SUB-RECORDER RECEIVED

APR 09 1992

M.R. #.....\$ VANCOUVER, B.C.

LOG NO:	APR 2 7 1992	RD.
ACTION:		
FILE NO:		
,		

MAX PROPERTY

Fort St James, British Columbia

NTS: 93K/16E

DIAMOND DRILLING - 1992

Claims:

MAX 1-27

MAX 29

Grif 1-2

GR 1-8

Sint 1

Fri #1

Owners:

A A Halleran, A D Halleran, U Schmidt

Operators: Rio Algom Exploration Inc

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,27 April 1992

William S Donaldson

SUMMARY

The MAX claims are situated 57km north of Fort St James, British Columbia in an area favourable for copper-gold porphyry-style mineralization. The claims consist of a total of 575 units and are accessible by vehicle along an all-weather road and several branch logging roads.

The claims were staked by Arthur A Halleran, Arthur D Halleran and Uwe Schmidt in late 1986. The staking was based on the presence of a series of magnetic highs of similar magnitude to the nearby Tas and Mount Milligan properties. Placer gold was found in creeks draining the magnetic highs. Work on the claims in 1991 by Rio Algom Exploration Inc included geological mapping, geochemical soil sampling and induced polarization surveys over two selected grids within the claim block.

Several anomalous chargeability highs were identified from the induced polarization survey. They occurred on two separate grids (the Fire and Lynx grid) and produced contiguous anomalies over one kilometre in length. The purpose of the 1992 diamond drill programme was to test these anomalies.

Six diamond drill holes totalling 600 metres tested the anomalous zones. Volcanics of the Takla Group and sediments were intersected. Mineralization consisted of pyrite and graphitic argillite. Propylitic alteration was present in the volcanics. With the exception of DDH 92-6, all holes were drilled in fault zones. All gold and copper assays are at or below background levels.

As the results of the diamond drill programme are not encouraging, and all targets have been tested, it is recommended that no further work be done on the MAX property by Rio Algom Exploration Inc.

TABLE OF CONTENTS

			Page No.
	SUN	MMARY	i
1	INT	RODUCTION	1
	1.1	General	1
	1.2	Location, Access and Topography	1
	1.3	Property and Claim Status	1
	1.4	History	3
2	REG	GIONAL GEOLOGY	5
3	RIO	ALGOM WORK PROGRAMME	6
	3.1	Snow Ploughing	6
	3.2	Diamond Drilling	6
	3.3	Core Logging	6
	3.4	Core Sampling	6
	3.5	Laboratory Procedures	6
4	RES	SULTS OF DIAMOND DRILLING	8
	4.1	Geology	8
	4.2	Alteration and Mineralization	9
	4.3	Structure	10
	4.4	Results	10
5	DIS	CUSSION	11
6 ¹	REC	COMMENDATIONS	12
7	REF	FERENCES	13
8	STA	TEMENT OF QUALIFICATIONS	14
9	STA	TEMENT OF COSTS	15

APPENDICES

- I Diamond Drill Logs and Sample Descriptions
- II Drill Sections (1:500 scale)
- III Analytical Data

LIST OF FIGURES

1	Location Map (1:50,000)	1a
2	Index Map (1:100,000)	1b
3	Section L189+00N, DDH 92-1 (1:500)	Appendix II
4	Section L179+00N, DDH 92-2 (1:500)	Appendix II
5	Section L115+00E, DDH 92-3 (1:500)	Appendix II
6	Section L111+00E, DDH 92-4 (1:500)	Appendix II
7	Section L107+00E, DDH 92-5 (1:500)	Appendix II
8	Section L103+00E, DDH 92-6 (1:500)	Appendix II

1 INTRODUCTION

1.1 General

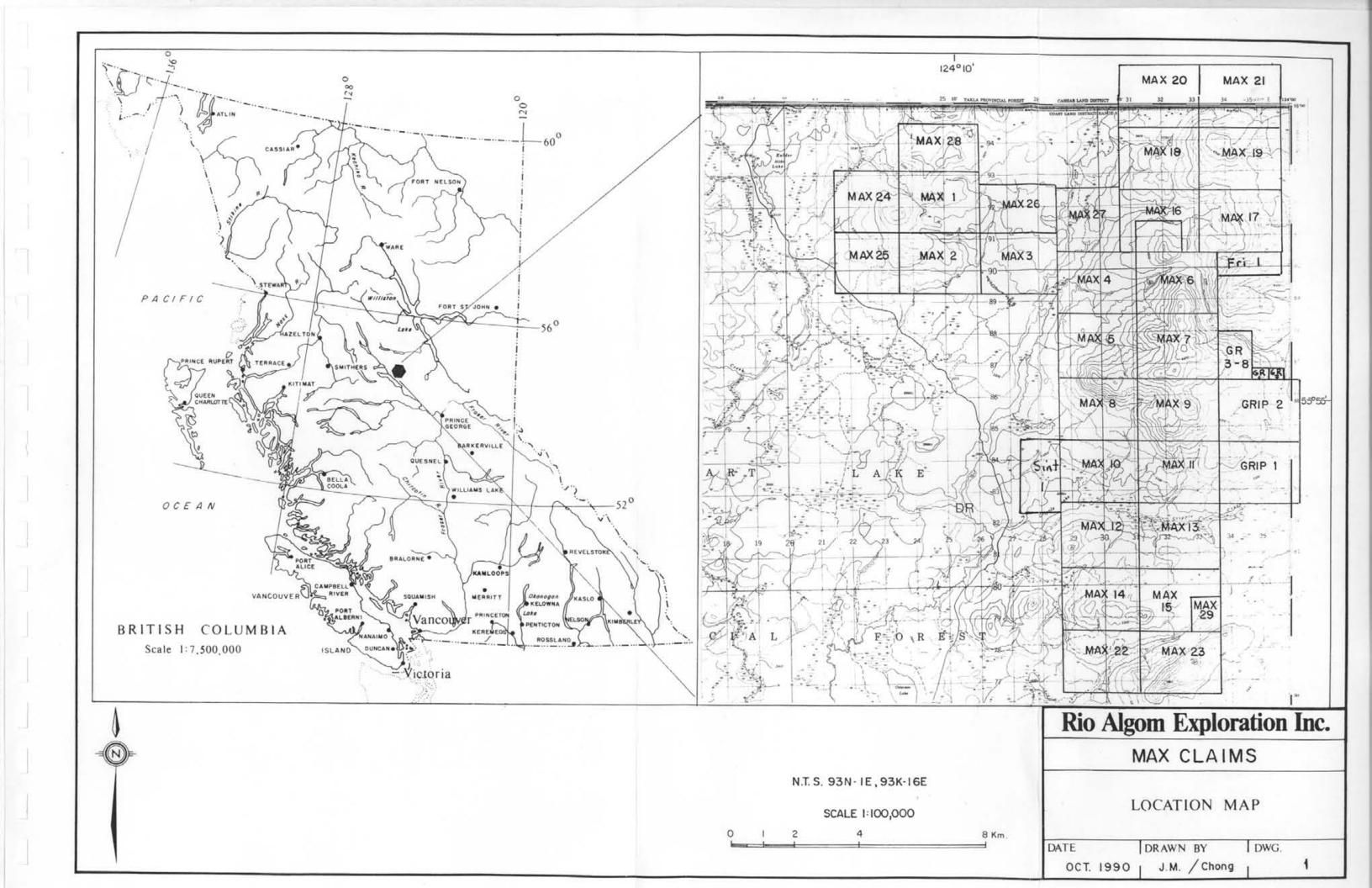
This report describes the work done and results of the 1992 diamond drill programme conducted on the MAX claims by Rio Algom Exploration Inc.

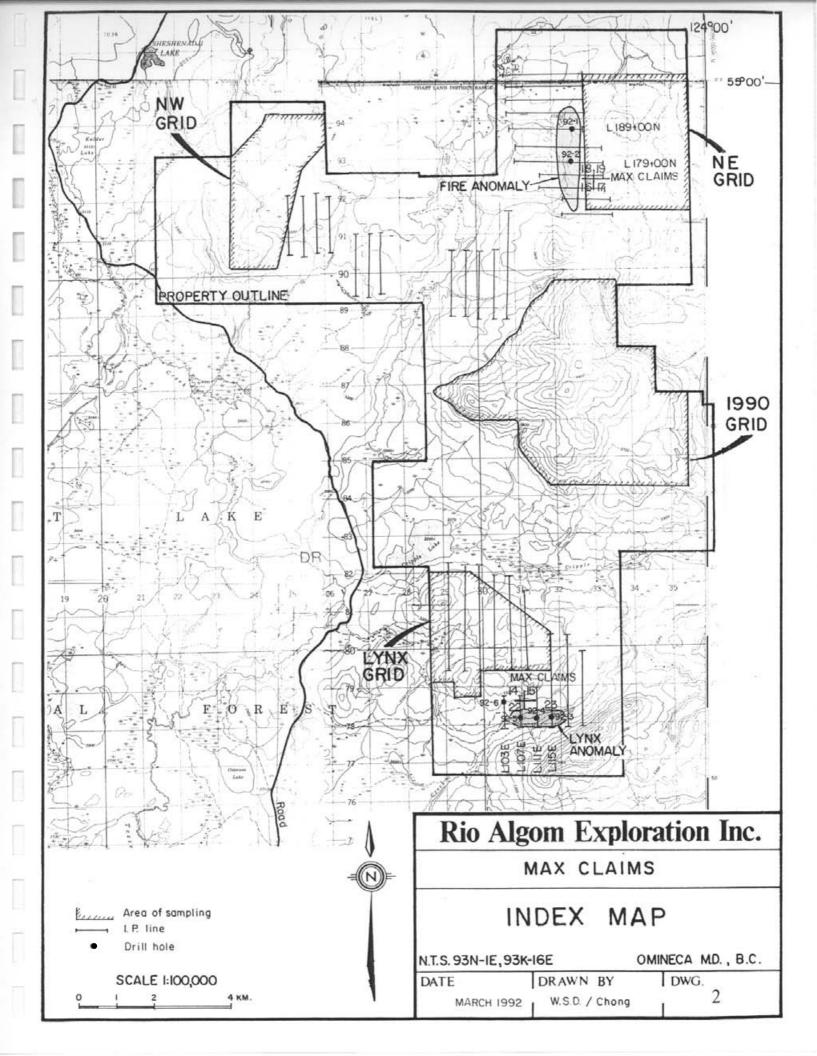
The objective of the programme was to test induced polarization chargeability anomalies on two separate grids (the Fire and Lynx grids) within the claim group.

This report describes the geology and assay results obtained from the diamond drill programme and concludes with a recommendation.

1.2 Location, Access and Topography

The claims are situated 57km north of Fort St James, B C in the Omineca Mining Division. The centre of the MAX claim group is located at latitude 54° 56'N and longitude 124° 02'W (Figure 1).


Vehicular access is possible via the Germansen Road from Fort St James and two major branch logging roads. The Fire grid (to the north) is accessed via the Rainbow Creek Forest Service branch road. The Lynx grid (to the south) is accessed via the Germansen-Cripple Forest Service branch road.


The property is located near the northern boundary of the Fraser Basin and is characterized by low relief with flat to rolling surfaces, which are generally lower than 1000 metres in elevation (above mean sea level). Elevations on the property range from 875 to 1370 metres (amsl).

Vegetation consists of thick growths of spruce, fir and pine (where clear cutting has not occurred), with open swampy areas along the main drainage.

1.3 Property and Claim Status

The MAX property consists of the MAX 1-27, MAX 29, Grif 1 and 2, GR 1 to 8, Fri #1 and Sint 1 mineral claims totalling 575 units. The claims, which are owned jointly by Uwe Schmidt, Arthur A Halleran and Arthur D Halleran, are held under option by City Resources (Canada) Limited. Under the terms of a joint venture agreement with City Resources, Rio Algom Exploration Inc has a right to earn up to 70% of City Resources' interest in the property.

The claims, their record numbers and date of record, are presented below:

Claim	Units	Record Number	Date of Record
MAX 1	20	239224	August 13, 1986
MAX 2	20	239225	August 13, 1986
MAX 3	20	239226	August 13, 1986
MAX 4	20	239227	August 13, 1986
MAX 5	20	239228	August 13, 1986
MAX 6	20	239229	August 13, 1986
MAX 7	20	239230	August 13, 1986
MAX 8	20	239231	August 13, 1986
MAX 9	20	239232	August 13, 1986
MAX 10	20	239233	August 13, 1986
MAX 11	20	239234	August 13, 1986
MAX 12	20	239235	August 13, 1986
MAX 13	20	239236	August 13, 1986
MAX 14	20	239237	August 13, 1986
MAX 15	20	239238	August 13, 1986
MAX 16	20	239581	August 13, 1987
MAX 17	20	239582	August 13, 1987
MAX 18	20	239583	August 13, 1987
MAX 19	20	239584	August 13, 1987
MAX 20	20	239585	August 13, 1987
MAX 21	20	239586	August 13, 1987
MAX 22	20	242076	May 15, 1990
MAX 23	20	242077	May 16, 1990
MAX 24	16	242078	May 18, 1990
MAX 25	16	242079	May 20, 1990
MAX 26	15	242080	May 17, 1990
MAX 27	16	242081	May 19, 1990
MAX 29	6	242082	May 17, 1990
Fri #1	8	242456	July 19, 1990
GR 1	1	242457	July 26, 1990
GR 2	1	242458	July 26, 1990
GR 3	1	240539	April 16, 1989
GR 4	1	240540	April 16, 1989
GR 5	1	240541	April 16, 1989

GR 6	1	240542	April 16, 1989
GR 7	1	240543	April 16, 1989
GR 8	1	240544	April 16, 1989
GRIF 1	20	239276	September 15, 1986
GRIF 2	2	239277	September 15, 1986
Sint 1	20	241909	April 20, 1990

All are in the Omineca Mining Division.

1.4 History

The property was originally staked in late 1986 by Arthur A Halleran, Arthur D Halleran and Uwe Schmidt. They based their staking on the presence of a series of magnetic highs of similar magnitude to the nearby Tas and Mount Milligan properties. They also found placer gold in creeks draining these magnetic anomalies.

United Pacific Gold optioned the claims in 1986. They carried out a preliminary programme of geological mapping, prospecting, soil sampling and collection of panned concentrate silt samples. This work was documented by Uwe Schmidt (1988) who confirmed the presence of anomalous gold in streams draining the magnetic anomalies. Geological mapping identified widespread propylitic-altered andesitic flow and pyroclastic rocks and several small intrusive breccias, ranging in composition from diorite to syenite. On the Grif claims, grid soil sampling located areas of anomalous copper in soils.

On portions of the MAX 16 and 18 claims, further reconnaissance soil sampling was carried out in 1988. In 1990, because of limited financial resources, United Pacific Gold Limited was unable to engage in further work programmes and consequently sold its interest in the property to City Resources (Canada) Limited.

Rio Algom Exploration Inc entered into a joint venture agreement with City Resources (Canada) Limited in May 1990 and subsequently Rio Algom conducted an airborne VLF EM and magnetic survey of the entire claim block, an airphoto interpretation of the surficial geology, grid soil sampling and geological mapping of the central grid area.

Rio Algom continued work during 1991. Geological mapping and soil sampling were continued on several small grids (Lynx, NW, Fire) within the claim block. A

reconnaissance induced polarization survey was conducted to evaluate the numerous high-magnetic anomalies for porphyry-type copper-gold mineralization.

In addition, a detailed rock sampling and follow-up soil re-sampling programme was conducted on the central grid area by Rio Algom personnel.

2 REGIONAL GEOLOGY

The MAX property occurs within the Quesnel Trough, a subdivision of the Intermontane tectonic belt. The Quesnel Trough is fault bounded on the west by Palaeozoic rocks of the Pinchi Belt and on the east by mid to upper Palaeozoic rocks of the Slide Mountain Group.

Extensive island-arc volcanism and sedimentary deposition occurred in the Quesnel Trough from late Triassic to early Jurassic time. An Upper Triassic black argillite unit represents the base of the Quesnel Trough. This argillite is exposed near the eastern margin of the trough where it commonly overlies ophiolitic rocks of the Slide Mountain Group. A series of augite porphyry flows, breccias and minor argillites overlies basal black argillite. Overlying these rocks is a second sequence of argillites and volcaniclastic rocks of Upper Triassic to Lower Jurassic age. Subaerial volcaniclastics in the geologic record indicate that volcanic centres in the trough emerged in early Jurassic time and this is postulated to have occurred in conjunction with the rise and deformation of the Omineca Crystalline Belt rocks to the east.

The dominant structural styles in the belt are block faulting and tilting. Faults trend in a northwest and northeast direction. Folding is restricted to the eastern margin of the belt near its structural boundary with the Omineca Crystalline Belt.

Two major episodes of granitic intrusion are recognized along a northwest-trending belt, slightly oblique to the Quesnel Trough, and cluster around 200 and 100 million year ages. Gold and copper-gold deposits have an affinity for 200 million year old alkalic plutons and Triassic-Jurassic volcanic rocks. Molybdenum deposits are associated with the 100 million year intrusive event.

J L Nelson et al (1991) remapped the area around the property. The Takla Group was divided into four informal formations; the Rainbow Creek, Inzana Lake, Witch Lake and Chuchi Lake formations. The Inzana Lake and Witch Lake formations underlie the MAX claim group.

3 RIO ALGOM WORK PROGRAMME

Work was carried out between February 20 and March 25 1992 by Rio Algom personnel with the completion of various programmes described below.

3.1 Snow Ploughing

Lepka Holdings of Fort St James was contracted to plough snow off the Rainbow Creek Forest Service Road and an access road to the Lynx grid and to assist in drill pad construction. Work started February 24 1992 and was completed on March 5 1992. Equipment used included a Caterpillar D-7 bulldozer (89.5 hours) and a Fining 225 excavator (8 hours).

3.2 Diamond Drilling

Beaupre's Drilling (1990) Ltd of Princeton, B C was contracted to drill 600 metres of NQ core. Work commenced February 29 1992 using a Longyear 38 diamond drill and finished March 22 1992. The total drilled was 600.15 metres. Drill core is stored at A D Halleran's residence in Fort St James. Mr Halleran may be contacted at P O Box 783, Fort St James, B C.

3.3 Core Logging

The author was responsible for project supervision and core logging. An assistant was employed for core splitting. The project required a total of 48 man days.

3.4 Core Sampling

All core was split. Samples were generally two metres in length. In some holes, only every second sample was sent for analysis. Drilling intersected several major fault zones where core recovery was impossible. In these instances, 3.05 metre triconed bedrock cuttings were collected and sent to the laboratory for analysis. A total of 127 samples was shipped to Chemex Laboratories in North Vancouver for analysis.

3.5 Laboratory Procedures

All samples were analyzed for gold (by FA/AA) and 32 element ICP.

Core samples were pulverized to -140 mesh, a 0.5 gram sample was then digested with 3 ml 3-1-2 (HCL-HNO $_3$ -H $_2$ O) at 95°C for one hour and diluted to 10 ml with water. Analysis for 32 elements is by inductively coupled plasma (ICP). For gold analysis, a 10.0 gram sample is pre-concentrated using fire assay techniques and finished by atomic absorption analysis.

4 RESULTS OF WORK

Detailed drill logs and sample intervals are located in Appendix I. Appendix II contains the drill sections at a scale of 1:500.

4.1 Geology

The purpose of the 1992 diamond drill programme was to test two broad IP chargeability anomalies, one in the northern Fire grid and the other in the southern Lynx grid.

Two holes tested the Fire anomaly:

DDH 92-1 (L189+00N, 137+27E, 98.45 metres length) was drilled at azimuth 084° and a dip of -48°. It intersected a black to grey-coloured argillite with an apparent bedding dip of 10°W. The interval was moderately fractured.

DDH 92-2 (L179+00N, 136+80E, 121.92 metres length) was drilled vertically. The hole intersected 17 metres of argillite near the top with andesitic tuffs underneath. A contact was not observed between the sediments and volcanics. Using Nelson et al's (1991) Takla Group subdivision, the sediments belong to the Inzana Lake formation and the volcanics to the Witch Lake formation. For this sequence to be possible, the sediments have probably been uplifted over the volcanics. This is supported by the fact that extensive faulting occurs throughout the upper three-quarters of the hole.

Four holes tested the Lynx anomaly - three in a fairly broad, contiguous IP chargeability anomaly and the other hole (92-6), 400 metres north of this zone, in a weaker IP chargeability anomaly.

DDH 92-3 (L115+00E, 35+75N, 63.09 metres length) was drilled at azimuth 180° and -50° dip. The upper half of the hole contained a feldspar hornblende porphyry trachyte (with 1-2mm thin hornblende laths and 2-3 mm plagioclase phenocrysts set in a fine grain, potassic-rich matrix) overlying an argillite. Extensive faulting occurred throughout and the hole was abandoned at 63.09 metres.

DDH 92-4 (L110+98E, 34+10N, 121.31 metres length) was drilled vertically. The drillers were unable to recover core from the upper half of the hole, so the author

authorized the drillers to tricone the bedrock and collect chip samples from the 3.05 metre runs. The chips consist of argillite, apparently cut by intrusive (monzonite) dykes. Core was recovered from the lower half and consisted of plagioclase porphyry monzonite and graphitic argillite.

DDH 92-5 (L106+70E, 34+10N, 100.89 metres length) intersected siltstone and plagioclase porphyry monzonite at the top. From 42.06 to 66.45 metres, triconed chips of argillite and monzonite (dykes?) were recovered. The lower portion of the hole consisted of graphitic argillite and a potassic-flooded monzonite at the bottom.

DDH 92-6 (L103+00E, 37+85N, 98.45 metres length) - this final hole was located 400 metres north of the anomaly tested in the previous three holes. The majority of this core consisted of a silicified monzonite containing some primary brecciation. The bottom of the hole intersected a carbonate-altered volcanic flow (megacrystic augite porphyry) with augite phenocrysts to 5mm.

4.2 Alteration and Mineralization

The argillite in DDH 92-1 and 92-2 was relatively unaltered, except for minor, weak, semi-pervasive carbonate in some intervals.

The volcanics in DDH 92-2 had some secondary potassic alteration to 25% and sericitic alteration to 15%. Propylitic alteration, consisting of 3% epidote, 2% chlorite and 2% carbonate was present in the lower half of the hole.

DDH 92-3 to 92-5 had minimal to no alteration.

Alteration was quite strong in DDH 92-6. The monzonite had 25% pervasive silicification throughout, with possible minor albitization. The carbonate-altered volcanic flow at the bottom had 30% pervasive carbonate alteration, though no evidence of typical propylitic alteration (chlorite, epidote).

Mineralization is limited to pyrite in both the Fire and Lynx anomalies. The argillites on the Fire grid had 5% disseminated pyrite, localized along bedding planes. The volcanics in DDH 92-2 had 3% disseminated pyrite. Drill core from the Lynx grid contained 1-3% disseminated and aggregates of pyrite in all rock types. Chalcopyrite was not observed. Minor hematite occurred on some fractures and argillites on the Lynx grid were graphitic.

4.3 Structure

All of the drill holes, with the exception of DDH 92-6, intersected wide regional faults, resulting in poor to no core recovery. Often clay fault gouge was recovered as in DDH 92-4 and 92-5. Recoveries are noted on each drill log in Appendix I.

On the Fire grid, a regional fault follows the IP chargeability anomaly. It is inferred that the fault strikes north-south and dips steeply to the west or east; DDH 92-2 shears are at 52° - 74°. Fault information is based solely on data obtained in DDH 92-2. Bedding in the argillites of DDH 92-1 and DDH 92-2 suggests an apparent westerly dip at 10°.

On the Lynx grid, it is inferred that the regional fault trends west-southwest. It dips steeply to the north or south at 64°.

4.4 Results

Gold and copper grades are uniformly low. All gold and copper assays are at or below background levels, with the exception of those noted below:

DDH 92-1 had 50ppb gold (Sample # 15016) in an intense chlorite-carbonate altered argillite interval.

DDH 92-2 had 22ppm molybdenum (Sample # 15036) in an andesitic pyroxeneplagioclase tuff with 20% secondary potassic alteration and 2% disseminated pyrite.

DDH 92-3 had 334ppm copper (Sample # 15061) in an argillite(?) with 1% disseminated pyrite.

DDH 92-4 had 307ppm copper (Sample # 15062) in triconed intrusive rock cuttings. A string of elevated molybdenum (Sample # 15084 - 15096, every second sample assayed) occurs from 79 to 107 metres and ranges from 21ppm to 39ppm. The rock is argillite with 2% pyrite and minor monzonite at the beginning.

DDH 92-6 had 30ppb gold (Sample # 15129) in a silicified monzonite with 2% quartz-carbonate veining and 3% disseminated pyrite. Sample # 15141 had 433ppm copper in a silicified monzonite with 2% disseminated pyrite, 1% magnetite and 1% epidote. Sample # 15143 had 30ppb gold in a silicified monzonite with 2% disseminated pyrite and minor fault gouge.

5 DISCUSSION

The purpose of the diamond drill programme was to test two broad IP chargeability anomalies on the MAX property.

On the Fire grid, the anomalies are due to 5% disseminated pyrite throughout a regional north-south trending fault. The fault may have been water-filled at the time the IP programme was conducted, resulting in very high anomalous chargeability readings (up to 110 milliseconds). Clay fault gouge is also a contributing factor.

On the Lynx grid, the IP anomalies tested in DDH 92-3 to DDH 92-5, were caused by 2-3% disseminated pyrite throughout and graphitic argillite in a regional west-southwest trending fault.

The weak IP chargeability anomaly in DDH 92-6 results from 2-3% disseminated pyrite.

6 RECOMMENDATIONS

As the results of the diamond drill programme are not encouraging, it is recommended that no further work be done on the MAX property by Rio Algom Exploration Inc and that the property be returned to City Resources (Canada) Limited.

7 REFERENCES

McClintock, J A; (1991) MAX Property: Geology, Geochemistry and Geophysics.

BCDM Assessment Report # 20530.

Nelson, J; Bellefontaine, K; Regional Geological Mapping near the Mount Milligan

Green, K; MacLean, M; (1991) Copper-Gold Deposit, BCDM Geological Fieldwork

1990. Paper 1991-1.

Nelson, J; Bellefontaine, K; Geology and Mineral Potential of Wittsichia Creek and

Green, K; MacLean, M (1991) Tezzeron Creek Map Areas. BCDM Open File 1991-3.

8 STATEMENT OF QUALIFICATIONS

- I, William Stratton Donaldson, do hereby certify that:
- I am a graduate student of Carleton University in Ottawa, Ontario with an Honours Bachelor of Science degree (1985) in Geology.
- 2 I have practised my profession as a geologist continually since graduation.
- 3 I currently reside at 1136-1124 Lonsdale Avenue, North Vancouver, British Columbia.
- I am temporarily employed as a Geologist with Rio Algom Exploration Inc with an office at 1650, 609 Granville Street, Vancouver, British Columbia.
- I personally assisted in the supervision and core logging of the diamond drill programme on the MAX property during February and March 1992.

William Stratton Donaldson

Bill Omolden

April 1992

9 STATEMENT OF COSTS

Salaries: W Donaldson, Geologist - February 22 to March 25 33 days @ \$250/day	\$ 8,250	
C Weltens, Core Splitter - March 6 to 19 14 days @ \$125/day	1,750	
J A McClintock, Geologist - March 23, 1992 Sub-Total Room and Board - 47 man days @ \$65/manday	\$ 350	\$ 10,350 3,056
Beaupre Diamond Drilling - 600 m Diamond Drilling (all inclusive)		44,873
Lepka Holdings - snow removal from 15km of access roads and p	pads	11,799
Assaying - Chemex Laboratories - 127 samples @ \$16.50/sample Shipping Sub-Total	2,095 350	2,445
Truck Rental and Fuel		2,500
Rental of Core Logging Facilities Core table lumber, lights, supplies, etc Sub-Total	500 432	932
Airfares: Vancouver - Prince George, return J A McClintock C Weltens Sub-Total	513.60 513.60	1,027
Report Compilation: W Donaldson, 3 days @ \$250/day J A McClintock, 1 day @ \$350/day Maps, prints, drafting, typing Sub-Total TOTAL	750 350 1,500	2,600 \$79,582

Costs Apportioned to Claims:

MAX 14:

98.5 m / 600 m or 16.4% of total cost \$13,064.71

MAX 18:

246.5 m / 600 m or 36.1% of total cost \$28,715.84

MAX 22:

101 m / 600 m or 16.8% of total cost \$13,396.30

MAX 23:

184 m / 600 m or 30.7% of total cost \$24,405.15

TOTAL \$79,582.00

APPENDIX I

DIAMOND DRILL LOGS AND SAMPLE DESCRIPTIONS

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No: 92-1

Page 1

of 3

Location:		Property Grid: 189 +00N; 137 + 27 E	Property: MAX	Section: 189+00N
Azimuth:	084°	Core Diameter: NQ	Mineral Claim: MAX 18	Dip Tests:
Collar Dip:	- 48°	Date Started: MARCH 1992	Date Logged: MARCH 5-7 1992	94.49 m 47 o
Elevation:	1185 m	Date Completed: MARCH 6 1992	Logged by: WILLIAM DONALDSON	m o
Length:	94.49.	Casing Removed: YES	Drilling Contractor: BEAUPRE DIAMOND.	m o
Purpose:	TO TEST AN	I.P. CHARGEABILITY HIGH		m o

Synopsis: ANOMALY ONE TO WATER-FILLED? FANLTED ARGILLITE AND 57. DISSEMINATED PYRITE Recommendation: No Further Orilling IN THIS AREA

Structure Alteration Mineralization Replacement % Descrip- Angle to Rec Metres Lithology Remarks Metres Veinlets % Disseminated **Veinlets %** Ру Сру core Ax From To From To Ser Sil Bio K Cl Qtz K Ep Cal Py Cpy 73 OVERBURDEN 50.14 50.14 50.60 85 50.60 50.90 82 50.14 94.49 ARGILLITE BLACK TO GREY COLOUR, VERY 50.90 51.51 66 FINE- GLAINED WITH GRADED BEDDING 51.51 52.12 90 52.12 53.34 (LIGHT TO DARK LAYER) AT 600 CAX 100 THE INTERVAL IS NOT GEALBITIC 53.34 54.36 63 54.66 55.93 HOWEJER LIMEY SEOIMENTS OCCUR 80 55.93 56.39 THROUGHOUT AS INDICATED BY HER TESTS. 61 THE INTERPRE IS MODERATELY TO 56.39 56.69 54 41 STRONGLY FRACTURED AND RESULTS 36.69 57,30 FROM FAULTIJE IN THE AREA. 57.30 57.91 74 5791 59.52 ALTERATION! POSSIBLE SECONDARY 95 CARBONATE ENRICHMENT OF INTENVIL. 58.52 59.44 62 CARRONATE ANLANGES 40% of THE 59.44 51.89 74 59.89 60,51 MATRIX 40 MINERALIZATION: DISSEMINATED PYRITE 60.51 60.96 43 AVERAGES 59. THROUGHOUT. 60.96 61.57 65 CHALCOPYRITE WAS NOT OBSERVED 61.57 62.03 82 INTERVAL IS NON-MAINETIC. 62.03 62.48 62.48 62.94

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No:

Page 2

92-1 of 3

			İ	·							eratio							Mine	erali	zatio				Struc	ure	
Metr	es	Lithology		Remarks	Met					nt %				ets %			semi				inlet	s %	De	scrip-	Angle to	Rec
From	То					То	Ser	Sil	Bio	κ	а	Qtz	К	Ep	Cal	Ру	Сру	1		Ру	Сру			tion	core Ax	96
50.14	94.49	ARGILLITE CO	, +	STEUCTURE: 0.5% MICROFRACTURES	62.94							<u> </u>						لــــــــــــــــــــــــــــــــــــــ								75
				HEALED BY CARBONATE AT RANDOM	63.55							<u> </u>					٠.									71
				ANOLES TO THE COPE AXIS.	64.00		<u> </u>																			61
				0 THER: 79.25 - 80.77 m - IN TENSELY	64.46	64.92	<u> </u>	İ	Ĺ																	87
				CARRONATE - CHLORITIZEU INTERVAL ROCK	64.92	65.53						<u> </u>														95
				IS A LIGHT GREY-GREEN (CLOUR	65.53	66.14																				74
				WITH 19. DISS. PTRITE.	66.14	67.06							<u> </u>													78
				79.70 - 91.90m; RECOVERY IL VERY LOW	67.06	67.66						l														94
				MOST ROCK FRAGMENTS ARE PEA-SIZED.	67.66	68.28																				100
				93.20 - 93.28 m: 257, CAAR, WATE VEW TO	68.28	68.73																				100
				4 mm WINE AT 45° CAX.	68.73	69.34																				38
				THE ROCK SHOWS SORY-SEDIMENT	69.34	69.95						<u> </u>														92
				SLYMPING THROUGHOUT.	69.95	70.26								<u> </u>												87
					70.26	70.56														<u> </u>						100
						71.02																				95
					71.02	71.32														<u></u>						60
		-			71.32	71.93											1									66
					71.93	72.39																				87
					72.39	73.15						T														100
					73.15	74.3	7																			98
					74.37	74.68	T																			68
					74.68	75.29			П						Π											74
					75.29	75.89	T						T		Γ		T	Г				Π				92
	1				75,89	76.50					T				T											41
				:	76.50	77.11		T	T	1	1	\top	1	T	Π			Π	Ī							95
	1					77.71	-		1	\top	T		1			1	1		Τ							96
	1					78.02	_	1		1	1	\top	Τ	1		T			T	1						95
	1					78.3	_	1	T	1	1				Τ		1		1							31
	†					79.2	_						\top	1	T	1	T	T	\top	1						70

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No: 92-1

Page 3 of 3

									Alte	ratio							Minera	alizati	on		Struc	ture	
Met		Lithology	Remarks	Met		Re	place	mer	nt %		V	einle	ets %		Diss	semin	ated		'einle		Descrip-	Angle to	Rec
From	То			From	То	Ser	Sil	Bio	к	a	Qtz	Κ	Ер	Cal	Py	Сру		Ру	Сру		tion	core Ax	%
50,14	94.49	ARGILLITE CANT.			79.70						·												38
			END OF HOLE = 94.49m.	79.70	80.77											٠.							13
			CASING RÉMOVED.	80.77																			20
				83.82															Т				32
				84.73																			34
				85.34														T					49
		•		86.11	86.87																		28
				86.87	88.09																		23
				88.09	84.70													\top					27
				88.70	89.31																		28
				39.31	89.92				I														7
					91,44																		6
				91.44	91.75																		30
			1.	91.75	92.51												•						63
				92.51	93.57		Γ^{-}											\top					51
				13.57	93.87																		40
				93.87	94.49																		39
					EON.			1										\top					
										Γ										T			
							Г												1				
							1		1		1								1				
							1		T^-										1				
						1	T		1	1							\top			1 1			
										1	\top		1					\top		1		1	
										T							$\neg \vdash$			11	1	1	
					1	1	T	1	1	T	1	1	T					_	+	$\dagger \dagger$	1	 	
				1		\top	1	T	T	1	1	1					\neg	\top	_	1 1		1	
	1			1	1		T^-	1	\top	\dagger	1			\vdash					\top	1 1	 	+	
							—								ــــــــــــــــــــــــــــــــــــــ								

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No: 91-1

Page:

of I

Property: MAX

	Sample			Au	Ag	Cu	Zn							
Number		erval]	g/t		%		1			D	escription	
Number	m	m	Length	ppb	ppm	ppm	ppm							<u> </u>
15001	50.14	52	1.86		<u> </u>						ARGILLITE II		DISSEMINATED	PYRITE
15002	52	54	2	10		86						11	H	(1
15003	54	56	2			ļ	ļ				4	"		
15004	56	58	2	45	ļ	76					11	•1	Ψ	1/
15005	5%	60	2		<u> </u>		<u> </u>				1/	. 4	<u>''</u>	4
15006	60	62	2	<5		83					l (11	lı	11
15007	62	64	2								¥ .	· · · ·	11	11
12008	64	66	2	45		87					4	ч	4	11
15009	66	68	2								e,	4	//	<i>I</i> ,
15010	68	70	2	15		87					1e	ч	'1	4
15011	70	72	2								4	4	11	lr .
15012	72	74	ι	35		83					. 4	le .	и	- 11
15013	74	76	2								l/	1/	<i>I</i> /	11
15014	76	78	2	20		95					le .	41	ų	//
15015	78	· 60	2								ι'	11	"	/1
15016	४०	84	4	.50		66					17. PYRITE	. INTE	NIL CARC-CHL	ALT.
15017	84	દ છ	7								ARGILLITE	<u>;</u> ዛን	DISSEMINATED	PYRITE
15018	88	94-49	4.49	10		70					11	+(k	
						 								
														
		1					 							
											 			
					 									
					 	-	 							
				 	 		 							
		-			 		 							
L	L	l	<u> </u>	L	L	L	L	11						

١.

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No:

Page

of 4

Location:		Property Grid: 179+00N; 136+80E	Property: MAX	Section: 179+00N.
Azimuth:	000°	Core Diameter: NQ	Mineral Claim: MAX 13	Dip Tests: None
Collar Dip:	- 90°	Date Started: MAKCH 6 1992	Date Logged: MARCH 9-10 1992	m o
Elevation:	1175 m	Date Completed: MARCH 10 1992	Logged by: W. OONALOSON	m o
Length:	121.92 m	Casing Removed: YES	Drilling Contractor: BEAUPRE DIMMOND DRILLING	m o
Purpose:	TO TEST AN	EXTREMELY HIGH I.P. CHARGEAGILITY. ANDMA		m o

Synopsis: AND MALY IS THE RESULT OF A WATER FILLED FAULT ZONE, AND 2-57. DISSEMINATED PYRITE RECOMMENDATION: NO FUNTHER WORK IN THIS ZONE.

	,	1	, , , , , , , , , , , , , , , , , , ,	1						eratio							Mir	nera'	alizatio	on		Struc	cture	\int
Metr		Lithology	Remarks	Metr					ent %				nlets %				minate	.ed	v	/einl/	lets %	Descrip-	- Angle to	Re
		4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	From '	То	Ser	Sil	Bio	K	CI	Qtz	∠ K	Ep	∠ Ca¹	al Py	Cp	y		Ру	Сру	y	tion	core Ax	. 96
0'	17.07	OVERBURDEN	<u> </u>	17.07	17.69	ſ <u></u> '	1 '	1'	1 '													. []		98
'	1'	<u></u>		17.68	18,44														T		\top	. 🗔		84
7.07	134:44	ARGILLITE	BLACK FINE GRAIN SEDIMENTARY UNIT			\rightarrow								1		1			1	1				26
	'			18,90									1									, 1		39
· '	'		Some CROSS-REBOING AND SOFT SENIMENT	19.66	20.42	-								1_								,		32
′	Ψ′		SLUMPING.	20.42	21.03																			26
	'				22,25											1			1	\top	1	, 1		19
· · · ·				22.25	29.87							1						\top	1	\top		,		0
	<u> </u>		MINERALIZATION CONSISTS OF 5%	29.87	30.17																			2
	<u> </u>		DISSEMINATED PARITE; GENERALLY ALONG	30,17	30.48														1					
	'		BEDOING PLANES.	30.48	31.09							1_				1_			1_			. —		7
	<u> </u>		STRUCTURE: THE INTERVAL HAL BEEN	31.09	31.55							1_							\top					
·	<u> </u>			31.55	32.31									1		\top		1	1	1		, —		
	<u> </u>		BY THE LOW CORE RECOVERY	32.31	32.92													T	1	\top	1	,		
	<u> </u>				1 34.44				—		\top	1	1	1	1	1	1	+	+	\top	+	,	1	1
					1 35.36						\top			1	\top	1	1	1	+	1	1	,		
	 '				35,97							\top	1	1	1	\top	1	+	1	\top	+-	,	1	
	Ī'				39.40						1	1		1	1	1	\top	+	+	+	+		+	
					39.62						+	\top	1		1	\top	1	+		+	+	,	+	
			SECONDARY K-SPAR WITH 27. DISS PYRITE.						-		+	+	1	1		1		+		+	+-	1	+	1

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Alteration

Hole No: 92-2

Page 2 of 4

Mineralization

Structure Descrip- Angle to Rec Replacement % Disseminated Veinlets % Metres Lithology Remarks Metres Veinlets % Ser Sil Bio K Cl Otz K Ep Cal Py Cpy From To From To Py Cpy tion core Ax 96 40.23 41.15 34.44 54.56 ALTERED VOLCANK LIGHT GREY - GREEN COLOUR, WITH 36 41.15 42.37 RRECLIATED TUFF? MEDIUM GRAINED ALTERED PHENOCRYSTS 41 SET IN A FINE GRAIN MATRIX. 42.37 44.20 14 44.20 45.11 ANGULAR BRECCIA FLAGMENTS TO 24 1 cm. LENGTH ALE PRESENT. BRECCIATION 45.11 46.63 96 46.63 46.94 43 15 PRIMARY. ALTERATION: SECONDALY K-SPAR ALTERATION 46.94 48.16 95 48.16 49.68 50 AFFECTS BLECCIA FRAGMENTS MORE 49.68 50,29 84 INTENSELY THAN THE MATRIX 70% VS. 25% 50,29 51,21 60 CHLORITIC ALTERATION OF SIME MAFIC 51.21 | 52. 43 THENDLAYSTS AND PLONG FRANTIEMES 96 52.43 52.88 AVERAGES 27. PATCHY SEMI-PEAUASIVE 58 CARBONAIE ALTERATION AVENAGES 37. GREY SEMI-PERVASIVE SERICITE ALTERATION OF THE MATRIX AVENAGES 15%. MINERALIZATION: FINE DISSEMINATED FYRITE AVEILAGES 39. THROUGHOUT. STRUCTURE: THEM? IS 14. CARBINATE VEINS THE MATORITY AT 40-50° CAX 54.46 57.95 PLAGIOCLASE LIGHT GREY, WITH 3-4 mm PLAGIOCLAE PHENOCHYSTS SET IN A FINE GLAIN PORPHURY MONZONITE OYKE K-SPAR RICH: MATRIX, WEAK SAUCENITIZATION OF SOME PLAG PHENOS 29, FINE DISSEMINATED PYKITE. 17. CARRONATE VEWS, THE MAJORITY AT 70% CAX. CONTACTS ARE NOT VISIBLE,

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No: 92-2

Page 3

									Alte	ratio	n						Mine	erali	zatio	n			Struct		
Metr		Lithology	Remarks	Met				emen					ts %				nate			inlet		1	Descrip-	Angle to	Re
				From		Ser	Sil	Bio	К	а	Qtz	K	Εp	Cal	Ру	Сру			Ру	Сру			tion	core Ax	91
7.95	121.92	ANDESITIC PYROXENE -	GREEN- GREY COLOUR, WITH 2-3 mm	52.88	53.34	L			İ								,								5
		PLAGIOCHASE TUFF	PYROXENE AND PLAGIOCEASE PHENDERASTS"	53.34	53.94											٠.									4
			SET IN A FINE-GRAIN TUFFACEUR, MATRIX.	53,94	54.56								,												6
			OCCASIONAL COUNDED LAPILLY TO 1 cm	54.56	55,93																				7
			WERE OASERVED.	55.93	57.15																				6
			ALTERATION: PROPULITIE ALTERATION IS	57.15	58.06																				4
			DOMINANT. EPIDOTE IS PERVASIVE AND	58.06	59.44																				5
				59.44																		-			2
			Occups IN some MAFIL MINERAY AND	60.35	61.57																				6
				61.57																					7
			270. WEAK SEMI- PENVASINE CARRONATE	62.79	63.40																				5
			ALTERATION AVERAGES 27.	63.40	64.47																				L
			70.10 - 77.78 m. 209. K-SPAR ALTONATION	64.47	64.92																				3
			MINERALIZATION: DISEMINATED PYRITE	64.92	65.68																				9
			AVERAGES 3% MINDE HEMATITE OCCURS	65.68	66.60																				10
			M SOME FLACTURE SURFACES.	66.60																					8
			STRUCTURE: RELOVENY IS LOW TO	67.51	69.49																				2
			80.31 - DUE TO STROWS FAULTING AND	69.49	71.93																				
			FRACTURING.	71.93	73.15																				L
			59.44-61.574. INTERNAL CONSISTS OF	73.15	74.37																				10
			SAND -SIZE ROCK FRANCHUTS CABSULT OF	74.37	74,98																				8
		·	FAULTING.	74.98	75.59																				9
			62.60-62.79 A. SHERES & 74° CAX.	75,59	76.81						T								Γ						1
			67.0-86.56 HIGHLY FLACTURED	76.81	77.89	3																			2
			INTERUM RESULTING IN GRAVEL -SIZE	77.88		_	Г				Π														4
			FLAGARENTS. A TECTONIC BASELLA	-		_					Γ														8
			86.56 - 93.88 SHEARWE'C 52° CAX	79.55	80.31		T				Т								1						1 ?
			93.88 - 96.92 m. MICROFRACTURING AT	1	T	1							1					1		T					3
			KANGUM ANGLES AND SHEARS @ 44° CAX							1	T	1	 	I			T			1	\Box			1	十

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No: 92-2

Page 4

of 4

										Alter	ratio							Mine	raliz	ation			Struc		
Met		Lithology	.	Remarks	Met			place						ts %				nated			nlets	%	Descrip-	Angle to	Rec
From					From		Ser	Sil	Bio	K	а	Qtz	к	Eρ	Cal	Ру	Сру		F	Py (Эру		tion	core Ax	%
57.95	121.12	ANDESITIC PYRO	YENE-	99.67 in to End of Hole: ROCK IS FRACTURED	80.31	81.08																			100
		PLAGIOCLASE TUF	F	WITH APPROXIMATELY 40% OF SECTIONS	81.08	81.99											.]								25
		<u></u>		GREATER THAN 10 CM IN LENGTH.	31.99																T				72
				OTHER: EPIA-TE IS SEWI- MEANASINE	83.36	84.12																			91
					84.12																П				92
				HORNBURNDE LATHS ARE VISIBLE IN THE	85.19	86.56															П				71
				MATRIX AND AVELAGE 5%.	86.56																				100
				116.13 - 121.92 19. CARSONATE VEINS	87.48	39.46																			90
					89.46													ŀ							100
				MINOR HEMATITE VEINLETS.	90,83	92.66																			89
					92.66	93.88																			90
				END OF HOLE = 121.92m	93.88	94.79																			92
				CASING PULLED.	94.79	95.71																			100
Ĺ					95.71	96.93																			100
L	<u> </u>				96.93	99.67																			96
					99.67	101-04																			100
	<u> </u>				101.04	102.41																			100
					102.41	105.0										Γ				T					96
Ĺ					105.61	106.07																			100
					106.07	108.20																			(00)
					108.20	108,97																			100
					103.97	110.03																			100
					110.03	111.57																			100
					111.57	113.0%		1																	130
					113.08	115.21																			100
					115.21																				100
						118.26				П															95
					118.26											Т		\Box						1	
						121.92						1					T								

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No: 92-2

Page: \ of Z

Property: MAX

	Sample			Au	Ag	Cu	Zn		
		erval			g/t		%	Description	
Number	m .	m	Length	ppb	ppm	ppm	ppm		
15019	17.07	19	1.93	45		136		ARGILLITE: 59. DISS. PTRITE LOW RE	
15020	19	30.17	11.17	10		107		h et et a	"
15021	30.48	34.48	4	20		100		je ti ti oc	٠.
15022	34,48	36	1.52	< 5		96		BLEACHEO VOLCANIC, 27- PYRITE	
15023	36	38	2	<5		104		ji u 41 tr	
15024	38	40	2	<5		127		29. PYRITE: 27. CARB: 157. SERILY TE	
15025	40	44	4	<5		98		304. K-SPAZ 14. CHL; 27. PYRITE	
15026	44	46	2	< 5		93		29. PYRITE 157. SERICITE 207. K-SHA.	R
15027	46	48	2	55		83		17. CHLORITE, 307. K-SPAR, 157. SERICITE	e
15028	48	50	2	45		161		te se be se ee	
15029	50	52	2	<5		212		27. CHWAITE 27. CV, 27. PYRITE	
15030	52	54	2	< 5		150		h H it it it	
15031	54	56	2	<5	. "-	119		MONDALIE OFFE 21- PYRITE	
15032	56	58	2	<5		133		P H 1	
15033	58	. 62	7	<5		90		FAULT "GOLGE" . 37. DISS. PYRITE.	
15034	62	. 66	4	< 5		104		29. EPIDOTE, 37. PYRITE.	
15035	66	70	4	15		93		27. DISS PARITE; 27. PARITE VEWS 37	7. E 11007E
15036	70	74	4	45		89		27. PYRITE, 207, KSPAR	
15037	74	78	4	<5		151		ft ft by	
15038	78	82	4	45		114		37. EPIQUTE; 29. PYRITE; 17. CV	
15039	82	86	4	<5		103		27. CV , 37. PYRITE , 17. HEMATITE 2070	KISPAR
15040	86	B 3	2	<5		118		h a a a a a	61
।5०५।	88	90	2	45		78		27 PYRITE; SHEMENG, 27, EPIOOTE	
15042	90	92	2	45		95		se se se se	
15043	92	94	ı	< 5		103		y R u ll c	
15044	94	96	ı	45		118		27. PYRITE 27- EPIDOTE, 17. CARA	SON ATE
15045	96	98	2	45		156		27. 14RITE, 37. E PI 00 TE	
15046	98	100	2	45		134		27 CV , 37. EPIDOTE , 17. PTRITE	Ĭ
15047	100	102	2	<5		126		47 EPIOOPE 37. OYRITE	

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No:

72 - 2

Page: 2

of Z

Property:

MAX

	Sample			Au	Ag	Cu	Zn												
		erval]	g/t		%				Description								1
Number	m	m	Length	ppb	ppm	ppm	ppm												
15048	102	104	2	45		166				 	270	PYRI	1E,	37.	EPIDO	18			
15049	104	106	2	45		91					47.	EPIO	072	27.	0155	PTR	11E		
15050	106	108	ι	45		139				 	1(<u>. </u>	4	H	*			
15051	108	110	2	45		134					17-	EPIOO	18,	0.57-	cV,	27.	MAR	118	
15052	110	112	2	45		126			i		4	4		6 1	4	4	4		
15053	112	114	2	< 5		119					4	μ		4	4	el	4		
15054	114	116	2	45		146					h	••		u	u	μ	N		
15255	116	118	2	45		155					19.	cV	, 27,	EPIA	001E	27.	CARA	27.	MATE
15056	118	120	2	45		160					11	4	11	*/		11	"	"	"
15057	120	121.97	1.97	45		152	·				"	и	4	11		4	4	1.	"
		- EOH -																	
																		-	
													·			-			
						<u> </u>			_		<u>† </u>								
										 									
				 	 	 					<u> </u>							_	
		 	 	 			 	ļ		 									
		 	 	 	 	 	 	l					····						
					 						 				· · · · · · · · · · · · · · · · · · ·				
		 				 	 		ļ	 									
		 	 	ļ	ļ	 	<u> </u>				1								
L	L	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	L	<u> </u>		 L									

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No: 92-3

Page \ o

Location:		Property Grid: 115+00 E ; 35+75 N	Property: MAX	Section: //5 +00 €
Azimuth:	180°	Core Diameter: NQ	Mineral Claim: (n A > 23	Dip Tests: - NONE -
Collar Dip:	-50°	Date Started: MARCH 12 1992	Date Logged: MAACH 14 1992	m o
Elevation:	935 m	Date Completed: WARCH 13 1992	Logged by: WILLIAM DONALOSON	m o
Length:	63,09m	Casing Removed: YES	Drilling Contractor: BEAUPRE DIA MOND DRILLING	
Purpose:	TO TEST AN	I.P. CHARGEABILITY ANOMALY.		m o

Synopsis: THE ANOMALY REPRESENTS A WIDE FAULT ZONE. ABANDONED HOLE AT 63.09m DUE TO LOW RECOVERY OF CORE. Recommendation: TEST THE ANDMALY 400 m WEST. Alteration Mineralization Structure Metres Lithology Remarks Metres Replacement % Veinlets % Descrip- Angle to Rec Disseminated Veinlets % From To Ser Sil Bio K Cl Otz K Ep Cal Py Cpy From To Py Cpy tion core Ax 96 31.39 OVERBURDEN 31.39 32.00 8 32.00 33.53 44 31.39 | 50.29 FELGRAR HOENSLEADE LIGHT GREY LOLOUR WITH 1-2 mm THIN 13.53 35.06 64 PORPHYAY TRACHYTE HORNELENNE LATHS AND 2. ; m. 35.05 36.27 29 PLAGIOCLASE PHENOLMITS SET IN A 26.27 36.88 80 FINE GRAIN K-SPER RICH MATRIX 36.88 37.34 13 37.34 27.95 HORNALENDE AVERACES 570 WHILE 7 PLAGIOCLASE AVERAGES 15-20%. 39.78 37.95 7 39.78 42.06 0 ALTERATION. WEAR CHLORITIC ACTERATION 42.06 42.98 OF HIMPSLEADE LATHS. WEAK SAUCENTIZATION 13 OF SOME PLASIOCLASE PHENOLOGISTS. 42.98 48.77 0 MINERALIZATION: DISSEMINATEN PARTE 49.38 26 49.38 AND PLATY PYRITE EN FRACTURES AVERAGES 50.29 Ħ 270. CHALOPTRITE WAS NOT DESERVED. 50.29 51.51 12 STAMPLAY: 17. 9TZ- CAPADARTE VEINS, THE 16 51.51 52.12 MAJORITH AT 75% CAX THE 52,12 53.34 0 5 INTERUM IS IN A FAMET AND 53.34 |56.39 HIGHLY FRACTURED. AVENAGE CORE SIZE C6.39 62.48 0 62.48 15 1 cm. 63.09

RIO ALGOM EXPLORATION INC DIAMOND DRILL LOG

Hole No:

ge 2 of

Metres										eratio								eraliz		_		Struct		
		Lithology	Remarks	Met		Re	place	emer	nt %		V	/einle	ets %		Dis	semi	inate				s %	Descrip-		
From				From	То	Ser	Sil	Bio	K	CI	Qtz	K	Εp	Cal	Ру	Сру		1	Ру	Сру		tion	core Ax	96
50.29	63.09	ARGILLITE	BLACK, VERY FINE GRAIN. AS																					
			RELOVENY IS SO PODR, REBOINT			<u> </u>																		
			PLANES WERE NOT ORSERVED OR										,											
			MERSURED. PLA-SIZE TO SANDSIZE																					
			FRAGMUNTS WERE RECEVERED FARM THE																					
			LORE BARREL.																					
			MINERALIZATION LONSISTS UF																					
			29. DISSEMINATEN PYXITE.																					
			THE INTERME IS UNMITTERED AND																			-		
			NOT GRAPHITIC.																					
				1																	П			
			E.O. H. = 63.09a																					
			CASING PULLED																					
				•																				
											1													
																1								
						1																		
											†													1
				1		\top							 							1			1	
				1	1		†		1			T				1					†			
				1		1			1	1	1		 								†			1
				1	†	\top	\top	 	1	T			t		1	†				\vdash	†		†	1
				1	<u> </u>	1	T	t	1 -	\vdash	t^-		1	t^-		1	\vdash			\vdash	1		†	1
				#	1	T	T	1	1		T	t^-	T	T	t^-	T	1			 	t		†	1

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No: 92-3

Page:

of 1

Property:

MAX

	Sample	9		Au	Ag	Cu	Zn				r							
· · · · · · · · · · · · · · · · · · ·	Int	erval		1	g/t		%				Description							
Number	m	m	Length	ppb	ppm	ppm	ppm											
15058	31.39	35	3.61	45		97					TRACHYTE, 27.	0155 PYRITE, 14- 972-CARRY						
15059	35	39.78	4.78	45		148)(v	N d le n u						
15060	42.06		14.33	45		86					(t //	ju 16 66 m 6.						
15061	56.39	63.09				334					ARGILLITE? 17.	OISS PYRITE						
			-EOH -															
	T																	
		1																
-		†		 		<u> </u>		<u> </u>										

****	 		1	 	 													
		<u> </u>						l										
			 			 	 			 								
	 		 	 	 			1		 								
	 	 	 					ļ		 	7.000							
				 														
	-		-	 	-	-				 								
	 	ļ	<u> </u>	<u> </u>	ļ <u>-</u>	<u> </u>				 								
	 	 	 	 	 					 								
	-				ļ													
		 	<u> </u>		 		 			 ļ								
	<u> </u>		<u> </u>		ļ					 								
	ļ	<u> </u>	<u> </u>		 					 								
	<u> </u>	<u> </u>	ļ		<u> </u>		ļ											
·	<u> </u>																	
	ļ									 								
		1																

Hole No: 9

Page \

of 4

			DIA	WOND DRILL LOG		raye	,)	
Location:		Property Grid: 110 + 98 E	34+10N	Property: max		Section:	111	HOOE	
Azimuth:	000°	Core Diameter: NQ		Mineral Claim: MAX	23	. Dip Tes	ts: - N	DNE-	
Collar Dip:	- 90°	Date Started: MARCH 14 19	92	Date Logged: MARCH	16-17 1992		m		0
Elevation:	950 m	Date Completed: MARCH 17	992	Logged by: W. Down	الاعلى		m		0
Length:	121.31m	Casing Removed: YES		Drilling Contractor: NEAUP	LE DIAMOND DRI	LLING	m		0
Purpose:	TO TEST	AN I.P. CHARLEAGILITY ANOM	ALY.				m		0
Synopsis:	ANDMALY 13	THE RESULT OF PYRITE AND	A FAUL	1 ZONE, THE MAJORITY	WHILH CONTA	1.NS GRAI	HITI	ARLIC	L176
Recommenda	ation: TEST A	NOMALY 400 m WESTWARD							
				Alteration	Mineralizat	tion	Struc Descrip-	ture	
Metres	Lithology	Remarks	Metres	Replacement % Veinlets %	Disseminated	Veinlets %	Descrip-	Angle to	Rec
From To		l control of the cont	l	0 00 00 00 00 00 00			1		ايما

									Alte	ratio	n						Min	eraliz				 Struc		1
Met		Lithology	Remarks	Met	res	Re	place	emer	nt %		V	einle	ts %		Dis	semi	inate	d	Ve	inlet	s %	Descrip-	Angle to	Rec
From	То		<u> </u>	From	То	Ser	Sil	Bio	K	С	Qtz	к	Εp	Cal	Ρy	Сру			Ру	Сру		tion	core Ax	96
0	17.68	OVERBURDEN																						
			AS THE DRILLERS WENT UNABLE																					
			TO RELOVER CORK FROM 17.68 m																					
			TO 63.40 m. THIS INTERVAL WAS																					
			TRICONED, WITH CUTTINGS COLLECTED																					
			FROM 10 FOOT KHUS. THESE WERE																					
			SENT IN FOR ASSAYING . BELOW ARE																					
<u> </u>			BRIEF DESCRIPTIONS ON THE CUTTINES.							Π														
L																								
17.68	20.73	INTRUSIVE	60% LEUCOCRATIC MINERALS			T																		
			(PLAGIOLLASE, K-SPAK, MINOR QUARTZ)																					
			399. ARGILLITE (?)																				Ι	
			19. PYRITE			T																		
									1														1	
20.73	48.16	ARGILLITE	907. ARGILLITE															\Box						
			8% LEUCOCRATIC MINERALS	1					1															
			27. PYRITE																					
				1		\top														T				T
				1		1						П								T^-				

Hole No: 92-4

Page 2

		·							Alte	ratio	n						Mine	eraliz	atio	n			Struc	ture	
Met		Lithology	Remarks	Met	res				nt %			/einle				semi				inlet	s %		Descrip-	Angle to	Rec
From	То			From	То	Ser	Sil	Bio	K	ō	Qtz	K	Ep	Cal	Ру	Сру		F	Ру	Сру			tion	core Ax	96
48.16	54.25	ARGILLITE AND	459- ACOILLITE																						
		INTRUSIVE	52% LEUCOCRATIC MINERALS CONSISTING:																						
			- 609. PINK K-SPAR		-																				
			- 359. PLAGIOCLASE																						
			- 57. OTHER (QUALTZ?)																						
			37. PYRITE																						
	ļ					<u> </u>												_						ļ	<u> </u>
54.25	57.30	ARGILL178	909. ALGILLITE		<u> </u>						L														<u> </u>
			77. PINE- K-SPAR		<u> </u>				<u> </u>		1														
			17. OTHER (QUARTZ, PLAGIOLLASE)																					<u> </u>	
			27. PYRITE						<u>L.</u> .		<u> </u>	<u> </u>												<u> </u>	
					<u> </u>			<u> </u>	<u> </u>		<u> </u>													<u> </u>	
57.30	60.35	ALGILLITE AND	607. ARGILLITE																						
		INTRUSIVE	289. LEUCOLANIL MINERAUS CONSISTING:																					l	
			-639. PINK K-SPAR																						
			- 35% PLAGIOCLASE																						
<u></u>			-27. 07HER																						
			27. PYRITE						L.,																
											<u> </u>													ļ	<u> </u>
60.35	63.40	INTRUSIVE	937, LEUCOCEATIC MINERALS CONSISTING:									<u> </u>												<u> </u>	
	<u> </u>	(PLA61OCLASE	-709- PLAGIOLLASE	1	1	<u> </u>																<u> </u>			
		PORPHYKY MONZANITE)	- 197. PINK K-S/AR		<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>												l	<u> </u>
	ļ		- 19. OTHEX	l								İ													
			57. ARGILLITE											ł											
	ļ. <u>.</u>		27. 14RITE																						
				1	j		ļ	l			<u> </u>	<u> </u>		l											
	<u> </u>		HEREAFTEN, CORE WAS RELOVENED																						
L	ļ		AND IS OESCRIBED ON THE FOLLOWING																						
	1		PAGES				1]			

Hole No: 92-4

Page 3 of

				1					Alte								Mine		zatio	n			Struc	ure	
Meti	,	Lithology	Remarks	Met				emer					ets %				nate	_			ts %	(Angle to	
From				#		Ser	Sil	Bio	К	а	Qtz	К	Ep	Cal	Ру	Сру			Ру	Сру		_	tion	core Ax	
62.94		PLAGIOCLASE		63.09		<u> </u>	<u> </u>	Ш			<u> </u>														45
			ERAIN FAULT GOUSE. THE MAJORITY	66.45	67.67	$oxed{oxed}$																			96
		FAULT GOUGE		67,67	69.34		L.,																		64
				69.34	70.56										`										91
			GOUGE EXISTS. REMAINT PLAGRECIASE	70.56	72.39																				89
		<u> </u>	PHENOCHYTS WENE ONSENDO FROM 62.94	72.39	73.91																				100
			TO 63.09 m, IN A K-SPAN RICH IMATRIX	73.91	76.20																				66
			MINERMIZATION CONSISTS ST 27.	76.20	78.33																				65
			DISSEMINATED PYRITE. THE INTEREST	78.33	80.01																				75
			15 NOW - MAGNETIC.	80.01	81.38														1						73
			STRUCTURE: A SHEWA PLANE AT	81.38	83.21																				95
			67.30 WAS AT 14° CAX SO THU	83.21	84.43		1				T													,	63
				84.43	36.41		T																		100
				86.41	37.78												$\neg \uparrow$			\vdash					94
			OTHER: QUARTZ- CARRONATE VEINING	87.73	38.34		\vdash																		88
				86.39	89.61	\Box	t															_			69
			THERE ARE A CIUPLE OF ARGICLIZE	89.61	90.52		†																		51
				90.52	91,74	T	\vdash	1											<u> </u>	\vdash	\Box				52
				91.74	92.96	T	\vdash											-				_		<u> </u>	75
			THE LOWER CONTACT IS SHARP AT	+	13.73	_	\vdash				\vdash								1	<u></u>	t-t				52
			74° CAX.		94.18		 	1		_	 								†	 	+	-		 	23
					94.79		\dagger			_	-		<u> </u>		<u> </u>				1-	<u> </u>	++				70
8330	112.17	GRAPHITIC	BLACK COLOUR, WITH GLASSY-APPEARING	+	96.16		+	\vdash			1	\vdash	 		\vdash				\vdash	+-	+-+	\dashv		 	95
	1.7.	ARGILLITE	FRACTURE PLANES PLAN GRAPHITIC	 	1000	+-	+-	 		1	1	\vdash	 		 				╁┈	╁	+-+	\dashv	 	 	+
		FAULT GOUCE		#	 	+	+	-	\vdash		 	├─							+	 	+			 	++
		751 00.00	THE INTERVAL IS APPROPRIATE AND	#	† 	+-	+	-		-	+	\vdash	 		 	-			+	-	+-			+	+-1
 			HAS BEEN ALTURED TO A CLAY	 	+	+	+-	-	\vdash	-	 	\vdash	\vdash	_	\vdash	├─	$\vdash \vdash$	-	+	┼	+-+	-		+	┼┤
	 		FAULT FOUGE. ORIGINAL NEWDOWG	#	 	+-	+-	\vdash		-	+	 	\vdash		 	-	\vdash		+	-	+	-		+	+
			FLANES ART NOT VISIALE	#	+	+-	+-	\vdash		-	\vdash	\vdash	├		 				+	-	+	-		+	+
	لــــــــــــــــــــــــــــــــــــــ	L	I Leves kin bid! Algibre	<u> </u>				L	L	<u> </u>	<u> i </u>		L		1	L		L	1					1	1

Hole No:

72-4

Page 4

of ¹

			Remarks Metres Replacement % Veinlets %											Minera	lizati	on		Struc	ture				
Metr	es	The state of the s						eme	nt %	-		Vein	ets 9	6	Dis	semi	nated	V	einlets %	,	Descrip-	Angle to	Rec
From	То			From	То	Ser	Sii	Bio	K	CI	Qtz	K	Εp	Cal	Ру	Сру		Ру	Сру		tion	core Ax	%
83.30	112.17	GRAPHITIC	MINEUMINATION CONSISTS OF 27. FINE	96.16	98.60															T			83
		AR G ILLITE	DISSEMINATED PYRITE. GRANHITE	98.60	19.67															TI			4
		FAULT GOUGE	PROBABLY RULLAGES 57. (?). 17 15	99.67	101.19														П				34.
		(cm +)	PERVASIVE THROUGHOUT	101.19	101.80																		25
			STANCTURE: THE CORE HAS A	10(.80	103.20															TT			12
			PREFERENCE TO PART AT 64° CAX.	103.20	104.24							\mathbf{I}^{-}									-		98
			QUARTZ-CARBONATE VEINING AVERAGES	104,24	105.92									Ι.									86
		•	0.5 %	105,92	107.59																		83
			MONZONITE DYKES: 104.75 - 105.10_;	107.59	108.51																		59
			107,20-17,50~	108.51	109.73																		56
				109.73	110.34																		56
11217	115.50	MONZONITE OYKE	LIGHT GREY, VERY FINE GLAINED	110.34	111.25																		98
			ALTERATION HAS USLITERATED ORIGINAL	111.25	112.17																		100
			TEXTURES. PERVASIVE SUZCIFICATION	112.17	114.30																		96
			AVERAGNO 1500, OCCURS THROUGHOUT.	114.30	114.91																		33
			DISSEMINATED PYRITE AVERAGES 37.	114.91	116.28																		78
			THE INTERVAL IS NON-MAGNETIC	116.28	117.96			1															49
			CORE RELIVEM CONSISTS OF MEA-SIZE	117.96	119.48		I				Π												47
			FRAGMENTS, WITH A CONNE OF	14.48	120.24			1															13
			10 cm PIECES	120.24	121.31				Π	T													7
					- EOH -				T														
115.50	121.31	GRAPHITIC	- As 87.30-112.17m																				
		ARGILLITE FAULT	CORE RECOVERY WAS POOK IN THIS																				
L		Goule	INTERVAL.																				
			E.O.H. = 121.31																				
			CASING PULLED																				
																							1
	L									1	1												

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No: 92-4

Page:

of 2

Property:

MAX

	Sample			Au	Ag	Cu	Zn		
		erval			g/t		%		Description
Number	m	m	Length	ppb	ppm	ppm	ppm		
15062	17.68	20.73	3.05	45		307			TRICONED BOCK CUTTING;
15063	20.73	23.77	3.04	45		80		 	11 1/ 4
15064	23.71	26.82	3.05	45		93			u u u
15065	26.82	29.87	3.05	45		81			4 11 11
15066	29.57	32.92	3.05	45		79		 	" " "
15067	32,92	35.97	3.05	< 5		८५			" " "
15068	35.97	39.01	3.04	15		76			4 4
15069	39.01	42.06	3.05	<5		85			11 4 11
15070	42.06	45,10	3.05	45		92			u u u
15071	45.11	48.16	3.05	45		89			4 4
15072	48.16	51.21	3.05	15		201			4 4
15073	51.21	54.25	3.04	15		230			11 11 11
15074	54.25	57.30	3.05	45		102			11 11 4
15015	57.30	60.35	3.05	45		95			u u
15076	60.35	63.40	3.05	45		86			i ii ii
15077	62.94	67	4.06						RRGILLITE + MONTONITE - 27, PYRITE
15073	67	64	2	15		69			MONZONITE, 27, PYRITE
15079	69	71	2						ll II II
15080	71	73	2	45		89			lı n u
15081	73	75	ι						1, 1, 11
15082	75	71	2.	45		151			V 11 4
150 83	77	79	ν						11 h 7
15094	79	81	2	45		99			MON ZINITE + ARGILLITE 27: PARITE
15085	31	83	2						MONZONITE , 29, PYRITE
15086	93	85	2	45		98			GRAPHITH ARGILLITE; 27. PYRITE
15087	95	87	L						u u u
15098	81	89	2	45		75			D 9 9
15089	89	91	ι			'-			1) li 0 0
15090	9,	93	z	45		84			gr p p fe fe

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No:

92-4

Page: 2

of 2

Property:

MAX

	Sample			Au	Ag	Cu	Zn								
		erval			g/t		%						Descript	ion	
Number	m	m	Length	ppb	ppm	ppm	ppm								
15091	93	95	2									GRAPHITIL	ARGILLITE	27.	144176
15092	95	97	2	45		75						"	· · · · · · · · · · · · · · · · · · ·		H
15093	97	99	l									À	//	*	<i>!</i>
15094	99	103	4	45		101				,		/1	"	4	4
15095	103	105	2									4	11	4	4
15096	105	127	2	< 5		106						11	"	//	4
15097	127	101	2									u	11	4	4
15098	109	111	2	15		70						4	11	4	#
15099	111	113	2									lt .	lı	ı	•
15100	113	115	ν	15		95						MONZONITE	37,	PYRITI	E
15101	115	117	2									GLAPHIAL	ARGILLI TÉ	27,	PARITE,
15102	117	121.31	4.31	45		88						11	j.	4(41
		- FO# -										,			

															······································
							·							·	
							ļ ———				<u> </u>				
							 								
	 														
						ļ									
L	L	<u></u>	L	L	L	L	l	L	<u> </u>			1			

Hole No: 92-5 Page

Location: **Property Grid:** Property: 106+70E 34+10N Section: 107+00E MAX Azimuth: 000 Core Diameter: NO Mineral Claim: MAX 22 Dip Tests: - None-Collar Dip: - 90" Date Started: MARCH 18 1992 Date Logged: MARCH 20-21 1992 m Elevation: 940 m Date Completed: MARCH 20 1992 Logged by: W. OUNKLOSON m Length: 100.89m Casing Removed: YES Drilling Contractor: BEAUARE DIAMOND PRILLING m Purpose: To TEST THE WESTERN EDGE OF AN I. P. CHARLS ASILITY ANOMALY Synopsis: ANOMALY 1) DAE GLAPHIFIC ARGULITE AND PYRITE WITHIN A FAULT ZONE

FURTHER WORK RECOMMENDED IN THIS ZONE. Alteration Mineralization Structure Metres Lithology Remarks Replacement % Veinlets % Disseminated Metres Veinlets % Descrip-Angle to Rec From To Ser Sil Bio K Cl Qtz K Ep Cal Py Cpy From To Py Cpy tion core Ax 23.77 OVERBURDEN 23.77 24.69 54 24.64 28.35 0 23.77 32.92 SILTSTONE 96 SKEY COLOUR, FINE GLAINED, WITH 28.35 2865 FAINT RENDING & 72° CAX. SIME 28.65 28.96 26 GRAVEL - SIZE FRAGMENTS OF CORE APPEAR 28.95 29.87 7 TO HAVE BEDONG AT 2 80° CAX. 29.87 32.92 15 MINERALIZATION CONSISTS OF 29. PTRITE 32.42 37.19 0 28.35 - 30.00 m: PLACIOCA ME PORPHYLY 44 37.19 37.80 MONTONITE DYKE (AS NELDY) 100 34,40 27.80 95 38.40 39.01 32.92 47.06 PLAGIOCEASE POLIFYER LIGHT GREY COLOUR WITH Z-3 mm 76 39.01 40.39 MONZONITE 48 PLAGIOCLASE LATHS SET IN A EINE GRAIN 4239 42.06 POLIPE RIGH MATRIX ALTERATION: TO 38.604. 107- OF PLAGICLASE LAMAS HAJE BLEN SANCER, TIZED MINERALIZATION: DISSEMINATED PYRITE AVERAGES 19. AND IS MAINLY LOCALIZED ALONG FRACTURES

40.30 - 42.06 : PRGILLITÉ

STRUCTURE. 24. QUARTZ - CARDONITE VEINING THE MAJORITH AT 40° CAX

Recommendation:

Hole No:

92-5

Page 2

of 4

									Alte								Min	erali	zatio	ก		Struc		
Metr		Lithology	Remarks	Metr			place						ets %				inate			inlet		Descrip-	Angle to	Rec
From	То			From	То	Ser	Sil	Bio	К	a	Qtz	K	타	Cal	Ру	Сру			Ру	Сру		tion	core Ax	96
			CUTTINGS (FROM TRKONED CORE)								<u> </u>													
			WERE RECOVERED FOR THE FOLLOWING			<u> </u>					<u> </u>													
			INTERVALS AS IT WAS IMPOSSIBLE TO			1																		
			RECOVER ANY COLE			1					<u> </u>										$\perp \! \! \! \perp$			
						<u> </u>																		
42.06	51.21	PLAGIO CLASE	70% LEUCOCRATIC MINERALS CONTAINING:																					
		PORPHYLY MONTONITE	-40% PLAGIOCLASE																					
			- 55% K-SPAR (GREY)																					
			- 57. OTHER																					
			287. SEDIMENTS ? (DANK 6484)																					
			27. PYRITE																					
51.21	57.35	ARBILLITE AND	507. ALGILLITE																					
		INTRUSIVE	487. LEUCOCEAGIL MINEURS CONTAINING:																\					
			- 407. PLAGIOCLASE																					
			- 557, GREY KISPAR																					<u> </u>
			-57, 07HGA																					
			29. PYRITE																					
]									
57.35	66.45	INTLUSIVE AND	60% LEUCOCAATIC MINERALS CONTAINING.																					
		ARGILLITE	- 40% PLAGIOCLAE																					
			-557, GREY K-S/AR								1													
			-54. OTHER																					
			387, ARGILLITE			T				Π														T
			27. PYKITE					l				Τ												
									Π		T	Π												
		*	CORE WAS RECOVERED HEREAGTER.			\top							<u> </u>						1					
					<u> </u>							T							T					
				1			T				1					1			T					

Hole No: 92-5

Page 3 of 4

1					Metres Replacem				Alte								Mine	eraliz	ation	1		Struc	ture	
Met		Lithology	Remarks										ets %			semi				inlets	%	Descrip-	_	
From				#	То		Sil	Bio	К	CI	Qtz	Κ	Εp	Cal	Py	Сру			Ру	Сру		tion	core Ax	
66.45	93.27	ARGILLITE	17.77	66.45		+	L											\dashv	_					62
			FAULTING THROUGHOUT (MAJORITY OF	67.06	67.97															$ \bot $				22
			INTERVAL IS CLAY FAULT GOUGE)	67.97	68.99																			100
			HAS OBLITERATED OCIGINAL BEDDING	68.83	+																			17
			TLANES.	70,10	71.32]									0
<u> </u>			ALTERATION: NOWE	71.32	72.24																			23
			MINERALIZATION: VERY FINE DISSEMINATED	72.24	73.15																			52
			PYRITE AVERAGES 37. THROUGHOUT.	73.15	74.37														I					96
			GRAPHITE IS PERUASIVE THROUGHOUT	74.37	75,29																			100
			WITH THE MOST INTENSE INTERVAL	75.29	76.20																			45
			1'EING BS:65- 93,27m. THIS IS CAUSING	76.20	78.64												I							0
			THE I.P. CHARLEMILLITY ANOMALY.	79.64	79.25																			4
			STENETURE: BOT, OF THE INTERVAL IS	79.25	80.47																			30
			CLAY FAMILY GOUGE WITH THE	80,47	81.08																			13
			REMAINING KEING GRAVEL SIZE	81.08	62.30																			22
			FRACMENTS. IN A COUPLE OF	82.30	83.52																			74
			AREAS IT APPENDS THAT INTRUSIVE	83.52	84.73																			61
			PYKES (GREY COLORED COLLE) HAVE	84.73	85.65																			78
			cut This UNIT.	05.65	86.26	T														\neg				74
				96.26		T																	†	0
93.27	100.89	POTASSIC - FLOODED	PURPLE- GARY COLOUR APHANITIC	88.34	38.70																			29
		MONZONITE		98.70	+		 	†				-	<u> </u>		1				•		_			38
				39.31	90.21		† · · ·		1		†	<u> </u>											 	38
				90.22		-	l -					1												111
:				90.83	-	1					t		<u> </u>		1	Н					_		—	0
				91.44		t		<u> </u>					\vdash		†	\vdash							1	9
				92-05	+		†	 		\vdash	 		 		1	 							+	84
	1		POTABOL FLOODING OCCUPS THRONGHOUT		_	_	\vdash	\vdash		\vdash	\vdash	<u> </u>	\vdash		\vdash								+	141
	1			93.94			 	\vdash		-		 	I		†		\vdash				_		+	18
·				11 13.20	1,1.7	.1	1	Ц	<u> </u>	<u> </u>	1	L	1	<u> </u>	ــــــ		ــــــــــــــــــــــــــــــــــــــ		Ц					ىنى

Hole No: 92-5

Page 4

									Alte	ratio	n						Min	erali	zatio	n		Struct	ure	
Met	res	Lithology	Remarks	Met	res	Re	plac	emer	it %		V	einle	ets %	b	Dis	sem	inate	d	Ve	einlet	s %	Descrip-	Angle to	Rec
From	То			From	То	Ser	Sil	Bio	K	Ö	Qtz	K	Εp	Cal	Ру	Сру			Ру	Сру		tion	core Ax	
93.27		POTASSIC - FLODOED	17. CHLORITE OCCUS ON ALL	94.49																		 		49
		MONZONITE (cmit)	FRACTURE SURFACES	95,10	95,71																	 		54
		•	37. PERVASIVE CARRONATE ALTERATION	95.71	97.08		$\Gamma_{}$																	90
		·	OCCURS THROUGHOUT	97.08	97.38																			70
			MINERALIZATION; DISEMINATED MARITE	97.38	99,67																			100
				99.67	103.89										Γ									100
			THE INTERIOR IS NOW - INAGETIC	ļ	-60H-																			
			STANGTALE: 9630-97.38 6000 FANCT																					
			GOUSE WITH ARBILLITE WALKER LANGHT	1																				
			up.																					
			TO 99.70 m; NUMEROUS MICROFRACTURES												Ī									
			CROSSCUT THE INTERVAL. THERE IS ALSO												1									
			27, CARRONATE VEINING AT RANGEM					Ī																
			ANGLES.																					
						T																		
			E.O.H = 100,89m.																					
			CASING PULLED																					
															T	1								
							T				Ī											_		
				1		1					T				1									
				1		1																		
				1	1	1	1								1	1	1	1	Ī	T				
				†		T	T			T	1		T					T		1				
				1	1					†	T		1		1				1					
				1	†	\top	†		 		T		1	1	T	\top	†		1	T	1		1	
				1		T	†	†	T	T	T		T	\top	1	T		\top		T				\top
				#		\top	+	†	t^{-}			1			\top	T		\top	1		\top		 	
				1	 	+-	+	 	T	<u> </u>	1	†	1	1	\top	T			1	T				1

RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

Hole No:

Page:

of

MAX Property:

	Sample			Au	Ag	Cu	Zn					
		erval			g/t	ļ	%					Description
Number	m	m	Length	ppb	ppm	ppm	ppm	ļ				
15103		32.42	<u> </u>	15		69						SILTSTONE : 27, DISS. PYRITE
15104	37.19	39.00	1-81	15		165						MONZONITE: 17, PARITE
15105	39.00	42.06	3.06	45		126						to to to
15106	42.06	45.11	3,05	45		201						TO CHIP SAMPLE - TRICONED LORE
15101	45.11	43 16	3.05	45		86						bf te be se
15102	43.16	51,21	3.05	< 5		99						the ce to the
15109	51.21	54,25		45		67						ig se se u
15110		57.30	3.05	45		100						N 11 ti
15111	57.30	60.35	3.05	45		97						H 10 10 11
15102	60.35	63.40	3.05	15		80						⊥ t₁ tc te st
15113	66.40	70.10	3.70	45		83						ARGILLITE; 27, PY
15114	71.32	76.20	4.88	15		89						tj tj "
15115	78.64	82	3.36	45		57						11 4, "
15116	82	84	2	15		69						lj el
15117	84	86.26	2.26	45		104						ų ų »
15 પહ	88.39	93.27	4.88	<5		90						" VERY GRAPHITIC
15/19	93.27	96	2.73	15		63						K-SPAR FLEDOWN MONZONITE; 27. PY
15/20	96	98	2	45		80						Tr or or
15121	98	100,89	2.89	45		110						jt ti s, si 9
		-EOH -										
	<u> </u>									<u></u>		
		<u> </u>		 	†		 					
	 	 										
									**			
			1	<u> </u>		4		<u>. </u>			L	

Hole No: 92-6

Page

Location:		Property Grid: 103+00 E 37+85N	Property: MAX	Section: 103+00E
Azimuth:	000,	Core Diameter: N Q	Mineral Claim: MAX 14	Dip Tests: - NONE -
Collar Dip:	-90'	Date Started: MARCH 21 1992	Date Logged: MARCH 23 1992	m o
Elevation:	1050 m	Date Completed: MARCH 23 1992	Logged by: WILLIAM DONALOSON	m o
Length:	98.45m	Casing Removed: CASING BANKEN OFF IN HOLE	Drilling Contractor: BEMUNE DIRMONO DRILLING	m o
Purpose:	TO TEST AN ELE	UNTED I.P. CHARGEASILITY ANOMALY.		m o

3%. DISSEMINATED PYRITE IS RESPONSIBLE FOR THIS WEAR TRNOMALY.

Recommendation: FURTHER WORK No Alteration Mineralization Structure Metres Lithology Replacement % Remarks Metres Veinlets % Disseminated Veinlets % Descrip- Angle to Rec From To From Ser Sil Bio K Cl Qtz K Ep Cal Py Cpy To Ру Сру tion core Ax 31.39 OVERBURGEN 31.39 31.70 58 61 31.70 32.16 31.39 90.10 | SILICIFIED LIGHT GREY COLOUR, VERY FINE 22.16 32.92 MONZONITE 33 32.92 33.83 GRAINED WITH SOME PRIMARY 48 BRECCIATION RESULTING IN FRAGMENTS 33.83 34.14 13 TO 2 cm LENGTH. 34,14 14.75 13 ALTERATION: THE ROCK IS EXTREMELY 24.75 35.36 14 HARD: MTD, IT IS MY OPINION THAT 35.36 35.97 9 SECONDARY SILICIFICATION HAS OCCURRED 35.97 36.88 21 YEAVASIVELY THROUGHOUT AND AVERAGE 36.88 27.49 22 257. THERE MIGHT ALSO POSSIBLY RE 37.49 38.10 34 ALMITIZATEM (?) OF THE UNIT 28.10 79.96 70 TRACE EPIDOTE WAS OBSERVED ON SINCE 38.86 39.32 100 FLACTURES. MINDA CHOLITE-CALBONATE 39.32 41.45 100 41.45 42.06 OCCURS ON ALL FRACTURE SURFACES 96 42.06 45.11 MINERALIZATION: PYRITE OCCUSS 98 ALONG FRACTURES AND IS AUSO 45.11 48,19 100 DISSEMINATES IN THE MATRIX. IT 48.19 51.21 98 AVERAGES 37. 51.21 53.95 THE INTERVAL IS NON- MAGNETIC. 53.45 55.43

Hole No:

2-6

Page 2

of 3

									Alte	eratio	on						Mine	eraliz	zatio	n		St	ucture	
Met	res	Lithology	Remarks	Met	res			emer				Veinl					inate	d	Ve	inlet	s %	Descri	- Angle to	Rec
From	То				То		Sil	Bio	K	CI	Qtz	K	Εp	Cal	Ру	Сру			Ру	Сру		tion	core Ax	
31.31	90.10	SILICIFIED	STRUCTURE: THE UNIT IS VERY	55.93	57.30																			100
		MONZONITE	COMPETENT WITH EXCELLENT LORE	57.30	60.05																			100
		(cnit)	RECOVERY.	60.05	60.50	<u> </u>						<u></u>												83
				60.50								1_												98
			THE INTERUM AT RANDOM ANGLES.	61.57	61.33																			96
			50.20-50.90 FLOW RANDING OCCUM	62.33	63.40	_							L.	$oxed{oxed}$										97
			AT 14° CAX	63.40	66.14																			89
			59.0-62.33m: CORE IS NAIKEN, AVERABLE	66.14	67.97	L								<u> </u>		<u> </u>						•		87
			SIZE IS 1-3 cm WITH SME TECTORE	67.97	68.88							$oldsymbol{ol}}}}}}}}}}}}}}}}}$	L									-		100
			PAGCCIATION FAIR 61- 61.57m	68.88	70.41								Щ											100
			OTHER: 45.11 - 60.05 - 17. QUALTE-	79.41	71.63	<u> </u>	<u></u>						ļ		_									100
			CARRODATE VEINING, THE MAJORITY	71.63	72.24		L	L	<u> </u>			1		┖										25
			AT 70° CAX.	72.24	73.76									_										0
			OTHER: SEVERAL O.S-1.0 - WIDE	73.76	76.20	_					L			_		<u> </u>								48
	<u></u>		INTERNALS APPEAR TO BE A		76.96	1						\perp	_								\sqcup			33
			VENT FINE GAAIN SLITCIFIED FLOW	76.96	78.33											1			L	<u></u>				86
			(VOLCANIC): HOWEVER CONTACTS PALE	78.33	80.47							$oldsymbol{ol}}}}}}}}}}}}}}}}}$	_											97
			GRADATONAL AND MAY OCCUSSIONALLY	8>.47	81.69		_						_											74
Ĺ			DISITAR MONDONITIE TEXTURE, I	81.69	84.43				L	_									L					100
			BELIEVE THIS ROCK IS STILL A	11	85.65	<u> </u>		1							1_	<u> </u>								100
			MONZONITE, KATHER THAN A FLOW.		37.79																			100
			80.60 - 90,10 - MONZONITE	87.78	39.92																			100
			HAS A TYPICAL APPEARANCE. LIGHT		92.05																			100
			GREY-GREEN COLOUR, Some 2-3 m	92.05	93.88																			96
			PLROID CHINE PHENOCRYSTS IN A FINE	93.88	94.79																			100
			GARIN MATRIX. THE ROCK IS	94.79	96.93																			97
			SILICATED WITH 27. MYRITE	96.93	98.45																			
			MINDE MAGNETITE IS PRESENT FAOR		- EO H -																			
			9060-83.50.																					

Hole No:

92-6

Page 3

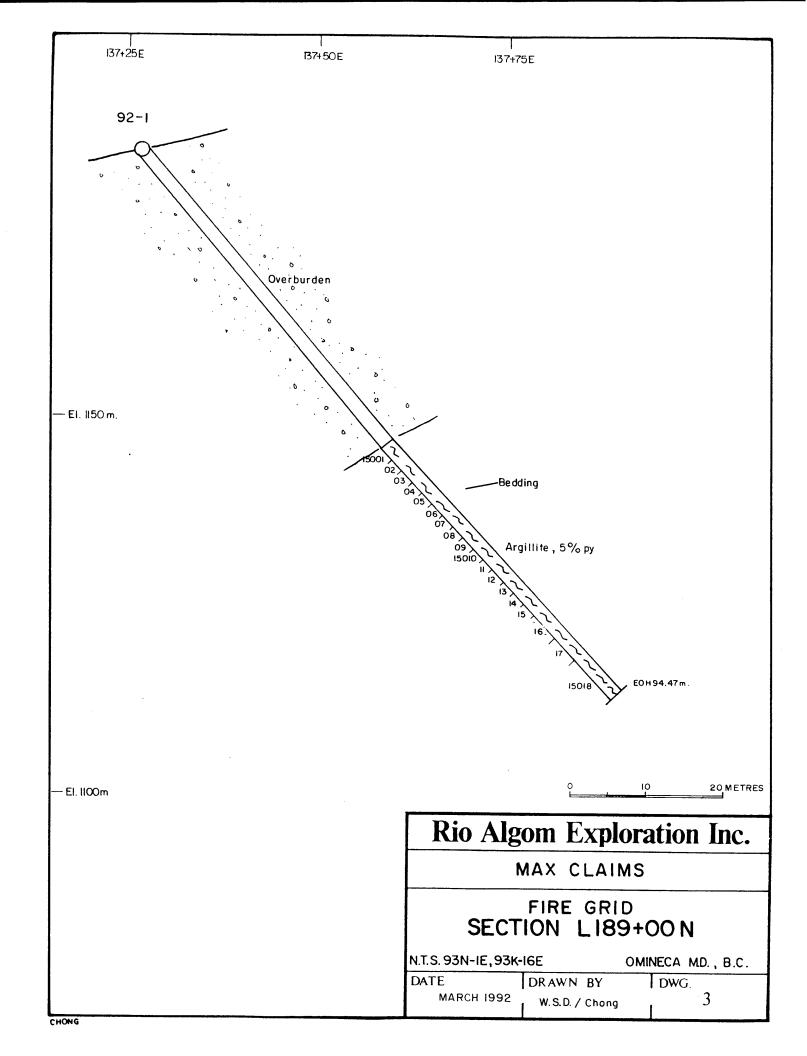
of 3

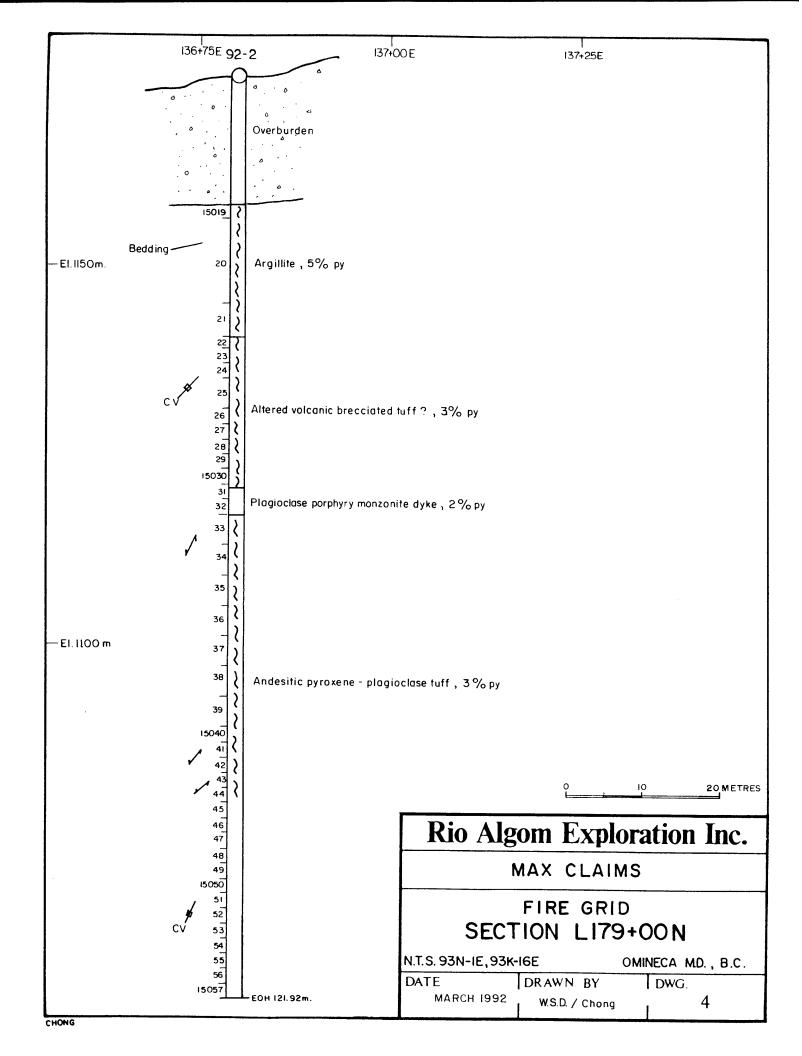
										ratio									zatio			Struct		
Metr	es	Lithology	Remarks	Met			place				V						nate			inlet	s %	 Descrip-		
	То			From	То	Ser	Sil	Bio	K	CI	Qtz	K	Εp	Cal	Py	Сру			Ру	Сру		 tion	core Ax	%
90.10	98.45	CARBONATE -	WHITE-GREY COLOUR, OUE TO																					
		ALTERED VOLCANIC	PERVASIVE CARRONATE AUTERATION.			<u> </u>																		
		FLOW	ALGITE PHENOLOGYSTS TO 5 mm																					
			OCCUM IN THE ALTERED MATRIX. THE																			 		
			NOCK WAS PROBABLY DEIGINALLY AN																					
			AUSITE POLITYRY FLOW.																					
			ALTERATION. CARRONATE ALTERATION																			 		
			AU. A ACES 30% AND IS PERUASIVE.	L																				
			SILLCIFICATION OCCURS THROUGHOUT																		Ш		·	
			ALTHOUGH IS MORE INTENSE (307)															<u> </u>						igsquare
			PRIM 90.10 - 93.0 4. THERE AMER			<u> </u>				<u> </u>														
			17 15 < 5%.			<u> </u>						L							1	L_				
			THE MAFIC PHONOCAUSTS MAVE									Ľ								_				
			WEAR CHLORITIC ALTERATION. MINOR				<u> </u>																	
			EPIDETE IS ALSO PREEMS ON SOME																		Ш			
			FRACTURES.			1	<u> </u>			<u> </u>	<u> </u>		<u> </u>						_					
			MINERALIZATION: DISSEMINATED PARITE				<u> </u>							<u> </u>					<u> </u>	<u></u>				
			AVERAGES 27. THE FOCK IS												<u> </u>			L						
			NON- MAGNETIC.																					
			STRUCTURE: TECTONIC BRECOMMON																					
			OCCUMS. 95.40-95.70~ (SHEAMS & 65° CAY)																					
			1110 98.0-93.45m.																					
			THORE IS 17. RAWDDMY . OF 16 WTED																					
			CARRONAME VEINING																					
			EUH = 93.45M																					
			CASNG BROKE OFF IN HOLE.																					
						T																		

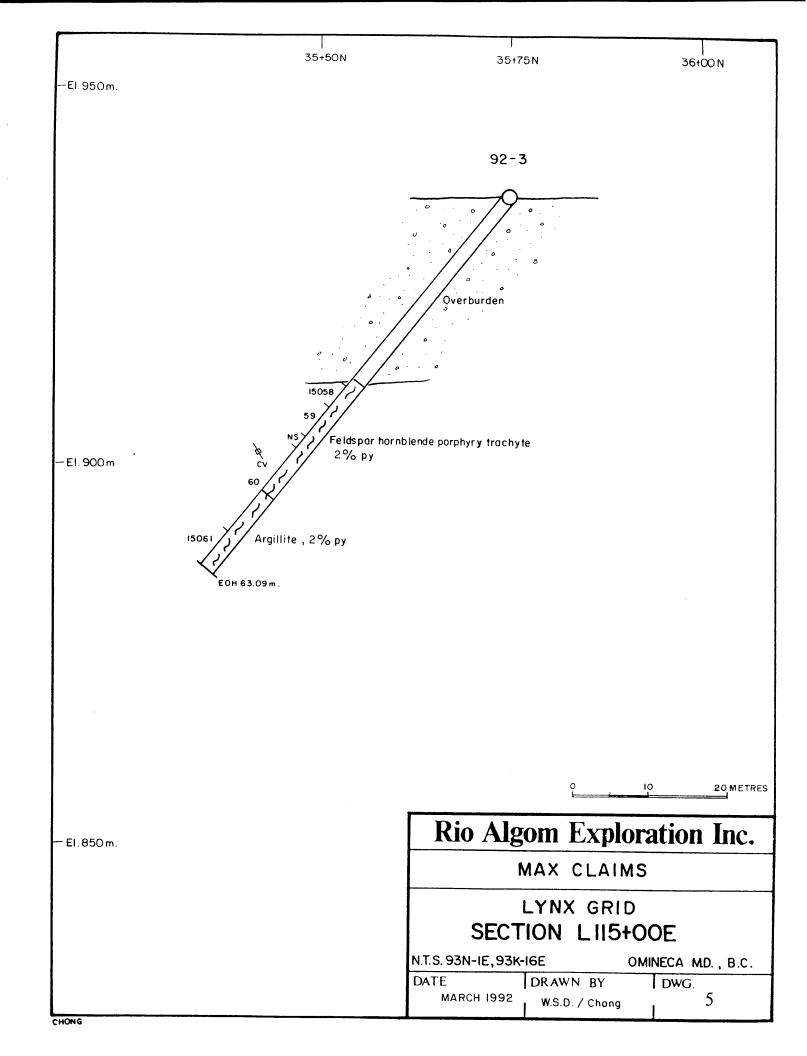
RIO ALGOM EXPLORATION INC DRILL ASSAY LOG

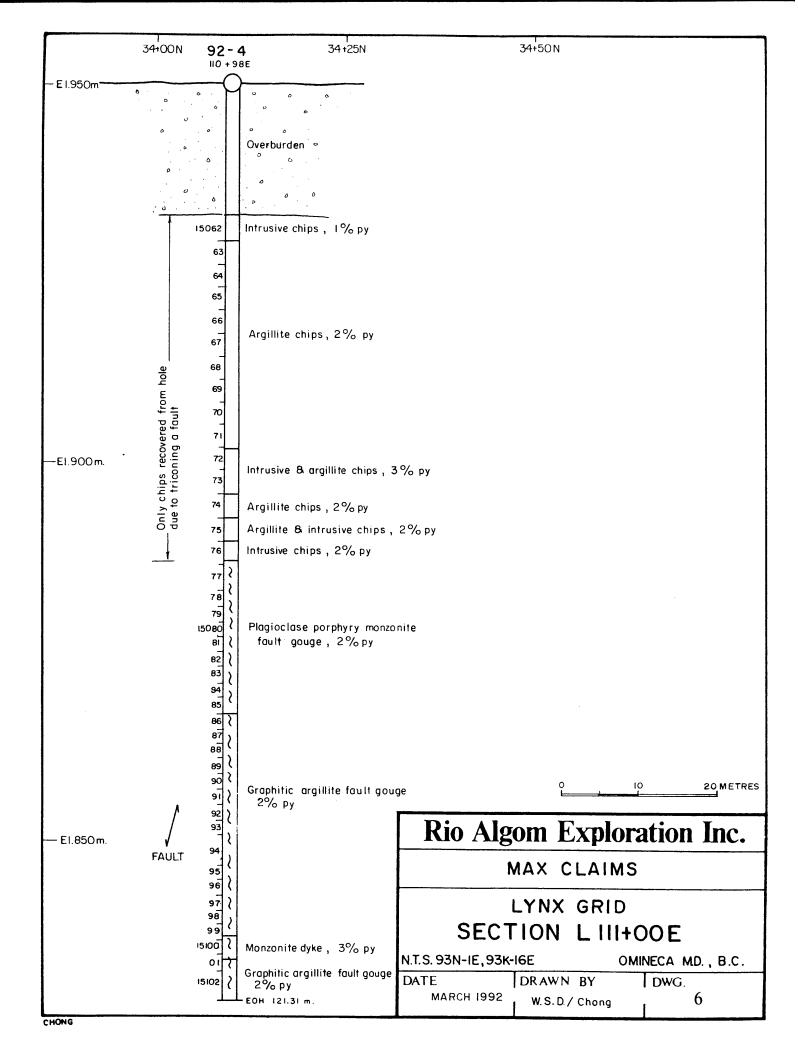
92-6 Hole No:

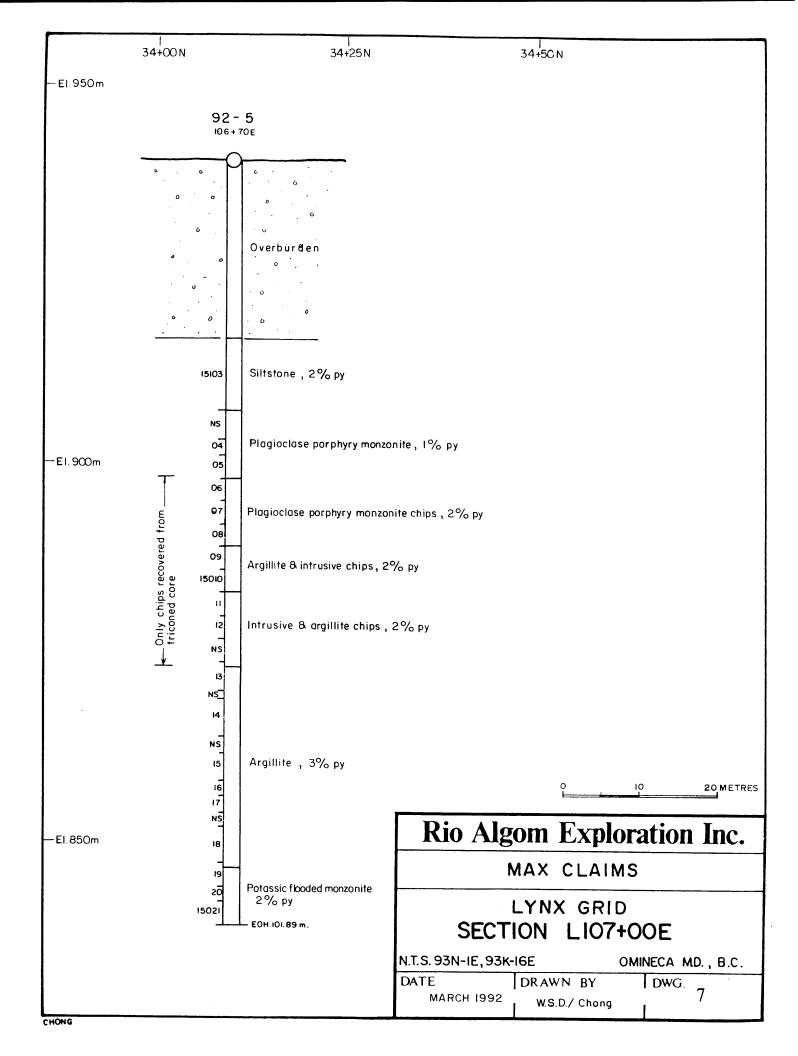
Page:

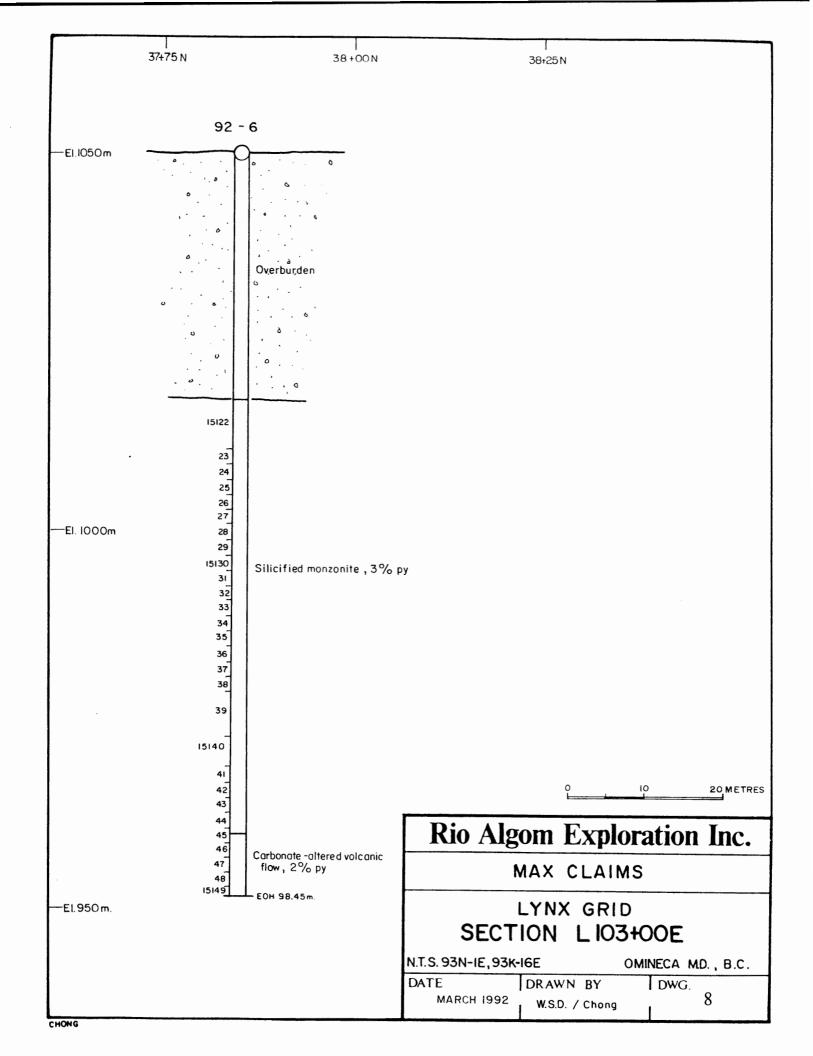

of 1


Property: MAX


	Sample			Au	Ag	Cu	Zn	
		erval			g/t		%	Description
Number	m	m	Length		ppm	ppm	ppm	
15122	31.39	39	7.61	25		66		BROKEN WEATHERED REARCK 4/27. PY + EPI.
15123	39	41	2	45		69		SILICIFIED MONZONIZE . 37. PYRITE
15124	41	43	2	45		55		4 11 11 11
15125	43	45	2	45		65		27. QTZ-CAAN JEINING. 37. DISS PYRITE.
15126	45	47	2	45		61		27, 19aile
15127	47	49	2	25		63		ll tr
15128	49	51	2	45		80		37 MANTE; FLOW BANDING
15129	51	53	2	30		104		27. QR-CARS VEIN, N. 37, MARITE
15130	53	55	2	45		122		37, PYALTE: 27. QT2-CARD VERNING
15/3/	55	57	2_	45		81		" " " " " " " " " " " " " " " " " " "
15132	57	54	2	45		138		37. pyr.1e
15133	51	61	2	45		91		FRACTURED INTERVER 37, PYRITE
15134	61	63	2	45		80		37, MYRITE, 17- ATZ-CARS VEINING.
15135	63	65	2	45		108		27. PYRITE 17. CV
15136	65	67	2	45		וחח		H 11 4
15137	67	69	2	45		91		11 11 11 11
15130	69	71	2	15		99		4, 4, 6,
15139	71	77	6	20		125		H H 44 6
15140	77	81	4	15		ורו		J. h P
15141	81	83	2	45		433		270 PY 17. MAUNITE, 17. EPI
15142	& }	85	2	20		107		27 14; MINDE FAMILY GONGE
15/43	६५	67	2	30		וחו		I II
15144	67	91	2	45		23		" ; 21. cV
15145	89		2	45		74		ALT. VOLL. 27. 19. 30% LARS. EPI + CHL
15146	9,	93	2	45		64		11 n /1 to h to h
15141	13	95	2	45		26		11 11 11 11 11 11 11 11 11 11 11 11
15143	95	17	2	45		64		\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1
15149	97	9845	1.45	45		59		1. 11 1. h 4 5


APPENDIX II


DRILL SECTIONS (1:500 SCALE)



APPENDIX III

ANALYTICAL DATA

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project : Comments: 9021

Page Number :1-A Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212188 P.O. Number :

Account :GZ

											CE	RTIFI	CATE	OF A	NAL'	YSIS		49212	188		
SAMPLE	PR:		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg ♣	Min ppm
15002 1500 4 15006 15008 15010	205 205 205	294 294 294 294 294	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.13 1.11 2.35 2.47 2.20	10 10 10 5 20	100 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.91 4.09 2.94 3.01 3.14	1.0 < 0.5 1.0 5.0 2.5	15 15 17 16 17	41 25 40 46 32	86 76 83 87 87	4.31 3.82 4.41 4.74 4.12	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.23 0.24 0.26 0.16 0.36	10 10 10 10	1.28 1.15 1.46 1.66 1.21	540 470 495 510 490
15012 15014 15016 15018	205 205	294 294 294 294	20 50	< 0.2 < 0.2 0.2 < 0.2	2.25 1.22 1.82 2.07	20 20 5 30	130 150	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	3.94 3.30 4.17 3.81	3.0 1.0 0.5 < 0.5	14 15 16 16	36 20 55 52	83 95 66 70	3.96 3.88 4.43 4.10	< 10 < 10 10 < 10	< 1 < 1 1 < 1	0.32 0.43 0.58 0.25	10 10 10 10	1.15 0.93 1.58 1.14	540 440 770 550

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project:

9021 Comments:

Page Number :1-B
Total Pages :1
Certificate Date: 19-MAR-92
Invoice No. :19212188
P.O. Number :

Account

:GZ

									COMMI	ens.							
		***************************************								CE	RTIFI	CATE	OF A	NALY	'SIS	A9212188	
PRE SAMPLE COD		Mo ppm	Na %	Ni ppm	ppm P	Ppm Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	bb w T	ppm V	ppm W	Zn ppm		
0002 205 0004 205 0006 205 0008 205 0010 205	294 294 294	4 3 2 1 2	0.03 0.03 0.03 0.02 0.02	33 25 31 31 24	1040 840 880 1080 1060	6 2 8 16 10	< 5 < 5 < 5 < 5	4 5 5 5 4	141 < 171 < 106 < 110 < 117 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	41 22 51 44 37	< 10 < 10 < 10 < 10 < 10	114 82 162 162 160		
0012 205 0014 205 0016 205 0018 205	294 294	2 1 1 1	0.02 0.02 0.04 0.03	24 21 19 22	960 880 1400 820	12 8 8 4	< 5 < 5 < 5 < 5	4 4 12 6	203 < 229 < 454 327 <	0.01 0.02	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	45 22 105 57	< 10 < 10 < 10 < 10	174 136 74 94		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK MCLINTOCK

Page Number :1-A Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212265 P.O. Number :

:GZ Account

												CE	RTIFI	CATE	OF A	NAL'	YSIS	,	A9212	265		
SAMPLE	PREF		Au ppb FA+AA	A pp		Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	ppm Cd	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К *	La ppm	M g ♣	Mn ppm
15019 15020 15021 15022 15023	205 2 205 2 205 2 205 2 205 2	294 294 294	< 5 10 20 < 5 < 5	< 0. 0. < 0. < 0. < 0.	2 2 2	1.59 2.06 3.23 3.49 3.60	30 30 20 5	80 120 180 30 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2	3.97 2.46 3.57 5.36 5.30	1.0 1.0 0.5 < 0.5 < 0.5	17 19 18 26 27	32 38 47 178 204	136 107 100 96 104	3.88 4.52 4.76 5.19 5.53	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.30 0.44 0.35 0.14 0.17	10 10 10 10 10	1.41 1.16 1.56 3.88 4.18	700 580 725 1055 1050
15024 15025 15026 15027 15028	205 2 205 2	294	< 5 < 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0.	2 2 2	2.90 2.20 3.08 3.13 2.72	< 5 5 < 5 15 5	20 30 30 30 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 < 2 < 2 4 < 2	2.83 4.52 4.69 5.27 5.81	< 0.5 0.5 < 0.5 < 0.5 < 0.5	27 14 26 28 35	136 60 204 170 157	127 98 93 83 161	4.70 4.17 4.88 5.72 6.09	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.13 0.22 0.09 0.12 0.13	< 10 10 10 10 10	3.03 1.77 3.59 4.06 4.13	715 805 1000 1025 1370
15029 15030 15031 15032 15033	205 2 205 2 205 2 205 2 205 2	294 294 294	< 5 < 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0. < 0.	2 2 2	1.96 2.41 2.75 2.39 2.81	< 5 < 5 5 5	80 80 70 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	4.80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 23 23 22 22 23	181 70 55 28 37	212 150 119 133 90	5.46 5.39 5.49 5.67 5.15	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.27 0.37 0.20 0.24 0.37	10 10 10 10 10	3.58 2.77 2.24 1.92 2.32	1720 1070 1145 1160 975
15034 15035 15036 15037 15038	205 2		< 5 < 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0. 0.	2 2 2	2.62 2.66 2.88 2.45 2.32	< 5 5 5 < 5	40 70 50 40 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 8	4.01 3.38 6.85 4.85 4.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 25 20 20 23	32 29 39 50 34	104 93 89 151 114	4.84 4.88 4.79 4.60 4.32	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.25 0.12 0.38 0.23 0.06	10 < 10 10 10	2.20 2.37 2.46 2.06 1.93	840 795 1070 785 850
15039 15040 15041 15042 15043	205 2	294 294	< 5 < 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0.	2 2 2	2.37 2.61 2.60 2.95 3.27	5 5 5 10 10	40 30 30 250 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 8 < 2 8 < 2	4.42 5.09 5.23 4.71 6.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 22 22 25 23	21 34 27 66 70	103 118 78 95 103	4.07 5.17 4.89 4.68 5.16	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.38 0.36 0.41 0.20 0.36	10 10 10 10	1.70 2.49 2.32 2.69 2.66	845 1010 985 955 1070
15044 15045 15046 15047 15048	205 2 205 2 205 2 205 2	294 294	< 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0.	2 2 2	2.47 2.75 3.09 2.82 2.24	5 < 5 < 5 < 5 < 5	50 30 30 90 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 4 < 2	5.37 3.51 4.49 2.94 2.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 23 23 19 20	45 77 51 35 45	118 156 134 126 166	4.53 3.96 4.15 3.81 3.24	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.21 0.06 0.06 0.08 0.05	10 < 10 10 < 10 < 10	1.99 2.28 2.19 1.91 1.77	8 45 685 695 655 5 05
15049 15050 15051 15052 15053	205 205 205 205 205 205 205	294 294 294	< 5 < 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0.	2 2 2	2.15 2.27 2.54 2.27 2.61	< 5 < 5 < 5 5	20 30 50 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 4 2 < 2 < 2	2.55 2.42 2.56 2.47 2.81	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 19 18 19 16	44 46 35 42 50	91 139 134 126 119	2.70 3.24 3.52 3.04 3.44	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.05 0.06 0.06 0.07	< 10 < 10 < 10 < 10 < 10	1.48 1.80 1.85 1.58 1.91	435 480 535 480 535
1505 4 15055 15056 15057	205 205 205 205 205 2	94 294	< 5 < 5 < 5 < 5	< 0. < 0. < 0. < 0.	2	2.69 2.93 2.84 3.04	5 5 5 5	70 80 90 190	< 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2	3.02 5.22 3.88 4.66	< 0.5 < 0.5 < 0.5 < 0.5	18 25 21 23	60 97 74 75	146 155 160 152	3.50 4.32 4.61 5.26	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.09 0.19 0.20 0.35	< 10 10 10 10	2.11 2.69 2.45 2.56	560 855 775 965
																			. 0	->-	4	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK MCLINTOCK

Page Number :1-B
Total Pages :1
Certificate Date: 19-MAR-92
Invoice No. :19212265
P.O. Number :

:GZ Account

					•					Com	nems.	CC. JAC	K WICLIN	IOCK				
											CE	RTIF	CATE	OF A	NALY	/SIS	A9212265	
SAMPLE	PREP CODE		Mo pm	Na %	Ni ppm	Pbw B	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	ppm u	ppm v	ppm W	Zn ppm		
15019 15020	205 294 205 294		2	0.06 0.05	21 23	1610 1470	6 16	5 5	6 6		< 0.01 < 0.01	< 10 < 10	< 10 < 10	58 79	< 10 < 10	152 134		
15021	205 294		1	0.04	26	1000	12	< 5	7	166	0.06	< 10	< 10	109	< 10	140		
15022	205 294	1	1	0.05	57	1190	2	< 5	15	202	0.20	< 10	< 10	192	< 10	74		
15023	205 294		1	0.05	69	1200	< 2	< 5	16	240	0.24	< 10	< 10	197	< 10	84		
5024	205 294		1	0.07	65	1230	< 2	< 5	8	99	0.33	< 10	< 10	163	< 10	66		
.5025 .5026	205 294 205 294		1	0.06 0.06	20 58	1400 1030	6 < 2	< 5 < 5	8 15	120 180	0.23 0.25	< 10 < 10	< 10 < 10	125 189	< 10 < 10	74 78		
15020	205 294		i	0.06	48	1000	2	< 5	22	200	0.23	< 10	< 10	201	< 10	72		
15028	205 294		ī	0.04	52	810	< 2	< 5	19	221	0.11	< 10	< 10	162	< 10	68		
15029	205 294		1	0.03	76	690	2	< 5	18	239	0.01	< 10	< 10	93	< 10	50		
15030	205 294		2	0.05	26	1040	< 2	< 5	14	202	0.05	< 10	< 10	126	< 10	50		
L5031 L5032	205 294 205 294		2 2	0.12 0.10	16 8	1560 1620	< 2 2	< 5 5	11 11	158 115	0.33 0.27	< 10 < 10	< 10	195 195	< 10 < 10	78 78		
.5033	205 294		9	0.05	14	980	2	< 5	15	186	0.12	< 10	< 10 < 10	149	< 10	78 56		
.5034	205 294		1	0.08	10	990	< 2	< 5	11	183	0.31	< 10	< 10	168	< 10	70		
15035	205 294		6	0.13	10	1070	< 2	< 5	12	245	0.43	< 10	< 10	191	< 10	64		
15036	205 294		22	0.05	15	980	2	< 5	15	227	0.05	< 10	< 10	132	< 10	56		
15037 15038	205 294 205 294		6 9	0.07 0.10	20 11	1130 1100	2 < 2	< 5 < 5	12 10	156 216	0.22 0.33	< 10 < 10	< 10 < 10	157 157	< 10 < 10	60 60		
15039	205 294		8	0.05	7	1430	2	< 5	7	148	0.06	< 10	< 10	90	< 10	56		
15040	205 294		10	0.06	14	1110	6	< 5	16	154	0.08	< 10	< 10	154	< 10	98		
15041	205 294		8	0.05	13	940	< 2	< 5	16	156	0.07	< 10	< 10	152	< 10	82		
15042	205 294		7	0.06	28	1150	2	< 5	13	257	0.27	< 10	< 10	156	< 10	78		
15043	205 294		3	0.03	26	1290	4	< 5	14	170	0.02	< 10	< 10	166	< 10	80		
.5044	205 294	<	1	0.07	15	1430	< 2	< 5	14	252	0.29	< 10	< 10	182	< 10	82		
.5045	205 294	1	1	0.08	24	1240	< 2	< 5	13	331	0.34	< 10	< 10	173	< 10	62		
.5046	205 294		1	0.07	16	1270	< 2	< 5	10	311	0.34	< 10	< 10	171	< 10	58		
5047 5048	205 294 205 294		1	0.09 0.08	10 14	1470 1600	< 2 < 2	< 5 < 5	9 7	136 168	0.31 0.28	< 10 < 10	< 10 < 10	178 132	< 10 < 10	56 54		
5049	205 294		1	0.08	11	1330	4	< 5	7	191	0.27	< 10	< 10	117	< 10	44		
.5050	205 294		ī	0.10	16	1340	2	< 5	8	162	0.30	< 10	< 10	133	< 10	46		
15051	205 294		1	0.10	11	1430	2	< 5	8	181	0.32	< 10	< 10	152	< 10	48		
15052	205 294		1	0.11	11	1500	< 2	< 5	8	178	0.33	< 10	< 10	146	< 10	44		
L5053	205 294	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	0.11	15	1320	< 2	< 5	10	145	0.33	< 10	< 10	160	< 10	46		
5054	205 294		1	0.08	18	1380	< 2	< 5	11	177	0.30	< 10	< 10	161	< 10	52		
15055	205 294		1	0.04	22	1300	< 2	< 5	21	236	0.20	< 10	< 10	170	< 10	58		
15056	205 294 205 294		1	0.09	24 24	1190	< 2	< 5 < 5	16 19	170	0.27	< 10	< 10	201 211	< 10	68 68		
19091	205 294	`	1	0.08	24	1160	< 2	₹ 5	13	129	0.22	< 10	< 10	211	< 10	80		
15057	205 294			0.00	24	1100	ν 2	\ 3	13	123	0.22	< 10	< 10	211	< 10	66		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK MCLINTOCK

Page Number : 1-A
Total Pages :1
Certificate Date: 22-MAR-92
Invoice No. : 19212364
P.O. Number : NONE

Account :GZ

											CE	RTIFI	CATE	OF A	NAL'	YSIS		A 9212	364		
Sample	PREP CODE		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg €	Min PPm
15058 15059 15060 15061	205 2 205 2 205 2 205 2	94 94	< 5 < 5 < 5 < 5	0.2 0.4 0.2 0.4	0.76 0.54 0.75 0.71	10 5 5 40	450 320	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	3.75 1.04	< 0.5 0.5 < 0.5 < 0.5	13 14 11 12	79 58 116 67	97 148 86 334	2.68 3.42 2.05 3.06	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.27 0.26 0.34 0.31	10 10 10 < 10	1.49 2.09 1.13 1.00	1070 1795 1095 1360

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC

V7Y 1G5

Project: 9021 Comments: CC: JACK MCLINTOCK

Page Number :1-B
Total Pages :1
Certificate Date: 22-MAR-92
Invoice No. :19212364
P.O. Number :NONE
Account :GZ

									CI	ERTIF	CATE	OF A	NALY	'SIS	A9212364
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm P	Pb pm	Sb ppm	Sc ppm	Sr Ti	Tl ppm	bbur A	bbw A	ppm W	Zn ppm	
.5058 .5059 .5060 .5061	205 294 205 294 205 294 205 294	5 1 8 4	0.04 0.04 0.03 0.02	42 36 114 151	590 730 210 250	< 2 2 < 2 4	< 5 < 5 < 5 5	6 5 4	132 0.01 284 < 0.01 87 0.01 79 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	52 42 38 33	< 10 < 10 < 10 600	50 70 104 312	

SAMPLE

15062

15063

15064

15065

15066

15067

15068

15069

15070

15071

15072

15073

15074

15075

15076

15078

15080

15082

15084

15086

15088

15090

15092

15094

15096

15098

15100

15102

PREP

CODE

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294

205 294 Au ppb

FA+AA

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

< 5

Chemex Labs Ltd.

Al

용

0.61

1.55

1.32

2.07

1.91

1.59

1.56

1.65

1.68

1.58

1.47

1.61

1.50

1.35

0.99

0.71

0.57

0.50

0.56

0.64

0.84

0.83

1.24

0.87

0.59

0.52

0.50

0.92

As

ppm

35

10

10

< 5

10

35

< 5

40

35

35

5

5

15

10

15

70

40

15

55

45

15

5

20

45

45

25

25

30

Ba

ppm

290

370

420

300

360

450

360

430

340

250

240

230

260

200

160

1300

960

500

240

510

670

340

330

460

590

660

Вe

ppm

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5 < 0.5

< 0.5

0.5

2

6

3.41

2.93

0.88

0.5

< 0.5

< 0.5

200 < 0.5

190 < 0.5

< 0.5

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Ag

ppm

< 0.2

< 0.2

< 0.2

0.2

0.4

0.2

0.2

0.4

0.2

0.2

< 0.2

< 0.2

< 0.2

0.2

0.8

1.8

0.8

0.8

1.4

1.8

0.4

1.0

0.2

0.8

< 5 < 0.2

< 5 < 0.2

< 5 < 0.2

< 0.2

RIO ALGOM EXPLORATION INC To: P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021

Comments: CC: JACK MCLINTOCK

Page Number :1-A Total Pages

Certificate Date: 25-MAR-92 Invoice No. : I 9212500

P.O. Number Account

:GZ

CERTIFICATE OF ANALYSIS A9212500 Βi Ca CdCo CrCu Fe Ga Ħσ K La Mg Mn 용 용 ppm 용 ppm ppm ppm ppm€ ppm ppm ppm ppm 1.53 307 3.81 < 1 0.21 10 1.09 1550 2 < 0.5 22 146 < 10 4 0.79 < 0.5 11 125 80 2.27 < 10 < 1 0.69 10 1.30 875 1.16 < 0.5 10 92 93 2.38 < 10 < 1 0.48 10 1.26 730 4 175 0.96 10 1.51 680 0.46 < 0.5 10 81 2.43 10 < 1 142 2.39 10 0.79 10 1.43 775 < 0.5 79 < 1 2 0.67 11 2.34 0.63 10 1.35 870 < 0.5 11 136 84 < 10 < 1 2 0.89 130 76 2.12 < 10 < 1 0.59 10 1.37 1025 2 0.96 < 0.5 11 122 85 2.36 10 0.72 10 1.27 840 2 0.90 < 0.510 < 1 1.33 780 < 2 0.80 < 0.510 137 92 2.67 10 < 1 0.74 10

	4	0.62	< 0.5	12	128	89	2.64	10	< 1	0.71	10	1.30	975
_	2	1.09	< 0.5	12	139	201	2.50	10	< 1	0.51	10	1.37	740
	< 2	0.84	< 0.5	14	142	230	2.59	10	< 1	0.61	10	1.42	8 0 5
	4	1.17	< 0.5	10	126	102	2.26	10	< 1	0.70	10	1.37	890
	2	1.11	< 0.5	12	110	95	2.41	10	< 1	0.64	10	1.30	820
	2	1.39	< 0.5	11	104	86	2.52	< 10	< 1	0.43	10	1.21	1165
_	2	1.87	< 0.5	11	43	69	2.06	< 10	< 1	0.20	< 10	1.33	890
	2	2.09	< 0.5	12	71	89	2.15	< 10	< 1	0.26	< 10	1.28	1315
	< 2	2.57	< 0.5	14	34	151	3.15	< 10	< 1	0.23	< 10	1.45	1540
	< 2	1.50	4.5	12	71	99	2.23	< 10	1	0.27	< 10	0.84	715
	< 2	1.35	4.0	11	81	98	2.76	< 10	< 1	0.28	< 10	0.77	495
	< 2	1.07	3.5	11	92	75	2.61	< 10	< 1	0.33	10	1.26	760
	< 2	1.01	< 0.5	13	77	84	2.69	< 10	< 1	0.39	10	1.39	1760
	< 2	0.66	4.5	8	73	75	2.81	< 10	< 1	0.52	10	0.84	395
	< 2	2.27	6.5	11	118	101	2.77	< 10	< 1	0.34	< 10	1.27	510
	2	2.42	3.0	12	80	106	2.71	< 10	< 1	0.26	< 10	1.26	515

2.29

2.42

2.66

< 10

< 10

< 10

92

89

92

70

95

88

9

11

13

CERTIFICATION:

< 1

< 1

< 1

0.19

0.23

0.30

< 10

< 10

10

1.86

1.97

1.33

710

2030

1305

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK MCLINTOCK

Page Number :1-B Total Pages :1 Certificate Date: 25-MAR-92 Invoice No. :19212500

P.O. Number

Account :GZ

											CE	RTIFI	CATE	OF A	NAL	/SIS	A9212500
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sb	Sc ppm	Sr ppm	Ti %	Tl ppm	ppm U	ppm V	ppm W	Zn ppm	
15062 15063 15064 15065 15066	205 29 205 29 205 29 205 29 205 29	4	5 4 4 6 5	0.01 0.01 0.02 0.03 0.02	80 74 88 101 96	420 340 310 290 330	54 12 18 8 8	< 5 < 5 < 5 < 5 < 5	4 6 5 8 7	167 < 83 114 63 81	0.01 0.04 0.01 0.07 0.05	10 10 10 10	< 10 < 10 < 10 < 10 < 10	17 47 41 79 69	300 < 10 < 10 < 10 < 10	164 106 122 104 102	
15067 15068 15069 15070 15071	205 29 205 29 205 29 205 29 205 29	4	4 4 4 9 10	0.02 0.02 0.02 0.03 0.02	111 64 111 114 133	280 260 270 360 280	4 4 10 4 6	< 5 < 5 < 5 < 5	7 6 6 7 6	119 85 125 95 80	0.03 0.04 0.03 0.05 0.04	10 10 10 10 10	< 10 < 10 < 10 < 10 < 10	57 48 59 71 56	< 10 < 10 < 10 < 10 < 10	122 78 122 110 114	
15072 15073 15074 15075 15076	205 29 205 29 205 29 205 29 205 29	4	5 4 4 4 3	0.02 0.02 0.03 0.03 0.03	104 114 62 60 51	400 410 340 370 340	8 2 8 6 2	< 5 < 5 < 5 < 5	6 6 6	86 78 112 125 140	0.03 0.04 0.06 0.06 0.02	10 10 10 10	< 10 < 10 < 10 < 10 < 10	63 69 56 54 48	100 200 < 10 < 10 < 10	176 200 94 78 64	
15078 15080 15082 15084 15086	205 29 205 29 205 29 205 29 205 29	4	2 2 4 28 24	0.01 0.01 0.01 0.01 0.02	61 38 33 81 81	310 360 1020 390 620	4 8 6 10 14	< 5 < 5 < 5 < 5 < 5	4 5 6 4 4	250 < 297 < 256 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	10 20 20 20 20	< 10 < 10 < 10 < 10 < 10	17 16 19 46 40	< 10 < 10 < 10 < 10 < 10	66 62 68 360 320	
15088 15090 15092 15094 15096	205 29 205 29 205 29 205 29 205 29	4	21 2 24 39 38	0.01 0.02 0.02 0.02 0.02	52 72 58 87 70	310 250 750 910 1180	18 16 6 12 6	< 5 < 5 < 5 < 5	5 5 6 6	152 < 163 < 241 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	10 10 10 20 10	< 10 < 10 < 10 < 10 < 10	49 22 56 69 57	< 10 10 < 10 < 10 < 10	330 154 318 392 242	
15098 15100 15102	205 29 205 29 205 29	4	7 5 < 1	0.01 0.01 0.01	61 60 106	1530 200 200	12 12 14	< 5 5 < 5	4 4 5	275 <	< 0.01 < 0.01 < 0.01	10 10 10	< 10 < 10 < 10	17 22 18	< 10 < 10 10	144 86 152	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK McLINTOCK

Page Number :1-A Total Pages :1 Certificate Date: 02-APR-92 Invoice No. :19212668 Invoice No. P.O. Number

Account

:GZ

											CE	RTIF	CATE	OF A	NAL'	YSIS	ı	A9212	668		
Sample	PRE		ya+yy	Ag ppe	Al.	As ppm	Ba ppm	Be ppm	Bi Ppa	Ca.	Cd ppm	Co	Cr ppm	Cu ppa	Te	Ga. ppm	Eg ppm	K %	La ppm	Mg 8	Mn
15103 15104 15105 15106 15107	205 205 205 205 205 205	294 294 294	< 5 < 5 < 3 < 5 < 5	0.6 0.2 < 0.2 < 0.2 < 0.2	1.58 1.33 0.87	15 5 < 5 25 20	290 180 250 360 240	0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	3.89 3.73	< 0.5 < 0.5 0.5 < 0.5 < 0.5	15 20 18 20 14	32 21 31 44 45	69 165 126 201 86	3.83 4.96 4.47 3.05 2.97	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.22 0.28 0.22 0.21 0.20	10 10 10 10 10	1.43 1.79 1.60 0.68 0.66	1675 1190 1700 1445 1240
15108 15109 15110 15111 15112	205 205 205 205 205 205	294 294 294	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 0.2	1.85 1,55 1.62	20 15 20 35 35	220 450 300 420 760	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	3.91	0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 14 17 12 11	34 37 38 39 45	99 87 100 97 80	3.99 3.70 4.10 3.48 2.95	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.24 0.16 0.23 0.33 0.22	< 10 10 10 10 < 10	0.94 1.88 1.44 1.57 1.21	1665 1295 1370 2650 1600
15113 15114 15115 15116 18117	205 205 205 205 205 205	294 294 294	< 5 < 5 < 5 < 5 < 5	0.4 0.6 0.4 0.6	0.84 0.86 0.95	35 45 30 30 40	420 510 890 650	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.67 1.96 1.74 2.13 2.44	1.5 1.5 < 0.5 0.5 < 0.5	10 11 7 8 13	41 45 50 72 55	83 89 57 69	2.84 2.77 1.93 2.11 3.15	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.23 0.23 0.24 0.21 0.22	10 < 10 10 < 10	1.17 1.34 1.27 1.37 1.62	2060 2100 725 1165 3680
15118 15119 15120 15121	205 205 205 205 205	294 294	< 5	0.4 < 0.2 < 0.2 < 0.2	2.50 1.95	20 10 10 15	540 140 270 90	< 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	2.67 9.16 4.45 3.53	1.0 < 0.5 < 0.5 < 0.5	10 22 15 13	49 141 65 61	90 63 80 110	2.57 4.65 3.74 3.78	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.20 0.14 0.24 0.20	10 10 10 10	1.32 2.66 1.75 1.40	3440 925 880 590
														~~a,	. *						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10336, PACIFIC CENTRE 1660 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number :1-B Total Pages :1 Certificate Date:02-APR-92 Invoice No. :19212668 :GZ

P.O. Number Account

Project: 9021 Comments: CC: JACK McLINTOCK

									CE	RTIF	CATE	/SIS	A9212668		
Sample	PREP CODE	Мо Мо	Na %	Ni PP	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti	Tl ppm	ppm. U	Piber A	ppm W	Zn ppa	
5103 5104 5105 5106 5107	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 1	0.03 0.03 0.04 0.01 0.02	22 8 18 91 39	750 1850 1240 380 440	10 8 14 26 32	5 < 5 5 < 5 < 5	8 9 6 2 2	185 < 0.01 299 0.01 240 < 0.01 85 < 0.01 99 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	54 106 75 22 22	< 10 < 10 < 10 350 < 10	92 82 94 180 132	
108 109 110 111 111	205 294 205 294 205 294 205 294 205 294	3 < 1 3 < 1 1	0.02 0.02 0.02 0.02 0.02	44 25 38 40 38	560 590 640 490 360	18 18 20 20 12	< 5 < 5 < 5 < 5 < 5	4 6 5 6 5	151 < 0.01 164 < 0.01 164 < 0.01 146 < 0.01 168 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	39 73 55 47 41	< 10 < 10 < 10 < 10 < 10	148 90 108 114 126	
113 114 115 116 117	205 294 205 294 205 294 205 294 205 294	14 7 < 1 1 4	0.01 0.01 0.01 0.01 0.01	57 48 42 45 63	340 320 320 610 420	18 10 6 6 20	< 5 5 < 5 5 5	4 5 4 4 5	201 < 0.01 152 < 0.01 149 < 0.01 200 < 0.01 200 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	46 46 25 30 50	< 10 < 10 < 10 < 10 < 10	244 258 120 122 194	
5118 5119 5120 5121	205 294 205 294 205 294 205 294	8 < 1 < 1 < 1	0.01 0.04 0.03 0.04	72 70 39 25	310 550 780 1190	16 4 12 < 2	15 < 5 5 10	4 17 8 6	192 < 0.01 243	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	31 141 94 128	< 10 < 10 < 10 < 10	214 56 100 46	
													. 1		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK McCLINTOCK

CERTIFICATE OF ANALYSIS

Page Number :1-A Total Pages :1 Certificate Date: 03-APR-92

A9212718

Invoice No. P.O. Number :19212718

Account :GZ

Sample	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba. ppm	Be ppm	Bi ppm	Ca %	Cd.	Co	Cr ppm	Cu Ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn
15122	205 294		< 0.2	1.54	35	70	< 0.5	< 2	1.23	< 0.5	10	76	66	2.72	< 10	< 1	0.13	10	0.87	485
15123	205 294		< 0.2	1.49	165	30	< 0.5	< 2	1.28	< 0.5	10	93	69	3.43	< 10	< 1	0.12	< 10	1.01	300
15124	205 294		< 0.2	1.43	45		< 0.5	< 2		< 0.5	9	74	55	3.05	< 10	< 1	0.10	< 10	0.94	255
15125 15126	205 294 205 294		< 0.2 < 0.2	1.78 1.85	55 90	30 30	< 0.5 < 0.5	< 2 < 2	0.97 1.32	< 0.5 < 0.5	12 10	74 83	65 61	4.21 4.13	< 10 < 10	< 1 < 1	0.13 0.20	< 10 < 10	1.30 1.29	290 295
15127	205 294		< 0.2	1.96	140	30	< 0.5	2	1.08	< 0.5	12	80	68	4.56	< 10	< 1	0.13	< 10	1.52	380
15128	205 294		< 0.2	2.61	35	50	< 0.5	< 2	2.71		21	137	80	4.79	< 10	< 1	0.17	10	2.27	750
15129	205 294		< 0.2	2.32	25	80	0.5	< 2		< 0.5	13	67	104	4.01	< 10	< 1	0.23	10	1.68	615
15130	205 294		< 0.2	2.52	40	60	< 0.5	< 2		< 0.5	15	89	122	4.46	< 10	< 1	0.18	10	2.03	605
15131	205 294	< 5	< 0.2	2.56	30	180	< 0.5	< 2	2.08	< 0.5	14	69	81	4.04	< 10	< 1	0.29	10	2.00	620
15132	205 294		< 0.2	2.55	30		< 0.5	< 2		< 0.5	17	62	138	4.38	< 10	< 1	0.24	10	2.24	410
15133	205 294		< 0.2	2.36	15		< 0.5	< 2	2.02	0.5	14	69	91	4.27	< 10	< 1	0.14	10	2.02	650
15134 15135	205 294		< 0.2	1.96	205		< 0.5	< 2		< 0.5	13	56	80	3.65	< 10	< 1	0.16	10	1.47	605
15135 15136	205 294 205 294		< 0.2 < 0.2	1.54 4.28	10 4 5	120 170	< 0.5 < 0.5	< 2 < 2	1.22 4.85	< 0.5 < 0.5	13 33	63 235	108 177	3.19 7.57	< 10 < 10	< 1 < 1	0.22 0.45	10 20	1.10 3.80	465 1145
15137	205 294		< 0.2	2.14	40		< 0.5	< 2		< 0.5	19	115	91	4.38	< 10	< 1	0.18	10	1.91	530
15138	205 294		< 0.2	0.90	35		< 0.5	< 2		< 0.5	12	71	99	2.16	< 10	< 1	0.13	10	0.60	350
15139 15140	205 294 205 294		< 0.2	1.68	20		< 0.5	4		< 0.5	13	67	125	3.75	< 10	< 1	0.25 0.37	< 10 10	1.57	375
15141	205 294		< 0.2 < 0.2	1.55 2.01	25 25	90	< 0.5 < 0.5	< 2 < 2	10.95	< 0.5 < 0.5	20 17	41 57	177 4 33	4.65 6.15	< 10 < 10	< 1 < 1	0.06	10	1.16 0.59	830 3650
15142	205 294		< 0.2	1.27	20		< 0.5	< 2	7.85	1.0	5	50	102	3.65	< 10	< 1	0.18	10	1.11	2560
15143	205 294		0.2	1.13	55		< 0.5	< 2	6.79	< 0.5	15	46	171	3.68	< 10	< 1	0.40	10	1.16	1350
15144	205 294		< 0.2	0.77	25	-	< 0.5	2		< 0.5	7	15	23	2.72	< 10	< 1	0.26	10	0.62	800
15145 15146	205 294 205 294		< 0.2 0.2	0.89 0.55	10 10		< 0.5 < 0.5	6 < 2	7.24 3.17	< 0.5 < 0.5	7 5	41 26	74 64	2.26 1.01	< 10 < 10	< 1 < 1	0.50 0.16	10 10	1.07 0.77	875 255
15147	205 294		< 0.2	1.28	15	70	< 0.5	2	3.89	< 0.5	11	108	26	1.28	< 10	< 1	0.09	10	1.08	300
15148	205 294		0.2	1.30	25		< 0.5	2		< 0.5	9	113	64	1.95	< 10	< 1	0.10	10	1.15	915
15149	205 294	< 5	0.2	1.33	20	130	< 0.5	4	7.05	< 0.5	8	102	59	1.50	< 10	< 1	0.11	10	1.00	585
		1																		
															,					
		ł																		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Project: 9021 Comments: CC: JACK McCLINTOCK

Page Number :1-B Total Pages :1 Certificate Date:03-APR-92

Invoice No. P.O. Number : I 9212718

Account :GZ

,	<u></u>				. 1985	-				CE	RTIF	CATE	A9212718			
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sp Sp	Sc ppm	Sr ppm	Ti %	Tl ppm	ppm U	bbar A	bbu M	Zn ppm	
15122 15123 15124 15125 15126	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1	0.13 0.10 0.10 0.07 0.09	23 24 18 25 23	1380 360 380 390 650	< 2 6 4 < 2 4	< 5 < 5 < 5 < 5	5 10 8 10 10	139 31 31 26 38	0.23 0.24 0.22 0.25 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	123 108 92 123 121	< 10 < 10 < 10 < 10 < 10	54 44 56 62 62	
5127 5128 5129 5130 5131	205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 24 < 1	0.08 0.09 0.11 0.08 0.10	27 62 26 41 27	310 780 1400 1300 1310	4 4 < 2 6 < 2	< 5 < 5 < 5 < 5 < 5	12 10 8 11 10	29 65 100 94 106	0.28 0.34 0.26 0.24 0.26	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	153 185 157 213 170	< 10 < 10 < 10 < 10 < 10	80 108 108 126 102	
5132 5133 5134 5135 5136	205 294 205 294 205 294 205 294 205 294	5 < 1 6 41 < 1	0.08 0.11 0.09 0.11 0.18	38 28 23 27 83	1110 1170 1170 1370 3150	2 4 < 2 4 6	< 5 < 5 < 5 < 5 < 5	9 9 7 4 10	85 85 85 74 197	0.17 0.13 0.16 0.21 0.33	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	168 167 156 139 306	< 10 < 10 < 10 < 10 < 10	102 106 68 72 110	
5137 5138 5139 5140 5141	205 294 205 294 205 294 205 294 205 294	< 1 17 5 53 1085	0.10 0.10 0.09 0.09 0.02	47 44 29 21 20	1610 1010 1010 1010 920	< 2 < 2 12 18 2	< 5 < 5 < 5 < 5	5 3 8 7 7	61 48 53 322 166	0.20 0.17 0.19 0.06 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	177 125 172 119 104	< 10 < 10 < 10 < 10 < 10	70 80 92 104 82	
5142 5143 5144 5145 5146	205 294 205 294 205 294 205 294 205 294	295 13 2 1 2	0.06 0.05 0.08 0.03 0.03	18 44 4 20 20	1050 1030 950 800 850	18 6 4 < 2 4	< 5 < 5 < 5 5 < 5	9 7 5 4 1	222 421 359 425 80	0.10 0.03 0.01 0.08 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	112 72 57 56 20	< 10 < 10 < 10 < 10 < 10	138 62 40 78 52	
.5147 .5148 .5149	205 294 205 294 205 294	< 1 2 11	0.04 0.02 0.04	54 44 47	1690 1070 1170	< 2 4 < 2	< 5 < 5 < 5	2 4 2	156 377 255	0.13 0.12 0.14	< 10 < 10 < 10	< 10 < 10 < 10	59 61 57	< 10 < 10 < 10	26 44 30	
															· .	
														oraș,		