LOG NO:	APR 2 7 1992	RD.	
ACTION:			

GEOCHEMICAL ASSESSMENT REPORT

on the

FILE NO:

TAM, HAHA, and REM

Claim Groups

en de la

	9	SUB I	- R RE(ECO Ceiv	R	DEI	2
ł		≬0	Ĵ	21	1	çoz))
M.	R. # V	ANC	:0(JVE	R,	\$ B.C	

Omineca Mining Division

NTS 93N/13E, 14W 94C/4E, 3W

56° 00'N, 125° 30'W

for

MAJOR GENERAL RESOURCES LTD.

and

VARITECH RESOURCES LTD.

GEOLOGICAL BRANCH ASSESSMENT REPORT Ed McCrossan

Nov mber, 199

<u>**SUMMARY</u>**</u>

The Tam property consists of the Tam, Haha, and Rem claim groups which are located 12 km northwest of the Kennecott Canada Inc. Lorraine deposit and 125 km northwest of the Placer Dome Inc. Mt. Milligan deposit.

The 1991 exploration program described in this report included 18 km of contour soil and silt sampling, 4.5 km of soil geochemical grid work, as well as, reconnaissance lithogeochemical sampling.

·

The results from the program are excellent. Two known showings, the Ridge and Sam Zones, were expanded and a new lithogeochemical anomaly, the Goat Zone, was discovered. Several new soil geochemical anomalies were also located.

A program of road construction, road building, trenching, detailed geological mapping, and diamond drilling is recommended for the zones of known mineralization on the Tam property. Detailed geochemistry and prospecting is also warranted for the geochemically anomalous locations revealed by the 1991 program. Finally, the remainder of the claim groups still require reconnaissance mapping, prospecting and geochemical sampling.

Table of Contents

Summary	2
Introduction	5
Location and Access	5
Physiography	6
History	6
Claim Data	6
Regional Geology & Mineralization	9
Property Geology & Mineralization	10
Property Geochemistry	11
Conclusions and Recommendations	14
Certificate of Qualifications	17
Bibliography	18
Cost Statement	19

List of Figures

Figure 1	Location Map	after page 4
Figure 2	Claim Map	after page 6
Figure 3	Regional Geology Map	after page 9
Figure 4	Sample Location Map with Cu, Au, Ag Geochemistry	back pocket
Figure 5	Sam Grid Extension: Geochemistry	after page 12
Figure 6	REM Grid: Geochemistry	after page 12
Figure 7	Geochemical Anomaly Map	back pocket

List of Tables

Table 1	Claim Information	page 7
Table 1	Claim Information	page 7
		r-0- ·

List of Appendices

Appendix 1	Rock Sample Descriptions	page 20
Appendix 2	Analytical Results	page 26

- 44 2

INTRODUCTION

The Tam property consists of the Tam, Haha, and Rem claim groups which are located 12 km northwest of the Kennecott Canada Inc. Lorraine deposit and 125 km northwest of the Placer Dome Inc. Mt. Milligan deposit.

The Lorraine deposit contains published reserves of 10 million tons with 0.67% Cu and 0.006 oz/t Au.

The Mt. Milligan deposit consists of 400 million tons grading 0.2% Cu and 0.48 g/t Au.

The Tam property also contains a drill indicated deposit of 7.2 million tons with 0.55% Cu and 0.12 oz/t Ag in the Boundary Zone.

This assessment report is based upon samples obtained from the claim groups during September of 1991 by Varitech Resources Ltd.

A total of 435 samples were collected and included 304 soils, 46 silts, and 85 rock.

The Ministry of Energy, Mines and Petroleum Resources annual work approval number for the 1991 Tam project is PRG-1991-1300130-4-5233.

LOCATION AND ACCESS

The Tam, Haha, and Rem claim groups are situated within the Omineca Mountains approximately 200 km northwest of Prince George, B.C. (Figure 1).

The property can be accessed by the Omineca Mining Road which continues north from Ft. St. James to the Cheni, Shasta, and Kemess deposits in the Toodogone Mining Camp.

The road passes through the Osilinka River Valley and along the western shoreline of Uslika Lake. Before crossing the Osilinka River, logging roads turn west toward Haha Creek and clear cut areas which provide the closest access to the Tam claims for helicopter mobilization.

The Kennecott Lorraine camp also has four wheel drive access from the Omineca mining road and an old tractor road, which requires reconstruction, continues from there to the Tam claims. For air access there is a small airstrip located southwest of Uslika Lake. The lake can also be used by float planes. A larger airstrip is located a few miles farther north at the Osilinka logging camp.

PHYSIOGRAPHY

Physiographically, the claims extend from a relatively mature valley bottom in Haha Creek, with an approximate elevation of 1100 m, to sparsely vegetated alpine ridges exceeding 2,000 m in height.

Above the treeline (1500 m) coarse, blocky talus and ridge crests are encountered.

HISTORY

The original Tam showing was discovered by Kennco Explorations Ltd. during the 1940's.

During the late 1960's and 1970's the Hogem Batholith was explored for copper and molybdenum mineralization by Union Miniere Explorations and Mining Corp. Ltd. (UMEX) and their joint venture partner Wenner Gren. The original Rem, Ham, and Tam claims were staked as a result of those efforts.

Umex began diamond drilling on the Tam property in 1972 and eventually completed 13 holes totalling 2,180 m. over a three year period.

During, and since, that time various soil geochemistry, geology, induced polarization and magnetic surveys have been conducted on the property.

In 1990, Major General Resources Ltd. and Varitech Resources Ltd formed a joint venture to explore and develop the Tam claims.

For a more detailed historical discussion on the property see Chapman (1990).

CLAIM DATA

The Tam property consists of the Tam, Haha, and Rem claim groups. Claim outlines are included in Figure 2 and claim details are listed below.

Table 1		Claim	Inforr	<u>nation</u>
---------	--	-------	--------	---------------

Claim	Date of	Record	Mining	*Expiry
Name	Record	No.	District	Date
	·			
Ham 2	08/04/72	114155	Omineca	08/04/93
Ham 3	08/04/72	114156	Omineca	08/04/93
Ham 4	08/04/72	114157	Omineca	08/04/93
Ham 45	08/04/72	114198	Omineca	08/04/93
Ham 46	08/04/72	114199	Omineca	08/04/93
Ham 47	08/04/72	114200	Omineca	08/04/93
Ham 48	08/04/72	114201	Omineca	08/04/93
Ham 49	08/04/72	114202	Omineca	08/04/93
Ham 50	08/04/72	114203	Omineca	08/04/93
Ham 51	08/04/72	114204	Omineca	08/04/93
Ham 52	08/04/72	114205	Omineca	08/04/93
Rem 17	02/02/73	119782	Omineca	02/02/93
Rem 18	02/02/73	119783 ⁽	Omineca	02/02/93
Rem 19	02/02/73	119784	Omineca	02/02/93
Rem 20	02/02/73	119785	Omineca	02/02/93
Rem 21	02/02/73	119786	Omineca	02/02/93
Rem 22	02/02/73	119787	Omineca	02/02/93
Rem 23	02/02/73	119788⁄	Omineca	02/02/93
Rem 24	02/02/73	119789	Omineca	02/02/93
Rem 25	02/02/73	119790~	Omineca	02/02/93
Rem 27	02/02/73	119792	Omineca	02/02/93
Rem 28	02/02/73	119793	Omineca	02/02/93
Rem 29	02/02/73	119794 <	Omineca	02/02/93
Rem 30	02/02/73	119795 /	Omineca	02/02/93
Rem 31	02/02/73	119796~	Omineca	02/02/93
Rem 32	02/02/73	119797	Omineca	02/02/93
Rem 33	02/02/73	119798	Omineca	02/02/93
Rem 34	02/02/73	119799	Omineca	02/02/93
Rem 35	02/02/73	119800	Omineca	02/02/93
Rem 36	02/02/73	119801	Omineca	02/02/93
Rem 37	02/02/73	119802	Omineca	02/02/93
Rem 38	02/02/73	119803	Omineca	02/02/93
Rem 39	02/02/73	119804	Omineca	02/02/93
Rem 40	02/02/73	119805	Omineca	02/02/93
Rem 41	02/02/73	119806~	Omineca	02/02/93
Rem 68	02/02/73	119833	Omineca	02/02/93
Rem 70	02/02/73	119835 -	Omineca	02/02/93
Rem 72	02/02/73	119837	Omineca	02/02/93

,

Claim	Date of	Record	Mining	*Expiry
Name	Record	No.	District	Date
Tam 1	08/25/69	79224	Omineca	08/25/93
Tam 2	08/25/69	79225	Omineca	08/25/93
Tam 3	08/25/69	79226	Omineca	08/25/93
Tam 4	08/25/69	79227	Omineca	08/25/93
Tam 5	08/25/69	79228	Omineca	08/25/93
Tam 6	08/25/69	79229	Omineca	08/25/93
Tam 11	08/25/69	79234	Omineca	08/25/93
Tam 12	08/25/69	79235	Omineca	08/25/93
Tam 13	08/25/69	79236	Omineca	08/25/93
Tam 14	08/25/69	79237	Omineca	08/25/93
Tam 90-1	06/10/90	12031	Omineca	06/10/93
Tam 90-2	06/10/90	12032	Omineca	06/10/94
Tam 90-3	06/11/90	12033	Omineca	06/11/93
Tam 90-4	06/10/90	12034	Omineca	06/10/94
Tam 90-5	06/12/90	12035	Omineca	06/12/93
Tam 90-6	06/11/90	12036	Omineca	06/12/94
Tam 90-7	06/12/90	12037	Omineca	06/11/93
Tam 90-8	06/12/90	12038	Omineca	06/12/93
Tam 90-9	06/13/90	12039	Omineca	06/13/93
Tam 90-10	06/12/90	12040	Omineca	06/12/93
Tam 90-11	06/13/90	12041	Omineca	06/13/93
Tam 90-13	07/27/90	12379	Omineca	07/27/93
Tam 90-14	07/27/90	12380	Omineca	07/27/94
Tam 3 FR	09/14/91	304296	Omineca	09/14/92
Tam 4 FR	09/14/91	304298	Omineca	09/14/92
Tam 11 FR	09/13/91	304297	Omineca	09/13/92
		·		
Ken 1	09/10/91	303966	Omineca	09/10/93
Ken 2	09/11/91	303967	Omineca	09/11/93
Ken 3	09/11/91	303968	Omineca	09/11/93

* expiry dates include this assessment application.

- Landar - - - - - -

л. Л.

REGIONAL GEOLOGY & MINERALIZATION

The claim groups are located in the Quesnel Trough which consists of Mesozoic volcanics and related intrusions and hosts several producing copper-gold alkaline porphyry deposits (Figure 3).

In the study area, the Quesnel Trough is bordered by highly deformed Proterozoic and Paleozoic strata east of the Manson fault zone and by deformed upper Paleozoic strata west of the Pinchi fault.

More specifically, the claims lie within the Hogem Batholith which is a composite plutonic complex of Upper Triassic to Lower Cretaceous age. Intrusive compositions range from the oldest diorites (which include minor gabbro, pyroxenite and hornblendite phases) to the youngest leucocratic syenites and quartz syenites. The more acidic members occur axially and the basic lithologies are located peripherally within the batholithic complex. For a more detailed discussion of the Hogem Batholith see Garnett (1978).

The Takla Group, consisting of andesitic to basaltic volcanics of late Triassic age, was intruded by the batholith and occurs as slivers within the Pinchi fault zone and in contact with the intrusion along its eastern margin.

Copper mineralization within the Hogem Batholith consisting of chalcopyrite, bornite, chalcocite, covellite and malachite is associated with the syenitic phases and their related potash felspar alteration zones. Gold and silver are commonly present with the sulphides which occur as disseminations and fractures fillings in hybrid rocks, that are also described as migmatites and/or foliates, within the Duckling Creek and Chuchi syenites.

The Duckling Creek Syenite Complex contains the Kennecott Lorraine deposit which consists of 10 million tons grading 0.67% Cu and 0.006 oz/t Au that occurs predominantly as disseminated chalcopyrite and bornite within the mafic rich portions of foliated syenitic migmatites that are spatially associated with lenses of biotite pyroxenite and faults. Potash felspathization and sericitization is pervasive and secondary biotite, chlorite, and epidote is widespread. Magnetite is a common accessory.

Other notable projects within the area include the BP Resources / Lysander Gold Corp. Cat project and the Eastfield Resources Ltd. Takla-Rainbow project, both of which received extensive diamond drilling and trenching programs over the past two years.

d.

PROPERTY GEOLOGY & MINERALIZATION

The Tam property lies within the Lower to Middle Jurassic Duckling Creek Syenite Complex of the Hogem Batholith. The syenite complex trends northwesterly for approximately 45 km and varies in width from 1 to 7 km. The Tam claims are located in the northern half of the complex.

Lithologies on the Tam property include monzodiorites, syenodiorites, greenschists, micaschists, gneissic migmatites, foliated monzonites, gneissic syenites, mesocratic syenites, leucocratic and holofelsic syenites, quartz monzonites and quartz diorites.

The monzodiorites and syenodiorites are grey to red, medium to coarse grained, and massive to foliated. They occur along the north eastern contact with the Duckling Creek Syenite Complex and probably represent an early mafic phase or differentiate of the Hogem Batholith.

The greenschists, micaschists, gneissic migmatites, foliated monzonites, and gneissic syenites are usually described together as foliates, foliated syenitic migmatites, or hybrid rocks. This undifferentiated assemblage is the oldest member of the Duckling Creek Syenite Complex and has been metamorphosed and foliated by later phases and intrusions of the syenite complex and the Hogem Batholith. The greenschists and micaschists may represent roof pendant material of Takla Group volcanics and related sediments. These have been intruded by monzonites and syenites which vary in colour from light grey-brown to pink, and are fine grained and well foliated. The gneissic migmatites contain alternating bands of fine grained leucosyenite and coarser graned mafic crystals which include magnetite. The mafic lineations are thin (mm's) and the leucosyenite bands are generally several centimetres thick.

The mesocratic syenites can be strongly magnetic and often have a potassium feldspar megacrystic porphyritic texture. It is a mottled grey-pink-red, medium to coarse grained, and massive to weakly foliated unit which postdates the foliated syenitic migmatites.

The leucocratic and holofelsic syenites also postdate the foliated syenitic migmatites and are brown to pink, medium to carse grained, and massive or weakly foliated.

The quartz monzonites and quartz diorites are found predominantly on the northern claims of the property and probably represent the oldest phase of the Hogem Batholith. They are grey to brown, medium grained, and texturally homogeneous.

Predominant structural trends on the property run north-south and east-west. Evidence of these trends prevail around the Ridge and Sam Zones and topographic lineations; such as streams, gullies, and scarps; also suggest similar structural orientations in the vicinity of the Boundary deposit.

Foliations within the foliated syenitic migmatites or hybrid rocks trend northwesterly and dip steeply. Foliation planes are defined by the allignment of chlorite and sericite grains, "streaks" of potassium feldspar, and by alternating bands of leucosyenitic and mafic material.

Chalcopyrite, pyrite, and magnetite mineralization; which contains significant amounts of gold and silver; occurs as fine grained disseminations, fracture fillings, and as concentrations along foliation planes within foliated migmatites (hybrid rocks), mesocratic syenites, and leucocratic syenites.

Quartz, quartz-carbonate, and potassium feldspar (\pm biotite) veins, veinlets, and stringers throughout the property also contain chalcopyrite, pyrite, magnetite and occasionally bornite mineralization.

Strong potassic and lesser hematitic alteration is associated with the best areas of copper and precious metal mineralization.

Ten prospective zones have been defined on the Tam property which include the Boundary, Midway, Upper Slide, Lower Slide, Creek, Ridge, Cirque, Fault, Sam and Goat Zones. For detailed descriptions of these zones refer to Peto, 1991.

The Goat Zone was discovered during the 1991 exploration season and is described below in the geochemical section of this report.

PROPERTY GEOCHEMISTRY

A total of 304 soil, 50 silt, and 85 rock samples were collected from the Haha, Rem, and Tam claim groups on the Tam property by Varitech Resources Ltd. during September, 1991 (Figure 4).

The samples were analysed by Min-En Laboratories for Au and 12 element ICP using standard rapid geochemical methods. The assay results are listed in Appendix II and rock sample descriptions are included as Appendix I.

Soil samples were taken at 100 m intervals along the 1250 m contour in claims Tam 90-1 and Tam 90-7 and along the 1350 m contour in claims Tam 90-2, 90-3, 90-5, 90-6, 90-8, 90-13 and 90-14. Samples were collected from the 'B' horizon where ever possible, but some avalanche debris and talus cover impeded sampling.

Outcrops, talus, and drainages encountered by the contour soil lines were sampled as well.

Two geochemical grids, the Rem grid and the Sam grid extension, were also established to provide more detailed information of known amomalies. The Rem grid, designed to test a UMEX copper soil anomaly, is a northern extension of the Boundary Grid and consists of 6 lines (9+00N to 14+00N) which run for 500 m to the southwest at 230°. It is located in the northern half of the Tam 90-1 claim and was setup using a sylva compass and hip chain. Soil samples were taken every 50m from the 'B' horizon and three test pits (TPA, TPB, TPC) were excavated between lines 11+00N and 13+00N to depths of 3 or 4m for soil profile and subcrop sampling. Copper, gold and silver results for these samples are plotted in Figure 6 and the Cu values were contoured.

The Sam grid extension is located on the Tam 11, 12, 13 and 14 claims and was designed to test the Sam Zone to the southwest. Lines 10+00S to 14+00S of the Boundary Grid were extended from 4+50W to 7+50W at 230° using a sylva compass and a hipchain. Soil samples were taken every 50m from the 'B' horizon. Copper, gold, and silver values, as well as, a 100 ppm copper contour for the Sam grid extension are plotted in Figure 5.

Rock samples were taken from the most prospective lithologies within the Tam 1-6, Tam 11-14, Tam 90-1, Tam 90-2, Tam 90-5, Tam 90-9, Tam 90-10 and Tam 90-11 claims. Samples were usually "grab" or composite rock chips from either outcrops or talus.

Assay results for the assessment program are excellent and all sampling methods revealed anomalous locations. The anomalies are widespread but are usually associated with occurrences of foliated syenitic migmatites (hybrid rocks), leucocratic syenites, and/or mesocratic syenites. Geochemical anomalies for the 1991 field program are plotted in Figure 7.

Soil and silt anomalies in copper, gold, and silver derived from the contour sampling traverses are scattered throughout the property. Copper soil anomalies range between 100 and 1877 ppm, gold soil anomalies range between 25 and 120 ppb, and silver soil anomalies are between 1.0 and 4.6 ppm.

Unfortunately, the best gold sample of 120 ppb is a solitary one in the centre of the Tam 90-14 claim, however, copper and silver anomalies occur in several interesting clusters.

The highest copper result of 1877 ppm occurs in an anomalous group of six samples located in the western half of claim Tam 90-2. Of the six samples, two are silt and one is talus or subcrop. The silt samples contained 268 and 350 ppm Cu and one had 22 ppb Au. The talus or subcrop sample assayed 0.49% Cu and 4.0 ppm Ag.

Another noteable cluster, containing four copper soil anomalies is located on the western edge of the Tam 90-1 claim. Two of the samples assayed greater than 400 ppm copper and had moderate silver values of 0.8 and 1.1 ppm.

LEGEND

20,23,0.4 Cuppm, Auppb, Agppm 100 ppm Cu contour Anomalou sample ~ Au >25ppb

Ag »ı.Oppm Cu »100ppm

 \Box

Test pit

VARITECH RESOURCES LTD.

TAM PROJECT REM GRID

GEOCHEMISTRY - Cu, Au, Ag OMINECA M.D., B. C. N.T.S. 93N-13E,14W 0

100 METRES 50

Scale 1: 2500	Date : Oct.	1991	
Drawn by E.M.	Figure Nº.:	6	

LEGEND

20,23,0.4	(
\dot{c}	I
Au, Ag	

Cu ppm, Au ppb, Ag ppm 100 ppm Cu contour Anomalou sample — Au ≫25ppb Ag ≫ı.Oppm Cu ≫lQ0ppm

In the northern half of the property, soil anomalies of 444 ppm copper and 2.4 ppm silver occur in the northeast corner of Tam 90-3 and the northwestern edge of Tam 90-5 respectively. Silt anomalies of 202 ppm Cu and 3.2 ppm Ag occur in the easten half of Tam 90-8 and the northwestern edge of Tam 90-6 respectively.

The Rem soil grid (Fig. 6) contains ten locations anomalous in copper, ten locations with greater than 1.0 ppm silver, and one gold anomaly. Contouring of the data indicates a 70 to 130 metre wide copper anomaly trending north from 10+00N, 2+50W to 13+00N, 0+50W. Individual copper anomalies range between 102 and 620 ppm, silver anomalies average 1.2 ppm, and the single gold anomaly of 402 ppb was derived from test pit C (TPC).

The Sam grid extension (Fig. 5) also contains ten anomalous stations with the best copper results ranging between 108 and 662 ppm and gold anomalies ranging between 38 and 124 ppb. Silver anomalies average 1.2 ppm.

The Sam soil anomaly was expanded to the southwest for 50m on line 13+00S and for 100m on line 14+00S and all of the samples within the expanded area are anomalous in copper, gold, and silver. Solitary samples at 13+00S, 6+50W (111 ppm Cu, 22 ppb Au, 1.1 ppm Ag) and 10+00S, 5+00W (72 ppb Au) deserve mention. The western corner of the grid also contains samples anomalous for copper, gold, and silver which may be a southward continuation of a soil anomaly in the Creek Zone as contoured by P. Peto (1991, Fig. 8).

Rock geochemical results are excellent and several locations anomalous for copper and gold or silver were revealed by the 1991 field program.

Seven samples taken within, and peripheral to, the Sam Zone are anomalous for gold, copper, or silver. The Sam Zone is located in the Tam 11 claim at the southwestern end of the Boundary Grid and was previously defined by a widespread Cu-Au soil anomaly.

The zone is underlain by leucosyenites and foliates and is intersected by northerly trending recessive structures which are probably faults. Mineralization in the zone consists of very fine to fine grained disseminated pyrite and chalcopyrite. Malachite traces were occasionally noted on exposed fracture surfaces and alteration products included clay and sericite, as well as, limonitic staining. Lithogeochemical gold anomalies range between 119 and 451 ppb, and copper and silver anomalies are as high as 0.24% and 6.6 ppm respectively (sample # 55714).

The Ridge Zone, located in the Tam 1 claim at the southwestern end of line 7+00S of the Boundary Grid, has been extended 400 m to line 11+00S, 6+00W with six sample locations that are anomalous in either copper, gold, or silver. In this zone, foliated to gneissic mesosyenites and monzonites are intruded by leucosyenite dykes and quartz

veinlets which contain disseminated pyrite and chalcopyrite. Malachite stains are common along fractures and foliation planes and potassic and sericitic alteration was frequently observed at sample sites. Lithogeochemical assays for the Ridge Zone extension were as high as 0.62% Cu, 570 ppb Au, and 10.7 ppm Ag (55739).

An outcrop sample of a 3 cm wide quartz vein, located 250 m east-northeast and upslope of the Creek Zone at 3+60S, 2+00W (approximately) of the Boundary Grid, assayed 1.2 g/t Au and 47.7 ppm Ag (55115). The vein locally contained pyrite and galena crystals up to 5mm in diameter.

Solitary rock sample anomalies, associated with silt and contour soil geochemical anomalies, are located to the northeast of the Boundary Grid in the Tam 90-2 claim. Sample number 55058 was a talus or subcrop sample and contained 0.49% Cu and 4.0 ppm silver. The sample location is enclosed within a 300m long cluster of soil and silt anomalies which were described above. Sample number 55059 was also a talus or subcrop sample associated with a soil anomaly and assayed 0.12% Cu and 1.5 ppm Ag. Both samples were of a fine grained, felsic intrusive containing traces of disseminated pyrite and chalcopyrite.

The Goat Zone is a new discovery located in the north-central portion of the Tam 90-9 claim. It occurs within occasionally foliated or gneissic mesosyenites that locally contain potassic or sericitic alteration products. Chalcopyrite and bornite mineralization is found as fine grained disseminations, fracture fillings, and associated with quartz veinlets. Malachite and azurite are also present in the veinlets and as fracture coatings. Seven anomalous rock samples were collected over a distance of 500 m from talus along the northeastern slope of the mineralized ridge. Copper anomalies range between 352 ppm and 1.18% (55735). Gold samples are as high as 895 ppb (55733) and silver assays are up to 15.1 ppm (55732).

CONCLUSIONS & RECOMMENDATIONS

The surface exploration program carried out on the Tam property by Varitech Resources Ltd. in 1991 was successful in outlining several mineralized copper-goldsilver prophyry zones. Not only were the Ridge and Sam Zones expanded, but several other new geochemical anomalies were discovered. The most interesting new showing is the Goat Zone which has an approximate length of 500m and provided rock samples containing 1.18% Cu, 895 ppb Au, and 15.1 ppm Ag.

With all of the above known showings and the new soil and silt anomalies, the Tam property has significant porphyry copper-gold-silver potential.

The abundant mineralization, favourable geology, and large geochemical anomalies all support the need for further work. The most significant features that enchance the exploration and mining potential of the Tam property are as follows:

- 1) The Tam property is well located for exploration and mining situated approximately 200 kilometres from both Fort St. James and Smithers and 125 kilometers northwest of Mt. Milligan in the Omineca Mining Division of northcentral British Columbia. Road access is available along the Osilinka River to within 12 kilometers east of the claims. Findlay Forest Products have proposed a spur road along the north side of Haha Creek for 1992, with some clear cutting to occur on the Tam claims south of Haha Creek.
- 2) The Omineca Belt was initially explored for porphyry copper-gold deposits in the 1960's and 1970's, when the Tam-Boundary deposit and the nearby Lorraine deposit of Kennecott Canada were discovered. In the last two years, the belt has seen a renewed level of exploration activity due largely to the success of Continental Gold in outlining a large, low grade, copper-gold porphyry deposit at Mt. Milligan, which dramatically improved the reward/risk ratio for porphyry exploration in the Omineca camp.
- 3) The Tam property is largely underlain by the Duckling Creek Complex of the Hogem Batholith. These syenitic intrusive rocks are favourable for alkaline porphyry deposits on a regional basis, as shown by the many copper showings in Duckling Creek rocks. On the Tam claims, the late stage leucosyenites appear to be the most favourable mineralizing source rocks and the early stage, foliated syenites (which may contain digested roof pendants of Takla Group volcanics) appear to be the most prolific mineralized host rocks. Mesocratic syenites have also been found to host mineralization. The mineralized zones tend to be contact or fault related disseminations and fracture fillings of chalcopyrite, K-spar and biotite with lesser bornite, chalcocite, malachite, azurite, magnetite, quartz, and sericite. As such, they belong to the potassic assemblage of porphyry alteration, with much lesser amounts of phyllic and argillic alteration and no propylitic assemblage.
- 4) Of the many geochemical copper-gold-silver soil anomalies on the property, the most important are the Sam, Creek, Lower Slide and Upper Slide prospects. Each of them occupy a surface area exceeding 50,000 square meters, with copper high's up to ore grades (0.2% Copper or higher) and sporadic gold values up to ore grades (0.01 oz/ton gold or higher). The best gold values occur in the Sam prospect, coincident with anomalous lead and molybdenum values, overlying leucosyenites rather than foliates, and containing quartz veinlets in bedrock and float.
- 5) Soil anomalies in the western corner of the Sam Grid Extension and the 400m expansion of the Ridge Zone to the south suggests that the favourable foliated

hybrid host rocks may extend from the Creek Zone to the Fault Zone which is located in the southern corner of the Tam 5 claim.

6) The discovery of the Goat Zone enhances the potential of the Tam 90-9, Tam 90-10 and Tam 90-11 claims which remain relatively unexplored to date.

A program of road reconstruction, road building, trenching, detailed geological mapping, and diamond drilling is recommended for the zones of known mineralization. Detailed geochemistry and prospecting is also warranted for the geochemically anomalous locations revealed by the 1991 program. Finally, the remainder of the claim groups still require reconnaissance mapping, prospecting and geochemical sampling.

STATEMENT OF QUALIFICATIONS

I, Ed McCrossan, of 3328 W. 2nd Avenue, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.
- 2. I am presently employed as a consulting geologist with the ARC Resource Group of 401, 325 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation and have worked on projects in Canada, Hungary, Thailand, China, Australia, and Chile.
- 4. I am a member of the Canadian Institute of Mining and Metallurgy, and the Geological Association of Canada.
- 5. The recent data described in this report was collected by Varitech Resources Ltd., during September, 1991.
- 6. I do not own or expect to receive any interest (direct, indirect, or contingent) in the properties described herein nor in the securities of Varitech Resources Ltd. or Major General Resources Ltd., in respect of services rendered in the preparation of this report.
- 7. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public documents.

17

BIBLIOGRAPHY

- Barr, D., Fox, P., Northcote, K., and Preto, V. (1976): The Alkaline Suite Porphyry Deposits, CIM Special Vol. 15, pp 359-367.
- Burgoyne, A. and Pauwels, A. (1974): Summary Report 1974 Exploration Program, UMEX Ltd.
- Chapman, J. (1990): Summary Report on the TAM Project for Varitech Resources Ltd.
- Chow, F., Kahlert, B., H. (1990): TAM-OSI Property; Compilation of Geological, Geochemical, Geophysical and other data on the TAM-OSI Group of Mineral Claims.

______ (1990): OSI Property; Compilation of Geological, Geochemical, Geophysical and other data on the OSI Group of Mineral Claims.

- Dyson, C. (1974): Report on a Preliminary Feasibility and Financial Analyses of the Boundary Deposit, TAM Property, B.C., UMEX.
- Garnett, J. (1972): Preliminary Geological Map of Part of the Hogem Batholith, Duckling Creek Area, B.C. Department of Mines and Petroleum Resources, Map #9.
 - ______ (1978): Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C. Department of Mines and Petroleum Resources, Bull 70.
- McCrossan, E. (1991): Geochemical Assessment Report on the OSI, TAM-OSI, and OSI 3 Claim Groups.

_____ (1991): Geochemical Assessment Report on the Haw West, Haw East, Haw South, & Den Claim Groups.

- Pauwels, A. and Burgoyne, A. (1975): Assessment Report on Drilling and Mapping, UMEX.
- Peto, P. (1991): Geological, Geochemical, and Geophysical Assessment Report on the TAM Claim Group.

TAM COST STATEMENT

D.

farrianal Tasar

Professional rees:	
Ed McCrossan 21 days @ \$350/day	\$ 7,350.00
Field Personnel Fees:	
Ken Karchmar 15 days @ \$300/day	4,500.00
Todd Armstrong 19 days @ \$250/day	4,750.00
Rolf Krawinkel 12 days @ \$200/day	2,400.00
Troy Elkin 12 days @ \$200/day	2,400.00
Camp Equipment Rental	2,400.00
Field Equipment & Rental	930.00
Truck Rental 17 days @ 80/day	1,360.00
Camp Costs 48 days @ 50/day	2,400.00
Scheduled Flights	2,300.00
Helicopter 16 hrs @ 650/hr	10,400.00
Travel Expenses & Fuel	785.00
Expediting	70.00
Freight	130.00
Analyses - 85 rock @ \$16.75	1,430.00
- 304 soil @ \$14.25	4,330.00
- 50 silt @ \$14.25	710.00
Report & Drafting	1,400.00
GST	3,180.00
Management, Office Costs, & Miscellaneous @ 5%	2,430.00
TOTAL	<u>\$55,650.00</u>

a electronic La construction

APPENDIX I: Rock Sample Descriptions

	Todd Armstrong	55101-166
	Ken Karchmar	55701-740
	Rolph Krawinkel	55051-071
55101	Medium grained, melanocratic hbl strongly magnetic (magnetite); flo	ld, quartz monzonite, no sulphides, at.
55102	Float sample; shows contact betwee and a coarse-grained leuco syenite both phases contain magnetite; no	een a fine-grained meso syenite with K-feldspar phenocrysts to 15mm; sulphides.
55103	Medium grained, meso-hbld quart float from bottom of hole TPB.	z monzonite; magnetite; no sulphide;
55104	Medium to coarse grained leuco s suphides; float.	yenite; specks of magnetite; no
55105	Medium grained melano-hbld. qua sulphides, float.	artz monzonite, magnetite, no
55106	Float sample of quartz vein, 20 x on one edge, medium grained mea sulphides.	20 cm, 2 cm of country rock remains so-syenite, vein rusty with no visible
55107	Coarse grained meso syenite, 2cm additional fracture fills of quartz; found in float.	a wide quartz vein cross-cuts with soft, blue irridescent mineral, fibrous,
55108	Medium grained melano syenite, a 3cm k-feldspar crystals, fracture f mineral; float.	abundant magnetite crystals, some 2- fill by dark brown, rhombohedral
55109	Medium grained magnetite - hbld encrusting weathered surface; in f	meso syenite, pale blue/white mineral loat.
55110	Fine grained, weakly foliated mes float.	so syenite, magnetite, no sulphides, in
55111	Fine grained meso syenite, weakl fine grained magnetite crystals, no	y foliated, hbld altered to chlorite, very o sulphides, in float.
55112	Medium grained, meso syenite, n steel grey tarnishing mineral with	on-foliated, non-magnetic, black to pale brown streak, trace pyrite.

.

•••

•

55113	Sample of 1-2 cm wide quartz vein with meso syenite wall rock, no sulphides, non-magnetic, $>5m$ in length.
55114	Fine grained, sub-mylonitic leuco syenite, non-magnetic, trace py.
55115	Quartz vein, 3 cm wide, tr. very fine grained py, blebs of 3-5 mm pyrite and galena crystals found locally.
55116	Wall rock surrounding 55114; medium grained meso syenite, trace pyrite, non-magnetic, non-foliated.
55701	Float, pink and green, medium grained, 30% hornblende, foliated, potassic alteration, heavy encrusting azurite and malachite along foliation and fractures.
55702	Random chip sample from outcrop, pink to green, equigranular, medium grained, $<5\%$ magnetite, weak potassic alteration, intruded by small dykes of aplite.
55703	Random chip sample from outcrop, a/a, fine grained, quartz veinlets, no visible mineralization.
55704	Random chip sample across 5m of outcrop, pink to dark green, occasionally megacrystic, 80% mafics, weak potassic alteration, gneissic banding, no visible mineralization.
55706	Random chip sample from outcrop, orange/brown, very coarse grained, orthoclase in matrix of brown biotite/sericite, trace of malachite stain, pyrite, probable potassic altered leucocratic syenite.
55707	Random chip sample from outcrop, white to light pink, very fine grained, intense clay and sericite alteration, leucocratic syenite, no visible mineralization.
55708	Random chip sample from outcrop, light pink to white, medium to fine grained, intense sericite alteration, minor pyrite, bornite, malachite.
55709	Float sample from recessive zone, white to orange, intense clay alteration, porous, sugary, abundant limonite, trace malachite.
55710	Float sample from recessive zone, white to orange, intense clay alteration, porous, sugary, abundant limonite, trace malachite.

55711	Random chip sample from outcrop, orange/light brown felsite, leucosyenite, limonitic.
55712	Random chip sample from outcrop, white/orange, strong clay alteration, sugary, foliated limonitic.
55713	Random chip sample from outcrop, orange, coarse grained, pervasive clay alteration, limonitic, leucosyenite.
55714	Random chip sample from outcrop, light green/pink, medium grained, pink feldspar in light green sericite matrix, weakly foliated, trace pyrite.
55715	Random chip sample from outcrop, red/orange, sugary, strongly foliated, clay and potassic alteration, trace of malachite, limonitic.
55716	No sample.
55717	Float sample from talus of recessive zone, orange, very fine grained, strong clay alteration, sugary, limonitic.
55718	Random chip sample from outcrop, dark brown, medium grained, abundant biotite, potassic feldspar.
55719	Random chip sample from outcrop, orange, sugary, intense clay alteration, minor potassic alteration, limonitic.
55720	Random chip sample from outcrop, moderately to intensely clay altered, no visible mineralization.
55721	Random chip sample from outcrop, orange/rusty, fine-medium grained, sugary to friable in places, limonitic.
55722	Float sample from talus, pink and green, rusty, fine to medium grained, sugary in places, clay alteration.
55723	Composite sample of talus fines.
55724	Float sample, angular quartz vein float, limonitic, porous.
55725	Composite sample of talus fines.
55726	Float sample, orange to brown, fine grained, sugary, crumbly, strong sericite alteration, no visible mineralization

55727	Float sample, foliated, mesocratic syenite, gneissic banding, weak sericite alteration, no visible mineralization.
55728	Float sample, talus, medium pink, very fine grained, sugary, gneissic banding in places, no visible mineralization.
55729	Float sample, talus, orange and green, fine grained, 50% mafics, foliated, malachite stained.
55730	Float sample, talus, orange and black, medium to coarse grained, quartz veinlets bounded by intense potassic alteration, trace malachite stain.
55731	Float sample, talus, pink and white, sericitic alteration, potassic alteration accompanies quartz veinlets, chalcopyrite and malachite veinlets, disseminated chalcopyrite, mesocratic syenite.
55732	Float sample, talus, orange and green, fine grained with phenocrysts to 2cm, weak potassic alteration, veinlets of chalcopyrite and malachite.
55733	Float sample, talus dark brown to black, sugary, rare feldspar phenocrysts to 1cm, heavy malachite and azurite along fracture surfaces, limonitic, mafic.
55734	Float sample, orange and green, medium grained with feldspar phenocrysts to 1cm, fractured, quartz veinlets, bornite, chalcopyrite, malachite as veinlets, disseminations, blebs to 3mm, fracture coatings, potassic alteration.
55735	Float sample, orange and green, medium grained with feldspar phenocrysts to 1cm, fractured, quartz veinlets, bornite, chalcopyrite, malachite as veinlets, disseminations, blebs to 3mm, fracture coatings, potassic alteration.
55736	Random chip sample from outcrop, orange, rusty, coarse grained, abundant pyrite, strong potassic alteration.
55737	Random chip sample from outcrop, orange and green/black, up to 70% mafics in places, foliated, rusty.
55738	Composite chip sample across 10m of outcrop, bright orange, coarse to pegmatitic, strong potassic alteration, abundant pyrite.
55739	Composite float sample, talus, orange, rusty, coarse to pegmatitic, stong potassic alteration, foliated, abundant sericite, malachite filled fractures and foliations.

a state of the second

55740	Composite chip sample across 2m of mineralized outcrop, orange, rusty, coarse to pegmatitic, foliated, sericitic, potassic alteration, trace of malachite.
0-55051	Fine grained, felsic dyke.
0-55052	Medium grained monzodiorite - syenite; adjacent to dyke sampled in 55051.
0-55053	Medium grained intrusive; magnetic (float).
0-55054	Intermediate intrusive; non-magnetic.
0-55055	Intermediate intrusive (float).
0-55056	Intermediate to basic intrusive; magnetic (float).
0-55057	Fine grained, felsic intrusive (float).
0-55058	Fine grained, felsic, non-magnetic intrusive with specks of pyrite and chalcoyrite. (BCL 1350/0100E).
0-55059	Fine grained, felsic intrusive with a trace of pyrite and chalcopyrite.
0-55060	Medium grained monzo-syenodiorite; magnetic (float).
0-55061	Medium grained leuco-mesocratic intrusive; magnetic; composite chip sample.
0-55062	White to pink, medium grained intrusive; trace of pyrite and chalcopyrite?; talus sample.
0-55063	Pink, medium grained intrusive; pink colour may be due to potassic alteration assoc. with minor quartz stringers; trace of pyrite and chalcopyrite; talus sample.
0-55064	As in 55063; taken from a 20m wide mineralized zone with potassic? alteration; outcrop sample.
0-55065	White to pink, medium grained intrusive (float).
0-55066	Fine to medium grained monzodiorite (float).
0-55067	As in 55066; magnetic (talus).

ので、「「「「「「」」」」という。

トインジ

ia.

- 0-55068 Fine to medium grained felsic intrusive (float).
- 0-55069 Fine grained leuco-mesocratic intrusive (talus).
- 0-55070 Mesocratic intrusive; magnetic; outcrop sample
- 0-55071 Medium grained, leuco-mesocratic intrusive; trace of pyrite; talus sample.

APPENDIX II

ANALYTICAL RESULTS

.

- **1**2 - 1

VARITECH RESOURCES

Company:

roject:

ette:

TAM

ED MCCROSSAN

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 960-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0786-RA1

.

Date: SEP-24-91

Copy 1. VARITECH RESOURCES, VANCOUVER, B.C. 2. VARITECH RESOURCES, C/O MIN-EN LABS.

le hereby certify the following Assay of 1 ROCK samples submitted SEP-16-91 by KEN KARCHMAR,

Gample	AU	AU	
lumber	g/tonne	oz/ton	
55115	1.22	.036	

Certified by

MIN- AN LABORATORIES

• ENVICENTE • ENVICENTE LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5614 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

1S-0786-RA1

Poepany: VARITECH RESOURCES roject: TAM Httn: ED MCCROSSAN Date: SEP-24-91 Copy 1. VARITECH RESOURCES, VANCOUVER, B.C. 2. VARITECH RESOURCES, C/O MIN-EN LABS.

'e hereby certify the following Assay of 1 ROCK samples submitted SEP-16-91 by KEN KARCHMAR.

∩ample	AU	AU	
∣umber	g/tonne	oz/ton	
55115	1.22	.036	

Certified by

MIN-EN LABORATORIES

¢

ATTN: ED MCCROSSAN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1S-0783-SJ1 DATE: 91/09/24 * SILT * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PP H	SN PPM	W A PPM	U-FIRE PPB
91 SK 01 91 SK 02	.5 .1	2	3 3	33 60	332 437	2	7	1	222 443	31 60	1	1 3	1 71
91 SK 03	.1	1	3	86 86	647 0/0	2	9 57	1	522 1117	43 01	1	3	3
CL 1250 000E	.1	1	8	60	767		10	1	1404	61	1	<u> </u>	20
CL 1250 030E	.3	1	4	50	708	1	13	1	828	61	1	3	3
CL 1250 498E	.5	1	3	57	480	1	- 50 - 8	1	526	40	1	1	17
CL 1350 160E CL 1350 190E	.2	1 1	4 2	268 48	749 426	1 1	18 7	1	534 464	108 48	1 1	2	22 2
CL 1350 200E	1.0	2	3	121	521	5	12	1	501	45	1	2	2
SL 1350 1650N	1.7	11 3	2	62 67	1066 646	3 2	12 11	2	235 388	52 64	1	2	1
CL 1350 0000S	.9	1	4	52 69	445 700	1	8 19	1	871 1060	33 70	1	23	14
CL 1350 02955	.8	1	5	105	920	2	21		907	67	1	2	1
CL 1350 0335S	1.3	1	4	75 81	695 571	7	18 18	1	549 664	61 57	1	2	1
CL 1350 0450S	1.5	3	5	76	932	18	21	ź	717	81	1	2	2
CL 1350 0780S	.9	1	5		581	10	16 17	1	1183	<u>53</u> 48	1		1
CL 1350 0798S	1.1	1	5	91	862	14	13	1	800	57	1	1	3
CL 1350 0840S	1.5	4	5	80 75	1345 1279	24 22	26 29	1	634 598	66 42	1	1	2
CL 1350 0880S	1.3	3	5	160	697	12	31	1	734	87	1	2	1
CL 1350 2840S CL 1350 2885S	.9 3.2	1 4	6	72 177	1097 985	5 8	27 38	1 3	949 640	95 108	1 1	2 1	NES 2
CL 1350 29955	1.1	3	4	181	929	3	20	1	503	56	1	1	1
CE 1350 50003	- 1	I	J	60	101		10		442		•	· ·	,
												-	
· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·		

.

ATTN: ED MCROSSAN

.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0781-SJ1 DATE: 91/09/24 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PP M	MN PPM	MO PPM	P8 PPM	SB PPN	TI PPM	ZN PP h	SN PP h	W AL	J-FIRE PPB
TPA 1 TPA 2	.8 .8	3	2	14 11	147 238	2	8	1	393 1189	35 17	1	1	1 2
TPA 3	1.1	1	12	64	1189	1	18	1	2743	101	1	4	1
TPA 4 TPB 1	1.0 1.4	1 4	8 1	48 20	590 246	1 1	12 16	1	1950 142	54 56	1 1	3 1	1
TPB 2	1.1	1	2	5	126	1	3	1	682	7	1	1	2
TPB 3	.8	1	4	44	408	1	9 5	1	1069	30 38	1	2	2
TPC 2	1.2	1	3	4	78	i	4	i	813	8	i	i	1
TPC 3	.7	1	4	14	190	1	8	1	959	21	1	1	402
BGL 1000S 750W	1.0	2	9	133	2124	7	27	1	1820	138	1	5	124
BGL 10005 700W	.2	2	2	43	1045	1	17	1	157	66	1	1	2
BGL 10005 600W	.2	1	1	31	1155	1	14	1	158	42	1	1	1
BGL 1000S 550W	.4	1	2	18	461	1	10	1	343	27	1	1	2
BGL 1000S 500W	.3	1	2	44 203	557	1	17 21	1	375 334	66 104	1 1	2	2
BGL 1100S 700W	.1	4	2	40	1158	1	19	1	270	115	i	2	1
BGL 1100S 650W	.1	1	2	108	3290	1	21	1	232	143	1	2	3
BGL 1100S 600W	.3	2	2	23	1047	1	15	1	200	20	1	<u> </u>	74
BGL 11005 550W		3	1	25 78	1240	3	15	1	162	125	1	2	3
BGL 12005 750W	.4	1	ż	20	440	ī	12	1	347	46	1	1	23
BGL 1200S 700W	.7	4	1	43 42	1420	1	15 13	2	128 184	62 54	1	1	23
BGL 12005 600W	.4	1	1	38	1152	1	13	1	241	52	1	1	1
BGL 1200S 550W	.2	1	3	63	2392	1	20	1	602	98	1	2	2
BGL 1200S 500W	.4	1	2	37	1152	1	13	1	183	50 80	1	1	10
BGL 1300S 700W	.5	1	1	45	1313	1	17	i	31	47	i	1	1
	1				· · · · · · · · · · · · · · · · · · ·								
												ı	

ATTN: ED MCCROSSAN

~

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0781-SJ2 DATE: 91/09/24 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG > PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPN	T I PPN	ZN PPM	SN PPM	W A	U-FIRE PPB
BGL 1300S 650W BGL 1300S 600W BGL 1300S 550W BGL 1300S 550W BGL 1300S 500W BGL 1300S 450W	1.1 .5 .2 1.1 1.3	15 1 3 22	1 8 7 2 1	111 27 46 251 573	1402 3146 2746 1522 838	2 1 1 6 7	14 38 25 18 26	1 1 1 1	97 1835 1466 359 88	52 136 154 70 37	1 2 1 1 1	1 3 3 1 1	22 2 1 98 46
BGL 1400S 750W BGL 1400S 700W BGL 1400S 650W BGL 1400S 650W BGL 1400S 550W	.6 .4 .2 .2 .5	1 9 1 9 1	1 2 2 1	27 35 24 47 67	518 682 2860 1925 1795	2 1 1 1 4	11 17 19 21 11	1 1 2 1	338 443 381 114 155	44 93 57 117 72	1 1 1 1 1	1 2 1 2 1	2 1 2 1 1
BGL 1400S 500W BGL 1400S 450W	1.5 1.3	3 26	8 1	330 662	2234 588	7 1	28 18	1	1722 48	123 26	1	3 1	73 38
								·					
		•											
										·			

" ATTN: ED MCCROSSAN

...

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1S-0786-RJ1 DATE: 91/09/24 • CORE • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	NO PPM	PB PPM	SB PP m	TI PPM	ZN PPM	SN PPM	W AU PPM	-FIRE PPB
55151 55152 55153 55154 55155	1.5 _9 _5 _2 _4	108 42 17 18 14	5 7 6 5 3	115 24 11 32 75	825 1258 1222 1530 1089	1 1 1 1	20 16 18 22 16	2 1 1 1 1	588 1165 1099 887 709	74 89 88 117 88	2 1 1 1 1	3 4 4 3 3	12 3 2 1 1
55156 55157 55158 55159 55160	.1 .5 .1 .3 1.3	16 11 8 11 18	2 1 1 2	19 105 37 170 912	1045 1033 1124 1501 1038	1 1 1 1	19 14 10 18 15	1 1 1 1	487 147 120 314 132	104 69 75 79 101	1 1 1 1	3 2 2 2 2	1 4 2 3 2
	2 												
	-												
											^н		
							i						_ .

÷

COMP: VARITECH RESOURCES

PROJ: TAM

ATTN: ED MCCROSSAN

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2 (606)980-5816 OP (606)988-6526 (604)980-5814 OR (604)988-4524

FILE NO: 15-0786-RJ2+3 DATE: 91/09/24 • ROCK * (ACT:F31)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PPM	SN PPM	W AL PPM	J-FIRE PPB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55051	.8	52	1	84	137	2	7	1	43	21	1	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55052	.7	21	1	64	51	1	4	1	42	10	1	2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55053	.8	17	4	49	541	1	10	1	831	32	1	3	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55055	1.0	25	1	5	34	1	1	1	64	2	1	6	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55056	1.1	1	6	95	738	1	9	1	2191	42	2	5	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55057	1.0	17	1	3	41	1	3	1	104	1	1	5	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55058	4.0	16	3	4947	708	1	17	1	499	115	1	3	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55060	1.1		7	61	389	1	6	1	2164	21	i	5	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55061	.9	1	3	42	300	1	7	1	1520	25	1	5	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55062	.6	6	1	35	241	1	25	1	483	23	1	5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55063	.7	3	4	128	377	1	15	1	1593	25	1	6	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55064	.8	1	4	66	399	2	12	1	1427	57	1	2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	550(/	.4		1	10	1037				F1/	17	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55067	.4	4	1	5	209	1	כ ד	1	702	17	1	2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55068	.2	3	i	9	105	i	7	1	150	10	1	2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55069	.3	2	1	26	290	1	4	1	199	16	1	2	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55070	1.2	1	7	23	338	1	7	1	2121	22	1	4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55071	1.2	1	6	19	247	1	7	1	2115	16	1	4	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55101	.5	1	3	20	729	1	11	1	1558	44	1	4	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55102	-4	1	1 9	15	115	1	د 0	1	2686	53	1	5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55104	.4	3	1	11	198	i	6	1	215	16	1	3	i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55105	.5	1	5	62	477	1	9	1	1892	33	1	4	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55106	.4	11	1	5	43	1	3	1	47	3	1	13	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55107	1.6	3	6	329	1230	1	105	1	1327	78	1	4	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55108	.8	1	4	82	673	1	20	1	1311	55	1	4 5	<u>د</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55109	1.5			243	1014		124	<u> </u>	2002			7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55110	1.3	56 73	3 7	486	421	1	15	2	572	28 56	1	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55112		30	1	51	545	8	8	i	62	29	i	3	i
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55113	.7	28	1	28	137	6	10	1	48	9	1	7	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55114	.1	11	1	374	351	3	11	1	213	70	1	3	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55115	47.7	23	49	31	160	1	750	1	18	17	1	2	1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55116	2.2	12	1	22506	4/1	1	56	1 70	59 900	41 70	1	5	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55702	1.5	2	44	452	358	1	7		2253	23	1	ž	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55703	1.1	11	1	308	261	1	8	1	556	-9	1	4	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55704	1.1	9	9	263	720	1	13	1	1969	59	1	6	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55705	.5	7	1	77	403	1	.8	1	475	20	1	3	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55707	.4	9 0	1	42	1005	1	15	1	100	50 27	1	2	0 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55708	1.0	14	1	218	521	1	12	1	44	9	1	2	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55709	1.1	15	1	130	39	93	9	1	27	3	1	2	119
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55710	1.3	16	1	157	28	49	13	1	58	14	1	2	145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55711	.5	9	1	42	595	1	11	1	125	30	1	3	22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55712	6. A	13 13	1	40 104	69 208	1	8	1	38 75	22	1	2	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5571/	.0	2/	7	2209	121		27		77	20			/51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55715		24 14	5 1	2390	34	1	،د 9	ے 1	62	14	1	2	3
55718 .2 6 2 155 2079 4 12 1 738 147 1 3 5 55719 2.0 28 1 107 32 214 58 1 20 27 1 1 335 55720 .9 15 1 219 346 5 11 1 61 37 1 2 180 55720 .9 15 1 209 366 5 11 1 61 37 1 2 180 55721 .5 9 1 36 448 3 8 1 52 33 1 2 2 55722 1.0 16 1 209 368 2 8 1 54 26 1 2 1 55723 .6 8 1 15 243 8 5 1 1111 7 1	55717	2.7	13	1	55	7	285	37	1	23	2	1	1	397
55719 2.0 28 1 107 32 214 58 1 20 27 1 1 335 55720 .9 15 1 219 346 5 11 1 61 37 1 2 180 55721 .5 9 1 36 448 3 8 1 52 33 1 2 2 55722 1.0 16 1 209 368 2 8 1 54 26 1 2 1 55723 .6 8 1 15 243 8 5 1 111 7 1 2 1 55724 .2 8 2 8 1330 1 8 1 67 62 1 6 2	55718	.2	6	2	155	20 79	4	12	1	738	147	1	3	_ 5
55720 .9 15 1 219 346 5 11 1 61 37 1 2 180 55721 .5 9 1 36 448 3 8 1 52 33 1 2 2 55722 1.0 16 1 209 368 2 8 1 54 26 1 2 1 55723 .6 8 1 15 243 8 5 1 111 7 1 2 1 55724 .2 8 2 8 1330 1 8 1 67 62 1 6 2	55719	2.0	28	1	107	32	214	58	1	20	27	1	1	335
55721 .5 9 1 36 448 3 8 1 52 33 1 2 2 55722 1.0 16 1 209 368 2 8 1 54 26 1 2 1 55723 .6 8 1 15 243 8 5 1 111 7 1 2 1 55724 .2 8 2 8 1330 1 8 1 67 62 1 6 2	55720	.9	15	1	219	346	5	11	1	61	37	1	2	180
55/22 1.0 10 1 209 500 2 8 1 54 20 1 2 1 55723 .6 8 1 15 243 8 5 1 111 7 1 2 1 55724 .2 8 2 8 1330 1 8 1 67 62 1 6 2	55721	.5	9	1	36	448	3	8	1	52	33	1	2	2
55724 .2 8 2 8 1330 1 8 1 67 62 1 6 2	55723	1.0	16 9	1	209	568 272	2	85	1	24 111	20 7	1	2	1
	55724	.0	8	2	8	1330	1	8	1	67	62	1	6	2

ATTN: ED MCCROSSAN

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0786-RJ4 DATE: 91/09/24 * ROCK • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MÓ PPM	PB PPM	SB Pp n	TI PPN	ZN PPM	SN PPM	W AU PPM	U-FIRE PPB
55725 55726 55727 55728 55729	.7 .1 .4 .6 1.6	56 15 14 5 15	1 2 4 3 10	36 55 18 352 121	800 749 1808 810 1820	4 1 1 1	10 9 15 12 16	1 1 1 1 1	161 73 395 177 1723	15 58 57 52 83	1 1 1 1	7 3 2 2 5	2 1 2 3 1
55730 55731 55732 55733 55734	4.9 5.0 15.1 14.5 1.0	17 4 5 1 1	5 7 17 15 6	1168 2618 7422 11224 470	335 321 944 1840 641	71 1 1 1 1	251 24 55 32 10	32 1 2 4 1	54 295 1066 448 1044	415 32 83 70 45	1 1 1 1	6 2 4 3 3	81 25 138 895 2
55735 55736 55737 55738 55739	11.0 4.2 4.0 .3 10.7	2 12 13 20 61	20 1 5 1 6	11829 380 163 99 6195	478 525 904 392 495	1 1 8 1 2	35 92 222 10 21	6 8 43 1 3	746 63 346 70 30	47 95 103 19 54	1 1 1 1	4 5 210 17 8	141 2 1 2 570
55740	3.9	2	2	2159	658	2	11	1	25	56	1	3	295
	· · · · · · · · · · ·										-		

ATTN: ED MCROSSAN

.

COMP: VARITECH RESOURCESMIN-EN LABSICP REPORTPROJ: TAM705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2ATTN: ED MCROSSAN(604)980-5814 OR (604)988-4524 (604)980-5814 OR (604)988-4524

FILE NO: 15-0784-SJ1+2 DATE: 91/09/24 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PPM	SN PPM	W AU PPM	U-FIRE PPB
1400N 500W	.9	82	6	26	293	1	16	2	1153	48	3	4 2	1
L1400N 400W	1.1	20	1	12	483	2	11	1	29	34	1	1	1
L1400N 350W	.4	7	6	18	186	1	17	2	1188	29	2	3	1
L1400N 300W	.5	12	3	25	499	1	15	1	803	41	1	5	
L1400N 250W	.9	8	5	73	689	1	19	2	1372	59 40	2	3	1 5
L1400N 200W	.0	1		26	559	1	18	1	976	43	1	2	2
L1400N 100W	.8	11	6	78	844	1	21	3	1411	80	1	3	1
L1400N 050W	1.2	1	6	82	629	1	19	1	1473	57	1	3	2
L1400N 000W	1.1	1	6	32 185	326 545	1	12	1	1343	39	1	2	1
BCL 1350 1200E	.6	3	6	113	635	ż	16	1	1257	50	1	3	1
BCL 1350 1300E	.1	1	4	29	263	1	9	1	989	34	1	3	2
BCL 1350 1400E	.6	1	2	26	237	1	11	1	115	27	1	2	5
BCL 1350 1500E	.8 2	1	8	12	213	1	11	1	1872	22	1	2	3
BCL 1350 1800E	.2	1	5	19	264	1	13	i	1367	39	1	ź	2
BCL 1350 1800E	.2	7	9	75	352	2	31	4	1609	55	1	3	1
BCL 1350 1900E	4		5	53	312	1	19		1349	44	1	3	1
BCL 1350 2000E	.4	1	5	75	254	1	19 18	3	1315	32	1	3	1
BCL 1350 2100E	1.1	1	7	26	465	1	12	1	1868	46	1	3	ż
BCL 1350 2300E	.9	9	4	169	1095	6	26	5	975	85	1	3	3
BCL 1350 2400E	.7	6	4	57	328	3	19	1	1051	53	1		1
BCL 1350 2500E	.1	1	4	36	266	1	16 15	1	1253	40 38	1	3	5
BCL 1350 2700E	1.0	1	7	9	154	1	11	1	1679	17	1	2	1
BCL 1350 2800E	.2	5	. 3	43	202	1	21	4	626	49	1	2	4
L1300N 500W	.5	1	4	10	182	1	13	1	823	26	1	2	1
1300N 450W	.4	28	6	20	203	1	16	5	911	28	1	2	2
L1300N 350W	.0	7	2	83	2816	2	18	2	452	51	1	2	i
L1300N 300W	.5	4	3	26	309	1	8	1	817	27	1	2	1
L1300N 250W	.2	1	4	15	442	1	9	1	1406	27	1	3	1
L1300N 200W	.2	1	1	84	1587	3	23	2	562	42	1	2	2
L1300N 150W L1300N 100W	0. 6	0	4 3	24 17	302 492	1	10	2	1047	39 32	1	2	1
L1300N 050W	.8	1	7	102	3395	1	21	1	1476	, 49	1	2	1
L1300N 000W	.6	1	4	91	455	1	9	1	1308	46	1	2	3
CL 1250 3000W	1.0	4	5	292	3483	7	48	10	1110	303	1	2	1
CL 1250 2900W	8. 8	1	5 8	12	413	1	18	1	2128	23 84	1	2	3
CL 1250 2700W	.7	i	2	17	231	ź	6	1	1008	23	1	1	2
CL 1250 2600W	.9	1	8	42	1541	1	22	2	1881	103	1	3	1
CL 1250 2500W	.9	1	1	8	269	1	5	1	640	19	1	1	1
CL 1250 2400W	1.1	1	18 15	17 42	2099	1	20	1	4195	149	2	5	2
CL 1250 2200W	.0	1	2	11	381	1	7	i	1151	23	1	ĩ	3
CL 1250 2100W	.9	10	4	174	4993	21	39	9	837	143	1	2	1
CL 1250 2000W	.7	1	2	30	1141	1	16	1	865	64	1	1	5
CL 1250 1900W	1.0	1	2	7 184	575 2087	ן ק	5 24	1	744	18 81	1	1	2
CL 1250 1700W	.9	1	7	12	513	í	5	1	1992	19	1	2	1
CL 1250 1600W	1.1	1	4	17	710	1	13	1	1465	32	1	2	3
CL 1250 1500W	.3	1	3	28	577	1	12	1	1184	37	1	2	6
CL 1250 1400W	.7	1	4	26 7	565 734	1	14 18	1	1319	43 64	1	2	4
CL 1250 1200W	.4	1	5	17	280	1	15	1	1107	34	1	2	1
CL 1250 1100W	.6	1	2	11	193	1	9	1	617	19	1	1	1

ATTN: ED MCCROSSAN

.

 COMP:
 VARITECH RESOURCES
 MIN-EN LABS
 ICP REPORT

 PROJ:
 TAM
 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2
(604)980-5814 OR (604)988-4524

FILE NO: 1S-0784-SJ3+4 DATE: 91/09/24

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPN	ZN PPM	SN PPM	W AL PPM	J-FIRE PPB
CL 1250 1000W CL 1250 0900W CL 1250 0800W CL 1250 0700W	.2 .8 .4 .5	1 6 5 4	8 6 4 7	36 405 128 101	461 2484 1224 515	1 1 1	14 31 21 22	1 2 1 1	1444 931 662 1354	56 114 77 59	1 1 1	3 3 2 2	2 2 1 1
CL 1250 0500W CL 1250 0500W CL 1250 0400W CL 1250 0300W CL 1250 0200W CL 1250 0100W	6 .3 .4 .5 .2	11 1 1 1 1	0 10 6 9 7 7	482 19 10 24 18 19	604 297 486 331 496	1 1 1 1 1			2396 1511 2048 1591 1622	203 36 21 47 39 40	1 1 1 1 1	4 3 2 3 3 3 3	2 1 3 1 2
L12N 500W L12N 450W L12N 400W L12N 350W L12N 350W	.9 1.7 .4 .7 .2	10 7 2 8 1	5 2 4 4 3	154 51 47 68 90	367 511 543 376 2418	1 1 1 2 3	23 20 12 14 19	1 1 1 1 1	833 547 819 696 476	63 60 41 38 37	1 1 1 1 1	3 2 2 2 2	4 2 3 2 12
L12N 250W L12N 200W L12N 150W L12N 150W L12N 100W L12N 050W	1.3 .5 .2 .8 .7	11 1 3 12 1	4 5 7 4	620 30 23 129 210	3401 376 278 1751 698	1 1 8 3	23 10 12 26 17	2 1 1 2 1	426 1117 1004 1094 867	78 30 37 93 54	1 1 1 1 1	2 2 3 2	18 2 1 1 16
L12N 000W L1100N 500W L1100N 450W L1100N 450W L1100N 400W L1100N 350W	.6 .4 .3 .2 .9	1 1 1 1 1	6 8 6 8 6	18 16 18 23 8	230 227 265 298 244	1 1 1 1 1	8 13 8 17 7	1 1 1 1	1322 1672 1555 1748 1612	25 32 31 30 20	1 1 1 1 1	1 2 2 2 2	2 5 2 1 2
L1100N 300W L1100N 250W L1100N 200W L1100N 200W L1100N 150W L1100N 100W	.8 .5 .2 .5 .2	1 1 7 1	4 6 1 3 5	15 11 364 223 16	218 221 4913 408 199	1 1 5 1	5 7 1 13 14	1 1 1 1	982 1287 179 712 1139	22 20 30 56 29	1 1 1 1 1	1 2 1 2 2	2 3 2 1
L1100N 050W L1100N 000W L1000N 500W L1000N 500W L1000N 450W L1000N 400W	1.0 .6 .7 1.1 .4	68 31 24 17 12	4 10 3 4 7	113 79 36 13 16	303 665 813 201 303	2 1 1 1 1	13 24 18 11 10	1 5 1 1	697 1539 407 886 1283	39 76 40 19 29	1 2 1 2 1	3 3 2 1 2	1 2 1 1 1
L1000N 350W L1000N 300W L1000N 250W L1000N 250W L1000N 200W L1000N 150W	.8 .5 .4 .3 .2	17 15 7 5 2	3 5 5 4 4	93 92 316 30 90	416 701 495 261 314	1 1 1 1	22 20 22 15 18	2 1 1 1 1	484 775 715 725 898	53 52 54 27 44	1 1 1 1 1	2 2 3 2 2	2 1 4 1
L1000N 100W L1000N 050W L1000N 000W L9N 500W L9N 450W	.4 .5 .4 .6 .6	4 3 8 23 6	4 5 5 4 5	84 18 209 30 48	370 361 776 350 1241	6 1 1 1 1	20 15 23 11 23	1 1 1 1	821 1183 1015 919 1056	49 40 55 25 59	1 1 1 1	2 2 3 2 2	2 1 10 2 1
L9N 400W L9N 350W L9N 300W L9N 250W L9N 250W	.3 .4 .3 .2 .3	5 1 1 1 4	2 5 5 4 5	46 34 59 85 22	682 293 333 482 322	1 1 1 1 1	18 16 26 23 17	1 1 1 1	790 954 1271 1044 998	48 31 43 52 37	1 1 1 1	2 2 3 3 2	3 2 4 1 2
L9N 150W L9N 100W L9N 050W L9N 050W	.1 .2 .1 .4	1 1 1 6	6 3 4 3	61 35 63 71	522 227 409 430	1 1 1 1	20 10 16 15	1 1 1 1	1009 697 621 495	56 27 43 33	1 1 1 1	3 2 3 2	1 23 3 2

COMP: VARITECH RESOURCES PRÒJ: TAM ATTN: ED MCCROSSAN

.

.

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0782-SJ1 DATE: 91/09/24 * SILT * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	S8 PPM	TI PPM	ZN PP M	SN PPM	₩ A PPM	U-FIRE PPB
BC 1350 000E	.6	13	2	350	383	1	9	1	165	61	1	1	2
		·											
	-												
	. v												
			· 										
									<u></u>				- .

.

MIN-EN LABS - ICP REPORT

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (404)080-5814 op (404)088-4524 (604)980-5814 OR (604)988-4524

FILE NO: 15-0782-5J2+3 DATE: 91/09/24 • SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PPH	SN PPM	V AU PPM	J-FIRE PPB
CL 1250 100E	.8	6	7	74	1075	2	62	1	915	89	1	2	2
CL 1250 200E	.5	7	7	123	1274	1	30	1	832	93	1	3	3
CL 1250 300E	.3	1	10	48	666	1	12	1	1724	60	1	3	1
CL 1250 400E	1.0	11	87	117	928	2	14	1	1525	57	7	<u>ک</u>	1 2
CL 1230 300E	.0			121	031		4.6		1210	77			
CL 1250 600E	1.0	1	9	43	624 57/	1	10	1	1741	51	1	2	1
CL 1250 700E	.4	1	9	71	3193	1	35	1	1710	107	ż	4	1
CL 1350 2400W	.6	6	8	116	938	1	20	1	1631	88	ī	3	2
CL 1350 2300W	.3	1	6	89	968	1	13	1	1348	80	1	3	1
CL 1350 2200W	.6	1	7	37	340	t	10	1	1553	32	1	3	3
CL 1350 2100W	.9	1	12	27	825	1	22	1	2396	65	1	3	2
CL 1350 2000W		1	10	54	504 424	1	16 30	1	1998	59	1	3	1
CL 1350 1900W	1.0	i	7	15	346	1		1	1601	30	i	2	2
CL 1350 17004		1		12	279	1		1	1305	20			
CL 1350 1700W	.0	1	7	21	300	1	15	1	1579	33	1	2	1
CL 1350 1500W	1.0	i	8	17	288	1	9	i	1745	26	1	2	i
CL 1350 1400W	1.4	1	10	22	620	1	10	1	2474	47	2	3	2
CL 1350 1300W	.9	3	11	43	961	1	20	1	2169	63	1	3	1
CL 1350 1200W	.9	2	11	51	699	1	40	1	2146	97	1	3	2
CL 1350 1100W	.8	5	7	39	656	1	21	1	1397	78	1	3	2
CL 1350 1000W	4.6	1	10	35	692	1	18	1	2262	34	1	3	1
CL 1350 0900W	.7	1	6	147	491	15	16	1	1256	43 52	1	3	1
CL 1350 0700U	7			67	1500		57	1	835	101	1		
CL 1350 0700W	.4	2	5	57	4065	2	25	1	966	96	1	3	1
CL 1350 0500W	.5	3	7	93	2209	ī	23	1	1388	149	1	4	1
CL 1350 0400W	8.	1	5	34	385	1	10	1	989	32	1	2	3
CL 1350 0300W	.8	1	3	57	309	1	8	1	475	26	1	2	1
CL 1350 0200W	.8	10	8	51	581	1	17	1	1634	67	1	3	8
CL 1350 0100W	1.7	6	13	12	1004	1	13	1	2470	78	1	5	2
BCL 1350 0100E	.9	0 18	4	1877	5176	37	10	4	102	110	1	2	3
BCL 1350 0400E	1.2	11	1	38	101	2	16	ž	236	20	1	ĩ	4
BCI 1350 0500E	1 0	1		11	114	1		1	462	14	1	1	19
BCL 1350 0600E	.5	4	4	19	147	1	12	1	713	23	i	ż	2
BCL 1350 0700E	.3	6	4	125	361	1	20	2	648	51	1	2	6
BCL 1350 0800E	.3	1	2	44	141	1	8	1	370	21	1	1	24
BCL 1350 0900E	.1	1			200	1	15	1		48		2	
BCL 1350 1000E	.3	4	4	58	318	1	18	1	784	50	1	2	18
CL 1350 3500N	.5	1	5	13	94 1374	ן ז	11	1	047 952	28	1	2	4
CL 1350 3300N	.5	1	7	25	256	1	10	1	1467	30	1	2	1
CL 1350 3200N	.9	7	1	13	1839	6	14	1	111	72	1	1	1
CL 1350 3100N	.1	1	5	10	127	1	9	1	1108	15	1	2	2
CL 1350 2900N	1.2	1	6	9	108	1	6	1	1478	18	1	1	1
CL 1350 2800N	.7	1	1	35	39	2	8	1	269	32	1	1	1
CL 1350 2700N	2.0	14	5	42	955	2	15	2	222 782	40	1	2	د 1
CE 1330 2000N									4070			<u>_</u>	
CL 1350 2500N	ל. ۲	1	5	15 2/	127	1	10	1	1072	22	1	2	2 2
CL 1350 2300N	.4	ے 1	4	24	244	1	11	1	1074	29	1	2	120
CL 1350 2200N	.3	3	5	38	3650	11	27	1	822	50	1	2	2
CL 1350 2000N	.7	2	3	23	311	1	8	1	681	30	1	1	1
CL 1350 1800N	.7	1	2	36	284	1	14	1	337	28	1	1	1
CL 1350 1700N	.6	<u>1</u>	5	23	616	4	10	1	991	32	1	1	3
CL 1350 1600N	1.0	3	5	11	588	3	8	1	1105	22	1	2	2
CL 1350 1500N	· · (7	1 2	5 5	25	510 266	1	11	1	1044	20 34	1	2	1
	<u> </u>			6 -7		-		-			<u> </u>	_	·

ATTN: ED MCCROSSAN

ATTN: ED MCCROSSAN

.

 COMP: VARITECH RESOURCES
 MIN-EN LABS
 ICP REPORT

 PROJ: TAN
 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

 VITH: FO MCODOSCAN
 (604)980-5814 OP (604)988-4524
(604)980-5814 OR (604)988-4524

FILE NO: 1S-0782-SJ4+5 DATE: 91/09/24 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI P PN	ZN PPM	SN PPM	W A PPM	U-FIRE PPB
CL 1350 1300N CL 1350 1200N CL 1350 1100N	.8 1.3 .5	6 1 1	374	25 27 25	531 355 1076	2 1 3	13 12 16	1 1 1	517 1458 776	37 44 32	1 1 1	2 2 2	1 3 1
CL 1350 1000N CL 1350 0900N	1.4 .7	3 1	1 4	82 20	191 1340	1 3	9 16	1	155 660	37 33	1	1 1	16 2
CL 1350 0800N CL 1350 0700N	.7 .7	1 2	4 2	17 19	1809 388	9	15 14	1	590 389	31 26	1	1	23
CL 1350 0600N CL 1350 0500N	.9 .6	1 2	1 4	20 35	1658 358	5 4	15 12	1 1	257 708	30 39	1 1	1 2	2 5
CL 1350 0400N CL 1350 0300N	 1_1	<u>1</u> 1	<u>1</u> 6	8 20	50 167	<u> </u>	4 12	1 1	60 1384	53 28	1	1	2
CL 1350 0200N CL 1350 0100N	_1 _4	1 1	4 7	73 46	557 318	7 1	13 15	1	1102 1462	30 36	1 1	2 2	4 9
CL 1350 0100S CL 1350 0200S	.5 .8	3 2	4 11	81 26	421 1068	1	18 19	1 1	890 2282	40 135	1 1	2 3	1 2
CL 1 350 03 00S CL 1350 0400S	.6 .9	1 2	9 6	163 24	1813 307	3 1	28 15	1	1877 1215	146 30	1 3	3 1	2 1
CL 1350 0500S CL 1350 0600S	2.4 1.2	12 1	2 10	145 19	1509 285	25 1	34 12	2 1	208 2275	77 31	1	1 2	23 1
CL 1350 0700s	.9	1	8	79	889	22	18	1	1691	60	1	2	2
CL 1350 0800S CL 1350 0900S	.3	1 1	5	118 15	5821 122	42 7	38 12	1	591 694	92 16	1	2	2
CL 1350 1000S CL 1350 1100S	.7	1 1	6 7	32 38	160 228	11 4	12 14	1 1	1086 1262	24 23	1 1	1 2	1 1
CL 1350 1200s	1.0	1	8	32	252	25	20	1	1410	30	1	2	2
CL 1350 1300S CL 1350 1400S	.7 1.0	1 5	10 8	25 73	280 485	14 20	17 15	1	2163 1408	36 56	1	2	1
CL 1350 1500S CL 1350 1600S	.4	1	8 4	118 31	604 151	26	33 16	1	1230	48 23	1	2	2
CL 1350 1700S	.7	8	4	80	1152	55	31	<u>i</u>	453	58	1	1	2
CL 1350 1800S CL 1350 2000S	.2	9 1	4	30 16	419 94	31 36	19 9	1	323 543	36 23	1 1	2 2	6 2
CL 1350 2100S	.5	10	6	96 16	2135	86	44	1	355	47	1	2	2
CL 1350 2300s	.6	<u>ī</u>	7	28	173	18	19	1	1293	30	1	2	3
CL 1350 2400S CL 1350 2500S	.5	1	8 5	20 13	402 118	18 2	21 13	1 1	1230 975	23 18	1	2	1
CL 1350 2600S	1.1	6	6	20	199	2	15	1	1180	31	i	2	Ż
CL 1350 27005 CL 1350 28005	1.0	3	5 9	33	176	2 8	17	1	1681	33	. 1	2	2
CL 1350 2900S	1.3	15 13	11	171 187	755 772	15	44	1	1256	76 42	1	2	1
CL 1350 3100S	.1	1	4	22	177	1	13	1	768	18	i	2	3
CL 1350 32008 CL 1350 33008	1.0	6 1	3 9	25 39	113 1470	1 15	17 26	1 1	511 1277	20 53	1	2	6 2
CL 1350 3400S	.9	13	6	67	769	16	22	1	728	48	1	2	1
CL 1350 3600s	.5	5	3	20 28	112	1	16	1	784 511	24 20	1	1	2 5
CL 1350 3700s CL 1350 3800s	.3	1 2	6 5	21 21	134 116	1 1	9 13	1 1	1252 875	19 24	1	2	7 2
CL 1350 3900S	.8	5	7	72	341	10	16	1	1226	48	1	2	4
CL 1350 4000S	.0 .6	14	8	425 57	4272	27	51 22	4	785 1178	50	1	3 2	1 18
CL 1350 4200S CL 1350 4300S	.9 .7	7 8	4 6	19 37	92 134	3 1	13 21	1 1	649 1154	19 29	1	1 2	6 2
CL 1350 4400S	.9	1	5	13	137	1	11	1	993	25	1	2	2
CL 1350 4500S CL 1350 4600S	.5	1	10 4	55 37	195	1	20 13	1 1	1272 962	56 25	ז 1	د 2	20
CL 1350 4700S CL 1350 4800S	.7	3 6	8 6	189 38	1316 218	5 3	71 17	1 1	964 1116	89 43	1 1	2 3	3 4
L	I									. –		-	

COMP: VARITECH RESOURCES PROJ: TAM ATTN: ED MCCROSSAN

-

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0782-SJ6 DATE: 91/09/24 * SOIL • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PPM	SN PPM	W AL	U-FIRE PPB
CL 1350 4900s CL 1350 5000s CL 1350 5100s CL 1350 5200s CL 1350 5300s	1.0 .1 .9 .5	1 1 1 1	17 2 4 6 2	201 37 51 41 32	405 119 200 282 417	5 7 6 1 2	22 10 14 14	1 1 1 1	3375 469 842 1086 409	76 23 25 36 39	1 1 1 1	4 2 2 2 2	3 1 1 2 7
CL 1350 55005 CL 1350 5500S CL 1350 5500S CL 1350 5600S CL 1350 5700S CL 1350 5800S	.9 .4 .4 .5 .7	4 1 1 2 2	4 4 4 5 4	18 28 25 39 25	165 216 154 355 160	1 1 9 1 1	9 13 14 15 12	1 1 1 1 1	805 769 785 826 669	27 38 20 38 30	1 1 1 1 1	1 1 2 2 1	2 4 19 12 8
CL 1350 5900s CL 1350 6000s CL 1350 6100s CL 1350 6200s CL 1350 6300s	.5 .9 1.1 .6 .3	2 3 3 1 1	4 8 5 8 4	51 32 32 27 17	215 235 185 460 189	15 1 1 1	13 13 14 12 12	1 1 2 1 1	722 1082 782 1615 672	33 35 35 51 37	1 1 1 1 1	1 2 2 3 2	21 2 1 3 7
CL 1350 6400S CL 1350 6500S CL 1350 6600S CL 1350 6700S CL 1350 6800S	.7 .9 .5 .7 .3	5 1 1 1 1	3 6 2 9 6	19 19 8 17 30	236 243 171 459 408	1 1 1 1 1	12 10 9 8 16	1 1 1 1	445 1246 605 2288 1387	37 33 18 37 46	1 1 1 1	1 2 1 3 3	2 2 1 1 3
CL 1350 6900S CL 1350 7000S CL 1350 7100S CL 1350 7200S CL 1350 7300S	.7 1.2 .4 .4 1.7	2 1 1 1 21	2 2 5 4 3	28 37 30 15 444	1347 286 257 186 1912	4 10 1 7 40	16 11 13 10 23	1 1 1 2	224 586 1065 864 327	54 34 38 26 50	1 1 1 1 1	1 2 2 1	2 24 17 6 3
CL 1350 7400S CL 1350 7500S	.1 .7	2 9	3 5	39 107	474 5338	6 6	19 33	1 1	503 477	54 150	1 1	2 2	1 4
											•		

COMP: VARITECH PROJ: TAM

ATTN: ED MCCROSSAN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 1S-0785-SJ1 DATE: 91/09/25

* SILT * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BI PPM	CU PPM	MN PPM	MO PPM	PB PPM	SB PPM	TI PPM	ZN PPM	SN PPM	W AL	I-FIRE PPB
L12N 300W L12N 060W CL 1250 2690W CL 1250 2315W CL 1250 2290U	.6 .2 1.0 1.1	11 1 1 1 3	4 5 7 7 8	23 77 82 63 87	698 383 900 1036 1635	1 1 1 1	7 6 12 15	1 1 1 1	350 464 898 1049 1/28	23 41 68 80 82	2 5 1 1 3	1 2 2 2	1 1 2 1
CL 1250 2260W CL 1250 2215W CL 1250 1710W CL 1250 1515W CL 1250 0750W	1.3 1.0 .2 .1 .3	1 1 5 1 1	7 5 3 7 5	59 35 52 53 52	1255 924 532 719 806	1 1 1 1 1	15 11 9 12 11	1 1 1 1	1269 1129 472 1225 1034	57 45 86 51 49	8 3 1 1 2	2 2 2 4 3	2 1 2 1
BCL 1350 1095E BCL 1350 1880E BCL 1350 2020E CL 1350 2220W CL 1350 1950W	.4 .6 .5 .1 .9	1 10 5 1 3	6 3 4 7 2	126 69 38 78 93	425 1281 213 1003 1496	1 10 2 1 2	13 22 13 17 17	1 1 1 1 1	681 325 627 1109 492	47 58 26 72 66		2 2 1 3 2	1 2 1 3 1
CL 1350 0000W CL 1350 5065S CL 1350 5090S CL 1350 5920S CL 1350 6680S	.3 .5 .6 .1 .1	1 1 1 1	6 4 2 4 8	202 36 35 43 90	1246 489 293 379 450	1 2 2 1 1	23 15 10 9 21	1 1 1 1	1120 643 344 1339 684	97 30 30 35 33	1 1 2 1 1	3 2 2 4 2	1 2 1 4 1
RKS 91013 RKS 91022	1.2	9 8	8 4	110 98	467 370	17 5	38 12	2 1	1035 561	50 33	1 1	2 1	2 1
			, e ²										
	· · · · · · ·										7.2		
								<u>,</u>	·······				
					<u> </u>								

DO L. MCCROSSAN DO
VARITECH RESOURCES LTD.
TAM PROJECT
SAMPLE LOCATIONS WITH Cu, Au and Ag GEOCHEMISTRY
N.T.S. 93N-13E,14W OMINECA M.D., B.C.
SCALE 1 : 10,000 DATE : OCT. 1991
DRAWN BY : E.M. FIGURE Nº. 4

Limit of tree line Topography contours in meters

11.9.7

