

SUMMARY

The Sluice Box Property is situated approximately 40 km northwest of Goldbridge, British Columbia. Access is via helicopter or float plane from a base located in Goldbridge.

The property consists of eight contiguous claims comprising a total area of 3,550 hectares. It is located within the Clinton Mining Division near the Bralorne Mining Camp, a past producer of over 4 million ounces of gold. The Poison Mountain Cu-Mo-Au porphyry, situated 40 km east of the Sluice Box Property, contains reserves estimated at 1.5 million ounces Au and 58 million pounds of Cu. Other deposits in the area include the Taseko Property (Empress Zone) Cu-Au porphyry, the Blackdome Mountain epithermal Au-Ag deposit, and the Taylor-Windfall Au deposit.

Previous work on the Sluice Box Property in the early 1970's by Cominco focused on copper and molybdenum mineralization on the BJB prospect southwest of Lorna Lake (Minfile # 92 0 24). Work performed in the 1980's by Barrier Reef, the B.C. Government Geological Survey, and Bond Gold has been focused on the extensive alteration zone located in the north portion of the Sluice 1-4 Claims. A magnetic/VLF-EM survey (62.9 line km.) was conducted in July 1988 by Bond Gold. Nine moderate to strong VLF-EM conductors and a broad zone of high magnetic response were defined.

The Sluice Claims are underlain by Upper Cretaceous Battlement Ridge Group, Powell Creek Formation consisting of andesiticdacitic volcanic breccia, lapilli tuff, crystal tuff, minor fine grained tuffs, flows, and sandstone. This sequence is cut by the Upper Cretaceous Dorrie Peak diorite (65 Ma), and the Eocene Lorna Lake quartz monzonite-quartz diorite (42 Ma). Fine grained felsite dykes and sills (1 to 60 feet wide) associated with the Lorna Lake stock cut the above sequence. A 1 x 5 kilometer area forms a 060 degree trending ridge north of Sluice Box Creek that contains moderate to strong alteration, i.e. ubiquitous pyrite (1-10%), extensive hydrated iron oxides, widespread silicification and argillic alteration. The focus of the 1991 work program was to perform follow up geological mapping and sampling within this area, and to concentrate on the nine well defined geophysical anomalies. All high order geophysical anomalies ('A' through 'I') were investigated and no follow targets were identified.

Several weak geochemical responses which correspond to weak geophysical conductors were identified within the 1988 geophysical grid area (vuggy, drusy, brecciated, epithermal quartz and minor barite located 500 to 700 meters north-northwest of the 'C' anomaly, and the fault and alteration zone with anomalous Au-Mo geochemistry located 400 to 800 meters northwest of the 'A' anomaly).

Two follow up target areas outside of the geophysical grid area include the BJB Cu-Mo prospect located on Sluice 6 (1 kilometer southwest of Lorna Lake), and the steep northwest facing slope located 500 to 1,000 meters southeast of the 'A' anomaly.

An IP geophysical survey over the BJB prospect and detailed geological mapping and sampling of all follow up targets is recommended. A budget of approximately \$37,000 is proposed to carry out the recommended work. Contingent on the results of this program, follow up diamond drilling would be recommended.

TABLE OF CONTENTS

p

Sluice Box Property

1. INTRODUCTION

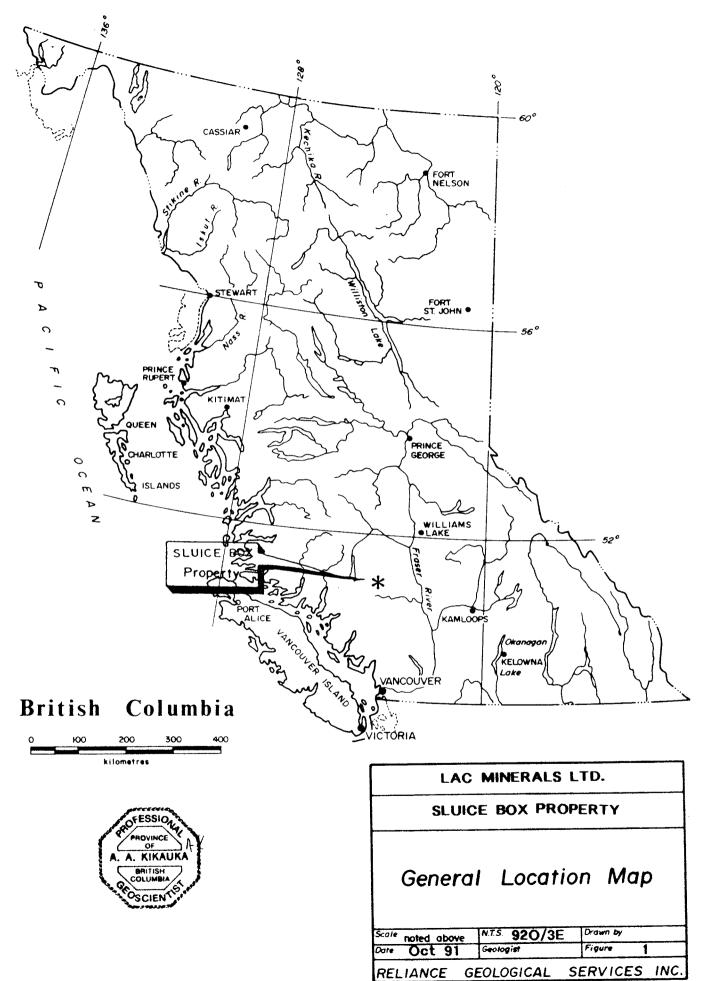
This report was prepared at the request of Lac Minerals Ltd to describe and evaluate the results of a geological-geochemical program carried out by Reliance Geological Services Inc on the Sluice 1-8 claims in the Clinton Mining Division, Warner Pass area, British Columbia.

The field work was undertaken for the purpose of evaluating the mineral potential of the property and following up on previously defined geophysical targets. The target is an epithermal/ mesothermal gold vein deposit and/or porphyry copper/gold deposit.

Field work was carried out from September 14 to September 20, 1991, by Andris Kikauka, project geologist, and George King, Nigel Luckman and Andrew McIntosh, all geologists, under the supervision of Peter Leriche, B.Sc., P.Geo.

This report is based on published and unpublished information and the maps, reports and notes of the field crew.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY


The Sluice Box Property is situated approximately 40 kilometers northwest of Goldbridge, British Columbia (Figure 1).

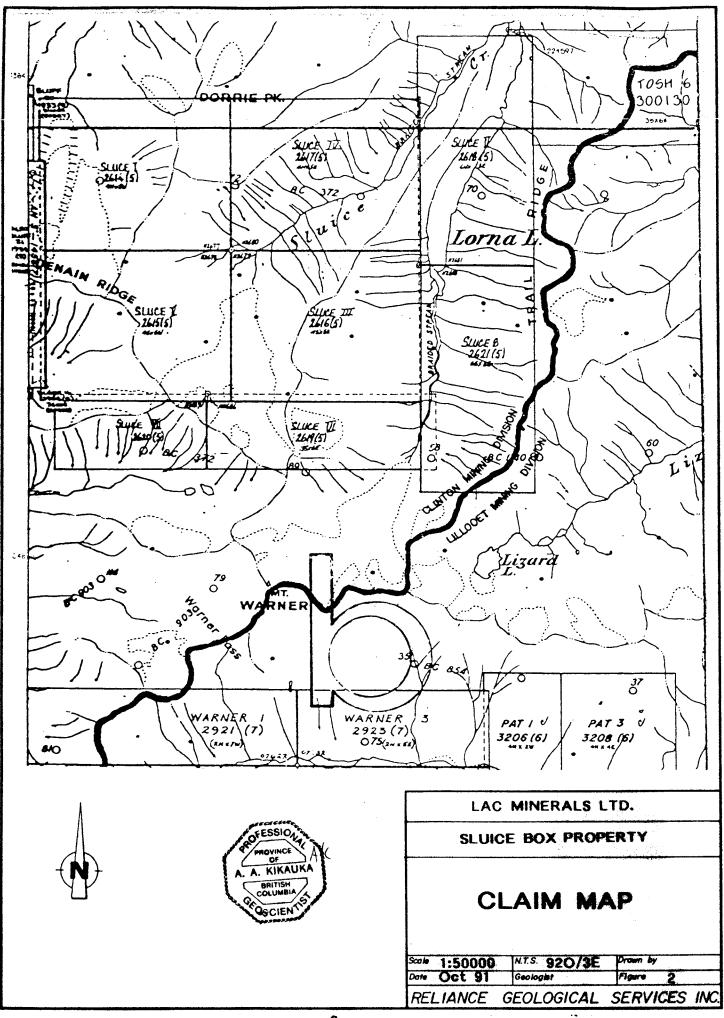
The claims are located on Map Sheet NTS 92 0/3E, at latitude 50° 06' North, longitude 123° 12' West, and between UTM 5659000m and 5664000m North and UTM 483000 and 489000m East.

Access is via helicopter from a base at Goldbridge, B.C. Float planes occasionally land at Lorna Lake, which gives direct access to the property. A well-used horse trail is located on the lower elevations of Sluice Box Creek and gives access to a road on Big Creek, approximately 10 km downstream from Lorna Lake.

The property is on moderate terrain with slopes rising from about 5922 ft (1800 m) to 9400 ft (2862 m) along Warner Ridge. The area is above tree line, except for the lower half of Sluice Box Creek. Widely spaced trees and grassy meadows cover the lower elevations of the valley.

Recommended work season is from early June to early October.

3.0 PROPERTY STATUS


The property consists of eight contiguous mineral claims (Figure 2) in the Clinton Mining Division. The claims were staked in 1988 by St Joe Minerals Ltd. The claims are owned 100% by Bond Gold Canada Inc (now Lac Minerals Ltd).

Details of the claims are as follows:

<u>Claim</u>	Record	<u>Units</u>	<u>Record Date</u>	<u>Expiry Date</u>
SLUCE I	208454	20 20	12 May 1988 12 May 1988	12 May 1992 12 May 1992
SLUCE II SLUCE III SLUCE IV	208455 208456 208457	20 20 20	12 May 1988 12 May 1988 12 May 1988	12 May 1992 12 May 1992 12 May 1992
SLUCE V SLUCE VI	208458 208459	18 18	12 May 1988 12 May 1988 12 May 1988	12 May 1992 12 May 1992 12 May 1992
SLUCE VII SLUCE VIII	208460 208461	8 18	12 May 1988 12 May 1988	12 May 1992 12 May 1992
	Total	142	_	

The total area covered by the claims is 3550 hectares, or 8769 acres, after correcting for overlap.

The writer is not aware of any particular environmental, political or regulatory problems that would adversely affect mineral exploration and development on the Sluice Box Property.

4.0 AREA MINERAL OCCURRENCES

Poison Mountain deposit (40 km to the east).

A porphyry copper-gold-molybdenum deposit currently estimated at 175 million tonnes averaging 0.33% Cu, 0.009 oz Au/ton, and 0.015% Mo.

Taylor-Windfall Property (10 km to the west)

Limited production (mid 1930's and 1952-53) from surface and underground workings on a narrow, northeast striking fracture zone containing pyrite, tennantite, chalcopyrite and minor sphalerite in a chlorite-sericite gangue. Mining in 1952-53 recovered 886.5 grams of gold from 63.5 tonnes (average grade 20.6 g/t Au). Reserves calculated as a result of Westmin's 1989-90 diamond drill program total approximately 1000 tonnes @ 0.4 oz/t Au.

Taseko Property (16 km to the west)

Asarco-Westpine has calculated a reserve of 11,078,000 tons grading 0.61% Cu and 0.023 oz Au/t using a cut-off grade of 40% Cu at the Empress zone. Drilling in 1991 is in progress.

Bralorne Deposit (40 km to the southeast)

A northwest trending, gold bearing mesothermal quartzcarbonate vein system has produced about 2.3 million oz Au from 5 million tons processed.

Pioneer Deposit (42 km to the southeast)

A northwest trending, gold bearing mesothermal quartzcarbonate vein system has produced about 1.1 million oz Au from 2.2 million tons processed.

Blackdome Mountain Deposit (50 km to the northeast)

An epithermal quartz vein system has produced 150,000 oz Au from approximately 300,000 tons of ore processed.

5.0 PREVIOUS WORK

1971-1974 Lorn and Jim claims:

Porphyry copper exploration by Cominco covered the eastern portion of the Sluice Box property. Exploration concentrated on Cu/Mo mineralization at the contact of the Lorna Lake Stock. Geological mapping and diamond drilling (1190 ft total in 5 holes). No assays reported.

1981/82 Sluice claims:

Geochemical survey (208 talus fines and contour traverses, analyzed for gold and silver) conducted by Barrier Reef.

A 1400 m x 400 m zone of anomalous gold (up to 140 ppb) and silver (up to 9.7 ppm) values and a second anomalous zone (1500 m x 500 m) with gold up to 80 ppb and silver up to 5.5 ppm were outlined along a northeasterly trend.

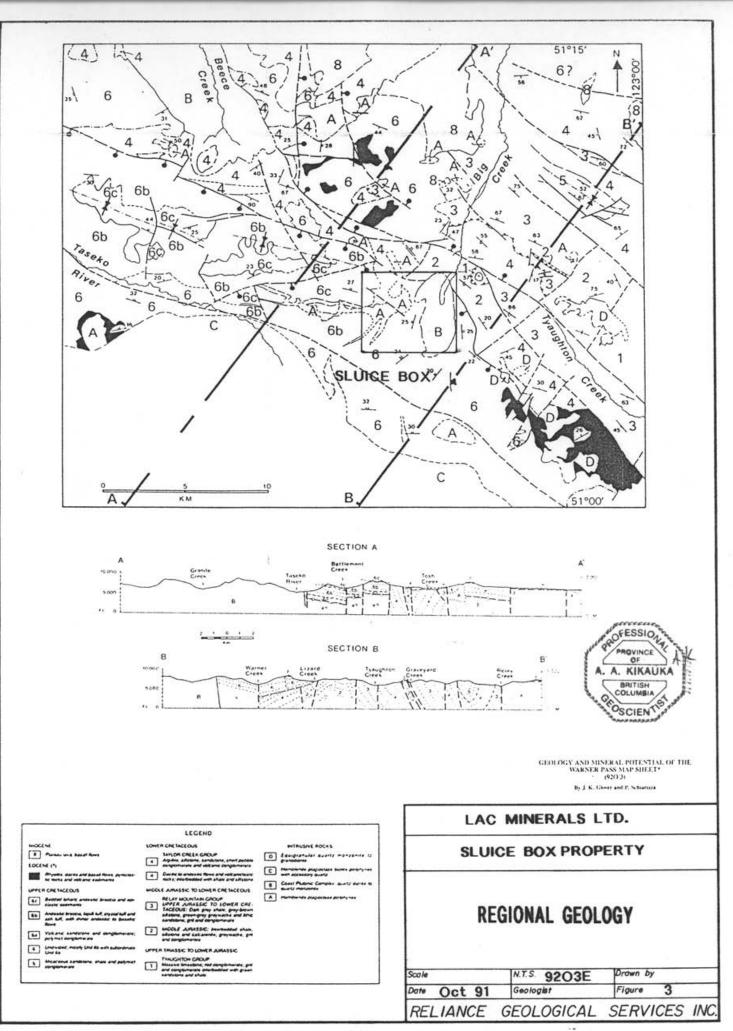
1988 Bond Gold Canada Inc:

Investigated the Tchaikazan fault in the Warner Pass area for possible epithermal gold and porphyry copper/gold potential. An extensive alteration zone from the Taylor Windfall Gold Mine (10 km east) to the Lorna Lake stock was identified and the Sluice Box property was staked in May 1988.

A magnetic/VLF-EM survey (62.9 line kilometers) was conducted in July 1988. Nine moderate to strong VLF-EM conductors and a broad zone of high magnetic response were defined. The magnetic/VLF-EM axes trend NE-SW, which reflected the general stratigraphy in the area.

Results of the 1988 survey and previous work indicated a very good potential for the Sluice Box Property to host epithermal-type gold mineralization and/or porphyry copper/gold mineralization.

6.0 REGIONAL AND PROPERTY GEOLOGY (Figure 3)


"The geology of the area is summarized from assessment reports and the recent regional mapping of the B.C. Ministry of Energy, Mines and Petroleum Resources Geological Survey Branch (Open Files 1988/9 and 1988/6; Glover et al 1988).

The property lies within the Tyaughton Trough, a continuous northwest trending belt of Triassic to Lower Jurassic sandstone, shale, conglomerate and limestone along the northeastern margin of the Coast Plutonic Complex. Upper Cretaceous terrestrial sediments and volcanic-arc related rocks (Battlement Ridge Group) unconformably overlie the sequences of the Tyaughton Trough. This unconformity appears to be related to the uplift of the Coast Plutonic Complex to the west. The Mesozoic volcanosedimentary strata are intruded by several stages of Mid-Cretaceous to Early Tertiary stocks.

In the area of the Taylor-Windfall Mine the volcaniclastic sequences trend east-west and have gentle dips to the north. The dominant structural trend in the area is northwesterly, reflected by the Tchaikazan Fault and smaller subparallel faults, as well as by the margin of the Coast Plutonic Belt in general. On a smaller scale, northeast trending structures appear to be instrumental in the localization of gold mineralization.

Mid to Late Cretaceous volcanic breccia and/or tuffs, flows, volcaniclastics, and clastic sedimentary rocks of the Upper Cretaceous Battlement Ridge Group underlie the largest portion of the property. At its northeastern corner these rocks are in fault contact with sedimentary rocks equivalent to the Middle Jurassic rocks of the basal Relay Mountain Group.

Two main stocks have intruded the stratified sequences: the Dorrie Peak Stock (hornblende plagioclase porphyry to equigranular, medium-grained diorite) and the younger, Lorna Lake Stock of equigranular guartz monzonite to granodiorite). The Lorna Lake stock appears to be emplaced along a north-northeast trending normal fault which occupies the Big Creek valley. The composition of the Dorrie Peak Stock is similar to that of the spatially associated andesitic volcanic rocks of the Battlement Ridge Group.

U

6a

Both intrusions have been age dated with the 40Ar/39Ar method by Archibald et al (1989). Hornblende from the Dorrie Peak Stock has yielded an age date of 64.7 ± 2.1 Ma; biotite from the Lorna Lake stock yielded an age of 42 Ma.

A discontinuous belt of siliceous and argillic alteration zones that appears to be stratabound and hosted by pyroclastic rocks of the Battlement Ridge Group extends from the Taylor Windfall Mine in the West to the northern margin of the Lorna Lake Stock in the east. The alteration is concentrated in a sequence of dacitic to andesitic tuffs, lithic tuffs and feldspar crystal tuffs that is surrounded by layers of weakly altered andesitic dust tuff.

The Taylor Windfall Mine is a unique mesothermal and retrograde epithermal gold deposit associated with low pH alteration zones. Eluvial gold was originally discovered in 1920 by E.J. Taylor. Limited bedrock production has been derived from two types of mineralization. Production came from a northeast-striking (N060E, with a dip of 75° to the southeast) fracture zone in the 1930's. This zone contained 5 - 60% tourmaline, pyrite, tennantite, chalcopyrite, and minor sphalerite in a chloritesericite gangue. Andalusite-corundum is present in the wallrock.

In 1952/53, 70 tons with a grade of 0.6 oz/t gold were mined from a mineralized and silicified pyroclastic layer within the Battlement Ridge Group. The extension of this siliceous zone with associated argillic and phyllic alteration was the focus of the exploration done by Westmin Resources Ltd at Taylor Windfall. Similar alteration zones occur further East at Battlement Creek and Palisade Bluff.

An alunite sample from the Taylor-Windfall property yielded a 40Ar/39 Ar age of 73.7 \pm 0.5 Ma (Archibald et al 1989).

The eastern extension of the mineralized and altered horizon hosting the Taylor Windfall Mine and the Battlement Creek-Palisade Bluff showings contains the Warner Ridge Zone on the Sluice Box Property. Limited sampling (10 rock samples of this variably argillic altered and silicified zone has yielded anomalous gold (up to 306 ppb), mercury (up to 2120 ppb) and arsenic (up to 60 ppm) values (Open File 1987/3). The LCP Zone, close to the common legal claim post for the Sluice #1 to 4 claims and spatially associated with the main alteration zone, is defined by Barrier Resources 1982 program. It is a northeast trending area, 1,400 meters by 400 meters in size, with anomalous silver and gold values in talus samples. A similar anomalous zone (T zone) of slightly larger extent, was defined by the same survey along strike further to the northeast. The talus fines were sampled as a substitute for soils which are not developed on these slopes.

Minor chalcopyrite and molybdenite mineralization has been reported by Cominco in the early 1970's from the contact area of the Lorna Lake Stock. No assays have been reported from this work.

The numerous rhyolite (felsite) dykes mentioned in Cominco's drill logs that are spatially associated with the Eocene Lorna Lake Stock and the emplacement of this stock along a northnortheast trending fault structure, indicate a mineralization environment similar to that of the epithermal Blackdome deposit. The north-northeast structural trend that controls mineralization at the Blackdome Mine can be related to extensional faulting associated with dextral displacement along the Fraser Fault.

(Vogt and Kennedy, 1988)

Late Cretaceous intrusive and associated extrusive geological events (66.4 - 97.5 Ma) are genetically related to most of the major mineral occurrences in the area. Eocene intrusive and associated extrusive geological events (36.6 - 57.8 Ma) are related to the epithermal Blackdome Au-Ag deposit.

Detailed petrological studies of the Taylor-Windfall (Price, 1986) revealed a mesothermal mineral assemblage (tourmaline, corundum, andalusite) is overprinted by retrograde epithermal (quartz-sericite-chlorite-hematite) mineralization and alteration events.

7.0 <u>1991 EXPLORATION PROGRAM</u>

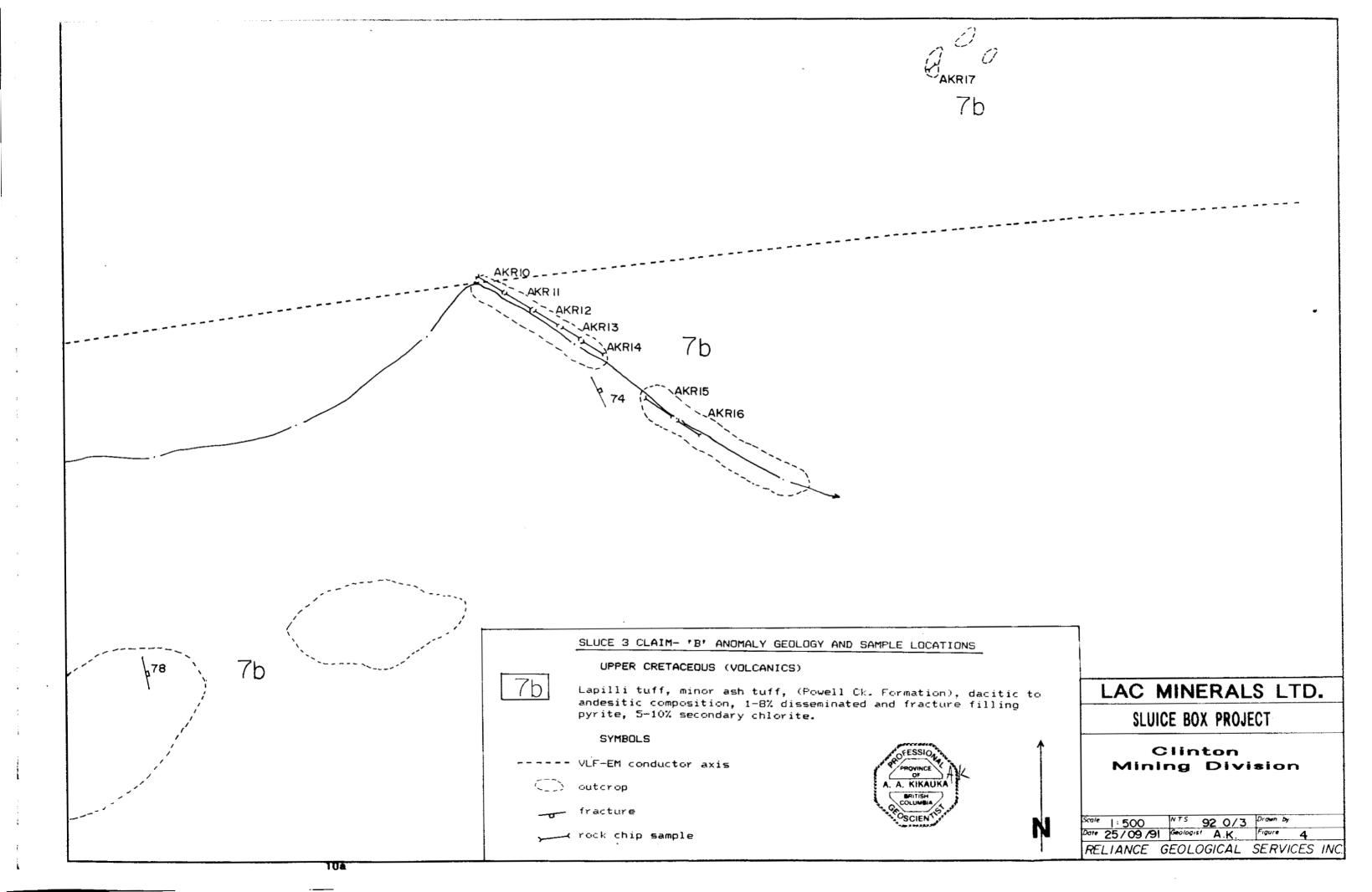
7.1 METHODS AND PROCEDURES

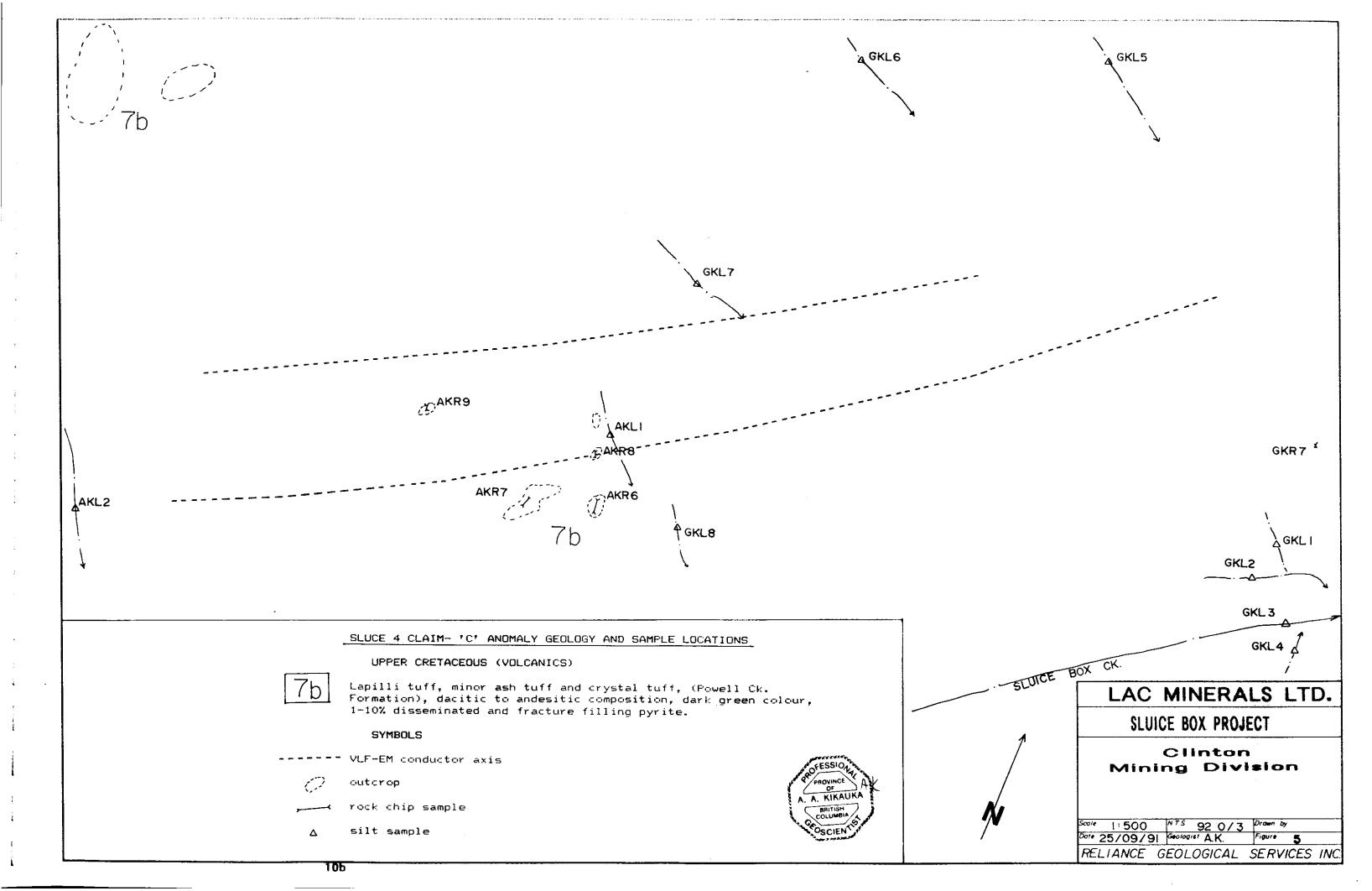
Detailed 1:500 and reconnaissance 1:10,000 geological mapping, rock chip sampling of altered and/or mineralized bedrock, and detailed silt and soil sampling were carried out on the Sluice 1-8 Claims.

A 060 degree baseline was surveyed by hipchain and compass over a distance of 3 kilometers and flagged at 25 meter intervals. This survey located the 1988 grid which outlined the strong and well defined geophysical anomalies (A, B, C, D, E, F).

Geological mapping was performed over 70% of the property at a scale of 1:10,000 (Figure 6). Grid mapping was done at a scale of 1:500 (Figures 4 and 5). Figure 7 is the index map for Figures 4 and 5.

A total of 205 samples (109 rock chip, 65 silt, 23 soil, and 8 diamond drill core) were collected on the property and sent to International Plasma Laboratory of Vancouver, B.C. (IPL) for 30 element ICP and Au geochemical analysis. See Appendix A for rock, silt, and soil sample descriptions and Appendix B for analytical reports and techniques (Figure 7 shows locations and Cu-Au values).


Silt samples were taken from the active channels of small creeks (i.e. alluvium). Approximately 1/3 of the creek gullys were dry. Some of the dry gully sampling could be considered talus fine material, i.e. colluvium. Samples were from 5-20 cm depth and weighed about 1 kg each. Sample material was placed in tyvex bags and dried. DDH core from the BJB prospect was re-logged and select mineralized sections 1 to 5 feet in width were sampled and assayed.


Soils were sampled in areas of mature pine forest in the lower elevation areas of Sluice Box Creek at 50 meter intervals to cover the "D,E,F" anomalies. Samples were taken with a grubhoe (average weight about 0.7 kg.), from the B horizon at an average depth of 25 cm, placed in tyvex bags and dried.

7.2 PROPERTY GEOLOGY AND MINERALIZATION (Figures 4, 5, and 6)

The claim group is mainly underlain by Upper Cretaceous, Battlement Ridge Group, Powell Creek Formation consisting of andesitic-dacitic volcanic breccia, lapilli tuff, crystal tuff, minor fine grained tuffs, flows, and sandstone. This sequence comprises a synorogenic suite of submarine to subaerial volcanic debris and flows with subordinate fine grained tuff. The Powell Creek Formation is approximately 1,000 meters thick and is divided into two units, 7B and 7C (Figure 6). Unit 7B consists mainly of dark green fragmental dacite and andesite with minor fine grained tuff and sandstone, characterized by 1 -38 disseminated pyrite content and rusty brown weathering. 7C is mainly green to grey coloured fragmental andesites, dacites, and intercalated epiclastics that give the unit a distinctive bedded appearance, contrasting with the underlying poorly sorted, pyritic andesitic to dacitic fragmentals of 7B.

The Dorrie Peak and Lorna Lake Stocks are two separate plutons that have intruded the Upper Cretaceous volcanics and sediments. The Dorrie Peak diorite (with minor porphyritic phases) occurs in the north portion of the Sluice 1 claim.

This stock gives an absolute age date of approximately 65 Ma and is genetically related to the Upper Cretaceous synorogenic suite of the Powell Creek Formation volcanics. The Lorna Lake stock consists of grey to white coloured equigranular quartz monzonite to quartz diorite (with minor plagioclase porphyry). It is dated at 42 Ma and occurs in the east portion of the claim block near Lorna Lake.

Fine grained felsite dykes and sills 1-60 feet wide associated with the Lorna Lake stock cut the entire sequence. The dykes and sills are composed of 40-60% sericite with 40-60% fine grained quartz (referred to as unit F).

Unit 7B (Upper Cretaceous volcanics and sediments) forms a 5 x 1 km 060 degree trending ridge north of Sluice Box Creek that contains moderate to strong alteration, i.e. ubiquitous pyrite, extensive hydrated iron oxides, and widespread silicification and argillic alteration. The intensity of alteration increases near north-northwest trending faults which are located 300-600 meters north and northwest of the 'A' anomaly (LCP Zone). Rock chip and silt samples from these zones show generally low base and precious metals. A zone of vuggy, drusy, brecciated (epithermal) quartz with minor barite occurs on this ridge about 500-700 meters north-northwest of the 'C' anomaly. Above mean geochemical values were recorded in this area which corresponds to a zone of north trending felsite dykes cutting the volcanics.

The BJB Cu-Mo prospect, located on the Sluice 6 claim, (Minfile # 92 0-24) occurs at the west contact of Lorna Lake stock where it intrudes older volcanics and sediments. Cominco performed diamond drilling on this prospect in 1974.

Cu-Mo mineralization is related to a swarm of felsite (also referred to as rhyolite) dykes and sills, 1-60 feet in width, that cut hornfelsed volcanics and sediments near the contact of a porphyritic phase of the Lorna Lake quartz monzonite stock. Chalcopyrite and molybdenite occur as disseminations and fracture fillings primarily in dyke and sill contact zones and in hornfels. To a lesser extent, mineralization occurs in the porphyritic quartz monzonite. Trace to 1% chalcopyrite with traces of molybdenite were observed in fractures oriented parallel and perpendicular to the foliation in the hornfels. Traces of fracture filling chalcopyrite in the porphyritic quartz monzonite corresponded to increased clay alteration in the plagioclase phenocrysts. Weak silicification occurs in the hornfels as 1 - 10 mm quartz veins (density of 1 - 3/meter). Green, hexagonal tourmaline crystals to 5 mm were noted in some of the quartz veins.

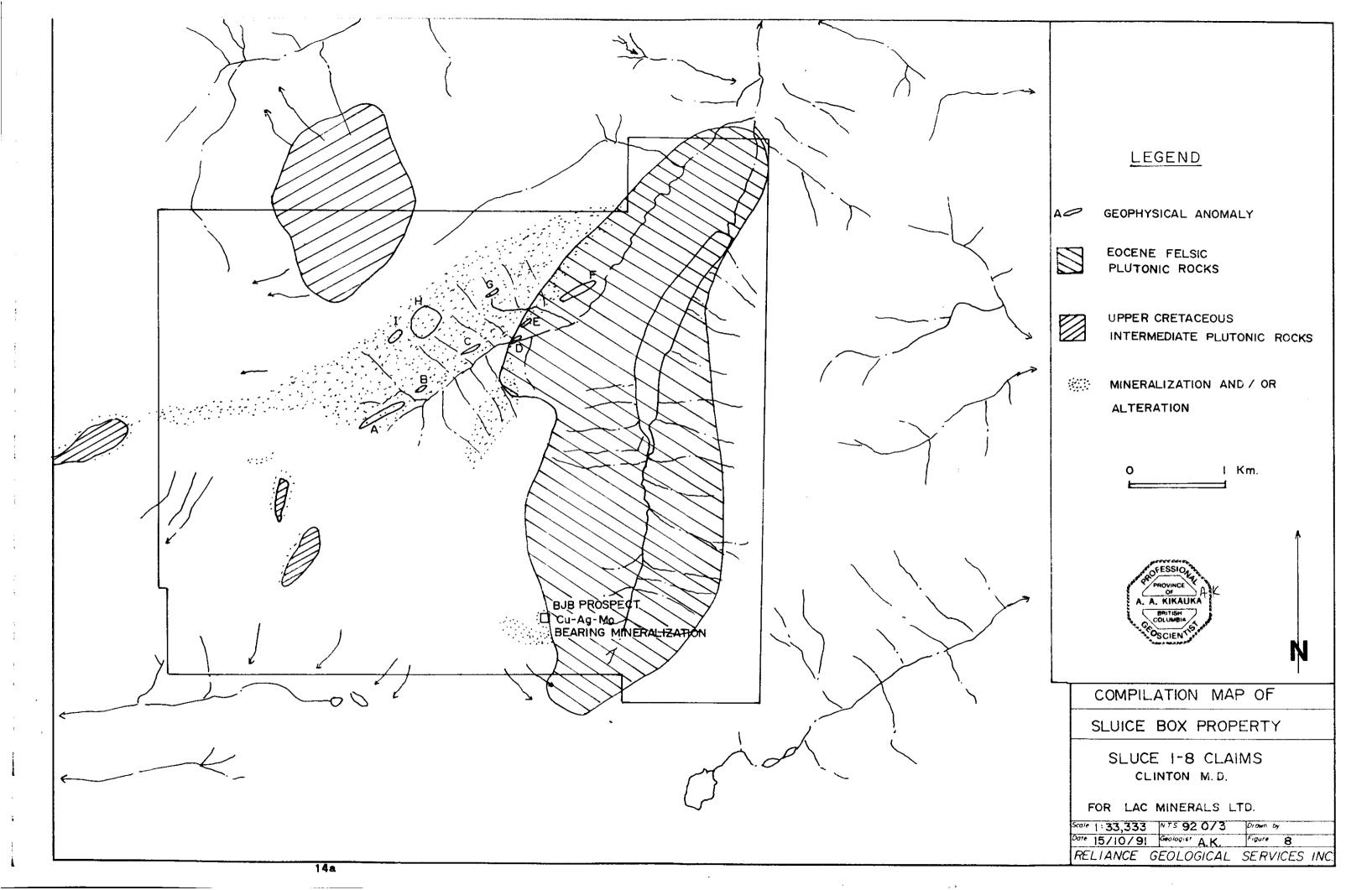
7.3 ROCK, SILT, AND SOIL GEOCHEMISTRY

The mean value of 205 rock, silt, and soil samples is less than 12 ppb Au. Ten out of 205 samples were above 40 ppb with one spot high of 215 ppb Au. The high value came from Sluice Box Creek below the 'C' anomaly and is not associated with elevated base metal or silver values. Other above mean Au values do not correlate with base metal or silver values. The only trends or patterns of distribution in the gold geochemistry are a grouping of 8 silt (talus fines) samples that averaged 35 ppb Au (samples GKL29-36 located near the 'G' anomaly ranged from 25-65 ppb Au) and a grouping of 5 silts (AKL12-16) that average 28 ppb Au.

Mean silver values from rock, silt, and soil are less than 1 ppm. There are three significant groupings of samples that have mean values of 1.8 to 4.1 ppm Ag.

These groupings occur in:

- a) DDH samples from the BJB prospect (Sluice 6) where relatively high Ag values (up to 8.6 ppm) correspond to elevated Cu-Zn-Mo-W values.
- b) Silts AKL16-20 contain Ag values to 6.9 ppm. These samples are talus fines along dry gullies for a distance of 1 km, on a steep slope 0.5-1.0 km southeast of the 'A' anomaly - LCP Zone. Elevated Cu-Pb-Zn-As-Cd values accompany this grouping.
- c) Silt (talus fines) samples GKL36-41 occur near the slope north and northeast of the 'C' anomaly. Significant elevated values of Cu-Pb-As are associated with this zone.


Seventy-five percent of the copper values are below 100 ppm. The highs range up to 6,509 ppm Cu for rock chips, 566 ppm Cu for silts, and 433 ppm Cu for soils. A significant grouping of 8 DDH samples, averaging 2,902 ppm Cu, occurs on the BJB prospect (Sluice 6). Another grouping of samples AKL16-20 (silt-talus fines) averaged 395 ppm Cu. A 20 cm width of a felsite sill with visible chalcopyrite and malachite yielded 6,509 ppm Cu (Sample # AKR-24). Silicified, pyritic, dacitic tuff gave Cu values up to 959 ppm. All relatively high Cu values corresponded to elevated Ag values suggesting that silver bearing sulphides are related to chalcopyrite mineralization.

Ninety percent of the lead values are below 90 ppm. Erratic values up to 843 ppm Pb occur in altered tuffs. Pb geochemistry does not correlate well with other elements.

Ninety percent of the Zn values are below 140 ppm. A few erratic high values to 1,104 ppm Zn, occur in silts. High Zn values correlate directly to high Cd values.

Arsenic values were mostly below 100 ppm with the exception of 10 silt, 3 rock, and 2 soil samples. The highest value came from a stream sediment sample AKL5 (395 ppm As) located from the east flowing drainage at the north end of Sluice 5.

Molybdenum values are mostly below 10 ppm. Rock samples show some erratic highs up to 152 ppm. Zones of relatively high molybdenum content include the DDH's on the Sluice 6 and the vuggy, drusy, brecciated quartz (epithermal) on Sluice 4. A zone of relatively high Mo values occurs 400-800 meters northwest of the LCP Zone. Four silt samples (dry gullies) taken below a fault zone within altered tuffs averaged 56 ppm Mo.

8.0 DISCUSSION OF RESULTS (Figure 8)

The objective of the 1991 geochemical survey and geological mapping was to assess and correlate the geophysical anomalies from the 1988 survey with respect to economic mineralization. There were no observed indications of Cu-Pb-Zn-As bearing sulphide mineralization in the areas of the 'A'-'I' geophysical anomalies. Results from geochemical sampling of these high order geophysical anomalies show some significant base and precious metal values, i.e. several orders above mean. However, there are no patterns of distribution to suggest follow up trenching and/or drilling should be undertaken. There was abundant ferricrete in the vicinity of the 'A' anomaly which may represent weathered massive pyrite. Extensive rock, silt, and soil sampling in this area did not reveal any conclusive targets for follow up drilling The 'H' anomaly corresponds to a magnetite and/or trenching. bearing andesitic flow that is well exposed. Sampling this flow and surrounding altered tuffs gave no follow up targets. All 9 high order geophysical anomalies ('A' through 'I' conductors) were investigated and no follow up targets were identified.

Several weak geochemical and corresponding weak geophysical responses require detailed investigation. An alteration zone worthy of follow up interest within the geophysical grid area corresponds to weak conductors that trace through multiple faults located 300-600 meters northwest of the 'A' anomaly. A grouping of silt samples (AKL12-15) gave above mean Mo and Au values.

A second follow up target area within the geophysical grid also corresponds to weak conductive zones located 500-700 meters north-northwest of the 'C' conductor. This area contains vuggy, drusy, brecciated quartz (epithermal) with minor barite, in an area of cross-cutting felsite dykes. The slope below this area gave above mean Au-Ag values in silt samples GKL29-41. Numerous weak geophysical conductors are worthy of follow up detailed mapping and sampling for an epithermal, Bonanza-type target.

Two follow up target areas outside of the geophysical grid area include the BJB Cu-Mo prospect and the steep northwest facing slope 500-1,000 meters southeast of the 'A' anomaly. The BJB prospect requires IP geophysics to test for buried mineral zones. The northwest facing slope of this ridge contains above mean Cu-Ag-Pb-Zn-As geochemical values that warrant detailed mapping and prospecting.

The Taylor-Windfall gold deposit contains a high temperature assemblage of corundum-andalusite. A combination of high temperature and retrograde thermal events is responsible for a mineral assemblage of quartz-tourmaline-pyrite-tetradymiteenargite-galena-tennantite-sphalerite-chalcopyrite. Gold is related to this mineral assemblage. Similar polymetallic mineral assemblages were not observed on the Sluice Claims, however the geological setting on the Sluice closely resembles the Taylor-Windfall.

The Sluice Claims has many geological signatures related to epithermal and porphyry type ore bodies including a large surface area (>2 km²) of siliceous and argillic altered, pyritic volcanic rock, proximal plutonic rocks, large scale high-angle faults, and several showings and anomalous geochemical values. It is possible that the epithermal system present in the north part of the claim block is the upper level of a larger buried porphyry system connected by a deep seated fault. Preliminary investigation indicates that mineralization contains low concentrations of base and precious metals. It is possible that the BJB prospect in the southeast part of the claim block may contain a larger porphyry type ore zone of 1-3% chalcopyrite and associated precious metals and molybdenite. A compilation of the target areas is shown in Figure 8.

9.0 <u>CONCLUSIONS</u>

The property has potential to host a base and/or precious metal deposit for the following reasons;

- Extensive sulphide mineralization covering more than 2 square kilometers is present on the Sluice Claims. This mineralization was formed at the same time, and in the same tectonic setting, as some major copper and gold deposits located within 50 km of the claims.
- 2) Extensive silicification and argillic alteration with significant Au-Ag-Cu-Pb-Zn-As-Mo geochemical values and geophysical responses accompany these mineralized zones.
- 3) The BJB Cu-Mo prospect has potential to contain a mineralized zone of considerable size.

÷

10.0 <u>RECOMMENDATIONS</u>

- 1) An IP survey of approximately 11 line kilometers covering one square km of the BJB prospect.
- 2) Detailed geological mapping and sampling of:
 - a) the BJB prospect,
 - b) the area of vuggy, drusy, brecciated epithermal quartz (500-700 meters north-northwest of 'C' anomaly),
 - c) the fault and alteration zone with anomalous Au-Mo located 400-800 meters northwest of 'A' anomaly, and
 - d) the steep northwest facing slope located 500-1,000 meters southeast of the 'A' anomaly.

÷÷,

Contingent on the results of this recommended phase of exploration, a follow up phase of exploration involving diamond drilling would be recommended.

11.0 COST STATEMENT OF ACTUAL EXPENDITURES

EXPENDITURE TYPE	\$ TOTAL
Salaries - Permanent - Contract Computer Rental & Lease Computer Supplies	6870.00
Equipment Repair and Maintenance Postage/Courier Supplies and Stationary	
Consulting Fees Copies/Maps	2750.00 250.00
Travel and Accomodation Camp Costs	3130.00 1866.00
Assays and Analysis Camp Equipment/Supplies Aircraft - Fixed Wing	3309.00
- Rotary Wing	 د تا تر م د تا تر م

Total

.

۰,

\$ 18175.00

REFERENCES

Archibald, D.A., Glover, J.K. and Schiarizza, P. (1989): Preliminary Report on 40Ar/39Ar Geochronology of the Warner Pass, Noaxe Creek and Bridge River Map Areas (920/3,2;92J/16). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 145-151.

Dawson, J.M. (1980):

Geochemical Report on the Dash Creek Property for Barrier Reef Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #8020.

Dawson, J.M. (1981):

Geological and Geochemical Report on the Dash Creek Property for Barrier Reef Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #8888.

Dawson, J.M. (1981):

Geological and Geochemical Report on the Relay Claims for Barrier Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #8866.

Dawson, J.M. (1981):

Geological and Geochemical Report on the Relay Creek Property for Barrier Reef Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #9876.

Dawson, J.M. (1982):

Geological, Geochemical, Geophysical and Drilling Report on the Relay Creek Property for Barrier Reef Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #11037.

Glover, J.K. (1987):

Geology of the Warner Pass Map Area (920/3), B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987/3.

Glover, J.K., Schiarizza, P. and Garver, J.I. (1988): Geology of the Noaxe Creek Map Area (920/2), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1987, Paper 1988-1, pages 105-123.

Glover, J.K., and Schiarizza, P. (1987): Geology and Mineral Potential of the Warner Pass Map Area (920/3), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1, pages 157-169.

Jeletzky, J.A., and Tipper, H.W. (1968): Upper Jurassic and Cretaceous rocks of the Taseko Lakes map area and their bearing on the geological history of southwestern British Columbia. Geological Survey of Canada, Paper 67-54, 218 p. Kleinspehn, K.L. (1985): Cretaceous sedimentation and tectonics, Thaughton-Methow Basin, southwestern British Columbia. Can.J.Earth Sci. 22, pages 154-174. Knights, R. (1989): Relay Creek Project, British Columbia - VLF and Magnetic Survey. Unpublished Company Report, 4 pages. Mark, D.G. (1980): Geophysical Report on Airborne Magnetic VLF EM and radiometric survey over the Relay Creek Claims for Clear Mines Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #8243. Meyer, W. (1972): Detailed Geological and Geochemical Survey, Relay Creek XYZ B.C. Ministry of Energy, Mines and Petroleum Group. Resources, Assessment Report #3830. Montgomery, J.H. and Giroux, G.H. (1973): Geological and Geophysical Report on the ABC Group of Mineral Claims for Edina Resources Limited. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #4597. Symonds, D. and Wolfe, R. (1972): Geological Report on the ABC Group of Mineral Claims for Edina Resources. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #3829. Wolfe, R. (1971): Report on Geochemical Survey and Preliminary Geology, Relay Creek A, B, C, X, Y, Z Claim Groups, B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report #3179. Vogt, A.H., and Kennedy, D.R. (1988): Geophysical Report on the Relay Creek Property for Bond Gold Canada Inc.

CERTIFICATE

I, PETER D. LERICHE, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a Fellow in good standing with the Geological Association of Canada.
- 4. I have actively pursued my career as a geologist for twelve years in British Columbia, Ontario, the Yukon and Northwest Territories, Montana, Oregon, Alaska, Arizona, Nevada and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I have not visited the subject property.
- 6. I have no interest, direct or indirect, in the subject claims or the securities of Lac Minerals Ltd or Bond Gold Canada Inc.
- 7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC.

Peter D. Letiche ve B. Sc., P.Geo.

Dated at North Wancouver, B.C., this 15th day of October 1991.

Reliance Geological Services Inc. -

CERTIFICATE

I, ANDRIS KIKAUKA, of Squamish, B.C. do hereby certify that:

- 1. I am a graduate of Brock University, St. Catharines, Ontario, with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I am registered in the Province of British Columbia as a Professional Geoscientist.
- 4. I have practised my profession for twelve years in precious and base metal exploration in the Cordillera of Western Canada, and for three years in uranium exploration in the Canadian Shield.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence or under my direction, and information derived from published and unpublished literature. I was present on the Relay Creek property during September 1991.
- 6. I am presently employed by Reliance Geological Services Inc. and have no interest, direct or indirect, in the subject claims or the securities of Lac Minerals Ltd or Bond Gold Canada Inc.
- 7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC.

Andris Kikauka, P. Geo.

Dated the 15th day of October, 1991, at North Vancouver, B.C.

Reliance Geological Services Inc. —

APPENDIX A

e

.

SAMPLE DESCRIPTIONS

----- Reliance Geological Services Inc. -------

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

**

SLUICE BOX PROPERTY

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
SL 91 AKR1	Dacitic crystal tuff, 1-3 mm plagioclase phenocrysts, 5-8% disseminated pyrrhotite, 20% epidote in 1-3 mm clots.	500
SL 91 AKR2	Dacitic ash tuff, green-grey colour, 5-8% disseminated pyrite, limonite stain, 5% chlorite.	400
SL 91 AKR3	Sericite-quartz-pyrite, probably altered dacitic tuff, 0.1-1.0 mm finely disseminated blebs of pyrite to 8%, extensive zone of alteration (approx. 200 m wide).	500
SL 91 AKR4	Same as above.	500
SL 91 AKR5	Same as above.	500
SL 91 AKR6	Dacitic lapilli tuff, grey, indurated 5-8% disseminated and fracture filling pyrite, 1-10 mm pyrite veins 2-5/m.	400
SL 91 AKR7	Same as above	400
SL 91 AKR8	Dacitic lapilli tuff, grey-green, 5-10% disseminated and fracture filling pyrite, minor chlorite and biotite.	100
SL 91 AKR9	Dacitic lapilli tuff, 3% disseminated pyrite.	30
SL 91 AKR10	Dacitic lapilli tuff, indurated, 3-8% disseminated and fracture filling pyrite, dark green, minor chlorite.	500
SL 91 AKR11	Same as above	500
SL 91 AKR12	Same as above	500
SL 91 AKR13	Same as above	500

----- Reliance Geological Services Inc. ------

SAMPLE NO.	MPLE NO. DESCRIPTION	
SL 91 AKR14	Same as AKR10	500
SL 91 AKR15	Same as above	500
SL 91 AKR16	Same as above	500
SL 91 AKR17	Dacitic lapilli tuff, indurated, 3-5% pyrite, minor chlorite.	200
SL 91 AKR18	Dacitic ash tuff, 3% disseminated pyrite, chlorite developed, weak clay alteration along 170° trending fault gully.	25
SL 91 AKR19	Quartz diorite (Lorna Lake stock 44 m.a.) 3% disseminated pyrite, 0.5-1.5 mm blebs, 5% epidote.	500
SL 91 AKR20	Andesitic lithic tuff, 4% disseminated pyrite, minor chlorite and epidote, at contact with Lorna Lake stock.	500
SL 91 AKR21	Andesitic crystal tuff, 1-3 mm plagioclase phenocrysts. 5% disseminated and fracture filling pyrite, 0.2-2 cm wide pyrite veins. Sample consists of 70% pyrite from 2 cm wide vein from angular talus boulder.	2
SL 91 AKR22	Andesitic crystal tuff, 1-4 cm plagioclase and hornblende phenocrysts, 6% disseminated pyrite along 2.5 meter wide shear zone trending 150°. Limonite staining.	250
SL 91 AKR23	Andesitic crystal tuff, yellow-green colour alteration zone 8 m wide. 3% finely disseminated pyrite.	300
SL 91 AKR24	Felsite sill, 60% quartz, 30% sericite. 0.1-1.0 mm blebs chalcopyrite to 1%, at contact with green andesitic tuff. 2 m wide sill.	20
SL 91 AKR25	Dacitic tuff, indurated, silicified, 0.1-1.0 cm wide pyrite-magnetite veins along fractures 5-10/m. Angular float in talus.	15

200

Silicified, pyritic dacitic tuff SL 91 GKR001 120 (Powell Creek Formation). 1.2 meter chip sample; orientation: 160°. Dark grey to black in colour. Intensely oxidized. rusty brown weathered surface. Moderate to intense pervasive silicification. Contains disseminated and 2-6% fracture controlled pyrite.

- Hornfelsed, silicified, pyritic SL 91 GKR002 dacite tuff (Powell Creek Formation). 2 m sample. chip 103°. Orientation: Intenselv oxidized, orange brown weathered surface. Dark grey to purplish grey Intense pervasive fresh surface. Contains silicification. 5-10% fracture controlled and disseminated pyrite. Moderate to high fracture density.
- SL 91 GKR003 Biotite Quartz Diorite (dyke). Greyish white, fine to medium grained. Contains ~20% quartz. 10% ≤1 mm biotite grains. Weathered surface intensely oxidized. Moderate to high fracture density. Contains trace to 1% disseminated pyrite.
- SL 91 GKR004 Hornfelsed, siliceous pyritic dacitic 150 tuff (Powell Creek Formation). 1.5 m chip sample; orientation 065°. Brown, intensely oxidized weathered surface. Dark grey to purplish-grey fresh surface. Intense, pervasive silicification. Moderate to high fracture density. Contains ~10% disseminated and fracture filling pyrite. Chip interval begins at contact with biotite guartz diorite dyke.
- SL 91 GKR005 Silicified dacitic tuff (Powell Grey weathered surface; very little oxidation. Dark grey fresh surface. Moderate pervasive silicification. Contains 5% 1-2 mm wide quartz stringers; 2-3% disseminated pyrite.

- SL 91 GKR006 Hornfelsed, silicified, pyritic tuff (Powell Creek Formation. Dark grey fresh surface. Minor actinolite occurs along fracture surfaces. Moderate, pervasive silicification. Contains roughly 5% disseminated pyrite.
- SL 91 GKR007 Quartz diorite (Lorna Lake stock?) This sample may have been taken from a subcrop, but is more probably from float. Greyish-white in colour. Contains 20% quartz; 60% plagioclase, and 15-20% hornblende. Medium grained. Contains no sulphides.
- SL 91 GKR008 Silicified, pyritic, dacitic to andesitic ash tuff (Powell Creek Formation). 1.5 m chip sample. Bluish-grey fresh surface. Intense pervasive silicification. Contains 5-8% disseminated pyrite.
- SL 91 GKR009 Quartz monzonite to granodiorite (Lorna Lake stock). Contains 20-30% quartz, variable proportions of K-spar and plagioclase. Contains up to 10% fine grained biotite and 10% chloritized hornblende. Texture is medium grained.
- SL 91 GKR010 Silicified, hornfelsed, pyritic dacitic lapilli ash tuff (Powell Creek Formation). 1.5 m chip sample; orientation 072°. Rusty brown, oxidized weathered surface; grey to purplish grey fresh surface. Moderate pervasive silicification. Contains 3-8% disseminated pyrite.
- SL 91 GKR011 Silicified, pyritic, dacitic to andesitic tuff. (Powell Creek Formation). Rusty brown, oxidized weathered surface. Blue grey fresh surface. Moderate pervasive silicification. Contains 3-8% disseminated and fracture filling pyrite.

150

150

Silicified, pyritic dacite tuff SL 91 GKR012 150 (Powell Creek Formation). 1.5 m chip sample; orientation 041°. Intensely oxidized, yellowish brown to rusty brown weathered surface. Grey to grey purplish fresh surface. Moderate to intense pervasive silicification. Contains 4-10% disseminated and fracture filling pyrite.

- SL 91 GKR013 Pyritic silicified dacitic tuff (Powell Creek Formation). 1.5 m chip sample. Orientation 066°. Taken roughly in continuum with SL 91 GKR013. Yellowish to rusty brown and occasionally pinkish weathered surface. Grey to purplish grey fresh surface. Heavily fractured. Moderate to intense pervasive silicification. Contains 5-10% disseminated and fracture filling pyrite.
- SL 91 GKR014 Rhyolite dyke. Whitish grey, very fine grained groundmass. Contains 5-10%, 1-2 mm quartz eyes. Contains 3% disseminated and fracture filling pyrite.
- SL 91 GKR015 Silicified, pyritic dacite (Powell Creek Formation). Yellow-brown to rusty brown, intensely oxidized weathered surface. Whitish grey to grey fresh surface. Intense pervasive silicification. Contains 5-7% disseminated pyrite.
- SL 91 GKR016 Silicified, pyritic, dacitic tuff. Oxidized, brownish to yellow brown weathered surface. Grey to purplish grey fresh surface. Moderate to intense pervasive silicification. Heavily fractured. Contains 5-8% disseminated and fracture filling pyrite.

150

.

.

And and a second se		
SL 91 GKR017	Silicified, pyritic, dacitic tuff. Oxidized, rusty brown to yellowish weathered surface. Whitish grey to grey fresh surface. Intensely fractured. Moderate to intense pervasive silicification. Contains 5-8% disseminated and fracture filling pyrite.	
SL 91 GKR018	Hornfelsed, silicified, pyritic dacite. Yellowish to rusty brown weathered surface. Purplish grey fresh surface. Intense, pervasive silicification. Contains 3-7% disseminated and fracture filling pyrite.	
SL 91 GKR019	Hornfelsed, silicified, pyritic dacitic tuff. Rusty brown, oxidized weathered surface. Whitish grey fresh surface. Moderate pervasive silicification. Contains 3-7% disseminated and fracture filling pyrite.	
SL 91 NLRO1	A select sample of rusty weathering dacitic ash tuff containing 5% medium grained disseminated pyrite.	10
SL 91 NLR02	A select sample of rusty weathering andesitic crystal tuff containing 5% medium-grained disseminated pyrite.	10
SL 91 NLR03	AS NLR01.	10
SL 91 NLR04	A chip sample across 80 cm of a felsite dyke. Highly siliceous, there is no crystal development. Contains disseminated pyrite (3%) and stringers of pyrite <1 mm wide.	80
SL 91 NLR05	A select sample from a white felsite dyke composed primarily of sericite (54%) and quartz (40%). Small (1 mm) feldspar crystals (2%) are visible in the matrix along with black mafic mineral grains (3%). Contains disseminated fine grained pyrite (1%).	15

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
SL 91 NLR06	A select sample from a fine grained equigranular biotite hornblende diorite containing disseminated fine to medium grained pyrite (2%).	15
SL 91 NLR07	A select sample of a rusty weathering dacitic ash tuff containing felsite dykes 2-3 cm wide. Pyrite (3%) is found on fractures and as very fine disseminated grains. Fractures are spaced 2-4 cm apart in random orientations.	12
SL 91 NLR08	A select sample of BQ drill core. A white felsite dyke containing malachite and azurite staining. The dyke is composed primarily of sericite and quartz; small (1 mm) feldspar crystals (2%) are present in the matrix along with black mafic mineral grains (<1%). Fine grained pyrite (1%) is disseminated throughout the sample.	8
SL 91 NLRO9	A select sample of a rusty weathering plagioclase porphyry equigranular medium grained diorite containing 3% disseminated medium-grained pyrite.	15
SL 91 NLR10	A chip sample across 50 cm of a rusty weathering andesitic crystal tuff containing very fine grained disseminated pyrite (3%).	50
SL 91 NLR11	As NLR10	50
SL 91 NLR12	As NLR10	50
SL 91 NLR13	A select sample of rusty weathering dacitic ash tuff containing 1% disseminated fine grained pyrite and 1 mm wide vuggy quartz stringers containing disseminated fine grained pyrite.	10

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
SL 91 NLR14	A select sample of rusty weathering dacitic ash tuff containing 1% fine grained disseminated pyrite. Hematitic staining on fractures and weathered surfaces. Thin (1 mm wide) quartz veins with disseminated fine grained pyrite are present.	10
SL 91 NLR15	A select float sample of rusty weathering dacitic ash tuff containing very fine grained disseminated pyrite (5%).	15
SL 91 NLR16	A chip sample across 30 cm of a rusty weathering dacitic crystal tuff containing 5% fine to medium grained pyrite as discontinuous stringers and as disseminated blebs and cubes.	30
SL 91 NLR17	As NLR16	30
SL 91 NLR18	A chip sample across 1 m of a rusty weathering dacitic crystal tuff containing 5% fine to medium grained pyrite as discontinuous stringers and as disseminated blebs and cubes.	100
SL 91 NLR19	A chip sample across 80 cm of a hematitic (2%) dacitic ash tuff. Pyrite (1%) occurs as disseminated fine grained blebs, as does hematite. Hematite also surrounds some pyrite blebs.	80
SL 91 NLR20	A select sample of rusty weathering dacitic ash tuff containing 5% medium-grained disseminated pyrite.	15
5L 91 NLR21	A select sample of white dacitic ash tuff containing bands 4 mm wide of disseminated magnetite (5%) and magnetite blebs in fracture surfaces.	15
5L 91 NLR22	A chip sample across 60 cm of a rusty weathering andesitic crystal tuff containing 4% disseminated medium- grained pyrite.	60

SAMPLE NO. DESCRIPTION WIDTH (cm) SL 91 NLR23 A chip sample across 50 cm of a rusty 50 weathering dacitic ash tuff containing 3% pyrite as disseminated fine-grained blebs and <1 mm wide stringers with guartz. SL 91 NLR24 A select sample of rusty weathering 15 andesitic crystal tuff containing 2% medium-grained disseminated pyrite. SL 91 NLR25 A select sample of a dark grey 10 andesitic flow unit containing 3% disseminated magnetite. SL 91 NLR26 A chip sample across 50 cm of rusty 50 weathering dacitic ash tuff containing fine-grained 58 disseminated pyrite. SL 91 NLR27 A chip sample across 50 cm of a 50 slightly rusty weathering dacitic ash tuff containing disseminated blebs of fine-grained pyrite (2%) and magnetite (2%). SL 91 NLR28 A chip sample across 80 cm of a 80 faintly rusty weathering dacitic ash tuff containing blebs of finegrained magnetite (4%) and pyrite (<1%). SL 91 NLR29 A select sample of a white aphyritic 15 felsite dyke (50% sericite, 408 containing medium-grained quartz) pyrite disseminated (1%) and magnetite (1%). Remainder of rock fine-grained composed of disseminated mafic minerals, mediumgrained guartz eyes and feldspar phenocrysts. SL 91 NLR30 A select sample of faintly rusty 15 weathering dacitic ash tuff containing 5% medium grained pyrite blebs.

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
SL 91 NLR31A	A select sample of a vuggy, drusy, brecciated epithermal vein. Quartz crystals up to 1 cm in length coat vugs. Vein is limonite stained and occurs in a grey cherty siliceous rock.	15
SL 91 NLR31B	A select sample of a vuggy, drusy, brecciated epithermal vein. Quartz crystals (up to 1 cm in length) and barite crystals up to 2 cm in length coat vugs. Vein is limonite stained and is hosted by a grey cherty siliceous rock.	15
SL 91 NLR32	A select sample of a rusty weathering dacitic ash tuff containing 5% pyrite as fine grained disseminated blebs and stringers (<1 mm wide) and 1% disseminated fine-grained magnetite.	10
SL 91 NLR33	A select sample of a rusty weathering dacitic ash tuff containing 3% fine grained disseminated pyrite.	10
SL 91 NLR34	A select sample of a rusty weathering dacitic ash tuff containing 3% fine grained disseminated pyrite.	10
SL 91 NLR35	A select sample of rusty weathering dacitic ash tuff containing 4% disseminated medium- grained pyrite.	10
SL 91 NLR36	A select sample of rusty weathering dacitic ash tuff containing 5% pyrite as disseminated medium-grained blebs.	10
SL 91 NLR37	A select sample of rusty weathering dacitic ash tuff containing 8% pyrite as disseminated medium-grained blebs and discontinuous contorted stringers.	15
SL 91 AMRO1	Select sample of rusty pyritic andesitic crystal tuff at contact with felsite dyke. 10% pyrite.	

Reliance Geological Services Inc. -

SAMPLE NO. DESCRIPTION WIDTH (cm) 1 m chip sample of light grey SL 91 AMR02 100 pyritic ash tuff 3 m N. of AMR01. 10 -15% pyrite. SL 91 AMR03 Select sample of propylitically altered andesitic lapilli tuff. 5% pyrite, 5% epidote. Trace chalcopyrite. SL 91 AMR04 Rusty pyritic hornfelsed lapilli tuff at upper contact with granite sill. 5% pyrite. Rusty pyritic ash tuff. Medium grey SL 91 AMR05 fresh surface. 15-20% disseminated pyrite. SL 91 AMR06 Pyritic plagioclase porphyry diorite. 25 -30% euhedral plagioclase. 10 hornblende. 5-10% 15% epidote. 40-55% fine grained grey groundmass. 1% disseminated pyrite. SL 91 AMR07 Ferrocrete at groundwater spring below pyritic crystal ash tuff. 70% tuff fragments in limonite matrix. Pyritic ash tuff, moderately SL 91 AMR08 silicified. SL 91 AMR09 Clay altered fault gouge in pyritic ash tuff. Light grey mush of 10% quartz, sericite and clay (75%) and pyrite (15%). SL 91 AMR10 Bleached pyritic crystal ash tuff. 30% ghost plagioclase in a light grey pyritic matrix. Approx. 20-25% pyrite. Chip sample over 1 m. SL 91 AMR11 Light grey silicified crystal tuff. Trace pyrite. 10% stringers of fine-grained black mineral. Select sample. SL 91 AMR12 Highly silicified ash tuff(?) 95% silica. 5% light blueish green mineral with hardness =1. Dark red hematite stain in fractures and on weathered surface. Abundant jarosite. No visible sulphides.

Reliance Geological Services Inc. –

SAMPLE NO. DESCRIPTION WIDTH (Cm) SL 91 AMR13 Rusty pyritic crystal ash tuff similar to AMR10. SL 91 AMR14 Rusty silicified ash tuff. white and brown on weathered surface. Pale grey on fresh surface. 1% pyrite, 10% quartz crystal fragments. limonite Strong staining along fractures. SL 91 AMR15 Magnetite breccia float. Hydrothermal(?) magnetite with 75% silicified angular crystal tuff clasts. No visible sulphides. Rusty silicified ash tuff. Grey SL 91 AMR16 brown on weathered surface. Pale fresh surface. qrey on 58 disseminated pyrite. 5% medium grained epidote replacing plagioclase. SL 91 AMR17 Highly porous silica float. Weak to moderate limonite stain. No visible sulphides. With pyritic crystal ash tuff in talus. SL 91 AMR18 Rusty silicified ash tuff. Very reddish on weathered surface. Light fresh grey surface. 15% disseminated pyrite. SL 91 AMR19 Very similar to AMR18. SL 91 AMR20 1 m chip sample of rusty pyritic 100 ash tuff. Pale grey fresh surface. 15-20% disseminated pyrite. SL 91 AMR21 Identical to AMR20 100 SL 91 AMR22 Highly altered pyritic tuff. 100 Strong yellow-brown limonite stain. Pale grey fresh surface. 10-15% disseminated pyrite. 1 m chip sample. SL 91 AMR23 Pyritic crystal ash tuff. Bleached. 10% 1-2 mm broken plaqioclase crystals. 10% disseminated pyrite.

— Reliance Geological Services Inc. —

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
SL 91 AMR24	Rusty, highly silicified crystal ash tuff. 1-5% disseminated pyrite.	
SL 91 AMR25	Rusty, highly silicified ash tuff. 5-10% pyrite.	
SL 91 AMR26	Bleached silicified rusty pyritic tuff. Pale grey fresh surface. 10-15% pyrite.	
SL 91 AMR27	Very similar to AMR26 but with hematite stain on weathered surface.	
	Reliance Geological Services Inc	<u> </u>

.

SILT SAMPLE DESCRIPTIONS

SLUICE BOX PROPERTY

SAMPLE NO.

DESCRIPTION

- SL 91 AKL1 Dry gully, light brown colour, sandy and silty texture, 10 cm depth.
- SL 91 AKL2 Same as above.
- SL 91 AKL3 2 litres/sec. flow rate, reddish-brown colour, 5 cm depth.
- SL 91 AKL4 0.3 litres/sec. flow rate in spring, light grey colour silt, abundant organics. 10 cm depth.
- SL 91 AKL5 6 litres/sec. flow rate. Black-grey colour silt, 5 cm depth.
- SL 91 AKL6 Seep from talus slope, 0.5 litres/sec. flow rate, light brown colour, 10 cm depth.
- SL 91 AKL7 Seep from talus slope, 2 litres/sec flow rate, light grey colour silt. 10 cm depth.
- SL 91 AKL8 Main creek, 15 litres/sec. flow rate, reddish brown colour, 10 cm depth, abundant ferricrete on banks.
- SL 91 AKL9 Gully in bedrock, 0.1 litres/sec. flow rate. Reddish brown colour, 10 cm depth.
- SL 91 AKL10 Dry gully, reddish brown colour, 10 cm depth.

SL 91 AKL11 """""""""""

- SL 91 AKL12 " " " " " " "
- SL 91 AKL14 Dry gully, reddish brown colour, 10 cm depth, fault gully trending 140°.

SL 91 AKL 15 Dry gully, reddish brown colour, 10 cm depth.

SAMPLE NO. DESCRIPTION 0.2 litres/sec. flow rate. Dark brown colour SL 91 AKL16 silt. Malachite and chalcopyrite mineralization in float boulders, 10 cm depth. SL 91 AKL17 Dry gully with abundant rust staining, light brown colour sand and silt, 15 cm depth. Dry gully, abundant rust staining in pyritic SL 91 AKL18 andesite tuffs/flows, dark brown colour sand and silt, 15 cm depth. SL 91 AKL19 Same as above. SL 91 AKL20 Same as above. Taken from stream 30-40 cm wide, 3-4 cm deep, SL 91 GKL001 in vicinity of VLF anomaly "C". Rusty brown in colour, medium to coarse in texture. Associated rock: variably silicified and pyritic dacitic to andesitic tuffs. Direction of flow: 150°. SL 91 GKL002 Taken from north channel of Sluice Creek, near "C" anomaly. Channel here is 1.5 m wide, 3-5 cm deep, and flows at 064° . Taken near "C" anomaly from middle channel of SL 91 GKL003 Sluice Creek which is 3 m wide, 5-10 cm deep, and flows at 064°. Brown in colour, medium in texture. Associated rock: variably silicified and pyritic tuffaceous volcanics. SL 91 GKL004 Taken from South (main) channel of Sluice Creek near "C" anomaly. This is a swift flowing creek, 3 m wide, 20-35 cm deep, flowing at 053°. Sample is brown in colour, medium texture. Associated rock: andesitic tuffs and epiclastics, some of which are intensely hematized. SL 91 GKL005 Taken from small (15-20 cm wide, 3 cm deep) stream which flows at 141° towards the east end of VLF anomaly "C". Rusty brown in colour, fine to medium in texture. Associated rock: silicified dacitic to andesitic ash and crystal tuff (Powell Creek Formation). SL 91 GKL006 Taken from dry gully which trends 131° within VLF anomaly "C". Fine in texture, brownish to reddish brown in colour. Depth: 6 cm.

Reliance Geological Services Inc. —

DESCRIPTION

SL 91 GKL007 Taken from dry drainage running 113° in anomaly "C". Red brown, fine in texture. Depth: 6 cm Associated rock: andesitic crystal tuffs and dacitic lapilli tuffs.

SL 91 GKL008 Taken from dry drainage which runs 158° within "C" anomaly. Depth: 8 cm. Colour: red brown. Texture: fine to medium. Associated flow: Andesitic crystal tuffs and dacitic lapilli tuffs (Powell Creek Formation).

SL 91 GKL009 Taken from dry drainage, trending 318°, at base of snowfield. Depth: 6 cm. Colour: brown. Texture: fine to sandy. Adjacent float: locally derived andesitic ash tuffs, some of which are pyritic.

SL 91 GKL010 Talus fines. Depth: 10 cm. Colour: brown. Texture: Medium to coarse. Adjacent Talus: greyish, occasionally pyritic, andesitic ash tuff.

SL 91 GKL011 Talus fines collected from edge of snowfield. Colour: brown. Texture: medium. Depth: 4 cm.

SL 91 GKL012 Taken from Sluice Creek at eastern end of VLF anomaly "D". Creek here is swift flowing, 2.5 m wide, 40 cm deep. Texture: fine to medium. Colour: light brown.

SL 91 GKL013 Taken from a tiny stream (10 cm wide, 5 cm deep) which flows at 357°. Sample comprises yellowish brown clayey material. Associated talus: biotite quartz monzonite of the Lorna Lake stock. Situated in "D" anomaly.

SL 91 GKL014 Taken from tiny (25 cm wide, 4 cm deep) stream which flows at 348° within VLF anomaly "D". Colour: brown. Texture: fine. Adjacent float: Lorna Lake stock material.

SL 91 GKL015 Taken from dry gully flowing at 359° at southwest edge of VLF anomaly "D". Depth: 12 cm. Colour: brown. Texture: medium. Adjacent rock: Lorna Lake stock intrusive, Powell Creek volcanics (possibly glacially transported).

SL 91 GKL016 Taken from stream 75 cm wide, 7 cm deep, moderately flowing at 070°. Colour: brown. Texture: medium to coarse.

Reliance Geological Services Inc. –

SAMPLE NO.	DESCRIPTION
SL 91 GKL017	Taken from stream 50 cm wide, 4 cm deep, with moderate rate of flow trending 210°. Colour: light grey-brown. Texture: fine to medium. Associated float: Ash and lapilli tuffs (Powell Creek Formation) some of which are highly silicified and pyritized.
SL 91 GKL018	Taken from seep at headwaters of Sluice Creek. Width of seep: 89 cm, depth: 1 cm. Direction of flow: 028°. Colour: rusty brown. Texture: fine silt embedded within ferricrete crust. Adjacent flow: Powell Creek volcanic material within glacial moraine.
SL 91 GKL019	Taken from main channel of headwaters of Sluice Creek. Moderate to swift flowing, 2.2 m wide, 22 cm deep. Direction of flow: 084°. Colour: rusty brown. Texture: fine silt embedded within ferricrete crust.
SL 91 GKL020	Taken from small stream near headwaters of Sluice Creek (width 1.4 m, depth: 5 cm) flowing at a moderate rate at 140°. Rusty brown in colour, fine in texture. Adjacent float (glacial debris) Powell Creek volcanic material.
SL 91 GKL021	Taken near headwaters of Sluice Creek (Anomaly "A"). Width of stream: 2 m; depth: 3 cm. Moderate rate of flow at 117°. Colour: light brown, texture: moderate to coarse.
SL 91 GKL022	Taken from stream at headwaters of Sluice Creek. Width: 3.5 m, depth: 2 cm. Moderate rate of flow at 101°. Colour: rusty brown, texture: fine.
SL 91 GKL023	Taken from stream near headwaters of Sluice Creek, flowing moderately at 062°, 1.2 m wide and 1.5 cm deep. Colour: rusty brown. Texture: fine silt embedded in ferricrete crust.
SL 91 GKL024	Taken from north channel of headwaters of Sluice Creek, which flows swiftly at 055°. Width: 95 cm; Depth: 5 cm; Colour: light brown; Texture: medium to coarse.

SAMPLE NO. DESCRIPTION Taken at source of seep near headwaters of SL 91 GKL025 Sluice Creek. This seep is 30 cm wide and 2 cm deep, and flows slowly at 060°. Colour: light brown, Texture: medium to coarse. Taken from tributary of Sluice Creek near headwaters. Width of stream: 2 m; depth: SL 91 GKL026 6 cm. Flows swiftly at 103°. Colour light brown. Texture: fine to medium. SL 91 GKL027 Taken from swift flowing tributary of headwaters of Sluice Creek. 1.1 m wide, 5 cm deep. Direction of flow, 118°. Colour: light brown. Texture: medium to coarse. SL 91 GKL028 Taken from dry gully. Colour: brown. Texture: medium. Slope 18° at 108°. Talus fines. Colour: brown. Texture: medium SL 91 GKL029 to coarse. Slope 22° at 172°. Adjacent talus: Powell Creek Formation lapilli tuffs and tuff breccia. SL 91 GKL030 Talus fines. Colour: brown. Texture: fine. Depth: 7 cm. Slope: 24° at 157°. Associated rock: dacitic lapilli tuffs of the Powell Creek Formation. SL 91 GKL031 Talus fines. Colour: brown. Texture: fine to medium. Depth: 14 cm. Slope: 20° at 112°. Associated talus: pyritic, dacitic lapilli tuffs. SL 91 GKL032 Talus fines, collected from edge of dry qully. Depth: 17 cm. Colour: brown. Texture: fine to medium. Slope: 23° at 131°. Talus fines. Colour: red brown. Texture: SL 91 GKL033 medium. Depth: 4 cm. Slope: 34° at 087°. SL 91 GKL034 Talus fines collected from edge of dry gully. Colour: red brown. Texture: medium. Depth: 8 cm. Slope: 24° at 127°. Adjacent talus: layered ash tuffs, lapilli tuff, most of which is pyritic. SL 91 GKL035 Talus fines. Colour: light brown. Texture: fine to medium. Depth: 15 cm. Slope 25° at Collected from edge of dry gully. 147°. Adjacent talus: Powell Creek Formation ash and crystal tuffs.

Reliance Geological Services Inc. -

SAMPLE NO. DESCRIPTION Talus fines. Colour: light brown. Texture: SL 91 GKL036 medium. Depth: 9 cm. Slope: 30° at 141°. Collected from centre of talus fan. Adjacent talus composed of at least 50% felsic sill material. SL 91 GKL037 Talus fines. Colour: brown. Texture: fine. Depth: 6 cm. Slope: 16° at 141°. Adjacent rock: andesitic ash and crystal tuff. SL 91 GKL038 Talus fines. Colour: brown. Texture: fine. Depth: 5 cm. Slope: 24° at 152°. Adjacent talus: siliceous, pyritic Powell Creek volcanics. SL 91 GKL039 Taken from small seep to the east of VLF anomaly "G" (15 cm wide, 1 cm deep, flowing at 163⁵). Colour: rusty brown. Texture: fine Associated rock: dacitic to to medium. andesitic ash and crystal tuffs. Commonly pyritic. SL 91 GKL040 Talus fines. Colour: light brown. Texture: fine to medium. Depth: 6 cm. Slope: 30° at 157°. Associated talus: Pyritic andesitic tuffs, and andesitic to basaltic porphyritic flow material. SL 91 GKL041 Taken from headwaters of first major tributary of Sluice Creek (60 cm wide, 3 cm deep) flowing 067°. Rusty brown in colour, medium in texture. SL 91 NLL01 A silt sample from a glacial runoff stream at the foot of the glacier. On north side of the head of Sluice valley. SL 91 NLL02 225 meters down stream from NLL01. Running water. SL 91 AML01 Taken approximately 100 m from base of glacier, from glacially fed stream. Reddish brown silt. Rocks in stream are pyritic ash tuffs. No tributaries. SL 91 AML02 Taken from south running melt-water stream approximately 250 m. west of camp. Stream runs over pyritic tuffs and ferrocrete. No tributaries.

APPENDIX B

ANALYTICAL REPORTS AND TECHNIQUES

------ Reliance Geological Services Inc. ------

Origin

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

REPORT SUMMARY

Report: [9100408 R]

ANALYTICAL REPORT

Inception Date:[Sep 23, 1991]

0	Reliance Geological Services Ltd.George King741 Sluice ClaimRock-Rock Reject Stored 3 Mon-Soil Reject Discarded	

Analytical Requisition

Geochemical:[Au(DiBK/AAS 10g)/ICP(AqR)30] Assay:[Au(FA/AAS 20g)] Comments:[None	ICP:[30]]
--	-----------------

Reporting Date: [Sep 28, 1991] Delivery Information Principal Destination (Hardcopy, Fascimile, Invoice) Company: [Reliance Geological Services Ltd. 1 Address: [241 East 1st Street] City/Province: [North Vancouver, BC 1 Country/Postal: [V7L 1B4] Attention: [Peter Leriche/Andris Kikalka] Fascimile: [(604)988-4653 1 Secondary Destination (Hardcopy) Company:[Address:[City/Province:[Country/Postal:[Attention:[Fascimile:[6 data pages in this report. Approved by: B.C. Certified Assayers iPL CODE: 910928-16:47:24

Report: 9100408 R	Reliance Geologi	cal Servi	ces Ltd.		Pr	roject:	741 S1u	uice Cla	im		Pa	ge 1 d	of 6	Sec	tion 1	of 2	
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	ן ד ppm	Bi ppm		Co ppm	Ni ppm	W ppm
SL 91 AKR 001 SL 91 AKR 002 SL 91 AKR 003 SL 91 AKR 004 SL 91 AKR 005	Rock Rock Rock Rock Rock	<5 5 10 <5 <5	 	<0.1 <0.1 <0.1 <0.1 0.1	25 68 62 44 29	<2 <2 6 <2 <2	133 53 4 45 <1	15 24 16 10 20	8 7 8 <5 <5	<3 <3 <3 <3 <3	3 4 2 4	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.1 0.3 0.1	23 17 16 15 10	20 16 16 26 17	<5 <5 <5 <5 <5
SL 91 AKR 006 SL 91 AKR 007 SL 91 AKR 008 SL 91 AKR 009 SL 91 AKR 010	Rock Rock Rock Rock Rock	10 5 10 5 10	 	0.2 0.5 0.4 0.3 0.1	71 126 80 62 50	2 <2 <2 <2 <2	35 38 23 42 61	26 46 95 26 17	5 7 <5 10 7	<3 <3 <3 <3 <3	2 6 77 15 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.2 0.6	24 39 55 47 26	29 53 80 187 43	<5 <5 <5 <5 <5
SL 91 AKR 011 SL 91 AKR 012 SL 91 AKR 013 SL 91 AKR 014 SL`91 AKR 015	Rock Rock Rock Rock Rock	<5 10 5 20	 	0.1 0.1 0.3 0.2 0.1	32 41 18 21 42	<2 <2 <2 <2 <2 <2 <2	58 76 59 60 54	17 21 19 17 32	5 7 5 <5 8	<3 4 <3 <3 <3	3 2 3 1 2	10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.1 0.4	25 26 21 22 21	40 41 34 35 31	<5 <5 <5 <5 <5
SL 91 AKR 016 SL 91 AKR 017 SL 91 AKR 018 SL 91 AKR 019 SL 91 AKR 020	Rock Rock Rock Rock Rock	10 15 10 5 15	 	0.2 0.2 0.6 0.1 0.5	11 26 23 21 85	5 5 24 10 <2	58 46 117 109 55	21 29 9 13 35	<5 6 7 <5 7	<3 <3 <3 <3 <3	2 2 4 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.3 0.6 <0.1 <0.1	27 24 13 9 25	27 32 17 16 18	<5 <5 <5 <5 <5
SL 91 AKR 021 SL 91 AKR 022 SL 91 AKR 023 SL 91 AKR 024 SL 91 AKR 025	Rock Rock Rock Rock Rock	5 <5 5 20 30	 	0.5 0.1 <0.1 4.9 <0.1	215 41 18 6509 15	2 5 <2 17 <2	21 92 56 37 9	34 13 54 16 22	6 7 <5 12 7	<3 <3 <3 <3 <3	6 2 3 3 3	<10 <10 <10 <10 <10	<2 <2 <2 <2 5	0.2 <0.1 0.1 0.2 0.1	55 10 7 4 112	30 12 12 5 138	22 <5 <5 <5 <5
SL 91 AMR 001 SL 91 AMR 002 SL 91 AMR 003 SL 91 AMR 004 SL 91 AMR 005	Rock Rock Rock Rock Rock	5 <5 5 5 5	 	0.3 0.2 1.0 0.2 0.2	61 46 113 47 30	7 4 54 3 <2	95 70' 380 149 36	22 13 11 12 12	9 8 15 6 5	<3 <3 <3 <3 <3	3 2 1 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.3 2.3 0.2 <0.1	20 16 45 32 14	13 25 43 39 26	<5 <5 <5 <5 <5
SL 91 AMR 006 SL 91 AMR 007 SL 91 AMR 008 SL 91 AMR 009 SL 91 AMR 010	Rock Rock Rock Rock Rock	10 10 15 30 10		0.5 0.1 <0.1 <0.1 0.4	42 9 12 39	26 <2 8 2	107 15 <1 94 25	13 24 8 7 19	6 <5 <5 <5 5	<3 <3 <3 <3 <3 <3	3 4 18 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.2 <0.1 0.2 0.2 0.2	15 4 6 2 7	14 15 19 7 16	<5 <5 <5 <5 <5
SL 91 AMR 011 SL 91 AMR 012 SL 91 AMR 013 SL 91 AMR 014	Rock Rock Rock Rock	5 5 10 20		0.1 0.3 0.5 0.4	11 14 52 6	10 26 10 114	87 3 45 67	12 <5 10 22	<5 5 <5 <5	<3 <3 <3 <3	2 7 3 6	<10 <10 <10 <10	<2 <2 <2 2	<0.1 0.1 0.3 <0.1	8 1 7 2	19 5 13 4	<5 <5 <5 <5
Minimum Detection Maximum Detection Method = Not Analysed	ReC = ReCheck in p	5 10000 FA/AAS progress	5 10000 GeoSp ins = I	0.1 100.0 ICP nsuffic	1 20000 ICP ient Sa	2 20000 ICP mple	1 20000 ICP	5 10000 ICP	5 1000 ICP	3 10000 ICP	1 1000 ICP	10 1000 ICP	2 10000 ICP	0.1 10000.0 ICP	1 10000 ICP	1 10000 ICP	5 1000 ICP

÷ .

.

Report: 9100408 R	Reliance Geo	logical	Service	es Ltd.		Pro	oject: 7	741 Slui	ce Claim	I		Page 1	of 6	Sect	tion 2	of 2
Sample Name	Ba	Cr	V	Mn	La	Sr	Zr	Sc	Ti	A1	Ca	Fe	Mg	К	Na	p
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%
SL 91 AKR 001	22	23	82	785	<2	193	2	4	0.07	>5.00	2.16	>5.00	2.01	0.03	0.56	0.08
SL 91 AKR 002	<2	54	72	1023	2	8	1	5	0.02	2.45	0.05	>5.00	1.80	0.02	0.02	0.02
SL 91 AKR 003	12	24	11	30	<2	7	3	1	<0.01	0.27	0.04	3.63	0.03	0.15	0.02	<0.01
SL 91 AKR 004	47	72	82	500	4	38	7	5	0.18	2.03	1.13	3.15	1.18	0.10	0.08	0.06
SL 91 AKR 005	12	24	4	14	<2	6	5	1	<0.01	0.13	0.02	3.61	0.01	0.03	0.01	<0.01
SL 91 AKR 006 SL 91 AKR 007 SL 91 AKR 008 SL 91 AKR 009 SL 91 AKR 010	20 10 7 4 11	118 117 104 267 102	107 137 94 92 134	330 531 225 338 536	3 <2 <2 2 2	56 26 46 32 259	2 2 2 1	8 10 4 3 12	0.08 0.10 0.08 0.17 0.12	2.35 1.77 1.33 1.20 4.31	0.86 0.42 0.19 0.71 1.47	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	0.80 1.09 0.67 0.86 2.08	0.28 0.15 0.12 0.07 0.78	0.25 0.10 0.06 0.09 0.42	0.08 0.07 0.03 0.15 0.08
SL 91 AKR 011	23	103	118	397	2	273	1	9	0.13	3.96	1.44	>5.00	1.82	0.56	0.43	0.08
SL 91 AKR 012	18	105	125	454	<2	335	1	11	0.10	>5.00	2.11	>5.00	1.85	0.76	0.69	0.08
SL 91 AKR 013	35	86	114	321	2	383	1	8	0.10	4.74	1.91	4.91	1.45	0.58	0.54	0.07
SL 91 AKR 014	31	93	109	326	2	369	1	8	0.09	>5.00	2.51	4.56	1.16	0.39	0.67	0.08
SL 91 AKR 015	42	87	120	542	2	222	1	9	0.13	>5.00	2.62	4.67	1.50	0.80	0.56	0.08
SL 91 AKR 016 SL 91 AKR 017 SL 91 AKR 018 SL 91 AKR 019 SL 91 AKR 020	34 33 50 32 24	68 82 45 59 92	96 99 52 65 154	435 384 1704 1001 492	<2 2 3 <2 2	208 158 9 53 230	2 2 1 3	6 6 4 3 12	0.14 0.13 0.10 0.10 0.07	4.28 3.92 1.88 2.19 4.40	1.80 1.88 0.26 0.49 2.00	4.61 4.71 4.74 3.03 >5.00	1.48 1.13 1.57 2.29 1.04	0.56 0.38 0.34 0.11 0.25	0.53 0.44 0.01 0.07 0.59	0.06 0.08 0.11 0.06 0.11
SL 91 AKR 021 SL 91 AKR 022 SL 91 AKR 023 SL 91 AKR 024 SL 91 AKR 025	20 86 44 28 9	107 57 28 99 102	85 96 49 9 25	211 634 281 182 84	2 4 3 <2	40 75 145 25 233	1 3 1 2 3	7 7 2 1 1	0.13 0.22 0.01 0.01 0.04	1.61 2.27 2.80 0.79 4.20	0.52 0.07 0.04 0.25 1.98	>5.00 3.44 3.54 1.36 >5.00	1.16 2.04 1.86 0.26 0.34	0.34 0.12 0.23 0.10 0.08	0.12 0.08 0.12 0.07 0.53	0.07 0.05 0.06 0.03 0.04
SL 91 AMR 001	24	32	89	959	2	57	4	5	0.19	2.76	0.62	4.33	2.58	0.06	0.11	0.08
SL 91 AMR 002	23	66	87	922	2	39	5	4	0.14	2.68	0.45	4.53	2.70	0.09	0.14	0.06
SL 91 AMR 003	9	48	107	1802	7	69	30	8	0.44	3.69	2.41	4.82	3.66	0.14	0.03	0.11
SL 91 AMR 004	91	68	101	884	2	130	3	6	0.07	2.90	0.38	4.69	2.09	0.13	0.07	0.06
SL 91 AMR 005	18	94	47	433	2	105	2	3	<0.01	2.06	0.13	>5.00	2.26	0.11	0.07	0.06
SL 91 AMR 006	37	73	64	670	4	46	3	3	0.04	1.80	0.24	3.95	1.74	0.13	0.08	0.05
SL 91 AMR 007	45	73	139	228	2	55	3	2	0.01	1.34	0.05	>5.00	0.72	0.13	0.06	0.22
SL 91 AMR 008	33	71	11	16	3	32	<1	1	<0.01	0.48	0.01	3.07	0.02	0.10	0.04	<0.01
SL 91 AMR 009	89	63	18	14	10	36	1	1	<0.01	0.54	0.02	2.91	0.03	0.08	0.06	0.01
SL 91 AMR 010	34	48	43	157	2	7	3	2	0.02	1.17	0.01	>5.00	1.10	0.16	0.03	0.02
SL 91 AMR 011	21	65	100	454	<2	77	1	6	0.13	2.55	0.63	2.18	2.20	0.07	0.14	0.06
SL 91 AMR 012	27	200	4	37	<2	7	1	<1	<0.01	0.13	0.01	0.45	0.02	0.08	0.02	<0.01
SL 91 AMR 013	37	81	49	282	2	39	2	3	0.08	1.30	0.26	2.88	0.66	0.22	0.13	0.04
SL 91 AMR 014	22	129	3	232	3	166	2	1	<0.01	2.66	1.20	0.85	0.09	0.05	0.48	<0.01
Minimum Detection Maximum Detection Method = Not Analysed	2 10000 ICP ReC = ReCheck	1 10000 ICP in prog	2 10000 ICP press i	ICP	2 10000 ICP suffici	1 10000 ICP ent Sam	1 10000 ICP nple	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

.,

eport: 9100408 R	Reliance Geolog	gical Servic	es Ltd.		Pro	ject: 7	41 Slui	ce Clair	n		Page	e 2 of	6	Secti	ion 1 o	f 2	
ample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	РЬ ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	W ppm
L 91 AMR 015	Rock	5		<0.1	10	<2	96	11	<5	<3	2	<10	<2	0.5	11	40	<5
L 91 AMR 016	Rock	10		<0.1	44	<2	84	12	5	<3	2	<10	<2	0.2	15	13	<5
L 91 AMR 017	Rock	10		<0.1	31	14	4	7	<5	<3	1	<10	<2	0.1	1	3	<5
SL 91 AMR 018	Rock	55		<0.1	75	12	3	14	5	<3	20	<10	<2	0.3	4	6	<5
L 91 AMR 019	Rock	10		<0.1	15	5	2	9	<5	<3	3	<10	<2	0.2	3	6	<5
L 91 AMR 020	Rock	20		<0.1	13	8	2	8	<5	<3	3	<10	<2	0.1	4	5	<5
L 91 AMR 021	Rock	30		<0.1	12	6	<1	10	5	<3	4	<10	<2	0.1	1	3	<5
L 91 AMR 022	Rock	5		<0.1	30	14	81	15	6	<3	4	<10	<2	0.2	9	12	<5
L 91 AMR 023	Rock	45		<0.1	25	7	5	<5	6	<3	6	<10	<2	0.2	4	7	<5
L 91 AMR 024	Rock	10		<0.1	5	13	1	5	5	<3	8	<10	<2	0.1	1	4	<5
L 91 AMR 025	Rock	30		<0.1	73	3	86	14	5	<3	3	<10	<2	0.2	15	19	<5
SL 91 AMR 026	Rock	5		<0.1	48	<2	15	17	<5	<3	5	<10	<2	<0.1	4	7	<5
SL 91 AMR 027	Rock	10		<0.1	34	7	1	23	<5	<3	3	<10	<2	0.3	10	13	<5
L 91 GKR 001	Rock	5		<0.1	48	<2	7	12	<5	<3	3	<10	<2	0.7	38	34	<5
L 91 GKR 002	Rock	5		0.4	586	<2	91	12	<5	<3	15	<10	<2	0.3	28	25	<5
L 91 GKR 003	Rock	5		0.1	77	14	61	34	5	<3	11	<10	<2	0.2	4	4	<5
SL 91 GKR 003	Rock	5		0.4	549	<2	67	25	6	<3	10	<10	<2	<0.1	37	32	<5
	Rock	5		<0.1	46	<2	102	20	5	<3	3	<10	<2	<0.1	30	24	<5
	Rock	30		0.3	405	<2	24	11	<5	<3	7	<10	5	<0.1	13	34	<5
3L 91 GKR 006 3L 91 GKR 007	Rock	10		<0.1	9	9	37	15	5	<3	4	<10	<2	0.4	7	15	<5
SL 91 GKR 008	Rock	70		0.9	279	11	28	19	6	<3	5	<10	<2	0.2	18	13	<5
SL 91 GKR 008	Rock	<5		<0.1	7	8	15	<5	<5	<3	4	<10	<2	<0.1	2	4	<5
SL 91 GKR 009	Rock	5		0.9	65	5	42	36	<5	<3	5	<10	<2	<0.1	14	15	<5
SL 91 GKR 010		15		1.6	83	63	118	27	9	<3	4	<10	<2	0.4	19	23	<5
SL 91 GKR 011	Rock Rock	10		0.4	9	11	67	33	7	<3	1	<10	<2	<0.1	17	19	<5
SL 91 GKR 012	ROCK	10							-	2	2	.10	<2	<0.1	20	20	<5
SL 91 GKR 013	Rock	20		0.3	31	16	56	51	7	<3 <3	2 11	<10 <10	<2 <2	<0.1	20	4	<5
SL 91 GKR 014	Rock	5		0.2	22	11	15	6	<5	<3 <3	2	<10	2	0.1	6	10	<5
SL 91 GKR 015	Rock	<5	~~	0.1	23	7	14	10	<5	<3	2	<10	4	<0.1	9	20	<5
SL 91 GKR 016	Rock	<5		0.2	20	13	28	18	<5 <5	<3 <3	5	<10	<2	0.4	65	63	<5
SL 91 GKR 017	Rock	10		2.3	959	<2	50	101	< <u>)</u>		-						
SL 91 GKR 018	Rock	25		0.9	105	<2	81	40	6	<3	3 5	<10 <10	<2 <2	<0.1 0.2	28 23	32 43	<5 <5
SL 91 GKR 019	Rock	10		1.8	406	<2	85	32	6	<3	5 4	<10 14	<2	0.2	72	154	<5
SL 91 NLR 001	Rock	<5		0.1	97	<2	71	20	<5	<3	3	<10	<2	0.4	52	89	<5
SL 91 NLR 002	Rock	<5		0.7	83	13	108	11	10	<3 <3	2	<10	<2	<0.1	15	27	<5
SL 91 NLR 003	Rock	<5		<0.1	44	<2	47	9	<5	<3	2		12				
SL 91 NLR 004	Rock	<5		0.3	28	22	57	7	<5	<3	3	<10	<2	0.6	12	8 3	<5 <5
SL 91 NLR 005	Rock	10		0.1	259	6	9	18	<5	<3	98	<10	<2	0.1	11	13	<5
SL 91 NLR 006	Rock	25		<0.1	85	5	38	22	<5	<3	6	<10	<2	0.2	19	16	<5
SL 91 NLR 007	Rock	<5		0.1	146	<2	39	11	<5	<3	20	<10	<2	<0.1	13	10	
Minimum Detection Maximum Detection Method		5 10000 FA/AAS	5 10000 GeoSp	0.1 100.0 ICP	1 20000 ICP	2 20000 ICP	1 20000 ICP	5 10000 ICP	5 1000 ICP	3 10000 ICP	1 1000 ICP	10 1000 ICP	2 10000 ICP	0.1 10000.0 ICP	1 10000 ICP	1 10000 ICP	5 1000 ICP

WITCHATIONAL PLASMA LABORATORY LTD.

ч.

7

Report: 9100408 R	Reliance Geo	logical	Service	s Ltd.		Pro	ject: 7	41 Sluid	ce Claim			Page 2	of 6	Sect	ion 2 d	of 2
Sample Name	Ba ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	۲۵ %	Ca %	Fe %	Mg %	K %	Na %	P %
SL 91 AMR 015 SL 91 AMR 016 SL 91 AMR 017 SL 91 AMR 018 SL 91 AMR 019	52 26 109 16 77	93 55 109 93 65	137 119 13 6 21	649 1003 29 16 20	3 2 6 <2 <2	35 27 35 13 10	3 1 <1 1 7	8 7 1 <1 2	0.19 0.12 <0.01 <0.01 0.01	2.03 3.14 0.49 0.32 0.46	0.31 0.38 0.04 0.01 0.01	>5.00 4.37 1.74 2.63 2.46	1.86 2.70 0.02 0.01 0.07	1.01 0.07 0.14 0.22 0.02	0.05 0.10 0.06 0.02 0.01	0.04 0.07 0.01 <0.01 <0.01
SL 91 AMR 020 SL 91 AMR 021 SL 91 AMR 022 SL 91 AMR 023 SL 91 AMR 024	41 56 24 59 122	79 46 74 100 151	10 27 27 16 4	17 13 550 19 24	4 2 <2 <2	24 58 62 17 28	<1 1 6 1 2	1 <1 1 1 <1	<0.01 <0.01 <0.01 <0.01 <0.01	0.38 0.43 1.91 0.34 0.19	0.02 0.02 0.19 0.02 0.01	1.72 >5.00 3.03 3.06 0.44	0.02 0.02 2.04 0.04 0.01	0.13 0.17 0.14 0.09 0.05	0.08 0.08 0.09 0.02 0.02	0.01 0.04 0.04 <0.01 <0.01
SL 91 AMR 025 SL 91 AMR 026 SL 91 AMR 027 SL 91 GKR 001 SL 91 GKR 002	86 479 18 31 93	67 44 50 67 80	67 50 265 228	619 55 18 116 330	6 4 ~2 3 3	33 124 6 28 230	6 1 4 2 1	6 2 1 4 15	0.10 <0.01 <0.01 0.14 0.28	3.30 1.13 0.15 1.08 >5.00	0.46 0.14 0.02 0.12 2.09	3.19 >5.00 3.25 >5.00 >5.00	2.30 0.40 0.01 0.28 1.76	0.45 0.16 0.04 0.25 1.33	0.12 0.03 0.01 0.06 0.56	0.06 0.04 <0.01 0.02 0.07
SL 91 GKR 003 SL 91 GKR 004 SL 91 GKR 005 SL 91 GKR 006 SL 91 GKR 007	61 28 491 11 52	101 55 66 131 94	9 253 256 51 94	160 481 529 188 281	7 2 3 3 5	58 189 205 159 57	3 1 2 1	3 21 22 6 3	0.05 0.35 0.30 0.10 0.17	0.60 >5.00 >5.00 4.20 1.62	0.11 2.15 2.15 2.58 0.75	1.15 >5.00 4.94 2.11 3.05	0.18 1.68 1.88 0.44 0.74	0.21 1.68 1.78 0.10 0.59	0.06 0.43 0.49 0.52 0.21	0.01 0.09 0.08 0.07 0.06
SL 91 GKR 008 SL 91 GKR 009 SL 91 GKR 010 SL 91 GKR 011 SL 91 GKR 012	20 65 19 14 37	89 148 71 77 82	77 7 93 82 68	190 162 451 840 511	7 3 2 2 3	24 6 112 98 305	2 1 1 2 1	5 1 6 4 3	0.14 0.02 0.08 0.17 0.12	1.12 0.38 3.36 3.00 >5.00	0.42 0.04 1.47 1.35 3.30	2.82 0.98 3.88 4.30 3.95	0.65 0.16 1.04 1.58 0.88	0.14 0.18 0.14 0.09 0.30	0.09 0.06 0.34 0.25 0.62	0.08 0.01 0.10 0.08 0.08
SL 91 GKR 013 SL 91 GKR 014 SL 91 GKR 015 SL 91 GKR 016 SL 91 GKR 017	27 27 39 43 4	67 80 74 54 89	97 9 8 6 45	552 126 81 427 473	2 4 3 2 <2	252 10 38 78 14	1 6 1 1 2	6 -2 <1 1 2	0.14 0.03 0.01 <0.01 0.03	>5.00 0.46 1.82 2.65 1.70	3.05 0.11 0.77 0.97 0.25	4.20 0.91 2.61 2.17 >5.00	1.14 0.16 0.22 0.61 0.79	0.57 0.10 0.26 0.28 0.20	0.59 0.09 0.16 0.18 0.06	0.08 0.01 0.09 0.03 0.08
SL 91 GKR 018 SL 91 GKR 019 SL 91 NLR 001 SL 91 NLR 002 SL 91 NLR 003	26 6 <2 2 51	67 75 322 345 87	176 117 199 129 82	666 824 693 735 510	<2 4 <2 <2 4	73 41 187 30 39	1 2 3 7	11 5 13 8 5	0.08 0.19 0.18 0.26 0.18	3.32 2.72 >5.00 1.59 2.02	1.02 0.65 2.55 0.64 1.11	>5.00 >5.00 >5.00 >5.00 3.16	1.56 1.65 2.09 1.44 1.15	0.21 0.10 0.63 0.05 0.10	0.29 0.12 0.47 0.07 0.09	0.14 0.08 0.14 0.15 0.06
SL 91 NLR 004 SL 91 NLR 005 SL 91 NLR 006 SL 91 NLR 007	42 35 130 115	90 110 83 61	14 <2 54 136	210 60 302 306	5 10 7 3	16 11 20 131	4 1 2 1	1 3 5 7	0.07 0.02 0.21 0.21	0.49 0.38 1.48 2.62	0.19 0.09 0.33 1.27	2.19 1.11 2.86 3.20	0.11 0.06 0.93 0.80	0.23 0.07 0.79 0.78	0.07 0.07 0.12 0.32	0.03 0.01 0.06 0.08
Minimum Detection Maximum Detection Method = Not Analysed	2 10000 ICP ReC = ReCheck	1 10000 ICP in prog	2 10000 ICP ress i	1 10000 ICP ns = In	2 10000 ICP suffici	1 10000 ICP ent Sam	1 10000 ICP ple	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

•

r

.

Report: 9100408 R	Reliance Geologic	al Servi	ces Ltd.		Pr	oject:	741 Slu	ice Cla	im		Pag	ge 3 d	of 6	Sect	ion 1	of 2	-
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	דן ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	W ppm
SL 91 NLR 008 SL 91 NLR 009 SL 91 NLR 010 SL 91 NLR 011 SL 91 NLR 012	Rock Rock Rock Rock Rock Rock	10 10 5 5 10	 	0.9 0.3 0.2 <0.1 <0.1	1158 70 7 18 10	33 15 <2 4 9	184 84 38 1 1	5 18 49 6 5	<5 9 6 <5 <5	<3 <3 <3 <3 <3	2 5 3 2 4	<10 <10 <10 <10 <10	7 <2 <2 <2 <2	1.7 0.5 <0.1 0.3 <0.1	8 10 7 7 1	9 10 10 17 2	<5 <5 <5 <5 <5
SL 91 NLR 013 SL 91 NLR 014 SL 91 NLR 015 SL 91 NLR 016 SL 91 NLR 017	Rock Rock Rock Rock Rock	10 20 20 25		4.0 1.1 <0.1 2.5 0.2	71 64 17 49 11	830 100 7 154 5	149 16 <1 161 54	18 16 8 20 15	6 <5 13 5	<3 <3 <3 <3 <3	3 5 10 3 6	<10 <10 <10 11 <10	<2 <2 <2 <2 <2 <2	0.1 0.1 0.3 0.7 0.1	6 5 8 28 13	13 4 12 35 20	<5 <5 <5 <5 <5 <5
SL 91 NLR 018 SL 91 NLR 019 SL 91 NLR 020 SL 91 NLR 021 SL ⁵ 91 NLR 022	Rock Rock Rock Rock Rock	15 5 10 45 20		1.0 0.6 0.3 <0.1 0.3	9 31 32 10 43	47 24 <2 16 5	88 39 36 7 90	19 19 12 <5 20	6 7 8 <5 6	<3 <3 <3 <3 <3 <3	3 4 2 2 6	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.3 0.1 0.1 0.5	7 4 11 1 20	9 10 11 3 19	<5 <5 <5 <5 <5 <5
SL 91 NLR 023 SL 91 NLR 024 SL 91 NLR 025 SL 91 NLR 026 SL 91 NLR 027	Rock Rock Rock Rock Rock	15 5 40 10		0.1 0.1 <0.1 2.4 0.8	77 31 32 35 57	<2 6 <2 42 465	86 60 92 73 195	16 17 9 15 16	6 <5 7 6 7	<3 <3 <3 <3 <3 <3	6 3 2 4 3	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.4 0.1 0.2 0.4 0.6	25 10 27 14 12	46 13 16 15 15	<5 <5 <5 <5 <5 <5
SL 91 NLR 028 SL 91 NLR 029 SL 91 NLR 030 SL 91 NLR 031A SL 91 NLR 031B	Rock Rock Rock Rock Rock Rock	15 5 10 15 45		0.2 0.3 0.2 0.3 1.5	37 8 58 3 5	22 11 12 109 276	78 8 47 2 5	13 6 25 48 114	<5 <5 17 17	<3 <3 <3 <3 <3 <3	3 4 2 21 52	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.1 0.4 0.1 0.4	11 1 13 1 2	18 3 9 5 8	<5 <5 <5 <5 <5 <5
SL 91 NLR 032 SL 91 NLR 033 SL 91 NLR 034 SL 91 NLR 035 SL 91 NLR 036	Rock Rock Rock Rock Rock Rock	5 5 <5 10 10	 	<0.1 0.3 <0.1 0.3 1.2	71 592 37 31 278	<2 <2 <2 <2 <2 <2	82 66 48 74 41	16 26 10 18 19	<5 5 <5 5 11	<3 <3 <3 <3 <3 <3	5 20 1 2 12	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 2	0.1 0.1 0.4 <0.1 0.9	13 64 15 23 20	44 45 17 32 11	<5 <5 <5 <5 <5
	8ft DDH 14ft DDH	10 10 40 60 10	 	0.1 4.0 4.0 6.5 0.9	49 2031 4864 6068 484	<2 101 18 34 10	55 309 132 181 152	21 38 20 46 22	10 5 <5 <5 6	<3 <3 <3 <3 <3 <3	4 6 10 4 152	<10 <10 <10 <10 <10	<2 52 7 <2 <2	<0.1 1.8 1.2 1.8 0.4	51 70 35 37 19	39 43 17 8 32	<5 <5 <5 <5 106
SL 91 DDH 3 109ft- SL 91 DDH 3 179ft- SL 91 DDH 3 353ft- SL 91 DDH 5 168ft-	182ft DDH 356ft DDH	5 15 5 5	 	3.4 8.6 4.5 0.8	2983 2569 3103 1112	9 68 112 <2	243 491 714 51	32 37 27 10	<5 5 <5 <5	<3 <3 <3 <3	6 73 4 71	<10 <10 <10 <10	<2 <2 10 <2	1.5 2.2 1.7 0.2	67 45 53 44	41 53 38 49	29 <5 <5 <5
Minimum Detection Maximum Detection Method = Not Analysed	ReC = ReCheck in pr	5 10000 FA/AAS rogress	5 10000 GeoSp ins = In	0.1 100.0 ICP nsuffic	1 20000 ICP ient Sa	2 20000 ICP mple	1 20000 ICP	5 10000 ICP	5 1000 ICP	3 10000 ICP	1 1000 ICP	10 1000 ICP	2 10000 1 ICP	0.1 0000.0 ICP	1 10000 ICP	1 10000 ICP	5 1000 ICP

• • • • •

Report: 9100408 R Relia	ance Geo	logical	Service	s Ltd.		Pro	ject: 7	41 Sluid	ce Claim			Page 3	of 6	Sect	ion 2 d	of 2
Sample Name	Ba	Cr	V	Mn	La	Sr	Zr	Sc	Ti	۲A	Ca	Fe	Mg	K	Na	P
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%
SL 91 NLR 008	20	176	4	136	<2	12	1	1	0.01	0.40	0.19	0.56	0.06	0.13	0.13	0.01
SL 91 NLR 009	28	75	39	455	4	94	3	3	0.11	1.76	0.56	4.38	1.22	0.22	0.06	0.05
SL 91 NLR 010	67	49	99	558	2	45	1	3	<0.01	3.34	0.08	>5.00	2.24	0.10	0.04	0.22
SL 91 NLR 011	19	70	9	12	4	52	1	1	<0.01	0.48	0.01	3.79	0.01	0.11	0.05	<0.01
SL 91 NLR 012	70	75	8	10	4	68	1	<1	<0.01	0.45	0.02	1.37	0.01	0.12	0.08	<0.01
SL 91 NLR 013 SL 91 NLR 014 SL 91 NLR 015 SL 91 NLR 016 SL 91 NLR 017	27 24 10 10 26	77 178 100 90 110	67 11 11 118 130	970 142 12 775 315	5 <2 <2 <2 <2 <2	83 9 65 37 82	4 2 2 1	4 1 8 8	0.16 0.19 <0.01 0.11 0.10	2.15 0.13 0.44 2.72 1.96	0.22 0.06 0.01 0.54 0.61	2.92 1.65 3.06 >5.00 >5.00	1.85 0.05 0.01 2.70 1.34	0.09 0.02 0.05 0.11 0.08	0.06 0.01 0.06 0.14 0.18	0.07 <0.01 0.01 0.07 0.10
SL 91 NLR 018	27	70	107	442	2	26	2	7	0.07	1.71	0.06	3.82	2.03	0.17	0.05	0.03
SL 91 NLR 019	49	87	8	194	4	57	1	<1	<0.01	0.98	0.02	3.93	0.82	0.18	0.08	0.03
SL 91 NLR 020	14	81	25	137	<2	36	1	2	<0.01	1.91	0.16	>5.00	1.71	0.11	0.10	0.06
SL 91 NLR 021	28	89	<2	68	11	10	2	2	0.02	0.36	0.03	1.12	0.03	0.14	0.09	<0.01
SL 91 NLR 022	30	114	81	410	2	80	4	5	0.14	2.49	0.71	3.96	1.72	0.19	0.21	0.06
SL 91 NLR 023	43	91	78	879	3	22	2	4	0.16	2.26	0.53	4.62	1.53	0.28	0.09	0.10
SL 91 NLR 024	37	97	91	365	3	45	6	6	0.13	2.02	0.26	3.22	2.09	0.09	0.12	0.04
SL 91 NLR 025	148	41	177	446	9	81	4	4	0.30	2.04	1.14	>5.00	1.45	0.78	0.23	0.13
SL 91 NLR 026	31	74	106	543	3	30	2	7	0.18	1.74	0.11	4.45	1.71	0.22	0.10	0.04
SL 91 NLR 027	12	59	105	1023	2	56	2	6	0.17	2.62	0.41	3.90	2.62	0.08	0.09	0.06
SL 91 NLR 028	179	70	125	608	3	60	3	10	0.18	2.87	0.47	3.61	2.44	0.87	0.16	0.06
SL 91 NLR 029	26	108	2	28	10	4	3	1	0.01	0.34	0.01	0.85	0.03	0.16	0.08	0.01
SL 91 NLR 030	29	75	73	447	2	102	1	5	0.10	2.61	0.63	3.69	1.55	0.08	0.24	0.09
SL 91 NLR 031A	195	168	3	16	<2	228	1	1	0.01	0.03	0.01	1.15	0.01	0.10	0.01	0.03
SL 91 NLR 031B	172	250	9	33	2	45	7	1	0.06	0.08	0.04	2.60	0.01	0.22	0.01	0.06
SL 91 NLR 032 SL 91 NLR 033 SL 91 NLR 034 SL 91 NLR 035 SL 91 NLR 036	26 6 21 24 10	118 59 41 71 91	55 47 12 92 40	312 701 235 535 195	3 <2 <2 <2 <2 <2	33 21 29 196 111	1 1 1 3	2 4 1 9 3	0.08 0.02 <0.01 0.12 0.19	2.99 3.28 1.38 4.81 1.95	0.15 0.18 0.03 1.77 1.01	4.33 >5.00 4.57 3.82 >5.00	1.19 2.12 0.67 1.94 0.29	0.20 0.28 0.24 0.38 0.05	0.08 0.07 0.04 0.50 0.07	0.05 0.07 0.03 0.04 0.03
SL 91 NLR 037 SL 91 DDH 1 89ft- 92ft SL 91 DDH 2 3ft- 8ft SL 91 DDH 2 8ft- 14ft SL 91 DDH 3 36ft- 38ft	2 25 19 8 7	82 79 75 79 188	137 239 79 24 96	442 1259 328 319 934	<2 6 4 3 2	146 248 39 26 70	1 2 3 2	12 9 4 3 6	0.10 0.27 0.16 0.10 0.18	4.32 4.22 1.41 0.76 2.27	1.24 1.59 0.56 0.36 1.06	>5.00 >5.00 3.32 2.40 3.52	2.51 2.15 0.80 0.33 1.33	0.67 0.64 0.12 0.04 0.05	0.39 0.34 0.11 0.09 0.10	0.07 0.17 0.08 0.07 0.09
SL 91 DDH 3 109ft-110ft	30	50	193	1324	3	126	3	8	0.24	4.54	1.96	>5.00	1.95	0.37	0.35	0.12
SL 91 DDH 3 179ft-182ft	2	63	122	1411	3	145	3	7	0.14	4.63	2.12	>5.00	1.22	0.07	0.43	0.11
SL 91 DDH 3 353ft-356ft	8	78	156	4601	3	83	3	8	0.19	4.81	1.16	>5.00	2.83	0.13	0.17	0.13
SL 91 DDH 5 168ft-169ft	34	44	51	156	5	203	3	2	0.18	3.22	2.20	4.07	0.36	0.12	0.52	0.14
Minimum Detection Maximum Detection Method = Not Analysed ReC =	2 10000 ICP ReCheck	1 10000 ICP in prog	2 10000 ICP ress i	1 10000 ICP ns ≠ In	2 10000 ICP suffici	1 10000 ICP ent Sam	1 10000 ICP ple	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

; ·

Report: 9100408 R	Reliance Geologi	cal Servi	ces Ltd.		Pr	oject:	741 SIL	vice Cla	im		Pa	ige 4 d	of 6	Sec	tion 1	of 2	
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T] ppm	Bi ppm				W ppm
SL 91 AKL 001	Silt		20	1.1	117	28	76	39	7	<3	4	<10	<2	0.2	11	19	<5
SL 91 AKL 002	Silt		5	0.6	105	20	88	37	7	<3	5	<10	<2		12		<5
SL 91 AKL 003	Silt		<5	0.6	81	3	58	34	<5	<3	5	<10	<2		9		<5
SL 91 AKL 004	Silt		<5	2.1	170	25	65	58	7	<3	6	<10	<2		11		<5
SL 91 AKL 005	Silt		<5	0.7	139	51	219	395	<5	<3	8	<10	<2		25		<5
SL 91 AKL 006	Silt		15	1.5	190	81	132	274	21	<3	10	<10	<2	0.1	13	23	<5
SL 91 AKL 007	Silt		<5	0.6	126	8	115	18	<5	<3	7	<10	<2		24	38	<5
SL 91 AKL 008	Silt		<5	0.1	39	7	32	24	8	<3	8	<10	<2	<0.1	6	11	<5
SL 91 AKL 009	Silt		25	0.2	38	12	23	25	<5	<3	57	<10	<2	0.4	3	7	<5
SL 91 AKL 010	Silt		5	0.2	45	18	33	24	5	<3	16	<10	<2		2	6	<5
SL 91 AKL 011	Silt		5	0.1	39	27	41	19	6	<3	18	<10	<2	0.1	3	7	<5
SL 91 AKL 012	Silt		45	0.2	21	13	14	22	9	<3	94	<10	<2		2	6	<5
SL 91 AKL 013	Silt		30	0.2	20	33	5	52	16	<3	56	<10	<2			5	<5
SL 91 AKL 014	Silt		5	0.1	25	33	15	36	<5	<3	32	<10	<2		2	6	<5
SL1 91 AKL 015	Silt		20	0.2	26	68	10	41	31	<3	42	<10	<2		2	5	<5
SL 91 AKL 016	Silt		40	3.0	605	118	170	71	17	<3	4	<10	<2	1.4	33	32	<5
SL 91 AKL 017	Silt		10	1.5	181	26	142	68	5	<3	7	<10	<2		25	43	<5
SL 91 AKL 018	Silt		15	6.9	566	770	1104	191	5	<3	12	<10	14	4.2	58	38	<5
SL 91 AKL 010	Silt		15	4.1	385	173	208	174	<5	<3	8	<10	<2		19	26	<5
SL 91 AKL 020	Silt		5	1.8	239	. 99	110	120	<5	<3	6	<10	<2		12	20	<5 <5
OL DI ANL UZU	5116		J	1.0	233	33	110	120	< 3	N U	U	<10	<۷	۲۰.۱	12	22	<0
SL 91 AML 001	Silt		<5	0.1	19	19	15	19	6	<3	8	<10	<2		3	11	<5
SL 91 AML 002	Silt		15	0.2	63	4	35	30	<5	<3	7	<10	<2	<0.1	7	14	<5
SL 91 GKL 001	Silt		<5	0.5	42	3	45	30	<5	<3	6	<10	<2		8	20	<5
SL 91 GKL 002	Silt		<5	0.7	53	<2	52	31	<5	<3	6	<10	<2		11	20	<5
SL 91 GKL 003	Silt		<5	0.2	64	7	61	19	<5	<3	5	<10	<2	0.2	14	22	<5
SL 91 GKL 004	Silt		20	0.2	77	5	69	21	5	<3	5	12	<2	0.3	11	21	<5
SL 91 GKL 005	Silt		5	0.6	35	9	44	28	<5	<3	5	<10	<2	<0.1	8	17	<5
SL 91 GKL 006	Silt		<5	0.3	68	10	72	30	<5	<3	5	<10	<2	<0.1	11	22	<5
SL 91 GKL 007	Silt		10	0.5	79	16	97	30	<5	<3	4	<10	<2	<0.1	13	21	<5
SL 91 GKL 008	Silt		15	1.0	121	36	76	39	8	<3	4	<10	<2		11	20	<5
SL 91 GKL 009	Silt		30	1.4	177	69	119	24	9	<3	5	<10	<2	0.7	60	36	<5
SL 91 GKL 010	Silt		10	1.1	186	18	93	24	5	<3	11	<10	<2	0.1	33	29	<5
SL 91 GKL 011	Silt		30	0.9	108	60	109	96	9	<3	3	<10	<2	0.8	25	30	<5
SL 91 GKL 012	Silt		215	0.2	60	9	60	26	7	<3	5	<10	<2		13	22	<5
SL 91 GKL 013	Silt		10	1.7	423	90	380	219	17	<3	47	<10	<2	2.1	15	21	<5
OL DI GRE DID	C T C																
SL 91 GKL 014	Silt		15	1.1	123	58	187	139	10	<3	24	<10	<2		12	32	<5
SL 91 GKL 015	Silt		15	1.2	162	60	125	212	14	<3	15	<10	<2	0.4	11	20	<5
SL 91 GKL 016	Silt		<5	0.2	67	<2	47	28	<5	<3	5	<10	<2	<0.1	7	17	<5
SL 91 GKL 017	Silt		<5	1.4	143	8	35	48	<5	<3	4	<10	<2	<0.1	4	13	<5
Minimum Detection		5	5	0.1	1	2	1	5	5	3	1	10	2	0.1	1	1	5
Maximum Detection		10000	10000	100.0	20000	20000	20000	10000	1000	10000	1000	1000		10000.0	10000	10000	1000
Method		FA/AAS	GeoSp	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP						
= Not Analysed	ReC = ReCheck in a		ins = I			mple											
			_			•											

.

TERMITANA PASMA LABORATORY VID

۹ ·

*

7

Report: 9100408 R	Reliance Geo	logical	Service	s Ltd.		Pro	ject: 7	41 Sluic	ce Claim			Page 4	of 6	Sect	ion 2 c	of 2
Sample Name	Ba ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	۸۱ %	Ca %	Fe %	Mg %	К %	Na %	P %
SL 91 AKL 001 SL 91 AKL 002 SL 91 AKL 003 SL 91 AKL 004 SL 91 AKL 005	102 118 58 111 62	31 35 25 29 48	97 102 92 87 93	424 456 285 458 1007	4 5 3 8 6	110 123 62 130 56	1 1 3 1 3	4 6 4 6	0.08 0.10 0.08 0.07 0.09	3.88 3.97 2.50 3.64 3.38	0.08 0.09 0.10 0.10 0.33	>5.00 >5.00 >5.00 >5.00 >5.00	1.25 1.35 0.97 1.11 1.49	0.16 0.20 0.14 0.15 0.16	0.04 0.04 0.03 0.05 0.06	0.12 0.13 0.09 0.10 0.10
SL 91 AKL 006 SL 91 AKL 007 SL 91 AKL 008 SL 91 AKL 009 SL 91 AKL 010	111 66 46 58 62	30 30 6 7 10	119 70 43 52 49	536 749 239 117 197	9 5 2 5 6	132 127 56 37 58	2 4 2 4 3	9 5 2 3 4	0.15 0.13 0.02 0.01 0.01	3.64 3.59 1.16 1.03 1.35	0.09 0.83 0.05 0.01 0.01	>5.00 4.26 >5.00 >5.00 >5.00	1.43 1.63 0.64 0.67 0.72	0.49 0.14 0.06 0.08 0.08	0.09 0.09 0.03 0.03 0.03	0.15 0.10 0.06 0.12 0.10
SL 91 AKL 011 SL 91 AKL 012 SL 91 AKL 013 SL 91 AKL 014 SL 91 AKL 015	70 65 73 39 98	8 5 3 3 4	47 43 33 59 47	191 59 28 33 35	6 2 3 2	53 42 18 48 66	3 2 4 3 2	3 1 1 2	0.01 0.01 0.01 <0.01 <0.01 0.01	1.45 0.65 0.41 0.65 0.48	0.02 0.01 0.01 0.01 0.02	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	0.77 0.29 0.08 0.38 0.15	0.13 0.10 0.05 0.11 0.27	0.03 0.02 0.02 0.06 0.04	0.11 0.07 0.06 0.11 0.11
SL 91 AKL 016 SL 91 AKL 017 SL 91 AKL 018 SL 91 AKL 019 SL 91 AKL 020	76 104 122 73 72	23 21 58 44 32	64 97 152 166 160	1720 714 1814 533 302	9 13 7 <2 2	123 167 164 150 129	6 4 3 4 3	4 6 10 7 9	0.11 0.12 0.10 0.09 0.15	2.44 3.81 4.04 3.54 2.37	0.78 0.08 0.77 0.39 0.24	4.87 >5.00 >5.00 >5.00 >5.00	1.18 1.50 1.87 1.08 0.94	0.10 0.29 0.44 0.29 0.42	0.05 0.10 0.08 0.09 0.10	0.09 0.15 0.12 0.13 0.17
SL 91 AML 001 SL 91 AML 002 SL 91 GKL 001 SL 91 GKL 002 SL 91 GKL 003	88 81 42 20 51	3 16 22 24 21	26 82 89 98 63	102 365 226 165 418	2 5 <2 <2 2	36 114 47 18 75	1 3 6 2	2 4 3 3 3	0.01 0.04 0.08 0.10 0.07	0.67 2.23 1.54 1.29 1.83	0.02 0.05 0.06 0.03 0.38	3.24 >5.00 >5.00 >5.00 >5.00	0.31 1.07 0.71 0.49 1.03	0.06 0.08 0.09 0.06 0.08	0.02 0.04 0.02 0.01 0.06	0.04 0.17 0.07 0.10 0.08
SL 91 GKL 004 SL 91 GKL 005 SL 91 GKL 006 SL 91 GKL 007 SL 91 GKL 008	56 61 67 109 102	24 26 37 29 34	65 102 106 83 105	441 214 405 664 389	2 <2 3 5 5	74 67 59 93 117	3 3 1 1 1	3 -3 4 4 5	0.05 0.10 0.10 0.07 0.09	2.07 1.37 3.16 4.52 3.85	0.22 0.04 0.05 0.07 0.07	>5.00 >5.00 >5.00 >5.00 >5.00	1.19 0.75 1.24 1.09 1.28	0.11 0.11 0.11 0.13 0.19	0.06 0.03 0.03 0.03 0.04	0.08 0.08 0.11 0.13 0.11
SL 91 GKL 009 SL 91 GKL 010 SL 91 GKL 011 SL 91 GKL 012 SL 91 GKL 013	58 96 75 48 198	27 23 31 23 26	68 74 85 68 75	2147 940 605 409 678	5 4 3 23	182 230 157 71 73	2 2 3 2 1	6 4 5 3 5	0.10 0.07 0.12 0.07 0.07	3.52 4.30 2.77 1.86 3.29	0.70 0.63 0.67 0.34 0.32	>5.00 >5.00 4.73 >5.00 >5.00	1.40 1.47 1.42 1.04 0.90	0.13 0.12 0.19 0.09 0.17	0.06 0.04 0.08 0.06 0.03	0.17 0.16 0.10 0.08 0.10
SL 91 GKL 014 SL 91 GKL 015 SL 91 GKL 016 SL 91 GKL 017	117 123 30 20	29 31 12 14	86 110 61 45	427 449 146 132	10 11 <2 3	98 113 36 32	1 1 4 1	4 8 1 2	0.07 0.14 0.05 0.03	2.71 2.91 1.64 >5.00	0.45 0.10 0.06 0.13	>5.00 >5.00 >5.00 3.04	1.01 1.29 0.47 0.47	0.11 0.46 0.06 0.06	0.04 0.09 0.02 0.04	0.09 0.12 0.06 0.08
Minimum Detection Maximum Detection Method ≈ Not Analysed	2 10000 ICP ReC = ReCheck	1 10000 ICP in prog	2 10000 ICP ress i	1 10000 ICP ns = In	2 10000 ICP suffici	1 10000 ICP ent Sam	1 10000 ICP ple	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

•

۲

÷

Report: 9100408 R	Reliance Geologi	ical Servi	ces Ltd.		Pr	oject:	741 Slu	ice Cla	im		Pag	ge 5 o	of 6	Sect	ion 1	of 2		
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	W ppm	
SL 91 GKL 018	Silt		<5	1.0	20	<2	25	22	<5	<3	4	<10	<2	<0.1	9	21	<5	
SL 91 GKL 019	Silt		<5	1.1	7	<2	13	29	<5	<3	4	<10	<2	<0.1	8	19	<5	
SL 91 GKL 020	Silt		<5	1.4	336	<2	29	32	<5	<3	5	<10	<2	<0.1	8	19	<5	
SL 91 GKL 021	Silt		<5	3.9	66	7	63	28	5	<3	5	<10	<2	0.2	7	16	<5	
SL 91 GKL 022	Silt		<5	0.7	152	<2	15	31	<5	<3	5	<10	<2	<0.1	8	17	<5	
SL FIGHL UZZ	5110		10	0.7	152	~2	15	51	10	~ 5	5	10	~2	NO. 1	0	17	L J	
SL 91 GKL 023	Silt	**	<5	0.4	150	<2	19	33	7	<3	5	10	5	<0.1	8	18	<5	
SL 91 GKL 024	Silt		<5	0.5	54	<2	38	25	<5	<3	7	<10	<2	<0.1	5	11	<5	
SL 91 GKL 025	Silt		<5	0.2	- 38	9	38	22	6	<3	7	<10	<2	0.1	5	9	<5	
SL 91 GKL 026	Silt		<5	0.1	34	13	28	23	7	<3	8	<10	<2	0.4	6	9	<5	
SL 91 GKL 027	Silt		10	0.2	56	7	31	30	<5	<3	6	<10	<2	<0.1	6	13	<5	
SL 91 GKL 028	Silt		5	0.2	62	14	48	30	8	<3	9	<10	<2	0.2	7	16	<5	
	Silt		25	0.3	59	13	40	26	7	<3	11	<10	<2	0.1	7	15	<5	
			40	0.5	59 64	23	37	60	6	<3	18	<10	<2	<0.1	5	14	<5	
SL 91 GKL 030	Silt						59								7	14		
SL 91 GKL 031	Silt		20	0.9	65	30		31	<5	<3	6 8	<10 <10	<2	0.2	8	24	<5	
SL 91 GKL 032	Silt		50	1.6	90	176	94	30	<5	<3	8	<10	<2	<0.1	0	24	<5	
SL 91 GKL 033	Silt		35	1.9	65	119	73	52	<5	<3	10	<10	<2	<0.1	6	20	<5	
SL 91 GKL 034	Silt	~	25	0.5	50	51	43	28	<5	<3	13	<10	<2	0.3	5	12	<5	
SL 91 GKL 035	Silt		65	1.3	77	151	66	120	14	<3	8	<10	<2	0.2	7	14	<5	
SL 91 GKL 036	Silt		20	1.2	75	60	30	240	13	<3	12	<10	<2	0.3	3	11	<5	
SL 91 GKL 037	Silt		15	1.0	150	34	66	47	5	<3	9	<10	<2	<0.1	10	18	<5	
			_						-								-	
SL 91 GKL 038	Silt		5	0.5	59	17	36	45	<5	<3	13	<10	<2	0.2	4	11	<5	
SL 91 GKL 039	Silt		<5	3.0	125	20	69	54	<5	<3	11	<10	<2	0.1	7	18	<5	
SL 91 GKL 040	Silt		<5	2.3	190	114	59	47	<5	<3	18	<10	<2	<0.1	8	18	<5	
SL 91 GKL 041	Silt		<5	3.0	75	15	43	40	<5	<3	7	<10	<2	<0.1	5	12	<5	
SL 91 NLL 001	Silt		<5	0.2	72	4	59	32	6	<3	5	<10	<2	0.2	13	21	<5	
SL 91 NLL 002	Silt		<5	0.1	43	12	31,	25	6	<3	8	<10	<2	0.3	7	11	<5	
SL 91 AKS 001	Soil		<5	0.8	200	23	57	40	<5	<3	6	<10	<2	0.1	8	15	<5	
SL 91 AKS 002	Soil		<5	0.7	228	20	54	59	6	<3	7	<10	<2	<0.1	7	13	<5	
	Soil		5	0.5	238	16	55	44	<5	<3	6	<10	<2	<0.1	8	15	<5	
			<5	1.2	433	19	72	37	5	<3	ő	<10	<2	0.9	8	18	<5	
SL 91 AKS 004	Soil		<5	1.2	400	15	72	57	5	10	0		~2	0.5	0	10	~5	
SL 91 AKS 005	Soil		<5	1.0	296	20	76	44	7	<3	7	<10	<2	0.4	10	22	<5	
SL 91 AKS 006	Soil		<5	0.6	76	37	96	165	8	<3	9	<10	7	0.1	6	17	<5	
SL 91 AKS 007	Soil		<5	0.9	47	33	102	58	5	<3	7	<10	<2	0.2	8	15	<5	
SL 91 AKS 008	Soil		<5	0.9	118	57	119	91	6	<3	14	<10	<2	<0.1	9	19	<5	
SL 91 GKS 001	Soil		<5	0.5	64	21	75	49	5	<3	6	<10	<2	<0.1	10	19	<5	
	A		-	~ ·			00	C 1		.1	<i>c</i>	.10	.0	0.1	0	16	.5	
SL 91 GKS 002	Soil		<5	0.4	47	47	92	61	<5	<3	6 6	<10 <10	<2	0.1 0.4	8 9	16 16	<5 <5	
SL 91 GKS 003	Soil		<5	0.7	54	26	70	47	<5	<3	-	• •	<2		8			
SL 91 GKS 004	Soil		<5	0.5	45	28	76	48	6	<3	7	<10	<2	<0.1		15	<5	
SL 91 GKS 005	Soil		<5	0.4	64	13	57	43	<5	<3	7	<10	<2	0.4	12	23	<5	
		-	-	0.1	1	0	1	5	5	3	1	10	2	0.1	1	1	5	
Minimum Detection		5	10000	0.1	•	2	20000	10000	1000	10000	1000	1000		10000.0	10000	10000	1000	
Maximum Detection		10000	10000	100.0	20000	20000								ICP	ICP	ICP	ICP	
Method		FA/AAS	GeoSp	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	109	ICP	ICP	105	
= Not Analysed	ReC = ReCheck in	progress	ins = I	nsuffic	nent Sa	mpie												

;

ĩ

Report: 9100408 R	Reliance Geol	ogical	Service	s Ltd.		Pro	ject: 7	41 Sluic	e Claim			Page 5	of 6	Sect	ion 2 c	of 2
Sample Name	Ba ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K %	Na %	P %
SL 91 GKL 018 SL 91 GKL 019 SL 91 GKL 020 SL 91 GKL 021 SL 91 GKL 022	17 13 23 108 5	10 3 9 14 1	39 33 38 57 33	209 100 238 500 46	<2 <2 <2 5 <2	35 39 36 143 15	6 8 7 1 10	1 <1 6 20 2	0.03 0.01 0.02 0.01 0.01	1.10 0.79 0.93 2.42 0.55	0.09 0.04 0.03 0.06 0.01	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	0.52 0.23 0.29 1.13 0.09	0.05 0.03 0.04 0.10 0.03	0.02 0.02 0.02 0.06 0.01	0.05 0.04 0.06 0.13 0.02
SL 91 GKL 023 SL 91 GKL 024 SL 91 GKL 025 SL 91 GKL 026 SL 91 GKL 027	17 52 52 46 63	2 6 5 4 14	36 44 43 36 73	80 276 277 205 326	<2 2 2 3 4	29 72 71 54 102	9 2 1 1 3	1 4 3 2 3	0.01 0.01 0.01 0.01 0.04	0.69 1.42 1.34 0.99 1.84	0.01 0.04 0.03 0.03 0.04	>5.00 >5.00 >5.00 4.80 >5.00	0.17 0.70 0.70 0.55 0.98	0.04 0.07 0.07 0.06 0.07	0.02 0.04 0.04 0.03 0.03	0.03 0.09 0.08 0.06 0.16
SL 91 GKL 028 SL 91 GKL 029 SL 91 GKL 030 SL 91 GKL 031 SL 91 GKL 032	120 104 82 62 93	19 18 20 20 41	81 78 84 89 164	377 335 283 318 485	6 5 3 2	140 128 156 72 183	2 2 3 2 2	4 3 5 6 11	0.04 0.04 0.06 0.07 0.17	2.41 2.38 2.09 2.42 4.09	0.05 0.05 0.02 0.06 0.10	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	1.05 1.04 1.12 1.27 2.60	0.11 0.11 0.11 0.12 0.68	0.04 0.04 0.07 0.03 0.08	0.16 0.14 0.20 0.12 0.15
SL 91 GKL 033 SL 91 GKL 034 SL 91 GKL 035 SL 91 GKL 036 SL 91 GKL 037	82 68 75 104 134	28 16 17 21 24	104 73 81 53 138	438 234 314 163 346	4 5 8 4 5	160 120 174 143 197	3 2 3 2 3	7 4 5 4 8	0.10 0.05 0.05 0.01 0.12	2.51 2.05 2.54 1.85 4.07	0.05 0.03 0.03 0.01 0.09	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	1.66 1.07 1.09 0.86 1.53	0.31 0.19 0.18 0.13 0.38	0.06 0.04 0.06 0.06 0.05	0.15 0.11 0.21 0.16 0.15
SL 91 GKL 038 SL 91 GKL 039 SL 91 GKL 040 SL 91 GKL 041 SL 91 NLL 001	67 66 65 33 50	15 30 34 12 13	104 115 149 62 51	238 272 458 138 472	3 2 3 2 3	95 98 96 44 134	2 2 3 2 2	4 8 11 4 4	0.03 0.08 0.11 0.05 0.01	2.44 2.79 3.64 1.48 2.14	0.02 0.09 0.05 0.04 0.08	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	0.86 1.23 1.40 0.52 1.05	0.09 0.21 0.15 0.08 0.08	0.05 0.06 0.05 0.02 0.07	0.13 0.14 0.18 0.08 0.10
SL 91 NLL 002 SL 91 AKS 001 SL 91 AKS 002 SL 91 AKS 003 SL 91 AKS 004	38 63 45 76 44	5 20 18 25 17	36 67 81 92 64	231 296 198 312 204	2 6 7 12	63 69 37 63 45	1 2 1 2	2 2 5 6 7	0.01 0.05 0.08 0.08 0.07	1.09 3.33 3.46 4.07 3.64	0.04 0.08 0.07 0.06 0.09	4.87 4.58 5.00 >5.00 3.80	0.57 0.68 0.77 1.12 0.67	0.06 0.09 0.08 0.08 0.08	0.04 0.03 0.03 0.02 0.02	0.06 0.11 0.07 0.08 0.10
SL 91 AKS 005 SL 91 AKS 006 SL 91 AKS 007 SL 91 AKS 008 SL 91 GKS 001	91 145 81 102 118	29 23 29 27 27	93 84 96 97 81	251 301 427 318 401	7 7 4 7 6	95 103 34 77 89	1 1 2 2	11 4 5 3	0.10 0.07 0.08 0.10 0.07	3.68 4.00 2.48 4.12 4.08	0.10 0.06 0.11 0.07 0.09	>5.00 >5.00 >5.00 >5.00 >5.00 >5.00	0.98 0.75 0.69 1.06 0.78	0.15 0.11 0.08 0.09 0.14	0.04 0.03 0.02 0.03 0.03	0.09 0.13 0.09 0.09 0.15
SL 91 GKS 002 SL 91 GKS 003 SL 91 GKS 004 SL 91 GKS 005	93 76 91 81	22 23 21 3 4	88 81 83 109	338 303 310 321	6 6 5 4	75 53 59 71	1 1 2	3 2 2 4	0.07 0.05 0.07 0.14	2.82 3.68 3.22 2.86	0.15 0.08 0.13 0.08	>5.00 4.75 >5.00 >5.00	0.64 0.62 0.62 0.99	0.10 0.09 0.11 0.14	0.02 0.02 0.02 0.02	0.10 0.08 0.09 0.16
Minimum Detection Maximum Detection Method = Not Analysed	2 10000 ICP ReC = ReCheck	1 10000 ICP in prog	2 10000 ICP ress in	1 10000 ICP ns = Ins	2 10000 ICP sufficie	1 10000 ICP ent Sam	1 10000 ICP ple	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

÷ ·

Report: 9100408 R	Reliance Geologi	cal Service	es Ltd.		Pro	ject: 7	'41 S1ui	ce Clai	m		Pag	le 6 of	6	Secti	on 1 c	of 2	
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	W ppm
SL 91 GKS 006	Soil		<5	0.5	74	17	62	40	6	<3	5	<10	<2	<0.1	13	23	<5
SL 91 GKS 007	Soil		<5	0.5	63	26	90	55	7	<3	8	<10	<2	0.2	11	20	<5
SL 91 GKS 008	Soil		<5	0.6	69	20	54	44	7	<3	6	<10	<2	0.2	10	19	<5
SL 91 GKS 009	Soi1		<5	0.5	86	9	57	65	9	<3	6	<10	<2	0.1	12	22	<5
SL 91 GKS 010	Soil		10	0.6	74	13	57	51	<5	<3	4	<10	<2	<0.1	10	19	<5
SL 91 GKS 011	Soil		<5	0.6	65	12	63	54	6	<3	4	<10	<2	<0.1	10	19	<5
SL 91 GKS 012	Soil		<5	0.6	60	13	59	51	<5	<3	4	<10	<2	<0.1	11	18	<5
SL 91 GKS 013	Soil		<5	1.2	33	27	39	66	5	<3	8	<10	<2	0.2	4	7	<5
SL 91 GKS 014	Soil		<5	1.6	175	66	114	176	14	<3	26	<10	<2	<0.1	9	20	<5
SL 91 GKS 015	Soil		<5	0.5	57	29	73	99	9	<3	40	<10	<2	0.3	9	16	<5

4
• •
•

Minimum Detection	5	5	0.1	1	2	1	5	5	3	1	10	2	0.1	1	1	5
Maximum Detection	10000	10000	100.0	20000	20000	20000	10000	1000	10000	1000	1000	10000	10000.0	10000	10000	1000
Method	FA/AAS	GeoSp	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
= Not Analysed	ReC = ReCheck in progress	ins = I	nsuffic	ient Sa	mple											

NTERMATIONAL PLASMA LABORATORY LTD

•

x

5

Report: 9100408 R	Reliance Geolo	ogical S	Services	s Ltd.		Proj	ject: 74	1 Sluic	e Claim			Page 6	of 6	Sect	ion 2 c	of 2
Sample Name	Ba	Cr	V	Mn	La	Sr	Zr	Sc	Ti	A1	Ca	Fe	Mg	K	Na	P
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%
SL 91 GKS 006	107	33	89	358	5	176	2	5	0.10	4.74	0.14	>5.00	1.09	0.17	0.03	0.10
SL 91 GKS 007	115	29	95	459	6	82	1	3	0.07	3.66	0.13	>5.00	0.84	0.11	0.03	0.10
SL 91 GKS 008	76	26	86	300	5	66	1	3	0.09	2.38	0.09	>5.00	0.79	0.12	0.03	0.14
SL 91 GKS 009	109	33	82	320	6	122	2	4	0.09	>5.00	0.16	4.87	0.84	0.14	0.03	0.11
SL 91 GKS 010	83	32	70	289	5	99	2	3	0.06	>5.00	0.17	4.23	0.77	0.13	0.03	0.12
SL 91 GKS 011	88	28	69	360	5	101	1	3	0.06	>5.00	0.14	4.11	0.81	0.15	0.03	0.14
SL 91 GKS 012	92	25	61	343	6	76	2	3	0.06	4.84	0.11	3.82	0.72	0.13	0.02	0.12
SL 91 GKS 013	45	10	48	130	5	26	1	1	0.05	1.86	0.10	2.53	0.36	0.04	0.02	0.04
SL 91 GKS 014	163	32	106	369	12	88	1	7	0.12	3.34	0.10	>5.00	1.29	0.23	0.05	0.11
SL 91 GKS 015	93	19	70	295	7	45	1	3	0.06	2.54	0.15	>5.00	0.77	0.09	0.05	0.07

Minimum Detection Maximum Detection Method = Not Analysed	10000 ICP	10000 ICP	10000 ICP	10000 ICP	100 00 ICP	10000 ICP	10000 ICP	10000	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP	
--	--------------	--------------	--------------	--------------	----------------------	--------------	--------------	-------	---------------------	---------------------	----------------------	---------------------	----------------------	----------------------	---------------------	---------------------	--

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

MTERNATIONAL PLASMA LABORATIONY LTD

•

•

•

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of Gold analysis by Fire Assay / AAS

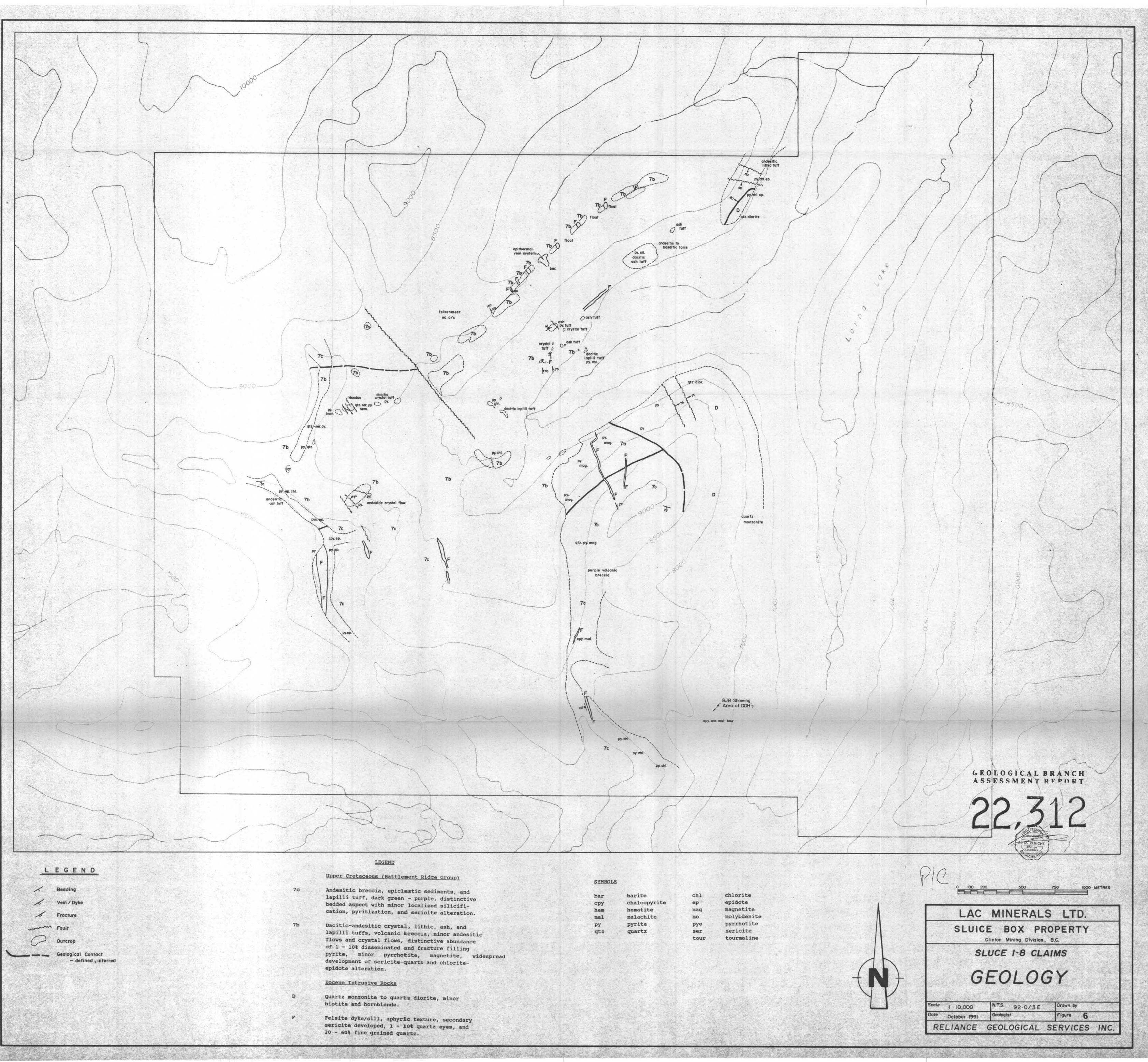
- (a) 20.0 to 30.0 grams of sample is mixed with a combination of fluxes in a fusion pot. The sample is then fused at high temperature to form a lead "button".
- (b) The precious metals are extracted by cupellation. Any Silver is dissolved by nitric acid and decanted. The gold bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold in solution is determined with an Atomic Absorption Spectrometer. The gold value, in parts per billion, is calculated by comparison with a set of known gold standards.

÷.

QUALITY CONTROL

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 500 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are automatically checked by Fire Assay/Gravimetric methods.

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898


Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted aqua regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
- * Aqua regia leaching is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

÷.,

QUALITY CONTROL

The machine is calibrated using six known standards and a blank. Another blank, which was digested with the samples, and a standard are tested before any samples to confirm the calibration. A maximum of 20 samples are analysed, and then a standard, also digested with the samples, is run. A known standard with characteristics best matching the samples is chosen and tested. Another 20 samples are analysed, with the last one being a random reweigh of one of the samples. The standard used at the beginning is rerun. This procedure is repeated for all of the samples.

