LOG NO:	JUN	0_1	1992	RD.
ACTION:				

FILE NO:

1992 GEOLOGICAL AND GEOCHEMICAL REPORT

	SUB-	RECORDER ECEIVED
	W.NY	510 1002
М	.R. #	\$
	VANC	OUVER, B.C.

ON THE VIG 6 PROPERTY

Located in the Tahsis Area of Vancouver Island Alberni Mining Division NTS 92E/15E 49° 49' North Latitude 126° 34' West Longitude

> -prepared by-Bruno Kasper, Geologist

> > GEOLOGICAL BRANCH May 1992 ASSESSMENT REPORT

1990 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE VIG 6 PROPERTY

•

TABLE OF CONTENTS

.

			Page
1.0		INTRODUCTION	.1.
2.0		LIST OF CLAIMS	.1.
3.0		LOCATION, ACCESS AND GEOGRAPHY	.1.
4.0		PROPERTY MINING HISTORY	
	4.1	Previous Work	.2.
	4.2	1992 Exploration Program	.3.
5.0		REGIONAL GEOLOGY	.4.
6.0		PROPERTY GEOLOGY AND MINERALIZATION	
	6.1	Geology	.5.
	6.2	Mineralization	.6.
7.0		GEOCHEMISTRY	.9.
8.0		DISCUSSION AND CONCLUSIONS	.11.

APPENDICES

.

r

,

Appendix A	Bibliography
Appendix B	Statement of Expenditures
Appendix C	Rock Descriptions
Appendix D	Certificates of Analysis
Appendix E	Statement of Qualifications

LIST OF FIGURES		
		Following
		Page
Figure 1	Location Map	.1.
Figure 2	Claim Map	.1.
Figure 3	Regional Geology	.4.
Figure 4	Compilation	-Pocket-

LIST OF TABLES

LIST OF TABLED		
		Page
Table 2.0.1	Claim Data	.1.
Table 6.2.1	Vivian Vein Sampling Results	.7.
Table 7.0.1	1992 Stream and Moss-mat Sediment	
	Samples	.10.

1.0 INTRODUCTION

The VIG 6 property was staked in 1987 to cover the rich goldbearing quartz-calcite Vivian vein which outcrops in the Tsowwin River valley approximately fourteen kilometres south-east of Tahsis on the west coast of Vancouver Island (Figure 1). The Vivian vein was first discovered in 1939 and initially developed with an inclined shaft and a 15 metre adit. Aberford Resources Ltd. conducted an exploration program in the summer of 1983 which led to the discovery of the El Zone, a series of narrow gold-rich quartz veins within a shear zone 300 metres northeast of the Vivian vein.

An exploration program consisting of geological mapping, prospecting and geochemical sampling was conducted over the property in March of 1992 to further delineate the Vivian Vein and EL Zone and to determine the presence of other gold-quartz vein systems.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the VIG 6 (Figure 2) claim is owned by Neil DeBock. Claim data for the VIG 6 claim is summarized in Table 2.0.1.

TABLE 2.0.1 CLAIM DATA

Claim	Record	No. of	Record	Expiry
<u>Name</u>	Number	Units	Date	<u>Year</u>
VIG 6	3531	16	March 10, 1988	1992*

* Subject to the approval of assessment work filed in March, 1992.

The location of the legal corner post has not been verified by the author.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The VIG 6 property is located five kilometres northeast of the Tsowwin logging camp on Tahsis Inlet and approximately fourteen kilometres southeast of the village of Tahsis on the west coast of Vancouver Island (Figure 1). It lies within the Alberni Mining Division, centred at 49° 49' north latitude and 126° 34' west longitude.

1

The Tsowwin River mainline logging road passes through the VIG 6 claim approximately six kilometres west of the Gold River-Tahsis road. A network of branch roads provide access to most parts of the property.

The VIG 6 property covers the northern end of the Tsowwin drainage and the southeastern flank of the south ridge of Tahsis Mountain in the Vancouver Island Ranges. Topography is rugged, with deeply incised creeks and steep rock bluffs. Elevations range from approximately 155 metres along the Tsowwin River in the southwestern corner of the property to over 760 metres on the southeastern flank of Tahsis Mountain. Outcrop exposure is excellent throughout.

Mature forest covers parts of the property with hemlock, red cedar, fir and a moderate undergrowth of salal, devil's club, huckleberry and salmonberry. Areas logged five to twenty years ago are choked with slash and shrubbery.

The Tahsis area receives approximately 500 centimetres of precipitation annually in an otherwise moderate climate, with cool temperatures year-round. Heavy snowfalls can occur at higher elevations.

4.0 PROPERTY MINING HISTORY

4.1 Previous Work

The rich, narrow, quartz-sulphide veins of the Zeballos camp, approximately 32 kilometres northwest of the VIG 6 property, were discovered in the 1920's and 1930's upstream from coarse placer gold pockets in the Zeballos River. These veins produced a total of 11,347 kilograms (331,000 ounces) of gold with substantial silver until 1953 (Barr, 1980).

Development of the Zeballos gold camp resulted in increased exploration throughout the Tahsis area and led to the discovery in 1939 of the Vivian vein (Figure 3). The first recorded work on the property was conducted in the same year with the sinking of a short inclined shaft on the Vivian Vein. The vein extension was explored to the northwest by a series of open cuts at 10 metre spacings and a 15 metre adit was driven along the vein 60 metres northwest of the inclined shaft. The workings were abandoned in 1940, likely as a result of the war. All workings are now inaccessible due to caving and infilling with forest debris and water.

Aberford Resources Ltd. conducted an extensive reconnaissance exploration program for disseminated gold deposits throughout the Tahsis peninsula in 1979 and 1980 and staked several claims to cover anomalous drainages, including the TAH 15 and TAH 18 claims. In the course of follow-up work, they discovered several rich gold showings including a zone of narrow quartz veining within a shear zone located 300 metres northeast of the Vivian vein and exposed in two quarries 300 metres apart. An Aberford sample from the upper quarry averaged 7.0 g/tonne gold across 15 centimetres. In the lower quarry, now part of the EL Zone (Figure 4), Aberford sampling returned values of 76.8 g/tonne gold and 46.1 g/tonne silver across five to ten centimetres (Robinson, 1983).

Homestake Mineral Development Company optioned the TAH claims from Aberford Resources in 1984 and carried out a limited reconnaissance program consisting of geological mapping and prospecting (Ronning, 1985). No significant mineralization was found during this program on ground now covered by the VIG 6 claim.

The TAH 15 and TAH 18 claims were allowed to lapse in 1987, and the Vivian and EL showings were subsequently staked as the VIG 6 by Neil Debock.

During the summer of 1988, the federal and provincial geological surveys conducted a joint regional silt sampling program over the entire Nootka map sheet, taking a total of 385 moss-mat sediment samples (GSC, 1989). The one moss-mat sediment sample taken on the VIG 6 claim from the Tsowwin River did not exceed the 90th percentile in gold.

In 1988, Neil DeBock carried out a prospecting and geochemical sampling program on the Vig 6 claim, taking 21 rock samples and 50 soil samples. Samples of the vein and gouge material from the southern adit of the Vivian vein assayed up to 114.63 g/tonne gold with 82.8 ppm silver, while grab samples of narrow, shear-hosted guartz veins from the lower EL Zone assayed up to 30.31 g/tonne gold with 72.6 ppm silver (DeBock, 1989). Resampling of the upper quarry was also carried out and grab samples from a strongly limonitic shear zone assayed up to 1.68 g/tonne gold.

4.2 1992 Exploration Program

During March of 1992, three days of geological mapping, prospecting and geochemical sampling was carried out on the VIG 6 claim. This program was designed to extend geological and geochemical coverage and to further evaluate areas of interest defined during previous programs.

During the course of this program, 2 stream sediment samples, 10 moss-mat sediment samples, 35 soil samples and 17 rock samples were taken. Moss-mat sediment samples were collected from moss exposed in the creek beds below the high water mark. If no moss was present, stream sediment samples were taken from the backwaters of the drainage. Both type of samples were analyzed geochemically for gold and 9 elements by ICP (Figure 4). Samples with insufficient fines were pulverized to minus 150 mesh before being analyzed. Two soil lines were used to test for northern extensions of the Vivian vein and the EL Zone. Soil line CL5 was run on a bearing of 070° while soil line CL3, which was established during the 1988 field program, was extended west towards North Tsowwin Creek (Figure 4). Wherever possible, soil samples were taken from the red-brown B horizon and then analyzed geochemically for gold and 9 elements by ICP.

Prospecting and reconnaissance geological mapping were carried out over the property, using a 1:5,000 topographic map as a base (Figure 4). Rock samples, described in Appendix C, were taken from zones of alteration and mineralization and analyzed geochemically for gold and 32 elements by ICP. Samples returning geochemical values in excess of 1000 ppb gold or 100 ppm silver were fire assayed. Analytical certificates are attached in Appendix D.

5.0 REGIONAL GEOLOGY

The Tahsis area is underlain by thick northwesterly trending sequences of oceanic basalts and sediments of the Upper Triassic Vancouver Group and extrusive volcanics of the Lower Jurassic Bonanza Group. These have been intruded by Lower Jurassic batholithic Island Intrusions and by Eocene stocks of the Catface Intrusions, with attendant regional and contact metamorphism (Figure 3).

The Vancouver Group, as defined by Muller et al (1981), consists of up to 6,000 metres of Karmutsen Formation (Unit 1) basaltic pillow lavas, pillow breccias, lava flows and intervolcanic limestone, overlain by up to 750 metres of massive Quatsino Formation limestone (Unit 2). This grades upwards into thinly-bedded silty limestones, limy sandstones and reef limestones of the Parson Bay Formation (Unit 3).

The Bonanza Group (Units 4 and 5) comprises a complex sequence of maroon to green interbedded volcanic flows and pyroclastics ranging from basalt to rhyolite in composition. These formed in an island arc environment, and contain both marine and terrestrial facies. The volcanics are locally overlain by clastic sediments ranging from pebble conglomerate to shale, siltstone and coaly beds.

Lower Jurassic Island Intrusion batholiths (Unit 6) are mapped on the southern end of Tahsis Inlet and to the east of Tlupana Inlet. They are generally moderately-grained quartz diorites to leucogranites and may be cogenetic with the Bonanza volcanics (Muller et al, 1981).

Stocks of the Eocene Catface Intrusions (Unit 6) are mapped on the northeast shore of Hisnit Inlet and the northern slopes of

Santiago and Tahsis Mountains (Muller et al, 1981). These intrusives are generally massive, light-coloured, fine- to medium-grained quartz diorites and granodiorites.

The Vancouver and Bonanza Group rocks form a southwest dipping monocline which is disrupted and offset by numerous northwesterly, northerly and easterly faults of unmeasured displacement. Amphibolite-grade regional metamorphism and migmatization are associated with the Island Intrusions. Contact metamorphism and skarn formation are common near Catface stocks.

6.0 PROPERTY GEOLOGY AND MINERALIZATION

6.1 Geology

Two Quatsino-Parson Bay-Bonanza sequences have been recognized on the VIG 6 claim north of the Tsowwin River. Robinson (1983) inferred a northwesterly-trending fault separating the two sequences. These sequences were later intruded by the Santiago Stock, which is one of the Eocene Catface Intrusives. Figure 4 is a compilation of geological mapping completed by Robinson (1983), Ronning (1985) and Awmack (1988) and complemented by field mapping from the 1992 field program.

Limestone (Unit 2) of the Quatsino Formation outcrops between North Tsowwin Creek and the Vivian and El Zones as well as to the east of Quarry Creek. The limestone is generally white to grey, cryptocrystalline and massive to thick bedded. Associated epidote and chlorite alteration is found in conjunction with numerous thin beds of tuffaceous to argillaceous clastics. These thin layers increase in frequency towards the contact with the andesites and may be the first indicator of the stratigraphically overlying Parson Bay Formation which is gradational with the Quatsino Formation north of the property.

Fine-grained siliciclastics of the Parson Bay Formation (Unit 3) overlie the Quatsino limestone east of Quarry Creek. Robinson (1983) describes this formation as "comprised of bedded to thin bedded dark brown to black argillite" whose contact is gradational with the underlying Quatsino Formation. Ronning (1985) mapped a band of thinly bedded volcaniclastic siltstone, minor greywacke and rare tuffaceous horizons in the northeast corner of the VIG 6 claim. He inferred that this sequence was separated from the Quatsino limestone to the south by an easterly-trending fault.

Andesitic volcanics of the Bonanza Group (Unit 4) overlie the Parson Bay Formation west of Quarry and North Tsowwin Creeks. Awmack (1988) described the Bonanza as consisting "mainly of tuffs, tuff breccias, agglomerates and feldspar-porphyry flows with little lateral or vertical continuity". The agglomerates and flows appear massive, dark green in colour and contain feldspar and mafic laths

5

in a fine-grained groundmass. Subrounded clasts up to 15 centimetres in diameter distinguish the agglomerate from the andesitic flows.

Although no contact was observed between the Quatsino limestone and the Bonanza Group volcanics, Robinson (1983) inferred two northwest trending faults separating the two units. A shear zone, greater than ten meters in width and containing two narrow quartz veins, is found near the marble-andesite contact (Figure 4) along the EL Zone and is believed to represent one of the faulted contacts. The fault contact west of North Tsowwin Creek was not observed during the 1992 field program.

Dioritic intrusives (Unit 6) outcrop in the southwestern corner of the Vig 6 claim. A medium-grained guartz diorite. diorite and monzonite containing up to 20% accessory magnetite and grading from hornblende diorite in the west to hornblende monzonite in the east was mapped by Robinson (1983) at the confluence of the Tsowwin River with North Tsowwin Creek. This intrusive also hosts numerous xenoliths of surrounding limestone and volcanic rocks as well as mafic dykes. Awmack (1988) mapped a medium-grained, equigranular diorite composed of 80% plagioclase, 10% hornblende, 5% biotite and 1-5% magnetite intruding Bonanza tuffs along a logging road near the Vig 6 legal corner post. The similarity of these intrusives with the ones mapped by Muller et al (1981) on the west side of Mt. Santiago and the north side of Tahsis Mtn. suggests that it is part of the Santiago Stock, which is one of the Eocene Catface Intrusions.

Tertiary or older dykes ranging in composition from felsic to mafic are exposed along creeks and in road exposures throughout the property. Robinson (1983) noted felsic (Unit 7a) and hornblendeporphyry (Unit 7b) dykes within the Quatsino limestone near the eastern boundary of the VIG 6 claim. He described the felsic dykes as being "orange brown weathering, fine grained quartz-feldspar rocks containing up to 5% visible pyrite plus minor arsenopyrite". Ronning (1985) mapped a similar felsic dyke within the Parson Bay Formation in the northeast corner of the property. Fine-grained mafic dykes (Unit 7c) are exposed in limestone outcrops north and west of the Vivian vein. Robinson (1983) noted mafic dykes within the Santiago Stock along the Tsowwin River, indicating that at least some of the mafic dykes post-date the Eocene stock.

6.2 Mineralization

Narrow gold-bearing quartz-sulphide veins are the most important mineralization found on the property. These northwesterly-trending veins are found within narrow, well-gouged, heavily oxidized, shear zones. The veins are mainly composed of clear to milky white quartz and in places contain abundant calcite. Up to 5% sulphides are associated with these veins, including pyrite, sphalerite, galena and arsenopyrite. Visible gold is rarely present in hand specimens. High silver values and anomalous geochemical values for arsenic, copper, zinc and lead are generally associated with high gold grades. The flanking shear zones vary in width from tens of centimetres to greater than ten metres and are limonitic throughout. They locally contain high gold assays and associated arsenic, lead and zinc geochemical values. Sampling by Aberford of the surrounding competent wall rock returned high arsenic values but no significant gold mineralization (Robinson, 1983).

The Vivian Vein is the most completely investigated of these gold-quartz veins. The five to twenty centimetre wide quartz vein, which strikes approximately 150° and dips 70° to the northeast, is flanked by a twelve to twenty centimetre wide gouge zone containing minor pyrite and limonite. Sampling along a strike length of 220 metres extending through the known adits and prospect pits on both sides of Tsowwin River, revealed strong gold mineralization (Figure 4). Table 6.2.1 summarizes sampling data for the Vivian Vein.

Sample	Туре	Width	Au	Ag	As	Cu	Pb	Zn
Number		<u>(m)</u>	(dad)	(ppm)	(ppm)	(ppa)	(ppm)	(ppm)
53954*	Grab V	0.12	114.63g/t	60.8	>10000	66	2280	1106
53955*	Grab G	0.20	16.29g/t	17.8	>10000	73	286	288
53956*	Grab V	0.20	90.71g/t	82.8	>10000	113	1630	1168
53957*	Float V		0.80g/t	1.0	545	44	28	111
53958*	Grab V	0.05	2.75g/t	13.8	2635	136	132	171
53959*	Grab V	?	0.06g/t	1.4	410	77	18	198
53960*	Float V		12.57g/t	67.2	4115	142	1140	407
484301	Loose V		1.85g/t	4.0	914	45	12	44
484302	Grab V	?	205	6.2	2770	214	10	178
484303	Grab G	?	<5	<0.2	118	59	2	212
484304	Grab V	?	160	0.8	1570	48	48	122
509151	Dump V		271.70g/t	3480.0g/t	3670	4600	3940	2540
509156+	Grab V	0.10	1.41g/t	2.0	>10000	38	250	122
509158	Grab V	0.20	53.30g/t	486.9g/t	7320	696	2930	1515
509159	Grab H	0.30	205	4.4	1345	106	36	346
509160	Grab V	0.15	114.17g/t	51.0	1855	69	4280	4910

TABLE 6.2.1 VIVIAN VEIN SAMPLING RESULTS

* 1988 sample; + Probable Vivian Vein extension.

V Quartz vein; G Gouge material; H Hanging wall rock.

Three samples, samples 509158, 509159 and 509160, tested the extension of the Vivian vein between the southern adit and the Tsowwin River. Grab samples 509158 and 509160 taken of quartz vein material, returned high gold and silver up to 114.17 g/tonne gold and 486.9 g/tonne. Both samples also contained high levels of

7

arsenic, lead and zinc up to 7230 ppm, 4280 ppm and 4910 ppm, respectively. These assay and geochemical results are similar to those collected from the southern adit in 1988. Visible gold was found at the site of grab sample 509160 and is closely associated with prismatic arsenopyrite crystals within a sulphide-rich portion of the vein. The gouge zone that elsewhere flanks the vein is not present here and a 30 centimetre grab sample (sample 509159) of the hanging wall contained low precious metal (205 ppb gold and 4.4 ppm silver) but high arsenic (1345 ppm) values.

North of the Tsowwin River, a previously unknown collapsed adit was located along the trend of prospect pits which marks the trace of the Vivian vein. Sample 484301, taken from loose quartz vein material in the adit assayed 1.85 g/tonne gold. However, quartz material (sample 509151) collected from the adit's spill pile, assayed 271.7 g/tonne gold along with 3480.0 g/tonne silver and anomalous amounts of arsenic (3670 ppm), copper (4600 ppm), lead (3940 ppm) and zinc (2540 ppm). Freibergite probably accounts for the sample's high silver content. The spill pile from which sample 509151 was taken is believed to be the "Vivian ore dump" referred to by Robinson (1983). Samples taken from this dump in 1983 assayed up to 134.54 g/tonne gold and 454.3 g/tonne silver.

An auriferous shear-hosted quartz vein is exposed in the road cut at 365 metres elevation east of North Tsowwin Creek (Figure 4). A ten centimetre grab sample from the narrow vein (sample 509156) assayed 1.41 g/tonne gold with high arsenic (>10,000 ppm), but low silver and base metal values. The vein, which strikes 150° and dips 80° to the northwest, is similar to the Vivian Vein and located 680 metres along strike from the adits along the Tsowwin River. This vein probably represents the strike extension of the Vivian Vein.

Prospecting also concentrated on searching for the northwestern continuation of the EL Zone and gold-bearing mineralization similar to that found near the upper quarry during the 1988 field program (Figure 4). Samples taken from the EL Zone, which consists of narrow guartz veins within a larger shear zone, assayed up to 5.48 g/tonne gold with generally low silver and base metal values (DeBock, 1989). Prospecting along soil line CL5 in 1992 failed to locate the extension of the EL Zone. A strongly limonitic shear zone, found in 1988 in the upper quarry, assayed up to 1.68 g/tonne gold with low silver and base metal values (DeBock, 1989). Sampling in the same area during the 1992 field program did not locate any further mineralization.

8

7.0 GEOCHEMISTRY

One moss-mat sediment sample (sample 881126) was taken from the Tsowwin River in the southern part of the Vig 6 property during the course of regional geochemical sampling conducted by the government surveys (GSC, 1989) (Figure 4). Although gold was detected in the sample, the level cannot be considered anomalous (>90th percentile) when compared statistically with all samples taken from the Nootka map sheet. However, the sample returned anomalous lead (10 ppm) and zinc (112 ppm) values which were equivalent to the 95th percentile for lead and exceeded the 90th percentile for zinc.

During the course of the 1992 exploration program, two stream sediment samples and ten moss-mat sediment samples were taken from the drainages on the Vig 6 claim (Figure 4). Although the samples are not strictly comparable because moss-mat sediment samples, whose gold values have been variably enhanced during the natural sieving process, cannot be comparable to the stream sediment results, the sampling results were compared with the results of the 1988 government regional geochemical survey; the percentiles listed in Table 7.0.1 are those of the government survey (GSC, 1989). All the 1992 samples, with the exception of stream sediment sample 92NBD-05, were anomalous (>90th percentile) in at least one of the precious or base metals. Drainage sampling results for the 1992 field program are summarized in Table 7.0.1.

Four of the moss-mat sediment samples contained anomalous levels of gold including one (sample 92BK-02) which was equivalent to the government's maximum value (815 ppb) for their regional survey. Sample 92BK-02 was also strongly anomalous in silver and arsenic, and moderately anomalous in lead. The high gold, silver, arsenic and lead content of sample 92BK-02, which was taken at approximately the 240 metre elevation in Quarry Creek, reflects the geochemical signature of the EL Zone located 220 metres to the northwest on the west bank of Quarry Creek. Moss-mat sediment sample 92BK-01, taken from a small stream located 250 metres south of and downstream of the lower EL Zone, also contained strongly anomalous arsenic (123.0 ppm) and weakly anomalous lead.

Moss-mat sediment sample 92DAC-03, taken from an unnamed stream draining the southeast corner of the Vig 6 claim, returned 315 ppb gold and weakly anomalous zinc (102 ppm). Another mossmat sample (sample 92NBD-01) taken approximately 450 metres upstream, was also weakly anomalous in zinc (108 ppm). No source for these anomalies is unknown.

Sample Number	Sample Type	Au daa	Ag	Cu ppm	Pb mag	Zn DDm	As DDM
92BK-01	М	<5	0.06	15.0	8.0*	91	123.0***
92BK-02	М	815***	0.48***	62.0	10.0*	92	89.8***
92DAC-01	M	10	0.04	11.8	8.0*	145**	16.6
92DAC-02	M	<5	0.12	26.6	6.5	95	24.2*
92DAC-03	M	305**	0.04	22.2	6.0	102*	8.8
92NBD-01	M	10	0.02	25.6	5.5	108*	7.8
92NBD-02	М	<5	0.08	18.8	5.0	127**	17.0
92NBD-03	Μ	<5	0.14	28.0	9.5*	97	158.5***
92NBD-04	M	185**	0.14	23.0	11.0**	102*	158.0***
92NBD-05	S	<5	0.06	19.2	7.0	77	10.6
92NBD-06	S	<5	0.28***	25.8	5.5	83	58.4**
CL5 0+25W	М	70*	0.08	40.2	4.5	92	56.2**
90th perce	entile	36	<0.2	110	7	97	23
95th perce	entile	86	<0.2	146	10	118	36
99th perce	entile	373	0.2	188	16	185	75

TABLE 7.0.1 1992 STREAM AND MOSS-MAT SEDIMENT SAMPLES

M Indicates a moss-mat sediment sample.

S Indicates a stream sediment sample.

Weakly anomalous, exceeds the 90th percentile.

** Moderately anomalous, exceeds the 95th percentile.

*** Strongly anomalous, exceeds the 99th percentile.

In the southwestern corner of the claim, moss-mat sediment sample 92NBD-04, collected from Little Santiago Creek, returned 185 ppb gold and 158 ppm arsenic along with anomalous levels of lead and zinc. Moss-mat sample 92NBD-03, taken from a parallel stream located 20 metres to the north, was also anomalous in arsenic, lead and zinc, but contained no detectable gold. The creeks drain the contact area between the Santiago Stock and Bonanza volcanics, a setting similar to that of the Vivian Vein is hosted. The high arsenic, lead and zinc values also reflect the geochemical signature of the Vivian Vein.

A moss-mat sediment sample taken along soil line CL5 returned a weak gold anomaly (70 ppb) and moderate arsenic anomaly (56.2). The sample was collected from a small tributary of Quarry Creek which drains the area below the upper quarry and probably reflects the auriferous shear zone exposed within it.

Soil sampling was used to locate the probable northern extensions of the Vivian Vein and EL Zone as well as to locate new gold-bearing structures. Numerous gold highs were located along soil line CL3, which was extended 425 metres west towards North Tsowwin Creek. Station CL3 4+00 returned a gold value of 125 ppb along with 711 ppm arsenic. This soil sample station is located along the northwestern strike extension of the Vivian vein and may indicate an extension of the vein. Other spot gold (30 ppb) and arsenic highs (up to 268 ppm) occur within fifty metres of this soil sample station.

The 2.92 g/tonne soil anomaly located in 1988 at CL3 1+00 was confirmed during the 1992 field program. Resampling of the soil pit returned a value of 330 ppb gold, which is still highly anomalous. Although no source for this anomaly was recognized, the soil sample station is underlain by limestone of the Quatsino Formation. It's source is probably the lower EL Zone which occurs 45 metres directly upslope from this sample location. Volcanic rock debris deposited downslope near the soil station as a result of logging and road building supports this point.

Only one individual station along soil line CL5 registered any detectable gold. Soil sample 2+00W contained 20 ppb gold and was taken in an area where an andesitic dyke crosscuts the Quatsino limestone. An arsenic high of 66.6 ppm 25 metres to the east at station 1+75W is also associated with andesitic dyking. These two soil sample locations are located along strike of the shear zone which hosts the EL Zone.

Soil line CL1 was completed during the 1988 field program and was used to help locate the southern extension of the Vivian Vein. Robinson (1983) indicated this area to be underlain by a dioritemonzonite stock. The lack of any gold soil geochemical anomalies along soil line CL1 may indicate that the Vivian Vein is not present within in the stock.

8.0 DISCUSSION AND CONCLUSIONS

The VIG 6 claim is underlain by Upper Triassic Vancouver Group sedimentary rocks and Jurassic volcanic rocks of the Bonanza Group. These rocks have been intruded by the dioritic Santiago Stock which is part of the Eocene Catface Intrusions. This geological setting is similar to that of the Zeballos gold camp located 32 kilometres to the northwest, which produced 11.3 tonnes of gold from narrow quartz-sulphide veins (Barr, 1980). The Zeballos gold camp is British Columbia's tenth largest gold producing district.

The VIG 6 claim contains numerous narrow, gold-rich quartz veins within northwest trending shear zones. These veins contain minor pyrite with local arsenopyrite, sphalerite and galena. Visible gold has been located in only one locality on the property. Strong silver, lead, zinc and arsenic geochemical signatures are also associated with higher gold grades within the veins. Gold mineralization also occurs in the surrounding shear zones with values being either comparable to or lower than those within the quartz veins. The Vivian Vein, which has a minimum strike length of 220 metres as outlined by previous workings, has returned several high gold and silver values, including one of 271.70 g/tonne gold and 3480.0 g/tonne silver from a sample taken from a dump on the north side of the Tsowwin River. Gold was observed in the Vivian Vein along the Tsowwin River, just north of the south adit. Grab samples from this part of the vein contained up to 114.17 g/tonne gold and 486.9 g/tonne silver across fifteen centimetres . Sampling of the hanging wall rock confirmed that the gold was confined to the quartz vein.

Prospecting and soil sampling along the probable northwestern extension of the Vivian Vein returned encouraging results. A narrow, shear-hosted quartz vein was located in a road cut approximately 490 metres along strike from the northernmost prospect pit. A grab sample from this vein contained significant gold (1.41 g/tonne) and arsenic, but was lower in silver and base metals than the Vivian Vein. A gold and arsenic anomaly along soil line CL3 occurs along strike between the Vivian workings and the new road exposure, supporting the likelihood that the new road exposure is an extension of the Vivian vein. This would give the Vivian vein a strike length of at least 700 metres.

The EL Zone consists of several narrow quartz veins within a shear zone located to the east of the Vivian Vein and paralleling it's trend. Rock samples collected from this zone during previous work programs assayed up to 30.31 g/tonne gold with significant silver and base metal values. This zone is believed to be the source of the strong gold, silver and arsenic silt anomaly located downstream along Quarry Creek. A strong gold soil geochemical anomaly along soil line CL3 was thought to outline the southern extension of the EL Zone. However, prospecting around the soil anomaly failed to locate any significant mineralization and it is now believed that the soil anomaly may be the result of debris from the lower EL Zone that was pushed down slope as a result of logging and road building. Soil sampling north of the EL zone did not reveal any significant anomalies.

Moss-mat sediment sampling on the Vig 6 claim has outlined two drainages that were highly anomalous in gold: an unnamed drainage in the southeast corner of the property and Little Santiago Creek. Quatsino limestone underlies the area of the gold anomaly in the unnamed drainage in the southeast corner of the property. This drainage has not been explored and the source of the anomaly has yet to be discovered. Little Santiago Creek in the southwest corner of the property drains an area in which Bonanza Group andesitic rocks have been intruded by the Santiago stock, a setting similar to that of the Vivian vein to the northeast. Both little Santiago Creek and a smaller drainage to the north were also anomalous in arsenic, lead and zinc, elements that are also found in significant quantities in the Vivian vein. Although some work has been conducted in this area, the source for the stream geochemical anomalies in the Little Santiago Creek area is still unknown.

Except for the limited underground development of the Vivian vein around 1939 and recent sampling of road exposures and old trenches, systematic exploration over the VIG 6 property has been limited. Soil geochemistry and prospecting has outlined a possible extension to the Vivian vein while stream geochemistry has identified two geochemically anomalous drainages in which only little work has been done. Although the veins found to date on the Vig 6 property are narrow and gold values are erratic, the possibility of other vein systems on the property cannot be ignored. In addition, significant quantities of gold have been mined from narrow veins in a very similar geological setting of the nearby Zeballos camp.

Respectfully submitted,

asper, Geologist

Vangeuwer Britigh Columb

Vancouver, British Columbia May, 1992 13

APPENDIX A

.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Awmack, H.J. (1988): 1988 Summary Report on the Head Bay Project; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.
- Barr, D.A. (1980): Gold in the Canadian Cordillera; The Canadian Mining and Metallurgical Bulletin, Vol. 73, No. 818, p. 59-76.

BCMEMPR (1956): Ministry of Mines Annual Review, p. 131-133.

DeBock, N. (1989): 1988 Prospecting Report on the VIG 6 Property; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

Geological Survey of Canada (1989): 1988 British Columbia Regional Geochemical Survey, Nootka Sound (NTS 92E); GSC OPEN FILE 2038.

Hoadley, J.W. (1953): Geology and Mineral Deposits of the Zeballos-Nimpkish Area, Vancouver Island, British Columbia; GSC Memoir 272.

Muller, J.E., Cameron, B.E.B, and Northcote, K.E. (1981): Geology and Mineral Deposits of Nootka Sound Map-Area, Vancouver Island, British Columbia; GSC Paper 80-16.

Robinson, J.E. (1983): Geological and Geochemical Report on the TAH Group; BCMEMPR Assessment Report #12,058.

Ronning, P.A. (1985): Geology and Lithogeochemistry of the TAH Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #13,681.

APPENDIX B

~

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES VIG 6 CLAIM MARCH 6-10, 1992

.

r

e.

PROFESSIONAL FEES AND WAGES: David A. Caulfield, P.Geo. 5.0 days @ \$375/day Bruno Kasper, Geologist 9.5 days @ \$300/day Neil DeBock, Prospector 5.0 days @ \$250/day Elmer DeBock, Prospector 5.0 days @ \$250/day Clerical	\$ 1,875.00 2,850.00 1,250.00 1,250.00	
15 nours @ \$20/nour		\$ 7,525.00
CHEMICAL ANALYSES: Rock Geochemical Analyses 17 @ \$ 14.43 each Soil Geochemical Analyses 47 @ \$ 14.50 each Assays	\$ 245.31 681.50 <u>16.47</u>	
		943.28
2 - 4x4 Trucks 9 days @ \$80/day		720.00
EXPENSES:		
Accommodation Drafting Materials and Supplies Maps and Publications Printing and Reproductions Meals Travel Automotive Fuel Automotive Expenses Telephone Distance Charges	\$ 419.92 141.75 21.48 26.92 71.07 463.09 155.14 277.06 5.84 8.96	1,591.23
MANAGEMENT FEES:		
15% on expenses only:		380.18
TOTAL:		\$ 11,159.69

APPENDIX C

2

٠

ROCK DESCRIPTIONS

Mineral Abbreviations:

AK	Ankerite	HE	Hematite			
AS	Arsenopyrite	JA	Jarosite			
AZ	Azurite	KF	Potassium Feldspar			
BI	Biotite	LI	Limonite			
BO	Bornite	MC	Malachite			
CA	Calcite	MG	Magnetite			
CC	Chalcocite	MO	Molybdenite			
CB	Fe-Carbonate	MN	Manganese-oxides			
CL	Chlorite	MR	Mariposite			
CP	Chalcopyrite	MS	Sericite			
CV	Covellite	MU	Muscovite			
СҮ	Clay	PO	Pyrrhotite			
DO	Dolomite	PY	Pyrite			
EP .	Epidote	QZ	Quartz			
FR	Freibergite	SI	Silica			
GA	Garnet	SM	Smithsonite			
GE	Goethite	SP	Sphalerite			
\mathbf{GL}	Galena	TA	Talc			
GY	Gypsum	ŤΤ	Tetrahedrite			
Alte	eration Intensities:	tr	trace			
		W	weak			
		m	moderate			

s strong

EQUITY ENG	TY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS			Page-1-							
Property :	VIG 6 Claim		NTS : 92E/15E	Date : 05,	/13/92	·					
Sample No.	Location :	5520 125 N	Type : Float	Alteration :	sqz	Au	Ag	As	Cu	РЬ	Zn
		674 460 E	Strike Length Exp. : ? m	Sulphides :	<1%AS, <1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484301	Elevation:	203 m	Sample Width : ? m	Oxides :	GE	1640	4.0	914	45	12	44
	Orientation	: ? / ?	True Width : ? m	Kost :	Volcanic?						
Comments :	QZ vein taken fi	rom shear in ol	d adit. May be tagged as ND-001 in t	he field. Old a	adit trends 315 degrees.						
Sample No.	Location :	5520 125 N	Type: Grab	Alteration :	sqZ	Au	Ac	As	Cu	Pb	7n
•		674 460 E	Strike Length Exp. : ? m	Sulphides :	None visible	(pob)	(DOM)	(pom)	(0000)	(0000)	(0000)
484302	Elevation:	203 m	Sample Width : ? m	Oxides :	SGE	205	6.2	2772	214	10	178
	Orientation	: ? / ?	True Width : ? m	Host :	Volcanic?		•••		2.17		
Comments :	Quartz vein gouț	ge from trench [.]	floor. Taken at same location as roc	k sample 484301.							
Sample No.	Location :	5520 125 N	Туре: Grab	Alteration :	mCL. sE₽	Au	Aα	As	Cu	Pb	7n
·		674 460 E	Strike Length Exp. : ? m	Sulphides :	None visible	(pob)	(nom)	(nom)	(nnm)	(0000)	(000)
484303	Elevation:	203 m	Sample Width : ? m	Oxides :	GE	<5	<0.2	118	59	2	212
	Orientation:	. 7 / 7	True Width : ? m	Host :	Altered volcanic	-				-	6 . 1 6 .
Comments :	Gouge from trend	ch floor. Same	trench as sample 484302.								
Sample No.	Location :	5520 155 N	Type: Grab	Alteration :	sqz	Au	Ag	As	Cu	Рb	Zn
		674 425 E	Strike Length Exp. : ? m	Sulphides :	<1%PY	(pob)	(ppm)	(DOM)	(DOM)	(mag)	(pom)
484304	Elevation:	225 m	Sample Width : ? m	Oxides :	GE	160	0.8	1568	48	48	122
	Orientation:	? / ?	True Width : ? m	Host :	Unknown						
Comments :	Sample taken of	quartz vein wit	thin shear from face of trench. Tren	ich located appro	ximately 40 metres at 3	15 degrees					
	from site of roc	k samples 48430	01 to 484303.								
Sample No.	Location :	5520 215 N	Type: Float	Alteration :	mCY, wEP, mQZ	Au	Ag	As	Cu	Pb	Zn
		674 195 E	Strike Length Exp. : m	Sulphides :	None	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484410	Elevation:	260 m	Sample Width : m	Oxides :	GE, HE	<5	<0.2	42	37	6	150
	Orientation:	/	True Width : m	Host :	Porphyritic andesite	flow					
Comments :	fe-oxidized floa	it found in B ho	prizon above host subcrop. Unable to	locate source.	Cm wide QZ veinlets pro	esent in floe	at.				
	Labelled as BK-	01 in the field	ł. 								
Sample No.	Location :	5520 155 N	Type: Float	Alteration :	WCL, WQZ	Au	Aq	As	Cu	Pb	Zn
		674 205 E	Strike Length Exp. : m	Sulphides :	1-2%PY	(ppb)	(ppm)	(ppm)	(ppm)	(pom)	(ppm)
484411	Elevation:	245 m	Sample Width : m	Oxides :	GE	<5	<0.2	46	22	6	88
	Orientation:	/	True Width : m	Host :	Porphyritic andesite (flow				_	
Comments :	Very angular bou	ilder found at a	n andesitic outcrop. PY occurs eithe	er as cm wide ve	inlets or is coarsely di	isseminated					
	throughout. Lap	RELIED AS BK-UZ	in the field.								

EQUITY ENGI	INEERING LTD.		ROCK SAMPLE DESCRIPTIONS			Page-2-					
Property :	VIG 6 Claim	,	NTS : 92E/15E	Date : 05/	13/92						
Sample No.	Location :	5520 130 N	Type: Float	Alteration :	sqz	Au	Ag	As	Cu	Pb	Zn
		674 460 E	Strike Length Exp. : m	Sulphides :	<1%PY, 2%FR	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509151	Elevation:	235 m	Sample Width : m	Oxides :	AZ, MC	>10000	>200.0	3672	4603	3942	2544
	Orientation:	/	True Width : m	Host :	Unknown						
Comments :	Sulphîdes dissem approximately 35	ninated throughout 6 degrees. Label	t. Taken from the spill pile of a lled as ED001-92 in the field.	20 to 25 metre l	ong collapsed adit. Adi	t trends					
Sample No.	Location :	5520 670 N	Type : Grab	Alteration :	mCA, w to mCL	Au	Ag	As	Cu	Pb	Zn
		673 825 E	Strike Length Exp. : ? m	Sulphides :	trPY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509152	Elevation:	380 m	Sample Width : ? m	Oxides :	trGE	130	8.6	72	104	12	70
	Orientation:	085 / 85 N	True Width : ? m	Host :	Volcanic and limestone	•					
Comments :	4 to 5 cm. wide	alteration zone w	within limestone. Labelled as EDOC	02-92 in the fiel	d.						
Sample No.	Location :	5520 690 N	Type: Grab	Alteration :	WMS	Au	Ag	As	CU	Pb	Zn
		673 800 E	Strike Length Exp. : 0.5 m	Sulphides :	5%299	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509153	Elevation:	570 m	Sample Width : 4 cm	Oxides :	GE	140	7.4	80	81	14	46
	Orientation:	085 / 70 N	True Width : ? m	Host :	Limestone/andesite dyk	e margin					
comments :		1 as 20002-92. La	Delled as ED005-92 in the field.								
Sample No.	Location :	5521 310 N	Type : Grab	Alteration :	sMS	Au	Ag	As	CU	Pb	Zn
		674 320 E	Strike Length Exp. : 125 m	Sulphides :	20%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509154	Elevation:	650 m	Sample Width: ? m	Oxides :	GE	30	<0.2	186	81	14	38
	Orientation:	? / ?	True Width : ? m	Host :	Volcanic						
Comments :	Pyrite mainly co	ncentrated in ban	nds, but is also is very finely dis	sseminated in pla	ces.						
		5521 275 M	Tumo - Grah	Alteration		•		4-	6 .4	Dh	7-
Somple NO.		474 320 F	Strike Length Exp + 2 m	Sulphidee -	507, WOL, MMDJ, SWE 5% DY	7U ((DOE)	75 (nm-)	ւս (թթա)	(nom)	611 (DDD)
500155	Elevetion	640 m	Sample Lidth : 2 m	Ovidee :	None visible	(660)	ער גווקע	(ppik)	(ppm) 57	(ppai) 4	58
10111		304 / 40 NE	True Width + 2 m	Nost :	limev volcenie	40	2.4	90	23	0	50
Componto a	07-Ch wein end O	Jut y to He	ille width	nust :	cludy volcanic pres Expression and a						
connerts :	WZ-LA Venn and W	Z SLOCKWOIK TOURN	i within tarns riattered area. W	. Verns mainty Dan	rren. Exposed in road e	xposure.					
Sample No.	Location :	5520 550 N	Type: Grab	Alteration :	wMS, sQZ, GR selvage	Au	Ag	As	Cu	РЬ	Zn
-		674 080 E	Strike Length Exp. : 10 m	Sulphides :	3-5%AS, PY?	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509156	Elevation:	365 m	Sample Width : 10 cm	Oxides :	GE	1350	2.0	>1000	0 38	250	122
	Orientation:	150 / 80 SW	True Width : 10 cm	Host :	Altered volcanics						
Comments :	Vein shear pinch	es and swells fro	m 1 to 25 cm. before going under r	oad and overburde	en upslope. Vein has a	rusty gossan	ous				
	appearance and i	s highly sheared.	Well formed silver needles of AS	s.	· ·						

EQUITY ENG	INEERING LTD.		ROCK SAMPLE DESCRIPTIONS		Page-3-					
Property :	VIG 6 Claim		NTS : 92E/15E	Date : 05/13/92	-					
Sample No.	Location :	5520 040 N 674 730 E	Type: Grab Strike Length Exp. : ? m	Alteration : wCA, wCL, Sulphides : trAS	sqZ Au (pob)	Ag (pom)	As (DOM)	Cu (pom)	Pb (pom)	Zn (pom)
509157	Elevation:	240 m	Sample Width: ? m	Oxides : GE, MN	35	<0.2	28	4	2	8
	Orientation:	212 / 022 NW	True Width : ? m	Host : Volcanic					-	•
Comments :	Coarsely crystal	ine quartz vein w	ith coxcomb texture. Vein is 2 to	4 cm. wide and exposed in r	oad ditch.					
Samole No	location :	5520 070 N	Type + Grah	Alteration , sCA UCY	e 07 Au	4-	4-	C	D-	7
Sample No.	LOUBLINH .	676 555 F	Strike Length Evo + 8 m	Sulphides 1 2949 toCD	SWZ AU	Ay (nom)	AS (nom)	(nnm)	PD (nnm)	20
500158	Elevation:	190 m	Sample Hidth • 90 cm	Ovidee · uCE	, <1600, (TPT (ppD)	(ppm) 0.167.8	(ppm) 7314	(ppm) 404	(ppn)	(ppm) 151/
307130	Orientation:	150 / 70 NE	True Hidth - 20 cm	Host - andesite	~1000	0 107.0	1310	070	2732	1314
Comments :	Sample taken of	2 narrow veins (<	10 cm. wide) at the base of the ad	it on the south side of the	Tsowwin River Veins					
	pinches and swel	ls from 5 to 20 c	m Sulphides are generally diss.	throughout. Abundant veinl	ets also paralllel the	veins.				
Sample No.	Location :	5520 070 N	Type: Grab	Alteration : wCA, w to	mCL, wQZ Au	Ag	As	Cu	Pb	Zn
		674 555 E	Strike Length Exp. : 15 m	Sulphides : <1%AS, trP	Y (ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509159	Elevation:	190 m	Sample Width : 55 cm	Oxides : wGE	205	4.4	1344	106	36	346
	Orientation:	150 / 70 NE	True Width : 30 cm	Host : Andesite						
Comments :	Hanging wall hos	t for sample 5091	58. Sulphides are either in or fo	und around CA fracture filli	ngs.					
			*							
Sample No.	Location :	5520 070 N	Type: Grab	Alteration : wCA, wCL,	WCY, SQZ AU	Ag	As	Cu	Pb	Zn
		674 555 E	Strike Length Exp. : 8 m	Sulphides : 1-2%AS,1%G	L,<1%PY,1-2%SP (ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
509160	Elevation:	190 m	Sample Width : 70 cm	Oxides : GE very we	ak >1000	0 51.0	1855	69	4284	4912
	Orientation:	145 / 70 NE	True Width : 15 cm	Host : Andesite						
Comments :	Continuation of	vein from sample	509158. Vein swells out to its wi	Jest here. Sulphides all fo	und within the QZ. Par	allel				
	veins found over	1.0 metre width	(3 veins). Visible gold (GD) gene	rally associated with arseno	pyrite.					
Sample No.	Location :	5521 055 N	Type : Float	Alteration : mMS	Au	Ag	As	Cu	Pb	Zn
		674 410 E	Strike Length Exp. : ••• m	Sulphides : 40%PY	(ppb)	(ppm) ((ppm)	(ppm)	(ppm)	(ppm)
509163	Elevation:	570 m	Sample Width : m	Oxides : GE	50	0.4	326	52	20	46
	Orientation:	/	True Width : m	Host : Limey, ser	icite altered volcanic					
Comments :	Composite of two from moss-mat sa	subangular float mple CL5 0+25W.	s <10 cm. in size; minor ferricreto Labelled as DACOO1-9 in the field.	e development in creek. Tak	en 20 metres up creek					
			*							

and the second second

APPENDIX D

.

,

.

,

...

CERTIFICATES OF ANALYSIS

Equity Engineering Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9212215

.

Comments: ATTN: BRUNO KASPER

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	uppe: Limi
996	1	Au oz/T: 1 assav ton	FA-GRAVIMETRIC	0.002	20 000
922	1	Ag ppm: 32 element, soil & rock	ICP-ABS	0.2	200
921	1	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
923	1	As ppm: 32 element, soil & rock	ICP-ABS	5	10000
924	1	Ba ppm: 32 element, soil & rock	ICP-ARS	10	10000
925	1	Be ppm: 32 element, soil & rock	ICP-ABS	0.5	100.0
926	1	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	1	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	1	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	1	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	1	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	1	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	1	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	1	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	1	Hg ppm: 32 element, soil & rock	ICP-ARS	1	10000
934	1	K %: 32 element, soil & rock	ICP-ABS	0.01	10.00
935	1	La ppm: 32 element, soil & rock	ICP-ARS	10	10000
936	1	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	1	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
938	1	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
939	1	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	1	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	1 1	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	1 1	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	1	Sb ppm: 32 element, soil @ rock	ICP-AES	5	10000
958	1	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
944	1	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	1	Ti %: 32 element, soil & rock	ICP-ABS	0.01	5.00
946	1	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	1	U ppm: 32 element, soil & rock	ICP-ARS	10	10000
948	1 1	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	1	W ppm: 32 element, soil & rock	ICP-ABS	10	10000
950	1	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

CERTIFICATE

A9212215

EQUITY ENGINEERING LTD.

Project: VIG 6 P.O. # : VIG88-02

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-MAR-92.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
207 294 298	1 1 1	Assay pulv, screen -150, roll Crush and split (0-10 pounds) ICP - AQ Digestion charge
+ NOTE	1 .	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER

Page Number :1-A Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212215 P.O. Number :VIG88-02 Account ÊIĂ

3

SAMELE PREP Au FA Ag Al As Ba Be Bi Ca Cd Co Ct Cu Pe Ga Bg X La Mg Ph 505160 207 296 3.330 51.0 0.52 1855 20 < 0.5 < 2 9.29 < 0.5 3 37 69 1.40 < 10 1 0.14 10 0.40 1280 505160 207 296 3.330 51.0 0.52 1855 20 < 0.5 < 2 9.29 < 0.5 3 37 69 1.40 < 10 1 0.14 10 0.40 1280													RTIFI	CATE	OF /	NAL'	YSIS		49212	215	<u> </u>	
209160 207 294 3.330 51.0 0.52 1855 20 < 0.5 < 2 9.29 < 0.5 3 37 69 1.40 < 10 1 0.14 10 0.40 1280	SAMPLE	PRE	P E	Au FA oz/T	Ag PPm	A1. %	As ppm	Ba ppm	Be ppa	Bi ppm	Ca %	Cd PPm	Co ppm	Cr ppm	Cu PPm	Fe %	Ga ppm	Hg PPm	K &	La ppm	Mg ¥	Mn ppm
	SAMPLE 509160	207 :	294	02/T 3.330	ppa 51.0	* 0.52	 1855	20	<pre>ppm < 0.5</pre>	<u></u> < 2	¥ 9.29	ppm < 0.5	3	<u>ppm</u> 37	<u>ppa</u> 69	*	2 10	1	0.14	<u>ppn</u> 10	÷ 0.40	1280
				_															, o			

r

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER

Page Number :1-B Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212215 P.O. Number :VIG88-02 Account :EIA

,

'n

7

		-								CE	RTIF	CATE	OF A	YSIS	A9212215	
SAMPLE	PREP CODE	Mo ppm	Na f	Ni ppm	P PPm	Pb ppm	Sb ppn	Sc ppn	Sr ppm	Ti %	Tl ppm	a D	V ppm	W PPm	Zn ppm	
509160	207 294	<u>4</u> 1	0.01	11	100	4280	< 5 < 5	3	174 <	0.01	< 10	< 10	16	2 10	4910	
																Hai AMa

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATE

A9212216

EQUITY ENGINEERING LTD.

Project: VIG 6 P.O. # : VIG88-02

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-MAR-92.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 294 2500 229	15 15 15 15	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) Winter special code ICP - AQ Digestion charge
* NOTE	h:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Comments: ATTN: BRUNO KASPER

	ANALYTICAL PROCEDURES														
CHEMEX N CODE S/	UMBER AMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit										
983 997 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2130 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149	15 4 15 15 15 15 15 15 15 15 15 15	Au ppb: Fuse 30 g sample Au g/tonne: 1 assay ton Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock Ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock St ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock St ppm: 32 element, soil & rock	FA-AAS FA-GRAVIMETRIC ICP-AES	5 0.07 0.2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 0.01 5 1 0.01 10 2 2 1 1 0.01 10 2 2 2 1 1 0.01 10 0.5 2 1 0.01 10 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 1 1 0.5 2 0.01 0.5 2 0.01 0.5 1 1 0.01 1 0.5 2 0.01 1 0.5 1 1 0.01 1 0.5 2 0.01 1 0.5 1 1 0.01 1 0.5 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0	10000 200 15.00 10000 100.0 100.0 100.0 100000 10000										

.

•

٠

1

A9212216

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-A Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212216 P.O. Number :VIG88-02 Account :EIA

1

Project : VIG 6 Comments: ATTN: BRUNO KASPER

CERTIFICATE OF ANALYSIS

A92	1221	6

			:																·		
SAMPLE	PRI COI	KIP Die	Au ppb FA+AAg/	Au FA tonne	y Januari Janu	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co PP m	Cr ppa	Cu pp=	Fe %	Ga ppn	Bg PPm	К १	La pp <u>n</u>	Mg %
484301	205	294	1640	1.85	4.0	1.24	914	40	< 0.5	2	0.02	< 0.5	4	141	45	1.79	< 10	< 1	0.24	< 10	0.76
484302	205	294	205 -		6.2	4.48	2770	30	< 0.5	< 2	0.08	< 0.5	22	128	214	5.99	< 10	< 1	0.18	< 10	4.62
484303	205	294	< 5		< 0.2	5.45	118	10	< 0.5	< 2	0.12	< 0.5	29	199	59	1.65	10	< 1	0.03	< 10	5.40
484410	205	294	< 5 -		< 0.2	5.17	42	20	< 0.5	< 2	0.87	0.5	14	84	37	4.46	20	< 1	0.06	< 10	2.48
484411	205	294	< 5 -		< 0.2	3.55	46	10	< 0.5	< 2	1.30	< 0.5	10	14	22	8.42	10	< 1	0.02	< 10	1.85
509151	205	294	>10000 2	71.7	>200	0.30	3670	10	< 0.5	8	2.10	9.0	1	198	4600	1.22	< 10	7	0.01	< 10	0.65
509152	205	294	130 -		8.6	2.62	72	40 80	< 0.5	< 2	1.21	< 0.5	23	44 10	104	8.73	10	< 1	0.51	< 10	1.34
509154	205	294	30 -		< 0.2	1.63	186	20	< 0.5	< 2	0.05	< 0.5	13	30	81 :	>15.00	50	< 1	0.14	< 10	0.61
509155	205	294	40 -		2.4	1.45	90	20	< 0.5	< 2	7.11	< 0.5	16	93	23	5.36	< 10	< 1	0.12	< 10	0.64
509156	205	294	1350	1.41	2.0	2.45	>10000	180	< 0.5	< 2	0.25	9.0	13	21	38	4.74	< 10	< 1	0.85	20	0.74
509158	205	294	>10000	53.30	168.0	0.94	1245	20	< 0.5	10	1.00	6.U Z 0 5	20	155	105	2.05	< 10	< 1	0.11	< 10	0.65
509163	205	294	205 -		0.4	2.06	326	10	< 0.5	< 2	0.08	< 0.5	123	203	52	>15.00	30	< 1	0.07	< 10	1.24
L	. J]															H	ai	A)	Ma	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER Page Number :1-B Total Pages :1 Certificate Date: 19-MAR-92 Invoice No. :19212216 P.O. Number :VIG88-02 Account :EIA

,

•

٦

٩

										CERTIFICATE OF ANALYS						YSIS		A9212216	
SAMPLE	PR CO	ep de	Mn ppm	Mo ppm	Na f	Ni ppm	P ppm	Pb ppa	Sb ppa	Sc PPm	Sr ppa	Ti %	Tl ppm	БЪш Л	V P FR	W ppn	Zn ppm		
484301 484302 484303 484304 484410	205 205 205 205 205 205	294 294 294 294 294	835 1115 1235 810 1085	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.02 0.04 0.03	6 29 48 6 19	130 560 670 130 660	12 10 2 48 6	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 22 24 3 10	2 4 3 4 2 10	<pre>< 0.01 < 0.01 < 0.02 < 0.01 < 0.10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 167 193 19 96	< 10 < 10 < 10 < 10 < 10 < 10	44 178 212 122 150		
484411 509151 509152 509153 509154	205 205 205 205 205	294 294 294 294 294	1115 695 320 260 195	< 1 < 1 129 2 < 1	0.17 < 0.01 0.09 0.03 0.01	1 4 52 9 < 1	3850 180 180 190 430	6 3940 12 14 14	2 888 2 2 16	15 1 7 5 6	23 45 34 16 4	0.04 0.01 0.16 0.10 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 13 136 42 110	< 10 < 10 < 10 < 10 50	88 2540 70 46 38		
509155 509156 509158 509159 509163	205 205 205 205 205	294 294 294 294 294	1115 1140 670 1180 175	< 1 25 1 < 1 20	0.01 0.01 0.03 0.01 0.02	1 3 6 38 553	340 1730 190 800 380	6 250 2930 36 20	2 10 42 < 2 16	7 6 2 14 9	136 < 15 29 < 90 < 6	(0.01 0.01 (0.01 (0.01 (0.01 0.01	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	77 44 23 83 121	< 10 < 10 < 10 < 10 < 50	58 122 1515 346 46		
							·			. <u>.</u>		<u>_</u>			EBTIEIC		- H	nai DM	α

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER

Page Number :1-A Total Pages :1 Certificate Date: 29-MAR-92 Invoice No. :19212442 P.O. Number :VIG88-02 Account :EIA

1

٠

٦

~

.

		.								CE	RTIFI	CATE	OF A	NAL	YSIS	/	A9212	442		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag PPm	A1 %	As ppm	Ba ppm	Be ppn	Bi ppm	Ca %	Cd. PPm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K ¥	La ppm	Mg %	Mn ppm
509157	205 294	4 35	< 0.2	0.36	28	< 10	< 0.5	< 2	0.02	< 0.5	1	340	4	0.73	< 10	< 1 -	< 0.01	< 10	0.22	440
																	6	<u> </u>	Ma	
														CERTIFI	CATION:	V	mar	\mathcal{O}	Ina	_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER

Page Number :1-B Total Pages :1 Certificate Date: 29-MAR-92 Invoice No. :19212442 P.O. Number :VIG88-02 Account :EIA

1

.

										CERTIFICATE OF ANALYSIS A9212442								
SAMPLE	PREP CODE		Mo	Na &	Ni ppm	P Ppm	Pb ppm	Sb PPm	Sc ppm	Sr ppa	Ti ¥	Tl PPM	U PPm	v Ppm	W	Zn PPm		_
509157	205 2	94	1	< 0.01	4	60	2	< 2	1	1 <	\$ 0.01	< 10	< 10	6	< 10	8		
L									_		_				CERTIE	CATION:	Thai DMa	

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

10: EQUITY ENGINEERING LTD.	To:	EQUITY	ENGINEERING LTD.
-----------------------------	-----	--------	------------------

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 .

A9212412

3

٦

Comments: ATTN: BRUNO KASPER

A9212412 Vancouver, BC. R-92. TION ESCRIPTION as pulp				ANALYTICAI	L PROCEDURES		
	CHEMEX	NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
Vancouver, BC. R-92.	383	2	Ag oz/T		FA-GRAVIMETRIC	0.01	20.00
TION							
SCRIPTION							
as pulp							

EQUITY ENGINEERING LTD.

Project: VIG 6 P.O. # : VIG88-02

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-MAR-92.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
214	2	Received sample as pulp

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : VIG 6 Comments: ATTN: BRUNO KASPER

Page Number :1 Total Pages :1 Certificate Date: 22-MAR-92 Invoice No. :19212412 P,O. Number :VIG88-02 Account :EIA

•

CERTIFICATE OF ANALYSIS A9212412

,

SAMPLE	PREP CODE	Ag FA oz/T				<u></u>			
509151 509158	214 214	101.50 14.20							
				:					-
L				 	c	ERTIFICATION	\mathcal{A}	ch V	mh/

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9212218

a.

•

,

Comments: ATTN: BRUNO KASPER

С	ERTIF	ICATE A9212218			ANALYTICA	L PROCEDURES	5	
EQUITY E	NGINEEF VIG 6 VIG88-0	RING LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit
Samples This rep	submitt	ed to our lab in Vancouver, BC. printed on 22-MAR-92.	983 1941 1092 1094 1097 1935 1939	47 47 47 47 47 47 47	Au ppb: Fuse 30 g sample Ag ppm: Ultra trace package As ppm: Ultra trace package Bi ppm: Ultra trace package Cu ppm: Ultra trace package Eg ppm: Ultra trace package Mo ppm: Ultra trace package	FA-AAS EXT-ICP EXT-ICP EXT-ICP EXT-ICP EXT-ICP EXT-ICP	5 0.02 0.2 0.2 0.2 0.1 0.2	10000 200 5000 5000 5000 5000 5000
	SAM	PLE PREPARATION	1933 1089 1946	47 47 47	Sb ppm: Ultra trace package Sn ppm: Ultra trace package Zn ppm: Ultra trace package	EXT-ICP EXT-ICP EXT-ICP	0.2	1000 5000
CHEMEX	NUMBER SAMPLES	DESCRIPTION						
201 217 2500	29 18 47	Dry, sieve to -80 mesh Geochem ring entire sample Winter special code						
* NOTE The 32 e trace m Elements digestic Ba Ba	1: metals s for w on is po	ICP package is suitable for in soil and rock samples. hich the nitric-aqua regia ssibly incomplete are: Al, Ca K La Mg Na Sr Ti						
Σμ, με, ΤΙ, ₩.	ua, cr,	Ga, K, Da, Mg, Na, D1, 11,						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1 Total Pages :2 Certificate Date:22-MAR-92 Invoice No. :19212218 P.O. Number :VIG88-02 Account :EIA

ъ

•

Project : VIG 6 Comments: ATTN: BRUNO KASPER

	CERTIFICATE OF ANALYSIS A9212218										
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	As ppm	Bi ppm	Cu ppm	Hg ppm	Mo ppm	Pb ppm	Sb ppm	Zn ppm
92BK-01 92BK-02 92DAC-01	2012500 2012500 2012500	< 5 815 10	0.06 0.48 0.04	123.0 89.8 16.6	< 0.2 0.4 < 0.2	15.0 62.0 11.8	0.1 7.0 < 0.1	1.6 2.2 1.2	8.0 10.0 8.0	0.2 2.4 < 0.2	91 92 145
92DAC-02 92DAC-03	2012500 2012500	< 5 305	0.12	24.2 8.8	0.2 < 0.2	26.6 22.2	0.1	1.6 0.6	6.5 6.0	0.4 < 0.2	95 102
92NBD-01 92NBD-02 92NBD-03 92NBD-04	2012500 2012500 2012500 2012500 2012500	10 < 5 < 5 185	0.02 0.08 0.14 0.14	7.8 17.0 158.5 158.0	<pre>< 0.2 0.2 0.6 1.6</pre>	25.6 18.8 28.0 23.0	< 0.1 0.1 0.2 0.6	0.6 0.2 2.8 1.8	5.5 5.0 9.5 11.0	< 0.2 0.2 0.4 0.4	108 127 97 102
92NBD-05	2172500	< 5	0.06	10.6	0.4	19.2	0.4	2.0	7.0	0.2	77
509161 CL3 1+00 CL3 2+25 CL3 2+50	2012500 2172500 2172500 2172500 2172500	< 5 330 < 5 < 5	0.12 0.26 0.14 0.84	36.8 56.0 9.2 77.4	0.4 0.4 0.2 0.2	8.4 8.2 16.2 17.0	0.2 0.3 0.4 < 0.1	2.4 1.2 2.0 1.4	6.5 39.0 18.5 12.0	< 0.2 0.2 0.2 < 0.2 < 0.2	30 73 198 101
CL3 2+75 CL3 3+00 CL3 3+25 CL3 3+50 CL3 3+75	2012500 2012500 2012500 2012500 2012500 2012500	< 5 < 5 < 5 30 < 5	0.28 0.12 0.14 0.20 0.16	37.8 23.0 187.0 23.6 26.0	0.4 0.2 4.2 0.2 0.2	19.2 13.4 11.6 20.6 21.0	< 0.1 < 0.1 0.1 0.7 0.5	2.4 2.0 3.0 1.4 1.0	14.0 7.5 15.5 6.0 4.5	< 0.2 < 0.2 1.2 0.2 0.2	130 55 85 57 52
CL3 4+00 CL3 4+25 CL3 4+50 CL3 4+75 CL3 5+00	2012500 2012500 2012500 2012500 2012500 2172500	125 < 5 < 5 < 5 < 5 < 5	0.14 0.10 0.12 0.32 0.14	711 63.6 268 56.6 25.4	0.4 0.8 1.4 0.2 0.2	7.4 8.4 19.4 11.0 13.2	<pre>< 0.1 < 0.1</pre>	0.8 1.0 5.2 3.2 1.6	4.5 4.0 39.5 9.0 8.0	0.4 0.4 1.4 < 0.2 0.2	17 24 95 83 45
CL3 5+25 CL3 5+50 CL3 5+75 CL3 6+00 CL3 6+25	2012500 2012500 2012500 2012500 2012500 2012500	<pre>< 5 < 5 </pre>	0.24 0.08 0.06 0.08 0.08	175.0 57.0 35.6 26.0 34.6	0.2 0.4 0.2 0.8 0.2	18.8 5.8 18.4 5.0 18.4	<pre>< 0.1 < 0.1</pre>	1.8 2.8 12.6 0.8 0.8	11.0 5.5 20.0 5.5 5.0	< 0.2 0.2 0.6 0.2 0.6	265 23 39 30 66
CL5 0+00W CL5 0+25W CL5 0+50W CL5 0+75W CL5 1+00W	2172500 2012500 2172500 2172500 2172500 2172500	<pre>< 5 70 < 5 < 5 < 5 < 5</pre>	0.06 0.08 0.08 0.04 0.12	9.6 56.2 8.4 3.2 7.2	< 0.2 < 0.2 < 0.2 < 0.2 0.6 < 0.2	19.4 40.2 32.8 13.2 35.0	<pre>< 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1</pre>	0.4 1.8 2.4 0.6 9.2	3.5 4.5 3.0 3.0 5.5	0.4 3.2 0.6 0.2 1.4	33 92 77 33 36
CL5 1+25W CL5 1+50W CL5 1+75W CL5 2+00W CL5 2+25W	2012500 2012500 2012500 2172500 2172500 2172500	<pre>< 5 < 5 < 5 < 20 < 5</pre>	0.06 0.08 0.04 0.10 0.14	14.4 28.8 66.6 25.8 47.4	< 0.2 < 0.2 < 0.2 < 0.2 0.4 0.2	21.2 18.0 32.2 16.4 27.0	< 0.1 0.1 0.1 < 0.1 0.1	3.0 2.0 1.6 2.8 39.4	6.0 4.0 4.0 4.5 11.0	1.2 1.0 0.8 1.2 7.6	39 54 98 46 104
			<u>_</u>	L			ـــــــــــــــــــــــــــــــــــــ		y the	u DY	ha

ſ

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :2 Total Pages :2 Certificate Date: 22-MAR-92 Invoice No. : 19212218 P.O. Number : VIG88-02 Account : EIA

.

i

-

Project : VIG 6 Comments: ATTN: BRUNO KASPER

CERTIFICATE OF ANALYSIS Δ9212218

	r			rr-	<u>L</u>		r	······			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	As ppm	Bi ppm	Cu ppm	Hg	Mo	Pb ppm	Sb ppm	Zn ppm
CL5 2+50W CL5 2+75W CL5 3+00W CL5 3+25W CL5 3+50W	2172500 2172500 2172500 2172500 2172500 2172500	<pre>< 5 < 5 </pre>	0.04 0.04 0.04 0.06 0.06	11.0 11.0 20.4 20.8 21.2	<pre>< 0.2 < 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.2</pre>	16.4 16.4 35.8 6.8 10.0	0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	20.2 2.8 3.6 2.4 1.0	10.0 5.0 3.5 5.5 5.0	2.6 1.0 0.4 0.8 0.4	82 56 102 28 43
CL5 3+75W CL5 4+00W	2172500 2172500	< 5 < 5	0.02 0.04	17.0 17.8	< 0.2 0.2	8.8 10.6	< 0.1 < 0.1	0.8 1.2	4.0	0.2	60 42
	L	<u> </u>	L				I		j.	ai DI	ha

APPENDIX E

.

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, BRUNO KASPER, of 2190 Pinecrest Avenue, Coquitlam, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of Alberta with a Bachelor of Science degree in Geology.
- 3. THAT my primary employment since June, 1988 has been in the field of mineral exploration.
- 4. THAT this report is based on fieldwork carried out under my direction.
- 5. THAT I have no interest, directly or indirectly, in the VIG 6 claim.

DATED at Vancouver, British Columbia, this $\frac{19^{th}}{2}$ day of $\frac{Mag}{2}$, 1992.

Bruno Kasper// Geologist

992 ROCK	GEOCHEMIC	AL RESUL	TS	Cii (2000)	Ph (nom)	70 (000)	1	988 ROCK G	EOCHEM	ICAL RESULTS	S (DeBock,	1988)		2n (200)	
84301 84302 84303 84400 84410 09151 2 09152 09153 09154 09155 09155 09156 09157 09158 09159 09160 1 09163	1.85g/t 205 <5 160 <5 <5 71.70g/t 130 140 30 40 1.41g/t 35 53.30g/t 205 14.17g/t 50	4.0 6.2 <0.2 0.8 <0.2 3480.0g/ 8.6 7.4 <0.2 2.4 2.0 <0.2 486.9g/ 4.4 51.0 0.4	914 2770 118 1570 42 46 t 3670 72 80 186 90 >10000 28 t 7320 1345 1855 326	45 214 59 48 37 22 4600 104 81 81 23 38 4 696 106 69 52	12 10 2 48 6 6 3940 12 14 14 6 250 2 2930 36 4280 20	44 178 212 122 150 88 2540 70 46 38 58 122 8 1515 346 4910 46		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.07 0.12 0.08 4.63 6.29 0.71 0.80 2.75 0.06 2.75 0.06 2.57 1.23 1.32 0.31 2.46 1.68 0.63 0.07 1.15 5.48 3.56 0.86	0.4 1.0 0.4 60.8 17.8 2.8 1.0 13.8 1.4 67.2 1.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27.6 1.8 0.8 5.2 1.2 27.0 4.8 1.0	10 15 10 >10000 >10000 >10000 545 2635 410 4115 2465 >10000 2280 4960 275 300 145 6210 6910 905 4240	7 19 41 66 73 113 44 136 77 142 5 68 41 112 44 41 9 22 83 126 10	8 12 8 2280 286 1630 28 132 18 1140 14 1750 416 1550 46 20 10 14 12 34 12	180 81 92 1106 288 1168 111 171 198 407 47 553 89 235 94 41 47 64 211 100 62	
992 SILT (ample A	GEOCHEMIC	AL RESUL: Ag(ppm)	TS As(ppm)	Cu(ppm)	Pb(ppm)	Zn(ppm)		999 SOTT G	FOCHEM	TONI DESIL	. (DeBock	1988)			
2BK-01 * 2BK-02 * 2DAC-01* 2DAC-03* 2DAC-03* 2NBD-01* 2NBD-02* 2NBD-04* 2NBD-04* 2NBD-05 2NBD-06 L5 0+25W* *	<5 815 10 <5 305 10 <5 <5 185 <5 185 <5 70 Moss-mat	0.06 0.48 0.04 0.12 0.04 0.02 0.08 0.14 0.14 0.06 0.28 0.08	123.0 89.8 16.6 24.2 8.8 7.8 17.0 158.5 158.0 10.6 58.4 56.2 nt sample	15.0 62.0 11.8 26.6 22.2 25.6 18.8 28.0 23.0 19.2 25.8 40.2	8.0 10.0 8.0 6.5 5.5 5.0 9.5 11.0 7.0 5.5 4.5	91 92 145 95 102 108 127 97 102 77 83 92	C:	L1 0+00 0+25 0+50 0+75 1+00 1+25 1+50 1+75 2+00 2+25 2+50 2+75 3+00 3+25 3+50 3+75 4+00	(ppb) 30 10 <5 5 10 5 <5 <5 <5 <5 <5 5 <5 5 <5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>Au(g/t)</u>	CL2 0+0 0+2 0+5 0+7 1+0 1+2 1+5 1+7 2+0 2+2 2+5 2+7 3+0 3+2 3+5 3+7 4+0	Au (ppm) 0 5 5 <5			
992 SOIL (ample A) 09161	SEOCHEMIC	AL RESULT	rs As(ppm) 36.8	Cu(ppm) 8.4	Pb(ppm)	Zn (ppm) 30	c	L3 0+00 0+50 0+75 1+00	60 5 5	2.92	CL4 0+0 0+2 0+5 0+7	0 <5 5 5 0 5			
L3 1+00 2+25 2+50 2+75 3+00 3+25 3+50 3+75 4+00 4+25 4+50 4+75	330 <5 <5 <5 <5 <5 30 <5 125 <5 <5 <5	0.12 0.26 0.14 0.84 0.28 0.12 0.14 0.20 0.16 0.14 0.10 0.12 0.32	36.8 56.0 9.2 77.4 37.8 23.0 187.0 23.6 26.0 711.0 63.6 268.0 56.6	8.4 8.2 16.2 17.0 19.2 13.4 11.6 20.6 21.0 7.4 8.4 19.4 11.0	39.0 18.5 12.0 14.0 7.5 15.5 6.0 4.5 4.5 4.0 39.5 9.0	73 198 101 130 55 85 57 52 17 24 95 83		1+00 > 1+25 1+50 1+75 2+00 1988 GOVER Sample Av 881126	1000 555 10 35 20 NMENT (ppb) 5	2.92 REGIONAL GEO Ag(ppm) <0.2	0+7 1+0 1+5 1+7 2+0 0CHEMICAL <u>As (ppm)</u> 22	5 < 5 0 5 5 < 5 0 5 ANALYSES Cu(ppm) 32	(GSC OPE Pb(ppm) 10	N FILE 203 Zn(ppm) 112	18, 1989)
5+00 5+25 5+50 5+75 6+00 6+25	<5 <5 <5 <5 <5	0.14 0.24 0.08 0.06 0.08	25.4 175.0 57.0 35.6 26.0 34.6	13.2 18.8 5.8 18.4 5.0	8.0 11.0 5.5 20.0 5.5	45 265 23 39 30		90th %ile 95th %ile 99th %ile	36 86 373	<0.2 <0.2 0.2	23 36 75	110 146 188	7 10 16	97 118 185	
LS 0+00W 0+50W 0+75W 1+00W 1+25W 1+50W 2+00W 2+25W 2+50W 2+75W 3+00W 3+25W 3+500 3+75W 4+00W	<pre></pre>	0.06 0.08 0.04 0.12 0.06 0.08 0.04 0.10 0.14 0.04 0.04 0.04 0.04 0.04	9.6 8.4 3.2 7.2 14.4 28.8 66.6 25.8 47.4 11.0 11.0 20.4 20.8 21.2 17.0 17.8	19.4 32.8 13.2 35.0 21.2 18.0 32.2 16.4 27.0 16.4 16.4 35.8 6.8 10.0 8.8 10.6	3.5 3.0 3.0 5.5 6.0 4.0 4.0 4.5 11.0 10.0 5.0 3.5 5.5 5.0 4.0 4.0	33 77 33 36 39 54 98 46 104 82 56 102 28 43 60 42									
				LEC	GEND								SYM	BOLS	
				LITH	OLOGIES						Rock ou	atcrop			
AL UN ERTIARY Dy a Fe b Ho c Ma COCENE Ca i Sa URASSIC Bo i An URASSIC Bo i An IPPER TR Va Pa 2 Qu Reology Robinson	consolid OR OLDE kes and lsic rnblende fic tface In ntiago S nanza Gr desitic IASSIC ncouver rson Bay atsino F adapted (1983) senopyri lorite eibergit lachite artz	ated fl R sills -porphy atrusion tock: roup flows, Group Formatic in part and Ror M te .e	vry Diorite tuffs, t tion: Ca on: Lime from Av uning (19 IINERALS A2 CF GI MS SF	to dior tuff bre alcareou estone; wmack (1 985). S AND 2 S AND 2 S arb gol S ser s sph	rite-monz eccias an as siltst minor in 1988), De ALTERAT: drite lcopyrit. d icite ialerite	its. onite. d agglome one, shal terbeds o Bock (198 CON TYPE	rates. e and lime f tuffs pr 8), S CA c EP e GL g PY p	alcite pidote alena yrite	CL 3	VIG	Fault v Bedding Dyke wi Vein wi Rock sa Silt sa Moss-ma Soil sa Prospec Trench Adit Quarry Legal o	vith dip g with di ith true ith true ith dip ample ample at sedim ample li ct Pit corner p M E T	ndary ((appro ip width and tru ent sam ne with Nost (lo	approximate, in metres e width in metres a 25 metres ocated)	e stations.
								U		BRI	TISH C	OLUMBI			
							DRAWN N.T.S. : DATE :	92E/ MAY,	/ J.J. 15 E 1992	EQUITY E.	ENGIN MININO SCALE REVIS	IEERIN G DIV.: C: I: ED:	IG LTU ALBE 5000	D. IRNI	FIGURE

GEOLOGICAL BRANCH ASSESSMENT REPORT