D. L. COOKE AND ASSOCIATES MID.

JUN 1 0 1992

RD.

MINERAL EXPLORATION CONSULTANTED

ASSESSMENT REPORTFILE NO:

1991 RECONNAISSANCE GEOPHYSICS AND GEOCHEMISTRY OF THE LAC 1 - 4 CLAIMS

SUB-RECORDER RECEIVED

JUN 0 2 1992

VANCOUVER, B.C.

MT. MILLIGAN AREA N.T.S. 930/4W

LATITUDE: 55° 06' NORTH TONGITUDE: 123° 50' WEST OMINECA M.D.

by

DAVID L. COOKE, PH.D., P.ENG. D. L. COOKE AND ASSOCIATES LTD. 811 - 675 WEST HASTINGS STREET VANCOUVER, B.C. V6B 1N2

ZO **& 5** 图段 1 &Z C PM - 2 S 0 0 山田 00 国公 5 A

U K

MAY 26, 1992

WORK DONE: AUGUST 25 - 30, 1991

CLAIMS ON WHICH WORK WAS DONE

<u>Claim</u>	<u>Units</u>	Record No.	Month of Record
LAC 1	20	11722	March
LAC 2	20	11723	March

D. L. COOKE AND ASSOCIATES LTD.

MINERAL EXPLORATION CONSULTANTS

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
1991 EXPLORATION PROGRAM	2
LOCATION AND ACCESS	3
PROPERTY AND OWNERSHIP	3
REGIONAL GEOLOGY AND MINERALIZATION	3
PROPERTY GEOLOGY AND MINERALIZATION	4
GEOCHEMISTRY	
Sample Preparation and Analysis Discussion of Results	5 5
GEOPHYSICS: IP AND RESISTIVITY	5
CONCLUSIONS AND RECOMMENDATIONS	6
REFERENCES	7
ILLUSTRATIONS	
FIGURE 1: LOCATION MAP, LAC CLAIMS, MT. MILLIGAN AREA	
FIGURE 2: CLAIM MAP, LAC CLAIMS; 1:50,000	
FIGURE 3: RECONNAISSANCE IP AND SAMPLE LOCATIONS LAC CLAIMS; 1:10,000	
FIGURE 4: RECONNAISSANCE GEOCHEMISTRY; GOLD, ARSENIC AND LAC CLAIMS; 1:10,000	D COPPER,
FIGURE 5: LINE 10,000 E: RESISTIVITY AND CHARGEABILITY, LAC CLAIMS; 1:3,000	
APPENCICES:	
APPENDIX I STATEMENT OF 1991 EXPENDITURES APPENDIX II STATEMENT OF QUALIFICATIONS APPENDIX III ANALYTICAL RESULTS	

SUMMARY

The Lac 1 to 4 mineral claims dec comprised of 70 claim units. These claims are located in the Mt. Milligan area and may be reached by road, 85 kilometres southwest of McKenzie, B.C.

The Mt. Milligan area is a new camp for porphyry copper-gold deposits. Placer Dome Inc. acquired the Mr. Milligan copper-gold deposit in 1990 and completed a feasibility study in 1991. The host rocks consist of Takla volcanic flows and tuffs and coeval alkaline intrusions of monzonite composition. The mineralization consists mainly of pyrite and chalcopyrite stockworks and disseminations. Gold-bearing quartz-carbonate veins occur peripheral to the porphyry copper-gold mineralization and are localized by fault zones.

The Lac claims are partially covered by glacial drift. Rock exposures consist of strongly sheared and carbonatized Takla volcanic rocks containing abundant disseminations of pyrite. There is also evidence of quartz-carbonate stockwork and veins within the sheared and altered volcanic rocks. Minor amounts of black pyritic argillites occur within the volcanic assemblage.

Reconnaissance induced polarization and resistivity survey, geological mapping, rock and soil sampling were done over the western part of the property during the period August 25 to 30, 1991. Scattered anomalous values for gold, copper and arsenic in soils were found. The geophysical traverse along the main road through the property gave high chargeability and low resistivity readings over an area which is probably underlain by pyritic black argillites.

Additional geological mapping, soil and rock geochemistry are recommended, together with induced polarization surveys to detect disseminated sulphides below the glacial cover.

INTRODUCTION

The Lac claims were staked over the eastern portion of a small boomerang-shaped aeromagnetic anomaly which occurs approximately 4.5 kilometres east of the Mt. Milligan copper-gold deposit. The Mt. Milligan deposit lies on the southeast margin of a large aeromagnetic anomaly which reflects an underlying diorite-syenodiorite-monzonite intrusive complex. Detailed low-level airborne and ground magnetic surveys define the Mt. Milligan zones of mineralization as small satellite magnetic anomalies caused by sulphide-bearing monzonitic dikes and plugs.

The Lac claims were examined for their porphyry copper-gold and gold vein potential during the period August 25 to 30, 1991. The results of this exploration work forms the subject of this report. A total of \$8,608.25 was spent on the exploration of the Lac claims and this report is submitted for assessment credits on the property.

1991 EXPLORATION PROGRAM

The current reconnaissance program consisted of prospecting, geological mapping, soil and rock geochemistry along east-west lines from the western boundary of the Lac 1 mineral claim. Soil samples were collected on the Lac 1 claim every 100 metres along the traverse lines, 100 metres apart. Rock samples were collected for assaying at irregular intervals. Data was plotted on 1:10,000 topographic maps (Figure 3). Sample control was provided by topofil chain from known points.

This work was done by David L. Cooke, Ph.D., P.Eng., geologist, and M. A. Cooke, field assistant. One test line of induced polarization and resistivity was done by Lloyd Geophysics Ltd. along the main haulage road running northwesterly across the Lac 2 mineral claim.

LOCATION AND ACCESS

The Lac mineral claims are situated in the Omineca Mining Division, approximately 85 kilometres southwest of McKenzie, B.C. (Figure 1). The claims lie 4.5 kilometres east of the Mt. Milligan copper-gold deposit. Access to the claims is from McKenzie by 85 kilometres of good logging roads operated by Fletcher Challenge Ltd. The area is one of active logging operations, and there are numerous clear-cut areas on the Lac property.

The property area is generally gently rolling. Elevations on the claims range from 992 metres at the level of Philip Lakes to 1,300 metres in the northeast section. Vegetation is primarily a mixture of spruce, fir and lodgepole pine. The underbrush is very dense in areas of secondary growth, which consist of young spruce and fir.

PROPERTY AND OWNERSHIP

The Lac 1 to 4 mineral claims are owned by D. L. Cooke, 10667 Arbutus Wynd, Surrey, B.C., V4N 1W5. The pertinent claim data is as follows:

		<u>Units</u>	Record No.	Record Date
Lac	1	20	11722	March 28, 1989
Lac	2	20	11723	March 28, 1989
Lac	3	18	11724	March 27, 1989
Lac	4	12	11725	March 27, 1989

REGIONAL GEOLOGY AND MINERALIZATION

Mt. Milligan occurs roughly at the core of an area of porphyry copper-gold mineralization which runs northwesterly from Carp Lake to the Nation River in the Omineca Mining Division of B.C. This area is part of the Quesnel Trough of Upper Triassic rocks, which extend northwesterly from the U.S. border through B.C. to the Yukon.

The Upper Triassic rocks in the Mt. Milligan area belong to the Takla Group and consist mainly of andesitic and basaltic flows and pyroclastics. Minor amounts of black argillites have been noted locally. Older metamorphic rocks of the Slide Mountain and Cache Creek Groups occur to the east of the Takla rocks. The Takla volcanic rocks are intruded by calc-alkaline and alkaline plutons of Upper Triassic to Cretacous ages.

The geology of the Mt. Milligan area is mainly covered by glacial till. The Mt. Milligan porphyry copper-gold deposit, which is currently being developed by Placer Dome Inc., contains 329 million tons of probable ore with a grade of 0.22% copper and 0.013 ounce gold per ton. The mineralization consists of pyrite, chalcopyrite and free gold within Takla volcanic rocks and in coeval alkaline intrusions (monzonite, diorite, etc.) of Triassic age. The sulphides occur as disseminations and stockworks in both intrusive and volcanic host rocks.

The intrusions are characterized by abundant disseminations of magnetite, which make them detectable by airborne and ground magnetic surveys. Sulphides are concentrated in the intrusive margins and adjacent volcanic rocks and may be traced under the glacial cover by induced polarization methods.

In addition to the disseminated and stockwork habit of sulphide mineralization, there are fault-controlled gold veins which occur peripheral to the porphyry mineralization. The veins contain quartz, carbonate, pyrite, chalcopyrite and gold which in some cases is of economic interest.

PROPERTY GEOLOGY AND MINERALIZATION

The Lac claims lie over the eastern portion of a small boomerang-shaped aeromagneitc anomaly, which lies to the southeast of the larger Mt. Milligan aeromagnetic anomaly. These claims have potential for the occurrence of mineralized satellitic alkaline intrusions similar to the Mt. Milligan intrusions. The property, however, is extensively covered by glacial material of unknown thickness. Some rock exposures occur in the northwestern parts of the claim group (Figure 3), indicating that the area is underlain by sheared and altered Takla volcanic flows and fragmentals. Minor amounts of black, pyritic argillites occur in the southwest corner of the property.

Various amounts of pyrite occur in the sheared volcanic rocks. Alteration consists of silicification and carbonatization. In the northwest part of the property, carbonatized rocks contain quartz, carbonate and pyrite veinlets. The silica and carbonate alteration zone is anomalous in arsenic and copper. Although the dimensions are not known, it appears to be trending to the northeast and may to be fault-controlled.

GEOCHEMISTRY

Sample Preparation and Analysis

Soil samples were taken from the B-horizon with a shovel at depths of 15-30 centimetres and at 50 metre intervals, along E-W lines 100 metres apart. Soil samples were placed in numbered Kraft sample bags and shipped to Min-En Laboratories in North Vancouver, B.C. for analysis. Rock samples were occasionally collected in the course of soil sampling, prospecting, mapping, etc. The sample location sites and numbers are indicated on Figure 3.

The soil samples were dried at approximately 60°C and then sieved to minus 80 mesh. A 1.0 gram sample was then digested with HNO3 and HClO4 mixture. These samples were then diluted to standard volume after cooling, and the solutions analyzed for 30 elements by computer operated Jarrell Ash 9000 Induction Coupled Plasma (ICP) Analyzer. Gold was determined on separate solutions by atomic adsorption spectrophotometry. Rock samples were crushed and treated in a similar geochemical fashion.

Discussion of Results

The analytical results are presented in Appendix III. Significant values for copper, gold and arsenic in rocks and soils are plotted on Figure 4. Because of the small sample population, statistical treatment of the data was not attempted. By inspection and experience, the following values were assumed to be anomalous:

gold : + 10 ppb
arsenic : + 20 ppm
copper : +100 ppm

No prominent clusters of anomalous values were obtained by this program. It is not known what extent this may be due to the cover of glacial till and sand.

GEOPHYSICS: IP AND RESISTIVITY

An induced polarization and resistivity survey line was done by Lloyd Geophysics Ltd. along the main logging road which runs across the Lac 2 claim. The survey line was run from kilometre 60.0 to kilometre 61.875. The results are presented as chargeability and resistivity profiles on Figure 5.

The high chargeabilities (+20 milliseconds) and very low resistivities (below 100 ohm - metres) which occur between kilometres 60.0 and 60.75 correspond to underlying black, pyritic argillites. The remainder of the line consisting of low chargeabilities and higher resistivities probably represents volcanic tuffs and flows.

CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance geological mapping, soil and rock geochemistry of the Lac claims identified weakly anomalous and altered zones permissive for the occurrence of fault-controlled gold-quartz mineralization. The IP and resistivity survey gave anomalous results, which may be due to pyritic argillites rather than to porphyry copper-gold mineralization.

The extensive glacial drift cover in the low-lying areas is probably masking most of the geochemical response from the underlying bedrock. Additional soil sampling, rock geochemistry and geophysics should be done over the area to the south of the Lac 1 claim to further evaluate a small aeromagnetic anomaly on the Lac 2 claim.

Report by:

D. L. COOKE AND ASSOCIATES LTD.

David L. Cooke, Ph.D., P.Eng.

May 26, 1992

REFERENCES

- Cooke, D.L., 1989: Summary Report, Lac 1-4 Mineral Claims. Mt. Milligan Area, 3 pp.
- Cooke, D.L., 1991: 1990 Reconnaissance Geology and Geochemistry of the Lac 1-4 Claims, Mt. Milligan Area, 9 pp.
- Geophysical Paper, 1961: Philip Lakes, British Columbia, Map 1573G, Geological Survey Canada.
- Geophysical Paper, 1961: Wittsichica Creek, British Columbia, Map 1584G, Geological Survey Canada.
- Muller, J.E., 1961: Geology, Pine Pass, British Columbia, Map 11-1961, Geological Survey Canada.
- Rice, H.M.A., 1948: Smithers Fort St.James, British Columbia, Map 971A; 1 inch to 8 miles.

D. L. COOKE AND ASSOCIATES LTD.

MINERAL EXPLORATION CONSULTANTS

APPENDIX I

STATEMENT OF 1991 EXPENDITURES LAC 1 - 4 MINERAL CLAIMS

σ	١٣	70	\boldsymbol{r}	т	т,	$^{\circ}$
SI	41	. А	ĸ	1	r.	Ċ

D. L. Cooke. Geologist, Aug. 25-30, 1991 6 days @ \$350/day	3,000.00
GEOCHEMISTRY	
104 Soil and 4 Rock Samples (Min En Lab) \$1,686.32 Field Supplies	,772.88
GEOPHYSICS	
Recce. IP and Resistivity Survey, Aug.4, 1991 1.875 km (Lloyd Geophysics Ltd.) 1	L ,444. 50
DOMICILE	
Room and Board: 12 man days @ \$50/day \$ 600.00 Communications 35.00	635.00
TRANSPORTATION	
Truck Rental: 6 days @ \$60/day \$ 360.00 Mileage: 1,415 km @ \$0.20/km 283.00 Gasoline and Repairs 177.87	820.87
REPORT	
Data Interpretation and Report \$ 700.00 Drafting 125.00 Stenographic Service 110.00	935.00

Prepared by:

D. L. COOKE AND ASSOCIATES LTD.

David L. Cooke, Ph.D., P.Eng. May 26, 1992.

TOTAL EXPENDITURESSION \$8,608.25

OF

D.L. COOKE

ERITISH

CLUMB

OF

COMPANY AND A VER 1N2

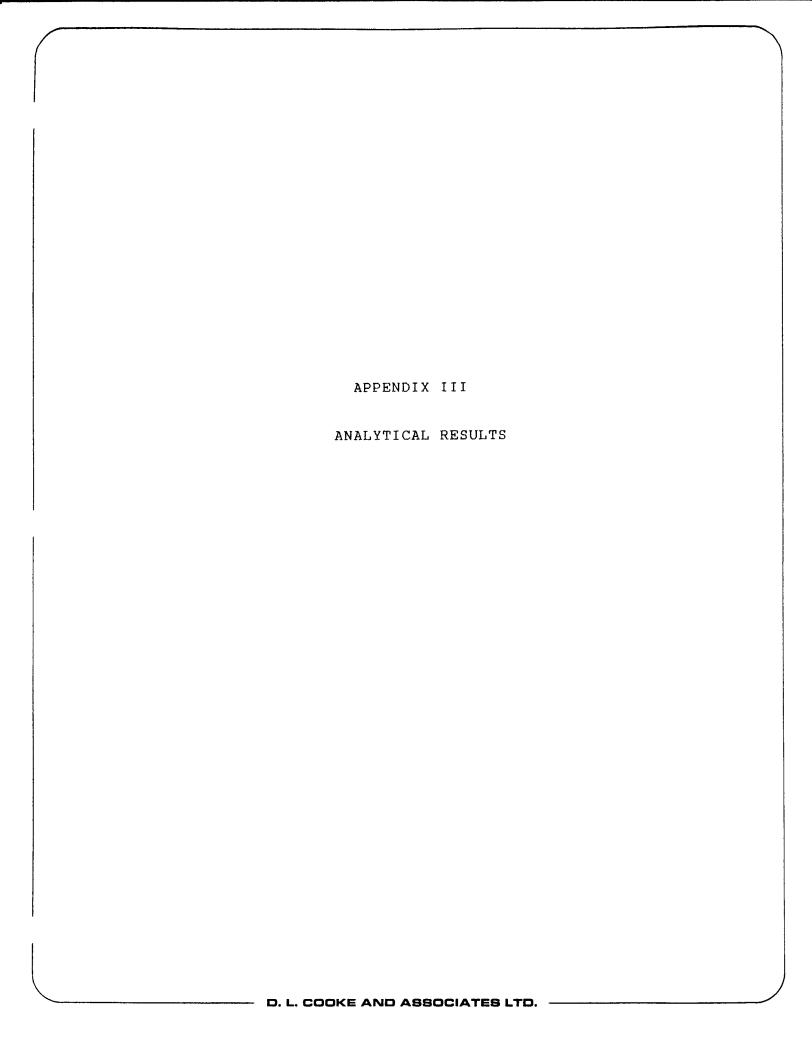
(604) 687

(604) 687-3337

D. L. COOKE AND ASSOCIATES LTD.

MINERAL EXPLORATION CONSULTANTS

APPENDIX II


STATEMENT OF QUALIFICATIONS

I, DAVID LAWRENCE COOKE, of the Municipality of Surrey in the Province of British Columbia, hereby certify:

- 1. That I am a Consulting Geologist, residing at 10667 Arbutus Wynd, Surrey, B.C., V4N 1W5, with a business office at 811 675 West Hastings Street, Vancouver, B.C., V6B 1N2.
- 2. That I graduated with a B.Sc. degree in Geology from the University of New Brunswick in 1959, and with M.A. and Ph.D. degrees in Geology from the University of Toronto in 1961 and 1966 respectively.
- 3. That I have practised my profession as an exploration geologist from 1959 to the present time in Canada, the U.S.A., Mexico, the Caribbean and South America.
- 4. That I am a Registered Member of the Association of Professional Engineers of the Province of British Columbia since 1970.
- 5. That I have personally performed the exploration work on the Lac 1 4 mineral claims described herein.
- 6. And that I am the author of this report on the Lac 1 4 mineral claims, dated May 26, 1992.

DAVID L. COOKE, PH.D., P.ENG.

May 26, 1992

COMP: D.L. COOKE & ASSOC.

PROJ: LAC

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 1V-1017-SJ1+2 DATE: 91/09/16 * SOIL * (ACT:F31)

ATTN: D.L. COOKE								,,	J WES		604)980	-					*****	-										* S0	DIL *	(ACT	:F31)
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM		CO (FE PPM	K PPM		MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM			SR PPM		T I PPM		ZN PPM		SN PPM F	W C	R AU-F	IRE PPB
LAC91-001 LAC91-002 LAC91-003 LAC91-004 LAC91-005	.1 20230 .6 17380 .5 16260 .5 18090 .1 17660	40 6 1 4 1	13 5 3 3	84 84 58 95 88	.9 .5 .3 .5	6 6 7 8 6	6430 6140 8270 7620 6030	.1 .1 .1 .1	14 13 13 16 17	42 31 30 38 54	43470 35550 32860 41960 53940	980 910 950 1370 1800	29 17 12 16 12	5980 4690 4980 6140 4170	320 630 406 598 575	1 1 1 1	1350 1400 1150 1140 960	13 12 8 6	2330 1020 800 2030 1480	94 38 34 31 22	1 1 1 1	28 23 33 43 28	1 1 1 1 1	657	92.8 85.8 99.4 104.4 82.7	89 66 100 157	1 1 1 1	1 1 1 1	3 3 3 3 3 3 2 3	7 9 6 0	1 2 1 2 1
LAC91-006 LAC91-007 LAC91-008 LAC91-009 LAC91-010	.4 22680 .1 12270 .1 15730 .7 18240 .4 18610	1 1 11 8 9	2 4 1 1	108 88 97 196 283	.5 1.0 .5 .4 .6	9 3 7 6 6	8840 5970 6760 6410 7720	.1 .1 1.3	26 1 17 12 13	42 05 57 30 41	44380 100660 44760 36180 36630	1360 1620 1610	5 12 19	5900 1260 5150 4400 5660	1113 379 427	4 1 1 1	1400 1100 1140 1060 1630	1 17 7 16	980 1880 2670 2920 3620	24 37 27 21 27	1 1 1	40 31 31 33 42	1 1 1	128 983 1022 922	100.2 47.1 86.6 101.9 100.9	145 150 251 291	1 1 1 1	1 1 1 1	3 4 1 3 3 3 3	8 4 6 0	1 1 2 3
LAC91-011 LAC91-012 LAC91-013 LAC91-014 LAC91-015	.8 18850 .2 20740 .3 20610 .5 23030 .1 18880	10 17 10 1	1 1 1 1	206 102 72 100 93	.6 .7 .5 .6	5 7 7 6 5	7060 6160 6530 9280 9130	.1 .1 .1	17 15 16	56 66 47 31 59	43890 49070 44230 37160 44060		20 19 34	7240 5630 6270 5640 4920	335 388 327 601 931	1 1 1	1250 950 1270 1280 1320	10 12 12		21 14 21 22 25	1 1 1 1	64 28 30 47 46	1 1 1 1	785 844 1081 965 664	109.5 92.7 90.1 85.6 77.3	107 87 129 109	1 1 1 1	1 1 1 1	3 4 3 3 3 3 2 3	5 7 8 1	1 1 1 2 3
LAC91-016 LAC91-017 LAC91-018 LAC91-019 LAC91-020	.2 22890 .1 21630 .3 19570 .9 20860 1.1 17140	9 19 50 1 1	1 1 1 1	101 90 127 150 105	.5 .3 .5	5 7 7	12210 6070 8500 10460 11820	.1 .1 .1	19 15	06 58 70 71 40	41180 46230 42460 34460 30630		29 15 35	3630 5260 5940 5110 6300	479 427 726 760 498	1	940 1200 840 1010 1310	15 13	650 1060 910 680	18 21 16 15 16	1 1 1	60 26 37 52 53		448 628 909 1368 1568	73.1 83.8 93.7 99.6 92.8	106 98 160 73	1 1 1	1 1 1 1	3 4	5 7 3 3	1 1 1
LAC91-021 LAC91-022 LAC91-023 LAC91-024 LAC91-025	.9 16250 1.0 17370 .7 18000 1.0 17520 .7 16190	1 1 1 1	1 1 1 1	127 119 67 63 56	.4 .2 .3 .4		3080 12320 7660 7710 5590	.1 .1 .1	15 13 13	53 58 47 23 34	33020 34570 36260 29500 35180	1960 1110 920	12 24 13	7090 8540 5070 4510 5890		1 1 1	1020 1090 1060 1100 990	28 10 8 5	1070 1010 1790	15 19 16 11 28	1 1 1 1	53 53 36 35 27	1 1 1 1	1598 1623 815	95.0 111.2 105.6 88.4 100.2	112 74 105 130	1 1 1 2	1 1 1 1	4 5 3 4 3 3 3 3		1 2 1 1 2
LAC91-026 LAC91-027 LAC91-028 LAC91-029 LAC91-030	1.1 19610 .8 15030 .6 18120 .5 20150 .6 17830	1 1 1	1 1 1 1	83 55 54 73 73	.3 .1 .3 .4	9 8 8 7 8	8970 6430 7290 6960 7130	.1 .1 .1	9 12 15	38 15 28 37 37	33390 27390 32280 32770 36530	940 550 730 440 500	11 15 11 16	6770 3090 6020 6050 8380	359 220 283 367 416	1	1110 1110 910 1900 940	6 10		14 12 14 19 14	1 1 1 1	41 26 34 30 53	1 1 1	1716 1334 1425 1242 1263	105.2 85.1 92.3 89.4 97.7	61 85 62 74	1 1 1 1	1 1 1 1	3 3 3 4 3 3	1 6 4 8	1 2 1 1
LAC91-032 LAC91-033 LAC91-034 LAC91-035 LAC91-036	.3 15660 .5 14860 .5 15950 .3 11370 .5 22090	14 7 10 1 10	7 5 4 4	77 79 81 50 110	.1 .1 .1 .1		7720 8360 12610 11260 9920	.1	10 13 11	26 20 40 23 38	28570 26230 37320 31050 32090		11 12 8	6880 5130 8490 6210 6920	267 286 423 315 300	1 1 1 1	130 120 300 210 180	11 7 10 8 14	550 1280 1310	12 14 13 7 11	1 1 1 1	31 33 52 43 42	1 1	1611 1485 1703 1636 1656	95.5 90.4 121.3 105.2 109.1	62 47 30	2 2 1 3	1 1 1 1	3 3 4 5 4 4 4 4	9 3 3 5 5 3	2 1 1 3 2
LAC91-037 LAC91-038 LAC91-039 LAC91-040 LAC91-041	.7 29580 .6 22040 .5 18050 .8 16980 .6 17990	15 14 12 10 11	5 4 4 3 3	196 132 100 84 136	.1 .1 .1 .1	9 7 8 8 8	11780 8800 8720 7250 7510	.1	15 13 12	00 46 28 23 35	44490 34670 32620 32010 36030	1300 1620 930	27 18 13 22	8880 7100 6480 5400 5610	575 626 350 374 316	1 1 1 1	210 140 120 120 120	9	700 720 1440 1810 2770	16 18 13 14 15	2 1 1 1	51 34 35 30 33	1	1321 1506 1442	102.8	92 90 131 160	4 2 4 3 3	2 1 1 1	3 4 3 3 3 3	50 5 1 8 1	1 1 3 4
LAC91-042 LAC91-043 LAC91-044 LAC91-045 LAC91-046	.7 14480 .4 17900 .1 27600 .5 24860 1.0 22850	5 11 10 9 20	3 4 4 3	65 68 139 63 61	.1 .1 .1 .1	9 10 10 9	7220 6390 7500 7390 6650	1 .1	14 20 22	24 47 69 53 44	31670 35380 56030 49870 48270	510 1240 770	15 28 26	5230 6980 15830 20500 10360	266 507 512 502 398	1 1 1 1	110 90 70 90 80	10 26 15	1550 2900 1040 1970	13 12 18 14 18	1 1 1 1 2	32 35 47 32 50	1 1 1 1	1778 1941 1649	106.0 123.8 145.9 140.9	54 58 62 120	3 4 3 3 4	1 1 1 1	4 5 7 1 6 8	34	2 1 1 2 4
LAC91-047 LAC91-048 LAC91-049 LAC91-050 LAC91-051	.7 22490 .6 22180 .6 15470 .7 20780 .7 19590	21 18 7 13 11	3 2 2 2	60 60 61 64 57	.1 .1 .1 .1	9 10 8 9	6750 7940 6830 10360 7460	1 .1	18 11 16	43 47 19 70 33	42140 41950 33160 36700 40080	740 870 550 600	19 15 18 18	8820 8330 4930 8910 8910	344 419 259 706 313	1 1 1 1	70 120 80 130 100	12 2 13 7	2410 2270 1640 640 1850	20 43 12 16 14	2 1 1 1	40 51 36 52 56		1819 1680 1703 1716	105.6 115.4	130 75 67 57		1 1 2 1	3 4 4	51 51 55 52 59	1 2 1 8 2
LAC91-052 LAC91-053 LAC91-054 LAC91-055 LAC91-056	.4 20190 .5 17860 .7 19750 .6 15160 .6 12690	17 13 13 11 6	4 2 3 2 2	55 46 92 66 56	.1 .1 .1 .1	10 9 10 8 7	6320 6880 7710 6220 7540	1 .1	15 10 10	39 29 50 21 20	39540 32540 29860 27000	780 680 690 1050	17 10 12	9740 4670 4110	2420 367	1 1 1 1	90 100 870 100 1210	7 8 8 3 5	810 1310 680	15 15 26 11 16	1 1 1 1	38 38 31 29	1 1 1 1	1747 1532 1420 1389	109.4 124.4 100.2 94.9 87.6	50 41 41 58	5 4 3 3	1 1 1 1	5 6 3 3 3 3	11 54 57 54 54	1 2 1 1 2
LAC91-057 LAC91-058 LAC91-059 LAC91-060	.9 15420 .5 15660 .6 15430 .8 15780	13 10 11 16	2 3 2 2	72 121 97 116	.1 .1 .1	8 7 9 6	9960 7790 6430 12420	1. (13 11	40 37 23 54	28140 30980 30660 25600	730	15	5420 4840 4250 5360	701 474		210 1000 100 180	11 4	800 1740 2070 1110	14 20 14 19	1 1 1 1	42 34 32 52	1 1 1	1435 1368 1474	90.6 91.4 88.9	36 99 87 57	3 3 4	1 1 1 1	3 3 3 3 3 3 3	50 58 52 54	1 3 2 1

COMP: D.L. COOKE & ASSOC.

PROJ: LAC

ATTN: D.L. COOKE

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1V-1017-SJ3+4 DATE: 91/09/16 * SOIL * (ACT:F31)

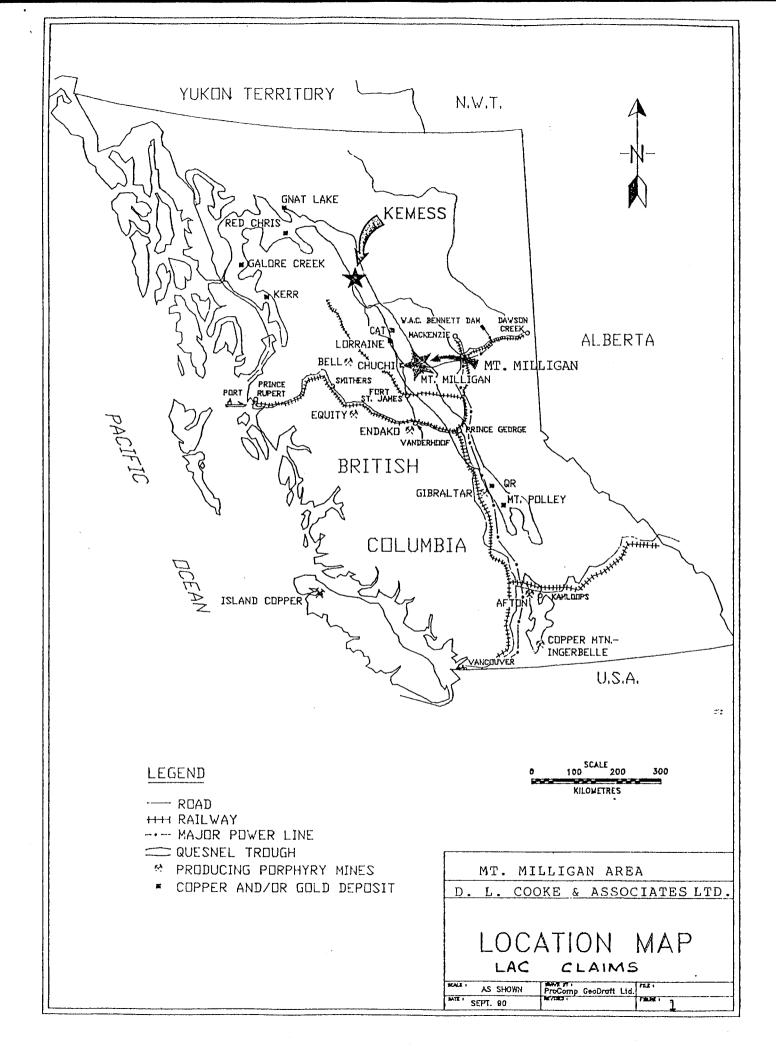
LAC91-061	TIN: D.L. COOKE						_						004) 900	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+ OK	(004)	00 4	<i></i>), L		AL1:F31
LAC91-065	SAMPLE NUMBER																					PB PPM										CR A	
LAC91-066	LAC91-061 LAC91-062 LAC91-063 LAC91-064 LAC91-065	.3 2 .3 1 .3 1	2020 5860 7840	32 23	11 8 7	95 66 85	.8 .5	11 8 1 10	7870 13070 12220	.1 .1	16 14 15	41 32 47	37900 34190 34280	530 880 950	21 35 27	6550 6840 7260	267 571 694	1 1 1 1	110 240 640	11 12 19	870 370 760 920	13 10 9 15	1 1 1	26 32 58 56	1 2 1 1	1257 1463 1316 1533	117.6 94.7 98.8	77 61 62	•	2 2 2	4 3 4	42 42 46	1 1 1 1
LAC91-072	LAC91-066 LAC91-067 LAC91-068 LAC91-069 LAC91-070	.2 2 .1 1 .3 1	9130 3840	1 1 1 1	3 2	83 78 76	.4 .4 .3	9 10 9	8070 7400 10440	.1 .1 .1	14 11 12	31 30 31	34720 34000 29820	940 560 980	17 12 11	6170 6160 6790	557 277 456	1	140 120 180	14 10 11	2570 1220 440	8 8	•	37 31 38	1	1576 1689 1604	98.9 107.3 93.3	95 52 46	1 1 2	1 1	3 4 3	45 47 43	1 1 8
LAC91-080		.4 1 .5 1 .5 1	8170 7430 8160	1 1 1 1	1 1 1 2	96 101 108	.6 .3	9 7 10	7710 14950 9150	.1 .1 .1	10 11 13	87 32	28390 29540 30000	540 620 870	15 16 13	5620 5730 6760	213 368 578	1	120 460 160	10 18 13	680 920 890	6 12 8	1	29 49 39 42	1	1481 1155 1639	98.7 91.4 96.3	54 52 63	2	Ż	3 3	37 40 42	10 1 1
LAC91-083	LAC91-077 LAC91-078 LAC91-079	.3 1 .5 1 .2 1	5600 7900 8670	1 2 1 1	1 1 1 1	78 70 94	.3	7 9 9	6510 6930 7600	.1 .1	11 12 11	20	32890	670 810 810	13 16 17	5220 3740 5350	266 316 250	1 1	90 550 120	10 6 9	1280 2020 2380	9 12 11	i	37	1	1043 1493 1478	79.8 89.5 109.4	70 89 106	3	1	3 3 3	36 33 42 37	2 3 1 1
LAC91-087	LAC91-082 LAC91-083 LAC91-084	.4 2 .5 2 .7 1	3970 1780 6330	1 1 1 1	2 2 2 1 1	77 107 76	.2	11 1 11 9	11870 10470 8160	.1 .1 .1	17 16 10	54 64 19	38530 35340 27820	560 780 920	24 30 14	8890 5490 4160	1097 1990 216	1 1	420 510 130	12 17 6	780 600 1000	13 16 9	1	55 42 37	- :	1792 1664 1648 1436	110.5 106.6 96.0 110.1	80 80 96	1 2 2	1 1 1 1	4 3 3	50 44 35	1 1 1
LAC91-095	LAC91-087 LAC91-088 LAC91-089	.4 1 .4 1 .5 1	6700 8780 5950	1 1 1 1 1	1 1 1 1 1	93 104 86	.3 .5 .5	10 9	10020 8770 10500	.1 .1 .1	13 14 12	42 28 42	32560 33120 29880	1160 860 1080	14 19 13	7900 6300 7090	642 343 528	1 1	180 130 500	16 13 15 11	1050 990 780 1320	10 11	i	38 32 38 30	1 1 1	1655 1368 1412	100.9 93.3 88.8	94 118 58	2	2 2 1 1	4 4 3	48 43 43 45	1 1 2
LAC91-102	LAC91-095 LAC91-096 LAC91-097	.6 1 .4 1 .3 2	7950 19680 22310	1 4 2	7 4 4	163 106 94	.6	7 6 8	8850 6260 6500	.1 .1 .1	14 15 16	24 58 51	35140 40230 45680	2040 1370 1060	15 19 25	3750 5810 7050	1128 527 374	1 1	740 860 790	7 11 14	1730 1770 1680	16 13 12	1	43 25 28	1	902 899 1325	97.3 86.8 104.5	88 104 81	1 1 1 1	1 1 2	3 3 3	31 36 41	3 18
LAC91-107	LAC91-102 LAC91-103 LAC91-105	.5 2 .4 2 1.0 1	21750 24050 18580	9 7 1 1	3 1	94 96 67	-6	6 6 10	8720 7660 7770	.1 .1 .1	14 12	36 51 24	40740 40460 33220	1090 1450 960	18 19 14	6430 6340 5460	343 310 242	1 1	620 1200 990	12 11 9	1300 1600 1050	13 15 11	1	49 34 40	:	1182 1187 1890	107.6 113.3 104.3	80 71 62	1 1 1 1	1 1 1 1	3 3 4	43 45 48	1 1 1 1
	LAC91-108 LAC91-109 LAC91-110	.5 2 .4 2 .5 2	2060 20890 22890	1	1 4 4 1 1	80 131 105	.5 .3 .4 .3	12 7 9	7730 7030 7780	.1 .1 .1	19 16 16	57 51 37	55970 42530 40330	990 2230 1250	22 18 18	8880 7590 7370	653 859 385	1 1	860 850 1040	8 12 14	2330 2140 1440	14 20 16	1	52 31 36	1	1912 1103 1578	155.6 96.9 116.8	83 89 8 82	1 1 1 1 2		4 3 3	51 38 47	7
																		•															

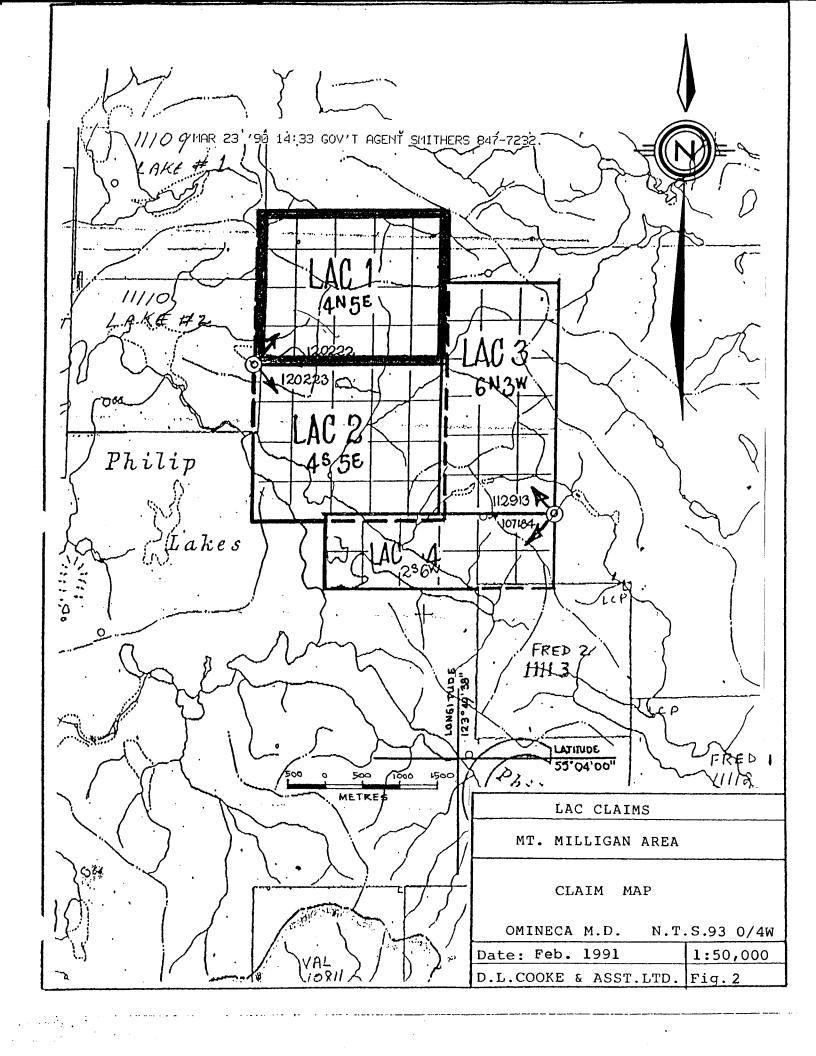
COMP: D.L. COOKE & ASSOC.

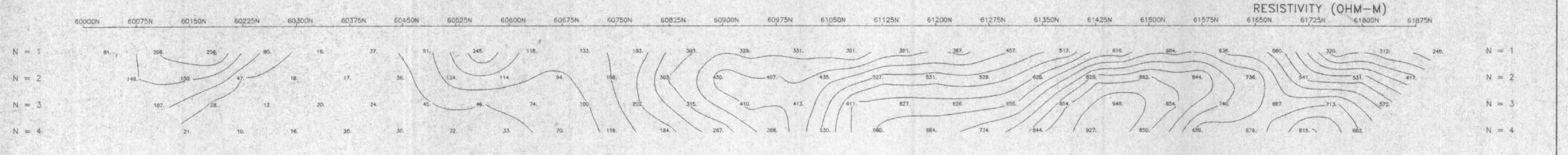
PROJ: LAC

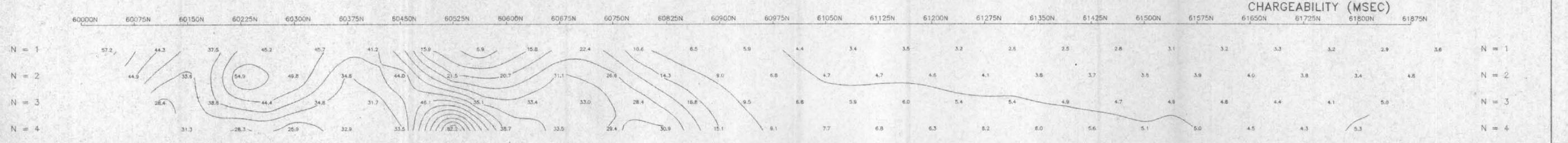
ATTN: D.L. COOKE

MIN-EN LABS - ICP REPORT

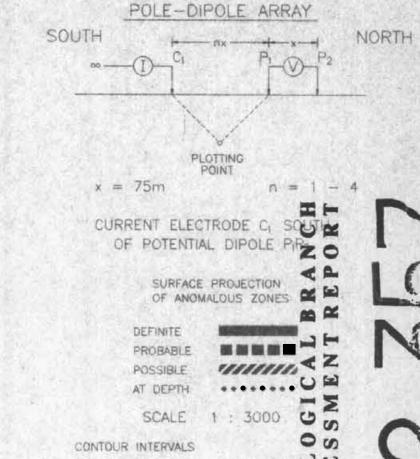

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2


(604)980-5814 OR (604)988-4524


FILE NO: 1V-1017-RJ1 DATE: 91/09/16


* ROCK * (ACT:F31)

SAMPLE	AG	AL	AS	В	ВА	BE	BI	CA	CD	CO	CU	FI	E K	LI	MG	MN	МО	NA	NI	P	РВ	SB	SR	TH	TI	٧	ZN	GA	SN	W C	R AU-	FIR
SAMPLE IUMBER	PPM	PPM	PPM	PPM	PPM	BE PPM	BI PPM	PPM		PPM	PPM	PPI	M PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM (PPM	PPM F	PPM	PPM	PPM	PPM F	PM P	PM PP	М	PP
AC91-5R AC91-7R AC91-15R AC91-17R	2.5 1.3	5110 4370 6320 6840	52 99 44 31	11 7 7 6	82 86 77 104	.5 .4 .3	2 1 4 2	4890 57590 66610 42410	.1 .1 .1	13 13 26 12	127 289 79 61	31490 25460 54920 42230	0 2740 0 2830 0 5060 0 4420	3 2 3 3	590 2520 12980 2050	1158 2065 2520	6 2 1 6	290 380 80 30	4 14 2	1730 1220 1340 790	82 114 69 52	32 28 13	19 305 499 208	1 1 1	50 1 41 1 349 3 118 1	19.6 19.6 36.9 16.9	93 97 78 42	1 1 1	1 1 1	2 4 2 3 2 3 7 16	/ 1 6 1	1
																																
			· · · · · · · · · · · · · · · · · · ·					-			·	· 21. · · · · · ·						· · · ·														
																										-			•			
1								· · · · · · · · · · · · · · · · · · ·																					•			
								,																						····		
																		<u> </u>					•									
					•			-																								
																	_							·								
									· · · · · · · · · · · · · · · · · · ·																							

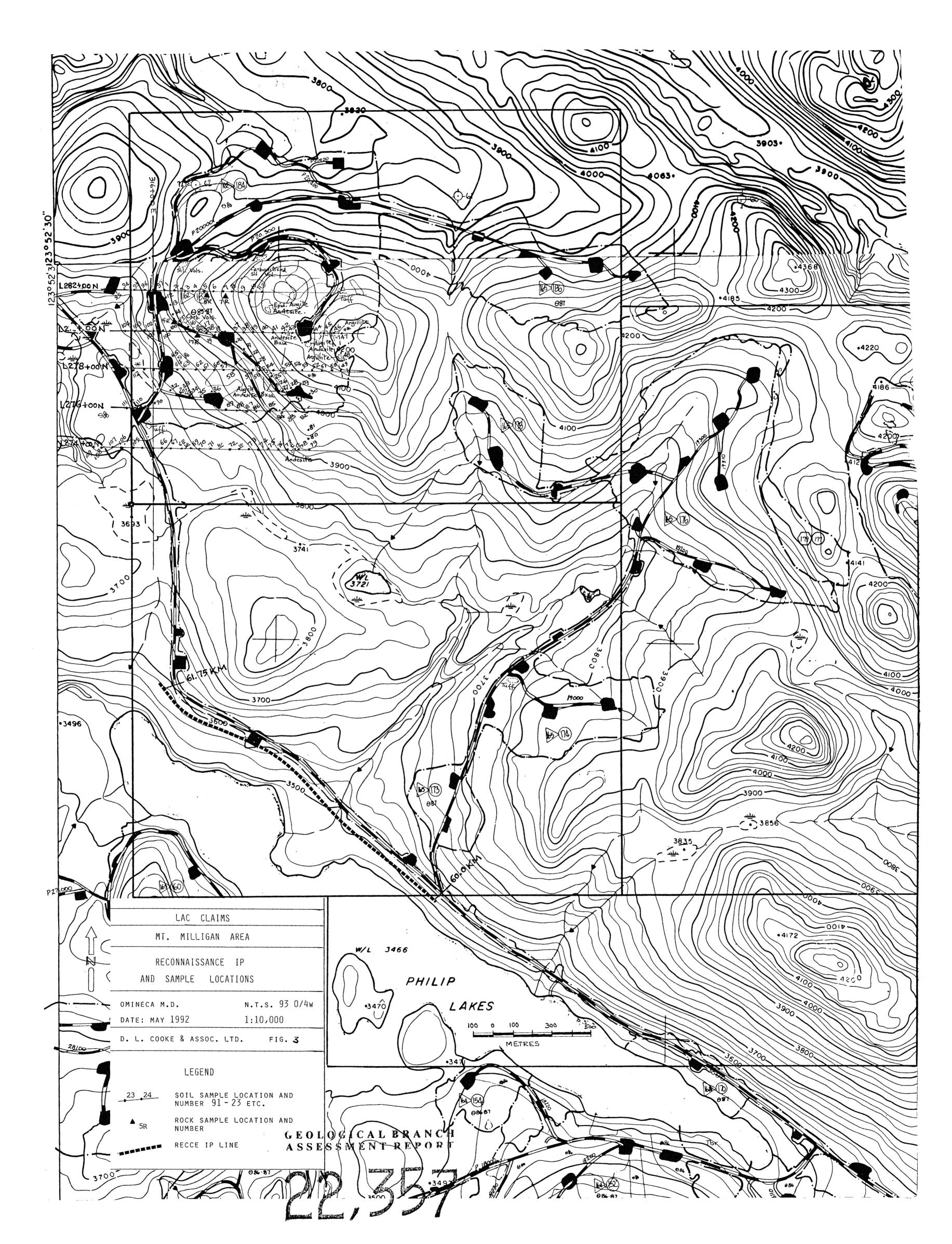


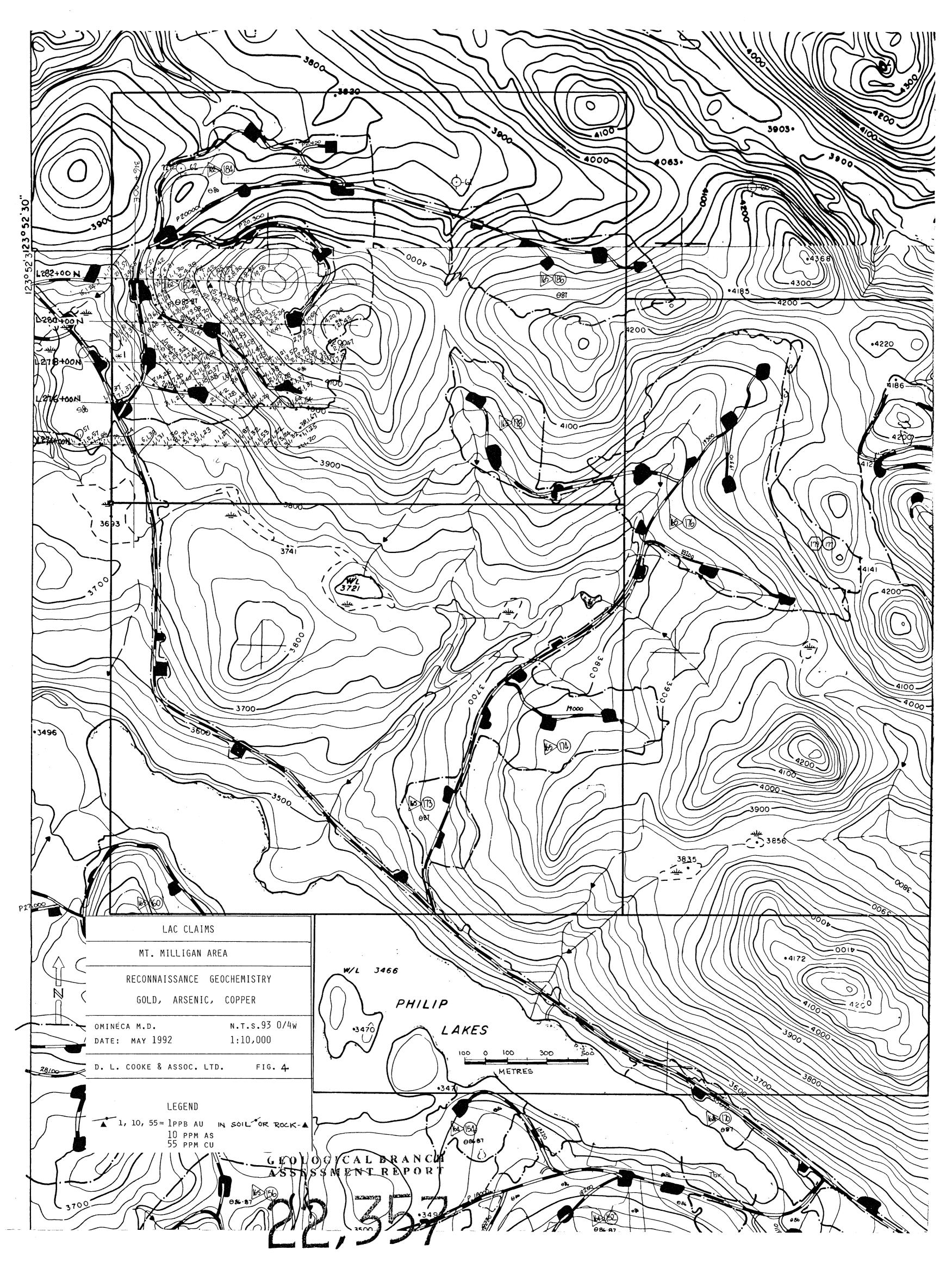
D.L. COOKE & ASSOCIATES LIMITED

PHILIP LAKES AREA

LAC CLAIMS

LINE: 10000E


Rx: EDA IP-6


LLOYD GEOPHYSICS INC.

INDUCED POLARIZATION SURVEY

DRAWING NUMBER : 5

Tx: Huntec Mk2 Model 7500

