	.02	.001	3.0	,09	. 184	,003	
57998	, O4	.001	2.7	.08	.193		
58000	.03	.001	3.1		.SO4		

*AU - 1 ASSAY TON.

Certified by

MIN-EN LABORATORIES