April 27, 1992

Martin C. Peter	LOG NO: 93 25 06 RD.
1373 Dovercourt Rd. North Vancouver, B.C.	ACTION:
Owner loperator author	
	FILE NO:
	LOG NO: OCT O 8 1900 RD.
Geophysical an	nd Geochertiona Last
Report of the	Axel 2 Claim
NTS 9	2P 9E FILE NO:
Lat. 51 degrees 33' N,	Long. 120 degrees 05' W

GEOLOGICAL BRANCH ASSESSMENT REPORT

22

Table of Contents

Introduction	1 📝
General	1
Property History	2 ,
Geology and Mineralization	З.,
Geophysical	5
Geochemical	7
Conclusions and Recommendations	7
Table 1 - Magnetometer Readings	9, 10 /
Statement of Expenditures	11
Statement of Qualifications	12 ,
References	13
Amendment to Report # 22296	14

April 27, 1992

Introduction

Twenty-four km. of line was chained and flagged over the entire Axel 2 claim near Clearwater, B.C. This was followed by a magnetometer survey and a localized VLF EM-16 survey. Several geochemical rock and soil samples were also taken and minor hand-trenching was carried out.

The Axel 2 claim was staked on May 25, 1991 to cover an interesting alteration zone which was uncovered by recent logging road construction. This alteration zone, which consists of chloritized basalt of the Fennell Formation, is well pyritized and contains variable amounts of chalcopyrite and sphalerite. The mineralization appears to be syngenetic with the host rock and may well be associated with massive sulphides. The presence of the Chu Chua massive sulphide (Cu-Zn) deposit 20 km. to the south, in a similar setting in basaltic rocks, provides a model for the possibility of further occurrences within the Fennell Formation.

The purpose of the present program is to define the extent and orientation of the alteration zone, as well as to search for further mineral occurrences in the region. To this end, Axel 3 to 7 were subsequently staked to cover possible strike extensions, as well as other areas of favorable geology.

<u>General</u>

The Axel group consists of 7 claims totaling 37 units in the Kamloops mining district (see fig. 2). All claims are owned by Martin C. Peter.

Name	type	# units	staking date
Axel 2	4-post	9	May 25, 1991
З	v 3	6	July 14, 91
4	· ·	6	Aug. 3, 91
5	• •	8	Aug. 4, 91
6	· ·	6	Oct. 13, 91
7	2-post	1	Oct. 13, 91
Fra	c 2-post	1	July 14, 91

The claims are as follows:

The Axel group is approximately 6 km. south of the town of Clearwater, B.C. and is easily accessible via the E. Blackpool logging road which leaves the main road on the east side of the North Thompson River just a few km. south of town.

The claims are situated on the west face of the valley slope at an altitude of between 900 and 1200 meters. Forest cover is mixed old growth. Weyerhaeuser Canada Ltd. has recently built a network of roads through the claims to gain access to scattered pockets of old growth Douglas Fir. Isolated patches of thick growth cedar saplings and alder thickets can hinder travel through the underbrush; however, these areas present no major problem. Most of the terrain slopes to the west on the Axel 2 and in a few places it is steep, although the entire claim is easily accessible.

Precipitation levels are much higher than in Kamloops and some years the snow persists until June at the higher elevations. Property History

A large portion of the Fennell Formation south of Clearwater and including the area of the Axel group, was covered by an airborne DIGHEM geophysical survey flown for Craigmont Mines Ltd. in 1979. In 1971-1972 Noranda undertook a work program on the Pest Claims, mainly in the headwater regions of Rennie and Bester Creeks, just NE of the Axel 2 claim. Several coincident copper and zinc soil anomalies were defined and an EM survey delineated several conductors, some related to the geochemical anomalies. A rough access road was pushed north from the McCarthy Mountain microwave station road, however, no follow-up work was subsequently recorded and the claims were allowed to lapse.

To the north of the Axel claim group, Nels Vollo did a geophysical-geochemical survey on his BN-1 to BN-3 claims during 1986-1987. This defined several distinct conductors, some of which are

apparently due to argillite. No major soil anomalies were uncovered and the claims were dropped.

There is no record of work having taken place on the Axel 2 claim, but approximately 900 m west of the Axel 2 LCP, and just north of the CL, some work has been done. The work was perhaps done during the 1920s or 1930s, to expose a sizeable quartz vein. Several pits were blasted on this decidedly barren-looking vein.

Geology and Mineralization

According to Schiarizza and Preto (1987), the Axel group is underlain by rocks of the lower Fennell Formation, which are Devonian to Permian in age. These include bedded chert, gabbro, diabase, pillowed basalt,clastic metasediments, guartz-feldspar porphry and intraformational conglomerate.

On the Axel claims basalt is the most common rock. It is typically aphanitic , exhibiting a pale grey-green coloration. Diorite and Argillite are also common rock types, but no bedded chert was noted as outcrop. Although none was seen in place , intra-formational conglomerate float is fairly common along the western boundaries of Axel 4 and 6. A 50m width of quartz-feldspar porphry is exposed as a small cliff on Axel 5, along the northern boundary of Axel 5, halfway between the two corner posts. From several argillite beds in the region strike appears to be between 340-360 degrees and dips are approximately 45 degrees to the east.

At this point in time three areas of specific interest exist on the Axel claim group. The most important of these is termed the GOSSAN zone, (see fig. 3) after a capping of ferricrete disturbed by road building activities. Road construction has uncovered a small area of mineralized basalt at the south-western corner of Axel 2 on L4N, 180 m west of the claim line. The basalt is characterized by a pervasive chlorite and epidote alteration, pyritization and the introduction of

з.

variable amounts of chalcopyrite and pyrrhotite. The sulphides are fine-grained and occur mainly in wispy veins, they are also disseminated, and coat fracture surfaces. In places where the basalt is very fractured, much of the pyrite has weathered producing material which is sooty black or sandy in appearance.

Quartz veins are not apparent in any of the outcrop exposures along the road. However, a few fragments of float uncovered on the side of the road, just to the south of the GOSSAN outcrop, consist of chunks of massive quartz and calcite up to 30 cm. in diameter. Within these chunks are disseminations and pockets of chalcopyrite and pyrrhotite, with some malachite staining.

On the strength of geophysical data (discussed later), a shallow pit was dug by hand downhill from the road, 170 m south-west of the GOSSAN outcrop. Here a layer of ferricrete lies below a thin organic layer and below this is rock similar to that exposed by the road. However, it is much more intensely mineralized and fractured, and a rosy colored sphalarite is in evidence. No sphalerite was noted in the rocks at the roadside.

South of the GOSSAN outcrop, mineralization is in evidence for 250m along the road, but it is sporadic. Unmineralized basalt separates two mineralized areas along this stretch. Much of the area is still covered with overburden, especially the area immediately to the south of the GOSSAN zone.

A second location of interest is what will be referred to as the NORTH zone. Although no bedrock exposure has been found here, large boulders of limonite-coated basalt and diorite are spread out along the main road, about 250m-350m north of Rennie Creek. These boulders and numerous other float rocks contain a fair amount of pyrite and minor chloropyrite.

Pyrrhotite is uncommon here but the pyrite, like that at the

GOSSAN zone, is fine-grained. Pieces of argillite float also contain chalcopyrite and a few pieces of highly silicified, sericitized (basalt protolith?) float were found, containing 5-10% pyrite and some associated chalcopyrite.

A third area of interest is present in the south-eastern section of the Axel 2 claim on L4N, on a small knoll by station 11+75 E. It was located due to a strong magnetic anomaly discovered from compass needle deviation, while flagging the line. There is some bedrock exposure at the site. This consists of basalt altered with pyrite and chlorite, giving it a spotted appearance. Cubic pyrite is also present, as well as a small amount of pyrrhotite and rare chalcopyrite. Geophysical definition with a magnetometer shows a ridge of high values trending E-SE for about 50m from station 11+75 E. Many of the magnetometer readings are quite high and there is an associated trough of low readings immediately adjacent to the north. 150 m south of this magnetic anomaly, by the west side of a short spur road leading off of the main road, a small vein or fracture, filled with fine-grained pyrite and chalcopyrite has been exposed. This vein seems isolated, as no other bedrock mineralization was noted in the immediate area. However, at the landing of the spur, several fist sized pieces of massive pyrrhotite float have been found. The pyrrhotite also contains some guartz and blebs of chalcopyrite. It can be postulated that the source of this float is the magnetic anomaly 175m to the north. Geophysical

In preparation for geophysical work, 24 km. of line was chained and flagged, essentially covering the entire Axel 2 claim (3N by 3E). The baseline is the western boundary of the claim and lines were run to the east at 100 m intervals towards the north. Stations were flagged along the lines at 25m intervals.

A hand held magnetometer survey, using a Geometrics 837 Unimag Proton Magnetometer, was completed over the entire grid (see Table 1). However, due to the time constraints a follow up EM survey using a Ronka EM-16 receiver, (NLQ Seattle Wash as transmitter) was only conducted over areas of selected magnetic disturbances. Significant magnetic anomalies were only obtained in 3 distinct areas. Namely, the previously mentioned Mag zone, the Gossan zone and the North zone. Other magnetic anomalies evident over the survey area are very localized and are not deemed significant at this time.

Gossan Zone

Magnetic anomalies in this area are probably caused by pyrrhotite. Several magnetic anomalies are present both east and west of the road, straddling the mineralized outcrops uncovered on the road. None of these anomalies are very intense, but a narrow anomalous zone spanning 100m in a north-south direction, (from L2N to 3N at approx 62 m west of the baseline) coincides exactly with a weak but definite EM anomaly (Fraser-filtered values) spanning 200m (from L2N to 4N)(see fig 4).

As previously mentioned a shallow pit was dug over these coincident anomalies at 23.5 m north of L250N station at 62.5 E, exposing mineralized rock similar to that uncovered at the road on L4N.

North Zone

The magnetic signature over the North zone differs from that over the Gossan zone, in that high values are very localized, not diffuse. There are two distinct narrow zones, both about 30m long and only 5m wide. Each flanks 2 separate weak EM anomalies which are about 150 m in length (see fig. 5).

These anomalies are of interest because they occur just to the west of the altered mineralized float rocks of the North zone. However, this relationship may be coincidental and the mag high may be

caused by intrusive sills of Gabbro. The EM anomalies may be registering conductive argillite, commonly present in the region.

Five rock samples and 4 soils were taken by the Gossan zone. Two rock samples were taken from the north zone and a rock sample was taken from the vicinity of the Mag zone, from chloritized basalts just off of the spur road.

Comments:

1) GOSSAN ZONE: all soils from the Gossan zone are anomalous for Cu and Zn. Sample #2 (3810 ppm) which was taken downslope from the pit, registered 2880ppm Cu and 1400 ppm Zn. However, whole rock analysis shows that barium is very low. There also seems to be no sodium depletion or potassium enrichment. Gossan rock samples taken from the road show elevated levels of Cu (as high as 2520 ppm) and moderately elevated levels of Zn (as high as 476 ppm). Once again whole rock analysis exhibits little sodium depletion.

2) NORTH ZONE: of the 2 rock samples taken, one originates from basalt float and the other from argillite float. Both show elevated levels of barium with the basalt sample yielding 1.475% Ba, 2.5% K20 (potassium enrichment) and 1.09% Na2O (sodium depletion). No copper or zinc values are available for this sample. The argillite sample contains elevated copper and zinc.

Conclusions and Recommendations

Several encouraging mineralized targets occur on the Axel 2 claim. The Gossan and the North zone are suggestive of mineralization associated with hydrothermal alteration. The Mag zone could be an intrusive, pyrrhotite-rich quartz vein.

Exploration here is still in it's infancy, with no detailed regional mapping having been carried out by the undersigned. No systematic exploration appears to have been done by previous claim

holders either and the surrounding area remains largely untested.

All three areas of interest mentioned warrant further investigation. The Gossan zone and North zone are deemed to have the most potential and in particular, the Gossan area requires further definition. The lack of geophysical anomalies limits the extent of this zone to the north and east. However, grid coverage should be expanded towards the west (on the Axel 5 claim) and to the south (on the Axel 3). Further hand-trenching is also recommended directly over the coincident mag and EM anomalies, to ascertain whether massive sulphides are present.

As for the North zone area, grid coverage should be expanded to the north, roughly on strike from the float occurrences. The presence of silicified mineralized rock could suggest the proximity of a favorable horizon, which may trend onto the Axel 4 and 6 claims. Consideration may also be given to hand-trenching the small, distinct magnetic anomalies west of the road to determine their cause.

Table 1 - Magnetometer Readings

Station	LIN	L2N	L3N	L4N	L5N	L6N	L7N	L8N	L9N	LION	L11N	L12N	L13N	LI4N	L15N
0+00 E	5765	5787	5764	5764	5761	5772	5772	5761	5763	5767	5766	5764	5771	5764	5760
25	66	88	57	62	60	71	69	65	58	68	61	63	62	62	56
50	66	55	61	62	62	72	71	62	56	68	61	64	63	57	52
75	64	5816	96	64	61	71	70	60	61	64	64	64	61	56	56
1+00	5764	5767	5756	5772	5761	5775	5768	5759	5761	5767	5766	5763	5758	5757	5753
25	68	84	65	42	61	72	70	61	60	56	60	63	60	61	56
50	54	77	74	61	61	72	68	61	58	64	67	64	63	55	56
75	98	76	67	55	64	70	68	56	58	64	62	64	62	57	55
2+00	5767	5784	5788	5755	5764	5773	5768	5759	5759	5764	5762	5764	5763	5756	5754
25	60	88	6.00	60	78	71	69	59	60	65	67.02	57	6,00	6700	39
50			67	57	81	72	67	50	59	60 64	43	50		45	47
75	54	70	27 23	52	70	72	70	27	50	20 20	23 21	27	50	50	75
13	70	77	63	55	77	73	70	00	76	OC.	01	02	75	90	73
3+00	5761	5778	5764	5760	5780	5771	5764	5758	5760	5765	5762	5763	5764	5758	5751
25	60	80	- 64	52	- 79	75	70	56	56	65	64	62	56	70	45
50	58	75	63	61	78	71	72	61	60	63	62	-62	69	59	67
75	59	77	65	52	80	69	72	60	59	67	62	65	34	65	75
4+00	5761	5777	5773	5759	5782	5769	5764	5756	5757	5767	5760	5764	5757	5760	5771
25	55	75	73	57	80	69	61	58	54	64	65	66	54	61	52
50	51	84	67	55	78	71	61	55	49	61	66	61	56	55	55
75	60	45	68	59	79	68	63	58	52	63	64	56	57	60	63
5+00	5758	5776	5763	5761	5780	5771	5762	5757	5751	5766	5763	5761	5760	5757	5753
25	58	74	64	55	79	68	64	60	47	68	63	58	61	55	50
50	59	63	64	62	79	71	60	57	51	68	64	61	60	56	48
75	64	71	63	60	82	71	62	59	50	65	65	61	57	58	47
6+00	5759	5776	5763	5755	5778	5771	5761	5760	5751	5764	5764	5764	5761	5762	5748
25	50	72	4700	57	78	77	10701	57	49	5704	5704 44	40,04 44	5701 61	5700	04740
50		76	47	50	95	7.0 2.9	50	50	51	45		100 100	49	54	55
75	65	72	64	58	85	70	63	56	49	61	65	64	61	56	57
7+00	5750	5771	5763	5740	5700	5770	5750	5755	5747	5711.	57/0	57/7	574.7	C757	enee
25	2/2/	3771	3766	3780	- 2003 - 00	3770	2727	5755	1747	3704	1/03	J/03 /E	347C	1111	1/10
50	04 71	77	73	10	02	71	00 67	57	Ji Ei	00	03 /E	60	46	3/	20
30	01	73	00	00	03	71		22	21	04	63	03	OV		2/
73	01	72	60	28	82	71	63	27	20	64	62	64	61	36	27
8+00	5761	5775	5759	5758	5781	5771	5761	5755	5751	5769	5761	5763	5759	5752	5754
25	60	76	70	55	82	71	59	55	53	63	63	62	56	57	56
50	60	78	65	52	80	71	63	54	52	65	60	61	60	59	55
75	59	76	64	61	79	72	62	54	50	63	63	62	57	60	54
9+00	5762	5774	5762	5759	5778	5771	5761	5754	5749	5765	5760	5763	5758	5760	5752
25	5800	5773	62	56	78	70	60	57	50	63	60	62	57	58	55
50	5761	74	64	54	56	69	61	57	48	68	61	62	57	57	55
75	62	75	64	49	69	69	63	54	51	64	63	62	62	60	54
10+00	5761	5775	5762	5757	5776	5772	5763	5754	5750	5764	5763	5764	5742	5743	5750
25	62	78	67	55	72	72		59	4A	5,07 67	57,5	44 44	0,00	5700	54
50	59	RR	65	59	74	70	47 7	57	47	ДД	64	04 04	50	50	54
75	62	65	66	55	73	69	64	56	49	64	61	60	59	57	57

11+00 5761 5779 5768 5762 5773 5771 5762 5757 5749 5767 5762 5760 5758 5758 5755 62 5336 12+00 5754 5777 5763 5180 5777 5767 5766 5756 5748 5763 5761 5763 5761 5758 5754 64 5630 13+00 5746 5777 5763 5758 5772 5769 5763 5753 5752 5765 5758 5761 5762 5753 5752 14+00 5762 5779 5763 5759 5776 5769 5766 5759 5753 5768 5765 5762 5758 5761 5754 15+00 5758 5779 5762 5758 5777 5768 5763 5756 5755 5764 5764 5757 5758 5756 5756

Statement of Expenditures

All work completed by Martin C. Peter: 1.) Grid chaining and flagging, VLF-EM survey and magnetometer survey, hand-trenching & geochemical sampling (18 days total during period from Aug. 5, 1991 - Oct 13, 1991). 18 days @ \$200.00 = \$3,600.00 2.) Report preparation -3 days @ \$200.00 = \$600.00 3.) Geochemical analysis a) 1 rock (24 elements) - Chemex Labs Ltd. -\$18.75 b) 2 whole rock (& 8 elements) - Chemex Labs Ltd. -\$58,70 c) 1 whole rock (& 3 element assay) - Min-en Labs Ltd.-\$49,50 d) 4 soil samples - Min-en Labs Ltd.-\$25.00 4.) Vehicle Expenses - 5 round trips from Vancouver to Clearwater and to & from claim area. 5,000 km. a \$,20 = \$1,000.00 ---5.) Flagging tape and topofil thread and other supplies -\$244.54 6.) Geometrics 837 Unimag Magnetometer rental - 1 week -\$234.75 7.) Accommodation -\$126.00 8.) Meals -\$360.00 Total \$6,317.24 =========

Statement of Qualifications

I Martin C. Peter of the District of North Vancouver, British Columbia do hereby state that:

- I am a graduate of the University of British Columbia with a B.Sc. degree (zoology) obtained in 1985.
- 2) I have worked a total of 8 field seasons in mineral exploration throughout B.C. as a Geologist's Assistant for: Lacana Mining Corp., Newmont Mines Ltd., Brinco mining Ltd., Corporation Falconbridge Copper Ltd. (now Minnova) and the Hughes-Lang Group.
- 3) Since 1988, I have actively carried out mineral exploration within the Fennell Formation, south of Clearwater and northeast of Barriere, British Columbia.

M. Peter

<u>References</u>

- Shiariazza, P. and Preto, V.A. (1987):
 Geology of the Adams Plateau Clearwater Vavenby Area, B.C.
 Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2
- 2) Craigmont Mines Ltd. AR 7659, 1979.
- 3) Noranda Exploration Ltd. AR 3818, 1972.
- 4) N.B. Vollo, AR 15398, 1986.
- 5) N.B. Vollo, AR 160042, 1987.

Sept. 16, 1992

Amendment to Report # 22296

A Unimag Model G-87 portable proton magnetometer was used throughout the magnetic survey undertaken on the Axel-2 claim. The Unimag provides 10 gamma resolution over a range of 20,000 to 100,000 gammas, and the instrument measures total field intensity. The operating principle behind the proton magnetometer is well documented in literature and will not be discussed in this report.

Data is displayed on a 4 digit LED readout after pressing a button on top of the Unimag. Since the instrument has a 10 gamma resolution, only the 4 most significant digits are displayed. For example if the earth's field intensity in a given location is 57560 gammas, the Unimag readout will display the number 5756, with the least significant digit being omitted. However, the readout 5756 actually represents a 10 gamma measurement of the earth's field ranging from 57555 gammas to 57565.

Values obtained were not corrected for diurnal variation. The lack of correction is apparent on some lines where the readings were taken on consecutive days; however, these anomalous conditions are readily ascertained as being an artifact of the lack of diurnal correction. Accuracy was not a major concern in this survey since the target being pursued, (a volcanogenic massive sulphide in a mafic host) will likely contain at least locally elevated concentrations of magnetic minerals, which show up quite well with the Unimag. While this may not hold true for every VMS occurrence in this environment the Unimag was chosen as being a good regional prospecting tool given the limited budget available for the project.

4

. . .

ł

MIN-EN LABS ---- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 10+0859-RL2 DATE: 91/08/27 * ROCK * (ACT:F26)

•							,	,									
SAMPLE NUMBER		AL203	BA %	CAO X	FE203	к20 %	HGC	с К	MHO2	NA20 %	P205 %	\$102 X	T102 %	\$ %	TOT (%)		
10307 N. 2015 10308 BOSCAN 10309 BOSCAN 10310 AALA OF PO FLAT		11.98 15.13 15.30 13.08	1.475 .005 .005 .005	4.06 7.48 6.20 9.86	9.55 12.80 17.13 11.29	2.50 .09 .05 .01	4.47 5.48 3.75 6.63	7 3 5	.17 .14 .19 .19	1.09 4.27 2.65 3.03	.01 .07 .10 .07	57.14 46.88 45.31 43.29	1.09 1.73 1.86 1.57	2.50 3.05 3.92 .33	96.05 97.12 96.46 89.35		
	•		WH	OLE	ROCK						· .						
	:		Place	$\frac{1}{2}$	1												
•															:		
1. 1							Ĭ	•		, k					•		

MIN-EN LABS ---- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1V-0859-RJ2 DATE: 91/08/27 * ROCK * (ACT:F31)

			(004)		~					
SANPLE NUNBER	AG PPM	AS PPM	BA PPM	CU PPM	рв Ррм	SB PPM	ZN PPM	AU-WET PPB		
10307 N. ZONE 10308) gosson 10309.) gosson 10310 aren of Po fixed	2.1 2.9 4.8 2.3	16 1 1 1	527 15 6 6	189 746 2132 98	29 3 3 3	1 1 1	378 256 476 68	90 10 5 5	Axel	
i I I		Rock								

MIN-EN LABS - DCP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. VTM 1T2

j.

FILE NO: 1V-0859-RJ1 DATE: 91/08/27

* ROCK * (ACT:F31)

		(604)9	80-5814 0	R (604)98	8-4524	t, X		* ROCK *	(ACT:F3
AG PPM	AS PPM	BA PPM	CU PPM	Bq PFM	SB PPM	ZN PPM	AU-FIRE PPB		:
1.9	86	854	856	5	1	731	210	Axel	/
									:
	<u> </u>								
.			· · · · · · · · · · · · · · · · · · ·						
	AG PPM 1.9	AG AS PPM PPM 1.9 86	(604)5 AG AS BA PPM PPM PPM 1.9 86 854	(604)980-5814 0 AG AS BA CU PPM PPM PPM 1.9 86 854 856	(604)980-5814 OR (604)98 AG AS BA CU PB PPM PPM PPM PPM 1.9 86 854 856 5	(604)980-5814 OR (604)988-4524 AG AS BA CU PB SB PPM PPM PPM PFM PFM PPM 1.9 86 854 856 5 1	(604)980-5814 OR (604)988-4524 AG AS BA CU PB SB ZN PPM PPM PPM PPM PPM PPM PPM 1.9 86 854 856 5 1 731	(604)980-5814 ОК (604)988-4524 AG AS BA CU PB SB ZN AU-F1RE PPM PPM PPM PPM PPM PPM PPB 1.9 86 854 856 5 1 731 210	(604)980-5814 OR (604)988-4524 * ROCK * AG AS BA CU PB SB ZN AU-FIRE PPM PPM PPM PPM PPM PPM PPB 1.9 86 856 5 1 731 210 Mx e I

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: PETER, MARTIN

193 E. ST.JAMES RD. NORTH VANCOUVER, BC V7N 1L1 **

Page Number :1-A Total Pages :1 Certificate Date: 04-OCT-91 Invoice No. :19122232 P.O. Number :

									CERTIFICATE OF ANALYSIS A91							
SAMPLE DESCRIPTION	PI C(REP ODE	A1203	BaO %	Ca0 %	Fe203 %	к20 ¥	MgO %	MnO 8	Na20 *	P205 %	SiO2 %	TiO2	LOI %	TOTAL %	Ag ppm
RZ NZ-IN. ZONE SHZ L SCUTH OF GOSSAN ZONE	208 208 208	294 294 294	14.96 11.63 16.16	0.05 0.34 < 0.01	9.36 10.57 9.44	11.46 8.01 11.78	0.17 < 0.01 < 0.01	6.33 5.77 5.59	0.16 0.13 0.17	3.44 0.04 2.46	0.19 0.16 0.21	48.18 39.85 49.11	1.71 1.18 1.95	2.87 21.79 3.14	98.87 99.47 100.05	< 0.5 < 0.5 < 0.5

Chemex Labs Ltd.

Analytical Chemista * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: PETER, MARTIN

193 E. ST.JAMES RD. NORTH VANCOUVER, BC V7N 1L1 Page Number :1-B Total Pages :1 Certificate Date:04-OCT-91 Invoice No. :19122232 P.O. Number :

^p roject : Comments:	

	CERTIFICATE					OF ANAL	YSIS	A91222	32					
SAMPLE DESCRIPTION	PREP CODE	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm					
RZ-N. ZONE NZ-N. ZONE SWZ LSOUTH OF GOSSAN ZONE	208 294 208 294 208 294 208 294	30 24 23	92 60 96	4.31 4.88 5.03	450 890 700	1 < 1 < 1	56 54 23	12 < 2 < 2	112 56 154					

COMP: MARTIN PETER PROJ: AXEL ATTN: M.PETER				MJ	IN-EN J 705 West	L ABS — 15TH ST. (604)980	- WHOL , NORTH V -5814 OR	E ROCH ANCOUVER, (604)988-4	ANAI B.C. V7M 4524	YSIS 112					FILE NO: 1V-123 DATE: 91/ * ROCK * (ACT	5-RL1 10/17 :F26)
	AL203	BA %	CAO %	FE203	K20	MGO %	MNO2 %	NA20 %	P205 %	\$102 %	SR %	T102 %	L01 %	S %		
ROCK (PGZ) -FROM PIT	13.73	.005	5.19	16.48	. 14	3.13	.11	3.47	.05	46.37	.015	1.76	8.00	4.82		
@ GOSSAN ZONE					WHOL	E R	ock									
				_								·	, -			- T-
							1									

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 o: PETER, MARTIN

193 E. ST.JAMES RD. NORTH VANCOUVER, BC V7N 1L1 **

Page Nu., Jar :1-A Total Pages :1 Certificate Date: 04-JUN-91 Invoice No. :19115613 P.O. Number :

Project : Comments:

									CERTIFICATE OF ANALYSIS A9115613							
SAMPLE DESCRIPTION	PI Ci	rep Ode	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
AX-91-1	208	294	< 0.8	8.24	240	< 0.5	6	3.48	1.5	112	272	2520	10.75	0.28	3.32	800
LGOSSAN ZONE ON					-										 	
RCAD						PREP CODE	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)
					†	208 294	< 1	3.76	112	760	< 8	176	0.96	280	< 10	56
												<i>.</i>				
											Gene	rally	, Cr	amn	t ou	er
											10	oppr	in	licates	a m	afic
										-						
													1			

CERTIFICATION:____

MIN • EN LABOR DIVISION OF ASSAV SPEC	ATORIE: ERS CORP.) CIALISTS IN MIN HEMISTS • ASSAVERS	S IERAL ENVI ANALYSTS - GEO	RONMENTS CHEMISTS		VANCOUVER 705 WEST 15TH S NORTH VANCOUVE TELEPHONE (604) FAX (604) 980-982 SMITHERS L 3176 TATLOW ROA SMITHERS, B.C. C TELEPHONE (604) FAX (604) 847-300	/ER OFFICE: TH STREET DUVER, B.C. CANADA V7M 1T2 (904) 990-5814 OF (604) 988-4524 +9821 S LAB: ROAD C. CANADA VOJ 2NO (804) 847-3004 *-3005		
Geochemical	Analy	<u> </u>	Certi	ficate	E 1V-1	.236-SG1		
Company: MARTIN PETER Project: AXEL Attn: M.FETER				Copy 1. MARTIN	Date: OC PETER, NORTH VANCOU	CT-17-91 WER, B.C.		
He hereby certify t submitted OCT-07-91	he follow by M PET	ing Geo FR	chemical	Analysis	of 4 SOIL s	amples		
Samule Number	CU F12M	PB PFM	ZN PFM					
HI FROM PIT ARCA @ GOSSAN ZONE	565 3810 85 222	32 38 12 13	207 - 428 - 91 - 137 -	- FROM - 10 m U - L3N - 10 m N	PIT WEST OF PIT 62.5 M E NE OF PIT			
	501L (БЕОСНЕМ	ISTRY					
Assay	Gerti	fica	te		17-	1236-RA1		
Company: MARTIN PETE Project: AXEL Attn: M.PETER	R	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Copy 1. NARTI	Date: C IN PETER, NORTH VANC	DCT-17-91 DUVER, B.C.		
<i>We hereby certify</i> submitted OCT-07-9	the follo 1 by M.PE	wing As TER.	say of l	ROCK_sam	ples			
Sample (PGZ)	CU %	- FB 7	ZN X					
ROUT - FROM PIT @ GOSSAN ZONE	- 288 288 ° (pra	.01	.14 1400	fpm				

ROCK

11h Certified b KU

MINEEN LAPORATORIES

ann

GOSSAN OUTCROP ON ROAD

LEGAL CORNER POST FOR AXEL 2 AND 3

1 INCH = 50m

 $\overline{\mathbb{Z}}$

$1500 - 56 \\ 56 \\ 56 \\ 59 \\ 1400 - 54 \\ 58 \\ 48 \\ 52 \\ 1300 - 52 \\ 53 \\ 54 \\ 54 \\ 55 \\ 55 \\ 55 \\ 56 \\ 700 - 53 \\ 55 \\ 50 \\ 500 - 53 \\ 55 \\ 50 \\ 500 - 53 \\ 55 \\ 55 \\ 50 \\ 500 - 53 \\ 55 \\ 55 \\ 50 \\ 50 \\ 57 \\ 55 \\ 56 \\ 50 \\ 57 \\ 55 \\ 56 \\ 57 \\ 55 \\ 55$	- -	581 538 581 221 221 581 538 558 622 277 589 581 556 666 611 698 599 602 277 581 556 666 616 698 599 602 277 587 602 616 581 557 662 577 587 602 591 604 446 616 576 474 581 577 587 602 577 587 602 591 604 576 474 491 616 576 474 491 616 591 616 576 574 591 616 591 616 576 517 5	$ \begin{array}{c} 57 \\ 63 \\ 63 \\ 62 \\ 61 \\ 61 \\ 62 \\ 63 \\ 62 \\ 63 \\ 63 \\ 63 \\ 63 \\ 63 \\ 63 \\ 63 \\ 63$	$ \begin{array}{c} 64 \\ 61 \\ 60 \\ 65 \\ 63 \\ 58 \\ 56 \\ 62 \\ 61 \\ 62 \\ 62 \\ $	646666666666666666666666666666666666666	55 54 53 48 53 52 53 48 53 52 53 53 53 53 53 53 53 53 53 53	56 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 50 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58	$ \begin{array}{c} 63 \\ 63 \\ $	- 689999966666799778676997776776777677677677777777	7778573667777777777777777777777777777777
$ \begin{array}{r} 50 \\ 500 \\ 53 \\ 63 \\ 55 \\ 52 \\ 400 \\ 71 \\ 75 \\ 67 \\ 45 \\ 300 \\ 51 \\ 75 \\ 67 \\ 45 \\ 300 \\ 51 \\ 75 \\ 67 \\ 39 \\ 200 \\ 54 \\ 55 \\ 56 \\ 52$	$ \begin{array}{c} 55 \\ 57 \\ 60 \\ 55 \\ 61 \\ 57 \\ 55 \\ 61 \\ 57 \\ 56 \\ 57 \\ 62 \\ 64 \\ \end{array} $	$ \begin{array}{c} 61 \\ -60 \\ 57 \\ 56 \\ 54 \\ -57 \\ -56 \\ -64 \\ -63 \\ -64 \\ -63 \\ -64 \\ -63 \\ -62 \\ -63 \\ -60 \\ -58 \\ -61 \\ -63 \\ -62 \\ -71 \\ -7$	$ \begin{array}{c} 58 \\ -61 \\ 56 \\ 61 \\ 56 \\ 61 \\ 64 \\ 65 \\ 62 \\ 62 \\ 62 \\ 63 \\ 64 \\ 64 \\ $	$ \begin{array}{c} 63 \\ 63 \\ 64 \\ 66 \\ 65 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62$		47 51 52 49 54 57 59 60 56 60 59 59 60 59 59 60 59 59 60 59 59 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 59 58 60 61 61 56 58 63 72 72 73		$ \begin{array}{c} 64 \\ 62 \\ 63 \\ 61 \\ 61 \\ 64 \\ 72 \\ 72 \\ 70 \\ -64 \\ 72 \\ 70 \\ -64 \\ 70 \\ 67 \\ 69 \\ -68 \\ 70 \\ 70 \\ 71 \\ 69 \\ 72 \\ 7$	68 7 68 7 69 69 69 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	79 79 79 78 80 78 79 80 78 79 80 79 81 78 64 61 61 61 61 62 60 61

59 60 -58 |57 63. 80 MAGNETOMETER READINGS -59 60 -63 63 -79 77 ON AXEL 2 CLAIM - K.M.D. 6:1 -58 -63 -77 +46 - 1300 NOTE: - ALL VALUES GIVEN (UNLESS 77 . OTHERWISE NOTED) ARE PRECEDED - 5180 +77 +54 53:36 BY THE NUMBER 57 73 55 59 55 - ALL VALUES GIVEN END 66 +79 65 +61 (100 WITH A O' 67 EXAMPLE - THE NUMBER 60 -57 +62 FOR +75 + 61 54 56 SHOWN IS ACTUALLY THE AS 57600' GAMMAS READING +62 +74 +62+ 900 1 INCH = \$00 METERS SCALE : +75 -59 +6177 CREEK - YEAR-ROUND -62 FLOW -71 -59 +63 ROAD LOGGING GOOD CONDITION +76 -59 64 - 63 61 VALUES REPRESENT THE AL4 +76 -58 67 84 60) 51 INTENSITY OF THE MAGNETIC TOTAL FIELD. VALUES WERE NOT -73 65 - 77 77 400. CORRECTED FOR DIURNAL VARIATION 53 57 -78 79 MacLENNAN 6.1 -56 5816 55 6.6 L3N LZN t IN NO7 R22296 LCP