LOG NO:	MAY 2 8 1992	RD.	
ACTION:			
FILE NO:			

GEOCHEMICAL ASSESMENT REPORT ON THE EASTER SEAL MINERAL CLAIM AND ENVIRONS PINE PROPERTY FINLAY RIVER AREA, B.C. 94E

57 15'N, 126 40'W OMINECA MINING DISTRICT

BY COLIN HARIVEL, P.Geo

DATED: May 21st, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

)

TABLE OF CONTENTS

INTRODUCTION	1
CLAIMS	3
REGIONAL GEOLOGY	3
LOCAL GEOLOGY	5
GEOCHEMICAL RESULTS AND INTERPRETATION	6
CONCLUSIONS AND RECOMMENDATIONS	10
STATEMENT OF COSTS	11
STATEMENT OF QUALIFICATIONS	12

LIST OF FIGURES

FIGURE 1	INDEX MAP	2
FIGURE 2	CLAIMS MAP	4
FIGURE 3	SAMPLE LOCATION MAP	7
FIGURE 4	COPPER RESULTS	8
FIGURE 5	GOLD RESULTS	9
FIGURE 6	TOPOGRAPHY AND SAMPLE LOCATIONS (1:12,500 SCALE)	BACK

LIST OF APPENDICES

APPENDIX A	GEOCHEMICAL RESULTS
APPENDIX B	SAMPLING METHODS
APPENDIX C	SAMPLE DESCRIPTIONS

GEOCHEMICAL ASSESSMENT REPORT ON THE EASTER SEAL MINERAL CLAIM PINE PROPERTY FINLAY RIVER AREA, B.C. 94E/2,7

INTRODUCTION:

This report concerns the Pine Property, in the Toodoggone area of British Columbia. The general location is shown in Fig. 1. The work was done from August 6, 1991 to August 11, 1991 and this report describes sampling and prospecting results from traverses on and in the vicinity of the Easter Seal Mineral Claim. The claim is owned by Dr. John Barakso and is valid until August 8, 1993. A claim map is shown as Fig. 2.

The claim was staked to cover ground believed to be prospective based on geochemical sampling performed by a previous operator. The claim adjoins on the north the previously located Easter and Fin series of claims. The Easter Seal claim straddles the Finlay River which passes north easterly through the west part of the claim.

Access to the claim was via fixed wing charter and scheduled aircraft from Smithers which landed at Sturdee River strip. Casual charter helicopters were then used for the final fifteen kilometer northeasterly trip to the property.

The physiographic relief on the property ranges from about 1000m at the Finlay River to about 1800m on the east boundary of the valley. The mountains above treeline are gullied by relatively well defined watercourses which commonly become ill defined in areas of their respective aluvial delta deposits.

The area investigated is entirely within the Finlay River valley and all samples were collected west of the river. See Fig. 3 for sample locations.

MINERAL CLAIMS:

Ownership:

The Pine Property claims are listed in Table 1, with expiry and ownership as appropriate.

	TABLE 1	
	UNITS	RECORD #
FIN 3	1	3064
FIN 11	20	9663
FIN 12	20	9664
FIN 14	20	9665
FIN 16	20	9666
FIN 17	8	9667
FIN 18	12	9668
FIN 19	6	9669
FIN 20	20	11441
FIN 21	16	11442
EASTER 2	12	11766
EASTER 3	20	11767
EASTER 4	20	11768
EASTER SEAL	20	303156

REGIONAL GEOLOGY:

Dominant elements of the regional geology are indicated on the Tectonic Assemblage Map of the Canadian Cordillera by J.O. Wheeler and P. McFeely. The oldest rocks in the area which surrounds the property are assigned to Cassiar Terrane. Along a strong northwesterly trend east of the property mainly clastic continental margin sediments which include grits, sandstones, siltstones and shales are exposed.

Moving westerly, a panel of Upper Proterozoic Eagle Bay Group equivalents assigned to Kootenay Terrane and comprised of clastics and volcanics extend westerly along the northwesterly trend to the Finlay Fault. This fault is the east boundary of a faultbounded panel of predominantly augite porphyry volcanics of Nicola Group equivalents and assigned to Quesnel Terrane. The west bounding fault locus occupies the valley of the Finlay River within the property area.

The contact region between Cassiar and Kootenay terrane rocks is intruded in the property area by mid-Cretaceous quartz monzonite and granodiorite. The intrusives are bounded on the west by the Finlay Fault.

West of the Finlay River, Quesnel Terrane intrusive rocks of Early Jurassic age are prominently exposed. These coarse grained rocks are predominantly quartz monzonites. West of these intrusives, which are bounded by the Kutcho Fault, are Jurassic Hazelton Group volcanic arc rocks assigned to Stikine Terrane.

LOCAL GEOLOGY:

The local geology is dominated by Early Jurassic intrusive rocks and taken from previous assessment work reports. The property geology is depicted in Fig. 4.

Litholgy:

On the west side of Finlay River the geology is dominated by quartz mononitic intrusives of assumedly Early Jurassic age. The rocks are generally coarse grained, feldspar porphyries which in fresh specimens range from grey to strongly pink-hued but which generally have a pink cast. In altered specimens the rocks range from pale grey-green to green grey. The fresh to moderately altered rocks are commonly magnetic.

Near the Finlay River and its side channels which pass through the northwest portion of Fin 20, the extreme southeast part of Easter #3 and the western portion of the newly staked easter Seal mineral claims, the intrusive rocks are weakly to strongly fractured and commonly pyritized.

Alteration and Mineralization:

Alteration of intrusive quartz monzonite varies from weak propylitic (weak chloritized mafics, weakly epidotized feldspars) to strongly propylitic with local sulfateric alteration on shear zones. Epidotization is locally strongly evidenced as fracture coatings and in veining. In areas of weak propylitic alteration primary magnetite has not been converted (completely) to hematite.

Pyritized rock was noted in outcrop along or near the Finlay River (samples Ch 113-116 and 105-108). Sulfaterically altered rock in the hanging wall of a small fault zone was sampled (see CH 111, 112). Pyrite commonly occurs as fine frains and in veinlets.

Chalcopyrite as fine grains was locally associated with disseminated pyrite.

GEOCHEMICAL RESULTS AND INTERPRETATION:

Stream sediment sampling was concentrated in the areas adjecent to the west bank of the Finlay River and its westernmost side channels. Sampling by previous operators had indicated a zone of copper anomalous samples at or below the break of slope to the river course.

Stream sediments taken were from 0.4 to 1.5 kg in weight of -80 mesh sieved material from which organic matter had been substantially removed. Many of the watercourses sampled had low water levels.

The results gave only weak support to earlier results. The previous sampling was for heavy metals and results reflect mechanically derived material. These recent stream sediment samples, are biased to the fine sized fraction in bed material and the results suggest that the elevated and anomalous samples are caused by seepage from nearby elevated groundwater sources, the ionic metal components of which were electrically adsorbed by clay particles.

One sample, PS139, gave anomalous results for gold at 246ppb. The remainder of the analysed elements gave no significant support to this result howver, suggestive of particle effect.

The stream sediment sample values for copper range from a high of 227 ppm to a low of 28 ppm with average results in the order of 45 ppm (the number of sample taken is too low for rigorous statistical treatment). Sample CH104, which returned the clearly anomalous result of 227 ppm also gave 11 ppm Mo which is supporting evidence for porphyry copper type mineralization as a source.

The rock chip samples gave little encouragement. The highest value in copper was 193 ppm and the lowest, 9 ppm. The high values for sample PS135(F) are worthy of note. This sample ran anomalously in Cu (193ppm), Zn (29,566ppm), Ba (1081ppm), Cd (325ppm), and Pb (214ppm). Sample PS143 ran anomalously in Zn (539ppm), Pb (777ppm)and Ba (2926ppm) while Cu was weakly anomalous at 91 ppm. Sample PS142 returned the highest value in Au at 40ppb but was supported in the analytical results by few other elements in anomalous amounts.

All results are included in Appendix A and the Copper values are inlcuded on Fig. 4; the gold results appear on Fig. 5. The sample descriptions are included in APPENDIX C.

CONCLUSION & RECOMMENDATIONS:

The sampling programme did not provide any strong evidence for a well mineralized, near surface copper porphyry system lying just west of the Finlay River in the Easter Seal mineral claim. Elevated sample results in copper and gold in this area, while not clearly indicative of mineralization, suggest that work to the north and west may be warranted.

The differences between older sampling and the most current work suggests that groundwater seepages with elevated levels of dissolved metals account for the anomalous and elevated results in current stream sediments for copper and other base metals.

Based on work to date, the most prospective ground lies to the southeast of the Easter Seal Claim, on the East of the Finlay River.

STATEMENT OF COSTS

	Personnel:	
1.	C. Harivel; Geologist	
	6 days @ \$300/day (incl. 1 prep. day)	\$1800.00
2.	P.Suratt; Prospector	
	6 days @ \$250/day (incl. 1 prep. day)	1500.00
	Dates August 6-11th, 1992 + August 4, 1992	
	Transportation:	
3.	Fixed Wing in: Sched. flight + XS baggage (\$363 + \$154)	518.30
4.	Helicopter: 1.2 hrs; move in and recce. south of river	921.65
5.	Helicopter out: 1.8 (work sth. of Finlay River; demobe)	1382.48
6.	Fixed wing out: charter 206 (50% split)	397.25
	Food:	
7.	Super Valu docket	209.44
	Radio Rentals:	
8.	CP34 SSB (Trio Enterprises Invoice)	107.00
9.	Hand held portables	/4.90
	Expended Supplies:	
10.	Thread, sample bags, flagging, flares, tags	100.00
11.	Telephone, Fax:	48.00
12.	Camp Gear: charged at \$30/man/day; 12 mandays	360.00
13	Freight etc	48.50
10.		
14.	Report:	
	Two days @ \$300/day	600.00
TOT	AL OF EXPENSES	<u>\$8,067.52</u>

STATEMENT OF QUALIFICATIONS

I, Colin Harivel, of business address P.O. Box 233, Smithers, B.C., VOJ 2NO, do hereby state:

- 1. I am a graduate geologist and have practised my profession in Canada, Australia and the United States, as a mineral exploration specialist since graduation from the University of British Columbia in 1972 (BSc);
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia;
- 3. I have searched for mineral deposits of the type that may reasonably be expected to occur on the ground which is the subject of this report and have substantial applicable experience;
- 4. I visited the Pine Property in August, 1991, and this report is based on a literature survey of the area, on my observations, on the notes and observations of those under my supervision and on discussions with previous operators of the claims area.

Sianed: lin Har/ P.Geo ver.

Dated: May 21, 1992

APPENDIX A

MIN-EN	LABS	 ICP	REPORT
		<u> </u>	

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

DATE: 91/09/12

* ROCK * (ACT:F31)

FILE NO: 1V-0911-RJ1

ATTN: J.BARAKSO/C.HARIVEL

COMP: JOHN BARAKSO

PROJ: PINE

(604)980-5814 OR (604)988-4524

																										. .	~~~		UNCI:P31
SAMPLE NUMBER	AG AL PPM PPM	AS PPM PI	B BA PM PPM	BE PPN F	BI CA PPN PPN	CD PPM	CO PPN	CU PPM	FE PPM	К ррм	LI PPM	MG PPM	MN PPM	MÓ PPN	NA PPH F	NI PPM	P PPM I	PB PPM F	SB PPM I	SR PPM P	TH PM	TI PPN	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR / PPM	NU-FIRE PPR
91CH 1001 91CH 1002 91CH 1005 91CH 1007 91CH 1008	.8 14450 .5 8570 1.0 15190 1.7 18040 1.1 16590	2 5 1 3 8	3 450 2 80 3 51 1 43 1 42	1 1 1	8 12270 5 7180 11 11890 9 9640 8 8860	.1 .1 .1 .1	11 6 12 11 10	55 14 118 13 14	27140 17780 39780 30480 30440	580 1180 1670 2420 2070	2 1 6 1	11460 4760 12520 13370 12320	1204 479 1129 950 947	2 1 1 13	410 500 640 330 260	1 1 1 1	740 480 1120 1000 (870	12 5 8 249 70	1 1 1 1 1	99 30 25 72	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1697 1214 2687 2016	64.1 27.9 107.2 60.5	135 43 80 74 78	32344	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4444	68 81 59 61	1 3 1
91CH 1009 91CK 1010 91CK 1011 91CK 1011 91CK 1012 91CK 1013	.9 10440 1.2 12090 .1 10400 .6 13700 .9 9590	6 2 1 1 5	1 37 1 127 2 209 1 46 1 40	.1 .1 .1 .1	7 6730 9 7370 6 2640 9 10520 6 6650	.1 .1 .1 .1 .1	10 12 30 13 5	64 132 13 31 9	19480 26810 62920 39460 19280	1490 5520 6270 1140 1850	1 1 1 1	6520 1730 1000 8520 5650	981 224 277 649 711	20 4 3 1 7	440 170 170 590 430	1 1 1 1 1	600 270 240 1080 520	52 10 2 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 56 2 31 25	2	1454 1680 1092 1967	32.2 38.0 25.1 84.6 35 1	85 10 33 47	* 31 11 32	2 1 1 2 1 1 2 1	53435	<u>40</u> 103 61 114 43	
91CH 1014 91CH 1015 91CH 1016 PS/135F/91 PS/142R/91	.5 8370 .2 13540 .6 11290 2.5 3220 .9 12950	7 7 5 20 7	i 57 1 96 1 69 2 1081 1 60	.1 .1 .1 .1	4 5260 6 5320 6 5430 5 3470 5 6370	1. 1. 325.8 .1	7 9 11 5 4	9 13 28 193 12	19930 36620 25860 8590 25780	1750 2770 2510 710 2540	1 1 1 1	5650 8010 7380 1460 6150	651 1355 880 1204 1008	1 2 35 9 3	450 130 300 30 350	1 1 1 5	550 530 580 120 670	16 27 24 214 29	1 1 1 4 1	16 13 16 22 31	2 1	1092 1251 1085 30 959	35.8 34.8 28.7 5.6 27 2	61 86 87 29566 300	33313	1 1 1	4 5 4 10 4	54 127 96 214 08	6 1 4 12
PS/143F/91 PS/147R/91 PS/148R/91	2.5 21520 1.0 16370 .3 17320	13 6 11	1 2926 1 124 1 133	.1 .1 .1	6 13520 7 11970 5 5360	1.5 .1 .1	7 9 8	91 24 11	29340 26650 29750	1440 980 4140	1 1 1	11500 8970 9490	3106 1230 1270	6 3 4	170 390 670	3 1 1	530 660 860	777 41 24	1 1	137 79 12	1 2 2	569 1504 838	27.6 50.3 39.8	539 143 93	4 4 3	1 2 1	654	93 77	1 1 12
		<u>_</u>																					.	<u> </u>				<u> </u>	
						.																		- •				<u></u>	
	<u></u>		<u> </u>				····	-																<u>.</u>		~~ ~	<u></u>		
		<u>.</u>																					<u></u>						•

COMP: JOHN BARAKSO

PROJ: PINE

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 1V-0911-HD1

DATE: 91/09/12

ATTN: J.BARAKSO/C.HARIVEL

(604)980-5814 OR (604)988-4524

* H.M. NON-MAG * (ACT:F31)

SAMPLE NUMBER	AG PPN	AL PPH	AS PPM	8 PPM	BA PPH	BE PPM	BI PPM	CA PPM	CD PPN	CO PPM	CU PPM	FE PPH	K PPH	LI	MG PPN	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	P8 PPN	SB PPM	SR PPM	TH PPM	TI PPM	V PPP	/ ZN I PPM	GA PPN	SN PPM	V PPM	CR /	W-FIR PP	E HM B X
91CH 1003 91CH 1004 PS/1445/91 PS/1465/91 PS/13655/91	.3 .3 1.5 1.3 2.7	11880 16740 11510 18910 17040	24 7 8 9 1	7 4 1 1	59 117 173 305 117	.1 .1 .2 .1	12 31 11 11 27	14910 14670 15080 16600 27120	.1 .6 .1 .1	20 26 9 11 20	46 227 36 44 63	76300 94550 25910 38080 66600	300 380 300 620 610	10 10 3 7 7	6330 5480 3090 2630 6200	805 2498 963 1234 1002	1 11 5 1	50 60 20 80 100	1 1 1 1	2670 1740 780 740 6450	41 71 55 131 35	2 1 2 6 1	62 111 105 136 134	1 1 1 12	2145 2669 2140 1907 5641	198.9 107.8 52.4 72.4 184.0	265 787 150 215 122	1 1 1 1	1 1 1 3	3 1 1 2 4	26 4 2 3 29	1 3 1 2	2 2.69 7 3.17 9 1.55 7 1.71 6 2.66
PS/13755/91 PS/13855/91 PS/13955/91 PS/14055/91 PS/14155/91	2.0 2.2 1.7 1.8 1.5	14500 13810 14200 13630 15110	1 1 1 1	1 1 1 1 1	88 95 105 81 87	.1 .1 .1 .1	24 21 21 19 17	19620 18570 18140 19610 17450	1 .1 .1 1 1	18 17 17 13 17	36 40 28 35 51	68260 70010 70770 52990 62580	370 320 350 370 320	5 5 4 5	4790 4680 4600 4510 5850	1006 1036 1051 947 934	1 1 1 1	60 50 50 50 60	1 1 1 1	1870 2030 1440 2920 1880	26 26 29 24 37	1 1 1 2	114 113 118 122 111	1 1 1 1	5239 4465 4535 3903 3774	196.5 204.2 200.3 152.2 168.3	5 143 2 173 5 123 2 155 5 179	1 1 1 1	222221	44433	21 18 18 15 17	1 24 6 4	0 3.13 2 3.47 5 4.31 4 4.49 2 3.84
PS/14505/91	1.2	14070	3	1	265	.1	10	15130	.1	14	23	39900	380	5	2620	2163	3	110	1	550	97	3	121	1	1896	67.9	238	1	1	1	2	1	6 1.54
											.													<u></u>					_				
				·· _2+ +																													-
																																<u></u>	
		·					-																										
																			_														
																			-		-				-					· .			

APPENDIX B

SAMPLING METHODS:

Rock-Chip Samples:

These samples, intended generally for geochemical, multi-element analysis, were taken from the outcrops or float boulders. Representative samples of between 0.3 and 2.5 kg were selected and comprised chips of between 50 and 200 g in weight. They were placed in previously labelled kraft paper bags and shipped for analysis.

Stream Sediment Samples:

The samples were taken from areas of active sediment transport. A 20 cm diameter sieve was filled and washed through a number of times to produce at least 400 g of - 80 mesh sample. The sample was transferred to numbered kraft paper bags and delivered to the lab for analysis.

The analytical procedure is summarized on the results sheet which is included as Appendix A.

APPENDIX C

- CH 1001 RK-FLOAT Monzonite; med-crse grained, pink alt'd f'spar porphyry INTRUSIVE; weakly magnetic mafics; chloritized
- CH 1002 RK-FLOAT Qtz. Monzonite; m. grained, pink-stained INTRUSIVE; wkly magnetic; epid. veinlets & fract-coatings + diss. epid; chlor'zed
- CH 1003 STREAM SED CH 1004 STREAM SED
- CH 1005 RK. CHIP Diorite(?); grey, pink w'ring; med. gr; mod. mag. mafics; wkly chlor. h'blende
- CH 1006 RK. CHIP Monz.(?); grey-green w'ring; equigran.; med. gr; mod-str. magnetic.
- CH 1007 RK. CHIP INTRUSIVE; green and pink altered; oblit. text.; qtz-epid.-pyrite veinlets and fract. coatings
- CH 1008 RK. CHIP INTRUSIVE; grey-green alt'd; fine-med.gr.; monzonite?; not magnetic; chloritized mafics; diss py.
- CH 1009 RK. CHIP Monzonite -> qtz. monz.;pink and green altered; med. f.gr.; not magnetic
- CH 1009A RK. CHIP Monzonite; pnk- w'ring; coarse f'spar porphyry; chloritize mafics; h'bl -> biot; 12-15% mafic
- CH 1010 RK. CHIP Altered rock in vicinity fault zone; pyritic
- CH 1011 RK. CHIP Altered rock in fault zone; bleached, grey; pyritic
- CH 1012 RK. CHIP Grey, pyritic intrusive; oblit. text.
- CH 1013 RK. CHIP Qtz. monz; pinlk and greenish w'ring; med-coarse grained; weakly magnetic; chlor'zed mafics
- CH 1014 RK. CHIP Pyrite fractures and veinlets in above
- CH 1015 RK. CHIP Qtz. monz.; stronly pyritized as diss. and fracts; mafics chlor'ized;
- CH 1015A RK. CHIP Otz. monz.; biot after h'bl; epid. fracts; magnetite grains in qtz grains; mod-str. magnetic
- CH 1016 RK. CHIP Qtz. monz.; pink and greenish w'ring; med-crse gr.; diss pyrite assoc w. mafics; 10% pyrite; str. py fracts.

PS 135F	RK. CHIP (FLT)	Intrusive - monz.?
PS 136	STREAM SED.	
PS 137	STREAM SED.	
PS 138	STREAM SED.	
PS 139	STREAM SED.	
PS 140	STREAM SED.	
PS 141	STREAM SED.	
PS 142	RK. CHIP	Pink intrusive + epidote; no veining; minor py; wkly limonitic.
PS 143	RK. CHIP (FLT)	F. gr. intrusive; py + barite + hem + chlorite; some xtalline qtz.
PS 144	STREAM SED.	
PS 145	STREAM SED.	
PS 146	STREAM SED.	
PS 147	RK. CHIP	Common intrusive
PS 148	RK. CHIP	Intrusive

